
Thermal-Aware Code Optimization
Monotonicity Properties of Thermal-Aware Channel Capacities

by

L. Tollenaar

Supervisor: J. H. Weber
EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial fulfillment of the Requirements
For the Bachelor of Applied Mathematics

June 20, 2025

Student number: 5876907
Project Course Code: AM3001
Thesis committee: Dr. ir. J. H. Weber, TU Delft

Dr. J. A. M. de Groot, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Layman’s Summary

In modern communication systems, data is often being sent using binary codes (sequences consisting of
zeros and ones) through some transmission unit. This process causes changes in temperature, which can
sometimes disrupt signals or even lead to system failures. One way to prevent this is by controlling which
input sequences are allowed, based on how much heat they generate. By carefully selecting these sequences,
we can make sure the temperature always stays within safe limits.

The aim of this research project was to investigate the number of admissible sequences for communi-
cation systems, dependent on the amount of heating or cooling generated during transmission. We used a
computer program to look for certain patterns between different situations. Subsequently, a mathematical
proof was derived to support one of the observations. Overall, our results suggest that sequences starting
at a temperature near the middle of the allowable temperature range often lead to the highest number of
admissible sequences.

Although some of the claims remain unproven, they are supported by numerical evidence. If future work
could establish this analytically, the results would provide insight into how communication systems can be
designed to transmit data safely and efficiently.

2

Summary

This research investigates communication systems, where temperature constraints limit the transmission of
data. One method to prevent overheating, thus avoiding data corruption or system failure, is to design the
system such that the maximum allowable temperature is never exceeded. Accordingly, this study focuses on
thermal-aware (TA) channels in the finite domain.

A TA-channel transmits data using binary input sequences of fixed length, where each bit contributes to
the system’s thermal state. The channel is characterized by four parameters: N , q , p, and n, representing the
system’s maximum allowable temperature, cooling gradient, heating gradient, and input length, respectively.

By identifying all binary sequences of length n that keep the system’s temperature within the allowed
range, we determine the number of admissible sequences for various parameter configurations. To make the
TA-channel applicable for real-world use, sequences must also remain within the temperature limits when
put into cascade. Sets of admissible sequences that satisfy this requirement are represented with Ca , where a
denotes the initial temperature level.

Using transition matrices derived from the (N , q, p) TA-channel model, we computed the cardinality of
each Ca given an input length n. The aim was to find the value of a that maximizes the number of valid
sequences, i.e., the size of Ca . Existing results showed monotonicity in |Ca | when the ratio of the heating and
cooling gradient is integer [6]; we extended this to a different case and proved our claim analytically using an
injective mapping technique. Furthermore, a series of conjectures for more general parameter configurations
are proposed, based on patterns observed through numerical analysis.

Although an analytical proof of these conjectures has yet to be established, numerical results consistently
support their validity. The results indicate that the largest sets of admissible TA-sequences occur when a is
close to N /2 (where N is the maximum allowable temperature), particularly when either the heating or cool-
ing gradient is small. This offers both theoretical insight and a foundation for future research on computing
thermal-aware channel capacities.

3

Contents

Layman’s Summary 2

Summary 3

1 Introduction 5
1.1 Introduction to Thermal-Aware Communication Systems . 5

1.1.1 The Thermal-Aware Channel Model . 5
1.1.2 Channel Dynamics and Admissibility . 6
1.1.3 Integer Scaling and Graph Representation . 6
1.1.4 Thermal-Aware Channel Capacities for Finite Sequences 7

2 Theoretical Limits of Thermal-Aware Channel Capacities 8
2.1 Computing TA-Channel Capacities via Transition Matrices . 8
2.2 Upper Bounds on TA-Channel Capacities . 8

3 Thermal-Aware Channel Capacities of Finite-Length Sequences 10
3.1 Properties of Transition Matrices . 10
3.2 Properties of TA-Channel Capacities in the Finite Domain . 11

3.2.1 Symmetry and Monotonicity of Ca . 11

4 Main Results: Thermal-Aware Channel Capacity Properties in the Finite Domain 13
4.1 Numerical Analysis of TA-Channel Capacities. 13
4.2 Monotonicity Properties of TA-Channel Capacities in the Finite Domain 13

4.2.1 Monotonicity for the Case p = 1 . 13
4.2.2 Monotonicity Conjectures for Specific Parameters . 16
4.2.3 A General Monotonicity Conjecture . 19

5 Conclusion and Future Recommendations 21

Bibliography 22

A Proofs of Chapter 3 23
A.1 Proof of Theorem 3.1.1 . 23
A.2 Proof of Theorem 3.2.2 . 23
A.3 Proof of Theorem 3.2.5 . 24

B Explored Mappings in Chapter 4 26
B.1 Explored Mappings to Prove Conjecture 1. 26

B.1.1 Explored Mappings to prove Conjecture 1 for p = 2 . 26
B.1.2 Explored Mappings to Prove Conjecture 1 for q = 2 . 27

B.2 Explored Mappings to Prove Conjecture 3. 27

C Python Code 28
C.1 Code for General Investigations . 28
C.2 Code to Confirm Mapping of Theorem 4.2.1 . 48
C.3 Code for Matrix Generation and Plotting . 57
C.4 Code to Create Ca . 63

4

1
Introduction

Temperature control is an important aspect of the design of modern communication systems, ranging from
portable mobile devices to high-performance computing platforms. In these systems, data is transmitted
through wiring in a chip. As chips become more advanced, the heat generated during transmission can sig-
nificantly affect system stability and efficiency. This has led to the emergence of thermally-aware designs,
which aim to effectively manage these concerns while minimizing power consumption [3, 4, 12].

A method to regulate temperature at the coding level is the use of thermal-aware communication chan-
nels. By constraining input sequences, the channel temperature can be kept within its allowed range, avoid-
ing signal disruptions or hardware degradation. This is especially important in systems such as laser-based
storage and tightly packed signal wires [7, 9].

To apply thermal-aware channels in practice, understanding their capacity, i.e., the maximum amount of
information that can be transmitted under temperature constraints is essential. Previous research introduced
methods to quantify this capacity in the infinite domain [5], showing connections between thermal-aware
coding and earlier work on constrained channels, like those restricted by running digital sums [9] or charge
balance [2]. Follow-up work further investigated code constructions that maintain temperature constraints
over finite sequences, making them more practically applicable [6].

This report aims to generalize and build upon these capacity results for thermal-aware channels with
fixed-length code sequences, as presented in [6]. In Chapter 2, we outline theoretical bounds in the asymp-
totic regime. Next, we review established finite-length results that form the foundation of our work in Chap-
ter 3. Finally, in Chapter 4, we present the findings of this research project, including the numerical methods
implemented and an analytical proof supporting the claims.

Before proceeding, we provide a mathematical formulation of the thermal-aware channel model, which
forms the basis for the subsequent analysis. We also acknowledge that this report has been written with the
assistance of AI (in particular, ChatGPT), which was used for formula formatting and writing style improve-
ments. All theorems, conjectures, proofs and other arguments have been independently developed by the
author, together with the support of the supervisor (dr. ir. J.H. Weber).

1.1. Introduction to Thermal-Aware Communication Systems
Communication systems use binary codes, input sequences consisting of zeros and ones, to transmit infor-
mation. One method to implement these code is on-off keying, where a 1 represents an electrical pulse ("on")
and a 0 results in no electrical activity ("off"). Each 1 increases the temperature of the transmission medium,
while each 0 causes cooling down [6].

In such systems, the temperature must remain within safe limits. If it rises above a certain threshold, it
may disrupt data transmission or damage the system. Thermal-aware codes prevent this by ensuring that se-
quences never exceed the system’s maximum temperature. This property should hold not only for individual
sequences but also for concatenated sequences, a requirement known as cascadability [6].

1.1.1. The Thermal-Aware Channel Model
The thermal-aware (TA) channel is a binary, noiseless channel subject to temperature constraints. It models
how each bit (0 or 1) affects the system’s thermal state during transmission. The model is defined by the

5

6 1. Introduction

following parameters:

• Tmin: minimum temperature of the channel,

• Tmax: maximum allowable temperature,

• t1: heating gradient (temperature increase after a 1),

• t0: cooling gradient (temperature decrease after a 0).

The channel temperature never drops below Tmin, which serves as a lower bound inherent to the system.
Conversely, the channel does not have a strict upper temperature limit. Instead, Tmax represents the threshold
beyond which signal degradation may occur. By constraining the admissible input, we ensure that the chan-
nel temperature remains within the range [Tmin,Tmax]. Applying linear transformation, we can set Tmin = 0
and work within the range [0,T]. If t1 and t0 are rational, their ratio is written as k = t1

t0
= p

q , where p and q are
positive co-prime integers. This simplification makes it easier to analyze the channel using calculations with
only integers [6].

1.1.2. Channel Dynamics and Admissibility
Each finite binary input sequence of length n is represented as:

x = (x1, x2, . . . , xn). (1.1)

Transmitting x results in a temperature sequence st0,t1 (x), which tracks the system’s temperature after sending
each bit:

st0,t1 (x) = (s1, s2, . . . , sn).

Starting at temperature 0, each si is recursively defined as:

si =
{

si−1 + t1, if xi = 1,

max{0, si−1 − t0}, if xi = 0.
(1.2)

A sequence x is admissible if si ≤ T for all i . The set of all admissible sequences for a given sequence
length n is denoted A (T, t0, t1,n). A (T, t0, t1) TA-channel accepts only such sequences.

Example 1.1.1. Let T = 4, t1 = 2, and t0 = 1. For the sequence x = (1,0,1), the temperature changes as:

0 → 2 → 1 → 3,

yielding s1,2(x) = (2,1,3). Since the temperature stays within [0,4], the sequence is admissible.

1.1.3. Integer Scaling and Graph Representation
To simplify the analysis, note that for any (T, t0, t1) TA-channel, it holds that

A (T, t0, t1,n) =A (αT,αt0,αt1,n), ∀α> 0.

Hence, the channel is scale-invariant, and we can rescale it by setting α= q
t0

,. This transforms a (T, t0, t1)

TA-channel into an equivalent (N , q, p) TA-channel, where N = ⌊ qT
t0
⌋ [6].

The channel’s behavior can be modeled by a directed graph with N +1 states (from 0 to N). Each state
represents a temperature level, and transitions are:

• from i to i +p when transmitting a 1,

• from i to i −q , or to 0 if i < q , when transmitting a 0.

This graphical representation defines a transition matrix DN ,q,p , which encodes all valid temperature
transitions. When analyzing the capacity of sets of admissible thermal-aware sequences, which will be dis-
cussed in the next chapters, this matrix turns out to be a useful tool.

1.1. Introduction to Thermal-Aware Communication Systems 7

Example 1.1.2. Consider N = 6, q = 2, and p = 3. The state graph has 7 nodes (0–6), illustrated in Figure 1.1.

0 1 2 3 4 5 6

1 1 1 1

0 0 0 0 0
0

0

Figure 1.1: State graph of a TA-channel with parameters N = 6, q = 2, and p = 3.

The corresponding transition matrix is:

D6,2,3 =



1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0


(1.3)

For x = (0,1,0,0,1), starting at 0 gives:

0 → 0 → 3 → 1 → 0 → 3,

yielding s2,3(x) = (0,3,1,0,3), which stays within [0,6]. Thus, the sequence is admissible.
In contrast, x = (1,1,0,1,0) yields:

0 → 3 → 6 → 4 → 7 → 5,

resulting in s2,3(x) = (3,6,4,7,5). Since the temperature exceeds T = 6, this sequence is inadmissible.

In Chapter 2, we briefly examine theoretical upper bounds for capacities of (N , q, p) TA-channels in the
infinite case. This research, however, focuses on finite-length sequences, so we now introduce the additional
concepts needed for the finite setting.

1.1.4. Thermal-Aware Channel Capacities for Finite Sequences
To support claims in the finite domain, discussed in Chapter 3 and 4, some extra concepts are required. Build-
ing on the definition of temperature sequences given in (1.2), we now introduce vq,p (x,u) = (v1, v2, . . . , vn),
where v0 = u and:

vi =
{

vi−1 +p, if xi = 1,

max{0, vi−1 −q}, if xi = 0.
(1.4)

Each 1 increases the temperature by p, while each 0 decreases it by q , without dropping below zero. Note
that vq,p (x,0) corresponds exactly to sq,p (x).

We define Ca as the set of all sequences x that:

• satisfy vi ≤ N for all i ,

• start at v0 = a,

• end at vn ≤ a.

As a result of these criteria, sequences in Ca can be cascaded without exceeding the maximum tempera-
ture of the transmission system [6].

We also define the weighted running digital sum tq,p (x) = (t1, t2, . . . , tn), where:

ti =
i∑

j=1

(
px j +q(x j −1)

)=−qi + (p +q)
i∑

j=1
x j . (1.5)

Unlike vq,p (x,u) , this sequence allows negative values and will play a useful role in analyzing Ca in Chap-
ters 3 and 4.

2
Theoretical Limits of Thermal-Aware

Channel Capacities

This chapter investigates the theoretical limits of thermal-aware (TA) channel capacities. These limits are
derived for infinite input sequences and serve as upper bounds for the finite-length TA-channels explored in
Chapters 3 and 4.

The capacity of a (N , q, p) TA-channel is defined as the maximum achievable asymptotic rate:

capTA(N , q, p) = limsup
n→∞

log2 |A (N , q, p,n)|
n

. (2.1)

Without thermal constraints, all binary sequences of length n would be admissible, resulting in |A (N , q, p,n)| =
2n , and thus yielding a channel capacity of 1. For TA-channels, however, admissibility depends on the param-
eters N , q , and p, therefore restricting the number of valid sequences. The capacity in (2.1) represents the
fraction of binary sequences that remain valid under these constraints and is useful for efficient thermal-
aware coding.

2.1. Computing TA-Channel Capacities via Transition Matrices
As established in research on constrained systems [8, 10, 11], the capacity of a finite-state constrained channel
can be determined using its corresponding graph representation. For TA-channels, this graph consists of
N +1 nodes, representing discrete temperature states from 0 to N , as introduced in Chapter 1.1.3. The edges
describe valid transitions based on heating and cooling gradients, subject to the temperature limits.

The transitions are encoded in the (N +1)× (N +1) matrix DN ,q,p , where non-zero entries indicate valid
transitions between states after transmitting either a 0 or a 1. The asymptotic capacity is the base-2 logarithm
of the largest real eigenvalue of DN ,q,p [11]:

capTA(N , q, p) = log2λ, (2.2)

where λ is the dominant real root of the characteristic polynomial:

ΓN ,q,p (z) = det[zI −DN ,q,p]. (2.3)

This gives an exact expression for the asymptotic capacity for any (N , q, p) TA-channel. However, for large
N , computing the determinant and identifying the dominant root becomes computationally intensive and
sometimes impossible.

2.2. Upper Bounds on TA-Channel Capacities
Before further investigation, we rescale the (T, t0, t1) TA-channel to an (M ,1,k) TA-channel by setting α= 1

t0
.

This rescaling reduces the number of free parameters, thereby simplifying the analysis in the asymptotic
domain. Note that we also saw this scaling in Chapter 1.1.3, where we used α= q

t0
to obtain the (N , q, p) TA-

channel.

8

2.2. Upper Bounds on TA-Channel Capacities 9

Previous results show that capTA(M ,1,k) increases with M , since larger temperature limits allow more
admissible sequences. Conversely, the capacity decreases as k increases, since stronger heating relative to
cooling tightens constraints [6]. This leads to the following result:

Theorem 2.2.1 (Adapted from [6]). For any k ≤ 1 and M ≥ k,

capTA(M ,1,k) > log2

(
2cos

(
π

⌊M/k⌋+2

))
.

This result implies that for any k ≤ 1, the capacity capTA(M ,1,k) approaches 1 as M becomes large. For an
in-depth argument of this proof, we refer to [6].

Furthermore, since capTA(M ,1,k) decreases in k, it leads to the following approximations:

Proposition 2.2.2 (From [6]). Let capTA(M ,1,k) denote the capacity of the TA-channel with parameters (M ,1,k),
where k = p/q.

Let p ′, q ′, p ′′, q ′′ ∈Z>0 satisfy
p ′

q ′ ≤
p

q
≤ p ′′

q ′′ , with
p ′

q ′ ≈
p

q
≈ p ′′

q ′′ ,

and both q ′ and q ′′ much smaller than q. Then:

capTA(M ,1, p ′′/q ′′) ≤ capTA(M ,1,k) ≤ capTA(M ,1, p ′/q ′).

In the special case where q = p = 1, i.e., equal heating and cooling gradients, an explicit formula exists:

Theorem 2.2.3 (From [6]). The capacity of the (N ,1,1) TA-channel is

capTA(N ,1,1) = log2

(
2cos

(π

2N +3

))
.

In all other cases where q ̸= p, no explicit formula for computing the capacity of the TA-channel is cur-
rently known. In the following chapter, we turn our attention to the finite-length domain by analyzing the
subsets Ca ⊆ A (N , q, p,n). These consist of TA-sequences of fixed length n that begin and end in specified
temperature states. Again using the properties of the transition matrix, we will present several results regard-
ing the maximal size of these subsets.

3
Thermal-Aware Channel Capacities of

Finite-Length Sequences

This chapter focuses on the analysis of thermal-aware (TA) channel capacities for input sequences of fixed
length. In practice, communication systems transmit sequences of finite length, making it important to un-
derstand how temperature constraints impact the overall capacity of communication systems in the finite
domain.
To enable this analysis, we make use of the transition matrices associated with TA channels, which capture
all permissible state transitions. Proofs of all theorems stated here can be found in Appendix A.

3.1. Properties of Transition Matrices
As established in Chapter 1.1.3, each (N , q, p) TA-channel induces a transition matrix DN ,q,p of size (N +1)×
(N +1); see Example 1.3. From linear algebra and graph theory, it is known that the number of walks of length
n between states in a finite-state graph equals the corresponding entry in the matrix D (n)

N ,q,p :

Theorem 3.1.1 (From [1]). Let G = (V ,E) be a finite graph with adjacency matrix A. Then, for all integers n ≥ 0,
the entry (An)i j equals the number of walks of length n from vertex i to vertex j .

Using Theorem 3.1.1, we can compute the sizes of the sets Ca . For each i ∈ {0,1, . . . , N }, |Ci | equals the
number of walks of length n starting at state i and ending at any state j ≤ i . This follows directly from the
fact that, to ensure sequences can be cascaded under temperature constraints, valid sequences must end at
or below their starting state [6].

Consequently, the size of Ci can be expressed as:

|Ci | =
i∑

j=0
(D (n)

N ,q,p)i j . (3.1)

Example 3.1.2. Let N = 4, q = 2, p = 3, and n = 6. Then:

D4,2,3 =


1 0 0 1 0
1 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−→ D (6)
4,2,3 =


8 3 1 5 2
7 3 1 4 2
5 2 1 3 1
4 2 1 3 1
3 1 1 2 1


Using (3.1):

|C0| = 8,

|C1| = 7+3 = 10,

|C2| = 5+2+1 = 8,

|C3| = 4+2+1+3 = 10,

|C4| = 3+1+1+2+1 = 8.

10

3.2. Properties of TA-Channel Capacities in the Finite Domain 11

We can now directly compute the value of a that maximizes |Ca | for a given channel configuration using
only the transition matrix. The next section presents additional theoretical properties that further narrow the
search space for this optimal a.

3.2. Properties of TA-Channel Capacities in the Finite Domain
Recall that Ca ⊆A (N , q, p,n) denotes the subset of admissible sequences starting at temperature level a and
ending at or below a. These sets form the foundation for constructing thermally-aware code sequences of
fixed length.

The following result from [6] highlights the practical importance of Ca :

Theorem 3.2.1 (From [6]). For any 0 ≤ a ≤ N , the code Ca ⊆A (N , q, p,n) can be used to encode (and decode)
messages from a message set of size at most |Ca | into (from) binary codewords of length n. Cascading such
codewords results in a valid (N , q, p) thermal-aware sequence.

As our goal is to find the largest sets of binary codes of fixed length n that are thermally admissible both
individually and when concatenated, identifying the value of a for which |Ca | is maximized is very informa-
tive. Since this value yields the largest possible set of thermal-aware sequences of length n for a given channel
configuration, it directly gives us the optimal set of admissible sequences of fixed length for a specific (N , q, p)
TA channel.

3.2.1. Symmetry and Monotonicity of Ca
Several structural properties of Ca have been established in [6] and serve as a basis for our further analysis.

First, we introduce sequence reversal. For any sequence x = (x1, x2, . . . , xn), define:

xR = (xn , xn−1, . . . , x1).

Theorem 3.2.2 (From [6]). For all a ∈ {0,1, . . . , N },

x ∈Ca ⇐⇒ xR ∈CN−a .

Corollary 3.2.3 (From [6]). For all a ∈ {0,1, . . . , N },

|Ca | = |CN−a |.

The symmetry of Ca allows us to limit our search for the maximizing a to values up to N /2.

Example 3.2.4. Let N = 5, q = 1, p = 3, and n = 6. Then:

D (6)
5,1,3 =



4 1 4 5 2 1
4 1 1 7 2 1
4 1 1 1 6 1
1 3 1 1 0 3
1 0 3 1 0 0
1 0 0 3 0 0

 .

Computing |Ca | yields:

|C0| = 4, |C1| = 5, |C2| = 6, |C3| = 6, |C4| = 5, |C5| = 4.

The maximum occurs at a = 2, where |C2| = 6. The corresponding code rate is

log2(6)

6
≈ 0.43,

The maximum asymptotic capacity of the (5,1,3) TA-channel, as defined in Chapter 2, is approximately 0.58.
The resulting code rate therefore achieves about 74% of this theoretical limit.

12 3. Thermal-Aware Channel Capacities of Finite-Length Sequences

Example 3.2.4 illustrates not only symmetry, but also monotonicity of |Ca |. The latter turns out to hold
under the condition that q = 1, i.e., when the ratio of the heating to cooling gradient is an integer:

Theorem 3.2.5 (From [6]). If q = 1 and 0 ≤ a ≤ N
2 −1, then

|Ca | ≤ |Ca+1|.

However, prior work also shows that this monotonicity does not hold in general. For arbitrary values of
q and p, the size of Ca may not increase with a. This is illustrated in Example 3.2.6 below and can also be
deduced from Example 3.1.2.

Example 3.2.6. Let N = 6, q = 4, p = 5, and n = 8. Then:

D (8)
6,4,5 =



19 8 3 0 0 12 5
17 7 3 0 0 11 4
12 5 2 0 0 8 3
12 5 2 0 0 8 3
12 5 2 0 0 8 3
11 4 2 0 0 7 3
8 3 1 0 0 5 2


The corresponding |Ca | values are:

|C0| = 19, |C1| = 24, |C2| = 19, |C3| = 19, |C4| = 19, |C5| = 24, |C6| = 19.

It follows that |C1| > |C2|, showing that this monotonicity does not hold in general.

Since the general case remains open for investigation, it has led to this research project. In the next chap-
ter, we present our numerical methods to explore different parameter configurations, along with an analytical
proof that supports one of the findings.

4
Main Results: Thermal-Aware Channel

Capacity Properties in the Finite Domain

Building on the theoretical bounds for thermal-aware (TA) channels established in Chapter 2, and the finite-
length channel capacity properties studied in Chapter 3, this chapter presents the main results of this research
project. The goal was to investigate the capacity of (N , q, p) TA-channels for input sequences of fixed length
n. As in Chapter 3.2.1, this was done by determining the values of a that maximize |Ca | (see Chapter 1.1.4 for
definitions), and identifying potential relations between the optimal a and the parameters N , q , p, and n.

The investigation started with extensive numerical analysis. Various (N , q, p) TA-channel configurations
were generated, and their corresponding transition matrices were computed to determine the capacities Ca .
The implementation was performed in Python using the online platform Kaggle. We note that the develop-
ment of the code was done with the assistance of AI. Details of the numerical implementation can be found
in Appendix C. For each configuration, the optimal capacity |Ca | and its corresponding index a were deter-
mined, allowing for manual inspection of potential patterns between different parameter configurations.

4.1. Numerical Analysis of TA-Channel Capacities
We started the numerical analysis with a broad approach, examining general parameter relations such as
p > q , q > p, p −q = 1, and p +q = N . Subsequently, we studied the channel capacities (by determining |Ca |
for all values of a) associated with transition matrices that satisfied these conditions. In these cases, each of
the parameters (q , p, N , and n) influenced the determination of the optimal a. That is, no single parameter
could be considered independent. If any parameter had been irrelevant, it could have been excluded from
the analysis, simplifying the derivation of an explicit expression for the maximal capacity of Ca .

As a result, this investigation suggested that the monotonicity property discussed in Chapter 3.2 does not
hold for general values of the parameters q , p, N , and n. Instead, the wide range of parameter combinations
made it difficult to identify clear patterns through manual inspection.

To address this, we decided to focus on more specific cases. For instance, we fixed q = 2 and then stud-
ied how |Ca | behaves as p, N , and n vary. For some specific configurations, numerical analysis did suggest
monotonicity in the cardinality of Ca . These cases will be discussed in the following section.

4.2. Monotonicity Properties of TA-Channel Capacities in the Finite Do-
main

Theorem 3.2.5 proves monotonicity for q = 1. Numerical analysis indicates similar behavior for p = 1. This
result is formalized as follows:

4.2.1. Monotonicity for the Case p = 1
Theorem 4.2.1. If p = 1 and 0 ≤ a ≤ N /2−1, then

|Ca | ≤ |Ca+1|.

13

14 4. Main Results: Thermal-Aware Channel Capacity Properties in the Finite Domain

Proof. Overview. This proof is established by constructing an injective mapping g from Ca to Ca+1. Let x be
any sequence in Ca , noting that v0 = a. Define:

vq,p (x, a) = (v1, v2, . . . , vn), tq,p (x) = (t1, t2, . . . , tn), tq,p (xR) = (t ′1, t ′2, . . . , t ′n).

1. Definition hx.
Define hx as follows:

hx = min{i : vq,p (x, a)i = a +1}.

If no such index exists, i.e., if vi ≤ a for all 1 ≤ i ≤ n, then set h = n.

2: Definition of the mapping g .
We decompose x as

x = (u,w),

with u of length h and w of length n −h, where h = hx. Define the sequence y:

y = g (x) = (w,uR).

Let
vq,p (y, a +1) = (v ′′

1 , v ′′
2 , . . . , v ′′

n), tq,p (y) = (t ′′1 , t ′′2 , . . . , t ′′n).

3. Proof that y ∈Ca+1.
We will now show that y ∈Ca+1 by verifying:

a) v ′′
i ≤ N for all i ,

b) v ′′
n ≤ a +1.

Furthermore, we prove that y is uniquely determined by x, i.e., g is injective. This implies |Ca | ≤ |Ca+1| for all
0 ≤ a ≤ N /2−1, which completes the proof.

(a)
First, consider the case h < n, so there exists an index h such that vh = a+1. Since the function g maps x ∈Ca

to y ∈Ca+1, v ′′
0 = a +1. By the definition of h and the construction of y, it follows that:

v ′′
i = vi+h (4.1)

for all 1 ≤ i ≤ n −h. Moreover, since x ∈Ca , we know v j ≤ N for all j , so:

v ′′
i ≤ N

for all 1 ≤ i ≤ n −h.
Equation (4.1) also implies:

v ′′
n−h = vn ≤ a. (4.2)

To establish that v ′′
i ≤ N for all n −h < i ≤ n, we proceed by contradiction. Suppose there exists a β ∈

{n −h +1, . . . ,n} such that v ′′
β
= N +1. Define α ∈ {n −h +1, . . . ,β−1} by:

α=
{

i : v ′′
i = a +1 and v ′′

j > a +1 for all i < j <β
}

. (4.3)

Note that from (4.2), we know such an α exists. Then:

t ′′β− t ′′α = v ′′
β− v ′′

α = N +1− (a +1) ≥ a +2,

since a ≤ N /2−1 implies N ≥ 2(a +1), and hence N +1− (a +1) ≥ a +2.
Observe that for n −h < i ≤ n, t ′′i = t ′i by definition of y. Moreover, it holds that t j − ti = t ′n−i − t ′n− j for all

1 ≤ i ≤ j ≤ n. Therefore we obtain:

vn−α ≥ vn−β+ tn−α− tn−β = vn−β+ t ′β− t ′α = vn−α+ t ′′β− t ′′α ≥ 0+a +2.

4.2. Monotonicity Properties of TA-Channel Capacities in the Finite Domain 15

However, by the definition of h and since p = 1, it must be that vn−α < vh = a+1, which yields a contradiction.
Thus:

v ′′
i ≤ N

for all n −h < i ≤ n.
If h = n, a similar argument applies. Again, assume there exists an index β ∈ {1, . . . ,n} such that v ′′

β
= N +1.

Define α ∈ {0, . . . ,β− 1} as in (4.3). Note that by definition of y, at least one valid index α exists. Again, we
obtain the inequality that

vn−α ≥ vn−β+ tn−α− tn−β = vn−α+ t ′β− t ′α = vn−α+ t ′′β− t ′′α ≥ a +2

However, since h = n, in this case no j exists with v j ≥ a +1. Therefore, vn−α ≥ a +2 leads to a contradiction.
Hence:

v ′′
i ≤ N

for all 1 ≤ i ≤ n.

(b)
Now consider the upper bound on v ′′

n . We begin with the case h < n. Suppose, for contradiction, that v ′′
n ≥

a +2. Define α ∈ {n −h +1, . . . ,β−1} as in (4.3) with β= n. Then:

t ′′n − t ′′α = v ′′
n − v ′′

α ≥ a +2− (a +1) = 1.

Since tn−α− t0 = t ′n − t ′α (where t0 = 0) and t ′′n − t ′′α = t ′n − t ′α, it follows that:

vn−α ≥ a + tn−α− t0 = a + t ′n − t ′α = a + t ′′n − t ′′α ≥ a +1.

However, vn−α < vh = a +1, yielding a contradiction. Hence:

v ′′
n ≤ a +1.

Now consider the case h = n. Again, assume for contradiction that v ′′
n ≥ a + 2. Let β = n and define

α ∈ {0, . . . ,β−1} as in (4.3). Then it follows, again, that:

t ′′n − t ′′α = v ′′
n − v ′′

α ≥ a +2− (a +1) = 1.

Once more, we find:

vn−α ≥ a + tn−α− t0 = a + t ′n − t ′α = a + t ′′n − t ′′α ≥ a +1.

However, in this case h = n, so v j ≤ a for all j . Therefore, vn−α ≥ a +1 leads to a contradiction. We conclude
that:

v ′′
n ≤ a +1.

4. Injectivity of mapping g .
Lastly, we need to show that the mapping g is injective. This is done by noting that h = hx = hyR . Thus, we
can obtain h from y and invert the mapping:

g−1(y) = g−1(w,uR) = ((uR)R ,w) = (u,w) = x.

Hence, g is injective, completing the proof.

Example 4.2.2. To illustrate the mapping g defined in the proof of Theorem 4.2.1, consider the parameters
N = 4, q = 2, p = 1, and n = 6. Let x1 = (1,1,1,0,0,1) ∈ C1. Then: v2,1(x1,1) = (2,3,4,2,0,1). Here, for hx1 = 1,
we have v1 = a +1 = 2, and the mapping gives:

y1 = g (x1) = (1,1,0,0,1,1) and v2,1(y1,2) = (3,4,2,0,1,2),

showing that y1 ∈C2. A visual representation is provided in Figure 4.1.

16 4. Main Results: Thermal-Aware Channel Capacity Properties in the Finite Domain

(a) TA-sequence x1 ∈C1 (b) Mapped sequence y1 = g (x1) ∈C2

Figure 4.1: Example of a mapping with valid hx < n.

Next, we examine a case where hx = n.
This occurs when vi ≤ a for all 0 ≤ i ≤ n. Consider again N = 4, q = 2, p = 1, and n = 6. Let x2 =

(0,1,0,1,0,1) ∈ C1. Then: v2,1(x2,1) = (0,1,0,1,0,1) Since no valid index < n exists, we set hx2 = n and de-
fine:

y2 = g (x2) = xR
2 = (1,0,1,0,1,0) and v2,1(y2,2) = (3,1,2,0,1,0),

showing that y2 ∈C2. See Figure 4.2 for a graphical illustration.

(a) TA-sequence x2 ∈C1 (b) Mapped sequence y2 = xR
2 ∈C2

Figure 4.2: Example of a mapping when hx = n.

From Theorem 4.2.1 and the symmetry of |Ca | stated in Corollary 3.2.3, we obtain the following result
about the cardinality of Ca .

Corollary 4.2.3. If p = 1, then the cardinality of Ca is maximized when a = ⌊N /2⌋, i.e.,

|Ca | ≤
∣∣C⌊N /2⌋

∣∣ for all a = 0,1, . . . , N .

This result suggests that certain symmetry properties may exist between q and p. The observations in
the following sections further support this pattern and future research could entail the investigation of this
symmetry.

4.2.2. Monotonicity Conjectures for Specific Parameters
Numerical analysis indicated not only the monotonic behavior of |Ca | with respect to a for the case p = 1, but
also for some other parameter configurations:

4.2. Monotonicity Properties of TA-Channel Capacities in the Finite Domain 17

Conjecture 1. If q = 2 or p = 2 and N is odd, then the cardinality of Ca is maximized when a = ⌊N /2⌋, that is:

|Ca | ≤
∣∣C⌊N /2⌋

∣∣ for all a ∈ {0,1, . . . , N }.

Conjecture 2. If p = 3 or q = 3, then the cardinality of Ca is maximized when a = ⌊N /2⌋ or a = ⌊N /2⌋−1, that
is:

|Ca | ≤ max{
∣∣C⌊N /2⌋−1

∣∣ ,
∣∣C⌊N /2⌋

∣∣} for all a ∈ {0,1, . . . , N }.

Proving these conjectures turned out to be considerably more challenging than for the cases p = 1 or q = 1.
We have tried to construct mappings similar to those in Theorems 3.2.5 and 4.2.1. However, these mappings
failed, because they violated the properties of Ca (i.e., they either exceeded the maximum temperature N or
ended at a temperature higher than a) or did not meet the injectivity criterion. Below, we present an explicit
example where the mapping technique that worked for p = 1 was extended, but failed for p = 2.

Example 4.2.4. To illustrate that extending the mapping defined in Theorem 4.2.1 to the case where p = 2
does not work for all TA-sequences, we will provide two TA-sequences mapped using the function g . This
time, define hx = min{i : vq,p (x, a)i = a + 2}. Consider the parameters N = 5, q = 3, p = 2, and n = 5. Let
x3 = (1,1,0,1,0) ∈ C1 and v3,2(x3,1) = (3,5,2,4,1). Here, for hx3 = 1, we have v1 = a + 2. Therefore, the
mapping results in:

y3 = g (x1) = (1,0,1,0,1) and v3,2(y3,2) = (4,1,3,0,2)

showing that y3 ∈C2. Hence, for this particular TA-sequence, the defined mapping has worked. A visual rep-
resentation is provided in Figure 4.3.

(a) TA-sequence x3 ∈C1 (b) Mapped sequence y1 = g (x3) ∈C2

Figure 4.3: Example of a mapping g where vhx3
= a +2 is defined to be the split index.

Next, we examine a case where vq,p (x, a)hx = a + 2 does exist, but the requirement that v j ≤ N for all j
fails. Consider N = 7, q = 3, p = 2 and n = 6. Let:

x4 = (0,1,1,1,0,0) ∈C1 and v3,2(x4,1) = (0,2,4,6,3,0).

For index i = 5, we have vi = a +2 = 3. Therefore, we set hx4 = 5 and find:

y4 = g (x4) = (0,0,1,1,1,0) and v3,2(y4,2) = (0,0,2,4,6,3),

showing that y4 ∉C2. See Figure 4.4 for a graphical illustration.

18 4. Main Results: Thermal-Aware Channel Capacity Properties in the Finite Domain

(a) TA-sequence x4 ∈C1 (b) Mapped sequence y2 = g (x4) ∈C3

Figure 4.4: Example of a mapping g where vhx4
= a +2 as split index is invalid.

Example 4.2.4 illustrates one instance of a mapping where certain requirements are not generally satis-
fied. This issue arises for all explored mappings from Ca to some Ca+i with a < i ≤ p, both for p = 2 with N an
odd integer, and for q = 2 with N odd. An overview of all attempted approaches to prove Conjecture 1 is pro-
vided in Appendix B. Nevertheless, numerical analysis strongly supports the general expressions described
in Conjecture 1, and no counterexample has been found to date. To showcase this, consider the following
example.

Example 4.2.5. Let N = 5, q = 2, p = 3, and n = 6. The corresponding matrix D (6)
5,2,3 is given by:

D (6)
5,2,3 =



8 3 1 6 2 1
8 3 1 4 3 1
7 3 1 4 1 2
4 3 1 3 1 0
4 1 2 3 1 0
3 1 0 3 1 0


Using (3.1), we can determine the corresponding sizes of the sets Ca :

|C0| = 8, |C1| = 8+3 = 11, |C2| = 7+3+1 = 11, |C3| = 4+3+1+3 = 11,

|C4| = 4+1+2+3+1 = 11, |C5| = 3+1+0+3+1+0 = 8.

It follows that |Ca | is indeed maximized at a = N
2 = 2, as stated in Conjecture 1.

Now consider the case where N is an even integer. We take the same (N , q, p) TA-channel as in Exam-
ple 3.1.2 and let N = 4, q = 2, p = 3, and n = 6. The corresponding matrix D (6)

4,2,3 again is given by:

D (6)
4,2,3 =


8 3 1 5 2
7 3 1 4 2
5 2 1 3 1
4 2 1 3 1
3 1 1 2 1


The corresponding sizes of the sets Ca are:

|C0| = 8, |C1| = 7+3 = 10, |C2| = 5+2+1 = 8, |C3| = 4+2+1+3 = 10, |C4| = 3+1+1+2+1 = 8.

This time, |Ca | is not maximized at a = N
2 = 2, but at a = 1 and by symmetry also at N−a = 3. This indicates

that the assumption of N being odd is essential for the validity of Conjecture 1.

As for Conjecture 2, no analytical proof has been attempted yet. However, note that the result of Conjec-
ture 2 also holds for both examples from 4.2.5. Together with the established expressions of Theorem 3.2.5
and Corollary 4.2.3, these observations have led to the following hypothesis for general values of p and q .

4.2. Monotonicity Properties of TA-Channel Capacities in the Finite Domain 19

4.2.3. A General Monotonicity Conjecture
Numerical analysis of the dependence of |Ca | on the parameters of an (N , q, p) TA-channel, combined with
the analytical results for the special cases q = 1 (Chapter 3.2) and p = 1 (Chapter 4.2.1), suggests that a more
general monotonicity property may hold.

Conjecture 3. Let µ= min{q, p}. Then the cardinality of Ca is maximized for some a ∈ {0,1, . . . , N } satisfying:⌈
N −µ

2

⌉
≤ a ≤

⌊
N

2

⌋
.

This conjecture would directly follow if it could be proven that |Ca | is maximized for some a within the
intervals ⌈

N −p

2

⌉
≤ a ≤

⌊
N

2

⌋
and

⌈
N −q

2

⌉
≤ a ≤

⌊
N

2

⌋
.

However, no general proof for these intervals has been found thus far. Attempts to apply similar techniques
as those used in Theorems 3.2.5 and 4.2.1, namely, by constructing injective mappings to establish mono-
tonicity, have not been successful.

The only results we that we believe can be proven using an injective mapping are the following:

Proposition 4.2.6. For 0 ≤ a ≤ N−p
2 ,

|Ca | ≤
p∑

k=1
|Ca+k |.

Proposition 4.2.7. For 0 ≤ a ≤ N−q
2 ,

|Ca | ≤
q∑

k=1
|Ca+k |.

Unfortunately, these findings appear to be of limited significance with respect to Conjecture 3. Moreover,
the established proofs of these propositions have not been fully verified by the supervisor and are therefore
not included in this report.

Even though an analytical proof remains open, we note that Conjecture 3 is consistent with all previous
analytical results and numerical observations, as well as the demonstrated examples. In the following, we
support this claim with an additional example.

Example 4.2.8. Let N = 6, q = 4, p = 5, and n = 8. The corresponding matrix D (8)
6,4,5 is given by:

D (8)
6,4,5 =



19 8 3 0 0 12 5
17 7 3 0 0 11 4
12 5 2 0 0 8 3
12 5 2 0 0 8 3
12 5 2 0 0 8 3
11 4 2 0 0 7 3
8 3 1 0 0 5 2


Using (3.1), we can determine the corresponding sizes of the sets Ca :

|C0| = 19,

|C1| = 17+7 = 24,

|C2| = 12+5+2 = 19,

|C3| = 12+5+2+0 = 19,

|C4| = 12+5+2+0+0 = 19,

|C5| = 11+4+2+0+0+7 = 24,

|C6| = 8+3+1+0+0+5+2 = 19.

It follows that |Ca | is maximized at a = 1, and by symmetry also at N − a = 5. This result does not coincide
with the expression found for q = 1 and p = 1, where the maximum occurs at N

2 = 3. However, the interval
proposed in Conjecture 3 states that the optimal value of a lies within[⌈

N −µ

2

⌉
,

⌊
N

2

⌋]
= [1,3],

20 4. Main Results: Thermal-Aware Channel Capacity Properties in the Finite Domain

which remains consistent with the proposed claim.

In conclusion, the belief that Conjecture 3, and consequently Conjectures 1 and 2, are valid remains.
Future research may focus on establishing analytical proofs for these statements. Since injective mappings
techniques from one set Ca to another Ca+i for some a < i ≤ p have been extensively explored without suc-
cess, alternative approaches could be considered. For example, one could look at matrix properties following
from the transitioning matrix induced by a (N , q, p) TA-channel. Additionally, the derivation of more explicit
expressions and the investigation of possible symmetry between q and p remain open for investigation. Due
to time constraints, these aspects were not addressed in this research project.

5
Conclusion and Future Recommendations

In this research project, we investigated the capacity of thermal-aware (TA) channels for sequences of fixed
length, focusing on the sets Ca ⊆ A (N , q, p,n). The parameters N , q, p and n represent the maximum al-
lowable temperature, cooling and heating gradient and sequence length, respectively. The sets Ca consist
of admissible sequences of length n that start at temperature a and end at or below a, making them useful
for transmitting cascaded sequences. The main goal was to see how the size of Ca depends on the channel
parameters and to potentially find a general expression for the value of a that maximizes |Ca |.

We started by reviewing known results in the asymptotic domain, which provide theoretical upper bounds.
In the finite-length setting, we extended an established monotonicity result for q = 1, by proving that the same
holds when p = 1. This showed that for certain parameters, |Ca | increases with a up to a symmetry point. Nu-
merical analysis indicated similar patterns for other configurations, leading to several conjectures. Finally,
this led to a conjecture for general values of N , q, p,n, stating that the maximum of |Ca | occurs within a spe-
cific interval centered around N /2. The size of this interval is proportional to min(q, p), making the result
particularly informative when these parameters are relatively small.

Although many mapping strategies were tried, a rigorous proof of the proposed conjectures could not be
found. Still, all numerical evidence points toward their validity, and no counterexamples have been found.
These observations support the idea that the optimal starting value a lies somewhere around the midpoint
of the temperature range, dependent on the heating and cooling gradient of the TA-channel.

The results contribute to the understanding of how thermal constraints affect the overall code rate in
the finite domain. Future research could explore different techniques to prove the stated conjectures, using
properties of the transition matrices rather than sequence mappings, for example. Another option would be
to derive better approximations or even closed-form expressions for the optimal index a. In addition, follow-
up work might look into potential symmetries between p and q , or study the relation between |Ca | and the
parameters N and n.

Overall, this project has extended known results and introduced new claims, which remain open for future
work on computing TA-channel capacities in the finite domain. Finding these capacities allows us to com-
pare the actual code rate with the theoretical rate and, ultimately, to determine the efficiency and real-world
applicability of thermal-aware communication systems.

21

Bibliography

[1] Norman Biggs. Algebraic Graph Theory. Cambridge University Press, 2nd edition edition, 1993.

[2] Yeow Meng Chee, Charles J. Colbourn, and Alan C. H. Ling. Optimal memoryless encoding for low power
off-chip data buses. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 369–374, 2006. doi: 10.1109/ICCAD.2006.320040.

[3] Yeow Meng Chee, Tuvi Etzion, Han Mao Kiah, and Alexander Vardy. Cooling codes: Thermal-
management coding for high-performance interconnects. IEEE Transactions on Information Theory,
64(4):3062–3085, 2018.

[4] Yeow Meng Chee, Tuvi Etzion, Hieu M. Kiah, Alexander Vardy, and Heung Kwan Wei. Low-power cooling
codes with efficient encoding and decoding. IEEE Transactions on Information Theory, 66(8):4804–4818,
2020. doi: 10.1109/TIT.2020.2977228.

[5] Yeow Meng Chee, Tuvi Etzion, Kees A. Schouhamer Immink, Tuan Thanh Nguyen, Van Khu Vu, Jos H.
Weber, and Eitan Yaakobi. Thermal-aware channel capacity. In 2023 IEEE International Symposium
on Information Theory (ISIT), pages 2661–2666, Taipei, Taiwan, 2023. doi: 10.1109/ISIT54713.2023.
10206738.

[6] Yeow Meng Chee, Tuvi Etzion, Kees A. Schouhamer Immink, Tuan Thanh Nguyen, Van Khu Vu, Jos H.
Weber, and Eitan Yaakobi. Thermal-aware communication. IEEE Transactions on Information Theory,
71(6):4145–4154, June 2025. doi: 10.1109/TIT.2025.3555665.

[7] Yong Liang Guan, Guojie Han, Lin Kong, Ka Sing Chan, Kui Cai, and Jie Zheng. Coding and signal
processing for ultra-high density magnetic recording channels. In 2014 International Conference on
Computing, Networking and Communications (ICNC), pages 194–199, 2014. doi: 10.1109/ICCNC.2014.
6785287.

[8] Kees A. S. Immink. Codes for Mass Data Storage Systems. Shannon Foundation Publishers, 2004.

[9] Kees A. Schouhamer Immink. A survey of codes for optical disk recording. IEEE Journal on Selected Areas
in Communications, 19(4):756–764, 2001. doi: 10.1109/49.918572.

[10] Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge Univer-
sity Press, 1995.

[11] Brian Marcus and Douglas Lind. Symbolic Dynamics and Coding. Cambridge University Press, reprint
with corrections edition, 2001.

[12] S. Ramprasad, N. R. Shanbhag, and I. N. Hajj. Information-theoretic bounds on average signal transition
activity in vlsi systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7(3):359–368,
1999. doi: 10.1109/92.777450.

22

A
Proofs of Chapter 3

A.1. Proof of Theorem 3.1.1
Theorem A.1.1 (From [1]). [Restatement of Theorem 3.1.1] Let G = (V ,E) be a finite graph with adjacency
matrix A. Then, for all integers n ≥ 0, the entry (An)i j equals the number of walks of length n from vertex i to
vertex j .

Proof. We prove the theorem by induction on n.
Base case: When n = 0, A0 = I , the identity matrix. Since a walk of length 0 starts and ends at the same

vertex, we have (A0)i j = δi j , where δi j is the Kronecker delta. This matches the number of walks of length 0
from i to j .

Inductive step: Assume the statement holds for n = k, i.e., (Ak)i j gives the number of walks of length k
from i to j . We must show that it holds for n = k +1.

By the properties of matrix multiplication:

(Ak+1)i j =
∑

l
(Ak)i l · Al j .

By the inductive hypothesis, (Ak)i l is the number of walks of length k from i to l , and Al j is 1 if there is an

edge from l to j (i.e., a walk of length 1), and 0 otherwise. Hence, (Ak+1)i j counts the number of walks of
length k +1 from i to j .

This completes the induction, and the theorem follows.

A.2. Proof of Theorem 3.2.2
Theorem A.2.1 (From [6]). [Restatement of Theorem 3.2.2] For all a ∈ {0,1, . . . , N } it holds that

x ∈Ca ⇐⇒ xR ∈CN−a .

Proof. Let x be any sequence in Ca , and let vq,p (x, a) = (v1, v2, . . . , vn), tq,p (x) = (t1, t2, . . . , tn), vq,p (xR , N−a) =
(v ′

1, v ′
2, . . . , v ′

n), and tq,p (xR) = (t ′1, t ′2, . . . , t ′n). We first show that x ∈Ca implies xR ∈CN−a , i.e.,

(a) v ′
i ≤ N for all i , and

(b) v ′
n ≤ N −a.

(a) To prove v ′
i ≤ N for all i , suppose there exists j ∈ {1,2, . . . ,n} such that v ′

j > N . We consider two cases:

Case (i): There is no g ≤ j such that v ′
g = 0. Then v ′

j = N −a + t ′j and thus

t ′j = v ′
j −N +a > N −N +a = a.

Hence,
vn ≥ vn− j + tn − tn− j = vn− j + t ′j > 0+a = a,

23

24 A. Proofs of Chapter 3

which contradicts x ∈Ca .
Case (ii): There exists g ≤ j such that v ′

g = 0, and let g∗ be the largest such index. Then,

t ′j − t ′g∗ = v ′
j − v ′

g∗ > N −0 = N ,

which implies

vn−g∗ ≥ vn− j + tn−g∗ − tn− j = t ′j − t ′g∗ > N ,

again contradicting x ∈Ca . Thus, v ′
i ≤ N for all i .

(b) Now we show v ′
n ≤ N −a. Suppose instead that v ′

n > N −a. We again consider two cases:
Case (i): There is no g ≤ n such that v ′

g = 0. Then v ′
n = N −a + t ′n and

t ′n = v ′
n −N +a > N −a −N +a = 0.

So,

vn ≥ a + tn = a + t ′n > a,

contradicting x ∈Ca .
Case (ii): There exists g ≤ n such that v ′

g = 0, and let g∗ be the largest such index. Then,

t ′n − t ′g∗ = v ′
n − v ′

g∗ = v ′
n > N −a,

and it follows that

vn−g∗ ≥ a + tn−g∗ = a + t ′n − t ′g∗ > a +N −a = N ,

again contradicting x ∈Ca . Hence, v ′
n ≤ N −a.

It follows from (a) and (b) that the “⇒” statement holds. The “⇐” direction follows by symmetry, since
(xR)R = x.

A.3. Proof of Theorem 3.2.5
Theorem A.3.1 (From [6]). [Restatement of Theorem 3.2.5] If q = 1 and 0 ≤ a ≤ N /2−1, then

|Ca | ≤ |Ca+1|.

Proof. The proof is established by providing an injective mapping f from Ca to Ca+1. Let x be any sequence
in Ca , and let

vq,p (x, a) = (v1, v2, . . . , vn), tq,p (x) = (t1, t2, . . . , tn), and tq,p (xR) = (t ′1, t ′2, . . . , t ′n).

Define zx as the smallest index for which the running digital sum of x becomes negative, i.e.,

ti ≥ 0 for all 1 ≤ i ≤ zx −1, and tzx =−1.

If such an index does not exist, i.e., if ti ≥ 0 for all 1 ≤ i ≤ n, then set zx = n.
We decompose x as

x = (u, w),

with u of length n − z and w of length z, where z = zR
x , and map x to

y = f (x) = (wR ,u).

Let vq,p (y, a +1) = (v ′′
1 , v ′′

2 , . . . , v ′′
n) and tq,p (y) = (t ′′1 , t ′′2 , . . . , t ′′n). We will show that y ∈Ca+1, that is:

(a) v ′′
i ≤ N for all i ,

(b) v ′′
n ≤ a +1,

A.3. Proof of Theorem 3.2.5 25

and furthermore, that y is unique for every x.
Observe that if there exists an index i such that t ′i =−1, then from the definitions of z and y , we have

v ′′
z = a +1+ t ′z = a +1−1 = a

and
v ′′

i = vi−z for all z +1 ≤ i ≤ n. (A.1)

(a) Note that t ′′i = t ′i ≤ a for all 1 ≤ i ≤ z, since t ′j ≥ a +1 for any j ∈ {1,2, . . . , z} would imply

vn ≥ vn− j + t ′j ≥ a +1,

which contradicts x ∈Ca . Hence,

v ′′
i = a +1+ t ′′i ≤ a +1+a = 2a +1 ≤ N

for all 1 ≤ i ≤ z. If z < n, then from (A.1) we have

v ′′
i = vi−z ≤ N for all z +1 ≤ i ≤ n.

(b) If there exists an index i such that t ′i =−1, then from (A.1),

v ′′
n = vn−z ≤ vn − t ′z ≤ a +1,

where the last inequality follows from vn ≤ a and t ′z =−1.
If no such index exists, then z = n, y = xR , and thus

v ′′
n = a +1+ t ′n = a +1+ tn ≤ a +1,

since tn ≤ 0. (If tn > 0, then vn ≥ a + tn > a, which contradicts x ∈Ca .)
Therefore, we conclude that (a) v ′′

i ≤ N for all i , and (b) v ′′
n ≤ a +1, so y ∈Ca+1.

Finally, note that z = zR
x = zy , so we can retrieve z from y and thus establish the inverse mapping

f −1(y) = f −1((wR ,u)) = (u, (wR)R) = (u, w) = x.

Hence, f is indeed an injective mapping from Ca to Ca+1, which proves the theorem.

B
Explored Mappings in Chapter 4

Here, the explored mappings that were considered in the search for an injective function to prove the con-
jectures stated in Chapter 4.2.2 Chapter 4.2.3 are presented. It should be noted that none of these mappings
were successful. For detailed definitions of the involved variables, we refer to the proofs of Theorems 3.2.5
and 4.2.1.

B.1. Explored Mappings to Prove Conjecture 1
B.1.1. Explored Mappings to prove Conjecture 1 for p = 2

Table B.1: Decompositions of the vector X = (u, w) and definition of the split index h

Case Decomposition of x Split index h Shift k: Ca 7→Ca+k

1 (w,uR) min{i : ti = 1} 1
2 (w,uR) min{i : ti = 2} 1
3 (w,uR) min{i : vi = a +1} 1
4 (w,uR) min{i : vi = a +2} 2
5 (u,wR) min{i : vi = N −a +1} 1
6 (u,wR) min{i : vi = N −a +1} 1
7 (w,u) min{i : vi = a +1} 1
8 (w,u) min{i : vi = a +2} 2
9 (w,u) min{i : ti = 1} 1

10 (w,uR) min{i : ti = 2} 1

Furthermore, several configurations in which x was decomposed into three parts were explored. These are
presented in Table B.2. However, these attempts were also unsuccessful and generally failed to satisfy the
injectivity criterion.

Table B.2: Decompositions of the vector x = (u,v,w) and definition of the split indices

Case Decomposition of x Split index h1 Split index h2 Shift k: Ca 7→Ca+k

1 (w,v,uR) min{i : ti =−1} min{i : t ′i = 2} 1
2 (wR ,v,u) min{i : ti = 1} min{i : t ′i =−2} 1
3 (wR ,v,uR) min{i : ti = 1} min{i : t ′i =−2} 1
4 (w,v,uR) min{i : ti =−1} min{i : t ′i = 2} 1
5 (wR ,v,u) min{i : ti = 1} min{i : t ′i =−2} 1
6 (wR ,v,uR) min{i : ti = 1} min{i : t ′i =−2} 1
7 (w,v,u) min{i : ti =−1} min{i : t ′i = 2} 1

26

B.2. Explored Mappings to Prove Conjecture 3 27

B.1.2. Explored Mappings to Prove Conjecture 1 for q = 2
Here, we present the decompositions that were considered in an attempt to prove Conjecture 1 for the case
q = 2. These are based, though not exclusively, on the mapping defined in Theorem 3.2.5.

Table B.3: Decompositions of the vector X = (u, w) and definition of the split index z

Case Decomposition of x Split index z Shift k
1 (wR ,u) min{i : t ′i =−1} 1
2 (wR ,u) min{i : t ′i =−2} 1
3 (wR ,u) min{i : t ′i =−3} 1
4 (wR ,u) min{i : t ′i =−1} 2
5 (wR ,u) min{i : t ′i =−2} 2
6 (w,u) min{i : t ′i =−1} 1
7 (w,u) min{i : t ′i =−2} 1

Furthermore, as in the case where p = 2, several configurations in which x was decomposed into three
parts were explored. Since these decompositions are similar to those presented in Table B.2, they are omitted
here to avoid repetition. However, these attempts were also unsuccessful for q = 2, which led to the conclu-
sion that, in general, a decomposition into three parts may not be the most logical approach for constructing
a valid mapping to prove these conjectures.

B.2. Explored Mappings to Prove Conjecture 3
Similar to the previous section, we now present the mappings that were considered in an attempt to prove
Conjecture 3. Although all mappings were injective, none satisfied both criteria of Ck for k = p or k = q .
Specifically, in all cases either the condition v j ≤ N failed for some j , or the condition vn ≤ a+k was violated.

Table B.4: Decompositions of the vector x = (u, w) and definition of the split index

Case Decomposition of x Definition Split Index Shift k: Ca 7→Ca+k

1 (w,uR) min{i : vi = a +p} p
2 (w,uR) min{i : a < vi ≤ a +p} p
3 (w,uR) min{i : a +p ≤ vi < a +2p} p
4 (wR ,u) min{i : ti =−q} q
5 (wR ,u) min{i : −q ≤ ti < 0} q
6 (wR ,u) min{i : −2q < ti ≤ q} q

C
Python Code

C.1. Code for General Investigations

28

import numpy as np
import pandas as pd
import math

FUNCTIONS DEFINING
def generate_matrix(N, q, p, n):
 # Step 1: Build D matrix
 D = np.zeros((N + 1, N + 1), dtype=int)

 for i in range(N + 1):
 if i <= N - p:
 D[i][i + p] = 1
 if i >= q:
 D[i][i - q] = 1
 if i < q:
 D[i][0] = 1

 # Step 2: Compute D^n
 Dn = np.linalg.matrix_power(D, n)

 return Dn

def find_optimal_capacity(Dn):
N = Dn.shape[0] - 1
half_index = math.ceil(N / 2)
capacities = [np.sum(Dn[i, :i + 1]) for i in range(half_index +
1)]

Check if all capacities are the same
all_same = len(set(capacities)) == 1
if all_same:
same_value = capacities[0]
else:
same_value = None

Find the optimal index and capacity
max_cap = max(capacities)
opt_index = capacities.index(max_cap)

return opt_index, max_cap, all_same, same_value

def find_optimal_capacity(Dn):
 N = Dn.shape[0] - 1
 half_index = N // 2 # Go only up to N//2

 # Calculate capacities for indices from 0 to N//2

 capacities = [np.sum(Dn[i, :i + 1]) for i in range(half_index +
1)]

 # Check if all capacities are the same
 all_same = len(set(capacities)) == 1
 if all_same:
 same_value = capacities[0]
 else:
 same_value = None

 # Find the maximum capacity
 max_cap = max(capacities)

 # Find all indices with the maximum capacity, only within the
range 0 to N//2
 indices_with_max_cap = [i for i, cap in enumerate(capacities) if
cap == max_cap]

 # Return the highest index with the maximum capacity
 opt_index = max(indices_with_max_cap)

 return opt_index, max_cap, all_same, same_value

def get_index_relation(index, N):
 # Check if the optimal index equals 0
 if index == 0:
 return "i is 0"
 elif index == N // 2:
 return "i == N//2"
 elif index == N // 2 - 1:
 return "i == N//2 - 1"
 elif index == N // 2 + 1:
 return "i == N//2 + 1"
 else:
 return "i = " + str(index) + " N = " + str(N)

#function to check whether p/q actually smallest prime numbers
def is_prime(num):
if num <= 1:
return False
for i in range(2, int(num ** 0.5) + 1):
if num % i == 0:
return False
return True

#check whether p/q is rational number (smallest possible fraction)
def is_smallest_fraction(p, q):
 # Check if the GCD of p and q is 1
 return math.gcd(p, q) == 1

def run_configurations(N_values, q_values, p_values, n_values,
constraint, output_path):
 results = []

 for N in N_values:
 for q in q_values:
 for p in p_values:
 for n in n_values:
 # skip invalid configs
 if p > N or q > N:
 continue

 # Check if both p and q are smallest fraction
 if not is_smallest_fraction(p,q):
 continue

 # Check if constraint
 if constraint(N,q,p,n):
 continue

 # Generate the matrix and find optimal capacity
 Dn = generate_matrix(N, q, p, n)
 opt_index, cap, all_same, same_value =
find_optimal_capacity(Dn)
 rel = get_index_relation(opt_index, N)

 # Add the results to the list
 results.append({
 "N": N,
 "q": q,
 "p": p,
 "n": n,
 "Optimal Index": opt_index,
 "Capacity": cap,
 "Idx Relation": rel,
 "All Capacities Same": all_same,
 })

 # Convert the results into a DataFrame
 df = pd.DataFrame(results)
 df.to_csv(output_path, index=False)

 return df

Use examples to validate code
def constraint_test(N,p,q,n):
 return False

Example Article 3
matrix_example_3 = generate_matrix(3,1,2,12)
print(matrix_example_3)

opt_idx_example_3, cap_example_3, _, _ =
find_optimal_capacity(matrix_example_3)
print(opt_idx_example_3, cap_example_3)

df_example_3 = run_configurations([3],[1],[2], [12], constraint_test,
"/kaggle/working/runs_example_3.csv")
print(df_example_3)

[[98 56 83 36]
 [83 51 76 27]
 [56 27 51 20]
 [36 20 27 15]]
1 134
 N q p n Optimal Index Capacity Idx Relation All Capacities
Same
0 3 1 2 12 1 134 i == N//2
False

Example Article 4
matrix_example_4 = generate_matrix(7,3,4,5)
print(matrix_example_4)

opt_idx_example_4, cap_example_4, _, _=
find_optimal_capacity(matrix_example_4)
print(opt_idx_example_4, cap_example_4)

df_example_4 = run_configurations(range(7,8),[3],[4], [5],
constraint_test, "/kaggle/working/runs_example_4.csv")
print(df_example_4)

[[5 2 1 0 3 1 1 0]
 [5 2 1 0 3 1 0 1]
 [4 3 1 0 3 1 0 0]
 [4 1 2 0 3 1 0 0]
 [3 1 0 1 2 1 0 0]
 [3 1 0 0 3 1 0 0]
 [3 1 0 0 1 2 0 0]
 [2 1 0 0 1 0 1 0]]
2 8
 N q p n Optimal Index Capacity Idx Relation All Capacities
Same
0 7 3 4 5 2 8 i == N//2 - 1
False

check for q = 1 whether code works (should always be N//2)
df_test_q_1 = run_configurations(range(2,30),[1],range(1,500),
range(1,20), constraint_test,

"/kaggle/working/runs_test_q_equal_1.csv")
print(df_test_q_1)

 N q p n Optimal Index Capacity Idx Relation All
Capacities Same
0 2 1 1 1 1 1 i == N//2
True
1 2 1 1 2 1 3 i == N//2
False
2 2 1 1 3 1 4 i == N//2
False
3 2 1 1 4 1 9 i == N//2
False
4 2 1 1 5 1 14 i == N//2
False
...
...
8241 29 1 29 15 14 1 i == N//2
True
8242 29 1 29 16 14 1 i == N//2
True
8243 29 1 29 17 14 1 i == N//2
True
8244 29 1 29 18 14 1 i == N//2
True
8245 29 1 29 19 14 1 i == N//2
True

[8246 rows x 8 columns]

#check if no optimal indices are unequal to N//2
df_check_test = df_test_q_1[df_test_q_1["Idx Relation"] != "i ==
N//2"]
print(df_check_test)

CONCLUSION: CODE SEEMS TO WORK!

Empty DataFrame
Columns: [N, q, p, n, Optimal Index, Capacity, Idx Relation, All
Capacities Same]
Index: []

A: Investigating Ratio P/Q < 1
define constraint
def constraint_a(N, q, p, n):
 return p / q >= 1 # Define your custom constraint logic

example to check

example_matrix = generate_matrix(9,3,2,5)
print(example_matrix)

o,m,a,s = find_optimal_capacity(example_matrix)
#check if all capacities are the same
print(a)

opt_idx = get_index_relation(o,9)
#print optimal index (first optimal)
print(opt_idx)

df_test = run_configurations([9],[3],[2],[5], constraint_a,
"/kaggle/working/runs_test.csv")
print(df_test)

[[12 2 6 2 3 3 2 0 1 0]
 [10 4 6 2 3 0 5 0 1 0]
 [10 1 9 2 3 0 1 3 1 0]
 [10 1 4 7 3 0 1 0 4 0]
 [10 1 4 0 9 0 1 0 0 3]
 [10 1 4 0 1 8 1 0 0 0]
 [5 5 4 0 1 0 7 0 0 0]
 [5 0 9 0 1 0 0 5 0 0]
 [4 0 1 5 1 0 0 0 3 0]
 [4 0 1 0 5 0 0 0 0 2]]
False
i == N//2
 N q p n Optimal Index Capacity Idx Relation All Capacities
Same
0 9 3 2 5 4 24 i == N//2
False

#run for many configurations
df_runs_a =
run_configurations(range(10,50),range(1,100),range(1,100),range(5,7),
constraint_a, "/kaggle/working/runs_pq_smaller_1.csv")

print(df_runs_a)

 N q p n Optimal Index Capacity Idx Relation \
0 10 1 1 5 5 16 i == N//2
1 10 1 1 6 5 42 i == N//2
2 10 2 1 5 5 26 i == N//2
3 10 2 1 6 5 57 i == N//2
4 10 3 1 5 5 26 i == N//2
...
25147 49 49 46 6 3 13 i = 3 N = 49
25148 49 49 47 5 2 8 i = 2 N = 49

25149 49 49 47 6 2 13 i = 2 N = 49
25150 49 49 48 5 1 8 i = 1 N = 49
25151 49 49 48 6 1 13 i = 1 N = 49

 All Capacities Same
0 False
1 False
2 False
3 False
4 False
... ...
25147 False
25148 False
25149 False
25150 False
25151 False

[25152 rows x 8 columns]

check for p/q < 0.5
df_check_pq_smaller_half = df_runs_a[df_runs_a["p"] / df_runs_a["q"] <
0.5]

df_check_a = df_check_pq_smaller_half[df_check_pq_smaller_half["Idx
Relation"] == "i == N//2"]
print(df_check_a)

df_check_a = df_check_pq_smaller_half[df_check_pq_smaller_half["Idx
Relation"] != "i == N//2"]

print(df_check_a)

CONCLUSION: p/q < 0.5 niet genoeg om optimale idx altijd N//2 te
laten zijn

 N q p n Optimal Index Capacity Idx Relation \
4 10 3 1 5 5 26 i == N//2
5 10 3 1 6 5 57 i == N//2
8 10 4 1 5 5 31 i == N//2
9 10 4 1 6 5 57 i == N//2
12 10 5 1 5 5 31 i == N//2
...
25105 49 49 22 6 24 31 i == N//2
25106 49 49 23 5 24 17 i == N//2
25107 49 49 23 6 24 31 i == N//2
25108 49 49 24 5 24 17 i == N//2
25109 49 49 24 6 24 31 i == N//2

 All Capacities Same
4 False

5 False
8 False
9 False
12 False
... ...
25105 False
25106 False
25107 False
25108 False
25109 False

[9561 rows x 8 columns]
 N q p n Optimal Index Capacity Idx Relation \
14 10 5 2 5 4 25 i == N//2 - 1
15 10 5 2 6 4 52 i == N//2 - 1
26 10 7 2 5 4 25 i == N//2 - 1
27 10 7 2 6 4 52 i == N//2 - 1
28 10 7 3 5 4 21 i == N//2 - 1
...
25091 49 49 13 6 23 41 i == N//2 - 1
25092 49 49 15 5 19 21 i = 19 N = 49
25093 49 49 15 6 19 41 i = 19 N = 49
25094 49 49 16 5 17 21 i = 17 N = 49
25095 49 49 16 6 17 41 i = 17 N = 49

 All Capacities Same
14 False
15 False
26 False
27 False
28 False
... ...
25091 False
25092 False
25093 False
25094 False
25095 False

[2935 rows x 8 columns]

#perform test to check relations
df_check_a = df_runs_a[df_runs_a["Idx Relation"] == "i == N//2"]
print(df_check_a)

df_check_a = df_runs_a[df_runs_a["Idx Relation"] == "i == N//2 - 1"]
print(df_check_a)

df_check_a.to_csv("/kaggle/working/runs_pq_smaller_1.csv", index =
False)

CONCLUSION: NOTHING REALLY TO BE FOUND?

 N q p n Optimal Index Capacity Idx Relation \
0 10 1 1 5 5 16 i == N//2
1 10 1 1 6 5 42 i == N//2
2 10 2 1 5 5 26 i == N//2
3 10 2 1 6 5 57 i == N//2
4 10 3 1 5 5 26 i == N//2
...
25107 49 49 23 6 24 31 i == N//2
25108 49 49 24 5 24 17 i == N//2
25109 49 49 24 6 24 31 i == N//2
25110 49 49 25 5 24 8 i == N//2
25111 49 49 25 6 24 13 i == N//2

 All Capacities Same
0 False
1 False
2 False
3 False
4 False
... ...
25107 False
25108 False
25109 False
25110 True
25111 True

[14542 rows x 8 columns]
 N q p n Optimal Index Capacity Idx Relation \
6 10 3 2 5 4 25 i == N//2 - 1
7 10 3 2 6 4 41 i == N//2 - 1
10 10 4 3 5 4 15 i == N//2 - 1
11 10 4 3 6 4 34 i == N//2 - 1
14 10 5 2 5 4 25 i == N//2 - 1
...
25045 49 48 13 6 23 41 i == N//2 - 1
25090 49 49 13 5 23 21 i == N//2 - 1
25091 49 49 13 6 23 41 i == N//2 - 1
25112 49 49 26 5 23 8 i == N//2 - 1
25113 49 49 26 6 23 13 i == N//2 - 1

 All Capacities Same
6 False
7 False
10 False
11 False
14 False
... ...

25045 False
25090 False
25091 False
25112 False
25113 False

[2019 rows x 8 columns]

B: Investigate P/Q > 1
define constraint
def constraint_b(N, q, p, n):
 return (p / q <= 1 or p%q == 0) # Define your custom constraint
logic

#run for many configurations
df_runs_b =
run_configurations(range(10,50),range(1,50),range(1,100),range(5,7),
constraint_b, "/kaggle/working/runs_pq_bigger_N.csv")

print(df_runs_b)

 N q p n Optimal Index Capacity Idx Relation \
0 10 2 3 5 4 15 i == N//2 - 1
1 10 2 3 6 4 21 i == N//2 - 1
2 10 2 5 5 5 6 i == N//2
3 10 2 5 6 5 7 i == N//2
4 10 2 7 5 5 4 i == N//2
...
22787 49 47 48 6 1 10 i = 1 N = 49
22788 49 47 49 5 24 4 i == N//2
22789 49 47 49 6 24 6 i == N//2
22790 49 48 49 5 24 4 i == N//2
22791 49 48 49 6 24 6 i == N//2

 All Capacities Same
0 False
1 False
2 False
3 False
4 False
... ...
22787 False
22788 False
22789 False
22790 True
22791 True

[22792 rows x 8 columns]

#perform test to check relations
df_check_b = df_runs_b[df_runs_b["Idx Relation"] == "i == N//2"]
df_check_b_idx = df_runs_b[df_runs_b["Idx Relation"] == "i == N//2 -
1"]

print(df_check_b)
print(df_check_b_idx)

CONCLUSION: if all capacities same then optimal idx == 0 (duhh want
alle hetzelfde dus je neemt eerste)
CONCLUSION: for small amount, all capacities are the same, (about 1%
of cases) -> not really conclusion

df_check_b.to_csv("/kaggle/working/runs_pq_bigger_N_filtered.csv",
index=False)

 N q p n Optimal Index Capacity Idx Relation \
2 10 2 5 5 5 6 i == N//2
3 10 2 5 6 5 7 i == N//2
4 10 2 7 5 5 4 i == N//2
5 10 2 7 6 5 5 i == N//2
6 10 2 9 5 5 1 i == N//2
...
22785 49 46 49 6 24 6 i == N//2
22788 49 47 49 5 24 4 i == N//2
22789 49 47 49 6 24 6 i == N//2
22790 49 48 49 5 24 4 i == N//2
22791 49 48 49 6 24 6 i == N//2

 All Capacities Same
2 False
3 False
4 False
5 False
6 True
... ...
22785 False
22788 False
22789 False
22790 True
22791 True

[14734 rows x 8 columns]
 N q p n Optimal Index Capacity Idx Relation \
0 10 2 3 5 4 15 i == N//2 - 1
1 10 2 3 6 4 21 i == N//2 - 1
58 11 3 7 5 4 5 i == N//2 - 1

59 11 3 7 6 4 6 i == N//2 - 1
62 11 3 10 5 4 3 i == N//2 - 1
...
22303 49 21 47 6 23 4 i == N//2 - 1
22378 49 23 49 5 23 3 i == N//2 - 1
22379 49 23 49 6 23 4 i == N//2 - 1
22380 49 24 25 5 23 8 i == N//2 - 1
22381 49 24 25 6 23 12 i == N//2 - 1

 All Capacities Same
0 False
1 False
58 False
59 False
62 False
... ...
22303 False
22378 False
22379 False
22380 False
22381 False

[1114 rows x 8 columns]

C: INVESTIGATE Q == 2
def constraint_c(N, q, p, n):
 return False

#run for many configurations
df_runs_c = run_configurations(range(10,50),
[2],range(1,200),range(11,13), constraint_c,
"/kaggle/working/runs_q_equal_2.csv")

print(df_runs_c)

 N q p n Optimal Index Capacity Idx Relation \
0 10 2 1 11 5 1804 i == N//2
1 10 2 1 12 5 3741 i == N//2
2 10 2 3 11 4 416 i == N//2 - 1
3 10 2 3 12 4 626 i == N//2 - 1
4 10 2 5 11 5 100 i == N//2
...
1195 49 2 45 12 24 1 i == N//2
1196 49 2 47 11 24 1 i == N//2
1197 49 2 47 12 24 1 i == N//2
1198 49 2 49 11 24 1 i == N//2
1199 49 2 49 12 24 1 i == N//2

 All Capacities Same
0 False
1 False
2 False
3 False
4 False
... ...
1195 True
1196 True
1197 True
1198 True
1199 True

[1200 rows x 8 columns]

#perform test to check relations
df_check_c = df_runs_c[df_runs_c["Idx Relation"] == "i == N//2"]
print(df_check_c)

df_check_c = df_runs_c[df_runs_c["Idx Relation"] == "i == N//2 - 1"]
print(df_check_c)

 N q p n Optimal Index Capacity Idx Relation All
Capacities Same
0 10 2 1 11 5 1804 i == N//2
False
1 10 2 1 12 5 3741 i == N//2
False
4 10 2 5 11 5 100 i == N//2
False
5 10 2 5 12 5 149 i == N//2
False
6 10 2 7 11 5 25 i == N//2
False
...
...
1195 49 2 45 12 24 1 i == N//2
True
1196 49 2 47 11 24 1 i == N//2
True
1197 49 2 47 12 24 1 i == N//2
True
1198 49 2 49 11 24 1 i == N//2
True
1199 49 2 49 12 24 1 i == N//2
True

[1127 rows x 8 columns]
 N q p n Optimal Index Capacity Idx Relation \

2 10 2 3 11 4 416 i == N//2 - 1
3 10 2 3 12 4 626 i == N//2 - 1
28 12 2 7 11 5 35 i == N//2 - 1
29 12 2 7 12 5 45 i == N//2 - 1
30 12 2 9 11 5 13 i == N//2 - 1
..
537 34 2 9 12 16 78 i == N//2 - 1
616 36 2 19 11 17 11 i == N//2 - 1
617 36 2 19 12 17 12 i == N//2 - 1
619 36 2 21 12 17 10 i == N//2 - 1
771 40 2 21 12 19 12 i == N//2 - 1

 All Capacities Same
2 False
3 False
28 False
29 False
30 False
.. ...
537 False
616 False
617 False
619 False
771 False

[73 rows x 8 columns]

D: Check for |p-q| = 1
def constraint_d(N,q,p,n):
 return np.abs(p-q) != 1

#run for many configurations
df_runs_d =
run_configurations(range(10,50),range(1,50),range(1,50),range(5,6),
constraint_d, "/kaggle/working/runs_pq_difference_N.csv")

print(df_runs_d)

 N q p n Optimal Index Capacity Idx Relation \
0 10 1 2 5 5 6 i == N//2
1 10 2 1 5 5 26 i == N//2
2 10 2 3 5 4 15 i == N//2 - 1
3 10 3 2 5 4 25 i == N//2 - 1
4 10 3 4 5 5 14 i == N//2
...
2275 49 47 46 5 3 8 i = 3 N = 49
2276 49 47 48 5 1 6 i = 1 N = 49

2277 49 48 47 5 2 8 i = 2 N = 49
2278 49 48 49 5 24 4 i == N//2
2279 49 49 48 5 1 8 i = 1 N = 49

 All Capacities Same
0 False
1 False
2 False
3 False
4 False
... ...
2275 False
2276 False
2277 False
2278 True
2279 False

[2280 rows x 8 columns]

check
df_check_d = df_runs_d[df_runs_d["Idx Relation"] == "i == N//2"]
df_check_d_idx = df_runs_d[df_runs_d["Idx Relation"] == "i == N//2 -
1"]

print(df_check_d)
print(df_check_d_idx)

 N q p n Optimal Index Capacity Idx Relation All
Capacities Same
0 10 1 2 5 5 6 i == N//2
False
1 10 2 1 5 5 26 i == N//2
False
4 10 3 4 5 5 14 i == N//2
False
6 10 4 5 5 5 10 i == N//2
False
7 10 5 4 5 5 14 i == N//2
False
...
...
2228 49 23 24 5 24 12 i == N//2
False
2229 49 24 23 5 24 14 i == N//2
False
2231 49 25 24 5 24 14 i == N//2
False
2233 49 26 25 5 24 8 i == N//2
True
2278 49 48 49 5 24 4 i == N//2

True

[1012 rows x 8 columns]
 N q p n Optimal Index Capacity Idx Relation \
2 10 2 3 5 4 15 i == N//2 - 1
3 10 3 2 5 4 25 i == N//2 - 1
5 10 4 3 5 4 15 i == N//2 - 1
11 10 7 6 5 4 8 i == N//2 - 1
26 11 5 6 5 4 8 i == N//2 - 1
...
2139 48 26 25 5 23 8 i == N//2 - 1
2206 49 12 13 5 23 15 i == N//2 - 1
2209 49 14 13 5 23 15 i == N//2 - 1
2230 49 24 25 5 23 8 i == N//2 - 1
2235 49 27 26 5 23 8 i == N//2 - 1

 All Capacities Same
2 False
3 False
5 False
11 False
26 False
... ...
2139 False
2206 False
2209 False
2230 False
2235 False

[101 rows x 8 columns]

run for many configurations to check if n same
#define count to keep track when n does matter
count = 0

for N in range(5,30):
for q in range(1,30):
for p in range(1,30):
df_runs_d_single = run_configurations([N],[q],
[p],range(10,30), constraint_d, "/kaggle/working/runs_d_single.csv")
if df_runs_d_single.shape[0] > 0:
if df_filtered['Optimal Index'].nunique() != 1:
count += 1
print(count)

F: P == 1 --> WORKS!!!
def constraint_f(N,q,p,n):
 return False

PAS OP DEZE DUURT LANG!!!!

#run for many configurations
df_runs_f = run_configurations(range(2,100),range(1,100),
[1],range(1,20), constraint_f, "/kaggle/working/runs_p_equal_1.csv")

print(df_runs_f)

 N q p n Optimal Index Capacity Idx Relation \
0 2 1 1 1 1 1 i == N//2
1 2 1 1 2 1 3 i == N//2
2 2 1 1 3 1 4 i == N//2
3 2 1 1 4 1 9 i == N//2
4 2 1 1 5 1 14 i == N//2
...
94026 99 99 1 15 49 32767 i == N//2
94027 99 99 1 16 49 65535 i == N//2
94028 99 99 1 17 49 131071 i == N//2
94029 99 99 1 18 49 262143 i == N//2
94030 99 99 1 19 49 524287 i == N//2

 All Capacities Same
0 True
1 False
2 False
3 False
4 False
... ...
94026 False
94027 False
94028 False
94029 False
94030 False

[94031 rows x 8 columns]

check if for all values of q and p = 1 it holds that the optimal idx
is N//2

df_check_f = df_runs_d[df_runs_d["Idx Relation"] != "i == N//2"]
print(df_check_f)

Empty DataFrame
Columns: [N, q, p, n, Optimal Index, Capacity, Idx Relation, All

Capacities Same]
Index: []

E: Investigate role of n
def run_configurations_n(N_values, q_values, p_values, n_values,
constraint, output_path):
 results = []

 for N in N_values:
 for q in q_values:
 for p in p_values:
 for n in n_values:
 # skip invalid configs
 if p > N or q > N:
 continue

 # Check if both p and q are prime
 if not (is_prime(p) and is_prime(q)): # Ensure
both p and q are prime
 continue

 # Check if constraint
 if constraint(N, q, p, n):
 continue

 # Generate the matrix and find optimal capacity
 Dn = generate_matrix(N, q, p, n)
 opt_index, cap, all_same, same_value =
find_optimal_capacity(Dn)
 rel = get_index_relation(opt_index, N)

 # Add the results to the list
 results.append({
 "N": N,
 "q": q,
 "p": p,
 "n": n,
 "Optimal Index": opt_index,
 "Capacity": cap,
 "Idx Relation": rel,
 "All Capacities Same": all_same,
 })

 # Convert the results into a DataFrame
 df = pd.DataFrame(results)

 # Group by 'N', 'q', 'p' and check if all Optimal Indices are the

same within each group (ignoring 'n')
 def check_optimal_indices_same(group):
 return group['Optimal Index'].nunique() == 1 # Return True if
all values are the same

 # Group by the combination of 'N', 'q', 'p'
 grouped = df.groupby(['N', 'q', 'p'])

 # Use transform to align the results with the original DataFrame
 df['All Optimal Indices Same'] = grouped['Optimal
Index'].transform(lambda x: x.nunique() == 1)

 # Filter out rows where the optimal indices are the same
 df_filtered = df[df['All Optimal Indices Same'] == False]

 # Save the filtered DataFrame to a CSV file
 df_filtered.to_csv(output_path, index=False)

 return df_filtered

def constraint_e(N,q,p,n):
 # if (np.abs(p-q) <= N//2) and (n >= N):
 # return False
 if n >= N:
 return False
 else:
 return True

#run for many configurations
df_runs_e =
run_configurations_n(range(3,20),range(1,20),range(1,20),range(5,6),
constraint_e, "/kaggle/working/runs_influence_n.csv")

print(df_runs_e)

Empty DataFrame
Columns: [N, q, p, n, Optimal Index, Capacity, Idx Relation, All
Capacities Same, All Optimal Indices Same]
Index: []

48 C. Python Code

C.2. Code to Confirm Mapping of Theorem 4.2.1

This Python 3 environment comes with many helpful analytics
libraries installed
It is defined by the kaggle/python Docker image:
https://github.com/kaggle/docker-python
For example, here's several helpful packages to load

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

Input data files are available in the read-only "../input/"
directory
For example, running this (by clicking run or pressing Shift+Enter)
will list all files under the input directory

import os
for dirname, _, filenames in os.walk('/kaggle/input'):
 for filename in filenames:
 print(os.path.join(dirname, filename))

You can write up to 20GB to the current directory (/kaggle/working/)
that gets preserved as output when you create a version using "Save &
Run All"
You can also write temporary files to /kaggle/temp/, but they won't
be saved outside of the current session

import random
import numpy as np
import math

Create Set C_a
def generate_binary_vectors(k, n):
 return [[random.choice([0, 1]) for _ in range(n)] for _ in
range(k)]

def calculate_v(x, a, p, q):
 v = [0] * (len(x)+1)
 v[0] = a
 for i in range(1, len(x)+1):
 if x[i-1] == 1:
 v[i] = v[i-1] + p
 else:
 v[i] = max(0, v[i-1] - q)
 return v

def create_vectors(k, n, a, p, q, N):
 binary_vectors = generate_binary_vectors(k, n)
 C_a = set()

 for x in binary_vectors:
 # if tuple(x) in C_a:
 # continue
 v = calculate_v(x, a, p, q)

 # Check condition 1: all values of v must be <= N
 if all(vi <= N for vi in v):
 # Check condition 2: the last value of v must be <= u
 if v[-1] <= a:
 C_a.add(tuple(x)) # Add x as a tuple (to be hashable)
to set C_u
 #print(x,v, "ca")

 return C_a

Create C_a+1
def weighted_running_digital_sum(x, p, q):
 t = [0] * len(x)
 for i in range(1, len(x) + 1):
 t[i-1] = -q * i + (p + q) * sum(x[:i])
 return t

def find_h1(t, N,n,alpha):
 hx = -1
 for i in range(0,min(n,alpha)):
 if t[i] == 1:
 hx = i+1 # The index should be 1-based
 break
 return hx if hx != -1 else len(t)

def find_h2(t, N,n,alpha):
 hx = -1
 for i in range(0,min(n,alpha)):
 if t[i] == 2:
 hx = i+1 # The index should be 1-based
 break
 return hx if hx != -1 else -1

def apply_mapping_to_vectors(C_a, p, q, N,n,a):
C_a_plus_1 = list()

for x in C_a:
Compute the weighted running digital sum for the
reversed vector
t_seq = weighted_running_digital_sum(x, p, q)

t_rev = weighted_running_digital_sum(x[::-1],p,q)
vx = calculate_v(x, a, p, q)
Determine hx using the reversed vector
alpha = N - vx[-1]
hx = find_h2(t_seq, N,n, alpha)

Decompose x into u and w
x_a = x[:hx]
x_b = x[hx:]

t_xb = weighted_running_digital_sum(x_b,p,q)
vxb = calculate_v(x_b, a+1, p, q)
Determine hx using the reversed vector
alpha = N - vxb[-1]
hx_b = find_h1(t_xb, N,len(x_b), alpha)
u_b = x_b[:hx_b]
w_b = x_b[hx_b:]

Apply the transformation: y = (w^R, a)
y = x_a + w_b + u_b[::-1] # Reverse w and concatenate with
u
C_a_plus_1.append(list(y)) # Add to C_a+1 as a tuple

return C_a_plus_1

def apply_mapping_to_vectors(C_a, p, q, N,n,a):
C_a_plus_1 = list()

for x in C_a:
Compute the weighted running digital sum for the
reversed vector
t_seq = weighted_running_digital_sum(x, p, q)
t_rev = weighted_running_digital_sum(x[::-1],p,q)
vx = calculate_v(x, a, p, q)
Determine hx using the reversed vector
alpha2 =n
alpha1 = math.ceil((N - vx[-1])/2)
hx2 = find_h2(t_seq, N,n, alpha2)
if hx2 != -1:
continue
#print(x)
hx = find_h1(t_seq, N,n, alpha1)
Decompose x into u and w
x_a = x[:hx]
x_b = x[hx:]

t_xb = weighted_running_digital_sum(x_b,p,q)
vxb = calculate_v(x_b, a+1, p, q)

Determine hx using the reversed vector
alpha = N - vxb[-1]
hx_b = find_h1(t_xb, N,len(x_b), alpha)
u_b = x_b[:hx_b]
w_b = x_b[hx_b:]

Apply the transformation: y = (w^R, a)
#y = x_b + x_a[::-1] # Reverse w and concatenate with u
y = x[::-1]
C_a_plus_1.append(list(y)) # Add to C_a+1 as a tuple

 # return C_a_plus_1

a = oneven, idx 2
def apply_mapping_to_vectors(C_a, p, q, N,n,a):
 C_a_plus_1 = list()

 for x in C_a:
 # Compute the weighted running digital sum for the
reversed vector
 t_seq = weighted_running_digital_sum(x, p, q)
 t_rev = weighted_running_digital_sum(x[::-1],p,q)
 vx = calculate_v(x, a, p, q)
 # Determine hx using the reversed vector
 alpha2 = N - vx[-1]
 alpha1 = math.ceil((N - vx[-1])/2)
 hx2 = find_h2(t_seq, N,n, alpha2)
 # if hx2 != -1:
 # continue
 # #print(x)
 # hx = find_h1(t_seq, N,n, alpha1)
 # # Decompose x into u and w
 x_a = x[:hx2]
 x_b = x[hx2:]

 # t_xb = weighted_running_digital_sum(x_b,p,q)
 # vxb = calculate_v(x_b, a+1, p, q)
 # # Determine hx using the reversed vector
 # alpha = N - vxb[-1]
 # hx_b = find_h1(t_xb, N,len(x_b), alpha)
 # u_b = x_b[:hx_b]
 # w_b = x_b[hx_b:]

 # Apply the transformation: y = (w^R, a)
 y = x_b + x_a[::-1] # Reverse w and concatenate with u
 # y = x[::-1]

 C_a_plus_1.append(list(y)) # Add to C_a+1 as a tuple

 return C_a_plus_1

Check conditions
def check_conditions(C_a_plus_1, a, N, p, q):
 valid_vectors = []

 for y in C_a_plus_1:
 #print(y)
 v = calculate_v(list(y), (a+1), p, q)
 #print(v)
 # Condition 1: Check if each value of v <= N
 if all(vi <= N for vi in v):
 # Condition 2: Check if the last value of v <= u + 1
 if v[-1] <= a + 1:
 valid_vectors.append(list(y)) # Add to valid vectors
if both conditions hold
 else:
 print(y, v, "no a")
 else:
 print(y,v, "no v")

 return len(valid_vectors) == len(C_a_plus_1)

def check_unique(C_a_plus_1):
 # Check if all vectors in C_u+1 are unique by comparing length
with a set
 unique_vectors = list(set(tuple(v) for v in C_a_plus_1))
 return len(C_a_plus_1) == len(unique_vectors)

P = 2
C_a = [
 [1,1, 0, 1, 0], # First custom vector
 [0, 1, 1,0, 0],
 [0,1,1,0,1,1,0,0]# Second custom vector
]

C_a_1 = apply_mapping_to_vectors(C_a, 2, 3, 5,5,1)

print(C_a_1)
print(check_conditions(C_a_1, 1, 5, 2, 3))
print(check_unique(C_a_1))

C_a = [
 [1,1, 1, 0, 1,0], # First custom vector
 [0, 1, 1,1,1, 0],
 [1,1,1,0,0,1]# Second custom vector
]

C_a_1 = apply_mapping_to_vectors(C_a, 2, 5, 9,6,3)

print(C_a_1)
print(check_conditions(C_a_1, 3, 9, 2, 5))
print(check_unique(C_a_1))

P = 1

Manual Example
C_a = [
 [1, 0, 0, 0, 1, 0], # First custom vector
 [1, 0, 1, 0, 0, 0], # Second custom vector
]

C_a_1 = apply_mapping_to_vectors(C_a, 1, 3, 5,6,1)

print(C_a_1)
print(check_conditions(C_a_1, 1, 5, 1, 3))
print(check_unique(C_a_1))

Run for many p = 2
k = 100

for n in range(6,20):
 for q in range(3,20):
 if q % 2 == 0:
 continue
 for N in range(5,20):
 if N%2 == 0:
 continue
 a = N//2-1
 if a % 2 == 0:
 continue
 p = 2
 C_a = create_vectors(k, n, a, p, q, N)
 C_a_1 = apply_mapping_to_vectors(C_a, p, q, N,n,a)

 check_cond = check_conditions(C_a_1, a, N, p, q)
 if check_cond == False:
 #print(C_a)
 print(check_conditions, q,N,a)
 check_uniq = check_unique(C_a_1)
 if check_uniq == False:
 for i in range(len(C_a_1)):
 for j in range(i+1,len(C_a_1)):
 if C_a_1[i] == C_a_1[j]:
 print(C_a_1[i])
 print(check_uniq,q,N,a)

Example Run
k = 1000 # number of binary vectors
n = 6 # length of each binary vector
a = 2 # starting value for v
p = 1 # increment when xi = 1
q = 3 # decrement when xi = 0
N = 6 # maximum value for any v_i

C_a = create_vectors(k, n, a, p, q, N)

C_a_1 = apply_mapping_to_vectors(C_a, p, q, N)

print(check_conditions(C_a_1, a, N, p, q))
print(check_unique(C_a_1))

Run for many samples

--> CONCLUSION: WORKS! MAPPING IS BOTH
IN C_A+1 AND INJECTIVE
k = 100

for n in range(6,20):
 for q in range(3,50):
 for N in range(5,50):
 a = N//2-1

 p = 1
 C_a = create_vectors(k, n, a, p, q, N)

 C_a_1 = apply_mapping_to_vectors(C_a, p, q, N,n,a)

 check_cond = check_conditions(C_a_1, a, N, p, q)
 if check_cond == False:
 print(check_conditions, n,q,N,a)
 check_uniq = check_unique(C_a_1)
 if check_uniq == False:
 print(check_uniq,n,q,N,a)

for n in range(6,20):
 for q in range(5,50):
 for N in range(5,50):
 a = N//2-2
 p = 1
 C_a = create_vectors(k, n, a, p, q, N)

 C_a_1 = apply_mapping_to_vectors(C_a, p, q, N,n,a)

 check_cond = check_conditions(C_a_1, a, N, p, q)
 if check_cond == False:
 print(check_conditions, n,q,N,a)
 check_uniq = check_unique(C_a_1)
 if check_uniq == False:
 print(check_uniq,n,q,N,a)

for n in range(5,20):
 for q in range(3,50):
 for N in range(5,50):
 a = N//2-3
 p = 1
 C_a = create_vectors(k, n, a, p, q, N)

 C_a_1 = apply_mapping_to_vectors(C_a, p, q, N,n,a)

 check_cond = check_conditions(C_a_1, a, N, p, q)
 if check_cond == False:
 print(check_conditions, n,q,N,a)
 check_uniq = check_unique(C_a_1)
 if check_uniq == False:
 print(check_uniq,n,q,N,a)

C.3. Code for Matrix Generation and Plotting 57

C.3. Code for Matrix Generation and Plotting

import numpy as np
import pandas as pd
import math
import matplotlib.pyplot as plt

FUNCTIONS
def generate_matrix(N, q, p, n):
 # Step 1: Build D matrix
 D = np.zeros((N + 1, N + 1), dtype=int)

 for i in range(N + 1):
 if i <= N - p:
 D[i][i + p] = 1
 if i >= q:
 D[i][i - q] = 1
 if i < q:
 D[i][0] = 1

 # Step 2: Compute D^n
 Dn = np.linalg.matrix_power(D, n)

 return D, Dn

def find_optimal_capacity(Dn):
 N = Dn.shape[0] - 1
 half_index = N // 2 # Go only up to N//2

 # Calculate capacities for indices from 0 to N//2
 capacities = [np.sum(Dn[i, :i + 1]) for i in range(half_index +
1)]

 # Check if capacities are non-decreasing
 is_non_decreasing = all(capacities[i] <= capacities[i + 1] for i
in range(len(capacities) - 1))

 # Find the maximum capacity
 max_cap = max(capacities)

 # Find all indices with the maximum capacity, only within the
range 0 to N//2
 indices_with_max_cap = [i for i, cap in enumerate(capacities) if
cap == max_cap]

 # Return the highest index with the maximum capacity
 opt_index = max(indices_with_max_cap)

 return opt_index, max_cap, is_non_decreasing

def generate_example(N, q, p, n):
 D, Dn = generate_matrix(N,q,p,n)
 idx_dn, cap_dn, increasing_dn = find_optimal_capacity(Dn)
 print(D)
 print(Dn)
 print("Idx, Cap, Increasing:", idx_dn, cap_dn, increasing_dn)

Q = 1 EXAMPLE
generate_example(4,1,3,6)

generate_example(4,2,3,6)

P = 1 EXAMPLE
generate_example(4,2,1,6)

--> N = 4, Q = 2, P = 1, n = 4 WORKS

generate_example(4,2,3,6)

we see that it would not work for q = 2 (since N is even!) so the
determining factor really is that p = 1

--> N = 4, Q = 2, P = 3, n = 4 WORKS NOT (so from this we can find a
sequence where it does not work anymore)

P = 1 EXTRA EXAMPLE
generate_example(6,5,1,7)

--> WORKS

generate_example(6,5,2,7)

--> WORKS NOT ANYMORE BEC P NOT 1

P = 1 EXTRA EXTRA EXAMPLE
generate_example(6,3,1,10)

generate_example(6,3,2,10)

Q = 2, N = ODD
generate_example(7,2,3,4)

--> N = 5, Q = 2, P = 5, n = 4 WORKS!

[[1 0 0 1 0 0 0 0]
 [1 0 0 0 1 0 0 0]
 [1 0 0 0 0 1 0 0]
 [0 1 0 0 0 0 1 0]
 [0 0 1 0 0 0 0 1]
 [0 0 0 1 0 0 0 0]
 [0 0 0 0 1 0 0 0]
 [0 0 0 0 0 1 0 0]]
[[3 1 2 2 2 0 1 2]
 [3 1 0 4 2 0 1 0]
 [3 1 0 1 4 0 1 0]
 [3 1 0 1 0 4 1 0]
 [1 3 0 1 0 0 3 0]
 [1 0 2 1 0 0 0 2]
 [1 0 0 3 0 0 0 0]
 [1 0 0 0 2 0 0 0]]
Idx, Cap, Increasing: 3 5 True

generate_example(4,2,3,6)

--> Reason: N now even

[[1 0 0 1 0]
 [1 0 0 0 1]
 [1 0 0 0 0]
 [0 1 0 0 0]
 [0 0 1 0 0]]
[[8 3 1 5 2]
 [7 3 1 4 2]
 [5 2 1 3 1]
 [4 2 1 3 1]
 [3 1 1 2 1]]
Idx, Cap, Increasing: 1 10 False

generate_example(5,4,3,6)

--> Reason: Q not 2

[[1 0 0 1 0 0]
 [1 0 0 0 1 0]
 [1 0 0 0 0 1]
 [1 0 0 0 0 0]
 [1 0 0 0 0 0]
 [0 1 0 0 0 0]]

[[13 0 0 8 0 0]
 [13 0 0 8 0 0]
 [13 0 0 8 0 0]
 [8 0 0 5 0 0]
 [8 0 0 5 0 0]
 [8 0 0 5 0 0]]
Idx, Cap, Increasing: 2 13 True

generate_example(6,3,5,6)

[[1 0 0 0 0 1 0]
 [1 0 0 0 0 0 1]
 [1 0 0 0 0 0 0]
 [1 0 0 0 0 0 0]
 [0 1 0 0 0 0 0]
 [0 0 1 0 0 0 0]
 [0 0 0 1 0 0 0]]
[[6 0 3 0 0 4 0]
 [6 0 3 0 0 4 0]
 [4 0 2 0 0 3 0]
 [4 0 2 0 0 3 0]
 [4 0 2 0 0 3 0]
 [3 0 1 0 0 2 0]
 [3 0 1 0 0 2 0]]
Idx, Cap, Increasing: 3 6 True

!!!!!! NOG EVEN CHECKEN: 6,3,5,4 (BEIDE CONSTRAINTS NIET SATISFIED!)
!!!!!!

generate_example(5,3,5,4)

PLOT GRAPHS
def plot_example(x, y, N, filename):
 # Create the plot
 plt.figure(figsize=(8, 6))
 plt.plot(x, y)
 plt.axhline(y=N, color='r', linestyle='--', label=f'y = {N}')

 # Add labels and title
 plt.xlabel('Time')
 plt.ylabel('Value of TA-Sequence')
 plt.title('Plot of TA Sequence')
 plt.grid(True)

 # Save the figure
 plt.savefig(filename)
 plt.close()

Create plot for p = 1 example
#N=4,q=2,p=1,n=6
N = 4
t1 = np.arange(0,7)
x1 = [1,2,3,4,2,0,1]
y1 = [1,3,4,2,0,1,2]

plot_example(t1, x1, 4, "plot_x1.png")
plot_example(t1, y1, 4, "plot_y1.png")

Create plot for p = 1 example
#N=4,q=2,p=1,n=10
N = 4
t2 = np.arange(0,10)
x2 = [0,1,0,1,2,3,4,2,0,1]
y2 = [3,1,0,1,2,3,4,2,3,1]

plot_example(t2, x2, 4, "plot_x2.png")
plot_example(t2, y2, 4, "plot_y2.png")

EXAMPLE ARTICLE TO SHOW P and Q NOT
SYMMETRIC
generate_example(7,4,3,5)

--

NameError Traceback (most recent call
last)
/tmp/ipykernel_31/2001573701.py in <cell line: 0>()
----> 1 generate_example(7,4,3,5)

NameError: name 'generate_example' is not defined

generate_example(7,3,4,5)

--

NameError Traceback (most recent call
last)
/tmp/ipykernel_31/2033262758.py in <cell line: 0>()
----> 1 generate_example(7,3,4,5)

NameError: name 'generate_example' is not defined

C.4. Code to Create Ca 63

C.4. Code to Create Ca

import numpy as np
import math
import random
from collections import defaultdict

Generate Matrix
def generate_matrix(N, q, p, n):
 # Step 1: Build D matrix
 D = np.zeros((N + 1, N + 1), dtype=int)

 for i in range(N + 1):
 if i <= N - p:
 D[i][i + p] = 1
 if i >= q:
 D[i][i - q] = 1
 if i < q:
 D[i][0] = 1

 # Step 2: Compute D^n
 Dn = np.linalg.matrix_power(D, n)

 return D, Dn

def find_optimal_capacity(Dn):
 N = Dn.shape[0] - 1
 half_index = N // 2 # Go only up to N//2

 # Calculate capacities for indices from 0 to N//2
 capacities = [np.sum(Dn[i, :i + 1]) for i in range(half_index +
1)]

 # Check if capacities are non-decreasing
 is_non_decreasing = all(capacities[i] <= capacities[i + 1] for i
in range(len(capacities) - 1))

 # Find the maximum capacity
 max_cap = max(capacities)

 # Find all indices with the maximum capacity, only within the
range 0 to N//2
 indices_with_max_cap = [i for i, cap in enumerate(capacities) if
cap == max_cap]

 # Return the highest index with the maximum capacity
 opt_index = max(indices_with_max_cap)

 return opt_index, max_cap, is_non_decreasing

def generate_example(N, q, p, n):
 D, Dn = generate_matrix(N,q,p,n)
 idx_dn, cap_dn, increasing_dn = find_optimal_capacity(Dn)
 print(D)
 print(Dn)
 print("Idx, Cap, Increasing:", idx_dn, cap_dn, increasing_dn)

Create C_a
def generate_binary_vector(n):
 return [random.choice([0, 1]) for _ in range(n)]

def calculate_v(x, a, p, q):
 v = [0] * (len(x) + 1)
 v[0] = a
 for i in range(1, len(x) + 1):
 if x[i - 1] == 1:
 v[i] = v[i - 1] + p
 else:
 v[i] = max(0, v[i - 1] - q)
 return v

def create_CA(M, n, a, p, q, N):
 grouped_vectors = defaultdict(list)
 seen = set()

 while sum(len(vectors) for vectors in grouped_vectors.values()) <
M:
 x = generate_binary_vector(n)
 x_tuple = tuple(x)
 if x_tuple in seen:
 continue

 v = calculate_v(x, a, p, q)
 if all(vi <= N for vi in v) and v[-1] <= a:
 grouped_vectors[v[-1]].append(x_tuple)
 seen.add(x_tuple)

 # Convert to sorted dict
 sorted_grouped_vectors = {
 key: sorted(grouped_vectors[key])
 for key in sorted(grouped_vectors.keys())
 }

 return sorted_grouped_vectors

EXAMPLES Q = 2 N = ODD

N = 7, P = 3
N = 7, q = 2, p = 3, n = 5
generate_example(7,2,3,5)

N = 7, q = 2, p = 3, n = 5
create_CA(M, n, a, p, q, N)

Ca_1 = create_CA(8,5,2,3,2,7)
Ca_2 = create_CA(9,5,3,3,2,7)

print(Ca_1)
print(Ca_2)

N = 5, P = 3
N = 5, q = 2, p = 3, n = 5
generate_example(5,2,3,6)

N = 5, q = 2, p = 3, n = 5
create_CA(M, n, a, p, q, N)

Ca_1 = create_CA(11,6,1,3,2,5)
Ca_2 = create_CA(11,6,2,3,2,5)

print(Ca_1)
print(Ca_2)

N = 9, P = 3
9 = 5, q = 2, p = 3, n = 5
generate_example(9,2,3,8)

[[1 0 0 1 0 0 0 0 0 0]
 [1 0 0 0 1 0 0 0 0 0]
 [1 0 0 0 0 1 0 0 0 0]
 [0 1 0 0 0 0 1 0 0 0]
 [0 0 1 0 0 0 0 1 0 0]
 [0 0 0 1 0 0 0 0 1 0]
 [0 0 0 0 1 0 0 0 0 1]
 [0 0 0 0 0 1 0 0 0 0]
 [0 0 0 0 0 0 1 0 0 0]
 [0 0 0 0 0 0 0 1 0 0]]

[[30 15 6 20 27 10 20 9 5 16]
 [29 15 6 20 8 26 20 9 5 4]
 [21 23 6 20 8 5 36 9 5 4]
 [21 5 21 20 8 5 5 34 5 4]
 [20 5 2 35 8 5 5 3 21 4]
 [20 5 2 6 32 5 5 3 0 20]
 [18 5 2 6 2 29 5 3 0 1]
 [6 12 2 5 2 0 20 3 0 1]
 [6 1 11 5 2 0 1 18 0 1]
 [5 1 0 12 2 0 1 0 8 1]]
Idx, Cap, Increasing: 4 70 True

N = 9, q = 2, p = 3, n = 5
create_CA(M, n, a, p, q, N)
Ca_1 = create_CA(30,8,0,3,2,9)
Ca_2 = create_CA(34,8,1,3,2,9)

print(Ca_1)
print(Ca_2)

{0: [(0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0,
1, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 1, 0, 0), (0,
0, 0, 1, 1, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0,
0), (0, 0, 1, 0, 1, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0, 0), (0, 1, 0, 0,
0, 0, 0, 0), (0, 1, 0, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0, 0, 0), (0,
1, 0, 1, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0,
0), (1, 0, 0, 0, 0, 1, 0, 0), (1, 0, 0, 0, 1, 0, 0, 0), (1, 0, 0, 1,
0, 0, 0, 0), (1, 0, 0, 1, 0, 1, 0, 0), (1, 0, 0, 1, 1, 0, 0, 0), (1,
0, 1, 0, 0, 0, 0, 0), (1, 0, 1, 0, 0, 1, 0, 0), (1, 0, 1, 0, 1, 0, 0,
0), (1, 0, 1, 1, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0, 0, 0), (1, 1, 0, 0,
0, 1, 0, 0), (1, 1, 0, 0, 1, 0, 0, 0), (1, 1, 0, 1, 0, 0, 0, 0), (1,
1, 1, 0, 0, 0, 0, 0)]}
{0: [(0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1,
1, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0), (0,
0, 1, 0, 1, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0,
0), (0, 1, 0, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0, 0, 0), (0, 1, 1, 0,
0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1, 0, 0), (1,
0, 0, 1, 0, 0, 0, 0), (1, 0, 0, 1, 1, 0, 0, 0), (1, 0, 1, 0, 0, 0, 0,
0), (1, 0, 1, 0, 1, 0, 0, 0), (1, 0, 1, 1, 0, 0, 0, 0), (1, 1, 0, 0,
0, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0), (1, 1, 0, 0, 1, 0, 0, 0), (1,
1, 0, 1, 0, 0, 0, 0)], 1: [(0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0,
0, 1, 0), (0, 1, 0, 0, 0, 0, 1, 0), (0, 1, 0, 1, 0, 0, 1, 0), (0, 1,
0, 1, 0, 1, 0, 0), (0, 1, 0, 1, 1, 0, 0, 0), (0, 1, 1, 0, 0, 0, 1, 0),
(0, 1, 1, 0, 0, 1, 0, 0), (0, 1, 1, 0, 1, 0, 0, 0), (1, 0, 0, 0, 0, 0,
1, 0), (1, 0, 1, 0, 0, 0, 1, 0), (1, 1, 0, 0, 0, 0, 1, 0)]}

	Layman's Summary
	Summary
	Introduction
	Introduction to Thermal-Aware Communication Systems
	The Thermal-Aware Channel Model
	Channel Dynamics and Admissibility
	Integer Scaling and Graph Representation
	Thermal-Aware Channel Capacities for Finite Sequences

	Theoretical Limits of Thermal-Aware Channel Capacities
	Computing TA-Channel Capacities via Transition Matrices
	Upper Bounds on TA-Channel Capacities

	Thermal-Aware Channel Capacities of Finite-Length Sequences
	Properties of Transition Matrices
	Properties of TA-Channel Capacities in the Finite Domain
	Symmetry and Monotonicity of Ca

	Main Results: Thermal-Aware Channel Capacity Properties in the Finite Domain
	Numerical Analysis of TA-Channel Capacities
	Monotonicity Properties of TA-Channel Capacities in the Finite Domain
	Monotonicity for the Case p=1
	Monotonicity Conjectures for Specific Parameters
	A General Monotonicity Conjecture

	Conclusion and Future Recommendations
	Bibliography
	Proofs of Chapter 3
	Proof of Theorem 3.1.1
	Proof of Theorem 3.2.2
	Proof of Theorem 3.2.5

	Explored Mappings in Chapter 4
	Explored Mappings to Prove Conjecture 1
	Explored Mappings to prove Conjecture 1 for p=2
	Explored Mappings to Prove Conjecture 1 for q=2

	Explored Mappings to Prove Conjecture 3

	Python Code
	Code for General Investigations
	Code to Confirm Mapping of Theorem 4.2.1
	Code for Matrix Generation and Plotting
	Code to Create Ca

