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A B S T R A C T

Problems manifested within social-ecological systems (SES) exhibit dynamic complexity and hold implications 
for current and future human well-being and environmental sustainability. The complexity of these issues, the 
ever-present uncertainty inherent to SES, and the multi-stakeholder settings in which they are discussed call for 
participatory modelling to support decision-making on socio-environmental issues. Yet, this challenging 
endeavour requires a structured approach — a modelling cycle — to facilitate engagement with the implications 
of participation and uncertainty as focal points for Good Modelling Practice (GMP). Here we propose an inte-
grated policy analysis framework for SES modelling using System Dynamics (SD). This framework stems from 
integrating two existing modelling cycles that individually consider participation and uncertainty in SD 
modelling. Three global modelling phases and a set of tools to address the participation and uncertainty features 
in SES modelling are distinguished. The framework contributes to mainstreaming GMP, offering a structured 
model-based approach to enhance the robustness and social acceptance of policies on critical socio- 
environmental issues.

1. Introduction

Human activities are driving multiple environmental changes at a 
planetary scale (Folke et al., 2021). Anthropogenic pressures are linked 
to global issues such as climate change, environmental deterioration, 
resource depletion, and loss of biodiversity (Díaz et al., 2019; Nelson 
et al., 2006; Rockström et al., 2009; van den Heuvel et al., 2020). As 
humanity continues to rely on natural resources, the natural resource 
base (e.g. water, land, fossil fuels, minerals) is changing on a global scale 
along with ecosystems (cf. Armstrong McKay et al. (2022)). In turn, 
fast-paced environmental change is compromising human well-being 
and access to basic resources (Gupta et al., 2023; Watts et al., 2021). 
These complex interactions between humans and the natural environ-
ment act across multiple scales and exhibit bi-directional influences.

Systems thinking offers a powerful approach to conceptualise com-
plex human-nature interactions by focusing on the interaction of inter-
dependent elements that form a whole rather than simply on the 
elements themselves (Ackoff, 1971, 1994; Ison, 2008, 1997; Meadows, 
2008; Mingers and White, 2010). Understanding human and natural 
elements as deeply intertwined is key to understanding the pressing 

socio-environmental challenges of our time (Folke et al., 2016). This 
idea has been articulated in the concept of social-ecological systems 
(SES) which can be defined as “interdependent and linked systems of 
people and nature” (Fischer et al., 2015, p. 145). SES are characterised 
as being nested across interacting scales (e.g. landscape, regional, and 
global) and embedded in the biosphere (Fischer et al., 2015; Folke et al., 
2021). SES are complex systems as they are constituted relationally; 
adaptive; dynamic; open; contextually determined; and characterised by 
multiple causal pathways (Preiser, Biggs, De Vos, and Folke, 2018). 
These features imply that designing and implementing policies that deal 
with such systems is a non-trivial and complex task (de Gooyert et al., 
2016; Kelly et al., 2013), likely with multiple feasible options.

Using models to represent SES is an essential part of exploring the 
potential impacts of socio-environmental policies. SES modelling aims 
“to characterise and explore complex socio-environmental issues in 
systematic and collaborative ways” (Elsawah et al., 2020, p. 1). This 
definition may be understood within a larger policy analysis framework 
(Mayer, van Daalen, and Bots, 2004, 2012). Among many systems ap-
proaches, policy analysis focuses on analysing a system to find ways to 
influence it towards desirable outcomes (van Daalen and Bots, 2010). 
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This strongly relates to the systematic approach mentioned in the defi-
nition above. Likewise, developing a policy analysis approach in the 
context of SES has significant implications in terms of stakeholder 
participation (Amorocho-Daza, van der Zaag, and Sušnik, 2024; Bots 
and van Daalen, 2008; Clifford-Holmes et al., 2018). This relates to the 
challenge of developing models in collaborative ways. In short, SES 
modelling may be understood as a systems approach that takes an 
analytical perspective of a socio-environmental system, while recog-
nising the criticality of having a subjective view of the problem situation 
at hand that arises from collaborative model building and use (van 
Daalen and Bots, 2010).

The ambition to engage with SES complexity in a participatory 
modelling setting is a formidable task for practitioners and researchers. 
Recent case studies (Bitterman and Webster, 2024; Mer, Vervoort, and 
Baethgen, 2020; Villamor et al., 2019) and reviews (Voinov et al., 2016; 
Whitley et al., 2024) illustrate the increasing attention toward partici-
patory modelling approaches. Kelly et al. (2013) identified five model-
ling approaches that are suitable for integrating various SES processes in 
which stakeholders can explore, analyse, assess and communicate policy 
alternatives: System Dynamics, Bayesian networks, coupled component 
models, agent-based models and knowledge-based models. However, 
operationalising such modelling approaches in participatory settings 
remains a challenge. In a similar vein, Elsawah et al. (2020) recently 
identified eight grand challenges in SES modelling related to issues of 
epistemology, interdisciplinarity, uncertainty, scaling, and policy 
impact. This paper aims to explicitly engage with two of these grand 
challenges: (i) the integrated treatment of uncertainty in the modelling 
process; and (ii) the adoption of SES models to increase their impacts on 
policy.

The first challenge, the integrated treatment of uncertainty, recog-
nises that uncertainty is ever-present in SES modelling (Ascough et al., 
2008). Uncertainty, as defined by Walker et al.(2003, p. 8), is “any de-
viation from the unachievable ideal of completely deterministic 
knowledge of the relevant system”. Brugnach et al. (2008, p. 5) extend 
this definition by including its relational dimension, as follows: “Un-
certainty refers to the situation in which there is not a unique and 
complete understanding of the system to be managed”. Therefore, un-
certainty takes place across all modelling phases, at different levels 
(from determinism to total ignorance) and exhibits distinct natures (e.g. 
knowledge or epistemic uncertainty, variability or ontological uncer-
tainty, and ambiguity) (Kwakkel, Walker, and Marchau, 2010). In 
contrast to this holistic view of uncertainty, SES modelling practices 
related to uncertainty have often been confined to quantitative ap-
proaches to data validity, model parameter sensitivity and structural 
testing (Maier et al., 2016). However, recent literature highlights that 
activities taking place at early modelling cycle stages (e.g. scoping and 
conceptualisation), while qualitative in nature, represent fundamental 
uncertainty sources (Nabavi, Daniell, and Najafi, 2017). The lack of 
integrated uncertainty assessment is also connected to the challenge of 
communicating uncertainty to stakeholders in model-based decision--
making (Palmer, 2017). Better communication regarding uncertainty 
implies that stakeholders and modellers engage in dialogues to discuss 
both qualitative aspects, such as values, representation, prioritisation, 
and transparency, as well as quantitative aspects, including modelling 
outputs, scenarios, trade-offs, and risk, across the different stages of the 
modelling cycle (Elsawah et al., 2020).

The second challenge connects the need for participation with the 
expected policy impact deriving from the use of SES models (Elsawah 
et al., 2020). Participation can be understood as a process in which 
stakeholders “choose to take an active role in the decisions that affect 
them” (Reed, 2008, p. 2418). The need for participation can be justified 
via normative and pragmatic arguments (Reed, 2008). Normative ar-
guments are often related to the democratic right to participation (Király 
and Miskolczi, 2019), but also can arise from the ethical implications of 
building models with stakeholders (Amorocho-Daza et al., 2024; 
Palmer, 2017). Pragmatic arguments are related to the expected benefits 

of engaging stakeholders in policy-making processes, in other words, a 
perspective in which participation is “a means to an end”, such as 
enhancing the quality and durability of environmental decisions 
(Beierle, 2002; Reed, 2008). The latter aspect is the bridging factor 
between participation and policy impact. However, far from being a 
panacea, the successful delivery of participation “promises” is heavily 
context- and process-dependent (d’Hont and Slinger, 2022; Reed et al., 
2017; Sarmiento et al., 2020). Narrowing down the aforementioned 
discussion, here we focus on the expected benefits of participation in 
model-based policy discussion settings around socio-environmental is-
sues (Bots and van Daalen, 2008).

Participatory modelling settings are one of the instances in which 
stakeholders can take part in socio-environmental policy discussions. 
This generic terminology refers to the endeavour of modelling with 
stakeholders, very often in the context of socio-environmental issues 
(Videira, Antunes, Santos, and Lopes, 2010; Voinov and Bousquet, 
2010). Building SES models in a participatory way is a co-creation 
process in which both researchers and stakeholders bring and put 
different perspectives and knowledge together in dialogue to improve 
the scope and purpose of the models (Bots and van Daalen, 2008; 
Norström et al., 2020; Slinger, 2023; Sterling et al., 2019; Voinov et al., 
2014). Engaging stakeholders can enhance a shared understanding of 
complex, locally rooted, social and natural systems leading to the design 
of more comprehensive, locally relevant socio-environmental policies 
(Clifford-Holmes et al., 2018; d’Hont and Slinger, 2022; Slinger, Cun-
ningham, and Kothuis, 2023). From a pragmatic perspective, an essen-
tial output of such dialogue is building knowledge and social capital that 
is reflected in the stakeholders’ commitment towards crafting and 
implementing informed and effective socio-environmental policies 
(Sterling et al., 2019). Therefore, it is critical to understand the inter-
linkages between participation and policy impact in the context of the 
SES modelling cycle (Elsawah et al., 2020).

Integrating the dimensions of uncertainty and policy impact in SES 
participatory modelling has proven conceptually and practically chal-
lenging, but recent advances offer promising roads ahead. Regarding the 
first challenge, integrating uncertainty in SES modelling, Ascough et al. 
(2008) set the scene by categorising various typologies and sources of 
uncertainty in environmental decision-making. Some of these include 
how knowledge uncertainty is pervasive across the modelling cycle 
(across the process itself, in the model, and in the modelling outputs), or 
the importance of linguistic uncertainty, a social aspect related to lan-
guage ambiguity and vagueness in a decision-making context. More 
recently, Maier et al. (2016) propose that integrated uncertainty 
modelling needs to consider multiple future scenarios, aiming to find 
alternatives with robust performance under many plausible futures, and 
aim for adaptive, flexible strategies. From the participation side, there is 
a growing recognition of policy-relevant modelling as closely aligned 
with transdisciplinary participation (Moallemi, Malekpour, et al., 2020). 
Recent reviews show how co-produced sustainability initiatives (e.g. 
making use of SES models) can serve multiple purposes (Chambers et al., 
2021), mirroring previous calls for adaptive and flexible strategies 
(Pahl-Wostl, 2007). Despite some authors highlighting the importance 
of participation in dealing with modelling uncertainty (e.g. Ascough 
et al. (2008)), or the implications of uncertainty in participatory con-
texts (e.g. Barnhart et al. (2018); Martinez-Fernandez, Banos-Gonzalez, 
and Esteve-Selma (2021); Moallemi et al. (2023)), the academic litera-
ture lacks frameworks that conceptualise the integration of both un-
certainty and participation across a SES modelling cycle.

This article proposes a modelling cycle framework to support system 
dynamics SES modelling and policy evaluation in a stakeholder 
engagement context, accounting for both uncertainty assessment and 
participation. In addition, a range of tools and approaches are proposed 
at each stage in the framework to address these different facets. System 
Dynamics (SD) is selected as the modelling approach of choice in this 
context due to its analytic capabilities to simulate complex systems’ 
behaviour, flexibility of application, and proven use in stakeholder 
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participatory settings (Elsawah et al., 2017). These capabilities mean 
that SD is being applied across various SES fields, including agriculture 
and natural resource management (Turner et al., 2016), water resources 
management (Phan, Bertone, and Stewart, 2021; Zomorodian et al., 
2018), environmental health (Currie, Smith, and Jagals, 2018), and in 
holistic public health approaches such as One Health (i.e. health of 
people, animals, and the environment) (Xie et al., 2017).

Multiple similar frameworks can be designed, none of them fully 
comprehensive, yet here we propose a framework that aims to be useful 
in mainstreaming Good Modelling Practice (GMP) in the context of 
complex SES modelling settings. In the introductory article of this Joint 
Special Issue, Jakeman et al. (2024) argue that transitioning toward the 
widespread adoption of GMP requires enhancing reflexivity and trans-
parency in SES modelling practices. As recognised by the authors, 
reaching this vision requires a whole-cycle perspective that addresses 
uncertainty while promoting stakeholder participation as focal points of 
GMP. Here we aim to contribute to such a purpose with a framework 
that aligns the dimensions of uncertainty and stakeholder participation 
into a single modelling cycle using SD. This synthesis may be useful for 
SES modellers in devising a modelling roadmap that explicitly engages 
with the implications of uncertainty in already complex participatory 
settings. In addition, the present framework could facilitate transparent 
communication regarding the model’s crafting— that is, how an SES 
model is built and used (Jakeman et al., 2024). In other words, re-
searchers and practitioners can use the framework to better communi-
cate the rationale behind the decision points that drive the modelling 
process. Examples of suitable modelling tools and approaches are 
included across the different modelling phases to offer concrete ways to 
operationalise the framework.

2. Developing a unified SD modelling framework for SES policy 
evaluation

This section presents the approach to integrating uncertainty and 
participation in an SD modelling framework. Section 2.1 justifies this 
endeavour. Section 2.2 presents two modelling frameworks that engage 
with uncertainty and participation aspects separately. In Section 2.3, we 
conceptually align these frameworks into a unified framework, dis-
tinguishing three main modelling phases. Section 2.4 describes the 
iterative revision cycle that facilitates applying the modelling frame-
work. Section 2.5 presents a summary of the modelling tools and tech-
niques that can be deployed at different stages of the modelling cycle.

2.1. Why integrate uncertainty and participation in an SD modelling 
framework?

SD is deeply rooted in systems thinking and possesses both qualita-
tive and quantitative attributes, making it well-suited to address the 
implications of uncertainty and participation in complex socio- 
ecological systems (Lane, 2010). The qualitative SD stream has a long 
history of building systems models with stakeholders, e.g. group model 
building and participatory modelling (Király and Miskolczi, 2019). This 
literature not only focuses on the output of SD participation (e.g. SD 
models) but also on the complexities of the process itself (Freebairn 
et al., 2019; Hovmand et al., 2012; Vennix, 2000), as well as on the 
transformative social outputs it that may derive (Hovmand, 2014; 
Luna-Reyes et al., 2018; Rouwette et al., 2010). The quantitative SD 
stream focuses on using models to make sense of complex policy ques-
tions through numerical simulation (Meadows and Robinson, 1985; 
Sterman, 2002). Quantitative SD models are flexible in accommodating 
quantitative uncertainties in the form of parameter variations, and 
scenario and sensitivity analyses to make sense of possible futures in a 
complex and rapidly changing world (Kwakkel and Pruyt, 2013b; 
Moallemi, Kwakkel et al., 2020). Despite a mixed qualitative and 
quantitative modelling approach lying at the foundation of SD (Lane, 
2010; Sterman, 2002), current SD socio-environmental practice 

evidences a lack of such integration (Moallemi et al., 2021).
Participation and uncertainty can seem very distinct in the SD 

practice, yet are closely related, impacting each other. Qualitative ap-
proaches usually have a rich understanding of a problematic situation 
but do not benefit from the possibility of testing desired policies (under 
uncertainty) in a simulation environment, assessing their impacts under 
myriad futures. Quantitative SD that engages with uncertainty assess-
ment offers a rich vision of the uncertain future but it can be out of 
context if not discussed with stakeholders who want to use the model to 
answer difficult questions. A recent review of SD in the context of sus-
tainable development provides further insights on the level of integra-
tion and identifies two requisite improvements (Moallemi et al., 2021): 
(i) more stakeholder participation is necessary, as >70 % of SD sus-
tainability applications do not include any form of participation; and (ii) 
SD could benefit from incorporating interdisciplinary perspectives, 
particularly by developing robust models that can explicitly deal with 
deep uncertainties about the future. These are important gaps that could 
be bridged by better integration of the qualitative and quantitative ca-
pabilities of SD, more specifically by aligning participation and uncer-
tainty across the modelling process (Moallemi et al., 2023).

Recent advances in integrating SD approaches with other problem- 
structuring methods represent a way forward for an integrated multi- 
method perspective for policy analysis and decision-making (Rouwette 
and Franco, 2024). Similarly, here we propose a framework that aims to 
articulate the seemingly opposite features of participation and uncer-
tainty in SD modelling. Perhaps the common thread between the two is 
to understand ambiguity as an essential dimension of uncertainty 
(Brugnach et al., 2008). Ambiguity implies that uncertainty is not only 
an issue of objective knowledge, but mostly about whose knowledge is 
considered. In short, considering ambiguity implies that uncertainty is 
also an issue of knowledge plurality. This is particularly relevant for 
SES-related issues, in which people and the environment are so inter-
twined that local stakeholders should have a say in modelling endeav-
ours that could be used to inform policies that affect them 
(Amorocho-Daza et al. 2024).

Such a broader perspective on uncertainty bridges model-related 
uncertainty, which focuses on quantitative aspects like parameters and 
scenarios, with participatory uncertainty that arises from the delibera-
tion on the problem and potential solutions. Uncertainty, therefore, 
manifests in both the quantitative and qualitative dimensions of SD 
modelling practice, yet it is often treated separately. This paper aims to 
align and integrate these two dimensions into a coherent modelling 
cycle as a GMP. More specifically, here we contribute to normalising 
GMP by exploring the interactions between uncertainty and participa-
tory aspects in SD modelling and how they can be understood and 
structured in the context of a modelling framework.

2.2. Two SD modelling frameworks incorporating participation and 
uncertainty

SD practice conceptualises the different stages in a structured, iter-
ative modelling process as a cycle. It is only recently that uncertainty has 
been considered across the SD modelling cycle. This research builds 
upon the SD modelling cycle proposed by Auping (2018) which consists 
of a five-step cycle modifying the steps of Sterman (2000): (1) Problem 
articulation; (2) Conceptualisation; (3) Formulation; (4) Evaluation; and 
(5) Policy Testing. A strength of this new approach lies in incorporating 
uncertainty throughout this cycle. Fig. 1a depicts the inclusion of un-
certainty in SD modelling.

At the same time, a comprehensive participatory SD modelling 
framework should involve stakeholders throughout. This paper builds 
on the framework of Videira et al. (2010), as a relevant SD-based 
participatory framework in the context of sustainability. The Videira 
et al. framework considers various phases, including: (1) Scoping and 
abstraction; (2) Envisioning and goal setting; (3) Model formulation and 
confidence-building, (4) Simulation and assessment, and (5) Evaluating 

H. Amorocho-Daza et al.                                                                                                                                                                                                                      Ecological Modelling 499 (2025) 110943 

3 



and monitoring. The approach identifies how the outputs of each phase 
become inputs for the next phases. For example, conceptual models 
(Mirchi et al., 2012; Purwanto et al., 2019) from the “Scoping and 
abstraction” phase can be useful in the “Envisioning and goal setting” 
phase. Fig. 1b summarises the SD participatory modelling framework.

This paper aligns the modelling cycle under uncertainty proposed by 
Auping (2018) with the participation stages identified by Videira et al. 
(2010). We integrate both approaches into a single modelling frame-
work accounting for both participation and uncertainty analysis with 
two main variations. First, we adapt Auping’s (2018) problem articu-
lation phase by not only recognising multiple scopes in the modelling 
process but also aiming to integrate them into a negotiated scope that 
will guide the rest of the process. This aims to synthesise the various 
scopes that emerge within a multi-stakeholder setting (Ackermann, 
2012; Rosenhead, 2006). Despite being challenging, this effort is 
consistent with a paradigm of dialogical learning in socio-environmental 
participatory modelling (Brugnach et al., 2011; Brugnach and Ingram, 
2012). Second, we exclude the last stage of the Videira et al. (2010) cycle 
(“Evaluating and monitoring”) as the current framework is oriented to 
policy decision analysis rather than the implementation and subsequent 
evaluation of policy actions in the environmental system itself. This 
simplification remains consistent with recognising the importance of 
linking model-based analysis with policy implementation, which be-
comes evident when viewing policy-making as a multi-stage iterative 
process (see Walker et al. (2003) and Sterman (1994; 2000, p. 88)). This 
article solely addresses the model-based policy cycle, which is nested 

within the broader policy implementation process.

2.3. A unified SD modelling framework aligning participation and 
uncertainty

A participatory modelling framework to integrate SD with other 
modelling tools to support SES policy decision-making under uncer-
tainty is presented (Fig. 2). By adapting and extending the approaches 
proposed by Auping (2018) and Videira et al. (2010), this unified 
framework considers the implications of uncertainty and stakeholder 
participation in SES modelling. Fig. 2 shows the unified modelling cycle 
and a suggestion of modelling tools that can be useful in each part of the 
cycle. The innermost part of Fig. 2 highlights the structural implications 
of uncertainty (see Fig. 1a). The traditional modelling cycle is shown in 
the inner ring. The outer ring represents the stages of stakeholder 
participation, mapped to both the modelling cycle and how uncertainty 
plays a role. The outer gears refer to potentially suitable tools, methods, 
and techniques that could be implemented at each stage. A detailed 
account of each of the cycle’s phases follows. The dynamic intercon-
nectedness between the (SD) modelling cycle and the stages of stake-
holder participation is apparent in Fig. 2, with each of the participation 
and modelling stages influencing and complementing each other.

Three distinct phases facilitate the analysis of the interactive nature 
of dealing with uncertainty and participation in SD. The first modelling 
foundations phase focuses on all the activities developed before starting a 
quantitative modelling exercise, such as defining and conceptualising 
the issues at hand, and defining desirable futures in which such issues 
are addressed. The second phase, model building and testing, deals with 
the intricacies of crafting and testing a quantitative model within the 
boundaries and purposes defined in phase one. The third and last phase, 
model use and policy evaluation involves the use of the quantitative 
model, particularly as a decision-support tool to test policy alternatives 
to deal with the issue identified in phase one. Below we present a 
detailed account of the activities in each phase.

The modelling cycle is an idealised version of logical, step-wise 
phases and stages that go from defining a problem to selecting a solu-
tion. A disclaimer is that implementing such a cycle will be messy in 
reality. In a practical case, we would expect feedback and reprocessing 
across and within the modelling stages. A second point of attention is 
that this cycle can only take place in a participatory setting where the 
interested parties (i.e., stakeholders and modellers) agree on the 
modelling process, an approach in line with what other authors have 
called a dialogical learning strategy (Brugnach et al., 2011). Agreeing on 
the process implies valuing the rationale behind the participatory 
modelling exercise; it does not mean agreeing on other specific aspects 
such as the problem definition or the key variables to be considered. 
However, not agreeing on the process also implies that parties who do 
not agree may need to withdraw from the modelling process and that 
engaging them will require other strategies (Brugnach et al., 2011). This 
practical implication demonstrates that a participatory modelling pro-
cess occurs within a larger policy arena (see McEvoy, 2019, pp. 32–36).

A useful conceptualisation for the relevance of a participatory 
modelling process is to understand it as nested within a larger policy 
implementation cycle (Sterman, 2000; Walker et al., 2003). In other 
words, a policy recommendation arising from a modelling exercise can 
be ideally implemented and monitored, as part of a larger policy 
implementation cycle. SD researchers and practitioners have continu-
ously pursued policy relevance since the field’s inception (Buzogany, 
Kopainsky, and Gonçalves, 2024; Forrester, 1994, 2007; Ghaffarzade-
gan, Lyneis, and Richardson, 2010). Here we aim to contribute towards 
this overarching objective by proposing a structured approach to sup-
port socio-environmental policy-making. Yet, our proposed framework 
does not offer a guide for policy implementation, monitoring, and 
evaluation. Understanding this limitation is crucial for building bridges 
between policy evaluation and application. Hence, our proposed 
three-phase framework can better elucidate the essence of what a 

Fig. 1. System dynamics modelling frameworks for (a) considering uncertainty 
in the model development cycle (modified from Auping (2018)) and (b) 
implementing a participatory approach (modified from Videira et al. (2010)).
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modelling exercise can offer within a larger socio-environmental policy 
setting.

2.3.1. Phase I: modelling foundations
During phase I, the modelling foundations are established. Here we 

first describe the corresponding stages of the SD modelling cycle under 
uncertainty, followed by the parallel modelling stages using a partici-
patory modelling perspective.

2.3.1.1. SD modelling under uncertainty (inner circle and centre in Fig. 2).
Two stages are relevant for establishing modelling foundations using a 
modelling cycle under an uncertainty approach: problem articulation, 
and conceptualisation.

2.3.1.1.1. Problem articulation. The problem articulation phase de-
fines the model’s purpose (Sterman, 2000) or “aims at articulating the 
central problem which needs to be researched” (Auping, 2018, p. viii), 
and determines the next phases in the cycle. Auping (2018) highlights 
that as SD usually deals with wicked problems, multiple scopes (poten-
tially leading to multiple models) could be suitable for studying a 
problem under uncertainty. The involvement of various stakeholders 
with differing perspectives in socio-environmental debates often results 
in multiple, sometimes conflicting, framings and scopes, leading to 
ambiguity (Dewulf et al., 2005), another dimension of uncertainty 
(Brugnach et al., 2008). Brugnach et al. (2011) identified various 

strategies that can be used to cope with such ambiguity: rational 
problem-solving, persuasion, dialogical learning, negotiation and op-
position. From the previous list, a participatory modelling approach is 
primarily consistent with a dialogical learning strategy, as it assumes 
that stakeholders have a legitimate interest in co-producing a model in 
an active dialogue with their counterparts (Amorocho-Daza et al., 2024; 
Videira et al., 2010). Accordingly, a stakeholder dialogical strategy fa-
cilitates a transition from multiple problem scopes to a joint problem 
definition (i.e. negotiated scope) that is meaningful and relevant for the 
participants in the overarching process (Brugnach et al., 2011). In this 
paper, we consider that problem articulation under ambiguity (a 
dimension of uncertainty) involves integrating multiple scopes (i.e. 
Auping (2018)) rather than simply adopting a single scope (i.e. Sterman 
(2000)) into a negotiated scope arising from stakeholder dialogue 
(Ackermann, 2012; Rosenhead, 2006).

2.3.1.1.2. Conceptualisation. The conceptualisation phase’s primary 
aim is to identify the main relations between key variables, which often 
build on the mental models of stakeholders and experts (Auping, 2018), 
demonstrating a clear link to stakeholder participation. Mental models 
are “internal representations of external reality that people use to 
interact with the world” (Jones et al.,2011, p. 1). During con-
ceptualisation, mental models are translated into tangible conceptual 
representations. Tools like conceptual maps and causal loop diagrams 
help visualise and characterise system relationships (Ford, 2010; Voinov 

Fig. 2. The unified SD modelling framework distinguishes three primary phases in the modelling cycle: Modelling foundations (dark blue), Model building and 
testing (green), Model use and policy evaluation (light blue) and comprises the modelling process cycle (inner circle) under uncertainty (circle centre) (adapted from 
Auping (2018), stakeholder participation (outer circle) (adapted from Videira et al. (2010)) and relevant modelling tools (outer ‘gears’).
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et al., 2018). However, collaborative conceptualisation is a complex 
process itself (Luna-Reyes et al., 2006). To cope with it, SD practitioners 
use scripts, as a “tool for helping facilitation teams visualize and solve 
problems in the design of group model building sessions” (Hovmand 
et al., 2012, p. 183). Hovmand et al. (2012) initiated a collaborative 
platform, Scriptapedia, to document and expand the group 
model-building practice in the SD community. An example of the 
deployment of a group model-building script in the context of a con-
tested socio-environmental system is described in Purwanto et al. 
(2019).

Modelling scripts are helpful in structuring the use of complementary 
tools to support system conceptualisation with multiple stakeholders. 
Choosing among which tools to use varies on a case-to-case basis, but the 
display of such tools needs to happen in a structured and purposely 
crafted way. Tools and techniques useful to support the conceptualisa-
tion process include the use of SD archetypes (Mirchi et al., 2012); 
interaction (or causal) matrices (Sanò, Richards, and Medina, 2014); 
and more general methods such as participatory scenario planning and 
SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis 
(Barnaud et al., 2013; Ritzema et al., 2010; Voinov et al., 2016).

The conceptualisation phase deals with uncertainty in different di-
mensions. First, as conceptualisation follows problem formulation, it is 
also subject to the ambiguity derived from the presence of multiple 
stakeholders, and therefore, multiple mental models (Brugnach et al., 
2011). Thus, participatory system conceptualisation is not a determin-
istic task; rather, it depends on the participants involved, the facilitation 
method employed (e.g. scripts), and notably, the interaction among 
stakeholders throughout the process. Knowledge, or epistemic, uncer-
tainty is also present due to the limited knowledge about the system 
components and their interactions. Conceptualisation is the first stage in 
which structural uncertainties (i.e. how model variables are con-
nected/related) are identified to be assessed in later stages of the 
modelling cycle. This is evident in discussions about the polarity and 
global relevance of certain variable relations and feedback loops in 
causal loop diagrams (CLDs) (Sanò et al., 2014). This challenge can 
inspire early conversations on how to account for scenarios (e.g. changes 
in external influences, new variables, relations and influences to 
consider) from the beginning of the modelling cycle. In sum, embracing 
ambiguity and knowledge uncertainty implies the recognition of going 
beyond a deterministic, to a structurally uncertain conceptual model.

2.3.1.2. Stakeholder participation (outer circle, Fig. 2). Two stages are 
relevant for establishing modelling foundations using a participatory 
modelling approach: scoping and abstraction; and envisioning and goal 
setting.

2.3.1.2.1. Scoping and abstraction. The scoping and abstraction 
phase relates to the problem articulation and conceptualisation stages of 
the modelling cycle. Scoping or framing a problematic socio- 
environmental situation is not an objective exercise (Dewulf et al., 
2005; Dewulf, Craps, and Dercon, 2004), as it deals with important 
value-related questions that will frame the rest of the modelling process 
(Amorocho-Daza et al., 2024; Gregory et al., 2020). Abstraction-related 
activities coincide with the conceptualisation stage in the modelling 
cycle, as they depart from a problem situation and aim to translate 
stakeholders’ mental models of the problem into qualitative models 
based on a deliberation process (Vennix, 2000). At this stage, uncer-
tainty is evidenced by the ambiguity arising from multiple problem 
frames, as well as by the limited knowledge regarding the variables (and 
their interaction) that are relevant to understanding the problem itself. 
Problem structuring methods (PSMs) are helpful to engage with the 
aforementioned complexities.

PSMs are qualitative approaches to making sense of ill-structured 
problems (Smith and Shaw, 2019), i.e. problems arising from “situa-
tions characterised by multiple actors, differing perspectives, partially 
conflicting interests, significant intangibles and perplexing 

uncertainties” (Rosenhead, 2006, p. 762). PSMs have been established 
in the management literature for over 40 years (Mingers, 2011; Smith 
and Shaw, 2019), and they remain relevant across several fields of 
research and practice (Gomes Júnior and Schramm, 2021; Mingers and 
White, 2010). The three most established PSMs are Soft Systems Meth-
odology (SSM), Strategic Options Development and Analysis (SODA) 
and the Strategic Choice approach (Ackermann, 2012; Wright et al., 
2019). However, other frameworks such as DPSIR (Drivers, Pressures, 
State, Impact and Response) (Bell, 2012) and systems diagramming 
(Enserink et al., 2022; van der Lei et al., 2011) can be deployed as PSMs. 
A recent review indicates that the primary applications of PSMs are 
found in the business management domain, while environmental ap-
plications are relatively scarce, comprising only 17 % of the reported 
case studies in academic literature (Gomes Júnior and Schramm, 2021). 
Relevant applications of PSMs in complex socio-environmental prob-
lems have been reported using different methods: SSM (Bunch, 2003; 
Suriya and Mudgal, 2012), SODA (Elsawah et al., 2015; Hjortsø, 2004), 
and DPSIR (Gregory et al., 2013; Wantzen et al., 2019).

Scoping and abstraction activities often result in building qualitative 
system representations that give a rich understanding of the problem 
under consideration. Examples of these representations are the rich 
pictures of SSM (see Bunch (2003)) or the collective cognitive maps of 
SODA (see Elsawah et al., 2015) or the systems diagrams of policy anal-
ysis (Enserink et al., 2022; van der Lei et al., 2011). These representa-
tions can be integrated with other tools as part of a broader modelling 
cycle (Elsawah et al., 2015; Howick and Ackermann, 2011; Nijmeijer, 
2018; Rodriguez-Ulloa and Paucar-Caceres, 2005). For instance, a PSM 
(e.g. SSM) can be incorporated into the SD modelling cycle in the shape 
of qualitative system representations such as causal loop diagrams 
(Paucar-Caceres and Rodriguez-Ulloa, 2007). Building such qualitative 
models has several benefits, including (a) adding rigor to the analysis 
and discussion; (b) scoping a concise and shared understanding of a 
problem; (c) serving as a group memory of participatory sessions 
(Vennix, 2000). However, both individual and group dimensions are 
sources of ’messy problems’ in participatory modelling settings (Vennix, 
2000). This is why successful participatory modelling sessions with 
stakeholders should have structured planning, often in the form of SD 
scripts (Andersen and Richardson, 1997; Hovmand et al., 2012; 
Luna-Reyes et al., 2006), and facilitators with the right set of attitudes 
and skills (Vennix, 2000) to arrive at an adequate scoping and abstrac-
tion of a socio-environmental problem in the form of a meaningful 
system representation (Sterling et al., 2019).

In summary, scoping and abstraction activities within a participatory 
process offer a meaningful approach to navigating the complexity of 
socio-environmental problems and the ambiguity arising from the 
multiple possible frames to define them. By engaging with a rich prob-
lem definition, abstraction follows as a way to a shared understanding in 
the form of a qualitative system representation. This highlights the 
essential connection between an active stakeholder dialogue and un-
certainty (i.e. ambiguity), even before defining the first equation of a 
quantitative environmental model.

2.3.1.2.2. Envisioning and goal setting. After scoping a problem and 
advancing in its conceptualisation, the engagement of stakeholders in 
SES will focus on envisioning and goal setting. The purpose of this phase 
is to develop shared visions of the future of the system, and discuss 
sustainability criteria (Videira et al., 2010). Visioning engages with 
uncertainty by connecting current trends to (un)desired futures (Slinger 
et al., 2023). Conceptualisation can go beyond current issues by 
considering future trends. This activity can take place in stakeholder 
workshops and encourage the use of conceptual maps and CLDs as a 
common ground to discuss and set priorities for later stages of the 
modelling cycle (e.g. formulation and evaluation). This stage might be 
the starting point to ask questions related to simulation capabilities (e.g. 
what will the simulation model be able to measure?) and policy op-
portunities (e.g. which kind of policy interventions are associated with a 
desired future?). Discussions around the concept of sustainability may 
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reflect stakeholders’ values and preferences. A discussion around sus-
tainability could help stakeholders to clarify “what they want to sustain 
and for how long” (Stave, 2010, p. 2765). Sustainability policies can have 
goals that reflect diverse values, such as integration, anticipation, pre-
caution, participation, and equity (Gasparatos, El-Haram, and Horner, 
2008). The deliberation should end with a context-specific interpreta-
tion of sustainability (Videira et al., 2010). This will be crucial for later 
stages of the modelling cycle (i.e. policy - scenario testing and 
evaluation).

2.3.2. Phase II: model building and testing
During phase II the model is built and tested. Here we first describe 

the corresponding stages of the SD modelling cycle under uncertainty, 
followed by the parallel modelling stages using a participatory model-
ling perspective.

2.3.2.1. SD modelling cycle under uncertainty (inner circle and diagram, 
Fig. 2). Two stages are relevant for building and testing the model using 
a modelling cycle under uncertainty: formulation, and model testing.

2.3.2.1.1. Formulation. During model formulation, the model is 
specified mathematically and simulated using computational tools 
(Auping, 2018; Sterman, 2000). An SD simulation model is a quantita-
tive representation of the variables and relations that were identified 
during conceptualisation with each variable and relation specified in 
terms of stocks, flows and associated parameters. The resulting system of 
non-linear first-order differential equations, visualised as a Stock and 
Flow Model (SFM), is solved numerically to yield graphs of the time 
varying dynamics of the complex system (Banks and Slinger, 2011; Ford, 
2010 - Part I). Much of the SD literature covers the conceptual and 
mathematical foundations that underlie the relations between a sys-
tem’s stock structure and the dynamic behaviour emerging from it 
(Ford, 2010 - Part I; Meadows, 2008 - Part I; Naugle, Langarudi, and 
Clancy, 2024; Sterman, 2000 - Parts II-V). Conceptual models serve as a 
guide to formalising a quantitative model of a system. The translation 
process can be challenging because not every detail of the con-
ceptualisation can be formally quantified. Therefore, model formulation 
requires balancing the complexity reflected in the CLD with the 
simplicity needed for quantification (Amorocho-Daza et al., 2024). 
Freebairn et al. (2019) propose a conceptual framework focused on this 
challenge.

Formulating an SD modelling exercise under uncertainty builds on 
the structural uncertainties identified during the first phase of the 
modelling cycle. More specifically, having a structurally uncertain CLD 
that reflects the complexity of the issue and the intrinsic ambiguity of its 
conceptualisation has implications for the formulation phase. Auping 
(2018) highlights that structural uncertainty can be captured in single or 
multiple models derived from a structurally uncertain CLD. A single 
quantitative simulation model can incorporate uncertainty in different 
ways. As the modelling exercise enters the quantitative realm, a quan-
titative assessment of uncertainty becomes possible, for example, in the 
form of statistical and scenario uncertainty. Statistical uncertainty may 
be captured by variations in models’ parameters (Ford and Flynn, 2005; 
Kwakkel and Pruyt, 2013a). Scenario uncertainty uses scenarios to 
capture diverging trends or driving forces beyond the model’s scope, 
such as climate change or socioeconomic pathways (Moss et al., 2010). 
Maier et al. (2016) highlight conceptual and practical aspects of 
considering statistical and scenario uncertainty in the context of 
modelling under deep uncertainty. Furthermore, considering multiple 
models might be an option when having a single simulation model is 
unfeasible or undesirable. This, however, comes at the cost of increasing 

the analysis complexity at later stages in the modelling cycle, such as 
when using the model for decision-making.

2.3.2.1.2. Model testing1. The model testing phase aims to increase 
stakeholder confidence in the model (Forrester and Senge, 1980), 
further demonstrating the link to stakeholder participation. During this 
phase, various tests are performed to check whether the model has been 
correctly constructed (i.e., verification) and whether it is fit for purpose 
(i.e., validation) (Auping, 2018). Not limited to statistical validation, 
structural and behavioural validation tools are suitable for this purpose 
(Forrester and Senge, 1980). After testing, the model is acknowledged to 
reproduce the general behaviour of the system. This is often done via a 
base modelling run representing the behaviour of the variables of in-
terest over time.

Incorporating uncertainty during model testing involves moving 
beyond a base case, to a base ensemble. A base case results from a single 
(deterministic) run of the simulation model for specific variables of in-
terest. In contrast, an uncertainty approach considers a base ensemble, a 
set of bundled simulations, that capture multiple modelling runs (from 
individual or multiple models) that represent a broad spectrum of sys-
tem trajectories to understand the range and distribution of the output 
variables of interest when the parameters and structure of the model are 
considered stochastic (Auping, 2018; Bankes, 2002; Kwakkel and Pruyt, 
2013a; Maier et al., 2016). Fig. 3, illustrates how a system can have 
different trajectories in different scenarios, but there is statistical un-
certainty associated with each of the trajectories, illustrated by the 
translucent bands (Fig. 3). In sum, instead of simulating a single future, 
an ensemble of model runs (in different scenarios) is a relatively 
straightforward way to represent several possible futures based on a 
wide range of model outcomes and scenarios. In addition to the afore-
mentioned uncertainty analysis, performing a sensitivity analysis can 
provide additional insights into the main factors (parameters) which 
drive the model’s overall output uncertainty (Saltelli et al., 2019). So-
phisticated methods for testing the sensitivity of the models’ outputs to 
changes in (non-linear) graphical functions are also available (Eker, 
Slinger, van Daalen, and Yücel, 2014).

Having a range of plausible values for a variable of interest provides 

Fig. 3. Conceptual representations of statistical and scenario uncertainty, the 
two trends represent diverging scenarios with increasing uncertainty over time 
(shaded area), modified from (Maier et al., 2016).

1 A change in the terminology from Auping (2018) is proposed: “Model 
testing” is proposed instead of “Evaluation”. This change is similar to the ter-
minology originally proposed by Sterman (2000). The term “Evaluation” is used 
for the last stage in the modelling cycle in Fig. 2.
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richer modelling results to stakeholders when compared with a single 
model-run approach. This might enable discussions to determine if such 
a range is consistent with real-world expectations or available data, 
thereby providing an opportunity for exploring empirical grounds for 
validating the modelling outputs. Nonetheless, this expected benefit 
comes at the cost of communicating quantitative uncertainty features to 
a diverse stakeholder audience, likely unfamiliar with such jargon and 
thinking (van der Bles et al., 2019). Another point of attention arises 
when only ranges are considered in the ensemble. In such a case, the 
system’s intrinsic behaviour may be difficult to observe or may even be 
obscured. This practice may limit the observation of recurrent modes of 
dynamic behaviour (e.g. a system that exhibits oscillation vs. goal 
seeking), important in SD practice (Mirchi et al., 2012; Sterman, 2000).

2.3.2.2. Participatory modelling cycle (outer circle, Fig. 2). There is one 
relevant stage for building and testing the model using a participatory 
modelling approach: model formulation and confidence building.

2.3.2.2.1. Model formulation and confidence building. During the 
formulation and model testing phases, the qualitative models developed 
with stakeholders are translated into simulation models while gaining 
confidence in their capabilities (e.g. see model testing section above). 
Collaborative SD development may foster learning, co-production of 
knowledge and development of innovative solutions (Videira et al., 
2010). However, this process involves a tension between complexity 
(the system described in causal loop diagrams) and simplicity (i.e. 
feasibility of creating a simulation model based on such diagrams) 
(Barreteau et al., 2014; Freebairn et al., 2019). Freebairn et al. (2019)
propose a structured process to guide this translation process illustrated 
with a case study. In a context with uncertainty, stakeholders and ana-
lysts should agree on how to best estimate parametric uncertainty, as 
well as possibly formulate various simulation models that account for 
structural uncertainty.

Stakeholders can increase their confidence in the simulation model 
by providing input about a model’s structure and its capabilities in rep-
resenting the behaviour of the real system. Freebairn et al. (2019, p. 16) 
also highlight the importance of this phase and describe it as a process of 
“engaging with and communicating the model’s results”. Slinger (2023)
provides a detailed and practical illustration of validation activities in an 
SES participatory modelling setting. The model testing process can go 
beyond a deterministic assessment and integrate the dimension of un-
certainty by going from a base case to a base ensemble (described 
above). Stakeholders can discuss the quantitative effect of uncertainty in 
terms of output variables’ ranges, but qualitative understanding can also 
be valuable, for example, by assessing possible changes in the system’s 
modes of behaviour due to parametric variation in some of the simula-
tions (Kruseman Aretz, 2023; Nava Guerrero, Schwarz, and Slinger, 
2016).

2.3.3. Phase III: model use and policy evaluation
During Phase III, the model is put to use and can support policy 

evaluation. First, we describe the corresponding stages of the SD 
modelling cycle under uncertainty, followed by the parallel modelling 
stages using a participatory modelling perspective.

2.3.3.1. SD modelling cycle under uncertainty (inner circle and diagram, 
Fig. 2). Two stages are relevant for model use and policy evaluation 
using a modelling cycle under an uncertainty approach: policy and 
scenario testing, and evaluation.

2.3.3.1.1. Policy and scenario testing2. At this stage, the model is 
used to test policies under different scenarios. Policies are intended 
changes to modify the system’s performance (Sterman, 2000). Scenarios 

represent exogenous visions of the future, for example in terms of 
climate change and/or socio-economic development (Enserink et al., 
2022; Moss et al., 2010). Scenario thinking is increasingly critical in the 
discussion around SES (O’Neill et al., 2020). Therefore, accounting for 
the performance of policies in various climate and societal pathways 
provides a better understanding of the system’s exogenous sources of 
uncertainty (Wu, Elshorbagy, and Alam, 2022). Following the Maier 
et al. (2016) conceptualisation, engaging with both endogenous and 
exogenous sources of uncertainty requires estimating endogenous un-
certainty on top of different scenarios (see Fig. 3). This allows for esti-
mating initial base ensembles (see Phase II, model testing). In other 
words, it is possible to consider various scenarios (exogenous uncer-
tainty) and explore their associated parametrical variability (endoge-
nous uncertainty).

At the policy testing stage, the base ensemble can be compared with a 
‘policy ensemble’ to explore how activating policies may affect system 
behaviour compared to the base ensemble scenario. This relatively 
straightforward approach is known as the design of experiments in the 
exploratory modelling literature. However, the exploratory modelling 
perspective offers a repertoire of approaches that combine different 
strategies based on the assumptions made about the decision and un-
certainty space (Moallemi, Kwakkel, et al., 2020). This perspective 
actively engages with exploring robust policies—those that perform well 
regardless of deep uncertainty conditions (Kwakkel, Walker, and Haas-
noot, 2016; Moallemi, Kwakkel, et al., 2020).

Other analytical approaches can be useful at the policy testing stage. 
For example, system interventions, i.e., policies, can be designed based 
on the leverage points proposed by Meadows (1999). Policies can be 
designed to deal with shallow (at the level of parameters and feedback 
structures) or deep (at the level of design and intent) leverage points 
(Abson et al., 2017). Shallow points can be easily incorporated into an 
SD model. For example, some authors have suggested that policy testing 
can be made more systematic and automated by evaluating changes in 
multiple parameters to achieve a desired outcome (Auping, 2018; 
Moallemi, Kwakkel, et al., 2020). A more efficient approach according 
to Meadows would be to focus on dominant feedback loops that drive 
the system’s behaviour. Tools such as “Loops that Matter” facilitate this 
identification to focus on policies that directly intervene in dominant 
loops to obtain the desired effects on the system (Schoenberg, Davidsen, 
and Eberlein, 2020). Deeper leverage points in the domain of design (e. 
g. rules of the system and information flows) are effective in creating 
wide system changes (Abson et al., 2017), and may potentially be 
incorporated in a quantitative SD model. However, despite the poten-
tially transformative efficacy of the deepest leverage points, they remain 
difficult to capture in policies. Formulating a co-creation dialogue in 
which increasingly deeper leverage points are considered, and incor-
porated into SD model structures, would likely provide learning op-
portunities on ever-effective changes in SES.

2.3.3.1.2. Evaluation3. In the evaluation phase, policies are evalu-
ated and ranked according to stakeholders’ priorities. Contrary to 
Sterman (2000), the current framework decouples policy testing from 
policy evaluation. Practicality is one reason, as there is already sub-
stantial complexity in the stage of policy and scenario testing (under un-
certainty). Second, the evaluation phase resembles a decision analysis or 
decision-making process that can be done outside the SD simulation 
environment (Slinger and van Daalen, 2003). The Multi-Criteria Deci-
sion Analysis (MCDA) approach is useful for addressing the challenge of 
structuring decision-making problems with multiple alternatives, in-
dicators and objectives, particularly in complex socio-environmental 
settings (Amorocho-Daza et al., 2019; Giove et al., 2009; Lahdelma, 
Salminen, and Hokkanen, 2000). Indeed, the SD approach can provide a 

2 A change in the terminology from Auping (2018) is proposed: “Policy and 
scenario testing” is proposed instead of “Policy testing” to explicitly account for 
the interaction between policies and scenarios.

3 This phase was not included in the framework of Auping (2018). The term 
“Evaluation” is inspired by Sterman (2000), who proposes to include “policy 
formulation and evaluation” in a single phase.
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simulation environment where it is possible to go from what if policy 
exploration towards more structured decision-making (Phan et al., 
2021). Coupling SD models with MCDA methods represents a research 
opportunity to expand SD capabilities in complex decision-making 
problems (Elsawah et al., 2017; Phan et al., 2021; Zomorodian et al., 
2018). SD can be merged with MCDA by, for example, deriving in-
dicators and scenarios directly from the SD models while estimating 
relevant criteria and their weights in discussion with stakeholders. Yet, 
relatively few case studies showcase this integration in fields such as 
water resources management (Elshorbagy, 2006; Momeni et al., 2021; 
Xi and Poh, 2014) and solid waste management (Gul and Haydar, 2024).

Performing the evaluation stage under uncertainty adds a layer of 
complexity to the decision-making process. While traditional MCDA 
assumes deterministic conditions to structure the decision-making pro-
cess, emerging advances examine how it is possible to consider uncer-
tainty in the evaluation of policies (Durbach and Stewart, 2012). Some 
literature case studies illustrate how to incorporate quantitative uncer-
tainty in MCDA using stochastic parameters (Scholten et al., 2015) and 
scenarios (Lienert et al., 2015; Ram, Montibeller, and Morton, 2011). 
This stage of the modelling cycle offers the opportunity to incorporate 
the estimated quantitative uncertainties from the SD model through 
both statistical and scenario analyses into a structured decision-making 
approach. It is noteworthy that when undertaken within the SD 
modelling cycle under uncertainty process, such a structured and 
computationally based decision analysis does not necessarily involve 
multiple stakeholders.

2.3.3.2. Stakeholder participation (outer circle, Fig. 2). There is one 
relevant stage for model use and policy evaluation using a participatory 
modelling approach: simulation and assessment.

2.3.3.2.1. Simulation and assessment. During the final phases of the 
participatory SD modelling cycle that concentrate on policy and scenario 
testing as well as evaluation, stakeholders are involved in assessing the 
outcomes of model simulations. This contrasts with the SD modelling 
cycle under uncertainty where the inclusion of stakeholders in the 
evaluation phase is optional. However, Lahdelma et al. (2000) consider 
assessing policies against multiple criteria a difficult task that requires 
structured approaches and stakeholder participation. Accordingly, in 
the simulation and assessment phase, SD modelling can be combined 
with other methods so that the performance of policy initiatives in 
complex socio-environmental settings can be evaluated effectively. As 
described above, multi-criteria decision analysis techniques help bring 
structure to the evaluation process (Videira et al., 2010). Likewise, 
considering long-term diverging system trajectories can help to account 
for structural uncertainty in policy evaluation (Moss et al., 2010). For 
instance, recent modelling efforts have assessed critical 
socio-environmental issues considering multiple socioeconomic and 
climate scenarios (Alizadeh, Adamowski, and Inam, 2022; Graham 
et al., 2020). Integrating scenarios in a MCDA support framework is an 
approach that promises to improve policy evaluation (Ram et al., 2011), 
and can help stakeholders to prioritise amongst many potentially 
feasible options.

Here, the criteria and priorities identified in the Envisioning and goal- 
setting stage are operationalised to serve as criteria for assessing the 
performance of the different policies considered. The engagement of 
stakeholders across the model-building process may increase their 
confidence in the model outcomes. This, in turn, is expected to increase 
the likelihood of using SD models as decision-support tools to engage in 
desired policy paths (Stave, 2010). Participation is therefore key for 
moving from concept to action in SD applications (Stave, 2002). 
Participatory modelling may enhance not only stakeholders’ general 
understanding of the system but, more specifically, their awareness 
about the likely outcomes of policy changes that they help to design and 
test. Despite the achievement of these potential benefits being a desired 
outcome of the participatory process, engaging stakeholders up to this 

stage remains a challenging endeavour as it requires acknowledging and 
addressing both the methodological and social complexity of the 
participatory modelling process (Voinov and Bousquet, 2010).

By bringing people together to identify relevant criteria to assess 
policies, uncertainty appears again in the form of ambiguity. Here we 
move back into the realm of values and subjective priorities that 
dominate the early stages of the modelling cycle (Amorocho-Daza et al., 
2024). Recent research suggests that enlarging the value and time 
spectrum (e.g. considering intra-intergenerational justice) in complex 
socio-environmental issues has several implications for model-based 
decision-making (Jafino, Kwakkel, and Taebi, 2021). Interestingly, 
even a single decision-maker can show inconsistency in ranking criteria 
and alternatives when they are framed distinctly (Tversky and Kahne-
man, 1981). Recent research shows that the framing effect also occurs 
when stakeholders establish priorities for environmental problems with 
a focus on future generations (Kuroda et al., 2021). Therefore, the 
estimated criteria weights after deploying an MCDA are inherently un-
certain (Durbach and Stewart, 2012). Exploring policy ranking variation 
via sensitivity analysis over the weights and reframing questions of 
value (e.g., in terms of benefits vs. losses or present vs. future genera-
tions) can offer insights and trigger discussions about which policies 
seem to be more desirable and robust in the face of uncertainty.

2.4. Iterative revision

The 6-step SD modelling cycle (inner circle, Fig. 2) can itself be 
understood as an adaptive feedback cycle or iteration (Fig. 4). In the first 
iteration of the cycle (blue arrows, Fig. 4) all phases from problem 
articulation to evaluation are executed, after which a second iteration 
(dashed green arrows, Fig. 4) can be considered as a refinement guided 
by stakeholders’ feedback and evaluation. The main purpose of the 
initial cycle is to build and gain confidence in a model (or a set of 
differently structured models) that accurately represents the behaviour 
of the system. The revision iteration focuses on enhancing the capabil-
ities of the model(s) as a decision-support tool. Therefore, the emphasis 
of the revision cycle is on adapting the simulation model(s) to test new 
policies or incorporate new insights of interest to the stakeholders. 
Often, the revision is quicker than the initial cycle, as it does not focus on 
conceptualisation nor on model testing. Instead, it is assumed that the 
changes proposed by the stakeholders can either be included fairly easily 
in a revision of the model(s) or can be simulated directly in the existing 
model(s). This is a plausible assumption as the overall structure of the 

Fig. 4. Initial and revision iterations of the SD modelling cycle.
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complex social-ecological issue is already systemically captured in the 
simulation model(s). Likewise, an extensive model testing phase is not 
required because (i) each model has already been tested and (ii) the 
stakeholders’ confidence in the capabilities of the model(s) is already 
established.

The iterative steps described above can be understood through the 
concept of self-reference (Hofstadter, 1979). That is, the modelling pro-
cess evolves in reference to itself. This idea becomes clearer once we 
distinguish between a problem situation and a problem-solving system 
(van Daalen and Bots, 2010). For instance, a problem situation can be an 
SES issue; such as water pollution affecting human and environmental 
health. In contrast, a problem-solving system could be formed by actors 
that participate in a policy analysis process and how they interact among 
themselves and with models of the issue; for example, this could involve 
a riparian community, local public servants, and a group of modellers 
collaborating to develop a model for supporting decision-making about 
water quality and health concerns. The self-reference perspective helps 
to highlight that it is the people engaged throughout the modelling cycle 
who ultimately determine the process’s outcomes. Here we show how 
such interactions can converge to support stakeholders to identify and 
commit towards ways that improve a socio-environmental problem.

Embracing a self-reference perspective is useful to clarify the close 
interaction between the problem and the problem-solving system. For 
instance, stakeholder interactions could have at least two main effects, 
one on the problem-solving system progress itself (i.e. modelling cycle), 
and the second on the real-life problem situation. This in turn may also 
change further interactions and discussions among stakeholders. There 
is therefore a mutual self-referencing between the real-life problematic 
situation and the concrete group of actors participating in a modelling 
cycle. According to Hofstadter (1979), understanding such complex 
self-referencing interactions can be aided by visual representations such 
as the M.C. Escher’s paradoxes (e.g. Print Gallery - Escher in het Palais (n. 
d.)).

2.5. Methods and techniques (outer “gears”, Fig. 2) to support the process

In Table 1, we provide a detailed but non-comprehensive account of 
useful tools to support the modelling process, structured according to 
the three main modelling stages proposed in Section 2.3. The table 
provides specific information on where to implement the tools 
throughout the modelling stages, along with a brief description of each 
tool’s features, as well as their benefits, limitations, and illustrative 
references.

3. Concluding remarks

3.1. The dynamic relation between uncertainty and participation in 
model-based decision-making

3.1.1. Phase I: modelling foundations
Dealing with a complex and problematic socio-environmental issue 

can be overwhelming, while making sense of intricate systems of people 
and nature, interacting at different scales remains an epistemological 
challenge. Trying to address the overwhelming knowledge uncertainty 
by acquiring more knowledge (e.g. more variables, measurements, and 
observations) is a strategy that can backfire. Various authors highlight 
the existence of an epistemology paradox: the more you know about a 
system the more complexity it exhibits (Brugnach et al., 2011; Brugnach 
et al., 2008; Dewulf et al., 2005). One way of dealing with this paradox 
comes from a clear definition of the problem using a systemic perspec-
tive. For instance, defining a relevant system boundary helps to better 
understand a socio-environmental problem (Nabavi et al., 2017). 
Defining what the issue is, in which geographical and time scale it 
operates, and who is part of it, are questions that can help to frame the 
problem to be explored. Addressing such questions is not an objective 
exercise. On the contrary, useful answers or approaches should be 

co-created with stakeholders relevant to the problem situation rather 
than derived by modellers only (Amorocho-Daza et al., 2024). Devel-
oping a participatory problem definition can help in tackling knowledge 
uncertainty.

Involving stakeholders in the modelling process can help in dealing 
with knowledge uncertainty, but inherently increases ambiguity, 
another dimension of uncertainty (Brugnach et al., 2008). Stakeholders 
that commit to a co-creation process agree to engage in a common 
process, but may continue to hold different perceptions, particularly 
concerning the problem definition and their system understanding. 
Indeed, ambiguity in perceptions can go beyond diversity in preferences 
regarding the system boundaries and extends deeply into the con-
ceptualisation of the relations within such a system. Despite the di-
versity and range in perceptions associated with multiple stakeholders, 
expert knowledge and locally relevant experience from different stake-
holders are useful at this stage to ensure that key variables and inter-
linkages are included and that the system boundary is well defined. 
Additionally, early participatory conceptualisation activities taking 
place after defining a relevant system boundary can help to lower am-
biguity further by engaging again with knowledge about the system 
relations and structure. Interestingly, without participation, ambiguity 
is minimised but knowledge uncertainty can become overwhelming. 
With participation, despite ambiguity explicitly being present, more 
appropriate boundary conditions present opportunities to better deal 
with knowledge uncertainties about the relations within the system’s 
boundaries.

3.1.2. Phase II: model building and testing
It is primarily epistemological and ontological uncertainty that 

dominates this phase (Kwakkel, 2010; Wang, 2015). Epistemic uncer-
tainty comes from the difficulty of translating the interlinkages found in 
conceptual models as mathematical equations in a simulation model. In 
this process, the modeller plays a crucial role, by making decisions about 
which simplifications, adaptations, and assumptions to apply based on 
the available data, system knowledge, physical constraints, and other 
factors. This translation process is a significant source of epistemic un-
certainty. Ontological, or aleatory, uncertainty refers to the inherent 
variability observed in biophysical and social systems. For example, 
biophysical processes such as the nutrient and water cycles exhibit 
intrinsic stochastic behaviour. Socially driven trends can also be deeply 
uncertain, for example, socio-economic development pathways. Some of 
this variability can be quantified in the simulation model as statistical 
and scenario uncertainty.

Participation is central to the model testing stage. Here, key output 
variables of the model, in the form of scenario ensembles, can be esti-
mated and compared with available field data and stakeholder knowl-
edge. Quantitative estimation of uncertainty in the form of averages and 
ranges provides insight into the model’s ability to accurately estimate 
the patterns, and trends observed in the real-world system. Even where 
information is available to quantitatively validate a model, stake-
holders’ input is essential for crosschecking whether the model behav-
iour aligns with their empirical knowledge about the system. In sum, 
testing activities help determine if the uncertainty inherent in the 
quantitative translation of the model is reasonable and appropriately 
captured for the socio-environmental problem at hand.

3.1.3. Phase III: model use and policy evaluation
Towards the end of the first iteration of the modelling cycle, different 

sources of uncertainty have been accommodated into a simulation 
model. Utilising such a model to evaluate policies amidst uncertainty 
again necessitates the participation of stakeholders. The social use of the 
model as a decision support system means that ambiguity resurfaces. 
This occurs because pondering criteria and aggregating indicators brings 
forth value-based questions and links back to earlier modelling choices 
and stages such as envisioning. Moreover, human priorities are likely to 
fluctuate and be influenced by framing effects, such as focusing on gains 
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Table 1 
Modelling tools and techniques to support different phases of the unified SD modelling framework.

Phase Methods/ 
techniques

Implementation stage Description General benefits General limitations Key references for 
applications

I: Modelling 
foundations

Rich pictures 
(SSM)

- Stakeholder participation 
cycle: Scoping and 
abstraction.

- SD modelling cycle: 
Problem definition

A rich picture is a pictorial overview that 
“portrays actors and elements in a 
problematic situation and indicates 
relationships among them” (Bunch, 2003)

- Promotes holistic thinking, as “pictures are 
a better medium than linear prose for 
expressing [multiple and interacting] 
relationships” (Checkland, 2000)

- Rich pictures can be constantly upgraded 
based on the stakeholder’s understanding 
of the problematic situation (Bunch, 2003)

- Making system pictures is a skill that comes 
naturally and easily to some people, while 
others may find it challenging (Checkland, 
2000). Therefore, the role of facilitators is 
critical in developing system 
representations that reflect the richness of 
the problematic situation, including the 
perspectives of people with varying 
communication skills.

- Getting from messy to meaningful system 
representations (i.e. rich pictures) and 
stakeholder discussion may require 
deploying other complementary SSM tools 
(see root definition and CATWOE analysis – 
Checkland (2000))

Bunch (2003)
Suriya and Mudgal 
(2012)

Cognitive maps 
(SODA)

- Stakeholder participation 
cycle: Scoping and 
abstraction.

- SD modelling cycle: 
Problem definition

Cognitive maps are “a picture or visual aid 
in comprehending the mappers’ 
understanding of particular, and selective, 
elements of the thoughts (rather than 
thinking) of an individual, group or 
organisation” (Eden, 1992)

- Combining individual into collective 
cognitive maps is possible using specialised 
software tools (i.e. Decision Explorer) 
(Ackermann, 2012; Elsawah et al., 2015).

- Collective maps offer the opportunity to 
observe collective convergent 
representations of a problem emerging 
from seemingly diverging points of view 
(Ackermann, 2012)

- It is a transparent, and systematic approach 
helpful to connect qualitative to 
quantitative modelling approaches (Eden, 
1988; Elsawah et al., 2015).

- Translating the mappers’ narratives into 
maps can be overwhelming. This ‘rich 
qualitative source’ needs to be narrowed 
down according to the specific objectives of 
building the maps (Elsawah et al., 2015).

- The maps are restricted by what people are 
willing to share. Inquiring about a 
controversial issue could generate 
resistance among the participants to 
explain their inner rationale and 
motivations (Elsawah et al., 2015).

Elsawah et al. (2015)

DPSIR - Stakeholder participation 
cycle: Scoping and 
abstraction.

- SD modelling cycle: 
Problem definition

It is a systems framework that explores the 
complex relationship between human and 
natural systems through a conceptual 
understanding of interconnected Drivers, 
Pressures, State, Impact, and Responses (
EEA, 1999).

- Facilitates a systemic understanding of the 
origins and consequences of environmental 
problems, explicitly incorporating feedback 
structures to do so.

- Can be easily integrated with other 
methodologies to explore specific social- 
ecological problems in further detail.

- Its simplicity facilitates co-creation and 
communication among various environ-
mental stakeholders (e.g., policymakers, 
local communities, academics).

- Implementing the framework requires a 
deep and participatory understanding of 
the socio-environmental problem at hand. 
If multiple perspectives are not included, 
the analytical usefulness of the tool can be 
hindered.

- The conceptual characterisation is flexible 
but might be insufficient to represent the 
complexity and cross-scale nature of envi-
ronmental issues.

Bell (2012)
Gregory et al. (2013)
Wantzen et al. (2019)
Zare et al. (2019)

System 
diagramming

- Stakeholder participation 
cycle: Scoping and 
abstraction.

- SD modelling cycle: 
Problem definition.

It is a simple system representation 
resulting from an iterative process of 
establishing a boundary and elucidating the 
following elements: external factors, 
internal factors and their relationships, 
means (or levers or steering factors), and 
measurable criteria (or objectives) (
Enserink et al., 2022). The representation is 
built based on seven critical guiding 
questions (van der Lei et al., 2011). System 
diagramming is closely aligned with the 
XLRM framework (Lempert et al., 2003).

- It focuses on analytical rigour, consistency 
and conceptual clarity

- It is more easily transferable (e.g. to 
students and practitioners) than traditional 
PSMs.

- Being easy to communicate and revise, “the 
approach leads to an internally consistent 
systems model that represents the problem 
definition and delineation” (van der Lei 
et al., 2011, p. 1401)

- It is consistent with a ‘consultancy setting’ 
with a clear problem owner. The allied 
XLRM framework has been used extensively 
in this way. The multi-actor version can 
become rather complex.

- The approach is suited to demarcating an 
appropriate system boundary, external 
factors, means and criteria, but must be 
deployed alongside other tools such as 
conceptual maps and CLDs to avoid a black- 
box model.

Hidayatno, Rahman, 
and Muliadi (2015)
Nijmeijer (2018)

(continued on next page)
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Table 1 (continued )

Phase Methods/ 
techniques 

Implementation stage Description General benefits General limitations Key references for 
applications

SD archetypes - Stakeholder participation 
cycle: Envisioning and 
goal setting.

- SD modelling cycle: 
Conceptualisation.

System archetypes are generic system 
structures showing common or generic 
patterns of behaviour over time (Mirchi 
et al., 2012; Wolstenholme, 2003).

- They synthesize “much qualitative and 
quantitative modelling effort cumulated 
over many years by many analysts”, 
offering learning systemic opportunities in 
new problems and domains (Wolstenholme, 
2003)

- They represent a structured and free- 
standing way to understand the reason 
behind complex systems’ counterintuitive 
behaviour (Wolstenholme, 2003)

- The archetype provides a starting 
assumption but it has to be empirically 
tested (Oberlack et al., 2019).

- There might be specific conditions in which 
certain archetypes are applicable (or not) to 
a particular context (Magliocca et al., 2018)

Bahri (2020)
Edwards et al. (2023)
Gohari et al. (2013)
Moallemi et al. (2022)
Phelan et al. (2020)

Causal matrices SD modelling cycle: 
Conceptualisation.

Causal matrices help identify relationships 
and polarities among several variables (
Sanò and Medina, 2012; Sanò et al., 2014).

- A causal matrix can be easily transformed 
into a causal loop diagram (Sanò et al., 
2014)

- Individual matrices can be aggregated into 
a group matrix that potentially leads to a 
shared causal loop diagram on the problem 
at hand (Sanò and Medina, 2012)

- A set of initial variables is a prerequisite of 
the method. These could be obtained with 
participatory scripts e.g. Nominal Group 
Technique (see Scriptapedia)

- The method starts from a reductionist 
approach, so it might not help to develop a 
“system perspective” from the very 
beginning of the modelling process

Sanò and Medina 
(2012)
Sanò et al. (2014)

Conceptual 
maps

SD modelling cycle: 
Conceptualisation.

Conceptual maps are qualitative system 
representations that include key variables 
and describe how they are connected.

A comprehensive conceptual map can 
synthesize an important amount of 
information that can be very useful in later 
modelling stages. It provides a shared vision 
of the system as well as its main components 
and connections.

Building conceptual maps is a creative and 
open-ended process. Without facilitation, it 
can grow too complex to handle and connect 
with later modelling stages (Freebairn et al., 
2019).

Purwanto et al. (2019)
Sušnik et al. (2021)

Causal Loop 
Diagrams 
(CLDs)

SD modelling cycle: 
Conceptualisation.

CLDs go beyond conceptual maps by 
characterising the causal relations among 
system variables. They are developed 
following a standard notation to describe 
the balancing or reinforcing influences 
between variable pairs, as well as feedback 
loops (Mirchi et al., 2012).

CLDs provide important learning 
opportunities by allowing stakeholders to 
understand the system as a whole and identify 
their key feedback relationships.

Just as with the conceptual maps, CLDs can 
easily grow too complex. Additionally, 
identifying polarities for every relationship 
adds a layer of complexity, as there are 
interlinkages where it is not easy, intuitive, or 
even possible to assign a polarity.

Bahri (2020)
Purwanto et al. (2019)
Zhao et al. (2021)

II: Model 
building and 
testing

Stock and Flow 
Model

- Stakeholder participation 
cycle: Model formulation 
and confidence building.

- SD modelling cycle: 
Formulation

Stock and flow models (SFMs; cf. Ford 
(2010)) aim to simulate a complex system. 
Often built based on CLDs, SFMs represent 
a quantitative effort to characterise the 
behaviour of complex systems.

SFMs can serve as platforms for policy 
experimentation to address complex issues. 
Stakeholders can use them to learn about 
complex systems (e.g., SES) and to further 
develop policy discussions around them.

SFMs are simpler than CLDs. Not all 
qualitative complexity can be integrated into 
a quantitative model. Additionally, some 
stakeholders may face difficulties when 
interpreting the quantitative results of a 
simulation model. Effectively communicating 
insights from quantitative models is a 
challenge for modellers.

Prasad et al. (2022)
Turner et al. (2016)

Structural 
validation

- Stakeholder participation 
cycle: Model formulation 
and confidence building.

- SD modelling cycle: 
Model testing

It is a set of qualitative tests that aim to 
compare the structure of the real system 
with the structure of the model that 
represents it (Forrester and Senge, 1980).

Test various model features (see Barlas 
(1996)): 
- Parameter-confirmation: To establish the 

conceptual and numerical validity of 
model’s the parameters (i.e. constants) 
when compared with the real system

- Extreme condition: To anticipate the 
model’s behaviour under extreme 
conditions (e.g. parameters and equations) 
and compare it with the expected real 
system’s behaviour

- Dimensional consistency: To check 
dimensional consistency in both sides of the 
model’s equations

Identifying the ‘real system’ features can be 
problematic. For the parameter confirmation, 
available information about the system’s 
variables might be limited, non-existent, or 
anecdotical. This also applies to extreme 
condition tests, for SES it can be simply too 
difficult to know what would be the real-life 
behaviour of a system if such extreme 
conditions have not been previously 
identified or measured.

Barlas (1996)
Qudrat-Ullah and 
Seong (2010)

(continued on next page)
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Table 1 (continued )

Phase Methods/ 
techniques 

Implementation stage Description General benefits General limitations Key references for 
applications

Behavioural 
validation

- Stakeholder participation 
cycle: Model formulation 
and confidence building.

- SD modelling cycle: 
Model testing

It is a set of qualitative and quantitative 
tests to evaluate “the adequacy of model 
structure through analysis of behaviour 
generated by the structure” (Forrester and 
Senge, 1980).

Test various model features (see Barlas 
(1996)): 
- Extreme condition: To compare the model’s 

behaviour under extreme conditions (e.g. 
parameters and equations) and compare it 
with the expected real system’s behaviour

- Behaviour sensitivity: To identify changes 
in model’s behaviour in response to 
changes in parameter values.

- Behaviour reproduction. To check if the 
model is able to reproduce the real system’s 
behaviour (e.g. symptom generation, 
frequency generation, multiple mode)

The main limitation here is obtaining 
sufficient and reliable information that 
facilitates the comparison of the modelling 
results with the observed behaviour of the 
system.

Barlas (1996)
Naderi et al. (2021)

​ Uncertainty 
analysis (UA)

- Stakeholder participation 
cycle: Model formulation 
and confidence building.

- SD modelling cycle: 
Model testing

This umbrella term covers a set of tools that 
focus on characterising uncertainty in the 
model’s output (Ghanem, Higdon, and 
Owhadi, 2017).  
Monte Carlo Methods (MCMs) are widely 
applied methods for model-based 
uncertainty analysis. MCMs can be used to 
do a quasi-random sampling of the 
parameter values using (often) pre-defined 
probability density functions (PDFs) to give 
a density distribution on the main outputs (
Ford and Flynn, 2005).

SD simulation software already includes tools 
to perform uncertainty analysis. For example, 
quasi-random sampling is available on SD 
software (Stella, Vensim).

A good uncertainty analysis practice requires 
global analyses. That is, global uncertainty 
analysis methods test the output modelling 
uncertainty based on multiple simultaneous 
parameter variations. A local uncertainty 
analysis, in contrast, focuses on exploring a 
subset of factors or even parameters one at a 
time. This is a discouraged practice as it does 
not correctly represent models with non- 
linearities (Saltelli et al., 2019).

Ford and Flynn (2005)
Kwakkel and Pruyt 
(2013b)
Martinez-Fernandez 
et al. (2021)

​ Sensitivity 
analysis (SA)

- Stakeholder participation 
cycle: Model formulation 
and confidence building.

- SD modelling cycle: 
Model testing

This analytical tool aims to assess the 
impact of uncertain input factors on the 
overall uncertainty of the model’s outputs (
Saltelli, 2002). In other words, sensitivity 
analysis is useful to identify “which input 
factors contribute the most to model 
uncertainty”. 
(Saltelli et al., 2019, p. 30).

By performing sensitivity analysis, modellers 
can identify which factors (parameters) 
contribute the most or least to the model’s 
overall uncertainty. This information might 
be useful to prioritise resources to gather 
additional information that reduces 
uncertainty in the critical factors, while non- 
critical factors can have their values fixed (
Saltelli et al., 2019)

Similar to the UA, SA should be performed 
using a global instead of a local approach. 
Global approaches consider the “factors’ 
global influence in terms of their contribution 
to the variance of the model output, including 
the effect of interactions among factors” (
Saltelli et al., 2019, p. 31). In contrast, local 
approaches consider each factor individually 
using a ‘one at a time’ strategy. The latter 
approach is unsuitable for non-linear systems 
and under-explores the uncertainty space, 
particularly when several factors are 
considered.

Dai et al. (2024)
Mai et al. (2020)
Puy et al. (2021)

III: Model use 
and policy 
evaluation

Exploratory 
modelling

- Stakeholder participation 
cycle: Simulation and 
assessment.

- SD modelling cycle: 
Policy and scenario 
testing

This approach offers various tools to 
operationalise modelling under deep 
uncertainty. To do so it follows a systematic 
approach to exploring the implications of 
the model’s assumptions for decision- 
making. Not limited to quasi-random 
sampling, other experiments such as stress 
testing, worst-case scenario, and many 
objective optimisation can be integrated 
into a larger uncertainty-rich decision- 
making framework (Moallemi, Kwakkel, 
et al., 2020).

Exploratory modelling analyses can be done 
using open-source tools. The Exploratory 
Modelling Workbench is an open-source 
toolkit to develop exploratory modelling 
analyses (Kwakkel, 2017).

As more sophisticated analyses are 
developed, more effort and creativity are 
required for communication and promoting 
meaningful interactions between academic 
and non-academics.

de Haan et al. (2016)
Kalra et al. (2015)
Kwakkel et al. (2015)
Moallemi et al. (2017)

Loop dominance 
analysis

- Stakeholder participation 
cycle: Simulation and 
assessment.

Loop dominance evaluation assesses the 
relative importance of feedback loops in 
driving a system’s behaviour (Ford, 1999). 
Loops that matter (LTM), is a recent 

- Identifies the dominant feedback loops 
driving system behaviour.

- Enables understanding of changes in 
feedback loop dominance over time.

The loop dominance analysis adds complexity 
to the discussion of results. Explaining the 
related concepts and analysing the dominant 
feedback loops with stakeholders can likely 

Aboah and Enahoro 
(2022)
Phaff et al. (2006)

(continued on next page)
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versus avoiding losses, or prioritising present versus future generations 
(Jafino et al., 2021; Tversky and Kahneman, 1981). In short, the plu-
rality of stakeholders’ values and interests and the inherent bounded 
rationality of humans make ambiguity an inherent property of 
decision-making under uncertainty.

Paradoxically, the dialogue around the modelling outputs can help 
navigate ambiguity by using the model to help answer relatively simple 
what if policy questions, that is, performing experiments in a simulation 
environment (Zomorodian et al., 2018). Alternatively, the simulation 
model could also be integrated into a more sophisticated decision sup-
port system that helps to rank multiple policies against various perfor-
mance criteria. Tools like MCDA offer the opportunity to integrate the 
simulation model outputs into a structured decision-making process that 
helps to rank the more desirable policies to pursue. However, consid-
ering uncertain modelling outputs adds complexity to the 
decision-making process and requires extending MCDA tools to handle 
uncertainty. This raises a further challenge, which is to communicate 
uncertainty to an audience of stakeholders and model users who may be 
unfamiliar with such concepts (van der Bles et al., 2019). Here it might 
be easier to start with a deterministic ranking of alternatives and later 
move on to explore how such ranking could alter in the face of uncer-
tainty. This stepwise approach could offer opportunities to learn about 
the system’s behaviour under diverse policies and changing scenario and 
parametric conditions.

3.2. Future directions for model-based policy analysis in SES

In this article we provide a framework in which we enunciate the 
main implications of uncertainty and participation for model-based 
decision-making in the context of SES. By integrating and aligning two 
SD relevant modelling cycles, one engaging with uncertainty and the 
other with participation aspects, we were able to distinguish three 
general modelling phases, namely: 1. Modelling foundations, 2. Model 
building and testing, 3. Model use and policy evaluation. Here we 
identify future research avenues that could emerge from deploying our 
unified SD modelling cycle.

For Phase I, there is potential to extend the use of problem struc-
turing methods (PSMs) to enrich the problem definition in the modelling 
cycle of SES as a Good Modelling Practice (GMP). Although these 
methods are established in sectors such as business and health, envi-
ronmental applications remain limited. Integrating PSM into co-creation 
methods is an active area of research (Cunningham et al., 2014; Slinger 
et al., 2023). Incorporating such activities into the SD modelling cycle 
could aid in articulating the problem more effectively and in building a 
richer problem definition (Rouwette and Franco, 2024). This would 
enhance the qualitative and quantitative models resting on such system 
understanding. Our focused attention on reviewing and articulating 
Phase I’s methods is a practical contribution and an invitation for further 
research to address the currently largely deficient practice regarding 
problem scoping and participation in SES modelling (See Jakeman et al., 
2024, Section 4, Points 1, 10, and 19).

While a holistic uncertainty approach is recognised as a topic for 
enhancing GMP (See Jakeman et al., 2024, Section 4, Points 4 and 6), 
doing so opens up new challenges for implementing Phase II. For 
instance, future research can help to validate whether quantifying un-
certainty is helpful in the testing stage of SES simulation models. Here 
we hypothesize that this would be the case, as having a wide range of 
probable outputs for the variables of interest will yield more information 
about the range of variation that such variables exhibit in relation to 
existing field measurements or the experiential knowledge of stake-
holders. However, a caveat is that presenting ensembles and ranges may 
obscure the observation of (dynamic and/or recurrent) modes of 
behaviour in these complex systems. More research is needed to eluci-
date the trade-offs in accounting for uncertainty at the model testing 
stage in practice. Future studies are needed to understand how to 
communicate such sophisticated numerical treatments of uncertainty to Ta
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an audience that may be unfamiliar with the concepts and jargon of 
uncertainty assessment.

Despite progress in model-based policy evaluation (Phase III), the 
SES GMP literature can benefit from understanding how this process can 
be structured in practice in case studies that cover a variety of envi-
ronmental issues at a diversity of spatial and temporal scales, and with 
variously composed stakeholder groups (See Jakeman et al., 2024, 
Section 4, Points 9 and 10). Moreover, we advocate further research on 
the integration of SD quantitative models into decision support systems, 
whether formal or informal process-based systems. These include ap-
plications linked to MCDA or multi-model systems combining different 
types of qualitative and quantitative modelling (see Slinger, 2023). 
Indeed, future studies could investigate the benefits and challenges of 
developing and applying environmental decision support tools that are 
deterministic versus explicitly accommodating of uncertainty, versus a 
combination of both.

Another potential benefit of our proposed framework is to facilitate 
SES modelling reporting and transparency as a GMP (see Jakeman et al., 
2024, Section 4, Points 2, 13, and 17). Despite SES modelling case 
studies often exhibiting some of the generic modelling stages described 
in this article (e.g. scoping, envisioning, evaluation, etc.), it is difficult to 
find applications that cover the whole modelling cycle. In fact, a recent 
participatory modelling review shows that not a single case study re-
ported undertaking activities across all the modelling cycle stages 
(Voinov et al., 2016). This does not necessarily imply that these activ-
ities were not covered in practice, but may indicate that comprehen-
sively reporting SES modelling activities in a single research article is 
extremely challenging. Our proposed 3-phase modelling cycle can aid 
with this scientific communication issue. Future case studies on SES 
modelling for policy evaluation could report in terms of the three 
modelling phases, describing the relevant activities undertaken in each 
phase, and making use of some of the proposed modelling tools or 
contributing other relevant tools. Moreover, the unified modelling 
framework can serve as a tool in designing a stakeholder and 
uncertainty-inclusive modelling process, that addresses each of the 
requisite activities in turn. Such future studies can also use the unified 
modelling framework to structure reporting on their challenges, lessons 
learned, and overall experience of employing a participatory modelling 
cycle (under uncertainty) to address a socio-environmental issue.

Nonetheless, the proposed framework has intrinsic limitations as it is 
tailored to modelling SES from an SD paradigm. Despite the extensive 
benefits that we have argued above, the SD approach has limitations as it 
is not spatially explicit and it focuses on modelling wholes rather than 
individuals or agents, both features being particularly relevant for 
ecological research (Vincenot et al., 2011). Therefore, adapting the 
proposed 3-phase framework to other SES modelling paradigms is an 
open avenue for future research. For instance, the framework can be 
adapted to model SES problems that are better addressed from an 
Agent-Based Modelling (ABM) perspective (e.g. see Bourceret et al. 
(2024)), or even, going a step forward, by integrating SD with 
Agent-Based-Modelling (ABM) in a single modelling cycle (Vincenot 
et al., 2011). Our framework can act as a baseline for such expansion and 
adaptation. Other modifications may come from applying the proposed 
SD-based framework in a more concrete type of SES (see Datola et al. 
(2022), for a relevant application in the context of urban resilience). 
This opens up ample possibilities for tailoring the overall SES framework 
to overarching themes, such as integrated resources management 
(Ghodsvali, Dane, and de Vries, 2022) and conservation science (Sala 
and Torchio, 2019); or to specific biophysical environments, such as 
coastal systems (Slinger, Taljaard, and d’Hont, 2020), river basins 
(Cabello et al., 2015) and forests (Fischer, 2018).

Finally, a synthesised SES policy evaluation modelling cycle opens 
the opportunity to connect better with policy application. Here we argue 
that an SES modelling exercise ideally consists of three global phases: it 
starts with a problem that is conceptualised, then translated into a model 
that facilitates collective understanding, and is finally used to evaluate 

policies aimed at tackling the initially identified problem. This global 
understanding can simplify the dialogue between the stakeholders 
responsible for making SES policy decisions (or providing input) and 
those responsible for implementing and monitoring such policies (Nuno, 
Bunnefeld, and Milner-Gulland, 2014). More research is needed to 
capture the synergies and barriers that arise from a nested policy eval-
uation/implementation approach in dealing with socio-environmental 
problems. Case studies can illustrate what happens after a policy to 
tackle an SES issue has been selected via a participatory modelling 
process (see Slinger, 2023; Clifford-Holmes et al., 2018). Who are the 
decision-makers and implementers? Who is part of both groups, and 
how do they interact? How is the policy implemented and monitored? 
Does the implementation align with the recommended policy path 
supported by the modelling cycle? How does it differ? Does the moni-
toring feed back into another participatory policy evaluation cycle? 
Does the model suggest trends that became apparent in the real world 
after the implementation of policies? These questions open up an 
exciting avenue of research to understand the factors that support or 
hinder a fluid and collaborative SES policy evaluation and imple-
mentation process. A better understanding of these interactions can help 
to design and implement sound, concerted, and impactful policies to 
address the critical socio-environmental issues of our time.
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