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Abstract. Introduced in [1], Isogeometric Analysis (IgA) has become widely accepted in
academia and industry. However, the system matrices arising from discretizations based
on Isogeometric Analysis (IgA) tend to become ill-conditioned for higher values of the
approximation order p, and hence, the efficient solution of linear systems of equations
is a challenging task. In this paper, we propose the use of p-multigrid based methods
for the efficient solution of IgA based discretizations. The overall idea is to construct
a multigrid hierarchy based on different values of p, where the coarse grid correction is
obtained at level p = 1 . Consequently, the residual equation is solved at level p = 1, so
that the coarse grid correction can be obtained using established solution techniques for
low-order Lagrange finite elements. Numerical results are presented for a two-dimensional
benchmarkproblem to compare the performance of p-multigrid used as a solver and as a
preconditioner for a Krylov subspace method. It follows from a Local Fourier Analysis,
that the coarse grid correction and the smoothing procedure complement each other quite
well. Moreover, the obtained convergence rates indicate that p-multigrid methods have
the potential to efficiently solve IgA discretizations.

1 INTRODUCTION

Introduced in [1], Isogeometric Analysis (IgA) has become widely accepted in academia
and industry. Over the years, IgA has been applied in fluid mechanics [2], shape opti-
mization [3] and structural mechanics [4]. The use of B-splines and Non-Uniform Rational
B-splines (NURBS) within IgA enables a highly accurate representation of geometries.
Another advantage of IgA over standard Finite Elements is the Cp−1 continuity of the
B-spline basis functions, leading to numerical approximations with high continuity.

However, solving the resulting linear systems remains a challenging task. Due to the
growing support of the basis functions, the bandwidth of the resulting system matrix after
discretization becomes wider for increasing p, making the use of a (sparse) direct solver
more and more expensive.
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The use of (standard) iterative solvers is not straightforward, since the system matrices
arising in IgA can become ill-conditioned: The condition number of the Poisson operator
is bounded by a constant times h−2, where h is the mesh width, but, in contrast to
standard Finite Elements, scales exponentially with the order of the approximation p, cf.
[5]. The performance of (standard) iterative solvers thus decreases fast for higher values
of p.

Over the past years, the use of different types of solvers have been investigated. In
[6], the use of direct solvers has been investigated when either C0 or Cp−1 continuous
B-spline basis functions were used for discretization. Preconditioners based on solvers for
the Sylvester equation have been studied in [7]. Geometric multigrid methods were first
studied in [5] for scalar second-order elliptic problems. In [8], a spectral analysis of the
two-grid method was performed by determining the reduction factors of the coarse grid
correction and smoother. Recently, a geometric multigrid method has been presented in
[9] which exhibits convergence rates independent of h and p.

In this paper we propose an alternative solution strategy that is based on p-multigrid
techniques, where the resulting p-multigrid method is used both as a solver and as a
preconditioner in a Krylov subspace iterative method. The approach makes use of a
hierarchy of B-spline based discretizations of different approximations orders. This is in
contrast to (geometric) h-multigrid methods, in which a hierarchy of coarser and finer
meshes is constructed. The coarse grid correction in the suggested p-multigrid method is
determined at level p = 1, enabling the use of (established) solution techniques developed
for low-order Lagrange finite elements.

The remainder of this paper is organised as follows. The considered model problem
and spline spaces used for discretization are presented in Section 2. In Section 3, the p-
multigrid method is described in more detail. Numerical results, obtained on a non-trivial
two-dimensional geometry, are presented in Section 4. Furthermore, results are compared
with h-multigrid methods. Conclusions are finally drawn in Section 5.

2 MODEL PROBLEM AND DISCRETIZATION

As our model problem we consider the Poisson equation:

−∆u = f on Ω, (1)

where Ω ⊂ R2, f ∈ L2(Ω) and u = 0 on the boundary ∂Ω. Let V = H1
0 (Ω) denote the

space of functions in H1(Ω) that vanish on the boundary ∂Ω, where H1(Ω) denotes the
first order Sobolev space. Multiplying equation (1) with an arbitrary function v ∈ V ,
integrating over Ω and applying integration by parts leads to the variational form:
Find u ∈ H1

0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ V . (2)

For the spatial discretization, tensor product B-spline basis functions of order p are
considered based on an open uniform knot vector and knot span size (which is associated
with the mesh width) h.
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The one-dimensional B-spline basis functions are defined recursively by the Cox-de
Boor formula [1]:

φi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 else
(3)

and for p > 0:

φi,p(ξ) =
ξ − ξi
ξi+p − ξi

φi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

φi+1,p−1(ξ). (4)

Let the tensor product spline space of order p and mesh width h be denoted by Vh,p:

Vh,p :=

{
uh,p =

N∑
i=1

N∑
j=1

c(i,j)φi,p(x)φj,p(y) | c ∈ RN2

}
, (5)

where N denotes the number of basis functions in a single direction and c the coefficient
vector corresponding to uh,p. The Galerkin formulation of the variational problem (2) is
then obtained using these spline spaces, which leads to:

Find uh,p ∈ Vh,p such that

(∇uh,p,∇vh,p) = (f, vh,p) ∀vh,p ∈ Vh,p. (6)

Adopting the B-spline basis functions, the discretized problem becomes, written as a
linear system:

Ah,puh,p = fh,p. (7)

Here, Ah,p is the stiffness matrix corresponding to the discretization with B-spline basis
functions of order p and mesh width h.

3 P-MULTIGRID

A p-multigrid algorithm is formulated to solve equation (7). Starting from the space
Vh,1, refinement in p is applied, which leads to a sequence of spline spaces Vh,1, . . . ,Vh,p.
In this paper, basis functions are considered which are Cp−1 continuous, implying that
the spline spaces are not nested. Based on a random initial guess u0

h,p, a single iteration
of the two-grid correction scheme consists of the following steps:

1. Apply a fixed number of ν1 presmoothing steps :

u
(0,m+1)
h,p = u

(0,m)
h,p + S(fh,p −Ah,pu

(0,m)
h,p ), m = 0, . . . , ν1 − 1 (8)

where S is a smoother (i.e. Jacobi, Gauss-Seidel) for the fine grid problem.

2. Determine the residual at level p and project it onto the space Vh,p−1 using the
restriction operator Ip−1

p (to be defined):

rh,p−1 = Ip−1
p

(
fh,p −Ah,pu

(0,ν1)
h,p

)
. (9)
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3. Determine the coarse grid correction by solving the residual equation at level p− 1:

Ah,p−1eh,p−1 = rh,p−1. (10)

4. Project the correction eh,p−1 onto the space Vh,p using the prolongation operator

Ipp−1 (to be defined) and update u
(0,ν1)
h,p :

u
(0,ν1)
h,p := u

(0,ν1)
h,p + Ipp−1(eh,p−1). (11)

5. Apply a fixed number of ν2 postsmoothing steps to obtain u
(0,ν1+ν2)
h,p := u1

h,p.

The two-grid correction scheme is applied recursively until level p = 1 has been reached,
which results in a V -cycle. Alternatively, different schemes can be applied leading, for
example, to a W -cycle, see Figure 1.

At level p = 1, the residual equation (10) is solved approximately by means of a
Conjugate Gradient (CG) solver. As a stopping criterium for the CG method, a reduction
of the relative residual with a factor 10−8 is used. In our experience, only a limited
improvement of the p-multigrid convergence was shown if a solution obtained with a very
low tolerance (ε = 10−14) was used on the coarsest level. The stiffness matrices, needed at
each level for the smoothing procedure, can be obtained by rediscretization. The solution
u1
h,p is used as an initial guess for the next cycle.

k = 3

k = 2

k = 1

R
estrict

R
estrict

P
ro

lo
ng

at
e

P
ro

lo
ng

at
e

Figure 1: Description of a V-cycle and W-cycle.

Prolongation/Restriction

The correction eh,k−1 at level k− 1 is prolongated by projecting it onto the space Vh,k.
The prolongation operator Ikk−1 : Vh,k−1 → Vh,k is defined such that

Ikk−1(v) = v ∀v ∈ Vh,k−1. (12)

This prolongation operator has been used before in literature [10, 11, 12].
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The variational form of equation (12) is given by:(
Ikk−1(v), w

)
h,k

= (v, w)h,k ∀v ∈ Vh,k−1, ∀w ∈ Vh,k. (13)

It is sufficient to test the equation for all higher-order basis functions φm,k := φm,k(x, y).
Since v ∈ Vh,k−1, we can write

v =

#Vh,k−1∑
i=1

vi,k−1φi,k−1 (14)

for some coefficient vector v. Using w = φm,k, I
k
k−1(v) = v and equation (14), we can

write consequently:#Vh,k−1∑
n=1

vn,k−1φn,k−1, φm,k


k

=

#Vh,k∑
m=1

vm,kφm,k, φm,k


k

∀v ∈ Vh,k−1, ∀φm,k ∈ Vh,k. (15)

The equation above is equivalent to

Pk−1
k vk−1 = Mkvk, (16)

where

(Pk−1
k )(i,j) :=

∫
Ω

φi,k−1φj,k dΩ (Mk)(i,j) :=

∫
Ω

φi,kφj,k dΩ. (17)

The vector of coefficients vk is therefore given by

vk = (Mk)
−1Pk−1

k vk−1. (18)

Hence, the prolongation operator to determine vk from vk−1 is defined by

Ikk−1 := (Mk)
−1Pk−1

k . (19)

The restriction operator Ik−1
k : Vh,k → Vh,k−1 is defined as the Hilbert adjoint of the

prolongation operator, which implies [12]:

(Ik−1
k (w), v)k−1 = (w, Ikk−1(v))k = (w, v)k ∀v ∈ Vh,k−1,∀w ∈ Vh,k. (20)

The last equality follows from the definition of the prolongation operator. Combining the
equations leads to

(Ik−1
k (φm,k), φn,k−1)k−1 =

#Vk−1∑
l=1

R(l,m)(φl,k−1, φn,k−1)k−1,

= (φm,k, φn,k−1)k. (21)

Equation (21) has to hold ∀m = 1, 2, . . . ,#Vk and ∀n = 1, 2, . . . ,#Vk−1.
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This leads to the following matrix equation:

RMk−1 = Pk−1
k . (22)

Hence, the restriction matrix is given by

R = (Mk−1)−1Pk−1
k . (23)

Consequently, we have

Ik−1
k := (Mk−1)−1Pk−1

k . (24)

The need to solve a linear system involving the consistent mass matrix is circumvented by
applying direct row-sum mass lumping for both the prolongation and restriction operator,
which is possibly due to the partition of unity property and non-negativity of the B-spline
basis functions.

4 NUMERICAL RESULTS

To assess the quality of the p-multigrid method, a variety of numerical experiments
have been performed. Results have been obtained for different approximation orders
p, mesh widths h and smoothing steps ν, where p-multigrid is used both as a solver
and as a preconditioner within a Conjugate Gradient method. Furthermore, different
types of multigrid cycles are considered and results are compared with a (standard) h-
multigrid method. Finally, the reduction factors of a single smoothing step and a coarse
grid correction are determined to obtain more insight in the interaction between both
components of the p-multigrid method.

The following model problem is considered: Let Ω ⊂ R2 be the quarter annulus in the
first quadrant of the Cartesian coordinate system with inner radius 1 and outer radius 2.
The right hand side f is chosen such that the analytical solution is given by:

u(x, y) = (x2 + y2 − 3
√
x2 + y2 + 2) · sin

(
2arctan

(y
x

))
. (25)

This model problem can be found in [5], where it is used to assess the quality of h-

multigrid methods. The initial guess u
(0)
h,p is chosen to be a random vector, with entries

taken from a uniform distribution on [−1, 1]. Prolongation and restriction are performed
with the lumped versions of the operators presented in Section 3. Boundary conditions are
imposed by using Nitsche’s method. Defining r

(0)
h,p and r

(i)
h,p as, respectively, the residual

based on the initial guess and the residual after the ith multigrid cycle, the following
stopping criterium is adopted:

||r(i)
h,p||

||r(0)
h,p||

< 10−8.

In all numerical experiments, the same number of pre- and postsmoothing steps has
been applied (ν = ν1 = ν2). For both presmoothing and postsmoothing, the Gauss-Seidel
method is adopted.

6
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p-Multigrid

Table 1 denotes the number of cycles needed to reach a converged solution with a
p-multigrid solver for different values of ν and p. A fixed mesh size of 2−4 is chosen
in each direction. The coarse grid operators are obtained by rediscretization (R) and
applying the Galerkin Condition (G). Results indicate that for a fixed value of p and h,
the number of cycles depends inversly on the number of smoothing steps ν. Doubling the
number of smoothing steps, results in a decrease of the number of cycles with a factor of
approximately two. A dependence on the approximation order p is also clearly observed:
Increasing the order p increases the number of cycles needed to converge.

The VR-cycle and WR-cycle methods show for all configurations the same convergence
behaviour. Application of the Galerkin Condition leads for all configurations to almost
the same number of V -cycles, except for the case p = 4 and ν = 1. For this combination,
the p-multigrid method diverges, which is denoted with (x). Therefore, all further results
presented in this paper are obtained by rediscretization.

Table 1: Poisson problem on quarter annulus: ν-dependence of the number of multigrid cycles

p : 2 3 4 p : 2 3 4 p : 2 3 4
VR(·, ·) VG(·, ·) WR(·, ·)
ν = 1 33 71 231 ν = 1 35 72 x ν = 1 33 71 231
ν = 2 17 36 116 ν = 2 18 36 116 ν = 2 17 36 116
ν = 4 9 18 58 ν = 4 9 18 58 ν = 4 9 18 58
ν = 8 5 9 29 ν = 8 5 9 29 ν = 8 5 9 29

The dependence of the number of cycles on the mesh width h is shown in Table 2.
For constant p and a constant number of smoothing steps (ν = 4), the number of cycles
is independent of the mesh width. Again, the p-dependence can clearly be observed.
Furthermore, the different cycle types show similar behaviour as illustrated in Table 1.

Table 2: Poisson problem on quarter annulus: h-independence of the number of multigrid cycles

p : 2 3 4 p : 2 3 4
V (4, 4) W (4, 4)
h = 2−3 9 23 86 h = 2−3 9 23 86
h = 2−4 9 18 58 h = 2−4 9 18 58
h = 2−5 9 19 61 h = 2−5 9 19 61
h = 2−6 9 19 59 h = 2−6 9 19 59

Using the p-multigrid as a preconditioner for a Krylov subspace method leads to similar
observations. Table 3 shows the number of Conjugate Gradient iterations needed for
convergence, which is independent of the mesh width for constant p. Here, the CG

7
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method is preconditioned with a single multigrid cycle in each iteration. In contrast
to the previous numerical experiments, forward Gauss-Seidel is used in the first part
of the cycle, while backward Gauss-Seidel is adopted in the second part. The use of
preconditioned CG solver mitigates the p-dependence, but does not solve this problem
completely. Similar conclusions were drawn in [8] for h-multigrid methods.

Table 3: Poisson problem on quarter annulus: h-independence of the number of CG iterations

p : 2 3 4 p : 2 3 4
V (1, 1) W (1, 1)
h = 2−3 16 29 80 h = 2−3 16 29 74
h = 2−4 17 30 68 h = 2−4 17 30 61
h = 2−5 18 30 69 h = 2−5 18 31 64
h = 2−6 19 30 68 h = 2−6 19 31 65

Comparison between p- and h-multigrid

In what follows, we compare p-multigrid based methods with (standard) h-multigrid
based methods. Results are obtained when h-multigrid is used either as a solver or as a
preconditioner for a Conjugate Gradient method.

Table 4 denotes the results obtained with h-multigrid as a stand-alone solver. As with
p-multigrid, we choose the number of levels to coincide with the approximation order
p. Note that the number of iterations is equal for all values of ν and p, implying that
h-multigrid and p-multigrid are equally effective.

Table 4: Poisson problem on quarter annulus: ν-dependence of the number of multigrid cycles

p : 2 3 4 p : 2 3 4
V (·, ·) W (·, ·)
ν = 1 33 71 231 ν = 1 33 71 231
ν = 2 17 36 116 ν = 2 17 36 116
ν = 4 9 18 58 ν = 4 9 18 58
ν = 8 5 9 29 ν = 8 5 9 29

Using h-multigrid as a preconditioner for a Conjugate Gradient method leads to the
results presented in Table 5. Note that the number of iterations of the CG method is
independent of the refinement level, but depends on the approximation order p. Table
3 denotes the results obtained with p-multigrid. For p = 2 and p = 3, the number of
iterations needed for the CG method to converge, is comparable when either p-multigrid
or h-multigrid is adopted as a preconditioner. However, for p = 4, the difference between
both types of multigrid becomes clearly visible.

8
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Table 5: Poisson problem on quarter annulus: h-independence of the number of CG iterations

p : 2 3 4 p : 2 3 4
V (1, 1) W (1, 1)
h = 2−3 15 25 59 h = 2−3 15 25 56
h = 2−4 14 25 56 h = 2−4 15 24 54
h = 2−5 15 24 52 h = 2−5 15 24 49
h = 2−6 16 24 49 h = 2−6 16 24 47

Local spectral analysis

To obtain a deeper insight in the effect of a single smoothing step and a coarse grid
correction for p-multigrid, a local spectral analysis [13] is carried out for different values of
p. To do so, the homogeneous problem ∆u = 0 is considered with homogeneous Dirichlet
boundary conditions and, hence, u = 0 as its exact solution. For an initial guess u0

h,p, the
error reduction factors

rS(u0
h,p) =

||S(u0
h,p)||

||u0
h,p||

, rCGC(u0
h,p) =

||CGC(u0
h,p)||

||u0
h,p||

,

are computed. Here, S(·) and CGC(·) denote a single smoothing step with Gauss-Seidel
and a coarse grid correction, respectively. As initial guess, the generalized eigenvectors
are chosen which satisfy

Ah,pvi = λiMh,pvi, i = 1, . . . , N,

where Mh,p denotes the consistent mass matrix. A similar analysis has been performed
in [8].

Figure 2 denotes the reduction factors of the generalized eigenvectors vi, which are
determined for different approximation orders (p = 2, 3 and 4). The figures on the left
side show the results for the Poisson equation on the unit square, whereas those on the
right side are obtained on the quarter annulus geometry. In general, the coarse grid
correction reduces the lower part of the spectrum, whereas the smoother reduces the rest
of the spectrum. Hence, as with h-multigrid, the coarse grid correction and smoother are
complementary to each other. However, the obtained reduction factors for the smoother
increase for higher values of p, especially on the quarter annulus, indicating that the
smoother has difficulties.

5 CONCLUSIONS

In this paper, we presented p-multigrid based methods to solve linear systems arising in
IgA. Numerical experiments show that the number of cycles/iterations is independent of
the mesh width h, but (strongly) depends on the approximation order. p-multigrid showed
to be competitive to h-multigrid when used as a stand-alone solver, but less efficient as
a preconditioner within a Conjugate Gradient method. The coarse grid correction and

9
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the smoothing procedure in p-multigrid complement each other quite well, although the
smoother has more difficulties for the model problem on the quarter annulus.

This study should be considered as a first step for the application of p-multigrid meth-
ods in the efficient solution of linear systems arising in IgA. In forthcoming works, the
use of p-multigrid methods, enhanced with a more effective smoother, will be further
investigated. Furthermore, coarsening in both h and p will be considered to reduce the
size of the linear system on the coarsest level.
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Figure 2: Reduction factors of (vi) for p = 2, 3, 4 (↓). The figures on the left illustrate results on the
unit square, whereas the figures on the right illustrate results on the quarter annulus.
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