
Building a Compiler Optimizing
C++ Atomic Accesses

July, 2023

Zhiyang Liu

Building a Compiler Optimizing C++
Atomic Accesses

THESIS

by

Zhiyang Liu

to obtain the degree of Master of Science
at Delft University of Technology

Student id: 5534496
Email: z.liu-57@student.tudelft.nl

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
Daily Supervisor: Dr. S. Chakraborty, Faculty EEMCS, TU Delft
Committee Member: Dr. Z. Al-Ars, Faculty EEMCS, TU Delft

Abstract

Atomics is an important primitive for programming languages like C++ to
develop concurrent software. Atomic variables, together with weak memory
models allow for a bigger space for instruction reordering and compiler op-
timizations. However, the current compilers like LLVM do not support many
transformations of atomics, which may lose chances of optimizations.

In this thesis project, we built a compiler that optimizes C++ atomic memory
accesses based on LLVM 14.0.0. We modified related LLVM passes to enable
these optimizations. Specifically, our compiler is able to optimize Read-After-
Read (RAR), Read-After-Write (RAW), and Overwritten Write (OW) patterns con-
taining atomics. To achieve this, we removed checks in LLVM that forbid atomic
accesses from being processed. And we added constraints and adapted them
into existing algorithms of LLVM passes, to ensure the soundness of our trans-
formations.

We tested our compiler using randomly generated ordered memory accesses.
And our compiler is shown to be able to eliminate 2% - 15% redundant atomic in-
structions in our test sets, which the current LLVM cannot optimize, while hardly
hurting the compile time (less than 1%). And we evaluated our compiler using
several concurrent applications. We have not yet found a significant perfor-
mance gain after building these applications using our compiler. The reason
could be that these concurrent benchmarks do not contain the patterns our
compiler optimizes.

Preface

Looking back at the time when I reached Delft for the first time, I could not
imagine I am now working on compilers and finally finishing this thesis project.
When I first stepped into the lecture hall of the first compiler course totally
out of interest, I knew literally nothing about compiling technology. I barely
acquired any programming skills at that time even. It was the help, support,
and inspiration from all the kind people by my side that enabled me to reach
here.

As my daily supervisor, Soham is really patient and nice to me. Without his
generous assistance, it could be infeasible for a rookie to start a journey in the
LLVM project. It was him that provided me with this chance to work on a product
compiler. The experience with LLVM is wonderful and learned me a great lesson
in compiler structures, and even program design.

I also extend my thanks and condolences to Eelco. It was this brilliant, in-
teresting gentleman that first raised my interest in this totally unfamiliar field.
I can still remember the excitement when I built a working compiler front end.
Even just before his untimely passing, I received an email from him inviting stu-
dents to take his programming language project course. His spirit will always
encourage me.

And I am grateful for all the other professors, friends in the PL group. This is
a precious memory for me. I am just new to the game, and it is their passion
and friendliness that helped me keep going.

And additional thanks go to my parents and my girlfriend, who have been
continuously supporting me even if they have little idea about my work. My
faith in getting back to you and starting my new journey with you is my spiritual
backbone in those tough periods.

Finally, I would invite any interested people, even beginners who know noth-
ing like I once was, to try the programming language and compiler courses. The
people of the group and all the harvest along the way will not let you down.

Zhiyang Liu
Delft, the Netherlands

July, 2023

Contents

1 Introduction 3
1.1 Context . 3
1.2 Problem Statement . 3
1.3 Contributions . 3
1.4 Outline . 4

2 Background 5
2.1 C++ Atomics and Memory Orders . 5
2.2 The LLVM Compiler Infrastructure . 6
2.3 Current LLVM Approach to Atomic Operations 7
2.4 Possible Transformations of Atomic Accesses 8

3 EarlyCSE Pass 10
3.1 Overview EarlyCSE . 10

3.1.1 Common Subexpression Elimination 10
3.1.2 Dominator Tree in LLVM . 10
3.1.3 LLVM EarlyCSE . 12

3.2 Current Approach of EarlyCSE . 13
3.2.1 Algorithm Description EarlyCSE 13
3.2.2 Barriers of Atomics in EarlyCSE . 18

3.3 Proposed Approach for EarlyCSE . 20

4 From EarlyCSE to Others 24
4.1 Design Choice of Our Implementation . 24
4.2 Not All Possible Transformations are Enabled 25
4.3 Types of Modifications Made . 25
4.4 Challenges of This Work . 26
4.5 Some More Explanation . 26

5 InstCombine 27
5.1 Overview InstCombine . 27

5.1.1 Instruction Combining . 27
5.1.2 LLVM InstCombine . 27
5.1.3 LLVM Alias Analysis . 29

5.2 Current Approach of InstCombine . 29
5.2.1 Algorithm Description InstCombine 29
5.2.2 Barriers of Atomics in InstCombine 34

5.3 Proposed Approach for InstComibine . 35

6 DSE Pass 39
6.1 Overview DSE . 39

6.1.1 Dead Store Elimination . 39
6.1.2 LLVM MemorySSA . 39
6.1.3 LLVM DSE . 41

6.2 Current Approach of DSE Pass . 42
6.2.1 Algorithm Description InstCombine 42

6.3 Proposed Approach for DSE . 45

7 Evaluation 48
7.1 Randomly Generated Memory Accesses 48
7.2 Benchmarking . 51

8 Related and Future Work 52
8.1 Related Work . 52
8.2 Future Work . 52

1

9 Conclusion 54

2

1 Introduction

1.1 Context

A compiler works as a bridge between programmers and machines. It translates
the source programming language to the target language. And compilers have
always been beyond translators. Smart modern compilers perform a tremen-
dous number of aggressive optimizations on the program to obtain better per-
formance and expected code size. On the other hand, programming languages
do not stay still. With the development of multi-core processors and parallel
computing, programming languages have been gifted new features to adapt.

C/C++ 11 introduced atomic types to support atomic memory accesses. Dif-
ferent threads can simultaneously operate on the same atomic object with-
out causing a data race. This new feature enables programmers to conve-
niently write lock-free concurrent codes. However, as relatively new guests
to compilers, atomic accesses are not well served. On LLVM, a state-of-the-
art compiler frame, atomic accesses are treated conservatively. A number of
normal optimizations are not performed on these accesses, such as common
sub-expression elimination (CSE) and Dead Store Elimination (DSE). Instead,
they are dealt with nearly the same as volatile operations, kept almost intact
in output codes.

Such conservative behaviors are understandable. Because compilers must
not miscompile. As a basic part of the infrastructure in the world of computer
science, an erroneous compiler could be catastrophic. Without careful study and
verification, aggressive optimizations on atomic accesses may cause mistakes.
Keeping these newcomers as they are is no fault.

In this thesis, based on reordering rules found in related work [17], we at-
tempt to enable a group of feasible optimizations on atomic accesses. We
implemented these optimizations on LLVM optimizer. As a widely used product-
quality compiler, LLVM provides various optimizations on memory accesses. And
for atomic accesses, LLVM simply leaves them as is. Developers of LLVM care-
fully rule out atomic accesses in optimizing phases. And without these annoying
ordered accesses, optimizations stay valid. We implemented our optimizations
based on the existing LLVM optimizer. Users of this work can enable these opti-
mizations using some simple flags.

1.2 Problem Statement

This thesis project aims to enable optimizations on C/C++ 11 atomic memory
accesses and implement these optimizations on LLVM. To achieve this, we may
need to answer the research questions below:

• What does the existing LLVM do with memory accesses? Why does not it
optimize atomic accesses? How does it treat atomic accesses?

• What optimizations are feasible for atomic accesses?

• How to enable such optimizations on LLVM? Will such modifications hurt
the performance of the compiler?

• How much can we reduce the number of lines of the programs?

1.3 Contributions

Contributions of this work include:

• We implemented optimizations for atomic memory accesses on LLVM, which
LLVM does not support yet.

3

• Though our work targets C++ atomics, it can be applied to other source
languages as long as they share similar memory models. Our work is on
the optimizer phase of LLVM, which means these optimizations are target-
independent and source-independent.

• As an experimental work to modify LLVM, we found problems with the cur-
rent LLVM. Atomics are carefully ruled out from core libraries to optimizing
passes. If LLVM will support optimizations for atomics in the future, it may
need to modify its alias analysis, IR properties, and pass implementations.

• We tested our work using randomly generated memory accesses. And
we showed our compiler is able to eliminate redundant memory accesses,
which the current LLVM does not do.

• We also evaluated our work using some concurrent applications. We have
not yet observed significant performance gain. Nevertheless, it is possible
to find performance improvements when a potential benchmark is found,
or when more aggressive optimizations are done.

1.4 Outline

The remainder of this thesis is organized as follows: Section 2 gives the neces-
sary background information about C++ atomics, LLVM compiler, and possible
transformations of atomics. In Section 3 to Section 6, we describe details of
the problem together with solutions proposed by us. Our work focuses on three
passes in LLVM: EarlyCSE, InstCombine, and DSE, which are discussed in respec-
tive sections. In Section 4, we did a summary of works in Section 3, which may
help in understanding the following sections. Section 7 provides our detailed
experimental evaluation and results. Related and future work are discussed in
Section 8. Finally, we conclude our thesis in Section 9.

4

2 Background

In this section, we give some necessary background information for understand-
ing subsequent sections. First, we introduce LLVM, a state-of-art compiler frame-
work, on which our work is based. And after that, we provide the theoretical
basis for the optimizations to be implemented.

2.1 C++ Atomics and Memory Orders

First of all, we briefly introduce the C++ atomic and memory orders. Atomic
variables were originally created to manage access to shared memory in multi-
thread areas. As a typical usage, one thread may produce data and writes to an
atomic variable. Then another thread may read this atomic variable. If it gets
the expected value, it will use the data created by the first thread.

Each atomic memory access has a memory order. It specifies how memory
accesses are to be ordered around an atomic operation. By default, the mem-
ory order is std::memory_order_seq_cst. And different memory orders have the
following restrictions:

• memory_order_relaxed As the name indicates, relaxed operations have
no constraints for their ordering. They do not synchronize with other oper-
ations. They are only guaranteed not to raise a data race.

• memory_order_acquire A load operation with acquire order requires that
no reads or writes in the current thread can be reordered before it. Also,
all release writes in other threads on the same atomic variable are visible
in the current thread.

• memory_order_release A store operation with release order requires that
no reads or writes in the current thread can be reordered after it. And all
writes in the current thread are visible in other threads that acquire the
same atomic variable.

• memory_order_acq_rel Combination of acquire and release.

• memory_order_seq_cst Besides the ordering enforced by acquire and re-
lease, sequentially consistent ordering also requires that all threads ob-
serve all modifications in the same order.

An example of using C++ atomics is shown below. And programmer can
explicitly specify the memory order to use by passing it as a parameter of the
atomic operations.

1 #include <atomic >

2 using namespace std;

3 ...

4 // Non -atomic version:

5 int a, b;

6 a = b;

7

8 // Atomic version:

9 atomic <int > a, b;

10 atomic_store (&a, atomic_load (&b));

11 // As a simpler way , one can also write:

12 a.store(b.load());

There are many models of memory. And by specifying memory orders of
memory accesses, the programmer can choose the model to use. When the
memory model is omitted like the program above, the default model will be

5

sequentially consistent. It has similar restrictions to sequential programs on
reordering memory accesses. The major difference is that it also has inter-
thread constraints. See this example:

Y = 2;
X = 1;

ƒ (X == 1)
ssert(Y == 2); (EX_SC)

Here we can see, X and Y are unrelated variables. However, the assertion cannot
fail. Because a sequentially consistent model requires a consistent total order
of memory accesses. If X==1 reads the value 1 written by X=1, then it must also
see operations before this write. Then the read of Y must get the value 2 written
before the store of X.

From the view of a compiler, memory models confine the space of optimiza-
tion. A weaker model gives many possibilities for optimization. Since relaxed
accesses do not synchronize with others, they can be reordered relatively freely.
And the sequentially consistent model is the most expensive one. It enforces
strict ordering on all accesses. Practically, this means losing most opportunities
for optimizations. And an acquire-release model is somewhere in between. It
disallows moving stores and loads across respective atomic operations, leaving
some space for optimizations.

2.2 The LLVM Compiler Infrastructure

LLVM is a collection of compiler and toolchain technologies [12]. It follows the
classical three-phase compiler design. In an LLVM-based compiler, there are
three basic parts as shown in Figure 1 [7]:

Figure 1: Typical Design of an LLVM-based Compiler [7]

• Front end. A front end parses, validates and throws errors in the input
code. After these checks, It translates the source code into LLVM Inter-
mediate Representation (LLVM IR), a language-independent intermediate
representation.

• Optimizer. In this phase, various optimizations take place. And the code
is improved.

• Back end. After being optimized, the IR code is finally fed into a code
generator to produce the target code.

This thesis work is built on the optimizer phase. The optimizer consists of
a set of passes. Basically, there are two important types of passes in LLVM
Optimizer: Analysis passes and transform passes. Analysis passes do not modify
the input IR code. They collect information that other passes may utilize or
for the purpose of debugging. Transform passes, on the other hand, mutate
the program, and (usually) improve it in some way. And each (transform) pass
performs a family of optimizations. For example, Dead Store Elimination (DSE)
pass focuses on finding and removing dead writes.

6

For our project, we need to investigate how the current LLVM optimizes mem-
ory accesses and how atomic accesses and non-atomic accesses are treated
differently.

Our work uses LLVM 14.0.0, which was the newest version of LLVM when
the project started. At the time this thesis is written, the most recent release
is LLVM 16.0.0. Nevertheless, the passes where we made modifications did not
change significantly. And the problem that atomic accesses cannot be optimized
remains there. So the version of LLVM will not be a problem here.

2.3 Current LLVM Approach to Atomic Operations

To observe the existing LLVM behavior with atomic accesses, first consider this
example:

1 std::atomic <int > X;

2 int a;

3 int main(){

4 a = 1;

5 X.store(2, std:: memory_order_relaxed);

6 a = 3;

7 }

Obviously, the write a = 1 on line 4 is dead, since it is overwritten by line 6.
And the compiler should remove the first write as an optimization. After parsing
and optimizing this program using clang++ -O3, we check the output IR (LLVM
Intermediate Representation) file shown below. Note that atomic variables in
C/C++ 11 are implemented using struct, hence reads and writes on them will
use the getelementptr instruction to access the boxed value.

1 define i32 @main () {

2 entry:

3 store atomic i32 2, i32* getelementptr inbounds (%"struct.std:: atomic", %"

struct.std:: atomic"* @X , i64 0, i32 0, i32 0) monotonic , align 4

4 store i32 3, i32* @a , align 4, !tbaa !3

5 ret i32 0

6 }

We can see that the compiler did its job. The redundant store with value 1 is
removed. This is called dead store elimination (DSE). When the compiler sees
the store a = 3;, it reversely looks for stores overwritten by this one. The relaxed
atomic store of X is in its way but is not a clobber. An instruction would be a
clobber if we cannot reorder another instruction with it according to the rules in
Table 1. Here, neither is the store of X a store to location a nor is it a strongly
ordered access preventing reordering. However, if we replace this program with
the following similar version, and keep the same optimization level:

1 std::atomic <int > X;

2 int a;

3 int main(){

4 X.store(1, std:: memory_order_relaxed);

5 a = 2;

6 X.store(3, std:: memory_order_relaxed);

7 }

In this example, we simply exchanged a and X. The first store to X should be
killed by the write on line 6 for the same reason as the previous example. But
the output becomes the following:

7

1 define i32 @main () {

2 entry:

3 store atomic i32 1, i32* getelementptr inbounds (%"struct.std:: atomic", %"

struct.std:: atomic"* @X , i64 0, i32 0, i32 0) monotonic , align 4

4 store i32 2, i32* @a , align 4, !tbaa !3

5 store atomic i32 3, i32* getelementptr inbounds (%"struct.std:: atomic", %"

struct.std:: atomic"* @X , i64 0, i32 0, i32 0) monotonic , align 4

6 ret i32 0

7 }

Now the redundant store, which should have been removed, remains there. And
if we change the first example in another way, by replacing the access in the
middle with an acquire read:

1 std::atomic <int > X;

2 int a;

3 int main(){

4 a = 1;

5 X.load(std:: memory_order_acquire);

6 a = 3;

7 }

And check the output:

1 define i32 @main () {

2 entry:

3 store i32 1, i32* @a , align 4, !tbaa !3

4 %0 = load atomic i32 , i32* getelementptr inbounds (%"struct.std:: atomic", %"

struct.std:: atomic"* @X , i64 0, i32 0, i32 0) acquire , align 4

5 store i32 3, i32* @a , align 4, !tbaa !3

6 ret i32 0

7 }

Again, the first store stays there. In this case, the acquire read of X works as
clobber in the current LLVM, though it should not be.

Similar problems happen to several different types of optimizations in LLVM.
This is basically because LLVM treats shared atomic variables conservatively.
And from the examples shown above, the problems come in two aspects:

• Atomics are not removable. In an optimizing pass, when the iterator
meets atomic access, it simply skips the access. As a result, all atomic
accesses will remain in the output IR file, regardless of whether they should
be deleted.

• Reordering is disallowed. Only a limited portion of reordering is actually
done in the current LLVM. As shown in the examples, the compiler can
reorder a non-atomic access with a relaxed atomic access, but not with an
acquire atomic access. Though this transformation should be allowed.

We will discuss the specific problems in more detail in subsequent sections.

2.4 Possible Transformations of Atomic Accesses

C/C++ defines memory models and atomic accesses with memory orders to
provide different levels of constraints, and hence different spaces for optimiza-
tions. Knowledgeable concurrent programmers should make good use of mem-
ory models to write efficient software. But now there is a gap between the
transformations allowed by memory models and the actually implemented op-
timizations implemented by the compiler.

8

In this project, we mainly consider the elimination optimizations. They are
also main optimizations performed on regular memory accesses. First, we con-
sider the cases where one of two adjacent memory accesses kills the other.
There are three typical patterns to be optimized, and the respective rules are
listed below [4]:

• Overwritten Write (OW) If two adjacent stores write to the same loca-
tion, and the second store has a stronger or equal order, the first store can
be deleted:

Sto′(, ′);Sto(,)⇝ Sto′(,),hen o′ ⊑ o
• Read After Write(RAW) If a load immediately follows a store that writes
to the same location, and the store has a stronger or equal order, the load
can be deleted:

Sto(,); Ldo′()⇝ Sto(,),hen o′ ⊑ o
• Read After Read (RAR) If two adjacent loads read from the same loca-
tion, and the first load has a stronger or equal order, the second load can
be deleted:

Ldo(); Ldo′()⇝ Ldo(),hen o′ ⊑ o
These rules provide additional constraints that the compiler should obey when
eliminating dead instructions. But in practice, the dead instruction and the
killing instruction are usually not adjacent. So in order to optimize such pat-
terns, the compiler first needs to reorder the instructions. And the elimination
optimizations can only happen if such reordering is allowed:

Sto′(, ′);C;Sto(,)⇝ C;Sto′(, ′);Sto(,)
Sto(,);C; Ldo′()⇝ Sto(,); Ldo′();C
Ldo();C; Ldo′()⇝ Ldo(); Ldo′();C

where reordering every instruction in C with the instruction to be deleted is
allowed.

Fortunately, it has been proved that some types of reordering of atomic ac-
cesses are legal, and may thus enable optimizations [17]. Table 1 shows the
reordering rules of atomic accesses.

↓ \b→ RNA|RLX|ACQ(′) RSC(′) WNA(′) WRLX(′) WREL|SC(′)
RNA() ✓ ✓ ✓ ✓ %

RRLX() ✓ ✓ ✓ ✓ %

RACQ|SC() % % % % %

WNA|RLX|REL() ✓ ✓ ✓ ✓ %

WSC() ✓ % ✓ ✓ %

Table 1: Allowed Reorderings ;b⇝ b;, assuming locations ̸= ′

This table summarizes the rules we need to obey when reordering and opti-
mizing atomic accesses. With this in hand, we can now step into LLVM, and look
for opportunities to improve.

9

3 EarlyCSE Pass

3.1 Overview EarlyCSE

3.1.1 Common Subexpression Elimination

CSE stands for common sub-expression elimination. For example, in the follow-
ing code:

1 a = b + c * d;

2 e = f - c * d;

c * d is computed twice as a common sub-expression. As an optimization, we
can compute it only once, and reuse the value:

1 tmp = c * d;

2 a = b + tmp;

3 e = f - tmp;

Such optimizations are called common sub-expression elimination (CSE). In prac-
tice, simple cases as shown in the example above are trial enough for source
program developers to find and avoid. The real major source for CSE is the
intermediate code generated by compilers, such as accessing data arrays. In
LLVM, EarlyCSE is designed to remove trivially redundant instructions. It is called
"early" because typically in the sequence of optimizing passes, EarlyCSE pass
is invoked before other passes. It aims to find trivial cases and remove instruc-
tions efficiently so that other passes (usually with higher complexity) spend less
time looking for these simple patterns. All three patterns mentioned in Section
2.4 are targets of EarlyCSE and will be optimized by it.

3.1.2 Dominator Tree in LLVM

Consider the following dummy program with basic blocks named from A to G:

1 entry:

2 A:

3 a = 1

4 if(b<2) goto B

5 C:

6 c = 3

7 if(d<4) goto D

8 E:

9 e = 5

10 goto F

11 D:

12 e = 6

13 F:

14 f = e

15 goto G

16 B:

17 g = a

18 G:

19 h = 7

20 if(i<8) goto B

Listing 1: A Program with Control Flow

Based on the control flow of the program, we can build a control flow graph
(CFG) as shown in Figure 2a. And we define dominance relation as Node X
dominates node Y, if and only if all paths from entry to X go through Y. Based on
this definition, we can list dominators of each node as shown in Figure 2b.

10

(a) Control Flow Graph (b) Dominators of Each Node

(c) Immediate Dominators (d) Dominator Tree

Figure 2: From CFG to Dominator Tree [6]

11

We pick the immediate dominator of each node as shown in Figure 2c. Then
we get the dominator tree as Figure 2d, where the parent node of every node is
its immediate dominator.

Dominator trees are useful in various ways. As an example, a definition must
dominate its uses, so a dominator tree can help verify legal use-define relations.
And for optimizations, traversing a dominator tree provides a reasonable way to
scan instructions in functions. And EarlyCSE pass performs a deep first search
(DFS) on the dominator tree while finding and optimizing instructions.

3.1.3 LLVM EarlyCSE

Finally, we come to the actual CSE implementation in LLVM. As stated before,
EarlyCSE aims to delete trivially redundant instructions. For our thesis work,
it catches and optimizes all three patterns. We can use a simple example to
indicate how it works:

1 int a, b;

2 int main(){

3 a = 1;

4 a = 2; // OW

5 b = a; // RAW

6 }

This non-atomic example contains two patterns that EarlyCSE may catch: OW
(a = 2; overwrites a = 1;) and RAW (b = a; reads the constant value 2 written by
a = 2;). Note that such descriptions are for understanding. To be more precise,
optimizing passes work on IR files instead of source code. After being processed
by the compiler front-end, the IR file will be:

1 ...

2 define i32 @main () {

3 entry:

4 store i32 1, i32* @a , align 4

5 store i32 2, i32* @a , align 4

6 %0 = load i32 , i32* @a , align 4

7 store i32 %0, i32* @b , align 4

8 ret i32 0

9 }

This example has no loops or branches, containing only one basic block. So Ear-
lyCSE just scans the instructions from the entry to the end. And in this process,
EarlyCSE maintains two objects:

• LastStore. EarlyCSE uses a pointer, LastStore, to record the last seen store
operation. When seeing a new store operation, it compares the new store
with LastStore. If LastStore is not null and writes to the exact location as
the current store, LastStore is overwritten and can thus be removed. By
doing so, OW patterns are optimized.

• AvailableLoads. AvailableLoads is a hash table recording the current values
of all the simple scalar expressions. When EarlyCSE walks down the dom-
inator tree, it looks to see if the current store or load is in AvailableLoads.
If yes, it updates the values. And if not, it inserts the read and written
value. With a well-maintained AvailableLoads, we can replace load opera-
tions with values we have recorded if available so that RAR and RAW pat-
terns can be optimized. One thing to note is that values in AvailableLoads

are associated with a Generation. When walking down the dominator tree,
a CurrentGeneration is also maintained, counting the version of the current

12

memory. By comparing CurrentGeneration and Generation associated with
recorded values, EarlyCSE pass checks the validity of AvailableLoads. A
more detailed algorithm description follows later.

These are the core helpers in EarlyCSE. And for our example, the process is
shown in Figure 3:

• In the beginning, LastStore is null, and CurrentGeneration is 1 at first as
Figure 3a.

• In Figure 3a, the first line a = 1; is a store operation, so CurrentGeneration

is updated to 2. The value 1 of the variable a is recorded in AvailableLoads

with the current generation 2. And LastStore is set to a = 1; as Figure 3b.

• In Figure 3b, current instruction a = 2; is a write, and writes to the same
location as LastStore. So LastStore, a = 1;, is eliminated. Also, since the
current instruction is a write, memory generation should be updated, and
the new value of a is recorded in AvailableLoads as Figure 3c.

• In Figure 3c, The current instruction r0 = a; reads the value of a. According
to AvailableLoads, a has an available value 2. All uses of the local vari-
able r0 can be replaced with the constant value 2. And this read r0 = a;

becomes redundant and removed as Figure 3d.

• Eventually in Figure 3d, we have two instructions removed: an overwritten
write and a read-after-write.

This is how EarlyCSE pass optimizes programs, we use this simple example to
provide an intuition of the working process of it.

(a) (b)

(c) (d)

Figure 3: Process Optimizing a Non-atomic Example

3.2 Current Approach of EarlyCSE

In this section, we discuss EarlyCSE pass in more detail. We will describe its
algorithms, and explain how it forbids optimizations of atomic accesses.

3.2.1 Algorithm Description EarlyCSE

Let’s first take a look at the algorithms of EarlyCSE.

13

Algorithm 1: EarlyCSE
1 nodes← []

// nodes is a stack used to DFS the dominator tree.

2 Construct FrstNode with AbeLods, CrrentGenerton, Root of
DomTree

3 Push FrstNode onto nodes
4 while nodes is not empty do
5 Pop Node out of nodes
6 CrrentGenerton← Generton oƒ Node
7 if Node is not processed then

/* Process the node. */

8 processNode(Node)
9 chdGenerton oƒ Node← CrrentGenerton

10 else if Not all children of Node are processed then
11 Push next child of Node onto nodes

12 else
/* Node and all its children are processed, delete it. */

13 Delete Node

The basic algorithm of EarlyCSE is a depth-first search (DFS) on the domina-
tor tree. CurrentGeneration and AvailableLoads are transported across different
tree nodes to enable some inter-nodes optimizations. And the key function of it
is processNode(), where the real transformations take place. The actual proce-
dure of processNode() is complicated, we extract the interesting parts as shown
in Algorithm 2.

The helper functions used in Algorithm 2 are shown in Algorithm 3, Algorithm
4, and Algorithm 5:

• mayReadFromMemory and mayWriteToMemory. These two functions check whether
the input instruction may read from or write to memory.

• getMatchingValue. This function is used here to check whether the found
value in AvailableLoads can be used to replace the current instruction Inst.
In fact, this is quite a simple function. It may look lengthy and confusing
because it is also reused for "write back DSE", which checks whether a
store writes precisely the same value back to a known location. We are not
interested in write back DSE here, hence we omitted the according parts.

• isSameGeneration. This does just its name, checking whether the found
loaded value is of the same memory generation with current instruction
Inst.

14

Algorithm 2: EarlyCSE::processNode
Input: Node

1 BB← BscBock oƒ Node
2 if BB has more than one predecessor then
3 CrrentGenerton← CrrentGenerton + 1

4 if BB has exactly one predecessor && the predecessor ends with a
conditional branch then

5 Infer value based on the branch condition

6 LstStore← n
/* Elimination Iteration */

7 for nst in instruction list of BB do
8 if nst is trivially Dead then
9 Remove nst

10 if nst is load then
11 if nst is volatile or nst is ordered then
12 LstStore← n
13 CrrentGenerton← CrrentGenerton + 1

14 nV← lookup pointer operand of nst in AbeLods
15 Op← getMtchngVe(nV, nst, CrrentGenerton)
16 if Op is not null then
17 Replace all uses of nst with Op
18 Remove nst
19 continue

20 Insert nst together with CrrentGenerton into AbeLods
21 LstStore← n
22 continue

23 if myRedFromMemory(nst) then
24 LstStore← n

25 if myWrteToMemory(nst) then
26 CrrentGenerton← CrrentGenerton + 1
27 if nst is store then
28 if LstStore is not null and oerrdngStores(LstStore, nst)

then
29 Remove LstStore

30 Insert nst together with CrrentGenerton into
AbeLods

31 if nst is unordered and nst is not volatile then
32 LstStore← nst

33 else
34 LstStore← n

15

Algorithm 3: mayReadFromMemory
Input: nst

1 switch type of nst do
2 case load do
3 return true

4 case store do
5 return sUnordered(nst)

6 otherwise do
7 return false// return false by default

Algorithm 4: mayWriteToMemory
Input: nst

1 switch type of nst do
2 case store do
3 return true

4 case load do
5 return sUnordered(nst)

6 otherwise do
7 return false// return false by default

Algorithm 5: EarlyCSE::getMatchingValue
Input: nV, nst, CrrentGenerton

1 if nst is volatile or nst is ordered then
2 return null

3 if nst is load then
4 Mtchng←DefInst of nV
5 Other ← nst;

6 else
7 Mtchng← nst
8 Other ←DefInst of nV

9 if nst is store then
10 Rest← Mtchng

11 else
12 Rest← n

13 if nst is store and DefInst of nV != Rest then
14 return null

15 if !isSameMemGeneration(InVal, Inst) then
16 return null

17 if Rest is null then
18 Rest← Mtchng

19 return Rest

Algorithm 6: EarlyCSE::overridingStores
Input: Erer, Lter

1 if Erer and Lter write to different locations then
2 return false

3 if Erer is ordered or Lter is ordered then
4 return false

5 return true

16

Now we introduce Algorithm 2 in detail with a (non-atomic) example:

1 int a, b;

2 bool c, d;

3 ...

4 void func(){

5 a = 1;

6 if(d){

7 c = d;

8 a = 2;

9 a = 3;

10 } else {

11 b = a;

12 a = 4;

13 }

14 a = 5;

15 }

Listing 2: "A non-atomic example with control flow for EarlyCSE"

To put everything more clearly, we draw the function as a CFG, and show the
optimizing process in Figure 4:

• At the beginning, as shown in Figure 4a, CurrentGeneration is initialized to
1.

• In Node 0, we just have a store to a. It hits the condition on Line 25 of Algo-
rithm 2, so the memory generation is first updated, and this written value
is inserted into AvailableLoads. Theoretically, since a=1 is a write, LastStore
should be set to it. But Node 0 has only one instruction(statement in fact),
we will soon go to the next node. And please note Line 6, it means that
LastStore is reset to null when processing a new node. So we omitted
LastStore here. We then traverse child nodes of Node 0, starting from Node
1, which is the true branch of the condition if(b). CurrentGeneration and
AvailableLoads inherit from the parent node, Node 0. as shown in Figure 4b

• Now we are dealing with the instruction c=b in EarlyCSE::processNode, from
line 2 to line 5. This is how EarlyCSE transports information between differ-
ent basic blocks in a simple way. Here, Node 1 has exactly one predeces-
sor, Node 0, and Node 0 ends with a conditional branch, if(b). So based
on these facts, we can infer that, given we have reached Node 1, the con-
dition variable b must have the value true. So we can replace b here with
true. And of course, c=true is a write, so update memory generation and
record it in AvailableValues as shown in Figure 4c.

• Next, current instruction is a=2. This is a simple write, so we update the
current generation, record this value, and also update LastStore to a=2, as
shown in Figure 4d.

• And we come to the last instruction a=3 in this branch. Again, it hits the con-
dition on Line 25. And this time, LastStore is not null, and overridingStores

obviously will return true here. So LastStore, which is a=2 will be removed.
And a=3 is also a store itself, so memory generation will be updated, as well
as AvailableLoads, as Figure 4e.

• We are done with the true branch, and come to the false branch. Again, we
first inherit memory generation and AvailableLoads from the parent node.
The current statement b = a; will be compiled into two instructions: a load
from a, r=a, and a store which writes the loaded value to b, b=r. So first, r=a
will hit the condition on Line 10. And after looking up in AvailableLoads, we
can find that there exists a version of a with value 1. In getMatchingValue on
Line 15, the memory generations are checked, and a=1 is confirmed to be
valid. So uses of a can be replaced with value 1. The load from a will also

17

be removed. The modified write b = 1 will be processed. And the result is
shown in Figure 4f.

• In Figure 4f, we deal with a=4;. It is just another simple write. Update
generation, record value, and go on, as Figure 4g.

• Finally, we come to the last node, Node 3. Note that we used CFG in these
figures for convenience. But EarlyCSE, as stated earlier, walks down the
dominator trees instead of CFGs. And Node 3 is the third child node of
Node 0 in the dominator tree. So the generation and AvailableLoads are
inherited from Node 0 instead of Node 1 or 2. There is only one instruction
in Node 3. So no more optimizations are possible, we just end our walk.
And this will be the output of the EarlyCSE pass in this invocation.

3.2.2 Barriers of Atomics in EarlyCSE

With detailed algorithms of EarlyCSE in hand. We can briefly summarize how it
works to optimize RAR, RAW, and OW:

• EalyCSE maintains LastStore to record the last seen store operation, so
that when seeing a new store writing to the same location, it can remove
the old one. In this way, EarlyCSE optimizes OW.

• EarlyCSE maintains AvailableLoads to record every known loaded or written
value with the current generation. When trying to load a new value, it first
checks whether there is a valid version of this value in AvailableLoads, and
reuses the available value if possible. In this way, it optimizes RAR and
RAW.

• To make the optimizations above correct, EarlyCSE needs to maintain the
validity of written/read values. To do this, it maintains CurrentGeneration

and LastStore carefully. Whenever there is possibly a write operation, it
updates the generation number so that next time isSameGeneration will
return false, meaning that we cannot use any value from AvailableLoads

then. Even a store to an unrelated location will invalidate the whole mem-
ory. Similarly, LastStore is reset to null whenever there is possibly a read
from memory, even from an unrelated location. Apparently, such checks
are sound but not precise. EarlyCSE chooses such methods because it
aims to do a fast walk "early" through the code so that trivial cases can be
first found and optimized. And later passes, which we will introduce in the
following sections, will take care of more complex cases.

And we marked the parts, which forbid algorithms from optimizing atomics, in
red. Typically, these barriers are quite obvious and straightforward. Consider
the following dummy program:

1 #include <atomic >

2 using namespace std;

3 atomic <int > a;

4 ...

5

6 void func(){

7 a.store(1, memory_order_relaxed);

8 a.store(2, memory_order_relaxed);

9 }

Listing 3: A Dummy Example of Atomic OW

Such a simple OW pattern will not be optimized, because:

18

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4: Process Optimizing a Non-atomic Example With Control Flow

19

• After traversing the store instruction on Line 6, we hope that LastStore will
be set to it. So when walking down to the next write, we can remove this
dead store. However, since such a store is atomic (ordered), it will hit the
else branch in Algorithm 2 on Line 6. And LastStore will stay null. When
reaching the second write on Line 7, there is no LastStore to be overwritten.

• What’s more, even if LastStore is successfully set to a.store(1,

memory_order_relaxed), when processing a.store(2, memory_order_relaxed)

in the next iteration, such an atomic write operation hits the condition in
Algorithm 2 on Line 23, and LastStore is set to null "again" before used.
LLVM is conservative and all atomic operations, including writes, will be
taken as "may read from memory".

• Imagine our LastStore can magically survive through the barriers above
and get used. In the next check, which resides in overridingStores, condi-
tion on Line 3 in Algorithm 6 will be hit and a false will be returned. As a
result, our attempt to optimize such an overwritten write will fail.

From this simple enough example, we can find a number of checks in algorithms
in EarlyCSE, ruling out atomic operations. We can see that the designer of this
pass tried hard to catch every atomic and forbid them from being transformed.
We did not mention all these checks because they resemble.

In order to enable optimizations on atomics, we need first to remove/modify
these checks, so that atomics can be treated just as regular reads and writes.
But as we mentioned earlier, these conservative checks are somehow reason-
able. Additional constraints shall be added to make transformations safe.

3.3 Proposed Approach for EarlyCSE

Now, we present our approach for EarlyCSE. The basic structure of EarlyCSE is
not modified. Algorithm 1 stays the same, and we modified parts of other Algo-
rithms and list them in Algorithms 9, Algorithm 7, and Algorithm 8. We suffixed
our methods with OA, which means "Optimize Atomic". Our modifications are
marked in cyan.

To explain our methods, let’s first start with the helper functions.
getMatchingValueOA is our version of getMatchingValue, shown in Algorithm 7.

There are two modifications. First, on Line 1, we removed the checks which
forbid atomics (but the check for volatile is reserved there). And on Line 15, we
added new constraints there. This one may look a bit confusing, we can explain
it here. The condition Inst = Other follows from the assignment on Line 5. If the
condition is hit, then Inst must be a load operation, and Matching is a store or
load which Inst reads from. According to Section 2.4, atomic RAW and RAR can
only be optimized when the later read has a stronger or equal ordering with the
earlier read/write. So if Other has a stronger ordering, we can only return null.

20

Algorithm 7: EarlyCSE::getMatchingValueOA
Input: nV, nst, CrrentGenerton

1 if nst is volatile then
2 return null

3 if nst is load then
4 Mtchng←DefInst of nV
5 Other ← nst;

6 else
7 Mtchng← nst
8 Other ←DefInst of nV

9 if nst is store then
10 Rest← Mtchng

11 else
12 Rest← n

13 if nst is store and DefInst of nV != Rest then
14 return null

15 if nst = Other then
16 if Other has a stronger ordering than Mtchng then
17 return null

18 if !isSameMemGeneration(InVal, Inst) then
19 return null

20 if Rest is null then
21 Rest← Mtchng

22 return Rest

Algorithm 8: EarlyCSE::overridingStoresOA
Input: Erer, Lter

1 if Erer and Lter write to different locations then
2 return false

3 if Erer has a stronger ordering than Lter then
4 return false

5 return true

Similarly, for atomic OW patterns, we can only optimize when the later write
has a stronger or equal ordering. So for overridingStores, we removed the
checks preventing atomics and added constraints as cyan parts in Algorithm
8.

21

Algorithm 9: EarlyCSE::processNodeOA
Input: Node

1 BB← BscBock oƒ Node
2 if BB has more than one predecessor then
3 CrrentGenerton← CrrentGenerton + 1

4 if BB has exactly one predecessor && the predecessor ends with a
conditional branch then

5 Infer value based on the branch condition

6 LstStore← n
/* Elimination Iteration */

7 for nst in instruction list of BB do
8 if nst is trivially Dead then
9 Remove nst

10 if nst is load then
11 if nst is volatile or nst is ordered then
12 LstStore← n
13 if nst is volatile then
14 CrrentGenerton← CrrentGenerton + 1

15 nV← lookup pointer operand of nst in AbeLods
16 Op← getMtchngVeOA(nV, nst, CrrentGenerton)
17 if Op is not null then
18 Replace all uses of nst with Op
19 Remove nst
20 continue

21 if nst is ordered then
22 CrrentGenerton← CrrentGenerton + 1

23 Insert nst together with CrrentGenerton into AbeLods
24 LstStore← n
25 continue

26 if myRedFromMemory(nst) then
27 if nst is not Store then
28 LstStore← n

29 if myWrteToMemory(nst) then
30 CrrentGenerton← CrrentGenerton + 1
31 if nst is store then
32 if LstStore is not null and

oerrdngStoresOA(LstStore, nst) then
33 Remove LstStore

34 Insert nst together with CrrentGenerton into
AbeLods

35 if nst is volatile then
36 LstStore← n

37 else if nst is ordered then
38 LstStore← n
39 if nst is Store then
40 LstStore← nst

41 else
42 LstStore← nst

Then we can come to the major function processNodeOA shown in Algorithm 9.

22

The modifications include:

• We replaced the functions getMatchingValue and overridingStores with our
version.

• For the problem that atomic stores are deemed as reads from memory,
we added a condition in the branch on Line 26, so that atomic stores can
escape. We do not choose to modify mayReadFromMemory directly, because,
in practice, this function is implemented in llvm/lib/IR/instruction.cpp.
This file is a core one and is widely used across the LLVM project. We would
prefer to modify codes only used in the current file.

• A more complicated modification is from Line 35. This part aims to set
LastStore given that the current instruction is a store. In the original LLVM
implementation, if Inst is ordered or volatile, LastStore will be set to null so
that Inst will not be removed even if it is overwritten. And to change this,
we made a more detailed conditional branch to isolate one case where Inst

is an ordered store. We set LastStore to Inst in this case. For other cases,
we keep it as original.

• The most interesting modification is in the branch from Line 10. The origi-
nal LLVM implementation updates CurrentGeneration immediately as it finds
current instruction is a volatile or ordered load. This action will invalidate
all values in AvailableLoads. By doing so, later attempts to optimize RAR
and RAW patterns, which can potentially remove Inst will never succeed.

To enable optimizations, we need to remove the ordered cases from the
check, as we have done on Line 13. But simply doing so is not enough.
Consider the following example:

To avoid such errors, we "deferred" the updating of CurrentGeneration for
atomic cases to Line 21.

With all these modifications, we are done with EarlyCSE! And now, our EarlyCSE
pass can optimize atomic patterns safely.

23

4 From EarlyCSE to Others

Before continuing to introduce our methods for other passes, we would like to
summarize the work on EarlyCSE first here. We organize the previous content
so that it can be understood more easily. The following content is similar to Ear-
lyCSE in principle, and this summary can also help understand the subsequent
sections.

4.1 Design Choice of Our Implementation

(a) Original Sequence

(b) Implement and Insert New Passes

(c) Modify Passes in Place

Figure 5: Choices of Implementation

If the original sequence of passes in one go of compilation is as Figure 5a, basi-
cally, we have two choices to enable optimizations for atomics. The first choice
is to implement a totally new pass Pass OA, and invoke it in the sequence of
compilation. The main advantage of this method is that we do not need to know
about or change any existing passes. We only need to implement a dedicated
pass for atomic operations. However, the optimizations of RAR, RAW, and OW
are nothing new for the compiler, though we are introducing new guests for
them. So implementing a new pass can still duplicate lots of existing codes
from old ones. What’s more, one pass is not only invoked once in a compiling
sequence. A fully optimizing pass for atomics, invoked several times as shown
in Figure 5b can significantly increase the compiling time.

So our choice is the second method, modifying existing passes as Figure 5c.
This requires us to look at a lot of codes. But we can preserve the existing
complexity of algorithms, and reuse current codes much as possible. This is
also an important principle during our implementation: minimal changes. LLVM
is really large a code base. There are many unknown areas to us, even if we
already had a tour around. So in order not to raise unknown errors, and not
hurt performance significantly, we choose to make modifications under control.
The mayReadFromMemory used in EarlyCSE is an instance of such complex depen-
dencies (However, mayReadFromMemory does need to be refined, which is another
story).

24

4.2 Not All Possible Transformations are Enabled

Choosing to modify existing passes will also miss a part of the chances of op-
timizations. Consider the following example: Here is a simple non-atomic RAR

(a) Original (b) Reordering 1 (c) Reordering 2

Figure 6: Reordering Choices of Non-atomic RAR

case shown in Figure 6a. The second read from a is obviously redundant and
can be removed. To achieve this, we have two choices as Figure 6b and Figure
6c. We can move the first read, r0 = a, down, or the second read, r2 = a, up.
Two ways will both remove the redundant r2 = a successfully. Just the orders of
the remaining instructions are different.

However, reordering non-atomic cases is not free. Let’s replace the read from
b with an atomic read with acquire ordering as Figure 7. Since we can only move
instructions from before to after an acquire read, we have only one choice here
as Figure 7b.

(a) Original (b) Reordering (c) Not Allowed

Figure 7: Reordering Choices of Atomic RAR

The problem is that the current LLVM tries to reserve the original relative or-
der of instructions when performing eliminations. For instance, it chooses Figure
6c for the given example, so that the remaining instructions keep the original
relative order. However, in an atomic case, such reordering is not allowed as Fig-
ure 7c. So if we follow the current algorithm (and we did), nothing will happen
to the program in Figure 7a, even though it is possible to be optimized.

4.3 Types of Modifications Made

With EarlyCSE as an example, one can find that our modifications are of two
types:

• First, help atomics to escape. The example shown in Section 3.2.2 gives an
image of how many barriers there are forbidding atomics. Typically, these
are explicit conditions ruling out ordered operations. But sometimes, these
checks hide deeply in functions from other libraries. We need to refine
the conditional branches, or re-implement some functions if necessary, to
allow atomics to be served as regular memory accesses.

25

• And more importantly, we need to add new constraints to make transfor-
mations safe. Directly enforcing passes to transform atomic patterns def-
initely brings problems. After helping atomics out, we need to adapt the
algorithms of passes to put confinements on atomics according to rules in
section 2.4. This is also one main challenge of our project.

4.4 Challenges of This Work

The challenges mainly come when add constraints for atomics. And the main
problem is that most algorithms of the current LLVM are designed for non-atomic
cases. In fact, Section 4.2 has shown a part of this problem. The scanning order
of non-atomic accesses does not matter much, because non-atomic accesses
can be reordered relatively freely. So when designing the algorithms, one may
just choose a preferred order. However, the ordering constraints of atomic ac-
cesses do not allow free reordering. We need to adapt these constraints to the
existing algorithms.

On the other hand, because of the current conservative attitude towards
atomics, when a pass encounters an atomic access, it has only two choices:
skip it, or just stop scanning. However, if we choose to optimize the atomics,
we have to do something more. We need to check, for example, the ordering of
this instruction, and the location of the memory access. And we may need to
eliminate this atomic access, but not just skip or stop.

4.5 Some More Explanation

One may find in the example in Figure 4 that even in the end, the code is not
fully optimized. a = 5; in Node 3 totally dominates a = 1; in Node 0. So a = 1;

is overwritten and shall be removed. But it was not. The direct reason for this is
that LastStore is only valid inside a single node. So a write in another node may
never kill a write in the current one. And essentially, this is because EarlyCSE,
as stated before, is designed to be fast. It only performs trivial optimizations. So
EarlyCSE goes through instructions only once and never looks back. It will not
modify Node 0 after leaving Node 0. And this is why works in the following sec-
tions are required. They take care of the (more complex) cases which EarlyCSE
cannot handle.

Last but not least, passes in LLVM depend on a number of libraries. Even if we
are only trying to introduce a small fraction of LLVM, a lot of dependent libraries
or structures get involved. If some parts of the shown algorithms look a bit
weird, this might be the reason. And as we mentioned, passes in such a product-
level compiler are supposed to cover all corner cases and have numerous, not
interesting details which we omitted. We attempt to explain our technical details
much as we could. Nevertheless, covering everything is not feasible, and not
necessary. In order to explain more concisely and understandably, we may have
omitted uninteresting details, changed variable names, simplified procedures,
inlined functions, etc. But the essential algorithms and procedures remain. The
principles of our modifications are pretty simple, and our descriptions are to
show these basic ideas of the proposed methods. And We wish these would be
enough to help understand our concepts.

In the following two sections (Section 5 and Section 6), we go on to introduce
our solutions to the current LLVM.

26

5 InstCombine

In this section, we introduce our works with LLVM InstCombine Pass. To be more
specific, RAR and RAW patterns are taken care of in this pass. Unlike EarlyCSE,
InstCombine Pass makes use of alias analysis when optimizing these patterns,
which enables it to perform optimizations on more complicated memory ac-
cesses.

5.1 Overview InstCombine

5.1.1 Instruction Combining

Instruction combining is a type of optimization that combine instructions to form
fewer and simpler instructions. As a dummy example, the following two lines
can be combined into one.

1 a += 1;

2 a += 1;

After instruction combining, we get:

1 a += 2;

Apparently, instruction combining may serve a great number of instructions,
from numerical operations like addition and multiplication to logical operations.
And typically these optimizations are trivial and straightforward.

5.1.2 LLVM InstCombine

LLVM InstCombine is the LLVM implementation of such optimizations. In fact,
LLVM InstCombine is a large, diverse collection of "peephole optimizations" that
(typically) transforms instructions into more efficient forms. The optimizations
performed in LLVM InstCombine cover various types and go much beyond the
example shown above. Our target patterns, RAR and RAW, are included in them.
So we shall find the (small) fraction concerning our interesting problems, and
adapt it. Again, let’s start with a non-atomic example:

1 int x, y;

2 int a, b, c;

3 void func(){

4 x = 1;

5 y = 2;

6 a = x;

7 b = y;

8 c = x;

9 }

LLVM InstCombine uses a "worklist-driven" algorithm to run the optimizations.
This kind of algorithm is widely used among various passes in LLVM. Typically,
a pass first forms a worklist from a function or a basic block. Then it takes an
instruction out of the worklist, optimizes it, and inserts the optimized instruc-
tion(s) (or nothing, if the instruction ends up eliminated) back into the worklist.
Such iterations repeat until some condition is fulfilled. In the given example, the
code is compiled into the instructions in Figure 8a. As we mentioned in Section
3.2.1, a "copy" statement like a = x; will be transformed into two instructions,
r0 = x; and a = r0; in an IR file. The procedure of InstCobine pass optimizing
such a function could be:

27

(a) (b)

(c) (d)

Figure 8: Process of InstCombine Pass Optimizing a Non-atomic Example

• To start with, InstCombine makes a worklist out of the function. In this
example, all the instructions will be inserted into the worklist. InstCombine
pops instructions out of the worklist in order. The initial state is Figure 8a.

• For each instruction, it invokes a "visit" function to check if the current
instruction could be transformed or eliminated. For our example, since we
are working on memory accesses, or more specifically, RAR and RAW here,
we first show a "visit" to r0 = x; as in Figure 8b.

• When visiting a load instruction, InstCombine searches backward as Figure
8b, to find if there is an available load so that the current one can be
replaced or deleted. For r0 = x;, InstCombine will start from y = 2;. This is
a store, which means it could modify memory. So InstCombine will check
if y = 2; may modify the memory location(s) read by r0 = x;. After finding
there is no overlap in memory, it will continue searching. And finally, it will
find a write x = 1;, which writes to the location where r0 = x; reads from,
as in Figure 8c.

• After finding the available value, InstCombine will replace all uses of r0 with
the found value 1. And if r0 is then never used, this instruction can be then
removed, as Figure 8d.

• Then InstCombine will continue processing instructions in the worklist until
all of them are visited. The process resembles the treatment of r0 = x;,
and we skip them for now.

Here one may find the difference between EarlyCSE and InstCombine. When
trying to optimize a RAR or RAW pattern, EarlyCSE will give up whenever there

28

is a write (like y = 2; in this example) to memory, while InstCombine will check
if the write really modifies the interesting location. This is why InstCombine can
deal with more complex patterns. And this is also one of the reasons that Ear-
lyCSE is necessary: it does not need careful comparison and checks of memory
accesses, so it can quickly optimize trivial cases where these checks are not
necessary.

5.1.3 LLVM Alias Analysis

Such memory access checking performed here is called alias analysis [5]. Alias
analysis is an important technique in compilers. Pointers are essentially aliases
of memory locations. And two pointers are said to be aliased if they point to
the same location. Alias analysis attempts to determine whether or not two
pointers ever can point to the same object in memory. The class of alias anal-
ysis has covered a big range of algorithms, and there are various ways to clas-
sify them: flow-sensitive vs. flow-insensitive, context-sensitive vs. context-
insensitive, field-sensitive vs. field-insensitive, etc. And typically, alias analyses
will tell if two pointers must, may, or no alias. Respectively, this means the two
pointers always point to the identical object, might point to the same object, or
cannot point to the same object.

The LLVM Alias Analysis is mostly a flow-sensitive one. Just as the tradition,
it responds must, may, or no. And in addition, it can tell mod/ref information,
which says whether an operation (must, may, or never) reads or writes from a
location. LLVM Alias Analysis is the basis of many powerful and useful optimiza-
tions performed in LLVM. And obviously here in InstCombine, we make use of it,
since it helps check the memory accesses in the way of searching (like y = 2;)
could be a clobber (if they modify the value of x).

5.2 Current Approach of InstCombine

Now we provide the detailed algorithms of InstCombine, see how they work, and
why they forbid atomics.

5.2.1 Algorithm Description InstCombine

First of all, the basic algorithm of InstCombine, as stated, is a worklist-driven al-
gorithm as Algorithm 10, and helper functions used by it are shown in respective
algorithms.

One thing interesting here is the visit function. Typically, functions like visit

may have all kinds of instructions in LLVM as the input parameter. And there are
too many kinds of instructions in LLVM. To avoid writing a much too verbose
switch-case statement, LLVM implements an "Instruction visitor" using the C++
macro. The details of such implementation are not relevant here and out of
our scope of discussion. And the result is, visit will invoke the corresponding
visiting function for the input instruction. For our RAR and RAW patterns, we are
always visiting the load instructions, thus we need to look into the visitLoadInst

function as shown in Algorithm 13.

29

Algorithm 10: InstCombine
Input: Fncton

1 Workst← prepreCWorkstFromFncton(Fncton)
2 while Workst is not empty do
3 nst← pop an instruction from Workst
4 if snstrctonTryDed(nst) then
5 Remove nst
6 continue

7 Rest← st(nst)
8 if Rest is not null then
9 if Rest != nst then

10 Replace all uses of nst with Rest
11 Push users of Rest to Workst
12 Push Rest to Workst

13 else
14 if snstrctonTryDed(nst) then
15 Remove nst

16 else
17 Push users of nst to Workst
18 Push nst to Workst

Algorithm 11: isInstructionTriviallyDead
Input: nst

1 if nst is used then
2 return false

3 if nst is terminator then
4 return false

5 if myHeSdeEƒ ƒects(nst) then
6 return false

7 return true

Algorithm 12: mayHaveSideEffects
Input: nst

1 if myWrteToMemory(nst)or nst may throw then
2 return true

3 return false

Algorithm 13: visitLoadInst
Input: Lodnst

1 Ve← FndAbeLodedVe(Lodnst)
2 if Ve is not null then
3 Replace all uses of Lodnst with Ve
4 return Lodnst

5 return null

30

Algorithm 14: FindAvailableLoadedValue
Input: Lodnst

1 StrppedPtr ← Strip pointer of Lodnst
2 ScnBB← Basic block of Lodnst
3 AtLestAtomc← Atomicity of Lodnst
4 if Lodnst is Ordered then
5 return null

6 Abe← null
7 MstNotAs← []
8 for nst in range(instruction before Lodnst, start of ScnBB) do
9 Abe←

getAbeLodStore(nst, StrppedPtr, AtLestAtomc)
10 if Abe is not null then
11 break

12 if myWrteToMemroy(nst) then
13 Push nst to MstNotAs

14 if Abe is not null then
15 Loc← memory location of Lodnst
16 for nst in MstNotAs do
17 if myModƒy(nst, Loc) then
18 return null

19 return Available

Algorithm 15: getAvailableLoadStore
Input: nst, Ptr, AtLestAtomc

1 if nst is a Load then
2 if nst has a weaker atomicity than AtLestAtomc then
3 return null

4 LodPtr ← Strip pointer of nst
5 if LodPtr and Ptr are the same addresses then
6 return nst

7 if nst is a Store then
8 if nst has a weaker atomicity than AtLestAtomc then
9 return null

10 StorePtr ← Strip pointer of nst
11 if StorePtr and Ptr are different addresses then
12 return null

13 Ve← Value operand of nst
14 return Ve

15 return null

And lastly, There is a deep calling stack for alias analysis in LLVM, involving a
series of methods in LLVM Alias Analysis. And listing all functions in the calling
stack does not make much sense. For readability, we simplified these functions
and combined them into the function shown as Algorithm 16. It determines
whether an operation may modify the given memory location.

31

(a) (b)

(c) (d)

(e)

Figure 9: Detailed InstCombine Algorithms Optimizing a Non-atomic Example

Algorithm 16: mayModify
Input: nst, Loc

1 if nst is ordered then
2 return true

3 if nst is load then
4 return false

5 if Loc is not null and nst is store then
6 AR← Alias Analysis Result of nst at Loc
7 if AR is no alias then
8 return false

9 if AR is must alias then
10 return true

11 return true

Now we have all the used functions in hand, let’s get back to the example in
Figure 8 to see how these algorithms are running:

• To start with, we begin with InstCombine shown in Algorithm 10. We first
create the worklist as Line 1.

We did not show the details of prepareICWorklistFromFunction, since it is

32

verbose and not interesting. The main task of this function is to check the
reachable instructions. For example, if there is a branch that will never be
reached, instructions in that branch will not be inserted into the worklist.
And as we mentioned, in our example, all instructions will be added.

• After forming a worklist, we can start the optimizing iteration, the while-
loop. This iteration will repeat until the worklist is empty. In other words,
the optimization will continue until all instructions are visited. A worklist,
instead of direct iterating over the instructions, is used here, because op-
timizing and modifying an instruction may create new chances for opti-
mizations in return. So we shall insert the modified or newly generated
instructions back into the worklist, if any.

• For each iteration, we pop an instruction out of the worklist. Remove it if
it is trivially dead. And visit it as Line 7. As we mentioned, visiting an in-
struction is polymorphic. The corresponding function will be automatically
invoked based on the type of input instructions. However, the basic rule is
that visit will return a pointer to an instruction.

If the original instruction is not modified, then visit will return null, which
means there is nothing to do, just continue to visit the next instruction.

If the original instruction needs to be replaced with a new instruction, then
the pointer to the new instruction will be returned. Result will point to the
new one, which hits condition on Line 9. All uses of Inst will be replaced
with Result, and Result together with its uses will be inserted back into the
worklist.

And if the original instruction is just modified, then the original pointer is
returned, which hits the else branch on Line 13. This case resembles the
last case. The difference is that now the modified instruction can be dead
since all its uses are replaced. So check if we can remove it.

• Now we have explained the iteration structure. And we can continue to see
how exactly an instruction is visited. Since every iteration is largely similar,
we choose to skip some steps and come to the visit to r2 = x;. By far, the
previous two reads have been optimized and removed. Writes to a and c

also have been replaced with constant values as Figure 9a.

• r2 = x; is a load instruction, so visitLoadInst in Algorithm 13 is invoked.
And according to it, we invoke FindAvailableLoadedValue to find if we have
any available values for this load. And if there is, we can replace all uses
of the load with the found value, and return the instruction back.

• In FindAvailableLoadedValue as shown in Algorithm 14, the input LoadInst is
our current load instruction r2 = x;. first, we strip off pointer casts of the
pointer operand of the load. In our example, the pointer x is quite simple
and is just returned. Then, we get the current basic block ScanBB as our
working scope. This also means InstCombine optimizes load operations
inside basic blocks. There are no inter-basic-block behaviors. This is also
why we used a straight-line program as our example. After that, we get
AtLeastAtomic from LoadInst. It is a boolean value, just indicating whether
LoadInst is atomic. And here it is false. Available is the to-be-found avail-
able loaded value and is now initialized to null. And MustNotAlias is a vector
of instructions used to check whether instructions will clobber the optimiza-
tion.

Then we begin the for-loop. The iteration starts from the instruction right
before LoadInst, b = 2;, and scans reversely to find an available value,
as Figure 9b. We use a pointer, search, to indicate the instruction being
checked by FindAvailableLoadedValue.

33

• Then we need to invoke getAvailableLoadStore as Algorithm 15. Basically,
we can see this function has two conditional branches: one for loads, and
one for stores. This exactly corresponds to our patterns to be optimized:
load for RAR, and store for RAW. Now the input is b = 2;, a store to an
unrelated location. So it finally hits the condition on Line 11. And the
function will return null, which means the current instruction, b = 2;, does
not provide an available value for r2 = x;.

• Now we are back to FindAvailableLoadedValue. Since getAvailableLoadStore

returns null, we come to Line 12, and push b = 2; into MustNotAlias. Then
continue the iteration, as Figure 9c.

• We are done with one invocation to getAvailableLoadStore. The rest of
FindAvailableLoadedValue is similar. We will search all the way till we find
x = 1;. And of course, if we cannot find an available value for r2 = x;,
Available will stay null and be returned. As Figure 9d, we have found the
available value at x = 1;. So now Available is not null, the condition on
Line 14 is hit. We get the load location of r2 = x;, which is x. And compare
it with every write in MustNotAlias.

Now you can see the meaning of MustNotAlias, it records every write we
have seen so far. And if x is written by any instruction in MustNotAlias, it
means the value of x might have been modified, and cannot be used by
r2 = x;. This is why this vector is named MustNotAlias: the instructions we
checked before finding the available value cannot be aliased with it.

• At last, vistLoadInst will replace all uses of r2 = x; with the found write
x = 1;, and the pointer to LoadInst is returned to InstCombine. And in
InstCombine, because a modified instruction is returned, we come to the
else branch on Line 13. r2 = 1; is now not used anywhere, and can be
removed. We eventually get the result in Figure 9e.

This is a full run of Instcombine for RAR and RAW patterns. We covered most
details and omitted some verbose or uninteresting ones. Though there are a
lot of functions called, the principles of InstCombine are quite direct. In the
following parts, we point out the barriers of atomics in these algorithms and
propose our solutions.

5.2.2 Barriers of Atomics in InstCombine

In the process of introducing these algorithms, one may have already seen those
barriers, now we just list them out. The barriers are marked red just as we did
for EarlyCSE. And we can just pick out these barriers using a very simple atomic
example in Figure 10.

• Currently, we are visiting an atomic acquire read, r = x, ACQ; as Figure
10a. We get into the calling stack, and our first barrier comes in Algorithm
14. On Line 4, since the current load is ordered, the whole function just
returns null and terminated.

• In the iteration in Algorithm 14, we invoke getAvailableLoadStore. In fact,
this function does not forbid atomics itself. Because the check in
FindAvailableLoadedValue has made sure that no atomic can survive here.
AtLeastAtomic is used to guarantee that We can value forward from an
atomic to a non-atomic, but not the other way around. This is a conser-
vative and correct treatment.

• Assume we returned null from getAvailableLoadStore. We are now on Line
12. A write like the current one, y = 2, REL;, will of course be inserted into

34

(a)

(b)

(c)

Figure 10: A Small Trip in InstCombine to Find Barriers

MustNotAlias as Figure 10b. However, imagine we have an atomic read,
which does not write anything. It will still be inserted. This may sound
similar. We dealt with this problem for EarlyCSE. And now the problem
comes again: mayWriteToMemory takes all atomic operations as writes.

• After reaching x = 1, SC;, we need to check if its value is written by op-
erations in MustNotAlias. This is the next barrier. In mayModify, on Line 1,
an ordered operation is assumed to modify any memory location. So any
atomic operation in MustAlias will stop the optimization, no matter if it is a
read or a write, and no matter which memory location it is accessing.

• And assume this lucky invocation can successfully return to visitLoadInst.
We will be able to replace uses of this load as Figure 10c. However, after
returning to InstCombine, when we are trying to remove the unused in-
struction r = 1, ACQ;, we would fail. Since isInstructionTriviallyDead take
atomic operations as having side effects. This, again, thanks to
mayWriteToMemory as Algorithm 12. So even if the read r = x, ACQ; has been
modified and unused, it will not be removed since it is not "trivially dead".

5.3 Proposed Approach for InstComibine

Now we got the barriers. As we talked about in Section 4, we will remove bar-
riers and introduce new constraints. Again, we marked our modified parts as
cyan. The new algorithms are suffixed with "OA", shown from Algorithm 17 to
Algorithm 21. We introduce our modifications just in this order:

35

Algorithm 17: InstCombineOA
Input: Fncton

1 Workst← prepreCWorkstFromFncton(Fncton)
2 while Workst is not empty do
3 nst← pop an instruction from Workst
4 if snstrctonTryDed(nst) then
5 Remove nst
6 continue

7 Rest← st(nst)
8 if Rest is not null then
9 if Rest != nst then

10 Replace all uses of nst with Rest
11 Push users of Rest to Workst
12 Push Rest to Workst

13 else
14 if snstrctonTryDed(nst) then
15 Remove nst

16 else if nst is load and not used then
17 Remove nst

18 else
19 Push users of nst to Workst
20 Push nst to Workst

Algorithm 18: visitLoadInstOA
Input: Lodnst

1 Ve← FndAbeLodedVeOA(Lodnst)
2 if Ve is not null then
3 Replace all uses of Lodnst with Ve
4 return Lodnst

5 return null

• For InstCombineOA, we added a small branch to allow removing the atomic
instruction. This is like our treatment of EarlyCSE.

core functions like isInstructionTriviallyDead are widely used across the
LLVM project, and we cannot easily modify these functions. So we choose
to use small conditions to help atomics escape.

• For visitLoadInstOA, we just replaced FindAvailableLoadedValue with a new
version.

• For FindAvailableLoadedValueOA, we did several changes. First, we replaced
AtLeastAtomic with AtLeastOrdering. Because we are now optimizing atom-
ics, atomicity is not enough to provide ordering information.

getAvailableLoadStore is replaced accordingly. The interesting part is from
Line 10. We added two ordering constraints for checking ordering. Note the
place where we choose to add them: we check the ordering after finding
Inst does not provide an available value. If Inst is the value we are looking
for, then Inst can form a RAR or RAW pattern with LoadInst. And if not,
we must check if Inst is a clobber according to Table 1. And we break the
iteration if it is. And we replaced mayModify with our version.

36

Algorithm 19: FindAvailableLoadedValueOA
Input: Lodnst

1 StrppedPtr ← Strip pointer of Lodnst
2 ScnBB← Basic block of Lodnst
3 AtLestOrderng← Ordering of Lodnst
4 Abe← null
5 MstNotAs← []
6 for nst in range(instruction before Lodnst, start of ScnBB) do
7 Abe←

getAbeLodStoreOA(nst, StrppedPtr, AtLestOrderng)
8 if Abe is not null then
9 break

10 if nst is Load and has an ordering Stronger than or equal to acquire
then

11 break

12 if nst is Store then
13 if Both nst and Lodnst are sequentially consistent then
14 break

15 if myWrteToMemroy(nst) then
16 Push nst to MstNotAs

17 if Abe is not null then
18 Loc← memory location of Lodnst
19 for nst in MstNotAs do
20 if myModƒyOA(nst, Loc) then
21 return null

22 return Available

Algorithm 20: getAvailableLoadStoreOA
Input: nst, Ptr, AtLestOrderng

1 if nst is a Load then
2 if nst has a weaker ordering than AtLestOrderng then
3 return null

4 LodPtr ← Strip pointer of nst
5 if LodPtr and Ptr are the same addresses then
6 return nst

7 if nst is a Store then
8 if nst has a weaker atomicity than AtLestOrderng then
9 return null

10 StorePtr ← Strip pointer of nst
11 if StorePtr and Ptr are different addresses then
12 return null

13 Ve← Value operand of nst
14 return Ve

15 return null

37

Algorithm 21: mayModifyOA
Input: nst, Loc

1 if nst is load then
2 return false

3 if Loc is not null and nst is store then
4 AR← Alias Analysis Result of nst at Loc
5 if AR is no alias then
6 return false

7 if AR is must alias then
8 return true

9 return true

• For getAvailableLoadStore, we changed the input parameter as we men-
tioned earlier. Instead of checking atomicity, we now check the relationship
between orderings of Inst and AtLeastOrdering (essentially the ordering of
Lodnst).

• And finally for mayModify, we simply removed the check of atomics. Please
note that mayModify is a function we made up for explanation. The prac-
tical work we did is to create a series of (boring) new functions in LLVM
Alias Analysis dedicated to our modifications. These new methods com-
bined to be equivalent to removing an atomic check. So we represent our
modifications as this.

These are our methods for InstCombine. We are now done with another important
pass. And the work on InstCombine follows our summaries in Section 4:

• To enable LLVM passes to optimize atomics, we need to first find out and re-
move barriers. And then add new constraints to make optimizations sound.

• Existing algorithms are designed for non-atomics. So ordering of instruc-
tions is typically not considered. When implementing optimizations for
atomics, we need to adapt algorithms to do these checks. However, such
adaptions are quite feasible thanks to the good design of LLVM.

• The concept of avoiding atomics is deeply rooted in LLVM. IR functions like
mayWriteToMemory, utilized functions like isInstructionTriviallyDead, and
functions in LLVM Alias Analysis, all have been ensured to avoid atomics.
These are additional obstacles in the way of optimizing atomics.

We can now continue to the last pass: DSE.

38

6 DSE Pass

DSE pass takes care of more complex OW patterns than EarlyCSE. Like Inst-
Combine, it makes use of alias analysis to perform more precise optimizations.
In addition, it uses MemorySSA to efficiently scan instructions. In this section,
we introduce algorithms in the current DSE pass and our optimizations imple-
mented.

6.1 Overview DSE

6.1.1 Dead Store Elimination

DSE stands for Dead Store Elimination (DSE). This is quite a straightforward
optimization widely applied in compilers. As the name indicates, it intends to
remove an assignment of a variable if the assigned value is not used by any
subsequent instruction. A very simple example could be:

1 a = 1;

2 r = b;

3 a = 3;

4 print(a);

The write a = 1; on Line 1 is never used and could be removed. Typically, DSE
optimizes the OW patterns. Like the dummy example above, a = 1; is overwrit-
ten by a = 3;, and there is no use of a between them. So we can determine that
a = 1; is killed by a = 3;.

In fact, we have seen EarlyCSE optimizing OW patterns. But EarlyCSE is much
too simple. For this example, the read r = b; will set LastStore back to null, so
a = 3; cannot find the previous store to be killed. So it is obvious that we need
alias analysis like we did in InstCombine, to precisely judge whether instructions
between the two writes could be a clobber.

This is approximately the basic algorithm of DSE: for each store operation,
we look upwards to find if it kills any previous store. And apparently here comes
another problem: walking through the whole instruction list over and over again
is inefficient and unnecessary. Overwritten Write (OWis between stores. It is
more efficient to only scan store operations. DSE makes use of another tool in
LLVM to do this: MemorySSA.

6.1.2 LLVM MemorySSA

MemorySSA is an analysis that allows us to cheaply reason about interactions
between various memory accesses [13]. Intuitively, the version of the memory
is updated when there is a store to the memory, while a load typically just
uses the memory, but does not modify it. So a store defines a new version of
the memory. On the other hand, memory versions are associated with their
defining writes. And MemorySSA is used to maintain all these memory versions
with their defining operations.

More generally, these operations defining the memory are called MemoryDef,
including store, function calls, and those operations that may introduce order-
ing constraints, like memory fences and acquire (or higher) loads. Instructions
that read from the memory, like regular loads, are called MemoryUse. And both
MemoryDef and MemoryUse are MemoryAccess.

For example in the following example, we marked the memory definitions
with their relations:

39

1 a = 1; // 1 = MemoryDef(liveOnEntry)

2 r0 = a;

3 r1 = b;

4 b = 2; // 2 = MemoryDef (1)

5 c = 3; // 3 = MemoryDef (2)

Note that a = MemoryDef(b) means that MemoryDef a, mapped to the current
instruction, defines a new memory version based on another MemoryDef b. In
the example above, b = 2; is a store operation. It is numbered 2, and it de-
fines a new memory version based on the one defined by 1, a = 1;. And as
the first store operation, a = 1; defines a memory version based on a special
liveOnEntry, which means a = 1; is the first store in the current scope.

So you can see that MemoryDef gives a single chain of memory definitions in
programs. This helps us efficiently scan instructions. And MemorySSA can be seen
as a virtual IR. It maps to memory accesses (instructions) in the program and
maintains their interactions with the memory.

One may have noticed that in Section 3.3, Algorithm 7, when comparing gen-
eration numbers of Inst and InVal, EarlyCSE uses a function isSameMemGeneration.
It might seem strange to use a separate function for simply comparing two num-
bers. We omitted this function in Section 3.3 because it was irrelevant to our
methods. And it makes use of MemorySSA. We show it here as Algorithm 22.

Algorithm 22: EarlyCSE::isSameMemGeneration
Input: Erernst, Lternst

1 if EarlierInst has the same generation as LaterInst then
2 return true

3 ErerMA← Memory access of Erernst
4 LterDeƒ ← clobbering memory access of Lternst
5 if LaterDef dominates EarlierMA then
6 return true

7 return false

It first, certainly, checks the generation numbers of two instructions. How-
ever, it does not immediately return false when finding they are not equal. In-
stead, it makes use of MemorySSA to find the clobbering memory access of
LaterInst and the memory access of EarlierInst. Since we know that both
EarlierInst and LaterDef dominate LaterInst, if LaterDef dominates EarlierInst,
then there cannot be any clobber between EarlierInst and LaterInst. In this
case, we can safely do the CSE optimization. As an example, take a look at the
following code:

1 x = 2; // Clobber of LaterInst

2 r0 = x; // <- EarlierInst

3 y = 1;

4 r1 = x; // <- LaterInst

Now LaterInst and EarlierInst read from the same location. We try to know
whether LaterInst is redundant. So we find the clobber of LaterInst, which is
x = 2;. And x = 2; turns out to dominate EarlierInst, r0 = x;. This means that
there is no clobber between EarlierInst and LaterInst, and indeed there is not.
And we remove r1 = x; safely. This has shown that MemorySSA is a powerful tool.
And we will also use it in the DSE pass.

40

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 11: Process of DSE Pass Optimizing a Non-atomic Example

6.1.3 LLVM DSE

Now we can give an overall algorithm for the DSE pass. Consider the example
in Figure 11:

• Figure 11a shows the initial state. KillingDef is the iterator over the in-
structions. It scans over MemoryDef’s. Every memory definition can poten-
tially kill another one. KillingDef scans instructions in order, and tries to
find OW patterns. x = 1; is a store but is the first definition in the current
program. It could kill nothing, so we just skip.

• As Figure 11b, now we come to y = 2;. The defining access of it is x = 1;.
We use the pointer, Current to walk upwards, to find stores killed by KillingDef.
However, x = 1; and y = 2; write to unrelated locations. So nothing will
happen.

• Next MemoryDef is x = 3;. And we start with its defining access, y = 2;,
and go upwards as Figure 11c. Again, y = 2; writes to a different loca-

41

tion, so we continue going up. Then we find x = 1; as Figure 11d. Now
KillingDef and Current write to the same location, which means x = 3; can
possibly kill x = 1;. After confirming the location, we will check the uses of
x = 1;. We find there is read r0 = x; that reads from x, which means the
write x = 1; is used by another instruction and is not dead. So we cannot
remove x = 1;.

• And finally KillingDef visits y = 4; as Figure 11e. First, x = 3; writes to a
different location, so we skip it. Then we find y = 2; as Figure 11f. We
check the uses of y = 2;, and we found that it is never used. So we remove
it as Figure 11g.

This example gives an idea about the algorithm of the DSE pass. We will come
to more details and our proposed atomic optimizations in the following parts.

6.2 Current Approach of DSE Pass

In this part, we describe algorithms used in DSE pass and explain how it forbids
atomics.

6.2.1 Algorithm Description InstCombine

Algorithms used in DSE are shown from Algorithm 23 to Algorithm 28.

Algorithm 23: DSE
Input: Fncton

1 for KngDeƒ in MemoryDefs of Fncton do
2 ToCheck← []
3 KngLoc← location of KngDeƒ
4 KngUndObj← object accessed by KngDeƒ
5 Insert Defining access of KngDeƒ into ToCheck
6 for Crrent in ToCheck do
7 MybeDedAccess←

getDomMemoryDeƒ (KngDeƒ , Crrent, KngLoc, KngUndObj)

8 if MybeDedAccess is null then
9 continue

10 Insert Defining access of MybeDedAccess into ToCheck
11 OR← Overwriting result of KngDeƒ over MybeDedAccess
12 if OR is Partial Earlier With Full Later then
13 Merge KngDeƒ into MybeDedAccess

14 if OR is KngDeƒ completely overwrites MybeDedAccess then
15 Remove MybeDedAccess

We can see that these algorithms have quite clear structures. As we have
discussed the working procedure of DSE in the previous part, it might be unnec-
essary to explain the detailed process of these algorithms. We introduce these
algorithms below. We marked the barriers against atomics as red, and we will
discuss these barriers also.

42

Algorithm 24: getDomMemoryDef
Input: KngDeƒ , StrtAccess, KngLoc, KngUndObj

1 Crrent← StrtAccess
2 for ;;Crrent← Defining access of Crrent do
3 if Crrent is liveOnEntry then
4 return null

5 if isDSEBarrier(KillingUndObj, Current) then
6 return null

7 if isReadClobber(KillingLoc, Current) then
8 return null

9 if !isRemovable(Current) then
10 continue

11 if Current does not write to the same object as KillingDef then
12 continue

13 break

14 Workst← []
15 CrrentLoc← location of Crrent
16 Push uses of Crrent into Workst
17 for Use in Workst do
18 if isReadClobber(CurrentLoc, Use) then
19 return null

20 return Current

Algorithm 25: isDSEBarrier
Input: KngUndObj,Ded

1 if DeadI is atomic then
2 if DeadI has an ordering stronger than relaxed then
3 return true

4 return false

Algorithm 26: isReadClobber
Input: DeƒLoc,Usenst

1 if UseInst is store then
2 if UseInst has an ordering stronger than relaxed then
3 return true

4 return false

5 if !mayReadFromMemory(UseInst) then
6 return false

7 return myReƒer(Usenst,DeƒLoc)

Algorithm 27: isRemovable
Input: nst

1 if Inst is store then
2 if Inst is ordered then
3 return true

4 return false

43

Algorithm 28: mayRefer
Input: nst, Loc

1 if nst is ordered then
2 return true

3 if nst is store then
4 return false

5 if Loc is not null and nst is load then
6 AR← Alias Analysis Result of nst at Loc
7 if AR is no alias then
8 return false

9 if AR is must alias then
10 return true

11 return true

• DSE, as shown in Algorithm 23 is the entry of the pass. It iterates over the
input function with the iterator KillingDef, and tries to find and eliminate
memory definitions killed by KillingDef. In each iteration, it maintains
a vector ToCheck, consisting of instructions possibly killed by KillingDef.
Initially, KillingDef has only the defining access of KillingDef in it. And
getDomMemoryDef will return the dead access killed by KillingDef if it finds
any. And after that, defining access of the dead access will be inserted into
ToCheck for the next check. This is to optimize the case like:

1 a = 1; // <- Also Dead Accesses

2 a = 2; // <- Dead Accesses

3 a = 3; // <- KillingDef

If a = 3; is the KillingDef, it kills a = 2; in the original ToCheck list. And
a = 1; will be inserted into ToCheck after a = 2; is found. So that a series of
dead stores could be killed. Note that the case above is for explanation. In
practice, EarlyCSE will optimize this pattern before DSE.

One thing interesting about DSE is the part starting from Line 11. It checks
the overwriting relationship between KillingDef and MaybeDeadAccess. If
KillingDef just overwrites a part of MaybeDeadAccess, like:

1 a = 0x0000; // <- Dead Accesses

2 a_lower = 0xff; // <- KillingDef

where KillingDef only rewrites lower bits of a. We can merge the two writes
to be:

1 a = 0x00ff; // <- Dead Accesses

And if KillingDef completely overwrites MaybeDeadAccess, like the dummy
examples we have shown, we simply remove MaybeDeadAccess.

• Then getDomMemoryDef, the key function of DSE, as shown in Algorithm 24. It
does the critical job here: search upwards from the starting instruction, and
return the dead access if it finds any. And to do this, it first walks along the
chain of MemoryDef’s from the current access. If there is any clobber in the
way, it returns null. And if it meets some instruction that is not removable,
it skips that instruction.

44

If after the iteration starting from Line 2, we find a Current that could be
dead, we push all uses of Current into WorkList. Then we check if any of
these uses would read from CurrentLoc. If the checks find nothing, Current
is possibly killed by KillingDef, and will be returned to DSE.

• The following algorithms are helper functions used by getDomMemoryDef, and
they are the barriers against atomics here. isDSEBarrier is designed to
avoid reordering any atomic instruction with an ordering stronger than re-
laxed (which is just working against us).

isReadClober checks if UseInst may read from DefLoc. And it is this function
that finds r0 = x; is a clobber in Figure 11. However, a store instruction
stronger than relaxed will be taken as read from DefLoc. And on the last
line of Algorithm 26, mayRefer is invoked. This is the load counterpart of
mayModify. It is a part of LLVM Alias Analysis, and it determines whether
UseInst may refer to DefLoc. And similar to mayModify, it assumes any or-
dered instruction may read from all memory locations, no matter if it is a
read or a write, as shown in Algorithm 28.

Finally isRemovable, which simply judges if Inst can be removed. And ap-
parently, an ordered store is not removable for it.

6.3 Proposed Approach for DSE

We listed our modified algorithms, shown in Algorithm 29 to Algorithm 34. We
marked the modified or newly added parts as cyan, and we suffixed our methods
with "OA".
Algorithm 29: DSEOA
Input: Fncton

1 for KngDeƒ in MemoryDefs of Fncton do
2 ToCheck← []
3 KngLoc← location of KngDeƒ
4 KngUndObj← object accessed by KngDeƒ
5 Insert Defining access of KngDeƒ into ToCheck
6 for Crrent in ToCheck do
7 MybeDedAccess←

getDomMemoryDeƒOA(KngDeƒ , Crrent, KngLoc, KngUndObj)

8 if MybeDedAccess is null then
9 continue

10 Insert Defining access of MybeDedAccess into ToCheck
11 OR← Overwriting result of KngDeƒ over MybeDedAccess
12 if OR is Partial Earlier With Full Later then
13 Merge KngDeƒ into MybeDedAccess

14 if OR is KngDeƒ completely overwrites MybeDedAccess then
15 Remove MybeDedAccess

45

Algorithm 30: isDSEBarrierOA
Input: KngUndObj,Ded

1 if DeadI is atomic then
2 if DeadI is load then
3 return false

4 if DeadI has an ordering stronger than relaxed then
5 return true

6 return false

Algorithm 31: isReadClobberOA
Input: DeƒLoc,Usenst

1 if !mayReadFromMemory(UseInst) then
2 return false

3 return myReƒerOA(Usenst,DeƒLoc)

Algorithm 32: isRemovableOA
Input: nst

1 if Inst is store then
2 return true

3 return false

Algorithm 33: mayReferOA
Input: nst, Loc

1 if nst is store then
2 return false

3 if Loc is not null and nst is load then
4 AR← Alias Analysis Result of nst at Loc
5 if AR is no alias then
6 return false

7 if AR is must alias then
8 return true

9 return true

For DSE, we just replaced getDomMemoryDef with our new version. And for helper
functions used by getDomMemoryDef, we adjusted them and removed barriers of
atomics, as we did in previous passes.

We made relatively more modifications to getDomMemoryDef since we need to
enforce reordering constraints here. To be more specific, we added two flags:
PastSCRead, which indicates whether we have gone through a sequentially con-
sistent load, and SeenAReleaseWrite, which indicates whether we have seen a
release store. And we added checks based on these flags which may control the
iterations. These flags are added to enforce the rules in Table 2. we copied this
table from Section 2, and marked the corresponding rules as red.

46

Algorithm 34: getDomMemoryDefOA
Input: KngDeƒ , StrtAccess, KngLoc, KngUndObj

1 Crrent← StrtAccess
2 PstSCRed← false
3 SeenAReeseWrte← false
4 for ;;Crrent← Defining access of Crrent do
5 if Crrent is liveOnEntry then
6 return null

7 if SeenAReleaseWrite then
8 return null

9 if isDSEBarrierOA(KillingUndObj, Current) then
10 if Current is store then
11 SeenAReeseWrte← true

12 else
13 return null

14 if Current is load and has an ordering of Sequentially Consistent then
15 PstSCRed← true

16 if Current is store then
17 if Current has an ordering of Sequentially Consistent and

PastSCRead is true then
18 continue

19 if Current an ordering stronger than KillingDef then
20 continue

21 if isReadClobberOA(KillingLoc, Current) then
22 return null

23 if !isRemovableOA(Current) then
24 continue

25 if Current does not write to the same object as KillingDef then
26 continue

27 break

28 Workst← []
29 CrrentLoc← location of Crrent
30 Push uses of Crrent into Workst
31 for Use in Workst do
32 if isReadClobberOA(CurrentLoc, Use) then
33 return null

34 return Current

↓ \b→ RNA|RLX|ACQ(′) RSC(′) WNA(′) WRLX(′) WREL|SC(′)
RNA() ✓ ✓ ✓ ✓ %

RRLX() ✓ ✓ ✓ ✓ %

RACQ|SC() % % % % %

WNA|RLX|REL() ✓ ✓ ✓ ✓ %

WSC() ✓ % ✓ ✓ %

Table 2: Allowed Reorderings ;b⇝ b;, assuming locations ̸= ′ (Copy)

47

7 Evaluation

In this section, we evaluate our compiler in two forms:

• Randomly generated memory accesses. We use random tests of different
types to check the effectiveness of our compiler. Also, we measured the
compile time to see the overhead of enabling our optimizations.

• Concurrent benchmarks. We build concurrent applications with our com-
piler and see if we get any performance gain or code size change.

7.1 Randomly Generated Memory Accesses

First, we used a random test case generator [3] to generate random memory
accesses as tests. In each test case, the generator generates a function con-
sisting of memory accesses. These accesses cover reads and writes, and have
all types of memory orderings from non-atomic to sequentially consistent. And
they can be divided into five categories:

• a Straight-Line test cases. The function has only one basic block.

• b Branches tests cases. The function has conditional branches.

• c Dead paths test cases. The function has empty basic blocks.

• d Loops test cases. The function has loops.

• e Mixed test cases. The function may have all structures listed above.

An example of type e is shown below:

1 #include <atomic >

2 using namespace std;

3 atomic <int > x,y;

4 int a0 , a1 , a2;

5 int func(bool flagloop , bool flag0 , bool flag1 , int dummy) {

6 int rx=-20, ry=-23, old = 23, nw = 43, r=50;

7 int r0=-45, r1=-43, r2=-14;

8 r += a0;

9 y.store (20, memory_order_release);

10 r += a0;

11 r += a2;

12 y.store (20, memory_order_release);

13 if(flag0) {

14 } else {

15 a2 = 2;

16 }

17 r += a2;

18 a0 = 0;

19 ry += y.load(memory_order_acquire);

20 r += a2;

21 }

Just as in this example, test cases may have accesses with different orderings
to shared atomic variables like x, shared non-atomic variables like a0, and local
variables like r.

We implemented our optimizations as optional functions of the compiler en-
abled using command-line arguments. For example, to allow EarlyCSE to op-
timize atomics, use clang++ ^your_configurtions -mllvm -cse-optimize-atomic.
We generated 100 test cases of each type mentioned above, and compiled them
using the following:

• clang++ -O3 The original clang compiler with optimization level O3.

48

Figure 12: IR File Size Change After Optimizing Atomics

• clang++ -O3 -mllvm -cse-optimize-atomic -mllvm -ic-optimize-atomic

-mllvm -dse-optimize-atomic Set the flags enabling optimizations we im-
plemented besides level O3.

We counted the average of output IR files’ source lines of code (SLOC) in each
type. The results are shown in Figure 12. This shows that a number of instruc-
tions, which current LLVM cannot remove using its highest optimization level,
can be further optimized by our compiler. And it can be observed in the figure
that, the more complex the test cases are (from a to e), the fewer optimizations
are done. For Straight-Line test cases (a), we can remove 15% lines compared
to clang-14, while for mixed tests (e), only 2% can be further removed.

This is because in simple test cases like straight-line tests, instruction re-
ordering constraints are only from the current basic block. However, in tests
with branches or loops, additional constraints can also be added from other
basic blocks. Therefore, there are fewer optimization opportunities in complex
cases.

We also counted the number of accesses removed by each pass, as shown
in Figure 13. The first thing to note is that the InstCombine pass can rarely
remove instructions compared with the other two. This is in fact a result of using
MemorySSA in EarlyCSE, as we mentioned in Section 6.1.2. EarlyCSE becomes
quite powerful in removing redundant loads with the help of MemorySSA and left
little work to InstCombine. Although EarlyCSE does not use alias analysis which
is deemed to be time-consuming, MemorySSA enabled it to find RAR and RAW
patterns efficiently. Another observation is that for more complex cases (c-e),
EarlyCSE has much less to do, while DSE dominates the optimizations. This is in
line with the original intention of EarlyCSE: to remove trivially dead instructions
in simpler cases. Also, this shows that EarlyCSE does help offload other passes.
It takes responsibility when it is able to.

To see the overhead of these optimizations, we measured the compile time
of these test cases, shown in Figure 14. Overall, the compile time overhead is
negligible as we expected. And complex cases may take a longer time, but still,
the difference is under 1%. And this is one of the main benefits of our design.
Adapting existing algorithms could minimize the impact on compile time.

49

Figure 13: Numbers of lines eliminated by each pass

Figure 14: Compile Time Change After Optimizing Atomics

50

7.2 Benchmarking

We also benchmarked our work with several software making use of C/C++
atomics. We built the following applications using both LLVM clang-14 and our
compiler, and compared the generated IR files to check the difference:

• CDSChecker A tool for exhaustively exploring the behaviors of concurrent
code under the C/C++ memory model [11]. The name CDS stands for Con-
current Data Structures, which are implemented using atomics. It uses sev-
eral techniques for modeling the behaviors of the relaxed memory model
and can be used to unit test concurrent data structure implementations.

• iris An asynchronous logging library. It uses a "background thread" (the
logging thread) to help offload logging from other threads. And other
threads will keep a lock-free queue to collect messages. The logging thread
will scan these queues to collect messages and write them into the log file.
In this way, it can minimize the overhead of logging messages. Maintaining
these queues will involve atomic memory accesses.

• Silo An in-memory database system [16]. It aims to achieve high per-
formance as well as scalability on modern multicore processors. Silo was
designed from the ground up to use system memory and caches efficiently.
Databases are a scenario where atomic accesses can be widely used.

• Mabain A light-weighted C++ key-value store library. It saves data on
disk but allows users to specify how much data can be mapped to shared
memory. It supports multi-Thread/multi-Process insertion/update, which is
similar to database applications. And it makes use of atomic accesses.

We built all these applications with our compiler enabling optimizations of atom-
ics. We compared the generated and optimized IR files with the ones produced
by clang-14. And we observe no difference so far. In other words, our compiler
does not find patterns to be optimized in these given concurrent applications.
Since we did not change the backend of LLVM, the same IR files will result in the
same binaries. So comparing executions will make no sense. We omitted the
comparison here.

The reason for the result could be that these applications are carefully devel-
oped and left no chance for our compiler to be optimized. And after checking
the source code, one can find that even in these concurrent applications, atomic
memory accesses are only a small portion compared to the regular ones. In the
current applications, atomic variables are typically used as signals to commu-
nicate between threads. They are not heavily used to access data like regular
variables. And if these atomic instructions are properly used, there would be
few chances for improvement.

Of course, we just tested several concurrent benchmarks. It is totally possible
we could find opportunities if we try a wider range of applications.

51

8 Related and Future Work

8.1 Related Work

Besides the work mentioned in Section 2, on which our project is closely based,
there are several more related works to mention here.

There are works on SC-preserving compilers. Sequentially Consistent is the
most intuitive concurrent memory model. Under SC, the individual instructions
will look as if executed in a global sequential order consistent with program or-
ders in each thread. This a relatively simpler way to deal with ordering. And
SC-preserving means that every SC behavior of a generated binary is guaran-
teed to be an SC behavior of the source program. Instead of investigating op-
timizing opportunities in relaxed models, SC-preserving compilers try to keep
the SC memory model. For example, bulk compiler [1] and bulkSC hardware
[2] together guarantee SC at the language level. This is a costly way since ex-
tra hardware is required. And it has been shown that [10] giving up chances
in relaxed memory models and choosing an SC-preserving compiler does not
hurt performance much as assumed. Works in this direction can be taken as
attempts at another aspect.

On the other hand, recently there have been extended such SC-centric mod-
els incorporating relaxed atomics. Instead of the popular data-race-free-0 (DRF0)
model which requires programmers to avoid data races, Matthew et al. [15]
proposed Data-Race-Free-Relaxed (DRFrlx), that extends DRF0 to provide SC-
centric semantics for the common use cases of relaxed atomics. According to
their evaluation, there is little performance gain for most cases. However, in
some cases, a significant performance gain is observed.

There are also works showing the potential of optimizing atomics. Weak
memory models give the programmer a wide scope of choices about how to im-
plement the exact inter-thread communication using the shared memory. These
choices will have semantic and performance consequences. So it makes sense
to find out the impact of these choices on performance. Carl et al. [14] defined
techniques for evaluating the impact of various choices in using weak mem-
ory models, such as where to put fences, and which fences to use. And they
provided techniques that help programmers understand the performance im-
plications when identifying and resolving any semantic/performance trade-offs,
which we may also take as advice when implementing compiler optimizations.
And it has been shown in works [9] that proper use of barriers would bring obvi-
ous performance gain.

8.2 Future Work

We have implemented the optimizations of RAR, RAW, and OW for atomics in
LLVM. And there are still several directions for the future work:

• Try more aggressive optimizations. In Section 4, we said we choose
to implement atomic transformations based on existing passes. Neverthe-
less, this will lose some chances of optimizations. Ordering is an impor-
tant feature of atomics. Optimizing non-atomic memory accesses does not
raise the ordering problem, so one can arbitrarily choose a "direction" of re-
ordering instructions. For now, in the passes we have seen, LLVM is always
(tentatively) moving the dead instruction towards the killing instruction,
and eliminating the dead one if possible. This will keep the original rel-
ative order between instructions, and this seems to be a good choice for
non-atomic cases.

However, as the example, we showed in Section 4.2, trying a different way
of reordering may introduce new opportunities. Following existing passes

52

will not allow these chances. So building new passes dedicated to atomics
could be an idea.

• Validate the compiler. Software validation, especially for infrastructures
like compilers, is always an important topic [8]. We believe our compiler
optimizing the atomics is correct because we made our modifications and
implemented reorderings based on existing proven theories. However, if
we wish to eventually implement this work on LLVM, validating/formally
proving the correctness of the compiler would be a good thing to do.

• Try more atomic objects. We have worked on atomic reads and writes.
Still, there are other atomics to be optimized, including fences, atomic
read-modify-write, etc. Fences, for example, have been thought of as an
important performance overhead, Covering these atomic instructions may
bring further improvements and could make the work more complete.

53

9 Conclusion

This thesis project builds an LLVM-based compiler optimizing atomic memory
accesses. Weak memory models are designed to enable a wide range of op-
timizations for concurrent programs and have been used by modern micropro-
cessors. As a state-of-the-art compiler, LLVM supports weak memory models
but disallows most possible optimizations over atomics. We carefully found the
algorithms concerning classic elimination optimizations over memory accesses,
removed the barriers that forbid optimizations of atomics, and added constraints
to ensure the soundness of our modifications.

We implemented our optimizations as an optional function. One can turn
on the optimizations using -mllvm flags. And when not set, our compiler works
exactly the same as LLVM 14.0.0.

For a comprehensive conclusion, we would like to give answers to questions
in Section 1.2:

• The current LLVM is conservative. In the passes we worked through in this
project, almost all reordering, modification, or elimination of atomic ac-
cesses are disallowed. In fact, to ensure no atomic operation can escape,
the notion of avoiding optimizing atomics is deeply rooted in the whole
LLVM project, from core libraries like alias analysis to the specific imple-
mentation of optimizing passes. One of the reasons might be that atomic
instructions often have ordering constraints. And reordering or deleting
them might be risky.

However, different passes in LLVM behave differently. For example, DSE
allows basic optimizations for relaxed atomic accesses. Such differences
might be because as a large open-source project, LLVM is maintained by
developers across the world. Developers responsible for every part may
have slightly different choices.

• However, optimizing atomics is possible. It has been proven that reordering
and eliminating atomic instructions under the given constraints are safe.
As mentioned in Section 2.4, there are two types of rules to obey: elimi-
nation rules, which provide the patterns we can optimize, and reordering
rules, which give constraints about reordering ordered instructions.

• To enable these optimizations, we have several design choices. And the
one we finally chose, is to modify existing passes to adapt optimizations
for atomics. We chose this method because in this way we can better
reuse existing algorithms. What’s more, since no new pass is required and
the original structures of the passes are preserved, our modifications will
not bring additional complexity to the algorithms.

And to actually implement these optimizations, we need to first find the
passes taking care of our interesting patterns. Then we need to look into
these passes and remove the barriers/checks which forbid atomic accesses
from being processed. And finally, we shall add constraints, and adapt
them to existing algorithms of passes, to make our transformations safe.

• We tested our compiler by using it to optimize randomly generated mem-
ory accesses. Compared to the original LLVM compiler, we can move a sig-
nificant portion (2% to 15% in our test cases) of redundant atomic instruc-
tions, while not introducing an obvious overhead in compile time. Cases
with more complex control flows have smaller spaces for optimizations.
And we also evaluated our compiler with some concurrent benchmarks.
However, we do not observe apparent performance gains yet. The rea-
son could be that these concurrent applications do not contain patterns we
optimize.

54

And in the future, this work could be further extended to cover more atomic
instructions. Since ordering is a unique feature of atomics, it is also possible
to develop a new pass to perform more aggressive optimizations on atomic
accesses. Maybe more performance gains could be achieved when these works
are done.

55

References

[1] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang, S. Midkiff, and
D. Wong. Bulkcompiler: High-performance sequential consistency through
cooperative compiler and hardware support. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
42, page 133144, New York, NY, USA, 2009. Association for Computing
Machinery. ISBN 9781605587981. doi: 10.1145/1669112.1669131. URL
https://doi.org/10.1145/1669112.1669131.

[2] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. Bulksc: Bulk enforce-
ment of sequential consistency. In Proceedings of the 34th Annual Inter-
national Symposium on Computer Architecture, ISCA ’07, page 278289,
New York, NY, USA, 2007. Association for Computing Machinery. ISBN
9781595937063. doi: 10.1145/1250662.1250697. URL https://doi.org/

10.1145/1250662.1250697.

[3] S. Chakraborty and V. Vafeiadis. Validating optimizations of concurrent
c/c++ programs. In Proceedings of the 2016 International Symposium on
Code Generation and Optimization, CGO ’16, page 216226, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450337786.
doi: 10.1145/2854038.2854051. URL https://doi.org/10.1145/2854038.

2854051.

[4] S. Chakraborty and V. Vafeiadis. Formalizing the concurrency semantics
of an llvm fragment. In Proceedings of the 2017 International Symposium
on Code Generation and Optimization, CGO ’17, page 100110. IEEE Press,
2017. ISBN 9781509049318.

[5] A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based alias analysis.
SIGPLAN Not., 33(5):106117, may 1998. ISSN 0362-1340. doi: 10.1145/
277652.277670. URL https://doi.org/10.1145/277652.277670.

[6] J. K. Kuderski. Dominator trees and incremental updates that transcend
time. URL https://llvm.org/devmtg/2017-10/slides/Kuderski-Dominator_

Trees.pdf.

[7] C. Lattner. The architecture of open source applications (vol 1) : Llvm. URL
https://aosabook.org/en/v1/llvm.

[8] X. Leroy. Formal certification of a compiler back-end or: Programming
a compiler with a proof assistant. SIGPLAN Not., 41(1):4254, jan 2006.
ISSN 0362-1340. doi: 10.1145/1111320.1111042. URL https://doi.org/

10.1145/1111320.1111042.

[9] N. Liu, B. Zang, and H. Chen. No barrier in the road: A comprehensive
study and optimization of arm barriers. In Proceedings of the 25th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’20, page 348361, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450368186. doi: 10.1145/3332466.3374535.
URL https://doi.org/10.1145/3332466.3374535.

[10] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy. A
case for an sc-preserving compiler. SIGPLAN Not., 46(6):199210, jun 2011.
ISSN 0362-1340. doi: 10.1145/1993316.1993522. URL https://doi-org.

tudelft.idm.oclc.org/10.1145/1993316.1993522.

[11] B. Norris and B. Demsky. Cdschecker: Checking concurrent data struc-
tures written with c/c++ atomics. SIGPLAN Not., 48(10):131150, oct

56

https://doi.org/10.1145/1669112.1669131
https://doi.org/10.1145/1250662.1250697
https://doi.org/10.1145/1250662.1250697
https://doi.org/10.1145/2854038.2854051
https://doi.org/10.1145/2854038.2854051
https://doi.org/10.1145/277652.277670
https://llvm.org/devmtg/2017-10/slides/Kuderski-Dominator_Trees.pdf
https://llvm.org/devmtg/2017-10/slides/Kuderski-Dominator_Trees.pdf
https://aosabook.org/en/v1/llvm
https://doi.org/10.1145/1111320.1111042
https://doi.org/10.1145/1111320.1111042
https://doi.org/10.1145/3332466.3374535
https://doi-org.tudelft.idm.oclc.org/10.1145/1993316.1993522
https://doi-org.tudelft.idm.oclc.org/10.1145/1993316.1993522

2013. ISSN 0362-1340. doi: 10.1145/2544173.2509514. URL https:

//doi.org/10.1145/2544173.2509514.

[12] L. Projec. The llvm compiler infrastructure project. URL https://www.llvm.

org/.

[13] L. Project. Llvm documentation: Memoryssa, 2023. URL https://llvm.org/

docs/MemorySSA.html.

[14] C. G. Ritson and S. Owens. Benchmarking weak memory models. In Pro-
ceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP Principles and Practice of Parallel Program-
ming. ACM, New York, USA, February 2016. URL https://kar.kent.ac.uk/

51638/.

[15] M. D. Sinclair, J. Alsop, and S. V. Adve. Chasing away rats: Semantics and
evaluation for relaxed atomics on heterogeneous systems. In Proceedings
of the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, page 161174, New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450348928. doi: 10.1145/3079856.3080206.
URL https://doi.org/10.1145/3079856.3080206.

[16] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transac-
tions in multicore in-memory databases. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, page
1832, New York, NY, USA, 2013. Association for Computing Machinery. ISBN
9781450323888. doi: 10.1145/2517349.2522713. URL https://doi.org/

10.1145/2517349.2522713.

[17] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and
F. Zappa Nardelli. Common compiler optimisations are invalid in
the c11 memory model and what we can do about it. In Pro-
ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’15, page 209220,
New York, NY, USA, 2015. Association for Computing Machin-
ery. ISBN 9781450333009. doi: 10.1145/2676726.2676995. URL
https://doi-org.tudelft.idm.oclc.org/10.1145/2676726.2676995.

57

https://doi.org/10.1145/2544173.2509514
https://doi.org/10.1145/2544173.2509514
https://www.llvm.org/
https://www.llvm.org/
https://llvm.org/docs/MemorySSA.html
https://llvm.org/docs/MemorySSA.html
https://kar.kent.ac.uk/51638/
https://kar.kent.ac.uk/51638/
https://doi.org/10.1145/3079856.3080206
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/2517349.2522713
https://doi-org.tudelft.idm.oclc.org/10.1145/2676726.2676995

	Introduction
	Context
	Problem Statement
	Contributions
	Outline

	Background
	C++ Atomics and Memory Orders
	The LLVM Compiler Infrastructure
	Current LLVM Approach to Atomic Operations
	Possible Transformations of Atomic Accesses

	EarlyCSE Pass
	Overview EarlyCSE
	Common Subexpression Elimination
	Dominator Tree in LLVM
	LLVM EarlyCSE

	Current Approach of EarlyCSE
	Algorithm Description EarlyCSE
	Barriers of Atomics in EarlyCSE

	Proposed Approach for EarlyCSE

	From EarlyCSE to Others
	Design Choice of Our Implementation
	Not All Possible Transformations are Enabled
	Types of Modifications Made
	Challenges of This Work
	Some More Explanation

	InstCombine
	Overview InstCombine
	Instruction Combining
	LLVM InstCombine
	LLVM Alias Analysis

	Current Approach of InstCombine
	Algorithm Description InstCombine
	Barriers of Atomics in InstCombine

	Proposed Approach for InstComibine

	DSE Pass
	Overview DSE
	Dead Store Elimination
	LLVM MemorySSA
	LLVM DSE

	Current Approach of DSE Pass
	Algorithm Description InstCombine

	Proposed Approach for DSE

	Evaluation
	Randomly Generated Memory Accesses
	Benchmarking

	Related and Future Work
	Related Work
	Future Work

	Conclusion

