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Abstract 
 
The phenomenon of one element moving and progressively overlaying another is 
common in nature, such as waves swashing and backwashing, or eyelids moving over 
eyeballs while blinking. Folding Texture, which was proposed by Thorben, can 
simulate this texture “folding” visual effect in real-time without changing geometry. 
 
However, to date, no tool has been developed to assist in the design and synthesis of 
folding textures. Applications of the technique so far are achieved through manual 
creation of the folding texture, which is a tedious process.  
 
This thesis explores the problem of folding-texture design and synthesis. A novel 
approach is proposed for animating still images based on the folding texture technique. 
The approach uses a semi-automatic, user-assisted method that combines texture 
editing, motion profile specification, and folding texture synthesis into one seamless 
process, reducing the need for extensive manual work. It enables novice users to 
utilize the technique with a fair level of prior knowledge of folding texture. 
 
 
 
Keywords: Texture Mapping, Texture Synthesis, Texture Dynamic Sampling, Folding 
Texture 
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1 Introduction 
 
Texture mapping is a popular technique to add additional details to a rendered scene 
without increasing geometric complexity. The technique uses a texture (also called 
texture map or image texture) to store for example colors or surface orientation and 
maps it to the surface of an object. The texture is usually static: its visual appearance 
does not change over time. In rendering, pixels sample colors from the texture at 
associated fixed texture coordinates. 
 
Many real-world phenomena are attractive in the way their appearances change over 
time. However, standard texture mapping alone is not adequate to render these 
dynamic phenomena. Since texture mapping only specifies how color is sampled in 
one frame, how pixels sample color from texture in a series of consequent frames 
must be defined additionally. This can be achieved by either changing pixels’ 
associated texture coordinates or using different textures at different frames.  
 
In this thesis, we focus on dynamic phenomena which share the characteristics that 
one entity moves and progressively occludes another. Typical examples are waves 
swashing and backwashing, eyelids moving over eyeballs while blinking, and candle 
flame waving over a dark background.  

 
The folding-texture technique is a texture-mapping based technique proposed by 
Thorben in his master thesis [1]. As the name suggests, this technique allows textures 
to be sampled in a way that gives the effect of it folding over itself as visualized in 
Figure 1. It can be employed to render phenomena where one entity moves and 
progressively occludes another. The technique uses three types of texture files. These 
files as a whole are referred to as folding texture and the technique is referred to as 
the folding-texture technique in this report. 
 

 
 

Figure 1. Illustration of the “folding” concept. Texture in (a) is in unfolded status, 
regions between dotted lines will be folded to create wave motion in (b) 
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1.1 Motivation 
 
So far, no tool is available for folding texture design and synthesis. Users have to 
manually calculate and create folding textures with image editing software like 
Photoshop or GIMP. This primitive way of folding texture creation not only requires 
users to be familiar with image editing software but also requires users to have in-
depth knowledge of the folding texture technique itself. Moreover, a parameterization 
of each pixel is needed, which is tedious and time-consuming, especially for high-
resolution textures.  
 
To pose the problem of folding texture design and synthesis, we propose a semi-
automatic, user-assisted approach to facilitate the task. The approach is targeted at 
folding texture’s intrinsic characteristics. It enables users to focus on designing the 
desired motion patterns without understanding the complex mechanisms underneath.  
  
1.2 Contributions 
 
The thesis work’s contributions include, 

• a refined definition of the folding texture technique. 
• a semi-automatic and user-assisted approach that combines texture editing, 

motion specification, and folding texture synthesis into one seamless process. 
• a ready-to-use software tool as a proof of concept. 

 
1.3 Organization 
 
Following the introduction chapter, the thesis report will be organized as follows. 
Chapter 2 covers the related techniques and systems. Chapter 3 introduces the 
folding-texture technique and refines its definition. The design and synthesis approach 
will be explained in Chapter 4. Chapter 5 covers a few implementation details. Chapter 
6 presents a few examples in detail. The conclusion and future work are placed in 
Chapter 7. The appendix includes a user manual for the implemented software tool. 
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2 Background and Related Work 
 
The folding-texture technique is based on the texture mapping mechanism. Section 
2.1 explains the mechanism of texture mapping in the framework of the computer 
graphics pipeline. Section 2.2 offers a concise review of the different applications that 
make use of this mechanism and explains how textures are used in different texture-
mapping-based techniques. The folding-texture technique takes still images as input 
and generates textures with varying appearances. So in Section 2.3, various 
terminologies related to textures with time-varying appearances are investigated and 
discussed.  Systems that have been employed to animate still images are discussed 
in Section 2.4. 
 
2.1 Texture Mapping in Computer Graphics Pipeline 
 
As visualized in Figure 2 on next page, the computer graphics pipeline (also referred 
to as the rendering pipeline [2]) constitutes a series of interconnected stages that 
facilitate the transformation of digital models or scenes into two-dimensional images 
or frames. The pipeline can be broadly divided into several stages: vertex processing, 
primitive processing, rasterization, fragment processing, and screen sample 
operations.  
 
During the vertex processing stage, input vertex data, including positions, normal 
vectors, and texture coordinates, are sent to the vertex shader. The vertex shader is 
responsible for transforming the vertex positions and passing the texture coordinates 
and other vertex attributes to the next stage. After vertex processing, primitive 
assembly constructs geometric primitives (triangles, lines, or points) from the 
processed vertices, and rasterization subsequently converts these primitives into 
fragments (pixels to be shaded). During rasterization, vertex attributes, including 
texture coordinates, are interpolated for each fragment. The fragment processing 
stage uses operations like texturing, lighting, and custom calculations on fragments. 
Following fragment processing, per-fragment operations, such as depth testing, stencil 
testing, and blending, are performed to handle overlapping and transparent objects 
and incorporate additional visual effects. 
 
Several stages are involved in the texture mapping mechanism. In the vertex 
processing stage, the vertex shader can manipulate associated texture coordinates 
for specific effects or animation. In the rasterization stage, the texture coordinates for 
each fragment are calculated by interpolating the texture coordinates of the vertices 
that make up the primitive being rasterized. The fragment processing stage is where 
texture mapping primarily takes place. The fragment shader receives the interpolated 
texture coordinates and employs them to sample the corresponding texture. Built-in 
OpenGL functions, such as texture(), texture2D(), or textureCube() [2] are 
used to sample the texture image and determine the final color and other surface 
properties for each fragment. 
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Figure 2. OpenGL rendering pipeline. OpenGL implements a rendering pipeline 

consisting of a sequence of interconnecting processing stages for converting model 
geometry data into rendered images. (a) vertex data 3D space (b) vertices in 
normalized coordinate space (c) triangle primitives assembly (d) rasterized 

fragments (e) shaded fragments (f) rendered image (g) texture file. Several stages of 
the modern OpenGL pipeline are omitted. 

 
2.2 Texture as Information Container 
 
Texture mapping refers to the mapping of a texture onto a surface. The word "texture" 
is used as a rather broad term. It goes beyond its usual meaning as a repetitive pattern 
and could refer to any multidimensional function saved as an image [3]. Texture 
mapping techniques use texture files as information containers to store various 
surface properties other than just color, such as transparency, surface normal, 
displacement, and specularity, to name a few. 
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Diffuse mapping is the most frequently used texture mapping technique and the term 
“texture mapping” originally refers to diffuse mapping. The technique simply maps a 
texture to a surface. The texture file is usually a bitmap image storing colors. Folding-
texture technique also uses one of the texture files to store color.  
 
Displacement mapping uses textures to displace the vertices of a 3D model. The 
texture file is used to represent the bumps and ridges on the object’s surface. It is 
typically a grayscale image where the brightness of each pixel represents the height 
or depth of the corresponding point on the object’s surface. Bump mapping [4] is a 
form of displacement mapping that works by perturbing the surface normal of a 3D 
model. When light interacts with the object’s surface, the perturbed surface normals 
cause variations in the way the light is reflected and refracted, creating the appearance 
of bumps and ridges on the object’s surface. 
 
Normal mapping [5][6] uses a texture to store the object’s surface normals. A surface 
normal is a vector that point directly outward from a surface, and it is used in lighting 
calculation to determine how light interacts with the surface. Unlike bump mapping 
that uses grayscale images to permute surface normal, normal mapping uses texture’s 
red, green, and blue color channels to encode a 3D normal vector in tangent space. 
Folding-texture technique also encodes vectors using textures, but the encoded 
vectors are 2D instead of 3D vectors. 
 
 
2.3 Time-varying Textures 
 
The folding-texture technique can be used to generate textures with time-varying 
appearances. In this section, we briefly explain various techniques and terminologies 
related to the modeling, representation, and synthesis of time-varying textures. 
However, it is challenging to draw distinct boundaries between these terms. 
Sometimes two terms are used interchangeably, whiles in other instances, the same 
terminology may refer to different concepts. 
 
Temporal Texture 
 
Nelson and Polana [7] used the term temporal textures as a type of motion seen in 
images that repeats in similar ways across space and over time. The fundamental 
assumption behind temporal textures is that objects in many natural scenes have 
characteristic motions, but the space they occupy is indeterminate. This type of motion 
is common in nature scenes. Typical examples are trees or grass in the wind, ripples 
on a pool, and water flowing in a stream. The authors extended the basic idea of gray-
level texture analysis to dynamic scenes to find structural or statistical patterns in the 
motion.  
 
Szummer and Picard expanded on the concept of temporal textures and proposed a 
statistical model to represent and synthesize temporal textures [8][9]. They clarified 
that temporal textures are a sequence of images with indeterminate spatial and 
temporal motions. However, they also highlighted that two kinds of motions were not 
in the applicable scope of temporal textures. One is spatially non-repetitive or 
temporally non-periodic events such as kicking a ball. The other is temporally periodic 
but spatial confined motions like walking.  
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The texture is modeled as the outcome of a dynamic system [10]. They use a linear-
temporal autoregressive model to model temporal textures,  
 

𝑠𝑠(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) =  �𝜙𝜙𝑠𝑠(𝑥𝑥 + ∆𝑥𝑥𝑖𝑖,𝑦𝑦 + 
𝑝𝑝

𝑖𝑖=1

∆𝑦𝑦𝑖𝑖, 𝑡𝑡 +  ∆𝑡𝑡𝑖𝑖) + 𝑎𝑎(𝑥𝑥,𝑦𝑦, 𝑡𝑡) 
 

 (  2.1 ) 

Each pixel is represented as a linear combination of adjacent pixels with space and 
time difference, where 𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑡𝑡)  is pixel value, and ∆𝑥𝑥𝑖𝑖 ,∆𝑦𝑦𝑖𝑖,∆𝑡𝑡𝑖𝑖 are the differences 
specifying the neighborhood. When the model is used in temporal texture synthesis, it 
first takes sample temporal textures as input and the parameters are learned by 
minimizing the conditional least square estimator. Once the parameters are 
determined, Gaussian random noise is used as new initial conditions and the 
synthesized texture is computed recursively using the model. 
 
Temporal textures use statistical learning and assume that motion is indeterministic. 
Its application is limited to a few types of motion seen in nature. The folding-texture 
technique is intended to generate deterministic motions. For example, motion like a 
moving car is out of the scope of temporal texture but can be synthesized by the 
folding-texture technique. 
 
Dynamic Texture   
 
Dynamic texture [11] refers to a sequence of images with stationary motion. The things 
in the texture move with a consistent pattern and the overall pattern does not change 
over time. Typical examples include ocean waves, waterfalls, and steam [12].They 
assumed that a sequence of images are realizations of a stationary stochastic process. 
Thus, dynamic textures can be modeled as output of a dynamic system. Dynamic 
texture consists of sequences of images representing temporal and spatial variations 
in scenes. It can also be viewed as spatial texture’s time-domain extension [13]. 
Dynamic texture is targeted at motions with stationary property and relies on complex 
mathematical modeling, while folding-texture technique does not have such limitations.  
 
Video Texture 
 
Schödl and Szeliski et al. [15] proposed video textures,  which take a short video clip 
as input and aim to synthesize a new seamlessly looping video sequence, creating 
the illusion of an infinitely playing video. Video texture conceptualizes videos as 
textures by drawing the analogy with image textures, but later works on video 
generation dropped the term “texture” in naming [16]. The proposed technique 
segments the input video clip, extracts visual and motion features, and matches 
frames based on extracted features’ visual similarity. The visual similarity computation 
results in a jump table or a transition probability table between frames. Video textures 
can be applied to represent chaotic and random phenomena, such as the motion of 
fire, wind, or water, but also be generated to depict objects’ motion, including instances 
such as a person smiling or an individual engaging in physical activity, like running on 
tracks. 
 
Motion Texture 
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Motion Texture has several different definitions. Li et al. [17] proposed a new statistical 
model for synthesizing realistic character motion and named it motion texture. The 
model consists of motion textons, the basic element in motion texture, and their 
distributions, and aims to capture both the low-level details and the high-level structure 
of human motion to generate natural and believable character animations. Enrique et 
al. [18] tried to differentiate the definition of dynamic texture and motion texture. They 
argue that previous dynamic texture studies, which focus more on texture’s 
evolvement over time rather than its spatial repetitiveness, should be called motion 
texture instead. Researchers also use the term motion texture to emphasize their 
work’s difference from video texture, as they use a static image rather than a video 
clip as input [19]. Motion texture is referred to as a time-varying displacement map 
generated from a specific physics model. 
   
2.4 Systems for Animating Still Images 
 
Various systems have been proposed to recognize, model, or synthesize time-varying 
textures. The systems differ in the input and motion specification methods. Some of 
them are mentioned in the previous section, for example the systems in [10] [15] use 
video as input, automatically recognize motion and synthesize time-varying textures. 
The system that will be introduced in this thesis, FoldingGen, uses still images as input 
and provides an user interface to specify motion. In this section, we will review a few 
systems used to animate still images and compare them with FoldingGen. 
 
Chuang et al. [19] developed a system to animate still images by leveraging a physics-
based model. The proposed system uses a stochastic model to represent five types 
of natural phenomena: trees swaying, water rippling, boats bobbing, clouds moving, 
and no motion. These models are taken from studies in other fields, e.g. structural 
engineering. As visualized in Figure 3, similar to FoldingGen, the system also requires 
the user’s assistance to select the object that moves. The selected object is moved to 
a separate layer and a 2D displacement map, named motion texture, is applied to the 
layer to animate it. The user can control the resulting motion by adjusting the model 
parameters. The output moving picture is synthesized by compositing all animated 
layers into one. 
 

 
Figure 3. System overview. Input image (a) is segmented into different layers by the 
user in (b). The layers are then animated with a motion texture in c and generated an 
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animated layer in (d). The final output (e) is assembled by compositing all animated 
layers.  Image taken from [19]. 

 
 
Similar to FoldingGen, the proposed system also uses a semi-automatic user-assisted 
approach. But it does not provide a graphical user interface and the motions are 
specified by changing model parameters. In addition, the proposed system is only 
applicable to a few selected natural phenomena because the stochastic motion texture 
is based on a physics model which only describes motions caused by natural force. 
Consequently, the proposed system in [19] can only take real-world pictures as input 
while FoldingGen can take both real-world pictures and user drawings. 
 
Holynski et al. [20] presented a system to animate still images by leveraging motion 
information derived from video clips. As visualized in Figure 4, the system has a motion 
estimation network that is trained with online video clips. When a new image is fed into 
the estimation network, an Eulerian motion field and displacement fields will be 
generated for the image sequentially. Then the displacement fields are applied to the 
encoded input image. Finally, the output is generated from the decoder network. 
 

 
Figure 4. System overview. The input image is fed into two networks, a motion 

estimation network for a displacement map and a feature encoder network for a 
feature map. Then the displacement map is applied to the feature map and the 

output is generated from the decoder. Image taken from [20]. 

 
Similar to FoldingGen, the system uses a single static image as input. But the system 
is designed only for scenes with continuous fluid motion since it needs the motion to 
be represented by static Eulerian motion. Also, it takes a fully automatic approach so 
it does not need user interaction and consequently lacks the flexibility for the user to 
adjust the synthesized motion.   
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Figure 5. Draco workflow illustration a) User draws objects (b)(c)(d)(e) User specifies 
motion path (f) User adjusts scale change (g) User specifies velocity change (h) final 

result. Image is taken from [21]. 

 
In the two systems reviewed, motions are described by models and parameters. 
Systems used in animation authoring, on the other hand, usually provide an interface 
to define motions interactively. Kazi et al. [21] presented a system named Draco to 
add motion to still images. The system combines a graphical user interface with a 
procedural animation engine, enabling users to create and manipulate kinetic textures 
through a sketch-based interaction. To augment input images with motion in Draco, 
the user needs to draw patches, which are a collection of representative moving 
objects (e.g. the bubble in Figure 5a), and specify motion paths via a sketch. The patch 
and associated motion are named kinetic texture and serve as the basic animation 
component of the system.  
 
Similar to FoldingGen, Draco provides a user interface and several specialized tools 
to enable the user to create desired motion with relatively little effort. Also, by involving 
users in the motion specification, it provides authoring capabilities which are not 
offered in the previous two systems. However, as can be seen in Figure 5, the moving 
object is not taken from the input still image whereas in FoldingGen the user can either 
select the moving parts from the image or draw the moving object in a separate texture. 
Also, Draco only supports a limited selection of motions common in animation, while 
the folding-texture technique is a more general way to create motions.  
 
Draco was further extended in a new system named Kitty, which adds interactive 
behavior to generated dynamic illustrations [22]. Users can specify how moving 
objects’ parameters are related to user interactions. The generated scene can respond 
to animation viewers’ behavior live which is not in the scope of FoldingGen. 
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3 Folding Texture 
 
To lay the foundation for further design and synthesis process, this chapter explains 
the folding-texture technique. The technique’s origin and definition are discussed in 
Section 3.1. Then in Section 3.2, we present the dynamic sampling process from a 
single pixel’s point of view and explain how time-varying textures can be represented 
by folding texture. Next, we explained how the folding motion is achieved in the 
technique in Section 3.3. Finally, in Section 3.4, we explored how the rendering effect 
relates to a single pixel’s color change and proposed a few possible extensions of the 
folding-texture technique.  
 
3.1 Definition 
 
When I first read S. Thorben’s folding texture thesis [1], my initial question was, “What 
is folding texture?”. I tried to get a straightforward answer from the report. But 
unfortunately, it does not have a formal and concise definition in the thesis. It is 
referred to as “a new approach to simulate a kind of folding of the texture” and is 
presented as a series of procedures that can be implemented in the fragment shader 
to create the effect of a texture folding over itself. 
 
Thorben used Figure 6 to explain the “folding” concept. The figure shows how a target 
pixel samples its color from the texture during the folding process. The color bar on 
top displays the pixel’s colors over time and the black bar at the bottom shows the 
cross-section of the sampled texture. Two points in texture space, 𝑢𝑢0 and 𝑢𝑢1, mark the 
target pixel’s associated texture coordinates at two different moments 𝑡𝑡0 and 𝑡𝑡1 (not 
shown in the image). In the middle and right illustrations, the texture is folded at 
different degrees. In the part of the texture that is folded, the color value of the pixel is 
sampled from the texture layered on the top. So in the middle illustration at 𝑡𝑡0, the pixel 
changes its associated texture coordinates from 𝑢𝑢0  to 𝑢𝑢0′ , and at 𝑡𝑡1  its associated 
texture coordinates remain unchanged. While in the right illustration, the pixel samples 
color value from 𝑢𝑢0′  and 𝑢𝑢1′  instead of 𝑢𝑢0 and 𝑢𝑢1 respectively, due to stronger folding 
intensity. 
 

 
Figure 6. Basic idea of folding texture. The image is taken from [1] and modified (text 

in blue) for the convenience of explanation. 

 
This folding process was formulated as a procedure consisting of several steps that 
can be implemented in fragment shader, as listed in Equations (3.1), (3.2), and (3.3). 
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 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑢𝑢𝑐𝑐 = 𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡(𝑢𝑢, 𝑣𝑣).𝑢𝑢0, 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡(𝑢𝑢, 𝑣𝑣). 𝑣𝑣0) 
 

𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓(𝑢𝑢, 𝑣𝑣, 𝑡𝑡)  =  𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡(𝑢𝑢, 𝑣𝑣).𝑢𝑢0 + 𝑗𝑗𝑢𝑢𝑗𝑗𝑗𝑗(𝑢𝑢, 𝑣𝑣). 𝑥𝑥(𝑡𝑡), 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡(𝑢𝑢, 𝑣𝑣). 𝑣𝑣0 + 𝑗𝑗𝑢𝑢𝑗𝑗𝑗𝑗(𝑢𝑢, 𝑣𝑣).𝑦𝑦(𝑡𝑡)) 
 

𝑥𝑥(𝑡𝑡) = 𝑡𝑡 ∗ 𝑥𝑥 
𝑦𝑦(𝑡𝑡) = 𝑡𝑡 ∗ 𝑦𝑦 

( 3.1 ) 
 
( 3.2 ) 

 
 
( 3.3 ) 

 
Each pixel takes its 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑢𝑢𝑐𝑐 from its initial texture coordinates at the first frame and 
changes its associated texture coordinates per predefined functions (𝑢𝑢(𝑡𝑡), 𝑣𝑣(𝑡𝑡)) in the 
subsequent frames. These two steps are named “initial jump” and “time-dependent 
jump” in Thorben’s thesis report. In the initial jump, each pixel retrieves its initial texture 
coordinates (𝑢𝑢0 , 𝑣𝑣0)  ∈  [0,1]2 from a texture file called init-texture and uses them to 
sample color value from a texture file called color-texture. The notation 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡(𝑢𝑢, 𝑣𝑣) 
represents the operation of retrieving initial texture coordinates from init-texture and 
𝑐𝑐(𝑢𝑢, 𝑣𝑣) represents the operation of sampling a color value from the color-texture. In the 
time-dependent jump, the texture coordinates change at a constant difference in the 
subsequent frames. The differences are encoded as a vector called jump vector and 
are stored in a texture file named jump-texture. The jump vector is defined as 
(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡))  ∈  [−1, 1]² and points from the initial texture coordinates to the final texture 
coordinates. The vec’or's time dependence is outlined in Equation (3.3), where 𝑡𝑡 ∈
 [0, 1], and x and y are the vector’s length in the x-axis and y-axis direction, respectively. 
When 𝑡𝑡 =  0.0, 𝑥𝑥(𝑡𝑡)  =  0.0 and 𝑦𝑦(𝑡𝑡)  =  0.0, the time-dependent jump is about to start. 
And when 𝑡𝑡 =  1.0, 𝑥𝑥(𝑡𝑡)  =  𝑋𝑋 and 𝑦𝑦(𝑡𝑡)  =  𝑌𝑌, the time-dependent jump occurs at its 
full length.  
 
As mentioned earlier, the folding-texture technique uses three types of texture files, 
color texture, init-texture, and jump-texture. The color-texture is an image. It is used 
as the fundamental texture containing all color information to be sampled. The size of 
the color texture may be larger or smaller than the texture ultimately applied to the 
object, depending on whether new content needs to be stored or duplicated portions 
are displayed on the object. The init-texture stores all pixels’ init jumps and the jump-
texture stores all pixels’ jump vectors. The texture format is listed in Table 3.1 below. 
 

Table 3.1 init-texture and jump-texture contents 
Channel Init-texture Jump-texture 

R 𝑢𝑢0 𝑥𝑥(𝑡𝑡) 
G 𝑣𝑣0 𝑦𝑦(𝑡𝑡) 
B ∆𝑡𝑡 𝑡𝑡0 
A 𝑓𝑓0 𝑡𝑡1 

 
The “folding” of the texture is achieved by using a specific type of time-dependent jump 
as visualized in Figure 8. Two threshold parameters, 𝑡𝑡0 and 𝑡𝑡1, were added to time-
dependent jump to have a cutoff version of Equation (3.3). Consequently, the time-
dependent jump can happen at any given time whereas the time-dependent jump in 
Equation (3.3) only happens right after the initial jump is performed.  
 
 𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓_𝑗𝑗𝑢𝑢𝑗𝑗𝑗𝑗 =  �𝑓𝑓(𝑡𝑡), 𝑖𝑖𝑓𝑓 𝑡𝑡0 < 𝑡𝑡 ≤  𝑡𝑡1

0,              𝑐𝑐𝑡𝑡ℎ𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝑠𝑠𝑐𝑐        ( 3.4 ) 
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The threshold parameters, 𝑡𝑡0 and 𝑡𝑡1, corresponds to the time where the function has 
abrupt vertical uplift or drop in Figure 8. For each pixel, 𝑡𝑡0 marks the frame when the 
pixel starts to sample color value from locations other than the initial texture 
coordinates and 𝑡𝑡0 marks the frame when the pixel samples back to its initial texture 
coordinates.  
 

 
Figure 7. Modification of functions through thresholds. The image is taken from [1] 

 
 
Refined Definition 
 
The folding-texture technique was presented as a procedure in Thorben’s thesis. As 
explained and summarized in this section so far, it is definitely not a simple procedure 
that users can quickly learn and apply. The goal of this thesis project is to develop an 
approach for folding texture design and synthesis so that users can employ the folding-
texture technique more easily via our approach. As the first step of the thesis work, 
we explored the folding texture’s definition in more detail and gave it a refined definition. 
 
The folding-texture technique is a texture-mapping-based technique that can be 
employed to represent and synthesize time-varying textures with the “folding” effect. 
The “folding” effect is achieved by adopting a specific type of texture dynamic 
sampling. The technique uses three types of textures, color-texture, init-texture, 
and jump-texture, as representation. 
 
The phrases in bold are the building blocks of folding texture’s definition. We have 
explained texture mapping in the context of the rendering pipeline in Section 2.1 and 
have reviewed a few time-varying texture related techniques in Section 2.3. Next in 
this chapter, we will explain the rest of these key concepts one by one. Besides, we 
will also present a general form of the technique which could be studied in the future. 
 
 
3.2 Texture Dynamic Sampling Process 
 
For standard texture mapping, sampling is done statically. In the rendering pipeline, 
texture coordinates are pre-calculated for each vertex and stored with geometry. Then 
geometric primitives are converted into fragments where vertex attributes are 
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interpolated for each fragment in the vertex shader. Then fragment shader is invoked 
to determine the color value of each fragment. It uses the received interpolated texture 
coordinates to sample the texture at the corresponding locations. The texture 
coordinates remain constant throughout the rendering process, resulting in a fixed 
appearance. 
 
In texture mapping, the texture is an image and a function of spatial coordinates. Time-
varying texture extends texture’s definition in the time domain. It can be used to render 
a sequence of images and is a function of both spatial coordinates and time. As a 
technique that can be used to generate time-varying textures, folding texture needs to 
define the dynamic sampling process in rendering. Instead of using static texture 
coordinates, fragment shader retrieves texture coordinates from pre-designed and 
computed init-texture and jump-texture at runtime, allowing the texture to varying 
appearance over time. 
 
So we will first review the texture dynamic sampling process in folding texture to 
understand how motion can be rendered with texture mapping. Texture dynamic 
sampling in this report refers to the sampling process employed in the folding-texture 
technique, during which fragment-associated texture coordinates changes between 
frames. For the convenience of explanation, we define a sampler for each fragment in 
the texture space. The sampler position represents the target fragment’s associated 
texture coordinates and the target fragment will sample the color value where the 
sampler is located. Consequently, the trajectory of the sampler represents the whole 
texture dynamic sampling process. 
 
Figure 8 shows a sampler’s linear movement in the texture space, as formulated by 
Equation (3.3). The sampler’s trajectory is called one jump in the folding-texture 
technique and its path is called jump path. One jump path can be represented as a 
segment with a predefined length and direction in texture space, which is depicted in 
Figure 8. During the sampling process, the sampler moves from the init-position to the 
jump-position along the jump path and samples color for the associated pixel at each 
frame. The rendering result is visualized in Figure 8a.  
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Figure 8. Texture dynamic sampling process.  A directed segment, pointing from init-
position to jump-position, visualizes the whole sampling path. The sampler (dotted 
box) moved from init-position to jump-position along the jump path at a constant 

speed. 

For Motions that cannot be represented by a single segment, the sampler’s complex 
movement can be decomposed into a series of interconnecting jump paths as 
visualized in Figure 9. Each jump path represents a discrete proportion of the 
sampler’s movement, and when combined in sequence, they form the complete, 
continuous trajectory that the sampler follows during the sampling process. However, 
in this report, we will limit our scope to single-jump trajectory and leave multiple-jump 
support for future work. 
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Figure 9. Multi-jump trajectory. A sampler’s whole trajectory (A-D) consists of three 

jump paths (A-B, B-C, C-D).  

 
The sampler in Figure 8 follows a uniform linear movement. But a sampler’s movement 
does not necessarily need to be continuous. For example, the sampler could move 
back and forth along the jump path to have oscillatory behavior, or it could bypass 
certain parts due to external constraints. The sampler’s movement does not need to 
be uniform either. It can also move along the jump path at time-varying speeds, for 
example, accelerating or decorating based on a predefined speed distribution function 
to create more realistic rendering results. For example, the sampler may move quickly 
through areas with uniform properties or slow down to capture finer details in regions 
with complex structures. By controlling the actual movement of the sampler, certain 
effects can be achieved, and they will be explained in detail later in this chapter. In 
fact, “folding” is achieved by adopting a type of non-uniform nonlinear movement as 
shown in Figure 8. 
 
 
3.3 Folding 
 
Figure 1 illustrates the general folding concept and we extend the illustration to explain 
the folding progress with more details in Figure 10. The images in the left column show 
the progress that the texture folds over itself, and the images in the right column 
display the corresponding rendering result. On the input image in (a), two vertical 
dotted lines mark the region where folding will happen. The texture starts to fold over 
itself in (b). In the rendering result on its right, the wave part of the texture starts to 
shift to the left a bit and occludes part of the beach. When folding is done in (c), the 
region of the beach with the grey shell is occluded by the waves, and the waves reach 
their maximum and final position. As visualized by the right column images, we 
achieve the motion that waves swashing and backwashing by folding the input texture 
like a piece of paper. 
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Figure 10. Wave Swashing and Backwashing by Folding. The subplots show the 

input image (a) before folding (b) folding in progress (c) after folding and 
corresponding rendering result.  

 

So how can we explain this folding effect in the context of the texture dynamic 
sampling process introduced in the previous section? We will explain it with a more 
complex blinking eye example. Figure 11 illustrates how the texture is dynamically 
sampled around the eye area. The eyeball region is the area where the folding will 
happen. When the eye closes, the outer boundary of the eyelid ‘enters’ the eyeball 
area first, eventually covering most of the eyeball at the end of the movement. For 
points A, B, and C, the color is sampled along the jump paths, depicted as blue arrows 
in Figure 11b. Point C is not affected by folding and only follows the linear movement 
as in Figure 11d. Points B and C are involved in folding. We would like them to maintain 
their initial color until the eyelid arrives. So for points B and C, a t0 parameter is 
introduced to represent the moment time eyelid object first reaches that point. The 
eyelid starts to appear at point A at time ta and point B at time tb, while point C moves 
across the eyelid. If point A is set to take the initial color prior to ta, the color value from 
the eyeball texture will be displayed. The same thing happens at all points initially in 
the eyeball region, including point B. Without this t0 parameter, the eyeball will appear 
squeezed to close instead of progressively occluded by eyelids. 
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Figure 11. Texture dynamic sampling process of a blinking eye.  

 
 
The sampler trajectory used in folding can be abstracted as in Figure 12a. By using 
this type of trajectory in the texture dynamic sampling process, we can fold the texture 
and achieve the rendering result that one part of the texture is moving and 
progressively occluding the static part. 
 
 

 
Figure 12. Piecewise linear time-dependent jump used in folding texture. a) is used 

to create “folding” visual effect (b) can be used for creating “flying over” effect.  
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Figure 12b shows another type of time-dependent jump used in Thorben’s thesis and 
it leads to a kind of fly-over effect as shown in Figure 13. The points in motion zones 
maintain their original color first and start to sample color from the vehicle region at 𝑡𝑡0, 
which creates an effect that the vehicle runs into the motion zone region. Then at 𝑡𝑡1, 
motion zone points abruptly change their texture coordinates back to their original 
position, creating an effect that the car runs out of the motion zone region. The end 
rendering result looks like the vehicle part of the texture “flying over” the background 
part. 
 

 
Figure 13. “flying-over” effect. 

 
 
 
3.4 More Than Folding 
 
Both Figure 8 and Figure 12 show the sampler’s trajectory in the dynamic sampling 
process. The sampler could have a more complex trajectory than the ones shown in 
these two figures. Its transient behavior along the straight line path could be described 
by a pre-defined position function, 𝑠𝑠 = 𝑗𝑗(𝑡𝑡), which represents the sampler’s distance 
from the init-position along the jump path. In fact, with different deliberately designed 
position functions, we could have granular control over the sampler’s motion and 
achieve various complex visual effects. In this way, we could extend the folding-texture 
technique by having a more complex sampler trajectory than the ones shown in Figure 
12. We will first explore further on a sampler’s trajectory’s representation. 
 
The sampler position function 𝑗𝑗(𝑡𝑡) can be classified into two categories based on its 
mathematical definition: linear and nonlinear. Both types of functions can be used to 
define the motion of the sampler along the jump path in folding texture techniques, 
and each can result in different visual effects. 
 
3.4.1 Linear Position Function 
 
A linear position function can be formulated as Equation (3.5) and can be represented 
as a straight line in the two-dimension Cartesian coordinate system. 
 
 𝑗𝑗(𝑡𝑡) = 𝑎𝑎 ∗ 𝑡𝑡 + 𝑏𝑏 ( 3.5 ) 
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It is a more generalized form of Equation (3.3). As shown in Figure 14, any change in 
𝑡𝑡 results in a proportional change in the sampler position. This proportionality is 
determined by the slope constant 𝑎𝑎, which means the sampler moves at a constant 
speed along the jump path, resulting in a uniform distribution of sampled values along 
the path. Linear position functions can be useful for creating simple, predictable effects 
and transitions, such as uniform translation. 
 
The 𝑦𝑦-intercept 𝑏𝑏 represents a shift in the coordinate system. The temporal shift used 
in [1] was actually implemented via 𝑏𝑏. 
 
 𝑏𝑏 = 𝑎𝑎 ∗  ∆𝑡𝑡 ( 3.6 ) 

Where ∆𝑡𝑡 is the temporal shift, and  ∆𝑡𝑡1 and  ∆𝑡𝑡2 in Figure 14 are two examples. 
 
 

 
Figure 14. Linear position function. 

 
3.4.2 Nonlinear Position Function 
 
Nonlinear functions can be useful for representing more complex and non-uniform 
motion in texture dynamic sampling, which can create more natural effects, as well as 
more complex and diverse visual patterns. 
 
Nonlinear functions like exponential function, sigmoid, and exponential inverse 
function can be used as position functions. With the exponential or sigmoid function, 
the samp’er's position changes result in non-uniform acceleration or deceleration. With 
sine or cosine functions, the sampler creates oscillatory motion along the jump path. 
This can be useful for simulating wave-like phenomena or repeating patterns, such as 
wave-like textures, pulse effects, or vibrating objects. 
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Piecewise linear position function 
 
A piecewise linear position function consists of multiple linear functions over different 
intervals of its input domain. In other words, the function is composed of several linear 
segments joined together at specific points, with each segment having its own linear 
equation. By defining a series of linear functions over different intervals, you can create 
a path that has abrupt changes in direction, speed, or both at certain points, leading 
to various visual effects. 
 
Figure 15 shows three examples of piecewise linear positions. In subplot (a), the 
sampler moves at a constant speed until 𝑡𝑡0 and maintains the same color value until 
𝑡𝑡1, then skips part of the jump path and continues moving to the jump position at a 
constant speed. If we set 𝑡𝑡0 = 0 and 𝑗𝑗(𝑡𝑡0) = 0, the position function in Figure 15a 
becomes the position function used in the folding-texture technique (see Figure 12a 
on page 16).  
 
 

 
Figure 15. Examples of piecewise linear position functions. 

 
 
In example (b) sampler moves at a constant speed the whole time except maintaining 
the same color value at 𝑡𝑡0  for a period of time. A good scenario to visualize the 
rendering effect it could achieve is vehicle runs and stops at a red sign and then 
continues its journey when the traffic light turns green. 
 
In example (c), we see an abrupt change at 𝑡𝑡0. This could be used to create visual 
effects like teleport, where 𝑡𝑡0 represents the teleportation point. Depending on the 
desired effect, you can adjust the values of 𝑠𝑠0, 𝑠𝑠1, and 𝑡𝑡0 to control the motion of the 
sampler before and after the teleportation, as well as the teleportation point and the 
distance between the starting and ending locations. 
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4 Design and Synthesis 
 
In this chapter, we will first give an overview of the basic workflow of our approach. 
Then we explain the two concepts introduced in the approach. The introduction of 
these two concepts will enable users to specify motions on a per-zone basis. We offer 
several specialized tools for motion specification. We will explain in detail the methods 
behind them and how they could assist in the design and synthesis of folding textures. 
 
4.1 Workflow Overview 
 
We propose a novel approach that enables users to design and synthesize folding 
textures effectively. The workflow is demonstrated in Figure 16. Given an input image, 
the user identifies regions where movement occurs, denoted as motion zones. Then, 
the user specifies the movements, denoted as motion profile, in each zone using the 
tools provided by our system. Our system offers various specialized tools and 
algorithms for folding texture design and synthesis, catering to various needs and 
preferences. Once the parameters for these tools have been suitably adjusted, fine-
tuned, and configured, the folding textures – consisting of color-texture, init-texture, 
and jump-texture - are generated, providing a comprehensive output for further 
analysis and application.  
 

 
Figure 16. Workflow overview.  

 
Integration of image editing software into the system permits users to directly create 
input images using programs such as GNU Image Manipulation Program (GIMP), with 
the system automatically importing the resulting images. Moreover, a simple previewer 
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has been incorporated into the system, enabling users to examine on-the-fly the 
rendering outcomes of the synthesized folding textures. 
 
4.2 Motion Zone and Motion Profile 
 
In the previous chapter, we have described the sampling process from the angle of a 
single pixel. The pixel’s color changes over time can be represented by its associated 
sampler’s movement in the texture space. So far folding textures were calculated and 
created manually by specifying these movements for every pixel. 
 
We want to make it easier for the users to use folding-texture via our approach. The 
notion of motion zone and motion profile are introduced to help user to specify the 
movements for a collection of pixels instead of for every individual pixel. A user-placed 
motion zone indicates a region of the output image in which motion takes place.  
 
Figure 17 illustrates the rendering result of the motion zone with specified movements. 
The 9 pixels in the motion zone have their specified jump paths depicted as black 
arrows. Their initial color is sampled from their init-position on the jump path. Once the 
motion zone is drawn on the image, the init-positions and init-texture are determined. 
These containing pixels’ samplers then moves along their jump paths with the default 
linear position function. The rendering results at each frame are shown in Figure 17 
(b), (c), (d), and (e) respectively. 
 
 

 
Figure 17. Per-zone view of the sampling process. (a) motion zone and all 

associated jump paths on the color texture (b)(c)(d)(e) motion zone’s rendering result 
along the time 

 
 
One motion zone may span the entire input image or a portion thereof. An image could 
have one or multiple motion zones, with each motion zone potentially incorporating 
several objects or parts of an object (shown in Figure 18). In practice, it is the motion 
properties or motion profile of the object or part of the object that a motion zone 
encapsulates that distinguishes motion zones from each other. 
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Figure 18. Motion zone examples.  

(a) multiple rectangular motion zones (b) single polygonal motion zone (c) multiple 
polygonal motion zone  

 
 
The term motion profile is commonly used in motion control systems to describe the 
desired position, velocity, and acceleration of an object or a set of objects over time. 
It typically encompasses information about the position, velocity, and other motion-
related parameters of the object or system as it traverses through space. In this report, 
motion profiles are utilized to describe the dynamic movement of samplers in a motion 
zone. This concept facilitates the creation of realistic movement of objects, enabling 
them to interact and move with one another in a real-world manner. 
 
As elaborated in the previous chapter, the movement of a sampler is uniquely 
determined by two elements: its jump path and position function. Consequently, the 
jump paths and position functions of all pixels within the motion zone form the motion 
profile. 
 
A jump path can be represented mathematically by its initial position and a jump vector 
which is pointing to the jump path’s jump-position. It could be expressed either by an 
init-position/jump-position pair or an init-position/jump vector pair. Once a motion zone 
is specified on the input image, its containing pixels’ init-positions are implicitly 
established. Then the user needs to specify both jump paths and position functions to 
define the desired motion profile for the motion zone. 
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The representation of the position function exhibits a greater degree of variation, 
depending on the type of function. For instance, in the case of a linear position function, 
once a jump path is established, only one additional parameter, sampling step size, 
needs to be provided. For nonlinear position functions, the function type, and 
associated parameters must be specified. As for piecewise linear functions, they can 
be perceived as a combination of linear functions, with each segment defined by the 
start and end times, as well as speed (the slope of the function).  
 
So far, the user needs to manually create folding texture by specifying movements for 
every sampler. We introduce motion zones and motion profiles to enable users to 
specify movements per region instead of per pixel. But users still need to do a lot of 
manual work to specify the motion profile for a motion zone. How could we further 
ease this work? Since the motion profile is formed by containing samplers’ jump paths 
and position functions. The problem to address evolves to how could we specify jump 
path and position function in batch in a motion zone. 
 
We offer a few specialized tools for motion profile specification. The tools can be 
categorized into two groups, one for the specification of jump vector, and the other for 
the specification of position function. They will be explained in Sections 4.3 and 4.4 
respectively. Users can use both categories of tools in conjunction to describe complex 
motions. 
 
4.3 Jump Vector Specification 
  
To specify motion profiles for an image containing intricate details, users must carefully 
specify the jump for sample pixels. As the number of sample points increases, more 
complex motion effects can be achieved. For instance, creating the motion profile of a 
smiling face, where the eyes, forehead, mouth, and nose exhibit different motion 
profiles, requires defining hundreds of sample points. Manually crafting such a texture 
with high detail and minimal artifacts pixel by pixel can prove to be a demanding task.  
 
So how could we define a bunch of jump vectors at once? We propose two ways to 
approach this. One option is to specify how jump vectors are spread out within a 
specific area, determining their local distribution. Another option is to specify a few 
sample vectors, and all the rest of the jump vectors are calculated from spatial 
interpolation. 
 
4.3.1 Geometric transformation-based Jump Vector Specification 
 
The adoption of geometric transformation is intuitive. By perceiving a single motion 
zone as an individual object, one can apply specific types of transformations, such as 
translation or scaling, to the motion zone. Consequently, it is expected that the jump 
vectors will undergo a similar transformation, resulting in a particular distribution 
pattern. 
 
These tools are intended for application on a per-motion-zone basis, implying that 
when employing this category of tools, points within a given motion zone exhibit 
identical or highly similar motion profiles.  
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Consider, for instance, the case of translation transformation applied to a motion zone. 
In this instance, all points located within the motion zone will share an identical jump 
vector, with the only difference being their initial positions. 
 
The scale transformation tool is illustrated in Figure 19. When the motion zone 
(depicted as a black rectangle) is scaled 3 times in the x direction, all its containing 
pixels’ jump vectors have magnitude that equals 3 times the length of its distance to 
the central symmetric axis. As the result, motion zone’s rendering output will change 
from Figure 19b to Figure 19c. 
 

 
Figure 19. Scale Tool Illustration. (a) Scale tool in action (b)(c) rendering out of the 

rectangular region 

 
4.3.2 Interpolation-Based Jump Vector Specification 
 
The geometric transformation-based tools are simple and intuitive in nature. In 
practice, they have demonstrated effectiveness when the motion profile follows a 
clean and uniform pattern. However, given the finite variety of geometric 
transformations available, real-world scenarios may exhibit motion profiles that cannot 
be described by these transformations, resulting in undesired results. 
 
To address this limitation, we proposed a group of tools that employ spatial 
interpolation for batch specification of jump vectors. Spatial interpolation is a widely 
used technique in Geographic Information Systems for estimating unknown values at 
specific points using known points as sample points. In our approach, points with user-
specified jump vectors are treated as known points or anchor points. The jump vectors 
of neighboring points are calculated via interpolation, guided by a few selected 
parameters. 
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Various spatial interpolation methods are available, including Shepard[23], radial basis 
function[24], spline interpolation[25], and as-rigid-as-possible interpolation[26]. We 
chose to utilize a modified version of Shepard interpolation due to its efficiency and 
simplicity. It is important to note that extensibility was a key consideration in the design 
of our approach. The implemented interpolation method could easily be replaced with 
an alternative algorithm if desired. 
 
Three variants of the Shepard Interpolation method are provided in the implemented 
proof of concept, the original Shepard Interpolation, the Modified Shepard Method, 
and Modified Shepard Method with Randomness proposed in this report. 
 
Shepard Interpolation 
 
Shepard Interpolation, also referred to as Inverse Distance Weighting (IDW) 
interpolation, is a technique employed in spatial interpolation to estimate values at 
interpolated points based on a set of sample points. Values are interpolated based on 
the inverse distance to the sample points. This is illustrated in Figure 20a.  
 

 
Figure 20. Variants of the Shepard method.  

 
 
 
 
Given a set of sample points {𝒑𝒑𝒊𝒊,𝒖𝒖𝒊𝒊|𝑓𝑓𝑐𝑐𝑐𝑐 𝒑𝒑𝒊𝒊 ∈ 𝑅𝑅𝑛𝑛,𝒖𝒖𝒊𝒊 ∈ 𝑅𝑅}𝑖𝑖=1𝑁𝑁 , the interpolated value 𝑢𝑢(𝑥𝑥) 
is computed as: 
 
 

𝑢𝑢(𝒑𝒑) = �
∑ 𝑒𝑒𝑖𝑖(𝒑𝒑)𝒖𝒖𝒊𝒊𝑁𝑁
𝑖𝑖=1
∑ 𝑒𝑒𝑖𝑖(𝒑𝒑)𝑁𝑁
𝑖𝑖=1

,   𝑖𝑖𝑓𝑓 𝑓𝑓(𝒑𝒑,𝒑𝒑𝒊𝒊)  ≠ 0 𝑓𝑓𝑐𝑐𝑐𝑐 𝑎𝑎𝑐𝑐𝑐𝑐 𝑖𝑖,

𝒖𝒖𝒊𝒊,                           𝑖𝑖𝑓𝑓  𝑓𝑓(𝒑𝒑,𝒑𝒑𝒊𝒊) = 0 𝑓𝑓𝑐𝑐𝑐𝑐 𝑠𝑠𝑐𝑐𝑗𝑗𝑐𝑐 𝑖𝑖
 ( 4.1 ) 

 

where 𝑒𝑒𝑖𝑖(𝐱𝐱) =  1
𝑑𝑑(𝐩𝐩,𝒑𝒑𝒊𝒊)𝒂𝒂

 is the weights calculated from inverse of the distance. 
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Modified Shepard Method 
 
Modified Shepard's method (MSM) [27] aims to reduce the bull-eyeing effect seen in 
the original Shepard interpolation. It reduces the expressive local values that could 
cause artifacts by only considering sample points within a user-defined radius R (see 
Figure 20b). The weights are adjusted as follows: 
 
 

𝑒𝑒𝑖𝑖(𝐱𝐱) = (
max (0,   𝑅𝑅 − 𝑓𝑓(𝒙𝒙,𝒙𝒙𝑖𝑖)) 

𝑅𝑅 ∙ 𝑓𝑓(𝒙𝒙,  𝒙𝒙𝑖𝑖) 
)2 ( 4.2 ) 

 
 

 
Figure 21. Algorithms comparisons. (a) Input image (b) Modified Shepard Method (c) 

Modified Shepard Method with Randomness 
 
 
Modified Shepard Method with Randomness 
 
However, in practice, minor artifacts (see circled region in Figure 21b) are still 
observed near the R-sphere boundary. To eliminate these artifacts (see Figure 21c) 
and enhance the realism of the results, we propose a further improvement of the 
original algorithm, termed Modified Shepard Method with Randomness (MSMR).  
 
Directly inside the boundary R, we introduce a ring-shaped randomness region of 
width t (depicted blue zone in Figure 20b). In this ring, sample points are randomly 
selected for inclusion in the computation. The weights are subsequently adjusted as 
follows: 
 
 
 

𝑒𝑒𝑖𝑖(𝐱𝐱) = (
max �0,   𝑘𝑘(𝒙𝒙𝑖𝑖) ∙ �𝑅𝑅 − 𝑓𝑓(𝒙𝒙,𝒙𝒙𝑖𝑖)�� 

𝑅𝑅 ∙ 𝑓𝑓(𝒙𝒙,  𝒙𝒙𝑖𝑖) 
)2 

 

𝑘𝑘(𝒙𝒙𝑖𝑖) �
∈ 𝑆𝑆𝑅𝑅 ,   𝑖𝑖𝑓𝑓 |𝑓𝑓(𝒙𝒙,𝒙𝒙𝒊𝒊) − 𝑅𝑅| < 𝑡𝑡

= 1,     𝑐𝑐𝑡𝑡ℎ𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝑠𝑠𝑐𝑐                                   

( 4.3 ) 

 
 
where 𝑆𝑆 = {1, 0}.  
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Based on the interpolation method discussed above, we offer a few specialized tools 
to facilitate the specification of key points’ jump vectors. 
 
Point Mapping 
 
This tool enables users to draw a single jump vector on input images. It is a simple but 
powerful tool. Theoretically, it can be employed to specify a jump vector for all the 
points within the motion zone. But as we have mentioned before, this will be tedious 
work for users. In practice, this tool typically serves as a complementary tool to other 
tools, adding some “outlier” yet crucial jump vector. 
 
Curve Mapping 
 
Relying solely on point mapping tools is not sufficient. We observed that in practice it 
is very common for geometrically associated pixels to have similar jump. For instance, 
the points on the upper eyelid have jump vectors that are perpendicular to the eyelid’s 
boundary.  
 
Orzan proposed that contours can be used to represent and edit digital images [28]. 
Motion in the image consequently can be represented as the motion of contours in the 
image. To take advantage of this insight curve mapping tool is introduced to enable 
users to draw curves to specify jump vectors along contours.  
 
The curve mapping tool is based on the cubic Bezier curve with a set of anchor points 
as visualized by Figure 22a. With the tool, users can draw the curve on the input image 
and specify jump vectors (𝑐𝑐0 ~ 𝑐𝑐5 in Figure 22b) at a few anchor points (𝐴𝐴0 ~ 𝐴𝐴5 in 
Figure 22b) along the curve.  
 
 

 
Figure 22. Bezier curve and curve mapping tool.  

 
When the anchor points’ jump vectors are set (Figure 23a), interpolation is performed 
along the curve to generate jump vectors for all points on the curve. Users can set the 
distribution of jump vectors. We offer a few shortcut options for the users to select. 
The anchor points serve as sample points for along-the-curve interpolation (Figure 
23b). The number and density of anchor points can be configured by the user. In the 
next step, the neighboring pixels’ jump vectors (Figure 23c) are interpolated using 
vectors on the curve as sample vectors. 
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Figure 23. Interpolation steps in curve mapping 

 
 
 
Lasso Deform Tool 
 
Inspired by the lasso selection tool found in image editing software, the lasso deform 
tool enables users to create freehand deformations of motion zones surrounding 
objects or specific areas within an image. 
 
Vertices of the motion zones polygon (see Figure 24) are translated using the mouse 
cursor. For each vertex, the jump vector is simply derived from its start- and end 
position. Jump vectors of pixels inside the motion zone are interpolated from these 
vertices using the method described above. 
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Figure 24. Mechanism of Lasso Deform Tool.  With the tool, users can drag and drop 

the vertices to transform the original polygonal motion zone (blue) to a different 
shape(orange). Each vertex’s original position and new position form its jump vector. 

 
4.4 Position Function Specification 
 
 
Linear Position Function 
 
The expression for the linear position function is simple (see Equation (3.5)). With the 
jump path established, only two additional parameters—speed (as in Equation (3.5)) 
and temporal shift (∆𝑡𝑡 in Equation (3.6))—need to be specified. The speed will be set 
as a per-texture parameter, while the temporal shift will be set as a per-motion-zone 
parameter. 
 
Piecewise Linear Position Function 
 
The folding texture technique employs two types of piecewise linear position functions, 
as shown in Figure 25. In addition to speed and temporal shift, the frame where a 
discontinuity occurs must also be specified. These moments are referred to as 
thresholds and represented as 𝑡𝑡0 and/or  𝑡𝑡1 parameter in [1].  
 
A Folding Zone tool is introduced to enable the intuitive specification of these 
parameters. As the name implies, the region marked by the folding zone will be “folded 
over” at some stage during dynamic sampling.  
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Figure 25. Folding Parameter Computation. two motion zones, FZ1 and FZ2, on the 
input image. Jump path JP1 intersects with FZ1 at A. JP2 intersects with FZ1 and 

FZ2 at B and C. JP3 intersects with FZ2 at D and E, respectively 

 
It is essential to note that these parameters may differ for each point. For every point 
within the folding zone, the parameters are determined by the intersection points 
between the jump path and the folding zone boundary. Figure 25 demonstrates the 
relationship between these parameters, jump path, and motion zones. When a jump 
initiates outside the folding zone and traverses one motion zone, the 𝑡𝑡𝐷𝐷  and  𝑡𝑡𝐸𝐸 
parameters in Figure 25d correspond to the two moments when the jump path 
intersects with the folding zone boundary at. When the jump path originates inside a 
motion zone and ends at another motion zone, the 𝑡𝑡𝐵𝐵 and  𝑡𝑡𝐶𝐶 parameter in Figure 25c 
relate to the moment that the sampler reaches B and C. When a jump path starts 
inside one motion zone and ends outside motion zones, the moment sampler interests 
with motion boundary is the parameter 𝑡𝑡𝐴𝐴 in Figure 25b. 
 
Theoretically, one jump path could intersect more than two motion zones. Each 
intersection with a motion zone adds an additional parameter, the position function 
representation, as shown in Figure 25e. However, this thesis work limited its scope to 
at most two motion zone interactions. Likewise, other types of piecewise linear position 
functions (see Figure 15bc) are excluded from the scope of this thesis. 
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Other Nonlinear Position Function 
 
We offer a limited number of alternatives for other types of nonlinear position functions, 
such as exponential function, sigmoid, and exponential inverse function. The constant 
parameter in function expression can be set as an additional parameter, similar to 
what is done for the speed parameter. These functions will be available in discretized 
form in the shader. Additionally, these basic nonlinear functions could also serve as a 
sub-function of a piecewise function, like the linear sub-function in a piecewise linear 
function. See examples in Chapter 6 for more details. 
 
 
4.4.1 Alpha Mask as an alternative for folding zone 
 
In our approach, alpha mask can serve as an alternative way to specify regions where 
“folding” occurs. Alpha blending is a technique for combining or blending two or 
multiple images based on their respective alpha values. 
 
An additional image needs to be provided to serve as a mask for the original input 
image. The mask image should be identical to the original image, with the only 
difference being that alpha values of folding regions are set to zero. As depicted in 
Figure 26, the sampler switches between the original image and the mask image, 
taking the color value from the original image when the alpha value is zero and from 
the mask image when the alpha value is non-zero. 
 

 
Figure 26 Illustration of alpha blending usage 

 
4.5 Multiple Motion Zone and Multiple Texture Support 
 
Samplers can jump from one image to another in folding. Naturally, our approach 
supports multiple images as input. When using multiple input images, one is typically 
selected as the background or scene image, while the others where samplers will jump 
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to are partially rendered over the scene image. The motion zone is specified on the 
scene image and can be moved inside the same image or to another image and back 
to the scene image.  
 
A texture atlas is a large image that combines multiple smaller textures into a single 
image, as visualized by Figure 27. This technique is widely used in computer graphics 
and game development to reduce the number of draw calls and improve rendering 
performance. In color-texture assembling, we crop parts of the input images that 
contribute to the rendering result and assemble these pieces together into a texture 
atlas.  
 
 

 
Figure 27. Illustration of color texture assembling process. (a) input images (b) 

assembled color texture (c) one frame from the rendering result 

 
 
By combining multiple input images into a single image and cutting off the unused 
regions, the overall memory usage can be reduced. Also, by using a single texture file, 
the number of texture switches and draw calls required during rendering are minimized, 
which can improve runtime performance.  
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5 Implementation 
 
In this chapter, we dive into the implementation details of the algorithms and methods 
used. We have developed FoldingGen as proof of concept. The software features a 
graphical user interface with specialized tools, an integrated previewer to verify 
rendering results, and an integrated visualizer to show the distribution of generated 
jump vectors.  
 
5.1 FoldingGen 
 
FoldingGen is developed in Python and C++, utilizing various open source modules 
and frameworks to implement its features and functionalities. The interface is built 
using the standard Python GUI (Graphical User Interface) library Tkinter, facilitating 
the creation of customizable and platform-independent user interfaces. Tkinter 
integrates seamlessly with the Tcl/Tk library, providing a wide range of widgets and 
tools for crafting intuitive GUIs. 
 
The FoldingGen interface layout is designed for efficient folding texture creation. The 
workspace is divided into several panels and toolbars. As shown in Figure 28 the 
canvas occupies the central area of the interface where input images are displayed, 
and motion zones and motion profiles are specified. The toolbox panel, located on the 
left side of the interface, contains various tools for drawing and transforming motion 
zones, such as rectangle, polygon, translation, and scale tools. It also includes tools 
for motion profile specification and displays an optional property panel for the current 
tool in use.  

 
Figure 28. FoldingGen interface layout. The interface consists of (A) Canvas(with 
input image imported), (B) Toolbox Panel, (C) Jump Path Tree, (D) Motion Zone 

Panel, (E) Status Bar, and (F) Workflow Panel. 
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On the upper right side of the interface, the jump path tree displays a list of all the jump 
paths, grouped by motion zone. Users can add, delete, or modify the init-position and 
jump-position of each jump path. Below the Jump path tree, the Motion Zone Panel 
lists all the input images and motion zone a in hierarchical structure. Users can move 
motion zones between input images, which is essential for multiple input image 
support. At the top of the interface, the menu bar provides access to various 
commands and options, such as Demo, Import, Export, and Help. These menus allow 
users to perform tasks like Import/Export Motion Zone, Import/Export Motion Profile, 
and accessing help documentation. Below the menu bar, the Workflow Panel contains 
buttons that trigger the stages in the proposed workflow, as described in Section 4.1. 
Located at the bottom of the interface, the Status Bar displays information about the 
current cursor position, texture synthesis progress, and other relevant details. 
 
The ability to save work progress and resume later is a crucial feature for software 
usability. Saving work progress ensures that any changes made during a work session 
are preserved. FoldingGen enables users to save drawn texture, specified motion 
zone, and motion profiles for later import. This allows users to work on a project at 
their own pace, taking breaks or dividing their work into smaller sessions as needed. 
When exporting motion zones and motion profiles, the data is saved in human-
readable JSON format, and the software’s internal running status is saved in a text-
based dump file, which has proven quite useful in debugging and reproducing 
examples. 
 
5.2 Texture Synthesis Algorithms 
 
As illustrated in Figure 16, folding texture consists of three components: color-texture, 
init-texture, and jump-texture. Color-texture serves as the fundamental texture, storing 
all the color information required for rendering. Like conventional texture mapping, we 
store the color texture in a commonly used file format. 
 
As mentioned in Section 4.5, we improve memory usage by packing the input images 
into a single texture atlas. Algorithm 1 outlines the color texture assembling process. 
 
 
ALGORITHM 1: ALGORITHM TO PACK COLOR TEXTURE 
 Input: input images, motion zones, and motion profiles 
 Output: color texture file F 
1 Create output file F 
2 Initialize image_list 
3 for each input_image 
4  for each motion_zone 
5   cropped_image = crop(input image, motion zone, motion profile) 
6   image_list.append(cropped_image) 
7  end for 
8 end for 
9 atlas_texture = atlas_packing(image_list, packing_config) 
10 write atlas_texture to F 
11 return F 
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A jump path can be represented mathematically by its initial position and a jump vector 
which is pointing to the jump path’s end position. So the init-texture stores init positions 
and the jump-texture stores the jump vectors. 
 
The init-texture holds motion zone related information, containing texture coordinates 
of all points within a motion zone’s axis-aligned bounding box. The last channel is used 
to mask pixels outside of the motion zone. The synthesis algorithm is shown in 
Algorithm 2. 

 
ALGORITHM 2: ALGORITHM TO GENERATE INIT-TEXTURE FILE 
 Input: input images metadata, color texture, and motion zone data 
 Output: init-texture file F 
1 Create output file F 
2 for point  (x,y) contained in the motion zone’s rectangular bounding box 
3  X = (x + atlas_offset_x) / image_width 
4  Y = ( y + atlas_offset_y ) / image_height 
5  if (x,y) is in the motion zone then 
6   z = 1 
7  else 
8   z = 0 
9  end if 
10  write X, Y, z to file F 
11 end for 
12 return F 
 
 

Jump-texture stores the jump vectors for points within the motion zone. When using 
interpolation-based motion profile specification, Algorithm 3 is used. The 
calculate_threshold() method in the algorithm determines the start and end 
time of the sampler’s movement along the jump path, taking folding_zones as a 
parameter, which contains a list of the polygon representation of the folding zone.  
 
 
ALGORITHM 3: ALGORITHM TO GENERATE JUMP-TEXTURE FILE 

 Input: input images metadata, color texture and motion zone data, key jump vectors 
 Output: jump-texture file F 
1 Create output file F 
2 for point  (x,y) contained in the motion zone’s rectangular bounding box 
3  interpolated_jump_vec = interpolate (x, y, key_jump_vecs) 
4  if folding_zones is specified then 
5   t0, t1 = calculate_threshold (interpolated_jump_vec, folding_zones) 
6  else  
7   t0 = 0, t1 = 1 
8  end if 
9  jump_vec = normalize (interpolated_jump_vec, image_data, offsets) 
10  X = jump_vec.x, Y = jump_vec.y 
11  write X, Y, t0, t1 to file F 
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 12 end for 
13 return F 

 
 
Thorben used an additional texture named function texture to store nonlinear position 
functions like exponential or sigmoid functions. We dropped the usage of function 
texture and have a discrete version of these functions available in the previewer 
instead. Currently the previewer only supports one function type for all motion zones. 
But this could be easily extended by adding one parameter for each motion zone. 
 
5.3 Visualizer and Previewer 
 
Figure 29a shows the integrated previewer, designed to facilitate user inspection of 
rendering outcomes of synthesized folding textures, and provide immediate feedback 
on the design. The integrated previewer, developed with OpenGL in C++, offers a 
debug menu where users can change parameters, such as position function, speed, 
and time offset, in real-time to adjust the rendering result.  
 

 
Figure 29. Integrated previewer and visualizer. (a) simple previewer to render 

synthesized folding texture on a 2D geometry. (b) integrated visualizer to sample and 
visualize one motion zone’s jump vectors as a vector field. 

 
Additionally, an integrated visualizer (Figure 29b) displays the distribution of jump 
vectors in the form of a vector field. When dealing with high-resolution input images, 
displaying all jump vectors in one graph can be inconvenient. Users can set a down-
sampling scale to visualize a selection of the jump vectors. 
 
 
5.4 Misc 
 
The software is developed following a set of open-source project best practices to 
maintain high code quality and ensure portability. These practices contribute to robust, 
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reliable, and maintainable software, which have proven to be crucial to the program 
when the code base grows beyond a specific size (see Table 5.1). 
 

Table 5.1 Repository Status 
Category Description Lines of codes 

Product codes FoldingGen, Previewer and 
Visualizer 13522 

Test codes Tests guarding algorithms and 
interaction 3121 

Documentation User guide 743 

Total  17386 
 
 
Code quality 

• Linting tools are set up to continuously guarantee that code is in a healthy state. 
pylint, pycodestyle, and mypy are used for Python code. Clang-tidy, Clang-
format, and cpplint are used for C++ code. 

• Use case level, module level, and unit tests are added as pre-commit tests to 
ensure software behaves as expected. 

• Comprehensive user documentation that covers installation, configuration, and 
usage is provided. 

 
Portability 

• Currently, the system only runs on Linux (Ubuntu 20.04LTS) and is integrated 
with GIMP as the default image editing tool. However, from the beginning of 
implementation, the system’s support for other platforms has been considered. 
The majority of the codebase is platform agonistic. Only some migration work 
is needed to run on Windows or OSX. 

• Bazel is selected as a dependency management and build/test tool. Most of the 
dependent third-party libraries and modules are also managed in a hermetic 
way. The system only depends on a minimum set of packages installed on the 
system, making it easier to port and deploy. 

• Tkinter is chosen as the GUI framework for quick prototyping due to its low 
learning curve. However, FoldingGen is implemented in the MVC design 
pattern, which makes it easier to switch to a different framework if needed. 
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6 Results 
 
In this chapter, we first present the design process we used in practice. Then with a 
few examples, we showcase how we designed and synthesized folding texture with 
the proposed system, which in turn proves the validity of the proposed approach. The 
content is focused only on the specific use case, and a comprehensive user guide of 
the software can be found in the appendix section. 
 
Rendering results are presented as a sprites sheet. Video captures can be found in 
the supplementary materials and on GitHub pages1. 
 
6.1 Design Process 
 
From the applications and use cases we have explored, a general process can be 
abstracted and followed to create a desired visual effect, including but not limited to 
“folding”, “flying-over”, translation, etc. Most steps of this process adhere to the 
workflow proposed in Section 4.1. 
 
Study the object 
 
As with other creative processes, the first step is to study real-world examples to 
understand how different entities or parts of entities interact with each other. We 
recommend starting by gathering reference materials to guide the development of a 
design. Materials can include high-quality images, videos, or real-life objects that 
showcase various aspects of the subject. Consider various angles, lighting conditions, 
and environments to capture a wide range of possible appearances. These materials 
can be found through online searches, books, or firsthand observations. 
 
During and after collecting reference materials, study the subject you aim to create or 
render. This might involve researching the appearance, structure, behavior, or other 
characteristics of the subject to gain a thorough understanding of its properties and 
nuances. 
 
Create input images 
 
Once you have studied the references and have a general target result in mind, you 
can start working within our framework. Draw from scratch or combine available works 
to prepare input images. 
 
Motion Zone and Motion Profile Specification 
 
Identify key motions observed in reference materials. Specify them in the form of 
motion zone and associated motion profiles, as explained in Section 4.2. 
 
Preview as feedback 
 

 
1 https://mcoderh.github.io/foldingGen/ 
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Analyze the result in the integrated previewer (shown in Figure 30). Use it as feedback 
and change configuration or input images accordingly in the next iteration. 
 
 

 
Figure 30. FoldingGen in action.  Screenshots are taken when designing one folding 

texture.  

 
6.2 Applications 
 
6.2.1 Hand Knife-cut Wound 
 
In this example, we aim to render a knife-cut wound on a hand. From the videos and 
photographs we have searched and reviewed; we made a few observations. When a 
wound occurs, the skin experiences displacement and deformation in different regions 
around the wound. In the immediate area of the wound, the skin may be pushed apart 
or separated, creating a visible opening. The skin around the wound may be stretched 
or compressed due to the tension created by the wound opening. 
 
The background image (excluding the annotation on the image) in Figure 31 is used 
as the input image. Considering the observed motion, the motion zone should contain 
a region that includes not just the wound but also the areas where the skin deforms. 
So, regions A to E should at least be included in one of the motion zones. Region A is 
the place where “folding” will happen, meaning skin texture will progressively overlay 
region A in the texture dynamic sampling process. Regions B and D are perpendicular 
to the cut length. The skin in these two regions tends to be pushed apart or separated 
as a direct result of the cutting force. In regions C and E, along the length of the cut, 
the skin may experience less dramatic displacement compared to the area 
perpendicular to the cut. 
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Figure 31. Hand-wound example input image.  Different areas of an open wound are 

marked as regions A ~ E. 

 
Based on the analysis, the motion zone and motion profile are specified in Figure 32a. 
Motion zone MZ covers an area of the hand where skin deformation can be observed. 
Right outside region A, two curves, C2 and C3, are drawn with the Curve Mapping tool 
to specify the most evident skin deformation. The exposed tissue in region A is 
selected as a folding zone since it is where folding will happen. An additional curve C1 
is drawn to mark the boundary where deformation decreases to zero. The curve 
intentionally takes a path that is closer to the radially outer boundary of regions B and 
D and to the inner boundary of regions C and E, ensuring deformation is more visible 
in regions perpendicular to the cut length. 
 
 

 
Figure 32. Motion profiles of hand-wound example.  (a) annotated screenshot of the 

motion profile specified in FoldingGen. The motion zone is marked as MZ. The 
folding zone is marked as FZ. C1 to C3 are curves drawn with the Curve Mapping 
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tool. The green dots or arrows are anchor point jump vectors. (b) vector field 
visualization of the generated jump vectors. 

The computed jump vectors are visualized as a vector field in Figure 32b. The vector 
field is displayed at a lower resolution to improve visibility.  As shown, the wound 
center and curve C1 contain zero vectors, indicating a lack of motion at these pixels. 
In the direction perpendicular to the cut length, the jump vector’s magnitude gradually 
increases and then decreases as we get further away from the wound center. 
 
Skin is flexible in nature, which we emulate by using a sine function to control the 
motion. Using 62 anchor points (37 still) from 3 curves, one motion zone, and a sine 
position function with one threshold parameter, we achieve rendering results as in 
Figure 33. 
 

 
Figure 33. Hand Skin Cut Rendering Result.  

 

6.2.2 Squinting Cat 
 
From the reference material analyzed, a few observations have been made about cats’ 
facial expressions when they squint or slowly blink. The most noticeable change 
occurs in the eyelids, with the upper eyelid lowering and the lower eyelid raising, 
resulting in partially closed eyes. This creates a squinting appearance. The muscles 
around the eyes, cheeks, and forehand also relax, displaying subtle changes. 
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As shown in Figure 34 most of the cat’s face should be included in a single motion 
zone, excluding the mouth area where no motion occurs. Region A circles the area 
around the eyes and cheeks, where the most evident motion will happen. Region D is 
fully contained inside Region A. This is the region in which the “folding” happens: the 
eyelid will progressively overlay the eyeball. In the forehead region B, the cat’s facial 
muscle relaxes and extends the fur from the center to both sides, while fur in region C 
along the face’s central line stays still due to the face’s symmetric nature. 
 

 
Figure 34. Squinting cat example input image. Representative areas on the cat’s 

face are marked as regions A~D. 

 
Based on this analysis, the motion zone and motion profile are specified in Figure 35. 
Motion zone MZ covers the cat’s face where motion is observed. Close to MZ’s 
boundary, curve C6 indicates where motion diminishes to zero. In region B, four curves 
C1 through C4 are drawn using Curve Mapping Tool to specify the muscle movement 
on the forehead. On the upper and lower eyelid, the Point Mapping tool is used to 
specify movements in the eye and cheek area. Both eyes are marked as folding zone 
and an additional curve C5 is drawn to mark the still line along the face’s symmetric 
axis.  
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Figure 35. Motion Profile of squinting cat example. (a) screenshot of motion profile 
specified in FoldingGen (b) zoom-in view of the cat’s face area (c) visualizer output 

 
Figure 35c visualizes the computed jump vectors as a vector field. The distribution of 
the computed jump vectors aligns with the intended motions. Similar to the hand-
wound example, we use a piecewise function with linear and sine sub-functions. With 
94(68 of them marks no motion) sample jump paths in the motion zone, visually 
convincing rendering results are achieved, as shown in Figure 36. 
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Figure 36. Squinting cat example rendering result.  

 
6.2.3 Bouncing Pecs 
 
The term "bouncing pecs" refers to the voluntary contraction and relaxation of the 
chest muscles, which creates a visible movement in the chest area. This rapid change 
in muscle tension creates the visual effect of the chest muscles bouncing. 
 
When the clavicular head of the pectoralis major contracts, it pulls the pectoralis major 
upward, causing a rising movement of the chest area. As the clavicular head relaxes, 
the pectoralis major falls to its natural position, causing a dropping movement of the 
chest area and completing one “bounce”.  
 
A few observations are made in reviewing searched reference videos. As illustrated in 
Figure 37 the motion zone should cover regions A through C. The most evident muscle 
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displacements are observed in region B. In region C, motion gradually decreases to 
zero. A and B are separated by the muscle’s lower boundary, where we see the most 
evident “bouncing” effect. At the same time, most parts of region A are “fixed”, with no 
motion visible. Region A is crucial to achieving the “bouncing” effect. Thus the 
motionless region is included in the specified motion zone. 
 

 
Figure 37. Bouncing Pecs Example Input Image.  

 
Based on the analysis, the motion zone and motion profile are specified in Figure 38a. 
Two motion zones each cover half of the chest and both cover the regions that 
contribute to the bouncing motion. In region B, a few relatively longer jump paths are 
drawn with the Point Mapping tool along the muscle fiber direction, aiming to generate 
evident displacement. In regions A and C, a few still sample points are added to mark 
where motion terminates. Along the muscle lower boundary between regions A and B, 
a few relatively small jump paths are added to ensure motion diminishes rapidly 
around this boundary, thus achieving the bouncing effect. 
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Figure 38. Motion profiles of bouncing pecks example. Screenshots of motion profile 

specified in FoldingGen (b) and (c) vector field visualization of jump vectors in left 
and right motion zones, respectively. 

 
As visualized in Figure 38b, the computed jump vectors’ distribution aligns with our 
intentions. Similar to the hand-wound example, we use a piecewise function with linear 
and sine sub-functions. With 28(13 still) sample jump paths in each motion zone, we 
achieve a visually convincing rendering result in Figure 39. 
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Figure 39. Bouncing Pecs rendering result. 

 
Unfortunately, the sprite sheet generated from the recording cannot effectively 
visualize the results. You may review the supplementary material or access it directly 
online for a more vivid representation.  
 
6.3 Summary 
 
By presenting the design process and rendering results of the hand-wound, squinting-
cat, and bouncing-pecs examples, we proved the validity of our proposed approach. 
We have tried several other examples, you may find them on our GitHub page. 
Normally, we would ask people to try our method, but the implementation work was 
already proven to be substantial and time constraints was tight. We decided to leave 
the user study out of this thesis work’s scope.  
 
We used our approach to reproduce the examples used in Thorben’s thesis. All the 
examples can be reproduced between 5 minutes and 45 minutes. Unfortunately, 
Thorben did not record how much time he took to manually create those examples. I 
tried to manually create a few of them myself. I found that users need to consider so 
many small details at the same time while creating folding textures. It took me hours 
to adjust and fine-tune one texture. It is worth mentioning that I was already quite 
familiar with the folding-texture technique and we already knew a lot about how to use 
it. I would expect a new user would feel way more challenged than me. So according 
to our firsthand experience, we did observe improvements in efficiency and usability. 
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7 Conclusions 
 
In conclusion, we addressed the problem of designing and synthesizing folding 
textures. We have presented a semi-automatic user-assisted approach that combines 
texture editing, motion profile specification, and texture synthesis into one seamless 
process, making the folding-texture technique more accessible. As proof of concept, 
we have implemented a ready-to-use software tool. We have successfully 
demonstrated the validity of our proposed approach through several examples using 
the implemented software. 
 
There are multiple directions for future research: 
 
Common motion profile abstraction: Many phenomena share similar motion fields and 
have been studied extensively. By leveraging the existing models and expressing 
them in the form of folding texture representation, we can provide motion profile 
templates in FoldingGen, thus enhancing design efficiency.  
 
Automatic reference material analysis: Currently, users need to learn and identify 
motion profiles from reference materials. It would be beneficial if we could apply 
computer vision techniques, such as optical flow, to automatically analyze sample 
videos to generate jump vector fields and present them to the user as references. 
 
User interface improvement: Additionally, refining and optimizing the software tool 
could lead to an even more seamless and efficient user experience, making it even 
more accessible to designers and artists. 
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Appendix A 
 
FoldingGen User Guide 
 
Available at https://mcoderh.github.io/foldingGen/user_guide.html 
 
 
  

https://mcoderh.github.io/foldingGen/user_guide.html
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