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Abstract

Program synthesis is the task of constructing a program that satisfies specified con-
straints. One popular formulation of program synthesis is example-based synthesis.
Here, the synthesizer attempts to find a program in a specified domain that satisfies
a set of input-output examples. Enumeration is the most common approach to find-
ing the desired program. However, the exponentially growing search space makes
this infeasible. The size of the domain can be largely attributed to its inefficient
representation. Often, programs are only syntactically distinguished, meaning pro-
grams that behave the same are seen as different. We introduce Context-Sensitive
E-Graph Saturation, a novel method that limits the search space to programs that
solve at least one of the provided examples. This allows focusing only on programs
that behave similarly to the desired one. Crucial is finding contextual equivalences
for each example over a generated termset. These equivalences allow generating
many solutions for each individual example. A program in the intersection of these
programs solves all examples. In experiments on a subset from SyGus SLIA, our
method solves the problems that enumeration solves, but not more. These res-
ults highlight a trade-off: with a small termset, the discovered equivalences are
often too limited to capture the relationships needed to find a universal solution.
Conversely, increasing the termset size quickly leads to inefficiency. To address
this, we propose a strategy for constructing a more expressive yet small termset,
enabling our method to solve a broader range of synthesis problems.
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Chapter 1

Introduction

Having a way to describe candidate solutions alongside a set of requirements gives
you the key ingredients for a powerful idea: automatically generating solutions.
Many systems exist that can create a solution that abides by requirements, freeing
the user from the details of how to build the solution and letting them focus solely
on what the solution should achieve. This is the fundamental idea behind program
synthesis.

Program synthesis is the task of constructing a program that satisfies specified
constraints [1]. The power lies in the generality of this principle. In essence,
anything can be described as a program. All that is needed is a language to express
candidates and a mechanism to test them against constraints. From there, the search
can be automated. Beyond its traditional association with computer programs and
mathematical expressions, the usage of program synthesis ranges from domains
such as performing auto-completion in Excel [2], to synthesizing molecules [3],
and performing genome compression [4].

One popular formulation of program synthesis is example-based synthesis. Here,
the synthesizer attempts to find a program in a specified domain that satisfies a set
of input-output (IO) examples [1]. The program should return the correspond-
ing output for each input from the list of examples. This paradigm is particularly
powerful as it abstracts the need for users to specify how a program should work
with formal specifications, focusing instead on what it should achieve. However,
this ease of specification comes at a cost: IO examples are inherently less constrain-
ing; thus, example-based synthesis cannot guarantee that the synthesized program
is exactly the one the user wants.

Enumeration is the most common approach to finding the desired program. With
this approach, the program synthesizer systematically enumerates programs from
the domain until it finds a program that meets the specified constraints [1]. Once
such a program is found, we say that said program satisfies the constraints.
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Example 1. Take the absolute function |x| defined as:

x >= 0 ? x : -x

which returns the magnitude of x. IO examples might map -5 to 5 and 5 to 5.
The enumerator keeps enumerating programs, such as x, -x, 1 · x, -x+x, until it
finds a program that satisfies all the examples, like the desired absolute function. ⌟

Most approaches to program synthesis search through the often infinite set of all
possible programs that a grammar can define. In theory, this makes it possible to
find a program to solve any problem. In practice, however, the search space grows
exponentially with program size, making exhaustive search infeasible even with
techniques to guide it more efficiently [5, 6].

The size of the domain can be largely attributed to its inefficient representation.
Often, programs are only syntactically distinguished, meaning programs that be-
have the same are seen as different. Therefore, those programs do not prevent
each other from being considered. Ideally, once a program is identified as incor-
rect, programs that behave the same should no longer be considered. However,
two programs can only be shown to behave equivalently once both have been fully
constructed.

Example 2. Take the programs 0 and -x+x and assume we aim to find the absolute
function. Once the synthesizer knows 0 is not the solution, ideally, it should not
see -x+x as a potential candidate and never enumerate it. ⌟

This notion of behavioral equivalences [7] also affects the synthesis of vastly
different types of programs like the ones discussed before [8, 4]. Therefore, if this
problem can be solved, it will impact all these domains.

Furthermore, most programs in a domain do not satisfy any of the constraints.
Most candidates are, therefore, uninteresting. As a result, much of the computa-
tional effort is wasted evaluating programs that, from the outset, have little chance
of satisfying even a single example.

To solve both these problems, we would like to focus on programs that behave
similarly to the one we seek. This allows us to focus on interesting programs and
stops us from looking at different versions of uninteresting programs. The question
then naturally becomes:

How can we limit the search space to programs that behave similarly to the one
desired?

We propose a novel method: Context-Sensitive E-Graph Saturation. Think of
each IO example as defining its own “universe” of programs that work for that
example. We solely explore each such universe and skip (thereby pruning) uninter-
esting programs. Then, we intersect these universes to find a program that works
for all examples. At a high level, the method proceeds in three stages.
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The first stage focuses on analyzing each IO example individually. For each ex-
ample, using a system named Ruler [9], we find a set of contextual equivalences
over a termset that hold specifically under the conditions of that example. These
equivalences define a set of transformations that identify behaviorally similar pro-
grams for the current example input. As these equivalences are context-sensitive,
they produce behaviorally diverse yet example-consistent programs.

Example 3. Take the absolute function and the program -x. Normally, these pro-
grams are not equivalent. However, they behave identically on negative inputs,
which can be expressed with contextual equivalences. ⌟

In the second stage, we use these equivalences to explore the space of programs
that solve each individual example. This key step allows us to expand a small
space of programs that satisfy said example to a large space of programs that solve
it, thereby focusing on programs that solve at least one example.

Finally, we identify a program in the intersection of these expanded sets, utiliz-
ing a new algorithm presented. A program that lies in the intersection, by defini-
tion, solves all IO examples and thus satisfies the constraints.

Crucially, for all three stages, we use Equivalence Graphs (E-Graphs). E-Graphs
allow us to efficiently represent and explore a vast space of program equivalences
and to expand this space with new equivalences.

Recent research pointed out a significant bottleneck in Ruler, making it unable to
efficiently find equivalences over many programs. Nonetheless, as large programs
are made from smaller ones, equivalences theoretically only need to be found over a
small set of programs. However, a larger set does allow finding more equivalences,
some of which might be crucial. Thus, it remains valuable to investigate whether a
large set can improve effectiveness in practice. To this end, several optimizations
to Ruler are introduced. This brings us to the following research questions:

RQ1: Does CSES perform competitively on real-world problems in relation
to constrained enumeration?

RQ2: Do the improvements on the bottleneck of Ruler improve efficiency?
RQ3: Do the improvements on the bottleneck of Ruler help solve more prob-

lems with CSES?
We benchmark our method using a subset of problems from the SyGus SLIA

domain, using tasks of varying difficulty. This allows us to assess how CSES
performs across both simple and complex real-world synthesis problems.

We find that CSES only solves problems that enumeration also solves. While
enumeration is consistently faster, CSES can complete execution in cases where
enumeration times out. Furthermore, our improvements allow solving and termin-
ating on more problems. However, CSES still fails to handle a larger termsets—as
Ruler remains a significant bottleneck—and remains limited to problems enumer-
ation solves too. The equivalences found over the terms in the small termset gen-
erated do not capture the key equivalences required to find a universal solution.
Finally, an idea is suggested to acquire a small yet powerful termset.
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Chapter 2

Background

This chapter provides the necessary background on program synthesis in general,
focusing on example-based synthesis. We also explore rewrite rules, E-Graphs,
and a tool that automates the creation of rulesets named Ruler, all of which are
crucial in our approach.

2.1 Program Synthesis

Program synthesis [1] is the task of constructing a program that satisfies constraints
describing what the program should do [1]; they are declarative. Interestingly, this
differs from a compiler, which translates an already-written program to another
language, and thereby uses a specification of how the program works rather than a
specification of what it should do.

Program synthesis requires three elements: a Program Space, a set of constraints,
and a search procedure. We will now explore these three elements.

2.1.1 Program Space

The synthesizer looks for a program in a provided domain: the Program Space P .
This domain consists of all programs that can be considered. Often, such a domain
is infinite in size and consists of all programs that abide by some collection of rules
that define their structure, or more formally, their syntax.

A common approach to describing the syntax of a language is with a Context-
Free Grammar (CFG). For the purposes of explanation, we simplify a CFG to be
a collection of terminal symbols Σ, i.e., the simplest programs, and a collection
of production rules R that describe how a program can be made from smaller pro-
grams. Thus, given a CFG G = (Σ, R), the programs in the Program Space P
defined by G are all programs that can be constructed by G (see Definition 1). Ba-
sically, we create new programs by putting all our current programs in all possible
orders into our production rules.
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Definition 1 (Program Space). Let G = (Σ, R) be a CFG and let P0 = Σ. Then

Pn+1 = Pn ∪ { r(p) | p ∈ π(Pn), r ∈ Rp }.

Here, Rp ⊆ R denotes the set of production rules in R that can be applied to the
collection of terms p, and π(A) denotes all permutations of A. We define the entire
Program Space P as P∞. ⌟

Example 4. Take the CFG in Figure 2.1. The set of terminal symbols consists of
the numbers and the variable x, P1 introduces terms like -x and x>=0, and P2
adds terms like -x+x and x >= 0 ? x : -x. Finally, P contains all terms
that can be created. ⌟

Element = Num
Element = Bool
Element = Bool ? Element : Element
Num = 0 | 1 | 2 | 3 | ...
Num = x
Num = -Num | Num + Num | Num - Num | Num * Num
Bool = Num >= Num | Num < Num

Figure 2.1: An example CFG with numbers, a variable, Booleans, some standard
numerical and relational operators, and an if statement.

2.1.2 Constraints

Now that we know where to look for the program, we need to specify what behavior
we want the program to have. In other words, we need a way of describing what
output corresponds to what input. These specifications are formed by constraints
and can be complete or incomplete.

A complete specification describes exactly what a program should return for any
input it gets. Writing such a specification can be as hard as writing the program
itself. I will not focus on such constraints in this thesis.

An incomplete specification is not required to specify every part of the program,
with the trade-off that there might be many undesired programs that also satisfy
it. Example-based synthesis is a program synthesis problem (see Problem 1) that
makes use of an incomplete specification. It consists of a collection of input-output
(IO) examples, where, for each collection of inputs x⃗, the desired program should
return the corresponding output y.

Problem 1 (Example-based synthesis). Given IO examples E = {(x⃗i, yi)}n and a
Program Space P , find a program p ∈ P , s.t. ∀(x⃗, y) ∈ E.p(x⃗ . . . ) = y. ⌟
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In general, a great heuristic for program synthesis is program size, as searching
for the smallest correct program prevents overfitting. When the provided examples
are sufficiently rich—meaning they capture the behaviorally distinct cases of the
program—the smallest consistent program is often also the intended one.

Example 5. An example specification in the form of IO examples that describe the
absolute function is:

[(-20,20), (-5,5), (0,0), (5,5), (20,20)] (2.1)

However, besides the absolute function, an if-statement with a case for each input
also satisfies these constraints. And if we were to extend the domain to allow frac-
tions, so would the polynomial 0.21x2 − 0.0004x4. Although every such program
satisfies the examples, the absolute function is preferable because it is the smallest
one. ⌟

2.1.3 Search Procedure

To find a program in the Program Space that abides by the specified constraints, we
need some type of search. Most program synthesis algorithms use a form of enu-
meration as the search technique. Enumeration entails systematically exploring the
Program Space in some specified way. Naturally, this approach has an exponential
complexity, as the number of programs grows exponentially with their size.

With Breath-First enumeration, or bottom-up enumeration, programs are con-
sidered in order of size. We first explore all programs in P0, then the programs in
P1 −P0 from smallest to largest, etc. Breath-First enumeration naturally achieves
the property of finding the smallest successful program, as it explores the Program
Space in order of increasing size.

Example 6. With the grammar from Figure 2.1, and the IO examples from Equa-
tion 2.1, BFS enumeration enumerates the constants and variables first: 0, 1, · · ·,
x. It then enumerates programs combining these expressions, like -x and x>=0,
and finally programs combining those expressions, like x >= 0 ? x : -x. As
this function solves all examples, the enumeration comes to an end. ⌟

2.2 Rewrite Rules

A rewrite rule specifies mutual replicability between two terms (see Definition 2).
Given a sound rewrite rule, the left and right sides interpret to the same final value
for any identical substitution of their parameters, or free variables, and can thus be
substituted by each other. Two terms that interpret to the same value are said to be
behaviorally equivalent.

7



Definition 2 (Rewrite rule). For any domain of terms P and terms l, r ∈ D with
free variables x⃗, let

∀x⃗.l↔ r

be a rewrite rule. ⌟

Definition 3 (Validity of a rewrite rule). A rewrite rule l ↔ r is said to be sound
iff l and r are behaviorally equivalent for any substitution of x⃗. ⌟

From now on, we will assume universal quantification of free variables and just
write l↔ r.

Example 7. Take the terms x and x+0. No matter the value or expression we
substitute for x, these expressions always return the same value. Therefore, x ↔
x+ 0 is a sound rewrite rule. ⌟

As the variables of rewrite rules can represent any final value, these variables
function as metavariables. In other words, the variables can be substituted by any
term. If a rewrite rule r1 implies another rule r2 s.t. r1 ̸= r2, r1 is said to be
stronger than r2. A stronger rewrite rule is preferred, as it can prove more equalit-
ies.

Example 8. Using x ↔ x + 0, we can rewrite the term 2x both to 2(x+0),
matching on x, and 2x + 0, matching on 2x. Note that x↔ x+ 0 + 0 is also a
valid rewrite rule, but is implied by x↔ x+ 0 and is therefore weaker. ⌟

2.2.1 Rewrite Ruleset

Individual (simple) rewrite rules over the same domain can be combined into a
ruleset, forming a sophisticated set that can be easily extended and maintains equi-
valences between rewritten expressions. Smaller rulesets are desirable as fewer
rules have to be matched against a term, making the process of using the rules
faster. Furthermore, general, orthogonal terms are desired as these expand the
number of terms that can be derived after a set number of rule applications.

2.3 Equivalence Graphs

While individual rewrite rules let us replace terms one step at a time, we often want
to explore many possible rewrites at once. Doing this naively can cause an explo-
sion in the number of terms to track. Equivalence Graphs (E-Graphs) are designed
to solve this problem. Instead of storing every term separately, E-Graphs group
terms together that are known to be behaviorally equivalent. They compactly rep-
resent and efficiently compute equivalences over a given set of terms implied by
a collection of rewrite rules. These efficiencies are achieved with union-find data
structures [10] and hashconsing [11], which allow E-Graphs to represent exponen-
tially many terms.

8



2.3.1 Structure

An E-Graph (see Definition 6) represents terms using E-Nodes (see Definition 4)
and represents equivalence relations by grouping behaviorally equivalent E-Nodes
into E-Classes (see Definition 4). E-Graphs may contain cycles, which allows them
to represent an infinite set of terms.

Definition 4 (E-Node). An E-node is a combination of a constant symbol c, to-
gether with a (potentially empty) ordered list of arcs, each pointing to an E-Class,
that form its parameters A. If A is empty, c is either a constant or variable from
the domain. Otherwise c is a function symbol and the E-Node represents all com-
binations of c(t1, t2, · · · , tn) where ti is a term represented by the E-Class pointed
to by arc ai ∈ A. ⌟

Definition 5 (E-Class). An E-Class is a collection of E-Nodes and represents all
terms represented by its E-Nodes. Every term represented by the same E-Class is
represented as equivalent. ⌟

Definition 6 (E-Graph). An E-Graph is a collection of E-Classes and represents
all terms represented by its E-Classes. ⌟

A rewrite rule can be applied on an E-Graph (see Definition 7), creating new
terms and equivalences.

Figure 2.2: The first E-Graph represents the terms a, 0, and a+0 in separate E-
Classes. When the rewrite rule a ↔ a + 0 gets applied, we get the second image
where a and a+0 are merged and the term 0+0 is added. Finally, when the rule
a + b ↔ b + a gets applied, we get the third picture where the new term 0+a is
added.

Definition 7 (Rewrite rule application). For any E-Graph g and rewrite rule l↔ r,
let

g
l↔r
==⇒ g′

denote the application of rewrite rule l↔ r on g, resulting in a new E-Graph g′. ⌟
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Example 9. Figure 2.2 shows three E-Graphs. We denote the first E-Graph as
g, which represents the terms a, 0, and a+0 as three distinct terms. When we
perform g

a↔a+0
=====⇒ g′, we get the second E-Graph g′. This E-Graph represents a

and a+0 in the same E-Class to indicate their equivalence. It also adds the term
0+0 to the E-Class containing 0. Both E-Classes have a cycle. Therefore, some
terms also represented by the E-Graph are, for example, (a+0)+0, (0+0)+0, and
(a+0)+(0+0). In fact, E-Graph g′ represents the equivalences over the infinite
set of terms represented by the following grammar:

Num = a | Zero | a + Zero
Zero = 0 | Zero + Zero

Finally, we perform g′
a+b↔b+a
======⇒ g′′, which adds the term 0+a to the E-Class

that represents a. Crucially, an E-Node does not represent its constant symbol. It
represents a collection of equivalent complete programs. There are two E-Nodes
with a + as their constant in the same E-Class, as they represent inherently different
programs. ⌟

2.3.2 Saturation

Equality Saturation[12] (see Definition 8) allows E-Graphs to function as rewrite
engines. We start with an initial set of terms T , including a distinguished term
t ∈ T , represented as an E-Graph with no information of equivalences. Therefore,
every term in T starts in its own E-Class. Then, we repeatedly apply all rules from
a given ruleset R to T to create a large set of equivalent terms. A user-provided cost
function can then extract and return a desired term from the E-CLass containing t,
used to replace t. Another use case of saturation is proving a behavioral equival-
ence. Instead of starting with one term t ∈ T , we can start with two distinguished
terms t1, t2 ∈ T . After saturating T , we check whether their terms end up in the
same E-Class, thereby proving their equivalence.

Definition 8 (Saturation). For any E-Graph g and rewrite ruleset R, let

g
R
=⇒ g′

denote continuously applying the rules in R to g, until no rule in R changes g in
any way, resulting in the saturated E-Graph g′ based on R. ⌟

2.4 Iterative Rewrite Rule Inference

Creating rulesets manually is a complex process that requires domain experts. It is
often done by trial and error and is therefore slow and error-prone. Generally, the
following steps are performed iteratively:
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1. Introduce terms from the domain into a termset T ;

2. Select promising rule candidates from T × T to make C;

3. From the candidates in C, choose a set of valid rules to extend ruleset R.

Ruler [9] is a tool created to automate the creation of rulesets. It infers rewrite rules
using iterative equality saturation and uses an E-Graph to represent the termset T .
Ruler functions iteratively; A ruleset R is used to saturate T while R is being
synthesized. We will now focus on the three steps performed in each iteration.

2.4.1 Introducing Terms with Characteristic Vectors

When a term gets added to T , it is assigned a characteristic vector (cvec) (see
Definition 9). A cvec serves as a collection of output behavior examples.

Definition 9 (Characteristic vector). A cvecn is a list of n outputs produced by the
term. Constants always return the same value, namely themselves; thus, a cvecn
of a constant contains n copies of said constant. A variable can return any value
from the domain, thus, the cvecn of a variable contains n values chosen from the
domain. The cvecn of a function is made by applying the operator on the cvec of
its parameters. ⌟

Example 10. Take the first E-Graph from Figure 2.2 based on the grammar from
Figure 2.1. The cvec3 of the E-Class with 0 is [0, 0, 0]. The cvec3 of a could be
[1, 2, 3]. Then, the cvec3 of a+0 would be [1 + 0, 2 + 0, 3 + 0] = [1, 2, 3]. ⌟

The set T of terms is initially empty, and in each iteration i, new terms are added
to T . In the i’th iteration, the added terms have i operators. This makes sure that
any equalities over subterms have already been discovered for every term.

In the first iteration, with i = 0, all terms with 0 operators, i.e., all constants
and variables, are added. This iteration thereby specifies all such unique singular
terms. The second iteration, with i = 1, adds terms with one operation, like x+0
and

∑n
i i.

2.4.2 Selecting Candidates

We first perform T
R
=⇒ T ∗, using the current (potentially empty) ruleset R. Then,

we update T by merging the E-Classes that got merged in T ∗, which makes sure
we do not introduce new terms to the termset. Together, this process is named
run rewrites. Because terms in the same E-Class of T ∗ are proven equal, we do
not need to consider pairs of terms from the same E-Class as candidate rules, as
they are already proven to be equivalent with the current ruleset R. Consequently,
we only need to consider one term, the canonical term, for each E-class in T when
adding rules to the candidate set C. Doing this, we can ignore many potential
candidate rules.
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However, comparing the canonical term from each E-Class with every other
such term would still take a lot of time. Therefore, we only create candidate rules
between canonical terms with matching cvecs, as any rule between two terms with
non-matching cvecs is already guaranteed to be invalid. Thus, all canonical term
pairs with matching cvecs form the candidate set C.

Example 11. Following Example 10, we would add the rule a ↔ a + 0 to C,
because both have [1, 2, 3] as their cvec3. ⌟

Algorithm 1: SHRINK

1 Input: Candidate rules C, rewrite rules R
2 Output: Pruned set of candidate rules C ′ ⊆ C
3 for l↔ r ∈ C do
4 Add l and r to g /* E-Graph g is initially empty */
5 return {l↔ r ∈ C | l and r are not equivalent in run rewrites(g,R})}

2.4.3 Extending the Ruleset

Now we need to choose new rules from the candidate set. Ideally, this selection of
rules is the smallest valid extension that can establish all valid equivalences implied
by R ∪ C. To achieve this, Ruler starts by selecting step rules from C according
to a heuristic, checks their validity using a domain-specific approach, and adds
them to a set K. Then, it uses them to shrink (see Algorithm 1) the remaining
candidates in C with R ∪ K. This process goes on until C is empty. Once C
is empty, the process gets repeated with a smaller step size until step equals 1.
When step is large, it can quickly trim C down, and when it is small, it can trim
more exactly. By iteratively decreasing step to 1 and pruning C, both qualities are
obtained. When step is 1, the selected rules get added to R.
shrinking (see Algorithm 1) makes sure the remaining candidates cannot be

derived from the ones that have already been considered. It adds all terms from
the rules in C to an empty E-Graph g and performs run rewrites with a supplied
ruleset R, which saturates the E-Graph. Then, it goes over every rule in C again to
see if both terms end up in the same E-Class, which implies the rule is proven by
R.

2.4.4 A bottleneck in Ruler

When we dive into Ruler as an algorithm, we discover an interesting problem: the
size of the candidate set forms a bottleneck to Ruler. Note that Ruler makes a
candidate rule between all E-Nodes of each separate E-Class with the same cvec.
The number of these rules grows quadratically with the number of terms. Further-
more, significantly decreasing the size of the candidate ruleset in some way, like
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shrinking, is required as saturation becomes infeasible with an increasing num-
ber of rewrite rules. However, shrink is a costly procedure that is at least linear
in the number of candidate rules, and upper-bounded by the saturation [13]. Ruler
shrinks the same candidate ruleset numerous times during the process of selection,
which makes this process at least quadratic in the number of valid candidate rules
and still upper-bounded by the saturation. Two works in literature address this very
problem with Ruler. Isaria [14] is a system that automatically finds rewrite rules to
generate vectorizing compiler transformations. When it uses Ruler, it encounters
the problem that the candidate sets produced are large and grow fast, which slows
the system down. It proposes a domain-specific solution to solve this problem that
uses a heuristic cost to further prune candidates. Enumo [15] is a general rewrite
rule generation system that tries to improve upon Ruler. It finds that Ruler can
only handle “a few” iterations of adding terms before exponential growth makes it
infeasible. To address this, it gives the possibility to focus the search in a domain-
specific way.
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Chapter 3

Related Work

The method explored in this thesis leverages a form of semantic information to re-
duce the search space originally purely based upon syntactical structure, by group-
ing programs together that behave the same on individual inputs. This principle
can be expressed as a form of abstract interpretation, where each grouping is its
own abstract domain. While abstract interpretation has not been used to reduce the
search space, that is not to say that it has not been utilized at all in example-based
synthesis. In this chapter, we will explore some of those strategies that use abstract
interpretation to optimize program synthesis and how they compare to Context-
Sensitive E-Graph Saturation. We will find two noteworthy differences: All these
approaches utilize their abstraction to further specify an initial hypothesis, and all
require the user to (partly) define the abstract domain used.

3.1 Morpheus and Neo: Guiding Search by Behavior

We start with two easy examples, Morpheus and Neo. Morpheus [16] is a synthesis
algorithm designed to automate the synthesis of data transformation programs, spe-
cialized in tasks like table consolidation and transformation. It decomposes com-
plex transformation tasks into smaller, manageable components, each associated
with specific operators or functions. For instance, in a filter operation, the output
table’s rows cannot increase with respect to the input’s rows, while the number
of columns remains the same. These components are defined by user-provided
specifications that enforce constraints on the input and output of the operators.

Because these specifications abstractly represent the behavior of operators, they,
thereby, specify an abstract semantics. This abstraction is used when construct-
ing a hypothesis. Abstractions from multiple operators get combined into a single
formula with placeholders for intermediate tables, thereby creating an abstract rep-
resentation of the hypothesis’s behavior. Over time, such a hypothesis gets filled
in using an SMT solver that ensures the satisfiability against given IO examples,
rejecting any unsatisfiable hypotheses in the synthesis process.

Neo [17] enhances this synthesis process by introducing a conflict-driven learn-
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ing technique capable of learning from past mistakes. When a generated program
violates the specification, Neo identifies the root cause of the conflict to refine the
specification, making it distinguish the detected conflict, which prevents similar
mistakes in the future.

3.2 Blaze and ATLAS: A More Refined Approach

Blaze [18] is a program synthesis tool that uses an approach they call counter-
example guided abstraction refinement. Like Neo, this method iteratively refines an
initial abstraction of the desired program’s behavior with found counterexamples.
However, Blaze represents the abstract program using an Abstract Finite Tree
Automata (AFTA). A state in an AFTA corresponds to abstract values from the
program domain, and a transition naturally corresponds to a modification of such a
value. Any program accepted by an AFTA abides by its specification. Thus, a pro-
gram that abides by the AFTA yet fails the provided examples serves as a counter-
example to optimize the AFTA. Interestingly, both AFTAs and E-Graphs serve to
represent the behavior of programs. However, where AFTAs excel at capturing
the behavior of one abstract program, E-Graphs capture the (abtract) behavioral
similarities between multiple programs [19].

Crucially, the abstract semantics of the language is provided by a domain expert.
Meaning, the domain expert provides a collection of predicates that may be used in
the abstractions from the synthesis procedure, together with the abstract semantics
of each language construct. Importantly, each function needs to have an abstract
return value given abstract parameters. Clearly, this is a time-sensitive task.

ATLAS [20] is made to automate this process. It can learn and improve its ab-
stract semantics with multiple synthesis programs over the same domain. While
making Blaze more versatile, this process involves tree interpolation and solving
second-order constraints, which is computationally expensive. It therefore does not
adapt to new problems when the semantics are obtained from training. As Pallabi
Sree Sarker likes to say [21], once they are learned, they are learned. This makes
it less adaptive to a new synthesis environment. Furthermore, to find a useful ab-
straction for the domain, the training synthesis problems need to be representative
enough, which requires a domain expert when creating them.

3.3 Simba: Abstracting the Other Direction

Simba [22] is a forward-backward abstract interpretation approach to program syn-
thesis. Besides abstracting a program’s output when given a certain input, which
all discussed approaches do, it also constructs abstract inputs given outputs. This
abstraction from both perspectives allows it to refine the search space from both
directions simultaneously.

Simba implements this methodology through a combination of forward and
backward abstract semantics. It first generates partially-implemented programs
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using a top-down search procedure. Then, for each partial program with missing
expressions, a forward analysis computes approximated invariants of the program’s
output behavior given the input examples. Then, a backward analysis determines
the necessary conditions for the missing expressions in the program given the out-
put examples. These analyses have synergy as both can be used to refine the other
iteratively.

However, like Blaze, Simba’s approach has the crucial limitation that it relies
on highly precise abstract domains. Using Simba for a new domain is therefore
non-trivial, which makes it not easily adaptable to other domains.

3.4 Absynthe: A Specializable Approach

Another approach that uses abstract interpretation to guide synthesis is Absynthe
[5], which is unique because of its ability to combine abstract domains. This flex-
ibility creates a trade-off that allows to have more expressive domains that prune
more programs yet require more time.

Absynthe’s abstract interpretation approach is quite general. It involves defining
an abstract domain and an abstract interpreter for the desired program, which guide
the synthesis process. It starts from the abstract return value of the function and,
at each step, further concretizes the abstraction with one that satisfies the original
abstraction. This continues until a concrete program is formed, which gets tested
on the examples. It terminates once it finds a valid candidate.

3.5 Reflection

All approaches we have seen, except ATLAS, rely on domain-specific semantic
specifications that need to be defined. In contrast, the approach explored in this
thesis is designed to be domain-agnostic, enhancing its applicability across various
program synthesis tasks. All that is required is a specification of the language and
the examples. The abstraction follows naturally from those. Furthermore, all meth-
ods explored start from an initial abstract state that represents the current program,
which gradually gets specialized towards the desired program using semantic spe-
cifications. Thus, these approaches can only guide the search using interesting
behavior. The approach in this thesis instead learns behavioral similarities per ex-
ample to create an abstract program space where all programs behave identically
on said example and solve it. The program then follows directly from the intersec-
tion of these spaces. Finding these spaces can thus be seen as a form of pruning
instead of guiding, with the clear advantage that once such a space is discovered,
it does not need to be rediscovered and can be reused for other problems. It can,
however, not be improved with new problems. In this way, our approach is most
similar to ATLAS.
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Chapter 4

Problem Statement

The problem we focus on is simply the general example-based synthesis problem
defined in Chapter 2 (see Problem 1). Our attention is directed toward the charac-
terization of the Program Space P (see Definition 1). Normally, P consists of all
programs that can be generated from some grammar G. However, we want to focus
solely on programs “close to” the desired program p that solves all examples. Such
a criterion is naturally hard to define. Here, we deem a program interesting when
it solves at least one example. The set of all interesting programs can accordingly
be defined as in Definition 10.

Definition 10 (Refined program space). Given IO examples E = {(x⃗i, yi)}n and
Program Space P , let

P∗ = {p | p ∈ P,∃(x⃗, y) ∈ E.p(x⃗ . . . ) = y}

be denoted as the refined program space given E. ⌟

This refined Program Space P∗ focuses on the subset of P where each program
is a partial solution. Note that, by definition, these programs are observationally
equivalent on at least one example to a program p that solves all examples. We
now define a notation for such observational equivalence on a specific example
and will refer to it as contextual equivalence (see Definition 11). Two programs are
contextually equivalent on inputs x⃗ iff they produce the same output when run on
the inputs in x⃗.

Definition 11 (Contextual equivalence). Let x⃗ be a collection of inputs, and let p
and q be programs. Then,

p ≡x⃗ q

denotes the contextual equivalence between p and q on inputs x⃗. ⌟

For ease of notation, from now on we will write ≡x when |x⃗| = 1 and x ∈ x⃗.
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Definition 12 (Contextual equivalence validity). Let p ≡x⃗ q denote a contextual
equivalence between programs p and q on inputs x⃗. This contextual equivalence is
said to be valid iff

∀v⃗.p(x⃗ . . . ) = q(x⃗ . . . )

where v⃗ ranges over all free variables in p and q except the ones in x⃗, and equality
denotes behavioral equivalence. ⌟

Example 12. Take the terms x-4 and 2x+1. Generally, these two terms are clearly
not equivalent. However, when we specify the input to -5, both return -9. Thus,
they are contextually equivalent under -5, resulting in x− 4 ≡−5 2x+ 1. ⌟

Contextual equivalence≡x⃗ creates a partition Px⃗ of the Program Space P where
programs in a class Pt

x⃗ of the partition Px⃗ are contextually equivalent on inputs x⃗
and where the class Pt

x⃗ contains term t. This is due to contextual equivalence being
an equivalence relation by definition. Now we can redefine the refined Program
Space P∗ using the collections of contextually equivalent programs per example
(see Definition 13).

Definition 13 (Refined program space 2). Given IO examples E = {(x⃗i, yi)}n and
Program Space P , let

P∗ =
n⋃

i=1

Pyi
x⃗i

⌟

This definition exposes an interesting aspect of the refined Program Space: all
programs in P∗ are behaviorally equivalent to the desired program p when con-
sidered modulo the IO example they solve. In consequence, we can represent the
set of correct programs as:

S =

n⋂
i=1

Pyi
x⃗i

(4.1)

This characterization highlights that the synthesis problem can be viewed as
identifying the intersection of all contextual equivalence classes that individually
satisfy each example. In this sense, synthesis reduces to locating the common
behavioral core across all examples. Based on this perspective, we reformulate
the synthesis task as a problem of discovering this contextual equivalence class for
each example (see Problem 2).

Problem 2 (Finding the refinement). Given IO examples E = {(x⃗i, yi)}n and a
Program Space P , find, for every example (x⃗, y) ∈ E, the class Py

x⃗ . ⌟

The method we will explore tackles this newly defined problem. It still solves
the original example-based synthesis problem, yet not by focusing on conventional
enumeration over the Program Space P . Instead, it tries to explore all interesting
classes.
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Chapter 5

Context-Sensitive E-Graph
Saturation

This section describes the approach explored in this thesis to perform example-
based synthesis efficiently, namely, Context-Sensitive E-Graph saturation. The
goal is to explore the space of programs that solve at least one example, thereby
skipping over numerous (semantically identical) uninteresting programs, pruning
them from the Program Space. Algorithm 2 describes the Context-Sensitive E-
Graph Saturation (CSES) algorithm, which is parameterized by:

• the IO examples that define a correct program;

• the grammar that defines the Program Space;

• a potential collection of constraints over the grammar;

• the maximum length of small terms enumerated;

• a potential collection of general rules over the domain;

• a potential collection of wildcard rules to extend a ruleset.

In short, we start by generating an initial termset consisting of programs that
solve individual examples together with small terms generated from the given
grammar. This is the termset over which we find our rewrite rules. Using Ruler (see
Section 2.4), we obtain a collection of rewrite rules per example over the termset,
where each such rule holds in the context of that example. For each such ruleset,
we can enlarge the subset of our termset that solves the example corresponding to
the ruleset by saturating it. Together, these steps give an approximate solution to
Problem 2 and prune the initial Program Space to programs that solve at least one
example. Finally, once we have these collections of correct programs per example,
we try to find a program that lies in their intersection, and therefore satisfies all
examples, thus solving Problem 1. First, we discuss an example usage of CSES.
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Algorithm 2: CSES

1 Input: Examples E, grammar G, constraints L, maximum length n,
general rules R, wildcard rulesW

2 Output: A program p ∈ G that solves all examples in E, or ⊥ if no such
program is found

3 D1 ← Enumerate programs from G up to length n
4 D2 ← {enumerate programs from G constrained by L to solve e | e ∈ E}
5 D ← D1 ∪D2 ∪ {x⃗ ∪ {y} | (x⃗, y) ∈ E}
6 for (x⃗, y) ∈ E do
7 Ri, Ti← Set variable cvec1s to value in x⃗, run ruler on D with R
8 Pi ← extract sub-E-Graph from Ti with programs from E-Class with y

9 P ′
i

Ri ∪ W⇐===== Pi

10 return INTERSECTION(P ′
1,· · ·,P ′

|E|)

Then, we explore the part of the system designed to give an approximate solution
to Problem 2. Next, we dive into the details of the Intersection. Finally, we discuss
the implementation details of the system.

5.1 Motivating Example

Figure 5.1 shows an example usage of CSES. We are given a grammar over num-
bers, together with a set of examples:

[(0, 1), (1, 3), (2, 5)].

First, we enumerate programs from the grammar up to a depth of n = 1, giving
us the constants, variable x, and all programs that use at most one operator. Then,
we enumerate solutions to individual examples. Together, these programs form
the termset. For each example, we find collections of programs in the generated
termset that interpret to the same value on that example. This is represented by
the value in the gray circles. We use this, together with a potential set of supplied
general rules, to create a contextual ruleset for each example. Note that, for the
first example, we find a contextual equivalence between x and 2x. We saturate
the solutions for each example with the ruleset we found for that example and a
potential set of supplied wildcard rules. For the first example, this allows us to
create 2x + 1 from x + 1 using our discovered equivalence. Note that the other
examples also find 2x+ 1 using their own contextual rules. Finally, we try to find
a program in the intersection of the solutions for each example. We find 2x + 1,
which indeed solves all examples.
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Figure 5.1: Example usage of CSES. The input consists of IO examples, a grammar, and
number n. CSES generates a termset, consisting of small terms up to size n, and solutions
to individual examples, enumerated from the grammar. Then, Ruler finds a ruleset over
the termset for each example. This gets used to saturate the set of programs that produce
the correct output under the example input, yielding a collection of solutions per example.
Finally, these program collections get intersected, giving us the solution.
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5.2 Solving the Problem

Our goal is to solve Problem 2. If we were given the complete partition Px⃗ for each
example (x⃗, y), our mentioned goal would be trivial and follow directly from the
partitions. However, defining contextual equivalence ≡x⃗ for each example (x⃗, y)
for the entire Program SpaceP is clearly infeasible, as the Program Space is simply
too large. Instead, we need some other approach to discover the classes Py

x⃗ . We
will now discuss how we can achieve this.

Assume that we already have a set of seed programs P = {p1, p2, . . . , pn},
where each program pi ∈ P solves the ith input-output example (x⃗i, yi) from the
given set of examples; that is, pi(x⃗i . . . ) = yi for all 1 ≤ i ≤ n. Let Pp = {q |
q ∈ P, q ≡x⃗ p} be the set of contextually equivalent programs in P , defined over
all p ∈ P . Note that all programs in Ppi solve example (x⃗i, yi). Therefore, by
definition, Ppi = P

yi
x⃗i

. This shows that we can obtain Pyi
x⃗i

by enlarging {pi} to Ppi .
Starting from just a program pi as an initial subset of Pyi

x⃗i
, we can use rewrite

rules to enlarge it and approach Ppi . Rewrite rules are especially suited for this as
they allow us to use the additional context that the programs need only be equival-
ent on the inputs x⃗i. Normal behavioral equivalence is not required. The difficulty,
therefore, shifts from creating classifications to finding powerful rewrite rules. The
subsequent subsections describe our approach to this task in detail.

5.2.1 Creating the Termset

We want to obtain a collection of rewrite rules able to enlarge a collection of pro-
grams that solve an example. For such a ruleset to be useful, it requires two things:
equivalences over the behaviorally interesting parts of the solution program, and
the ability to enlarge a specific subspace of programs. Using both kinds of rules,
one can enlarge the behaviorally interesting parts until the solution program is
found. This makes it possible to explore the vast space of programs that behave
identically on a specified input targeted toward the solution program. To create
these rewrite rules, we need an initial termset D over which the rules are formed.
We will now discuss, for both requirements, a collection of terms over which such
rules can be formed.

To have rules that enlarge a subspace, we need small terms, as large terms often
contain many small terms [23]. Capturing equivalences over subexpressions allows
us to rewrite large terms and explore their syntactically similar and behaviorally
equivalent region. Generating small terms is trivial and can be done by enumerating
all programs from the grammar up to a size n (line 3). Here, size is indicated by the
number of operators. A larger n increases the rewrite power of the found rulesets
but significantly decelerates the process of finding said ruleset as it exponentially
increases the size of terms over which the rules need to be defined.

Having terms that capture behaviorally interesting parts of the solution program
comes down to having a collection of non-trivial solutions to individual examples.
A program for an individual example creates a starting point for that particular
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behaviorally distinct part of the solution program. A trivial way to find partial
solutions is to enumerate programs until each example has one that solves it. How-
ever, programs found in this manner often do not provide any more information
than the example output itself. By using constraints in the enumeration specific to
the domain, this can be overcome as much as possible (line 4). Finally, D is created
by combining the small terms with all partial solutions and all example input and
output values (line 5).

Example 13. Take the following program that solves the IO example (xi, yi),
where e can be any expression:

x == x ? yi : e

This program is behaviorally equivalent to the program yi on input, thus expresses
no specific behaviorally distinct part of the solution program other than returning
the correct output. ⌟

5.2.2 Obtaining the initial rulesets modulo example

Our goal is to obtain a collection of rewrite rules Ri over D for every example
(x⃗i, yi) that holds in the context of the example. For this purpose, we define con-
textual rewrite rules (see Definition 14).

Definition 14 (Contextual Rewrite Rule). For any value n, let

l↔ r | x← n

be a rewrite rule (see Definition 2) where we can substitute every occurrence of x
in l and r with n. ⌟

Definition 15 (Contextual rewrite rule validity). A contextual rewrite rule l ↔ r |
x← n is said to be valid iff l ≡n r. ⌟

Example 14. Take Example 12 where x − 4 ≡−5 2x + 1. This gives rise to the
rewrite rule x−4↔ 2x+1 | x← −5 with which we can rewrite 3x−4 to 4x+1:

3x− 4→ 2x+ x+ x− 4

→ 2x+ 2x+ 1 (x− 4↔ 2x+ 1 | x← −5)
→ 4x+ 1

These programs behave the same on the input −5. Note that we also make use of
some general rules like nx↔ (n− 1)x+ x, which hold in any context. ⌟
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A ruleset of contextual rewrite rules is special in the sense that it can find pro-
grams that are behaviorally equivalent in the context they are based on. Where
we gain additional power in the form of larger applicability, we lose generality.
These variables in a contextual rewrite rule are not metavariables as they are in
normal rewrite rules. These variables thus cannot represent every expression, just
their context. The terms x-4 and 2x+1 are only equal in the context where x
represents -5.

To obtain the desired rulesets Ri, we use Ruler with cvec1s (see Definition 9).
For every example, we specify the cvec1 of the variable to its corresponding input
from that example (line 7). By doing this, all equivalences found by Ruler are
solely based on their example. We then obtain the desired rulesets Ri by running
this specialized version of Ruler over the termset D for every example (x⃗i, yi) (see
line 7).

5.2.3 Saturating the Correct Classes

Because we specified Ruler based on individual examples, aside from obtaining the
rulesets, we obtain a collection of programs Pi per example that satisfy it. Namely,
the programs represented by the E-Class for which the cvec1 equals the output
value of the example. Because Ruler does not introduce new terms to the initial
termset D, this will be the subset of D that solves said example.

Example 15. Take IO example (−5,−9). After specializing Ruler on the input
−5 such that x has [−5] as cvec1, and running it on a termset, the E-Class with
a cvec1 of [−9] will contain programs that solve this example, such as x-4 and
2x+1. ⌟

As discussed, the rulesets found uphold contextual equivalence regarding the
example they are based on. Therefore, when we use a ruleset on the programs that
solve its example, the programs found will still solve the example. This allows us
to focus solely on programs that solve at least one example.

Depending on the domain, we may desire to extend a ruleset Ri with a rule-
set W containing wildcard rules (see Definition 17), thereby creating the ruleset
R∗

i = R∪W (see line 9). Generally, the reason to extend a ruleset is to enlarge the
set of equivalent programs that can be found. As useful rule extensions are heavily
domain-specific, they are part of the algorithm as a potentially provided parameter.
Wildcard rules will be explained in detail when we dive into the intersection al-
gorithm.

For each example (x⃗i, yi), we extract the sub-E-Graph that contains all programs
represented by the cvec1 that equals [yi] to obtain Pi (line 8). Then, we saturate

each Pi using its ruleset R∗
i , Pi

R∗
i==⇒ P ′

i (line 9). The programs that form P ′
i are

the ones that end up in the same E-Class as the initial programs that solved the
example and function as our approximation of Pyi

x⃗i
.
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5.2.4 Optimizations to Ruler

As discussed in Subsection 2.4.4, Ruler’s rule selection approach is expensive and
grows quadratically with the number of candidate rules. For this domain, it be-
comes even worse. Normally, by verifying the initial set of candidate rules, a
significant portion of rules can be removed and will never be considered again.
However, in this domain, any rule found is valid by definition. Thus, all found
candidates end up in the final candidate set. Furthermore, as we use cvec1s, there
are fundamentally fewer ways for cvecs to differ. For two cvec1s to be equal, it
suffices for them to have one—their only—value in common. As there are fewer
different cvecs, groups of E-Classes with equal cvecs will be larger. Therefore,
the number of candidate rules found increases. Lastly, the number of terms in the
termset D we pass to Ruler grows exponentially with the maximum size of small
terms n. Thus, in our domain, the complexity of selection, and thus of Ruler, grows
exponentially with n. In comparison with enumeration, the exponential complex-
ity shifts, therefore, to Ruler. We propose a selection of improvements that help
address this exponential nature for our domain.

First of all, we can supply Ruler with a domain-specific general rewrite ruleset
R, to which all Ri get initialized (see line 7). This ensures that Ruler starts by
grouping every trivially equal term, like x and x+ 0, together at each iteration. A
single general rewrite rule has a contextual counterpart for each possible instanti-
ation of its input. Therefore, this can significantly decrease the number of gener-
ated candidate rules. Furthermore, these general rules are more powerful than their
contextual counterparts, as their variables can function as metavariables. However,
as these general rules can target more terms, this also means that saturating with
them might take longer than with contextual rules, and create a significantly larger
final E-Graph.

The second improvement concerns a change to Ruler’s rule selection approach.
Ruler performs ten rule selection iterations starting with a rule selection amount
of step = 101, decreasing the number of rules it selects per shrinking round
by 10 every iteration (see Section 2.4). Notably, this number does not change
with regard to the size of the candidate set. We propose a rule selection approach
where, instead, we iteratively select using step = ⌊ |C|

2 ⌋ until either |C| does not
change, or |C| ≤ 200. Doing this, shrinking gets done more aggressively with
a compromise of a more difficult saturation each time. Once this approach comes
to an end, we perform Ruler’s standard selection procedure with a small alteration
described next.

We modify Ruler’s selection procedure by decreasing step only down to a min-
imum of 11 instead of 1. The motivation behind this change is that a step size of
11 is already sufficient to trim down a significant portion of rules, while reducing it
further to 1 would force the procedure to linearly scan through the entire remaining
candidate set with little chance of making a substantial impact.

For the next improvement, we observe a superfluous part in shrink, namely, the
invocation of run rewrites instead of simply saturating. As shrink finishes by
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inspecting only the terms that were present at the start, removing the added terms
after saturating is unnecessary. Thus, we replace run rewrites with a saturation.

Lastly, we make a domain-specific improvement that does not concern Ruler’s
main bottleneck. As equality over cvec1s is by nature transitive, we can group E-
Classes directly when we create them based on their cvec1. This removes the need
to compare the cvec of every E-Class with each other for equality when creating
candidate rules.

5.3 Intersecting the Saturated Classes

Now, for every example (x⃗i, yi), we have found a collection of programs P ′
i that

satisfy it. To find a program that solves all the examples, we need to find a shared
program between these E-Classes. In other words, we need to find an element
in their intersection (line 10). These E-Graphs have been created within different
contexts, so we require a context-sensitive intersection. For this purpose, a new al-
gorithm (see Algorithm 3) has been invented. We will first give an intuition of the
algorithm. Then, we will introduce a new kind of rewrite rule, a wildcard rule (see
Definition 17), that can increase the number of programs in the intersection. Next,
we will explore the divide-and-conquer algorithm as a whole that finds one pro-
gram shared between all E-Classes intersected if such a program exists. As cycles
form a problem for the algorithm, we will subsequently discuss how this is solved.
Finally, we will dive into the complexity of the algorithm and optimizations.

5.3.1 Intersection of E-Graphs with Different Contexts

Normally, if two E-Graphs represent the same term, the corresponding E-Classes
represent the same equality. Therefore, E-Graph intersection would usually boil
down to the process of matching E-Classes that represent the same value and find-
ing the terms that they all represent. In this work, however, E-Graphs get sat-
urated sensitive to their own context. This implies that for one E-Graph, terms
might be equal that are not only unequal in another, but cannot be equal; in that
E-Graph, those terms interpret to non-identical values. The terms one E-Class rep-
resents might be spread over multiple E-Classes from another E-Graph that cannot
be equivalent in the first. Intersection, thus, cannot simply be done by matching
E-Classes. This brings us to the following major inductive insight: two E-Classes
represent the same term only when (1) they represent the same E-Node, and (2) for
each child of that E-node, they represent the same term.

5.3.2 Wildcard Rules

Here, we will introduce a new type of rewrite rule, the wildcard rule (see Definition
17), that can introduce holes in a program. The definition of a wildcard rule first
requires the definition of a wildcard (see Definition 16).
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Definition 16 (Wildcard Node). A wildcard node □ is a program that can be re-
written to any program p, or □ → p. It can be seen as a hole or a wildcard for
a program. No program can be rewritten to the □ node but itself, as this would
imply all programs are equivalent. Therefore, while any program can replace □, it
is defined to be behaviorally equivalent only to itself. ⌟

Definition 17 (Wildcard Rule). A wildcard rule is a rewrite rule that contains a
wildcard node □ (see Definition 16). ⌟

Example 16. The following rule, where p is a metavariable, is an example of a
wildcard rule:

p↔ true ? p : □

This rule allows for the insertion of guards into a program. Its effect will become
clearer in Example 19. ⌟

5.3.3 Finding a Program in the Intersection

Here, we will explore an algorithm that is guaranteed to find a program in the inter-
section of the E-Classes if such a program exists. We start by finding all potentially
shared E-Nodes. An E-Node is potentially shared between two E-Classes when its
constant is shared and the number of arcs is equal. This separates E-Nodes that
have the same constant, but have a different number of children.

Example 17. E-Graphs g and h from Figure 5.3 both have two E-Nodes with
constant symbol−. E-Nodes g1b and h1a have one outgoing arc and E-Nodes g1a and
h1b have two. Therefore, g1b only gets matched with h1a, and g1a only with h1b . ⌟

Thus, we take the intersection of constant symbols from each E-Class and sort
the obtained intersection by the number of children each operator has (line 8).
Sorting guarantees we look at constants without children first, which makes sure
we find a program if the intersection is nonempty. An explanation for optimality
can be found in Section 5.3.4.

For each shared constant, we try to build a program from it (line 9). If the E-
Nodes compared have no children, then the constant is the program they represent
(line 11). This case forms the base case of the algorithm. Else, we recursively try
to find a program in the intersection of every ith child E-Class from the E-Graphs
compared (line 19). Note that there might be multiple nodes in an E-Class that
use the same constant. As we need to consider each potentially equal program,
we loop over the cross product of these node collections (line 16). When we have
found a program for every parameter, we conquer by creating the corresponding
parent program; the shared constant combined with the parameters (line 21).

Example 18. Figure 5.2 shows a program in the intersection of two E-Classes,
E-Class g1 in E-Graph g with h1 in h. We first find the corresponding E-Nodes
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Figure 5.2: This figure shows a program, x+4, in the intersection of E-Class g1

from E-Graph g with E-Class h1 from E-Graph h in green.

by intersecting the constant symbol c together with the arc count n, represented
as cn, of each E-Node from E-Classes g1 and h1. When the arc count is 0, we
omit it. This intersection results in: {8,+2} ∩ {4,+2,+2} = {+2}. Now we
know that, if the intersection is non-empty, the program must be represented by
both E-Node g1a and h1a or both g1a and h1c . We first try g1a and h1a and intersect
their corresponding first argument E-Class, g2 and h2. Their constant intersection
results in {x, 4} ∩ {2} = ∅. Thus, there is no program in the intersection and we
return ⊥. Therefore, the first argument of g1a and h1a cannot be filled in, proving
their intersection is empty. Now we try g1a and h1c . The constant intersection of their
first corresponding E-Class parameters, g2 and h3, results in {x, 4}∩{x, 0} = {x}.
This is an E-Node with no children and thus a complete program. We return x. The
constant intersection of their second corresponding E-Class parameters, g2 and h1,
results similarly in the program 4. Now we can create a program in the intersection
of g1 and h1, namely x+4. ⌟

Note that the algorithm’s structure naturally extends to any number of input E-
Graphs. The core logic of finding shared constants and recursively intersecting cor-
responding child E-Classes is applied across all provided E-Graphs simultaneously.
The recursive calls are made for each corresponding child across all E-Graphs.

Wildcard rules can introduce a wildcard □ to our system. Therefore, it is im-
portant that the intersection algorithm can handle them. Because □ is defined to
be behaviorally equivalent only to itself, it will always end up in its own E-Class.
When one of the E-Classes being intersected represents □, we can safely remove
that E-Class from C (see line 3), as it inherently represents any program. If the list
of intersected classes only contains one E-Class, we can simply extract a program
from it (see line 7). If it were to become empty, we return □ (see line 6). The fol-
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Algorithm 3: INTERSECTION

1 Input: E-Graphs G, E-Classes C, initially empty global historyH, and
initially empty branch history set B

2 Output: A program in the intersection of C or ⊥ if there is none
3 C ← {c ∈ C | c does not represent □}
4 C not inH or returnHC
5 C not in B or return ⊥
6 |C| > 0 or return □
7 |C| > 1 or return extract(C)
8 C ← common constants of E-Classes in C sorted on #children
9 for c ∈ C do

10 n←#children of c
11 if n == 0 then
12 HC ← c
13 return c

14 else
15 N ← for each class in C, the E-Nodes with constant c
16 for N ∈ all combinations over N do
17 for i ∈ {1,2,· · · ,n} do
18 Ci← {the i-th argument E-Class of u | u ∈ N}
19 pi← INTERSECTION(G, Ci, B ∪ {C},H)
20 if there is a program for each parameter of c then
21 p← create program c(p1, p2, · · · , pn)
22 HC ← p
23 return p

24 HC ←⊥
25 return ⊥

lowing two examples serve to demonstrate the power of wildcard rules to introduce
more programs.

Example 19. Take the wildcard rule discussed in Example 16

p↔ true ? p : □

where p is a metavariable. This rule can be used to introduce the absolute function
to a domain containing only x and -x. In the context of the input 5, we have the
contextual rule

true↔ x == 5 | x← 5

Starting from program x, we get
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x→ true ? x : □ (p↔ true ? p : □)

→ x == 5 ? x : □ (true↔ x == 5 | x← 5)

→ x ≥ 0 ? x : □

Intersecting this program with x ≥ 0 ? □ : −x, gives the absolute function. ⌟

Example 20. Depending on the domain, an interesting wildcard rule (see Defini-
tion 17) for our system is:

p↔ □ ? p : p

In theory, applying this wildcard rule would result in the same intersection as the
two general rules

p↔ true ? p : p and p↔ false ? p : p

because any program that can substitute the wildcard equals either true or false.
However, the specific term that should replace true or false resulting in a non-
empty intersection might not be present. Therefore, applying the wildcard rule has
a higher chance of resulting in the desired program. ⌟

5.3.4 Cycles and Optimality

There is one remaining problem, namely shared cycles. It might happen for the
E-Classes being intersected that a shared child points to an E-Class that, in all
cases, is already part of the term being created. In other words, we are already
taking the intersection of these exact classes. In this case, the recursion would go
on forever. Therefore, to potentially stop the recursion, it is necessary to detect
which E-Classes have been seen together for the program being constructed in the
current recursive traversal. We define a branch history B (see Definition 18) as a
set of E-Class collections and use it to track which E-Classes have been visited
together in the current recursive traversal. When going in recursion, the children
get a new version of B that also contains C (see line 19). Before intersecting the
E-Classes C, we check whether C ∈ B (line, 5). If this is the case, it implies we
are already intersecting these classes in the current recursive traversal. Thus, if
we do not return, we will repeat the steps that occurred between the first time we
intersected the classes in C and now. Therefore, we return ⊥ for this call instead.

Definition 18 (Branch History). Let G = {g1, · · · , gn} be a collection of E-
Graphs. Then B is a set such that its members are of the form C = {c1, · · · , cn}
where each ci ∈ gi. ⌟
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Figure 5.3: This figure shows a program, x-1, in the intersection of E-Class g1

from E-Graph g with E-Class h1 from E-Graph h in green. g1 shares cycle g1b →
g1b → g1b with cycle h1a → h2a → h1a in h.

Example 21. Figure 5.3 shows a program in the intersection of two E-Classes,
E-Class g1 in E-Graph g with h1 in h. These E-Classes share a cycle. Cycle
g1b → g1b → g1b from g corresponds to cycle h1a → h2a → h1a from h. When we
naively try to find a program represented by both g1b and h1a, recursion would go on
forever. The branch history B fixes this problem. The second time g1 and h1 get
intersected, B includes {g1, h1}. Because at that point C ∈ B, the algorithm returns
⊥. The intersection of g1 with h1, however, is still ongoing and will intersect g1a
with h1b , resulting in program x-1. ⌟

Important to note is that this does not make our program non-optimal. The
algorithm will still find a program iff there is a program in the intersection of C.
Assume, for a particular call where we intersect the classes in C, we have C ∈ B.
If this intersection were to represent a program, it would imply that said program
is a larger, behaviorally equivalent version of a program in the intersection of C.
Specifically, there cannot be a constant in the intersection, as that would make it
impossible to intersect C when C ∈ B. Therefore, by terminating this recursive
traversal, we do not lose completeness.

5.3.5 Complexity

To analyze the worst-case complexity, we will assume there are no common cycles.
Assume we intersect n classes with c common constants per class, each with m
children, and k E-Nodes represented by c per class. For each common constant c,
we look at all combinations over the k nodes from n classes. For each, we go in
recursion for all m children up to depth d. We get:

T (d) = c · kn ·mT (d− 1)
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where d is the recursion depth and T (1) = O(1). This expands to the complexity:

O((c · kn ·m)d)

Thus, the most significant factor that impacts the complexity is the size of the
E-Graphs. Normally, the complexity will be much lower as k will usually be at
most 1, the majority of branches will terminate far earlier than max depth d, for
a node we only recurse into the next child if all previous ones have successfully
returned a program, and once a full program for a node is found we do not explore
alternative nodes.

5.3.6 Global History

INTERSECTION uses a global history H that tracks the solutions found for every
intersection. Every call to INTERSECTION gets a reference to H (see line 19).
Therefore, updates to H are global. If a collection of classes has been fully inter-
sected, the result gets saved in H (see lines 22 and 24) and returned in case they
get intersected again (see line 4).

5.4 Implementation

CSES1 is implemented in Julia [24]. The Grammar, its constraints, and the ex-
amples are represented using the Herb.jl2 program synthesis library, which en-
sures inherent broad applicability across different domains. Ruler has been re-
implemented in Julia as a stand-alone module using the MetaTheory.jl [25] E-
Graph library for equality saturation, which has similar performance to the state-
of-the-art egg [26] library. Furthermore, rewrite rules in Julia are inherently more
expressive than in languages such as Rust, because they are themselves represen-
ted as native Julia expressions. This design implies that any valid Julia program
can be captured and rewritten without the need for an encoding. MetaTheory.jl has
likewise been used as the base for rewrite rules, E-Graphs, and equality saturation
in CSES. In total, CSES consists of fewer than 1000 lines of code, making it simple
and extensible.

1https://github.com/ViciousDoormat/CSES/tree/main/
ContextSensitiveEGraphAnalysis

2https://herb-ai.github.io/
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Chapter 6

Experimental Evaluation

Our experimental evaluation focuses on demonstrating the effectiveness of CSES
as an example-based synthesis tool, with and without our improvements to Ruler.
We separate this evaluation into the following research questions:

RQ1: Does CSES perform competitively on real-world problems in relation
to constrained enumeration?

RQ2: Do the improvements on the bottleneck of Ruler improve efficiency?
RQ3: Do the improvements on the bottleneck of Ruler help allow using a

larger termset?
Lastly, we explore a case study regarding the potential effectiveness of CSES.

For all experiments, we use a subset of 21 problems from SyGus SLIA (see Ap-
pendix C), which captures a wide range of real-world string manipulation tasks.
Furthermore, it allows testing the performance of Ruler on more complex execution
spaces than the ones it was benchmarked on. A subset is used because experiment-
ing on the entire benchmark is not feasible due to limited time. To make our results
as representative for SyGus SLIA as possible, the instances are chosen such that
problems of varying difficulties are included based on [27]. For all experiments,
we use a timeout of 20 minutes per problem.

All experiments were run under Windows 11 (64 bit) on an AMD Ryzen 9
7900X 12-Core Processor of 4.70 GHz, with a 32 GB RAM and a 64 MB L3
cache.

6.1 RQ1: Performance of CSES

Here, we want to compare the effectiveness of CSES with constrained enumera-
tion. The constraints used for both enumeration and enumerating individual solu-
tions can be found in Appendix B.1). A subset of these constraints was used to
constrain the creation of the small term set by disallowing some nonsensical pro-
grams (see Appendix B.2). CSES is performed without the two optimizations for
n = 0, n = 1, and n = 2. Execution time is used as our metric because there is no
research on estimating the number of terms represented by an E-Graph.

35



Figure 6.1: The solving time for each problem when solved by CSES without any optimizations for n = 0, n = 1, and n = 2, and for
constrained enumeration. The color indicates whether a solution was found (green/red). A check mark replaces green in case the bar is
not visible. The highest bars reached a timeout at 1200s.
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An experiment was performed to discover which problems find individual solu-
tions within the 20-minute timeout, and whether one of those individual solutions
solves all examples. The results can be found in Table 6.1. As we can see, for all
problems up to and including problem 13, constrained enumeration finds an indi-
vidual solution for all examples. Interestingly, for all these problems, at least one
individual solution solves all examples. Problem 14 finds two individual solutions,
but neither solves all examples. Lastly, the longest time needed to find all indi-
vidual solutions found within the timeout is 51.57 seconds. Based on these results,
we put a timeout of 1 minute on finding individual solutions in CSES.

Problem Found / Total Universal Exploring Time (s) Timeout
1 3/3 Y 0.06 N
2 3/3 Y 0.05 N
3 3/3 Y 0.12 N
4 2/2 Y 1.41 N
5 2/2 Y 1.43 N
6 3/3 Y 0.03 N
7 4/4 Y 0.09 N
8 4/4 Y 0.77 N
9 5/5 Y 0.87 N

10 3/3 Y 51.57 N
11 2/2 Y 2.16 N
12 2/2 Y 0.13 N
13 5/5 Y 0.17 N
14 2/3 N 0.44 Y
15 0/4 N ⊥ Y
16 0/2 N ⊥ Y
17 0/4 N ⊥ Y
18 0/3 N ⊥ Y
19 0/3 N ⊥ Y
20 0/3 N ⊥ Y
21 0/4 N ⊥ Y

Table 6.1: For each problem, the number of individual solutions found with respect
to the total number of examples, whether one of the individual solutions is universal
and thus solves all examples (Y/N), the time required to find all individual solutions
that were found, and whether the timeout of 20 minutes was reached (Y/N). If
no individual solution was found before the timeout, we use ⊥. The individual
solutions are found with constrained enumeration. Note that our aim is not to solve
the problem, but instead to find individual solutions.
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The results of our experiment are shown in Figure 6.1. Both Constrained enu-
meration and CSES with n = 0 find a solution for problems 1 up to and including
14. Constrained enumeration is always fastest when a solution is found. However,
CSES with n = 0 always finishes its execution, whereas constrained enumeration
times out for all problems starting from 15. CSES with n = 1 times out for prob-
lems 7, 8, and 9 and all problems starting from 11. It did find a solution to the
problems when it did not time out. Lastly, CSES with n = 2 always times out.

First of all, we observe that individual solutions are almost always either too
hard to find, or already a universal solution. Thus, for our subset of SyGus SLIA,
finding individual solutions through enumeration does not seem significantly easier
than finding a universal solution.

Prob Avg #C % Diff Time (s) Found / Total
With R No R With R No R With R No R

1 317.00 459.00 30.94 151.74 164.54 3/3 3/3
2 422.33 549.33 23.12 212.82 218.14 3/3 3/3
3 906.00 1213.00 25.31 474.59 841.65 3/3 3/3
4 601.00 767.00 21.64 202.94 281.67 2/2 2/2
5 601.00 767.00 21.64 273.79 371.59 2/2 2/2
6 389.67 510.00 23.59 206.13 322.49 3/3 3/3
7 762.50 992.50 23.17 770.36 ⊥ 4/4 4/4
8 668.00 851.00 21.50 862.87 ⊥ 4/4 4/4
9 1059.40 1430.00 25.92 ⊥ ⊥ 5/5 2/5
10 674.00 783.33 13.96 724.19 1144.98 3/3 3/3
11 1102.50 1435.50 23.00 790.45 ⊥ 2/2 2/2
12 1072.00 1411.00 24.03 1029.11 ⊥ 2/2 2/2
13 4374.00 4050.00 -8.00 ⊥ ⊥ 2/5 1/5
14 3429.00 4181.00 17.99 ⊥ ⊥ 1/3 1/3
15 1027.67 1170.00 12.16 ⊥ ⊥ 3/4 2/4
16 373.00 490.00 23.88 361.03 569.28 2/2 2/2
17 541.00 685.00 21.02 ⊥ ⊥ 4/4 3/4
18 600.00 766.00 21.67 953.78 ⊥ 3/3 3/3
19 373.00 490.00 23.88 629.17 926.39 3/3 3/3
20 3502.00 3797.00 7.77 ⊥ ⊥ 1/3 1/3
21 556.00 718.00 22.56 ⊥ ⊥ 3/4 3/4

Avg 1112 1310 20.04 359.60* 537.86 – –

Table 6.2: For each problem, the average number of candidate rules C found per
example with and without general rules R, together with the percental difference
( No R−With R

No R · 100). The time columns show the time Ruler took to run with and
without R. The last two columns show the number of examples where candidate
rules were found within the timeout out of the total number of examples. The
symbol ⊥ indicates no candidate rules were found within the timeout.
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Furthermore, we can see that, for any value of n, CSES only finds a solution for
problems for which a universal solution is found as one of the individual solutions.
When a universal solution is part of the termset, CSES effectively functions as
an overhead over enumeration, as every example solution space will contain said
solution, making finding the solution trivial. This explains CSES for n = 0 finds
a solution only when enumeration does too. The same might be true for n = 1, but
we cannot currently guarantee this for problems where it times out. When we set n
to 2, we see that our system always times out, indicating Ruler becomes too large
of a bottleneck.

6.2 RQ2: Ruler Improvements

Here, we want to measure the effectiveness of the two main improvements to Ruler,
the general ruleset and the new rule selection approach. The other improvements
are more obvious in their effect; thus for the sake of time, we do not measure their
effect.

First, we run CSES for n = 1 on our set of problems both with and without a
general ruleset R (see Appendix A) containing 24 rules. For each problem, Ruler’s
execution time was measured, together with the average number of candidate rules
found over the examples. If Ruler times out, the average is taken only over the
found sizes of the generated candidate rulesets. Thus, this indicates the advantage
gained from the average decrease in candidate rules. The results of this experiment
can be found in Table 6.2.

We see that, for each problem except 13, less candidate rules are found when R
is used. The biggest difference is obtained for problem 14 with 752 fewer average
candidate rules, and the percental improvement is generally around 20%. We also
see that every problem that finishes execution is faster when R is used. Lastly, 5
more problems finish executing.

Second, we run CSES for n = 1 on our set of problems with the standard and
new selection approach. For each problem, the average execution time of the rule
selection procedure was measured. If Ruler times out, the average is taken only
over the finished instances. Thus, this represents the average advantage gained. As
the main thing affected by this change is the selection time, no other measurements
were taken. The results of this experiment can be found in Table 6.3.

We see that only problems 9, 11, and 15 have a faster average execution time for
the new select procedures. All other problems have a lower average rule selection
execution time. Furthermore, nine problems finish rule selection for less examples,
of which two do not finish one procedure at all.

As expected, using R generally decreases the number of candidate rules, result-
ing in a faster execution time. The increase in average candidate rules for problem
13 can be explained because, without R, CSES is unable to create the candidate
set for the second example in time, whereas it does create it when using R. Thus,

*Average taken only over problems with found candidate rules within the timeout without R.
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for the second example, probably a larger candidate set is generated, resulting in a
higher average. However, the new selection procedure does not seem to be an im-
provement. Most problems get a worse execution time. Thus, shrinking less often
but with a larger ruleset does not generally improve performance. Why specifically
three problems do have a better execution time is not clear.

Problem Avg Selection
Time (s) % Diff Fin. / Total

New Old New Old
1 65.33 42.23 -54.70 3/3 3/3
2 96.92 57.20 -69.44 3/3 3/3
3 345.05 242.23 -42.45 3/3 3/3
4 216.42 110.77 -95.38 2/2 2/2
5 279.25 149.42 -86.89 2/2 2/2
6 224.78 82.20 -173.45 3/3 3/3
7 502.84 238.83 -110.54 2/4 3/4
8 486.01 264.94 -83.44 2/4 3/4
9 479.54 544.20 11.88 1/5 1/5
10 390.13 262.57 -48.58 2/3 3/3
11 543.22 606.81 10.48 1/2 1/2
12 ⊥ 904.70 −∞ 0/2 1/2
13 ⊥ ⊥ ⊥ 0/5 0/5
14 ⊥ ⊥ ⊥ 0/3 0/3
15 630.77 664.43 5.07 1/4 1/4
16 535.53 209.44 -155.70 1/2 2/2
17 440.75 367.37 -19.97 1/4 2/4
18 638.55 418.29 -52.66 1/3 2/3
19 518.18 228.35 -126.92 1/3 3/3
20 ⊥ ⊥ ⊥ 0/3 0/3
21 ⊥ 428.96 −∞ 0/4 2/4

Avg 399.58 280.58* -68.29 – –

Table 6.3: For each problem, the average rule selection time over the examples
for which choose eq finished execution within the timeout, with and without the
new select approach, including the percental difference ( Old−New

New · 100). and the
number of examples choose eq finished (Fin.) out of the total number.

6.3 RQ3: Performance of Improved CSES

Here, we examine whether our optimizations allow solving more problems. We
have seen general rules provide a significant improvement, and the new rule selec-

*Average taken only over problems where choose eq New finished execution.
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tion approach sometimes has a positive effect. To this end, we perform CSES on
all problems for n = 1 and n = 2 once with only general rules and once with both
general rules and the new selection approach. The results are shown in Figure 6.4.

Our results show that both approaches do solve more problems and finish execu-
tion more often than CSES without any improvements for n = 1. All additionally
solved problems are also solved by enumeration. Thus, CSES still only solves
problems for which there is an individual solution. Furthermore, we see only a
small difference in performance between our two approaches. Lastly, CSES still
times out for all problems with n = 2.

It seems that, for n = 1, without individual solutions, the termset does not
contain the terms required to find a sufficiently expressive rewrite ruleset to rewrite
an individual solution to a universal one. Therefore, these problems cannot be
solved. Furthermore, our optimizations do not have a large enough effect to make
CSES with n = 2 finish execution in time. The bottleneck of Ruler has too much
of an impact. This suggest that either a faster ruleset generation mechanism is
required that has sufficient performance, or a technique that allows having the terms
that form crucial rewrite rules in our termset without enumerating exponentially
more programs.

6.4 Case Study

We will look at two problems that show the potential power of CSES. These prob-
lems show that even with a small n, contextual rewrite rules can exist that express
contextual equivalences able to generate a solution program. If the grammar al-
lows these to be found fast, potentially together with a set of wildcard rules, the
inefficiency of Ruler might not be a problem.

6.4.1 Powerful Contextual Rewrite Rules

ntString = " " | arg1
ntString = substr(ntString, ntInt, ntInt)
ntInt = 1
ntInt = ntInt + ntInt
ntInt = len(ntString)
ntInt = indexof(ntString, ntString, ntInt)

Figure 6.2: A grammar snippet with the necessary parts of the grammar from prob-
lem 19 get last name from name.

Take the grammar from Figure 6.2 and problem get_last_name_from_name
from RQ1:
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[[(arg1 => "Park Kim")], "Kim"),
[(arg1 => "Lee Kim")], "Kim"),
[(arg1 => "Kim Lee")], "Lee")]

Because of the nature of the grammar, this problem requires a solution of a size of
at least 3 nested programs. An example of such a solution is:

substr(arg1, indexof(arg1, " ", 1)+1, len(arg1))

It contains a call to indexof inside of a summation contained in a call to substr.
Constrained enumeration will not find this solution in time. Let’s zoom in.

Note the term indexof(arg1, " ", 1). The corresponding cvec1s for
our examples would be 5, 4, and 4 respectively. We will not find terms with equal
cvec1s if we use an n lower than 3. For example, 4 can be constructed as 1 + 1 +
1 + 1, which requires n = 3. The same holds true for len(arg1), which equals
8, 7, and 7 respectively.

Adding the output to the grammar at the start allows us to find more of such
crucial terms. If we add the characteristic vectors found to the grammar and start
over, we will find rewrite rules that prove these contextual equivalences.

Furthermore, we will find terms that solve individual examples. These are all
the terms and rules required to represent, for each example, our solution program.
Therefore, with this altered grammar, CSES solves this problem already with n = 1,
whereas enumeration will only take longer as the grammar size has increased.

Example 22. Take the first example. As we add Kim to the grammar at the start,
we will enumerate the term indexof("Kim", arg1, 1), allowing us to find
6 alongside the earlier mentioned cvec1s. Thus, we will enumerate the individual
solution substr(arg1, 6, 8) when we re-enumerate, and find the contex-
tual equivalence between 5 and indexof(arg1, " ", 1), 6 and 5+1, and
8 and len(arg1). Thus, the E-Graph that will represent the solution space for
this example will contain our program solution after being saturated with these
equivalences. ⌟

6.4.2 More Possible with Wildcard Rules

Take the grammar from Figure 6.3 and problem
split text string at specific character from RQ1:

[[(arg1 => "011016_assignment.xlsx", arg2 => 1)],
"011016"),

[(arg1 => "011016_assignment.xlsx", arg2 => 2)],
"assignment.xlsx"),

[(arg1 => "030116_cost.xlsx", arg2 => 1)],
"030116"),

[(arg1 => "030116_cost.xlsx", arg2 => 2)],
"cost.xlsx")]
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ntString = "_" | arg1
ntString = ntBool ? ntString : ntString
ntString = substr(ntString, ntInt, ntInt)
ntInt = 1 | arg2
ntInt = ntInt + ntInt | ntInt - ntInt
ntInt = len(ntString)
ntInt = indexof(ntString, ntString, ntInt)
ntBool = ntInt == ntInt

Figure 6.3: A grammar snippet with the necessary parts of the grammar from Sy-
Gus problem split text string at specific character.

A solution to this problem expressible by the grammar is, for example:

arg2 == 1 ?
substr(arg1, 1, indexof(arg1, "_", 1)-1) :
substr(arg1, 1, indexof(arg1, "_", 1)+1)

Similar to before, this solution will not be found in time by enumeration. It
would even take a lot longer to find this program than the solution to the previous
problem. If we again add the values of indexof(arg1, "_", 1) for each ex-
ample to the grammar, CSES will find the then case as a solution for examples one
and three, and the else case for examples two and four. Therefore, the solution
program will be found for each example with the wildcard rules

p↔ true ? p : □ and p↔ false ?□ : p

Thus, with this altered grammar and using these wildcard rules, CSES again
solves this problem, whilst enumeration does not.

6.4.3 Reflection

As we have seen, CSES often fails to find a solution program because key con-
textual rewrite rules are not discovered. Said rewrite rules cannot be discovered
because the grammar lacks the expressiveness required to represent the key terms
needed to form these rules at a low value of n. Therefore, adding such terms to
the grammar makes it possible for CSES to solve such problems. However, enlar-
ging the grammar too aggressively might result in a termset that is too large for the
system to handle efficiently. Interestingly, in both case studies, the crucial terms
were generated by our system as cvec1s of programs applied to a variable, after
the example output was added to the grammar. This suggests a potential strategy:
add all unique cvec1 values to the grammar from n = 1 programs containing a
variable.
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Figure 6.4: The solving time for each problem when solved by CSES with general rules only and general rules and the new select
approach both, for n = 1 and n = 2. The color indicates whether a solution was found (green/red). The highest bars reached a timeout
at 1200s.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

We set out to explore how the search space of example-based synthesis could be
reduced by focusing only on programs that solve at least one IO example. To
this end, we introduced Context-Sensitive E-Graph Saturation, a novel method that
constructs and leverages contextual equivalences to prune the search space. By
doing so, we aimed to address the our central research question: How can we limit
the search space to programs that behave similarly to the one desired?

We compared CSES to constrained enumeration on problems from SyGus SLIA
and found that CSES only successfully solves problems enumeration solves too,
as the termset contains a universal solution. However, enumeration consistently
outperformed CSES in terms of solving speed. Importantly, CSES was able to
complete execution in cases where enumeration timed out. We also evaluated the
improvements of using a general ruleset and the new rule selection approach. We
found that a general ruleset substantially decreased the number of candidate rules
and reduced execution time of Ruler. In contrast, the new rule selection approach
did not yield consistent benefits and. Last, we examined whether these optimiza-
tions allow solving more problems. CSES was able to finish execution for more
problems and solve additional ones compared to the unoptimized baseline. How-
ever, CSES still only solved problems for which individual solutions were already
present, and it still consistently failed with n = 2. This indicates that, while our
optimizations improved performance, they are insufficient to overcome the bot-
tleneck posed by Ruler when dealing with larger termsets. These results also re-
vealed a fundamental limitation: without key contextual rewrite rules, CSES can-
not go beyond what enumeration achieves, highlighting the importance of termset
expressiveness.

Future research aimed at faster ruleset generation and creating a more expressive
ruleset could enable CSES to go beyond enumeration and realize its full potential.
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7.2 Future Work

As we have seen, individual solutions have the potential to effectively help find
solution programs. However, in our experiments, individual solutions were almost
always either not found or already a universal solution. A better approach to finding
individual solutions could thus greatly improve the system. This approach could
better use the fact that the solution targets only one example and could be based
on [28]. Another way to tackle this problem would be the approach discussed in
the case study (see Subsection 6.4.3), or other methods to alter the initial grammar.
Similarly, it would be interesting to test the system on other domains with more
easily discoverable individual solutions, where a standard solution is not often the
universal solution.

Another way to improve upon the method would be to improve upon Ruler. As
we have seen, both Enumo and Isaria perform equality saturation in phases with a
domain-specific approach. Similarly, a domain-specific selection approach for this
system might allow to make the rule selection part of Ruler significantly more ef-
ficient. A possible heuristic could involve constructing a bipartite graph that maps
(sub)terms to E-Classes and using a matching to guide rule selection. Other worth-
while improvements might be more general. An example is the insight that, with
Ruler, rules are significantly less likely to get trimmed the higher their heuristic
score is, as we always go through the candidate set in the same order. We shrink
the last rules using the first ones, but never the other way around. Differing in order
might be more efficient. Furthermore, as we have only analyzed the performance
impact of two improvements, further research is required regarding the impact of
the other discussed optimizations. Lastly, it might be better to use another system
entirely to find contextual rewrite rules, which could be made specifically for this
domain.

Other valuable research would be to explore an extension of this method to al-
low higher-order functions. A function that returns a function would require the
value of a cvec to be a function. However, this raises the challenge that we would
like to compare such cvecs not by syntax but by behavior, potentially requiring
cvecs containing cvecs. Likewise, the most straightforward way to allow lambda
functions as parameters would be to instantiate every lambda. However, this would
remove the generality we desired by allowing them; we can only discover programs
where the lambda is already applied. For example, we might find map(+1)arg1,
but not the more general map function itself. One possible solution is to require
one of the example arguments to be the lambda. Another is to treat the lambda as
part of the output of map, producing a cvec of unfinished calls where the lambda
still needs to be applied.

Similarly, allowing recursive programs would make the system more powerful.
Basic E-Graphs are, by their nature, unable to represent recursive programs. An
altered version that can represent them could create many new possibilities within
this domain and many others where E-Graphs can be applied.

Lastly, the performance of the intersection algorithm on large E-Graphs has not
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been analyzed. Therefore, no statements about its performance can be drawn bey-
ond the shown complexity. This choice was made as the only existing method
to create large contextual E-Graphs is CSES, which is simply too slow to create
many large-scale E-Graphs in the available time. More research thus needs to be
performed to benchmark this algorithm. Other interesting research in this regard
would be a (heuristic) approach to measure the number of terms represented by
an E-Graph, which would allow for a better comparison between CSES and other
systems like enumeration.
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Appendix A

General Rewrite Rules

Below is a list of general rewrite rules used in the experiments.

concat(a, "")→ a

concat("", a)→ a

replace(a, b, b)→ a

replace("", a, b)→ ""

toint(tostr(a))→ a

tostr(toint(a))→ a

a+ 0↔ a

0 + a↔ a

a− 0↔ a

a == a→ true

prefixof(a, a)→ true

prefixof("", a)→ true

suffixof(a, a)→ true

suffixof("", a)→ true

contains(a, a)→ true

contains(a, "")→ true

concat(a, concat(b, c))↔ concat(concat(a, b), c)

len(concat(a, b))↔ len(a)+ len(b)

substr(a, 1, len(a))→ a

substr(a, 1, 0)→ ""

prefixof(a, concat(a, b))→ true

suffixof(a, concat(b, a))→ true

contains(concat(a, b), a)→ true

contains(concat(b, a), a)→ true
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Appendix B

Constraints

Here, we show a list of constraints used for our experiments implemented in Herb.jl.
Expressions A and B represent metavariables. We use a collection of forbidden,
unique, and ordered constraints. A detailed explanation of the constraints can be
found in [27].

B.1 Constraints for Enumeration

The following constraints are used for enumeration, both to find the entire solution
and as part of CSES to find individual solutions. A forbidden constraint constrains
the creation of particular (sub)programs, making them not allowed. The following
forbidden constraints are used:

forbidden(concat(A,"")))
forbidden(concat("",A))
forbidden(replace(A,B,B))
forbidden(to_str(to_int(A)))
forbidden(to_int(to_string(A)))
forbidden(if A then B else B)
forbidden(if true then A else B)
forbidden(if false then A else B)
forbidden(A+0)
forbidden(0+A)
forbidden(A-0)
forbidden(A==A)
forbidden(prefixof(A,A))
forbidden(prefixof("",A))
forbidden(suffixof(A,A))
forbidden(suffixof("",A))
forbidden(contains(A,A))
forbidden(contains(A,""))
forbidden(len(to_str(A::Int)))
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Aside from these forbidden constraints, we also forbid the creation of particular ex-
pressions over constant digits and strings. For the following list, n and m represent
a constant digit and s a constant string:

forbidden(n == m)
forbidden(len(s))
forbidden(replace(s,A,B))
forbidden(substr(s,A,B))
forbidden(prefixof(A,s))
forbidden(suffixof(A,s))
forbidden(contains(s,A))
forbidden(indexof(s,A,B))

A unique constraint constrains the times a node can appear, forcing it to appear
at most once. The following unique constraints are used:

unique(contains)
unique(suffixof)
unique(prefixof)

An ordered constraint constrains the order of metavariables. A term can only be
made if the metavariables are in sorted order. The following ones are used:

ordered(A == B)

B.2 Constraints for Small Terms

The following constraints were used in CSES to remove nonsensical programs
from the domain. For the following list, and s represents a constant string:

forbidden(len(s))
forbidden(replace(s,A,B))
forbidden(substr(s,A,B))
forbidden(prefixof(A,s))
forbidden(suffixof(A,s))
forbidden(contains(s,A))
forbidden(indexof(s,A,B))
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Appendix C

SyGus Problem Subset

The set of programs from SyGus used for the experiments in this thesis.

SyGuS Problem Assigned Problem Number
problem convert numbers to text 1
problem convert text to numbers 2
problem cell contains specific text 3
problem replace one character with another 4
problem remove text by matching 5
problem count total characters in a cell 6
problem compare two strings 7
problem change negative numbers to positive 8
problem remove unwanted characters 9
problem remove characters from left 10
problem join first and last name 11
problem 37281007 12
problem 19558979 13
problem clean and reformat telephone numbers 14
problem 44789427 15
stackoverflow9 16
remove file extension from filename 17
get last name from name with comma 18
problem get last name from name 19
problem 12948338 20
problem 30732554 21

Table C.1: A subset of problems from the SyGus SLIA benchmark1.

1https://github.com/Herb-AI/HerbBenchmarks.jl/tree/master/src/
data/SyGuS/PBE_SLIA_Track_2019
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