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i 

Abstract 
 

 

Space frame structures today are a common choice of load bearing system for achieving long 

spans with minimal interruptions of the floor plan beneath. On top of that, the versatility of space frame 

structures to conform to any shape makes them particularly interesting today, especially in the context 

of free-form geometry which is becoming ever more common. In structural design, and especially for 

space frame design, the creation of a structural model is quite a labour-intensive process, and it is highly 

beneficial to automate the structural model generation. Furthermore, the design of such structures can 

benefit from an exhaustive preliminary design space investigation. Thus, this MSc thesis deals with the 

parametric design, engineering and optimization of space frame structure typologies based on different 

initial surface discretization of the input free-form surface geometry, and different topological relations 

of space frame top and bottom layers. These topological relations are based on Conway operators most 

relevant for the structural patterns occurring in space frame structures specifically, dual, kis and ambo. 

These operators are always applied on an initial or seed meshing of the desired free-form surface, to 

create different space frame layouts for them to be compared by their structural performance, primarily 

in terms of mass. The scope of initial meshing options is kept to tri, quad, and skeleton-based quad 

meshing. These three different types of mesh options, combined with the three possible Conway 

operator options, constitute the main nine combinations for each case study example. 

In essence, every space frame design, due to the linear and geometric nature of the structural 

elements (nodes and bars seen as points and lines), can be considered as a literal structural translation 

of the final desired free-form shape. This free-form shape is always tessellated or discretized in certain 

configurations. The aim was to gain more insight into how the initial tessellation affects the behaviour 

of space frame structures as well as how the process of optimization of such structures is influenced 

regarding the initial tessellation. To gain insight into this influence qualitatively and quantitatively a 

parametric tool was developed to conduct case studies. The tool allows for the generation and cross-

section optimization of various space frame structures based on an input surface. This parametric tool 

was developed using Rhino, Grasshopper, and karamba3D structural analysis plugins for grasshopper. 
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PART I: 
 RESEARCH DEFINITION 
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01
  01 Introduction 

 

 

 

 

 

01.1 Motivation 

 

In recent years, the development of algorithm-aided design has facilitated the overall 

architectural and structural design of complex structures. This advancement in computational design 

allows engineers and architects to design structures not deemed feasible before. Additionally, 

parametric structural design with tools such as karamba3D and grasshopper has opened a potential for 

creating evermore complex geometries and optimizing structural designs, especially in the preliminary 

design phase. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 01.1 
Gallery of the new Milan Trade Fair 
[Source: archello.com] 

 

Space frame building structures have become more interesting than before due to the 

development of these computational design tools, as they allow the designer to create adequate 

parametric models to investigate the relationship between geometry and load bearing behaviour in the 

early design phases. Furthermore, Space frames are excellent load bearing structures for creating large 

spans and open spaces, while at the same time having a certain aesthetic value. This aesthetic value 

although hard to measure or comment, is primarily in the structural pattern created by the 

configuration of the bars and nodes. The modularity and assembly of Space Frames makes it possible 

to cover large spans of irregular, free-form, curved geometries. 

Being a complex system of bars and nodes, with 3D load bearing mechanism hand calculations 

come with many assumptions, providing rough estimates for simple geometries. Moreover, Space 

frame structural behaviour and their respective potential structural patterns or layouts/configurations 

can only be properly assessed by computational methods. Parametric Design tools and 3D modelling 

environments such as Rhino, grasshopper and Karamba3d have the potential to bring more insight into 

the structural behaviour and size optimisation of Space frame structures. Considering the 

aforementioned, rationale for research about space frames structural patterns is presented. 
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Figure 01.2 

Heydar Aliyev Cultural Cent 
[Source: buildpedia.com] 

 

However, another characteristic aspect, which further motivates this thesis research, are the 

current tendencies in engineering practice, a sort of unification of the roles of architects and structural 

engineers, reminiscent of renaissance builders such as the famous “homo unviersalis”, Leonardo da 

Vinci. This tendency is facilitated by the ever-evolving computational design capabilities and software 

tools, an ever-expanding toolbox from which a new type of engineer emerges, one which can “equip” 

himself with as many tools as their profession or curiosity dictates. Thus, the process of design, from 

the initial idea and preliminary design to detail design, is becoming one integrated approach in which 

the collaboration between architects and structural engineers is paramount for successful design from 

the start of the design process. In recent years, these tendencies have resulted in numerous inspiring, 

novel, and complex structures, state of the art from the point of architectural, computational, and 

structural design.  

 

01.2 Why parametric? 

 

Nowadays, due to climate change and the absolute necessity of humanity to mitigate it, more 

and more emphasis is being put on sustainability in engineering design. Civil engineering sector, 

especially the design professionals, are being challenged to continuous learning and updating of their 

knowledge to keep up and implement the latest developments, to create more economical and 

sustainable designs than before. The structural design of today, not only has to assure functionality, 

durability and reliability of structures designed but sustainability and low environmental impact as 

well. Structural efficiency and economy in terms of lower material usage/costs and thus carbon 

footprint is becoming vital. These tendencies have created a new environment in engineering practice 

where the design process is becoming ever more a computational performance driven optimization-

based design process, intersecting with the fields of evolutionary optimization, computational design 

and building performance simulation (Figure 01.3.) However, structural optimisation, has always been 

inherent in structural design in terms of preventing unnecessary wastage and material costs, although 

methods and tools for structural optimisation were not developed and sophisticated as today. 

Developments in computational tools for Parametric engineering and Structural optimisation now 

make it possible to optimize and design more complex structures than ever before. The main benefit of 

using parametric design or algorithm-aided design is in the possibility to automate the creation of 

complex structural system geometry which will serve as a basis for a parametric structural model. 

Another benefit is the potential for creating several different designs depending on input variables to 

gain more insight into which structural configuration is better in respect to some target parameters such 
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as weight, displacement etc. All of the mentioned methods help to achieve a performance-based design 

optimization. 

 
Figure 01.3 
Computational performance-driven design 
optimization is the combination of computational 
design, evolutionary optimization, and BPS in a 
3D modelling graphical context. [1] 

 

 

 

 

 

 

To conclude, it is important to note that the development of parametric design has opened a 

path towards more synergy and collaboration between architects and structural engineers, while at the 

same time considering the MacLeamy curve (Figure 01.4.) facilitating more insight available in the 

preliminary design phase, when the design decisions have the most impact for later design stages, 

potentially saving material and time costs down the line. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 01.4 
MacLeamy curve [2]  

 

 

 

 

 

01.3 State of the art 

 

A first literature review has been done to find out what has been researched on the topic of 

structural patterns/configurations/layouts of space frame structures. The search was done through 

google scholar by using key words relating to the topic stated. The main conclusion is that this topic as 

specified has not been researched to my knowledge. However, the key word search has resulted in 

finding useful articles and literature related to some extent with the posed problem and identified a 

research gap regarding structural pattern space frame research. 

The research done by Koronaki et al. [3] and Shepherd and Pearson [4] relates to the layout 

optimization of space frame structures. The main takeaway of these articles is that space frame 

tessellation can be achieved by using certain Conway operators to mathematically define them which 

can facilitate the modularity of the structural configuration. Furthermore, another interesting approach 

outlined by Oval et al. [5] in short shows a procedure for creating structural patterns by topology finding 

of structural patterns for shell-like structures (grid shells, shells, voussoir tessellation for masonry 

vaults) based on the design of singularities in the pattern. More importantly the author shows how 
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quad mesh patterns can be created based on a topological skeleton of the underlying surface. This gives 

a direction for further research into how to formulate different tessellation strategies to form various 

modules or structural patterns of the space frame structure, this type of discretization has not been 

compared to other known types for space frame design, showing a research gap which is to be 

addressed by this MSc Thesis. Another article by Koronaki et al. [6] shows a possible approach to 

rationalizing space frame structures by reducing variability in joints, which could also be an interesting 

optimization goal. More specific details, and relevant knowledge and information from the mentioned 

sources, are presented in the Literature Review, part II of this MSc Thesis. 

To conclude, most of the literature related to the topic used a parametric design approach, 

showing that it is a valid research approach. In short, it can be said that the found literature mostly 

relates to specific sub problems which could help find answers to the originally stated topic. A research 

gap was identified regarding lack of comparison between various possible space frame discretizations 

based on different initial meshings and Conway operator relations of top and bottom space frame 

layers. 
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02
  02 Research Definition 

 

 

 

 

 

Based on the introductory and motivational chapters, the main idea of researching various 

discretizations of input freeform surfaces to create space frames and gain insight into how they 

influence the load bearing behaviour, structural design and optimization has been laid out. To 

formalize and give context to this idea, a problem statement is further presented. 

 

02.1 Problem Statement 

 

The problem is structured as follows: To create a space frame based on a free-form surface, this 

free-form surface geometry must be first discretized/tessellated/meshed in a certain configuration. 

There is a certain design freedom in choice of this initial tessellation or meshing, meaning there is more 

than one configuration. This problem raises two main questions: 

1. Given an architectural free-form surface model to discretize into a steel space frame 
configuration, what is the influence of this structural pattern configuration regarding the 
optimal structural design and behaviour of a space frame? 

2. For a given architectural free-form surface model, how does one generate an appropriate 
parametric structural tool to test various space frame structure typologies? 

 

The first stated problem question forms the basis of the main research question stated in the 

Research questions part of this MSc Thesis. It, of course, implies several sub-questions which are 

explicitly stated as well. The second problem question can be perceived as one of the many necessary 

steps to answer the first main question. Namely, after researching initial approaches, and many 

iterations, it can be concluded that this problem can be approached by using parametric design tools, 

applying different meshing strategies to form the basis of a space frame structure. The following 

images, (Figures 02.1, 02.2 and 02.3) show an example of possible mesh topologies for discretizing an 

input double curved pentagonal surface to be translated into a space frame structure. 

 

 

 

 

 

 

 

 

 

 

 
Figure 02.1 
Quadrilateral tessellation example for bottom layer of a space frame based on a 

concave polygon surface 
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Figure 02.2 

Triangular tessellation example for bottom layer of a space frame 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 02.3 

Topological skeleton based Quadrilateral tessellation example for bottom layer 

of a space frame 

 

 

02.2 Research Objective 

 

Space frame structures have been used extensively in the past to create large spans and column 

free spaces. With new developments in computational and algorithm aided design specifically space 

frame structures can achieve forms before deemed as unfeasible. A parametric structural design or 

generally computational design approach gives the opportunity for algorithmically generating space 

frame configurations based on an input surface as well as potentially giving significant insight into 

structural behaviour in the preliminary design phase. 

The main research objective is to investigate applications of different structural patterns using 

a computational design approach for space frame design and to evaluate each solution in terms of 

multiple optimality criteria. The computational design approach entails the development of a 

grasshopper definition to serves as the main research tool, which could potentially afterwards also be 

used in design practice during the preliminary phase design of a space frame structure. Possible 

optimality criteria are mass, stiffness, aesthetics, and fabrication aspects. Least mass is chosen as the 

primary optimality criteria. Each of the design variants should then be evaluated regarding chosen 

optimality criteria. In essence the relationship between geometry, structural pattern and load bearing 

behaviour is investigated. 

This approach will of course entail a certain design space of optimized solutions not only one 

"optimal" solution. The term optimal throughout the MSc thesis is always meant in the context of 

formulated optimality criteria, not in the sense of only one ultimate optimal solution. 
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02.3 Research Questions 

 

The main research question is as follows: 

 

Given an architectural free-form irregular surface model to discretize into a steel space 
frame con- figuration, what is the optimal structural pattern configuration regarding 
multiple optimality criteria (mass, fabrication, aesthetics, stiffness in regards of chosen 
pattern) and their realistic constraints (load bearing behaviour, deflection, available 
types of steel c/s)? 

 

This main research question leads to several sub-questions which will lead to possible answers 

to the main question. The sub-question are as follows: 
 

1. What are relevant surface tessellations/discretization’s/meshing options for 
generating space frame structures? 

2. Is there any noticeable influence on structural performance of space frames in regard 
to chosen tessellations? 

3. Which space frame configuration is most appropriate considering optimality criteria? 

4. Which parameters governing the space frame structure configuration are most relevant 
for optimizing space frames? 

5. What is the influence of the relevant parameters? 

6. Which structural pattern discretization strategy is the most appropriate? 
 

02.4 Approach 

 

Part II, Literature Review is performed to gather relevant knowledge for the prescribed 

research topic, further expanding and substantiating the initial state of the art overview. The contents 

of the literature review are roughly divided into four main chapters dealing with the four main thematic 

aspects of the research, namely, space frame structures, structural patterning, parametric design, and 

optimization methods. In part III the knowledge gathered during the Literature review is applied in 

creating the full parametric space frame tool. Furthermore, the Parametric Tool Development process 

entailed investigating more than one parametric approach depending on desired functionality and 

computational limitations. Of course, only the relevant and latest approach is shown. It can be 

considered as the most practical part of the MSc thesis. In part IV a variant study shall be done to 

benchmark the developed parametric tool, show its functionality and possible limitations. Finally in 

Part V the conclusion and further recommendations are laid out based on research done in previous 

chapters especially the ones in part III and part IV of the MSc Thesis. 
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03
  03 Space Frame Structures 

 

 

 

 

 

In context of this MSc thesis, a Space frame structure can be considered as a load-bearing 

structural assembly of linear, axially loaded only, rod or bar elements, which are connected at structural 

nodes, often considered as hinges in terms of structural behaviour. These bar and node elements 

connect to form a three- dimensional load bearing truss module, which is then repeated throughout the 

structure. They are often used for achieving long-spans with minimal intrusions to the spanned space 

below, consequently freeing the space below to be organised and used in a more efficient manner. 

 

03.1 Elements and terminology of space frame structures 

 

When talking about space frames it is important to distinguish several terms which refer to the 

different elements of space frames. From a material point of view the space frame elements considered 

are bars and nodes. However, from a more abstract point of view we can talk about space frame 

elements in geometrical terms of vertices, edges, and faces which are populated with cells, three-

dimensional truss modules. Furthermore, considering a space frame is essentially a 3d truss system we 

can talk about three distinct layers of the structure, the top chord, bottom chord, and web layer. This is 

important in understanding the structure of a space frame as there can exist certain topological relations 

between the layers and thus give us a terminology to name certain configurations of space frame 

structures. This idea is explained in detail in Chapter 04, Structural patterning, while specific 

implementation of these relations is explained in Chapters 7 to 11. Nevertheless, although we talk about 

3 layers in space frames relating to truss terminology, in space frame structure terms these are 

essentially double layer systems. Basically, any space frame structure with a structural height, or web 

layer, is considered a double or more layered structure. Single layered space frames are what is often 

called today as grid-shells. 

One way of categorising space frames is according to their main shape. They can be flat, singly 

curved, doubly curved or a combination of single and doubly curved parts. However today free-form 

space frames are commonplace, thus making shape classifications redundant, the reader is referred to 

many online sources showing such classifications if interested. 

 

03.2 Advantages and disadvantages of space frames 

 

The case for considering a space frame structure in a certain design situation is best reflected 

through the following listed advantages and disadvantages. It should be noted that this is not an 

exhaustive list, but a general indication of most important pros and cons, compiled from Chilton [7] and 

Lan [8]. 

 

Advantages: 

 

Load sharing - space frame structures, due to their three-dimensional structural behavior, contribute 

with all their members in carrying loads, effetely distributing both concentrated and uniform loads 
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throughout the structure towards the supports. 

Installation of services - the self-evident open nature of space frame structures allows the possibility 

to integrate installations such as mechanical, electrical and ventilation services within its structural 

height. The support of such systems can be achieved by supporting them at the structural nodes. 

However, one must consider these loads into the structural model, especially if they are of considerable 

weight. 

Robustness - Although considered lightweight structures, space frame structures have considerable 

rigidity and redundancy. Meaning compression or buckling failure of one of the elements will not induce 

total progressive collapse of the structure. This robustness comes from the 3D load bearing mechanism 

which allows for load sharing and utilization of all members in the structure. 

Modular components - an overwhelming majority of space frame structures are prefabricated in factory 

facilities. The factory fabrication conditions allow for high quality production of elements, with 

highly precise tolerances, surface finishing and accurate dimensions. The space frame elements are also 

easily transported, due to both the compact nature of the product and its relatively small size in relation 

to other structural steel elements, such as girders. Furthermore, the modularity of components gives an 

opportunity in terms of a finite number of chosen standardized cross-sections and nodes which make up 

to final structure. The main strength of modularity is the possibility to reduce the amount of unique or 

one-off bar elements and nodes in the structure. 

Freedom of choice in support locations - space frame structures are ideal for creating long uninterrupted 

spans allowing for a certain freedom in choice of support locations for the space frame. This aspect is 

particularly useful for the architectural layout below the space frame, giving the possibility to utilize the 

space more efficiently, with less interruptions in the floor plan. The space frame can be supported in 

basically any node in the structure. However, a designer must consider the possibility of high local forces 

at support locations, especially if the space frame is considered as point supported. Utilization of linear 

supports will allow more uniform force distributions. 

Ease of erection - No matter the final size of the space frame structure, it is always assembled from 

smaller elements, in-situ, giving the possibility to safely assemble parts of the structure and lift them up 

to their final configuration. 

Lightweight - the main load transfer mechanism in space frames is axial in terms of tension or 

compression forces in the bar elements. Considering that this structural action is much more effect than 

bending, the elements applied in the structure can be almost fully utilized and of relatively smaller 

dimensions, structural height of cross-sections are not as pronounced as in structural elements under 

bending. The axial load bearing mechanism allows for a smaller self-weight while being able to achieve 

large spans at the same time. 

Form and shape versatility - considering the linear nature of space frame structures, they can adhere 

almost to any shape or form be it flat or free-form. This makes space frame structures or space grid 

structures a highly suitable structural system for materializing modern, highly free-form organic, large 

span, interruption free, architecture. 

 
Disadvantages 

 

Cost - when utilized for relatively smaller spans, 20-30m, the cost of space frames can be rather high in 

comparison to alternatives for achieving such a span. The main cost driver is the number of nodes, 

considered as the most expensive part of the structure, while also being 20-30% of the total weight. 

Hence to achieve a cost-efficient design the number of nodes might serve as a good metric to keep under 

consideration. Another cost driver to consider is the complexity of the structural nodes. The number 
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of nodes differing from each other in terms of numbers of bars connected and the angles at which they 

connect, should be minimized to have more uniform elements and thus less fabrication and erection 

complications. 

Erection time - The complexity of structural nodes and their number can lead to longer erection times. 

Care should be taken when designing to avoid too much heterogeneity in structural elements. The final 

solution is neither a fully uniform space frame structure, with all bar and node elements being the same, 

nor one where each bar and node is unique.  

Fire protection- considering the high number of elements and their relatively large total surface area, it is 

difficult to achieve economical fire protection of space frame structures. Case specific situations can 

make fire protection a highly important aspect of space frame design. As for any steel structure, same 

principles of fire protection stand, with the choice of active and passive fire protection measures. 

Load sharing at supports - the same load sharing capacity allowing space frames to distribute 

concentrated and uniform loads efficiently through the structure can cause problems at support 

locations. Considering the case of supporting a space frame in its bottom node, usually four 

diagonals of the web layer join in a node. These diagonals tend to have primarily compression forces at 

the supports, where buckling or compression failure of only one of the members, could cause a 

redistribution of forces to other remaining elements, possibly triggering a partial or even total 

progressive collapse of the space frame structure. This aspect becomes more important the less uniform 

the loading conditions are, high localized loads at support locations can be problematic. 
 

03.3 Short overview of early development and examples of Space Frame structures 

 

According to Chilton [7] the earliest example of a Space Frame structure can be traced back to an 

experimental design for kite construction by none other than the inventor of the telephone Alexander 

Graham Bell. First shown in National Geographic Magazine in 1903, Bell demonstrated that with the 

use of tetrahedral cells a lightweight, yet robust structure can be formed. Although it was an 

experimental kite construction design he commented: “Just as we can build houses of all kinds out of bricks, 

so we can build structures of all sorts out of tetrahedral frames, and the structures can be formed as to possess the 

same qualities of strength and lightness which are characteristic of the individual cells. “. 

In 1907, Bell corroborated his comment by constructing the first steel space frame structure, the 

observation tower at Beinn Breagh, USA. It had tubular members and cast nodes. He successfully 

demonstrated that lightweight and robust steel structures are possible if using a space frame structural 

system. However, his structural innovation did not result in widespread commercial applications in 

architecture and construction. 

The first successful and widely available commercial space frame system was the brainchild of 

German engineer Dr. Ing. Max Meringhousen in 1943, named MERO system.  The system consists of 

tubular member connected at ball shaped nodes. The MERO System at the time was innovative due to 

the industrial fabrication of its components, and relative simplicity of connections. While 

manufacturing methods today are hard to compare with those in 1943 and have much improved, the 

same principle of tubular members and node ball joints is present even today. The system inspired 

numerous other spatial structural systems based on similar principles.  

However, here I want to present two of the most famous space frame structures from my 

country, Croatia, namely the Poljud stadium (Figure 03.1) and Zagreb Airport (Figure 03.2) The Poljud 

stadium (built from 1977-1979) in Split, Croatia, designed by architect Boris Magaš, is considered in 

public opinion to be one the most beautiful stadiums ever built, both because of the location and view 

towards the Adriatic Sea and the shell-like curved flowing shape of the roof achieved by applying 

MERO system for construction of the space frame structure. The Poljud stadium roof was the largest 

spanning Mero structure built to date at the time, spanning an astonishing 206 meters by 47 meters. 

The main layout of the space frame can be considered as Quadrilateral mesh, with a topological dual 
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Conway operator relation between top and bottom space frame layers, it is the most common space 

frame configuration. 

 

 

 

 

 
Figure 03.1 

Poljud Stadium – Split RH 
[Source: wikipedia.com] 

 

 

The Zagreb Airport designed by Neidhardt and Kincl, finished in 2017, received the BigSEE 

Architecture Award 2022 in the Public and commercial architecture category. The most notable part of 

the structure is the roof envelope. The primary choice for a space frame structure was due to facilitating 

an open plan as possible to efficiently utilize the space below. All of the bars in the structure are of 

different length due to the shape of the roof, which shows the possibility of modern space frame 

construction, which allows for highly custom structures, tailored to the needs of the client and project 

specifically. This is primarily because of the custom industrial approach, which has advanced through 

the years, as to not subordinate the client to its technology but adjusts to the client or market 

requirements, opening the possibilities for more complex structures with less limitations than before. 

 

 

 

 

 

 

 

 

 

 

 
Figure 03.2 

Franjo Tuđman Airport interior – Zagreb RH 
[Source: archdaily.com] 

 

 

 As mentioned, space frame structures transfer loads primarily in an axial manner, allowing 

only compression and tension members through the structure, and none should be subject to bending. 

Overall, the structural behaviour of a space frame structure is dependent on its geometry. Depending 

on the shape of the structure the global load-bearing behaviour always consist of three main load 

bearing mechanisms in varying degrees of arch, shell and plate bending. A flat space frame will have 

dominant plate bending out of plane action, where the truss height is governing. A singly curved space 

frame will have primarily arching action, and a doubly curved will have a shell-like load transfer. A 

free-form space frame will have all three depending on the geometry of the space frame. Although 

every time, locally, the structure is a three-dimensional truss of compressive and tensile members, the 

global shape of the space frame surface (assuming only self-weight as load, not any asymmetric snow 

loads or point loads (for example football score screens on a stadium space frame roof) will influence 

how the forces are distributed between the members. Thus, one can see why it would be important to 

choose a sensible shape for a space frame, to achieve the most economical load bearing behaviour. This 

can be achieved through optimization but also through form finding.  
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Figure 03.3 
 Hanging chain model of Sagrada Familia by 
Antoni Gaudi 
 [Source: pinterest.com] 

 

03.4 Form Finding 

 

“Form finding - originally coined in the latter half of the 20th century as 'Formfindung' in German - 

is the methodology for finding the equilibrium geometry for a given set of external loads, internal forces, and 

boundary conditions. Typically, it is assumed that the topology (connectivity) of the structural elements is defined, 

and the form-finding algorithms solve for the unknown nodal (XYZ) coordinates.” Popescu and Oval [9]. 

However, early form finding can be traced back to physical hanging chain models made by Antoni 

Gaudi for the Sagrada Familia (Figure 03.3) or Heinz Islers hanging membranes for his shell structures 

(Figure 03.4). Originally a physical modelling process, today it is often applied computationally utilizing 

various algorithmic form finding procedures such as Force Density method, Dynamic relaxation, and 

Stiffness matrix methods. A full exhaustive explanation of those methods is out of scope for this thesis. 

However, in short according to Veeenendaal and Block [10]: “Force density methods refer to all methods that 

use the concept of the ratio of force to length (or stress to surface area) as a central unit in the calculations. 

Dynamic relaxation methods use the analogy with motion, where residual forces are converted to velocities and 

the mass of the nodes determines acceleration. Stiffness matrix methods use real material stiffness matrices in the 

calculations “. 

 

 

 

 

 

 

 

 

 

 

 
Figure 03.4 
Hanging membrane model by Heinz Isler 
[Source: baunetz.de] 

 

Although form finding is primarily used for modelling of tension structures or shell structures, 

space frame structures also benefit through the form finding of the shape of the final surface to be 

discretized into a space frame structure, as will be shown in this thesis. 
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04
  04 Structural Patterning 

 

 

 

 

 

A core focus of this MSc research is on the structural pattern of space frame structures. The 

structural pattern in space frames is made up of the topology of its bottom grid, top grid, and inter-

connectivity between them. A core question is how these structural patterns influence the load bearing 

behaviour and the structural design and optimization of such structures. A Literature review is done 

to identify current research available on the various topics connected to the structural pattern of space 

frames. Namely, this concerns topics such as application of Conway Operators to space frames, and 

Topological Skeleton based quad meshes. Furthermore, in the following sections appropriate 

terminology will be introduced to help understand the various configurations of space frames 

investigated further in the thesis along with the literature review. 

The design of space frame structures can be viewed as a process of creating structural patterns 

by utilizing various geometrical and topological relations to explain the shape of the assembled 

structural elements (bars and nodes). Furthermore, to be able to adequately describe a particular space 

frame design, a certain vocabulary is needed. Part of this vocabulary was introduced in chapter 3 

regarding Space Frame structures in general, another more specific and relevant for the parametric 

research done is introduced in the following sections. This vocabulary is not only related to the 

fundamental problem of discretizing, tessellating, or meshing a surface to create a space frame structure 

but also to the problem of how certain space frame configuration can be called according to how they 

relate in terms of topology. Essentially much of the following terminology can be interchangeable as 

they talk about the same thing but from differing points of view. 

 

04.1 Tessellations 

 

A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric 

shapes, called tiles, with no overlaps and no gaps. As space grid/space frame/space truss structures 

can be considered as tessellations of a surface by bars and nodes, it is useful to borrow some concepts 

and terminology from this area of mathematics to formalize the structural patterns expressed by space 

frame structures. 

Essentially all elementary space frame configurations are based on so called Euclidean tilings 

by convex regular polygons. There are three basic Euclidean regular tilings, Triangular tiling, Square 

tiling and Hexagonal tiling (Figure 4.1). In this MSc thesis research, triangular and square tilings are 

chosen as initial possible tessellation shapes. This choice is based on the prevalence of these two types 

of tessellations in space frame structures. Furthermore, it is important to note, that tessellations in this 

MSc research always refer to the layout and shape of the bottom layer a space frame structure. The 

initial free-form surface is always tessellated in either a square or triangular tiling, while the top layer 

is created based on topological relations with the bottom layer, which serves as a sort of seed 

tessellation. Hexagonal tiling is not investigated specifically, although this tiling will appear because of 

a dual Conway operator on a triangular seed tessellation. This is explained further in detail in the 

section regarding Conway operators. 
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Triangular tiling Square tiling Hexagonal tiling 

 
Figure 04.1 

Regular Euclidean tilings by convex polygons [Source: wikipedia.com]  

 

04.2 Meshes 

 

In this research the notion of a space frame structure, more specifically its layout, is heavily 

dependent on the initial "tessellation", or in computer graphics terms, "meshing" of the initial input 

NURBS surface, which is supposed to be translated into a space frame structure. Patterns for structural 

applications can effectively be modelled computationally by meshes. 

Meshes are computational representations of 2D or 3D objects. They consist of vertices(points), 

edges(lines) and faces (areas traced by edges, which are defined by vertex connectivity). This 

elementary mesh structure consisting of connected points can form various polygons. The two basic 

two-dimensional polygon meshes are the triangular (tri) and quadrilateral (quad) meshes. 

 

Mesh data structure 

 

To create meshes computationally there needs to be a certain data structure to program the 

meshing procedure. Mesh data structures contain information about mesh geometry and topology. For 

example, in grasshopper, the data structure of meshes is simply defined by face vertex connectivity, 

meaning that with a list of vertices and an ordered groups of those vertices to constitute faces, a mesh 

is constructed. There exist other mesh data structures such as half edge and winged edge structures. 

The compass_singular python library, implemented in this MSc Thesis research with its accompanying 

compass_singular grasshopper plugin components, uses half edge data structures. A full explanation 

of half edge data structures is out of scope of this thesis. However, it should be noted that at the same 

time they: encode more information and are much more elaborate than face-vertex data structures, 

allowing efficient and complex meshing procedures along with editing and exploration of mesh 

patterns. 

 

Structured and Unstructured grids 

 

Meshes with their tessellations form grids. These grids can be either structured, or 

unstructured. Structured grids have regular connectivity meaning a uniform polygon structure some 

examples are shown in figures below. These structured grids co-relate to the basic Euclidean regular 

tilings by convex polygons (Triangular and Square tiling). (Figure 4.2) below illustrates the qualitative 

difference between structured and unstructured meshes. 

 
Structured Unstructured 

 

 

 

 
Figure 04.2 
Structured vs. Unstructured grids [11] 
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While this might be self-evident, it is important to mention to distinguish between the terms of 

tessellation and meshing. Further in this text grids are equivalent terms to meshes and are used 

interchangeably according to the focus to be conveyed. 

The MSc thesis problem of the influence of initial mesh topology on the load bearing behaviour 

on space frame structures, is essentially looking at the problem of how the load bearing behaviour is 

influenced if the space frame structure is based on structured or unstructured meshes. Moreover, there 

is a question of how the load-bearing behaviour differs in between the various structured grids 

possible. The main notion behind this is to see if there is an obvious difference between the load bearing 

behaviours and is there an obvious preference for structured grids (and which ones) as opposed to 

unstructured. 

Considering the load sharing feature of space frame structures, at first one could say that there 

would not be an obvious difference and preference between the two. However, to properly assess the 

question from a qualitative and quantitative aspect, and to see if load-sharing is so substantial that there 

is no difference between structured and unstructured grids, research is done in terms of appropriate 

case studies through the developed parametric tool, which details are contained within part IV of this 

MSc thesis.  

 

Types of meshes 

 

In this MSc thesis research two basic two-dimensional polygon meshes are of interest. Namely 

the triangular (Tri), quadrilateral (Quad) meshes, and a specific subset of Quad meshes based on 

topological skeletons of shapes, named Skeleton-based quad meshes (more detail in section 04.4). In 

the figures below, the layout of these meshes is shown applied on a doubly curved 3D pentagon shaped 

surface. These two types of meshes are well implemented within the Rhino 7 and Grasshopper 

environments. QuadRemesh and TriRemesh grasshopper components are stock components, meaning 

no plugin is required. Furthermore, they have proven to be quite stable and fast, able to appropriately 

mesh almost any surface geometry, if it is based on convex polygons (floor plan projection of surface). 

Without these new components, the initial meshing of surface geometry would have to be done in a 

more manual manner or would require programming the meshing logic, which is not in the scope of 

this research. It is important to note that when developing the grasshopper research tool for case studies 

further in the thesis, the dependency on various plugins was kept to a practical minimum. However, 

the Skeleton-based quad meshes are generated by compass_singular grasshopper plugin, developed 

by Oval. This is explained in detail in chapter contained within part III of this thesis, which concerns 

the details of developing the parametric tool. 

 

04.3 Conway Operators  

 

The above depicted, triangular, quadrilateral meshes and subsequent operations of editing 

those meshes into new patterns can be mathematically described and formalized. More specifically, 

they can be aptly described by so called Conway polyhedron notation. This mathematical notation, 

invented by Conway et al. [12], popularized by Hart [13], is based on operators which are simply applied 

on “seed” polyhedra in order to create other polyhedra. Conway polyhedron notation is thus based on 

a predefined set of operators, named Conway operators, which modify an initial seed geometry and 

thus output a new one. This modification procedure through operators is applied sequentially from left 

to right like mathematical functions. 

In (Figure 4.3) the results of applying the first three basic Conway operators are shown, dual, 

ambo and kis on a seed polyhedra, a cube in this case. Although Conway operators can be applied on 

any polyhedra, the easiest way to understand how they function is to look at the example of a cube. 

The dual operator replaces each face with a vertex and each vertex with a face. The ambo operator 

converts edge midpoints into vertices. Kis operator converts each face into a pyramid, however its 

height can be positive, negative or zero, in (Figure 4.3) the height is zero. The same operators applied 

on polyhedra can of course be applied on polygons as well. Looking at the faces of the cubes one can 
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imagine how the operators would influence Quad mesh geometry establishing a topological relation 

between two meshes the seed and the operated one.  

 

 

 

 

 

 

 

 
Seed Ambo Dual Kis 

 
Figure 04.3 

Relevant Conway Operators [Source: wikipedia.com] 

 

In (Figure 4.4) the results of applying the three basic Conway operators dual, kis and ambo, 

denoted by pink arrows, shows the transformations achieved by operators on subsequent seed 

geometries. With the three basic operators 12 other compound operators can be achieved. Each of them 

is denoted as a string representing the sequentially applied operators on the seed geometry. For 

example, applying a dual operator on a beforehand kis operated geometry creates the so-called Zip 

operator which can mathematically be denoted as dkC, meaning, dual operator applied first, kiss 

secondly on a Cube seed geometry. This the earlier mentioned function like property of the operators. 

Furthermore, the dual of an already dual operated geometry will revert it back to its seed topology, 

meaning ddC = C, and if we take into consideration the definition of the dual operator, it can easily be 

seen why it is so. 

 
Figure 04.4 

Relevant Conway Operators [Source: wikipedia.com]  

 

Application to Space frames 

 

The application of Conway Operators to Space Frame design was first implemented by Shepherd 

and Pearson [4]. In their paper they have shown that space frame geometries, top and bottom layer 

specifically, can be effectively described and generated by Conway operators, specifically dual, ambo 

and kis. In their research, these top and bottom layers, generated by applying Conway operators on a 

hexagonal base mesh, are then linked, or connected, on a limited proximity basis between vertices of 
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the top and bottom layer. The following figures show in blue lines always the original hex mesh and 

orange parts show the pattern created by respective Conway operators and the layout of the generated 

space frame.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 04.5 

Generated space frame [4] 
 

 

Furthermore, they have addressed topology optimization by applying a new "member adding" 

scheme on the basis of a so called “feasible ground-structure” method, showing that the pervious classic 

ground-structure method where all vertices are connected to each other, a highly redundant and 

computationally heavy structure, can be replaced by one where the ground-structure is sparser, 

although structurally sound, noting “Rather than simply removing unused members for a large list of potential 

members, this approach can start from a sparsely connected structure and can add in missing members which are 

required for optimality“. Moreover, they critically assess their approach stating: "However the highly 

mathematical implementation of linear programming means that it is not easy to incorporate directly 

into modelling software". The authors also mention how in the end the inner workings of this 

implementation are hidden, meaning that to a practicing roof designer a detailed grasp of the solver is 

unlikely, also mentioning "and if an optimal problem to the solution is not found it is often difficult to know 

exactly what needs to be done to fix it.". 

 

 
Figure 04.6 

Blue dashed lines showing base hexagonal mesh, orange showing mesh created by applying Conway operator [4]  

 

The presented approach in their paper has resulted in optimized layouts of their case study 

example which was the famous Chris Williams design of the British Museum Great Court Roof. They 

report a 16% saving in material within 13 optimization iterations. The depicted ground-structure and 

optimized layout show the complexity of both the initial grid and the final optimized design.  
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Figure 04.7 

Ground structure (left) and Optimized layout (right) [4]  

 

While their novel approach of both applying Conway operators and using a new-member 

adding scheme based on feasible ground-structures has its merits, there is a question of how practical 

the achieved final optimized layout in terms of constructability is. Furthermore, even though their 

proposed optimized structure might bring material savings and be an efficient load bearing system, the 

original solution by Chris Williams is already considered as highly aesthetically pleasing and efficient 

structure, posing the question of would this alternative optimized design, if present at the time, be 

accepted in relation to fabricational, architectural and structural requirements and considerations. 

Moreover, the optimized solution having 16% material savings might be diminished in terms 

of impacting the cost of construction, considering the highly complex connectivity. General design 

awareness postulates regularity and predictability in patterns as an imperative. Thus, in this MSc thesis, 

ground structure methods are not included in the scope of research. Nevertheless, the application of 

Conway Operators on Space Frames is noted and serves to further inspire and formalize my MSc 

research.  

Continuing the application of Conway Operators to space frame design, Koronaki et al. [3] 

present in their paper a computational workflow for generating space frames using Conway Operators 

(dual, kis and ambo) on quadrilateral grids, and further optimize the structure, obtaining insight into 

structural behaviour of each operator applied. Depicted in the images below we can see how the three 

Conway operators create the three different grid topologies, as well as how they are connected. The 

mentioned paper also gives a direction of how to research in terms of creating a case study (Oguni 

dome) and evaluating it in terms of structural performance. The authors present results in terms of 

graphs showing the total length of members within each of the three layers (top, bottom, and web 

layers) of a space frame created by the three mentioned operators. In short, they found that the dual 

topology or layout of the original space frame in question (Oguni dome) is considered as the optimal 

topology, meaning the least structural mass in relation to other applied operators. Further they found, 

that the kis topology performed better than ambo in terms of structural mass. Thus, we can see a clear 

ranking from dual, kis to ambo, by leased to most structural mass. Another important insight gained 

by the authors was regarding the utilization of members in each of the space frame layers. They 

conclude that “here seems to be a direct relationship between the distribution of the tension and compression 

areas throughout the structure and its performance” further stating that „areas of pure tension or compression 

are minimized “ 

The approach by Koronaki et al. [3] has its limitations, mainly in the application of Conway 

operators only on Quadrilateral regular meshes. Thus, certain gaps are identified, for example, 

Triangular based meshes are not included in the overall research. Furthermore, their approach limits 

the research on only convex based surfaces, leaving concave surfaces out of the scope. This poses the 

question of grid generation on concave surfaces as opposed to convex surfaces. Convex shapes can 
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adequately be meshed by Quadrilateral and Triangular faces creating often structured grids, especially 

in the standard case of a rectangular shaped surface. However, on concave shapes such as a five-pointed 

star, the Quadrilateral and Triangular meshes often produce unstructured grids, posing the question 

of how to generate structured grids on concave shapes. A potential answer is identified in the following 

section, Topological skeleton-based Quad meshing. 

It is important to note that the notion of grid generation for basing space frame structure can 

be understood as purely a process of creating structural patterns. The central question of this MSc thesis 

is how this choice of structural pattern (initial mesh topology), influences the load bearing behaviour 

and structural design and optimization of the space frame structure. The earlier question posed of how 

one finds and creates different structural patterns on convex shapes, which would be structured grids, 

is presented through the findings of Dr. Robin Oval’s PhD thesis, “Topology Finding of Patterns for 

Structural Design” [10].  

 

 

 

 
Figure 04.8 

Grids generated by applying Conway operators 
on a Quad mesh [3] 

 

 

 

 

 
Figure 04.9 

 Lengths of elements per space frame layer [3]  

 

 

 

 

 

 
Figure 04.10 

Created space frame configurations by applying 
Conway operator [3]  

 

 

04.4 Topology Finding of Patterns for Structural Design  

 

In his PhD thesis, Oval [14] shows a novel and complex approach for Topology finding of 

Structural Patterns. He motivates his research stating that “topology of these patterns’ constraints their 

qualitative and quantitative modelling freedom for geometrical exploration. Unless topological exploration is 

enabled”. These patterns are researched on shell-like surfaces or structures, based on a Quad mesh 

approach. In his PhD thesis, his topology finding of patterns approach is limited to grid shells, nets and 

masonry vaults.  

 However, the same approach can be applied for exploring different structural patterns 

(meshings) of a surface to create for example the bottom layer of a space frame structure, thus giving a 

means of researching structural patterns of space frames. 

This mentioned approach is based on “geometry-coded exploration” which relies on a so called 

“skeleton-based” quad decomposition of a surface, potentially including point and curve features to 

appear in the mesh additionally. These point and curve features can stem from many reasons, from the 

statics of the structural system (points, for point supports) to the curvature of the shell (main curvature, 

curve feature). This skeleton-based decomposition relies on the concept of a medial axis or topological 
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skeleton of a shape. For example, in (Figure 4.11), one can see how the initial surface boundaries relate 

to the topological skeleton. One can identify as well, so called singularity points which occur as the 

result of the mesh topology the mesh topology. 

 

 

 

 

 
Figure 04.11 
Skeleton-based surface decomposition to yield a 
pattern aligned with the boundary and point features 
on the boundary [14] 

 

These singularity points can be understood as simply vertices which have an odd number of 

surrounding mesh faces, so called “valency” of the singularity points. Singularities always appear on 

the crossings of the boundaries of the surfaces, as well as in the mesh generated in between the surface 

boundaries. The author shows different generated mesh, including point and curve features, (Figure 

4.12). While including point and curve features creates interesting patterns for single-layered structural 

systems such as gridshells, for space frames they create a too dense mesh for this feature to be of 

interest, as the fabrication of this space frame if the corner points were included to guide the mesh 

generation would be highly impractical. 

However, Oval’s concept of skeleton-based quad decomposition of surfaces, gives an excellent 

start for creating structured grids on concave shaped surfaces. A topological skeleton of a shape or 

surface can be considered as a dimensional reduction of the surface into a set of curves, which keeps all 

the relevant geometric and topological relation of the underlying shape.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 04.12 
Quad-mesh patterns for British Museum courtyard 
roof including point and curve features to influence the 
topology [14] 

 

This concept of surface decomposition is highly applicable for space frame design, even though 

the author does not investigate this concept on space frames. Nonetheless, the concept of surface 

decomposition based on the topological skeleton of the surface for space frame design is of interest, 

especially in situations where the initial surface is based on concave shapes. The interest lies primarily 

in the fact that the topological skeleton of shape captures its most important features, thus giving a 

valid discretization logic to create structured grids on concave shapes. Furthermore, the author points 

out a famous example of the CNIT in Puteaux (France) a corrugated reinforced concrete shell structure 

with a span of 218 m. With this example the author shows how important is the initial discretization of 

a surface, as this will dictate whether the load bearing mechanism and patterns is structurally efficient 

or feasible. Specifically in the case of the CNIT structure (figure), the blue lines which go towards the 

corner point supports give the structure efficiency, while the feasibility stems from the non-overlapping 
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red and blue elements which introduce the stiffening corrugations over the structures surface. The 

efficient and feasible pattern can be found using the skeleton-decomposition based quad surface 

meshing algorithm developed by Oval. 

 

 

 

 

 

 

 

 

 
Figure 04.13 

 Feasible and unfeasible patterns for CNIT 
structure [14] 

 

This poses a question of do space frame structures benefit in terms of structural behaviour, 

material efficiency if based on skeleton decomposition logic? The answer to the postulated question is 

highly dependent on the initial shape of the surface to be discretized. In any case, whatever the shape 

is, be it concave or convex, the skeleton-based surface decomposition provides often structurally sound, 

geometrically, and topologically relevant structured grids to base space frames on. Oval’s PhD 

concludes that efficient patterns can be found for single-layered structures, following the skeleton-

based decomposition logic. The goal of this MSc research is to gain insight if in relation to other most 

common discretizations of surfaces for space frames (quad, tri, skeleton based, structure vs 

unstructured grids), the skeleton based one improves structural performance. Other structured grids 

would be possible to investigate, primarily generating quad meshes based on the principal stress 

directions, however their relevance is mostly for concrete structures, where corrugations or 

reinforcement can follow those directions. For space frame structures, which are 3-dimensional truss 

structures, this principal stress direction logic is not applicable, more so since in engineering practice 

the amount of load cases, symmetrical and unsymmetrical is large, thus giving unique principal stress 

directions which differ for each load case. This would then postulate the question of how to consider 

all the different principal stress states to create a sensible space frame structure discretization which 

satisfies each case as much as possible while still being feasible. Thus, this approach although 

interesting, is out of scope for this MSc thesis research, and would be an interesting research subject in 

its own right. 
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05
  05 Parametric Design 

 

 

 

 

 

A central part of this thesis is the development of a parametric tool in order to research the 

relation between space frame load-bearing behaviour regarding three possible initial meshings for the 

bottom layer of the space frame and three possible Conway operator relations with the bottom layer 

configurations to create the top layer. To understand the developed tool, it is important first to 

understand what parametric design is.  

There exist numerous definitions of Parametric design by various authors. All of the definitions 

vary in scope and terminology, however according to Caetano et al. [15] analysis of literature and 

subsequent definition synthesis, parametric design can be defined simply as“ a design process based 

on algorithmic thinking that uses parameters and rules to constrain them”. In contrast to traditional 

design process the Parametric Design process entails a new mindset for the practicing designer. 

Parametric thinking, described by Swartout [16] as “a thinking process that relates and outputs 

calculated actions to generate solutions to problems rather than simply seeking them”, can be 

considered as a necessary minimum perquisite skill in order to even start with Parametric Design.  

Without parametric thinking skills, parametric design cannot be utilized to its full potential. 

Before even starting to create a parametric model, one should have a clear vision of what and how ones 

to achieve, otherwise it’s purely a blind trial and error, highly ineffective process. In parametric design 

the focus is thus shifted from the end product as opposed to traditional design, towards the procedure 

of exploring the possible design space of the end product through a rigours defined set of parameters 

and their relations. 

In the last ten years, Parametric Design has resulted in the advent of a new architectural style 

aptly named Parametricism, whose famous proponents among many others are Patrick Schumaher and 

Zaha Hadid. While not without its critics it has resulted in a surge of interest in parametric design and 

modelling, from companies to university courses, with parametric design tools becoming an expected 

skillset in future engineers and architects. 

 

05.1 Parametric thinking 

 

 Parametric thinking, also sometimes called Parametric design thinking, has be defined by 

Woodbury [17] as to having three distinct characteristics: thinking with abstraction, thinking 

mathematically, and thinking algorithmically. The author would like to point out that the order of the 

parametric design characteristics by Woodbury [17] is intentional, it is a sequence of intellectual activities 

preceding parametric modelling itself. The highly skilled parametric designer might find these steps 

trivial and obvious, as with experience one will develop these modes of thinking as a habit. However, 

for the newly initiated into the world of parametric design and parametric modelling this might present 

a total paradigm shift, with a daunting learning curve. 

 

Nonetheless, in contrast to traditional CAD process, parametric design offers an opportunity 

for both architecture and structures of greater complexity but also for a more mindful, strategical design 

process. However sometimes parametric design is equated with the Parametricist style, which is often 



 
 

28 

critiqued for the lack of societal relevance of the achieved complex geometries. However, the author 

would like to point out that the use of parametric tools does not necessitate creation of Parametricisit 

architecture. According to Karle and Kelly [18], “Parametric design can be defined as a series of questions to 

establish the variables of a design and a computational definition that can be utilized to facilitate a variety of 

outcomes. Parametric design sets up measurable factors of rule-sets to determine behaviour “, this definition 

encompasses the generality of the parametric design approach, negating the notions of equating 

parametric design with parametricist style. 

 Parametric modelling can be effectively used for impressive curvilinear, “science-fiction” like 

architecture but also for creating parametric models of typical dairy cow farms or for example on-shore 

wind turbines. It should be primarily understood simply as a design tool allowing for meaningful 

exploration of the many abstracted relations between parameters of a project being designed. For this 

to be successful one must utilize his capabilities of abstract, mathematical, and algorithmic thinking. 

Starting a parametric model without first having a developed flow chart, either mentally or manually, 

accompanied with an understanding of how data is processed by the parametric software is not going 

to result in a success. 

 

Thinking abstractly 

 

Before setting out to create parametric models for a particular design, one must first abstract the design 

project into a certain set of parameters accompanied with the relations and limitations between them. 

Woodbury [17] aptly states:” To abstract a parametric model is to make it applicable in new situations, 

to make it depend only on essential inputs and to remove reference to and use overly specific terms” 

further stating “If part of one model can be used in another, it displays some sort of abstraction by the very fact 

of reuse. Well crafted abstractions are a key part of efficient modelling”. This aspect of abstract thinking is 

required due to the programming nature of parametric tools. Similarly, a computer programmer who 

writes lines of code and abstracts classes and functions to have as much utility as possible without 

repeating unnecessary code parts in order to achieve as much generality as possible, the parametric 

designer often uses visual programming components to daisy chain a number of components (possibly 

augmented with the designers own custom scripted nodes/components), creating an algorithm, to 

abstract a design and create relations between its parameters (while understanding the underlying data 

structures being manipulated) in order to create the parametric model.  

To conclude, a short example of abstract thinking applied during initial steps of this MSc thesis 

research is as follows:  

A space frame consists of a top and bottom layer with a certain connectivity rule between them. 

The space frame geometry should be generated on an input surface, and any input surface should be 

processable, convex, non-convex, trimmed or untrimmed. There were two initial approaches for 

creating space frame geometry based on an input surface. Either dividing the initial NURBS surface 

into a subset of smaller surfaces, with a prescribed number of U and V divisions of the surface, or by 

using meshing procedures.  

Both approaches were tested and the more general one was applying a meshing procedure due 

to it always being bound by the surface boundaries be the shape convex or non-convex.  

The subsurface approach is lacking due to it not respecting the shown trimmed geometry but 

the underlying untrimmed one, thus requiring deletion of certain subsurface (which also impacts the 

speed of the developed script due to additional process), which in the end do not result in a surface 

with smooth edges as in the meshing procedures, but a surface which appears more approximated by  

rectangular subsurfaces, giving jagged edges, rather than being populated by rectangular cells as in 

meshes.  

 

Thinking Mathematically 

 

To further develop the beforehand abstracted idea of the parametric model, one also must have 

some understanding of certain mathematical and geometrical principles. Furthermore, the more 
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advanced model and processes a designer wants to implement the more advanced the accompanying 

mathematical concepts are. Even so, one does not need to be a mathematician to be a parametric 

designer, however, the more extensive the mathematical background and understanding, the more 

successful the designer can be. The ability to use mathematics is much more important for a designer 

than to do mathematics.  

Concepts such as vectors, tangents, vertices, edges, meshes, connectivity, surface curvature, 

normal vectors, plane projections, plane equations should be familiar for most practicing designers 

with an engineering background. The understanding of how to use them helps to formalize parameter 

relations and achieve the desired result. For example, the famous British Museum courtyard roof shape 

designed by Chris Williams, is a perfect example of applying complex mathematical plane functions to 

generate the roof surface geometry. Furthermore, the structural grid is also laid out according to certain 

mathematical rules. Thus a “free-form” design which can start from a hand drawn blob on a piece of 

paper is formalized in to an exact three dimensional mathematically designed surface.  

One can say that sculpturally and flow of a shape is transformed into something more than 

pure creative whims and sketching (no underestimation intended) once it is mathematically 

formalized. If the initial shape was considered aesthetically pleasing than the mathematical background 

of it elevates the whole aspect of design on a higher level which should be appreciated even more.  

On the other hand, sometimes, special mathematical concepts are needed for creating 

parametric models, which are rarely part of standard engineering mathematics curricula.  

For example, in this thesis a novel mathematical concept for the author was the notion of Conway 

operators. The literature while exhaustive and detailed is highly abstract and theoretical and would 

require a dedication not in the scope of reality for the time available to achieve the same or even 

approximate the understanding as the author of the literature. However, it is possible to grasp the 

concept well enough to be able to utilize while designing the parametric model. Thus, the ability to use 

mathematics is much more important than the ability to do the proofs and understand all the minute 

details of such a niche mathematical field. Another fine example would be the understanding of 

topology, to understand what a Skeleton-based quad decomposition is. Topology is another highly 

abstract field of mathematics, which is rarely taught in engineering curriculum (except for structural 

topology optimization courses) which to understand one can spend a lifetime researching it. Its 

applications range from knot theory, dynamical systems, to string theory in physics.  

However, basic understanding of the underlying principles to convey what a topological 

skeleton of a shape is, how this can be utilized for space frame configurations is possible. 

In conclusion, while sometimes mathematical knowledge of a particular designer might be lacking it 

should not serve as discouragement, rather it should serve as a challenge for the designer to improve 

his knowledge every step of the process, once one is able to use mathematical concepts to achieve the 

desired parametric model behaviour and results then the concepts become much less daunting and 

become part of the designer’s skill set. 

 

Thinking algorithmically 

 

After the initial steps of abstracting and mathematically grasping the design problem the next 

step is to apply the idea algorithmically within a parametric modelling environment. Parametric 

modelling using visual programming tools is essentially creation of an algorithm to process the inputs 

and return the desired outputs for a design. Like programming, but more open to designers without 

practical programming knowledge. The ability to understand algorithms and what they are is still 

essential. Below I include the definition of an algorithm Berlinski 1999, as cited by Woodbury [17] which I 

find rather poetic and highly illustrative:  
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An algorithm is  

 a finite procedure, 

 written in fixed symbolic vocabulary, 

 governed by precise instructions, 

 moving in discrete steps, 1,2,3,…, 

 whose execution requires no insight, cleverness, 

 intuition, intelligence, or perspicuity, 

 and that, sooner or later, comes to an end. 

 

As Woodbury [17] comments, although the definition is less formal than normally found in 

literature, it still encompasses the full meaning of what an algorithm is.  

The algorithmic thinking aspect of parametric design is best reflected through the development of 

flowcharts which represent what are the main inputs, processes, sub-processes, and outputs of the 

parametric model to be created. One might say that the traditional design processes can also be 

represented algorithmically, however the word algorithmically in the context of parametric design 

relates to the procedural aspect and precision of algorithms.  

The result will only be as good as the underlying developed algorithm, which must be carefully 

developed. This means that the proposed relations of parameters for the algorithm to encompass must 

be developed with careful intent. Algorithms do not care for context or what you thought you 

programmed; they care for the execution of code line by line, what is written. If there is a mistake or 

misconception, the algorithm will not result in what the designer expected. 

 

05.2 Parametric software 

 

There are various software programs with capabilities for parametric modelling, for example 

CATIA, Generative Components, Autodesk Revit and Dynamo to name a few. However, in this thesis 

the primary choice is the 3d-modelling software Rhino developed by McNeel, with its visual 

programming plugin Grasshopper 3D developed by David Rutten, a former alumnus of TU Delft.  

The choice of software was made upon the fact that in many of articles and literature researched 

during this thesis, grasshopper was the common choice of design tool for parametric modelling. 

Furthermore, the community, amount of learning resources available online, and amount of various 

useful plugins available have greatly facilitated this thesis research. Thus, in the following paragraphs 

I present an overview of basic principles of parametric modelling with grasshopper and mention other 

important plugins for grasshopper which facilitated this thesis research.   

 

Grasshopper 3D 

 

Grasshopper is a visual programming plug-in for Rhinoceros, it is not a standalone application. It 

always runs parallel to Rhinoceros. Essentially the same modelling commands which can be used for 

3D-modelling in Rhinoceros for 3d modelling are available in Grasshopper in the form of nodes or 

visual programming components. The whole process of creating a parametric model is thus done 

within the grasshopper editor environment, by setting desired visual scripting components and 

connecting them with other to achieve certain functionality. It can be understood as the creation of a 

visual algorithm. Grasshopper by itself has one directional data flow, from left to right, meaning loops 

are not possible. 

Figure 05.01. shows a typical grasshopper component. From left to right it has an input, a 

name (or icon depending on display settings) and an output. The component draws a parametric 

rectangle whose dimension depend on the input number sliders. With setting the two sliders to the 

same number the component will output a square, the same thing will happen if one slider is connected 

to both x and y, however then you can only create squares, as you have no Y input available, it is 

constrained to one slider.  
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Figure 05.1 
Grasshopper Rectangle Component with its 
inputs and outputs 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 05.2 
Grasshopper Rectangle Component Output in 
Rhino 

 

 

 

To further illustrate how one creates parametric models with Grasshopper I will show one 

simple parametric model which can stem from this drawn rectangle.  

 

Example – Flat slab 5x5 m, corner supported by columns 3 m height. 

 

The illustrative parametric model is a geometrical model of a hypothetical flat slab 5x5 m with 

3 m high columns, supported on four corners. For example, this simple model can then be used to 

generate a parametric structural model using the grasshopper Karamba3d plugin.  

 

 
Figure 05.3 

Grasshopper Rectangle Component chained with other components to create a simple flat slab geometry with corner column supports 
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Figure 05.4 

 Output of Grasshopper definition, left – all modelled geometry previewed, right - only desired geometry previewed 

 

To explain how the Grasshopper definition in 05.3. is set up to create the result in 05.4 right, the 

components used from (1) to (6) are named along with the results that occur due to putting down the 

component in the grasshopper editor: 

  

(1) Rectangle component – Creates a Rectangle based on the X size and Y size, in the default 

base plane z=0 in Rhino if Plane input is unconnected. 

(2) Move component – Moves geometry by a prescribed motion (vector direction and 

amplitude)  

(3) Unit Z Vector – Vector of unit length in the Z direction, the factor controls the vector 

amplitude 

(4) Deconstruct Brep – Deconstructs boundary representations (breps) into Faces, Edges and 

Vertices. 

(5) Line SDL – Creates lines based on start direction and length.  

(6) Negative – changes the sign of a value.  

 

Modelling procedure: 

 

1.) Generate a Rectangle , 5 x 5 m 

Put “Rectangle” component (1) in the Grasshopper editor, two sliders set to 5, connect one 

to “X size” other to “Y size”. This generates a 5 x 5 rectangle in the base plane z=0 

 

2.) Move the generated rectangle to 3 m height 

Put “Move” component (2), connect the “Rectangle” output from (1) into “Geometry “ 

input of (2). Put “Unit Vector Z “(3) and a slider set to 3. Then connect the “Unit vector” 

output from (3) into the “Motion” input of (2). This moves the rectangle to a 3 m height.  

 

3.) Find the vertices of the rectangle to serve as base points for lines which will represent columns 

Put “Deconstruct Brep“(4). Connect the “Geometry” output from (2), the previously moved 

rectangle to 3 m height, to the “Brep” input of (4). This deconstructs our rectangle into 

“Faces”, “Edges” and “Vertices”. Now thanks to the “Vertices” output of (4) the base points 

to create column lines are created. 

 

4.) Create Lines from each corner of the “floating” rectangle in the negative Z-direction and set the 

length to 3 m 
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Put ”Line SDL” component (5). Set the “Direction” input by using the already existing 

“Unit vector” output of (3) which should have the value of 3 m translation but in the 

negative Z direction (downwards). By using “Negative“(6) we make sure that the line 

direction is in the negative z direction. To make sure the length of the column is coupled 

with the slab height, use the factor slider connected to (3) to input “Length” parameter of 

(5). Next connect the “Vertices” output from (4) into the “Start” input of (5). 

 

The simple geometry of the flat slab supported by corner columns is thus generated. Now using 

the three sliders we can change the X and Y dimensions of the slab, and the Height of our slab and 

columns. It is important to note that this is just one possible approach for creating the desired flat slab 

geometry. There are other possible approaches to create the same geometry. 

 For example, one approach could be instead of starting from a rectangle, one can start from 

modelling the columns first, this alternative grasshopper definition is shown in Figure 05.5, the reader 

is invited to study and compare with the original one as an exercise to check basic understanding. In 

the alternative definition, First create four base points, use the base points to set up lines in the vertical 

direction, find their top end points, use a polyline to connect the top end points, thus creating a 

rectangle shape on top of the four lines. The result is the same, however, the definition and control of 

the model is entirely different.  

Instead of controlling X and Y directions by setting rectangle dimension now the user must set 

the X,Y,Z coordinates of the base points in order to control the X and Y sizes of the rectangle. In the end 

there is no right or wrong approach for creating parametric geometry in general.  

 

 
Figure 05.5 

Alternative Flat slab geometry definition; Unconnected inputs of components have default values, 0 for the coordinates inputs of 

the point components, unit z vector direction for the Line SDL components 

 

However, depending on specific cases and how the model is supposed to be controlled, each 

component is put with specific intent, to achieve desired control of parametric models. In the 

comparison between the two flat slab geometries one can see why the first definition is more 

straightforward and easier to manipulate. Less number of components, less repetition, and 

straightforward control of X and Y dimensions. It is simply easier to control the rectangle geometry 

with X and Y sizes then with setting base points to specific coordinates. 

 

Karamba3d 

 

Karamba3d is a grasshopper plugin for parametric structural engineering modelling tool 

developed by Preisinger [18]. This plugin is used to translate the parametric geometrical models 

generated in grasshopper into parametric finite element models which can be used for calculation, 

analysis and optimization of the generated parametric geometry. This tool is used as the main structural 

analysis software in this MSc thesis research. To illustrate the basic setup of a karamba3d model within 
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a grasshopper definition, I will build upon the already shown example of the flat slab geometry, 

however a very detailed explanation of the karamba3d part of the grasshopper definition is omitted 

here, only a short overview of the main logic is presented, the detailed explanation is contained within 

Annex of this thesis.  

 

 

 

 

 

 

 

 

 

 

 
Figure 05.6 

Grasshopper definition – Parametric Structural model utilization of elements results, deformation is exaggerated by a factor 4000. 

 

In Figures 05.6. the results of parametric structural model are displayed, left undeformed, right 

deformed structure. One can also extract the calculated utilizations per finite element as well as internal 

forces. By setting a deformation display factor one can exaggerate the deformation to see if it is as 

expected. Thus, while modelling in karamba3d one can easily see if something was modelled wrong 

due to instant visualization of results. In this case the deformation of the model is as expected, thus 

correct for the set inputs. Figure 05.7. displays the total grasshopper definition for a parametric 

structural model of a flat slab floor supported on corners by columns is shown. To better understand 

its structure, it has been divided into general code block categories from A to J which explain what is 

happening in the code. The categories are as follows:  

 

A) Model inputs – parameters 

B) Generation of geometry 

C) Geometry inputs for structural model 

D) Rectangle to Shell – c/s and material 

E) Lines to beams – c/s and material 

F) Loads 

G) Supports 

H) Assemble model 

I) Analyse model 

J) Result visualization 

 

Code blocks A and B are the geometry model shown in Figure 05.3., code block C just collects 

all the important generated geometry to be used for the structural model, the rectangular face for the 

slab and the four lines for the columns, end points of lines to specify support conditions. 

For any FEA program there are three general steps. Pre-processing, Calculation and Post-

processing. The same three general steps are also applied during creation of the parametric structural 

model with Karamba3d. Code blocks A – G can be considered as pre-processing, G – I  is calculation 

(processing) and J as post-processing. 

Code blocks D – J contain Karamba3d grasshopper plugin components. The central component 

is “Assemble model” component in code block J (Figure 05.10) and in code block I “Analyse model I”, 

which calculates the assembled model according to first order theory (small deflections). The necessary 

inputs to create and calculate the structural model are “Elements”, “Supports” and “Loads”. Code block 

D (Figure 05.8) contains components which translate the meshed rectangular face to a shell element, 

assign a concrete material C20/25 and constant cross section thickness of 30 cm. Code block E (Figure 
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05.9) contains components which translate the four lines in to beam elements, assign a concrete material 

C30/37 and a rectangular solid cross section of 40 x 40 cm. The other inputs like CroSec and Material 

have default values set so one can run the model, however there is a possibility of specifying exact. This 

was done in the shown definition. The supports points are chosen by selecting lower end points of the 

4 lines, with fixed boundary condition applied. The loads is a mesh load of -3 kN/m2 (the negative sign 

indicate the load direction is downwards) 

 
Figure 05.7 

 Grasshopper definition – Flat slab supported by columns in corners – Parametric Structural model 

 

 

 

 

 

 

 

 

 

 

 
Figure 05.8 
Grasshopper definition – C and D code blocks  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 05.9 
Grasshopper definition – E – G code blocks 
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Figure 05.10 
Grasshopper definition – H – J code blocks  
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06
  06 Optimization 

 

 

 

 

 

Rajput and Datta [20] define optimization as “the demonstration of ideal the best outcome under 

given conditions “. According to Kelly [21] “The optimization stage of the engineering design process 

is a systematic process using design constraints and criteria to allow the designer to locate the optimal 

solution”. Thus, to surmise, optimization can simply be defined as the search for the best possible 

solution regarding certain posed criteria Considering how a problem is defined in terms of abstracted 

parameters which model all the relevant behaviour, there exists an imaginary design space where the 

combination of all possible parameter states, which represent potential solutions to the problem, exists. 

Thus, one can think of Optimization as a process of navigating the created design space of a specified 

problem, a search for the right combination of design parameters to achieve the desired result regarding 

set limitations. The size and shape (Figure 06.1) of this design space containing all possible solutions 

will depend on the number of parameters describing the problem and the size of their respective 

domains. In this chapter the most important concepts relating to methods of optimization, specifically 

structural optimization are laid out. 

 

Figure 06.1 
Possible visualization of design space  

 

06.1 General concepts 

 

Optimization in civil engineering, specifically structural engineering, has always been inherent, 

economy of design while respecting desired performance and functionality to be achieved has always 

been an essential principle. Typical for the traditional design process is the sequential development of 

a design throughout its design stages, following a deductive approach (from broad to specific, from 

preliminary design to detail design), accompanied with several iterations and reworks of the stages as 

needed. However, today with the tools available and the mostly computational approach in civil 
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engineering design, optimization has moved from being an iterative procedure throughout the design 

phases to being a dedicated process done best in the preliminary phase, where the impact of decisions 

is the highest, and costs of changes are the lowest.  

 

Structural optimization 

 

The term structural optimization can be defined in a few different ways. One definition 

explains structural optimization as the process of finding the optimal design for a load bearing structure 

[22]. Eschenauer et al. [23] defined structural optimization as “the rational establishment of a structural 

design that is best of all possible designs within a prescribed objective and a given set of geometrical 

and/or behavioural limitations”. Furthermore, it can be explained as the use of various numerical 

optimization methods for designing material efficient and/or cost-effective structures. In essence every 

optimization problem is described with an objective function which represents the desired goal to be 

minimized or maximized, and the set of variables with their respective ranges which define the 

behaviour of the problem and influence the objective function. 

 

 

 
Figure 06.2 

 Structural optimization categories [22] 

 

Categories of Structural optimization 

 

According to Mei and Wang [24].  Structural optimization (Figure 06.1) can be categorized in the 

following: 

 

 Size optimization, refers to cross-sectional areas of structural members as design variables 

 Shape optimization, refers to disposition or configuration of nodal coordinates as variables 

 Topology optimization, refers to nodal connections and supports, deleting unnecessary 

members to achieve optimal design 

 Multi-objective optimization refers to combination of any of the above stated optimization to 

achieve even more specific optimization results. 

 

In this thesis, the posed research problem of finding an “optimal” configuration of space frames 

in regard to three possible base mesh layers which form the bottom layer of the space frame (Tri, Quad, 

Skeleton-based Quad) and three Conway operator relations (Dual, Kis and Ambo) with the base meshes 

which form the top space frame layer, falls into the following categories of structural optimization: 

 



 
 

39 

1.) Size optimization (each space frame structure variant has optimized c/s sizes),   

2.) Shape optimization (Tri, Quad, Skeleton-based quad)  

3.) Topology optimization (Operators, Dual, Kis and Ambo) 

 

Objectives of Structural optimization 

 

Mei and Wang [24] summarize the following objectives of structural optimization occur most in 

literature.  

 

 Cost minimization 

 Structural performance improvement 

 Environmental impact minimization 

 Multi-objective, combining more than one of the above objectives 

 

In this thesis the main objectives for evaluating optimality of designs are cost minimization (in this 

thesis equated with minimization of total mass of steel used in a particular design variant) and 

structural performance improvement (deflection, stiffness). 

 

06.2 Methods of Optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 06.3 
Gradient-based optimization visualization 
[Source: optimal.uva.nl] 

The methods of optimization can generally be classified as gradient-based approaches or 

heuristic approaches [24]. Gradient-based approaches (Figure 06.3) are explicitly formulated in terms of 

mathematical approaches such as linear and non-linear programming methods, optimality criteria 

methods and feasible direction methods. Heuristic approaches utilize a rule-based trial and error 

process. A sub-type of heuristic approaches named Meta-heuristic approaches are currently often 

applied to find optimized solutions without getting stuck in local optima, which often happens with 

gradient-based approaches. These Meta-heuristic optimization methods are often based on principles 

found in nature such as evolution (Genetic Algorithms), ant colony behaviour (Ant Colony 

Optimization), swarm behaviour (Particle Swarm Optimization), heating and controlled cooling of 

material (Simulated Annealing) etc. The scope of this thesis does not allow for full explanation of each 

of meta-heuristic algorithm available, only the two most common and understood ones will be shortly 

explained, namely Genetic Algorithms and Simulated Annealing. 

All the above stated methods have been invented to avoid the most straightforward but not 

entirely feasible idea of opting for a brute force approach to calculate all the possible solutions for a 



 
 

40 

design problem and then simply choose the best one. However, in using the meta-heuristic or heuristic 

methods of optimization, while great for traversing the design space in small enough time to achieve 

good enough results, one is always presented with a black box process. One sets the parameters and 

formulates desired goals to achieve and leaves all the heavy work to algorithms based on various 

underlying metaphors of natural phenomena.  

Because of this black box process, and the complexity behind understanding the parameters 

and methodology of each one, one cannot always be sure if the achieved results are actually optimal, 

nor can the user grasp the design space of the problem. Thus, in this thesis both a Meta-heuristic 

approach was applied using Galapagos component in grasshopper for optimization (Genetic 

Algorithm and Simulated Annealing) to understand at what range of parameters a supposedly optimal 

solution is located at, and a constrained brute force approach (each parameter with a limited) utilizing 

Colibri plugin and Design Explorer visualization to understand the design space of the problem and 

compare with the meta-heuristic solution.  

The Colibri and Design Explorer limited brute force approach was central in researching how 

particular space frame designs are influenced in terms of mass, stiffness, and deflection regarding the 

three possible initial meshings, three Conway operator relations and form finding height. Specific 

details of the process involved are described in Chapter 7 and 8.  

 

Meta-heuristic methods of optimization 

 

To grasp the concept of metaheuristic methods of optimization, a good start is to first 

understand the terminology. The term Metaheuristic, first coined by Glover [25] is constructed from 

Greek prefix meta, signifying something above, on a higher encompassing level, and heuristic, meaning 

to search or to find. In computational terms a heuristic is understood as a rule-based process. There 

exists a vast number of meta-heuristic methods, a good overview of such methods is presented by 

Bandaru and Deb [26]. In this article, he mentions 14 of the most applied meta-heuristic approaches and 

further lists 76 other possible meta-heuristic methods. Yang et al. [27]. give an excellent overview of 

meta-heuristics applicable in civil engineering design optimization problems, illustrating how many of 

the meta-heuristic methods can be applied to specific problems. One can see that the field of meta-

heuristic algorithms is complex and ever evolving and each possible natural phenomena which can 

lend itself to an optimization allegory can almost certainly be turned into a meta-heuristic algorithm. 

The question of which meta-heuristic algorithm is best for a certain problem is still unanswered. While 

there are studies comparing a certain group of meta-heuristic approaches in between each other, for 

example Zavala et al. [28], there exists no study which encompasses a fully exhaustive comparison and 

listing of all possible meta-heuristic approaches. Thus, in this research the application of meta-

heuristics is limited to the two most common and well-known metaheuristic approaches, Simulated 

Annealing and Genetic Algorithms. 

 

Genetic Algorithm 

 

Genetic algorithms are one of the oldest metaheuristic algorithms, invented by Holland [29], 

they are based on the theory of natural selection which drive evolution as postulated by Charles 

Darwin [27]. Properties of natural selection include crossover, recombination, mutation, and selection. 

The procedure of a genetic algorithm can be summarized in the following steps:  

1. Optimization of objective is encoded 

2. Fitness function for selection of a particular solution is defined 

3. Initialization of population of individual solutions 

4. Evaluation of fitness function per individual solution 

5. Generation of a new population according to the rules of natural selection. 

6. Population is evolved until the prescribed stopping criteria is reached 

7. Results are decoded as to obtain solutions to design problem 
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Figure 06.4 
Flowchart of main algorithm steps for a Genetic algorithm [Source: mathworks.com] 

 

Put simply, a genetic algorithm modifies a population of individual solutions. In each step of 

the procedure the algorithm selects a certain set of individual solutions which perform best in regard 

to posed fitness criteria and selects them to be “parents” which will reproduce further to create bit 

more optimized solutions or “children” for the next generations (Figure 06.4). Thus, with each 

generation the population of solutions comes a bit closer towards the desired fitness function values, 

evolving from generation to generation.  

 

Simulated Annealing 

 

The Simulated Annealing, developed independently by Kirkpatrick et al. [30] and Černý [31], 

meta-heuristic algorithm is based on the annealing process in metallurgy and materials science. 

Annealing is the process of heat treatment and subsequent slow cooling of solids which in turn changes 

their physical structure on the atomic level, and thus changes the material properties such as ductility 

and hardness. The process of heating a solid randomly rearranges its particles into the liquid phase. If 

then followed by a slow cooling process, all the particles begin to rearrange themselves into the lowest 

energy state, a regular as possible crystalline lattice. Simulated Annealing algorithm generates a 

random new solution in each step. Then the distance between each current point and subsequent new 

point is calculated based on a probability distibution propotional to the temprature scale (Figure 06.6). 

The algorithm takes into account the points that minimize the objective function values in regards to 

constraints and probability distribution. It systematically decreases the temperature and narrows the 

extent of search. 

 

Steps of simulated annealing can be summarised in the following: 

1.) Initialize – at each iteration a random initial placement of a trial point 

2.) Distance – the distance between the current point and newly generated one is calculated 

based on a probability distribution in scale to the temperature 

3.) Evaluation – the algorithm evaluates which points lower the objective function values and 

accepts them, along with some that raise with a certain probability in order to not be stuck in 

local minima/maxima 

4.) Stopping criteria – once the objective function values become lesser than a prescribed 

tolerance function the algorithm will finish 
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Figure 06.5 
 Flowchart for a Simulated Annealing algorithm [32] 
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PART III 
PARAMETRIC TOOL DEVELOPMENT 
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07
  07 Space Frame Parametric Logic 

 

 

 

 

 

This chapter describes the core ideas and abstracted structure behind the developed main 

research tool for this MSc thesis. The detailed procedure of how the tool works is presented in chapter 

08.  

The parametric tool was developed to study the influence of initial surface mesh topology on 

the structural design and optimization of space frame structures. The tool is developed in terms of a 

grasshopper definition utilizing kramba3d and compass singular plugins for grasshopper, which will 

be explained in detail in the following sections. It should be noted that this space frame parametric 

definition was not a result of first thought, but by numerous iterations and testing of functionality and 

approaches. Initially a different parametric logic was applied for research as opposed to the current 

one, where the main surface was discretized by creating subsurface using the Isosurface component in 

grasshopper, which then in turn created problems when dealing with trimmed surfaces. The main "aha" 

moment was the switch to meshing the surface and then utilizing the clear data structure of meshes to 

further base the space frame geometry. This has greatly improved the functionality of the tool both in 

terms of quality of the result and speed of the script. It is also important to note, that in the end, the 

developed tool for research can be freely used within an engineering design context as well. This was 

the one of the main guiding principles while developing the tool. Concepts presented in part I and part 

II, Literature Study earlier in this thesis, from established terminology to specifically the Conway 

operator implementation inspired by Koronaki et al [3]. and Shepherd and Pearson [4], and the Topological 

Skeleton based quad meshing inspired by Oval [14] accompanied by relevant parts of the Python library 

he developed, named compas_singular, were applied during the development of the research tool.  

 

07.1 Main Scheme 

 

A Grasshopper definition has been developed to serve as the primary research tool. The tool or 

definition is used to generate space frame configurations. The space frame configurations in question 

consist of three mesh options; tri, quad, skeleton-based quad, to form the bottom layer of the space 

frame, and three Conway operator relations with the bottom mesh topology; dual, kis and ambo. These 

configurations can be researched on various input surfaces, to gain insight into, how the structural 

pattern of space frame structures (initial meshing of the surface accompanied with respective Conway 

Operators) influence the structural design and optimization. This research boils down to a question of 

how mesh topology can influence optimal space frame design (least structural mass). 

To summarize, the generation of space frames is based on two approaches. Firstly, the initial 

input NURBS surface geometry is meshed by one of the three available meshing methods (Quad, Tri, 

Skeleton based Quad mesh) to create the bottom layer of the space frame structure. Secondly, the top 

layer is created by applying one of the three Conway Operators (dual, kis and ambo) on the initial 

bottom layer and afterwards offset by a desired distance (truss height).  

After the creation of space frame geometry, it is translated into a parametric structural model, 

which has been developed to automatically optimize the cross sections for a particular set of space 

frame configuration input parameters. Next, the design can be further optimized by utilizing meta-
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heuristic algorithms to find good-enough combination of space frame input parameters in a short-

enough time with the goal of minimizing the structural mass. 

Thus, a full design loop consists of geometry generation, space frame cross section 

optimization, geometry optimization while always respecting cross section optimization, with the goal 

of minimizing the structural mass. 

Furthermore, there is an option to use Colibri and Design explorer to carry out a limited brute 

force calculation of many structural configurations and record all the relevant data for each case in an 

excel sheet and visualize the design space in a parallel coordinate graph, which can in turn be used to 

understand how the structural behaviour is influenced by certain parameters. The combination of brute 

force approach and meta-heuristic optimization form the basis of methodology for researching how the 

space frame geometry consisting of; mesh topology, form finding height, truss height, and mesh 

density, influence the space frame structural behaviour. In search for the optimal space frame structural 

configuration, the brute force and metaheuristic optimization results are combined to visualize the 

optimization problem design space. The brute force approach results are spread throughout the design 

space, thus helping to constitute a bigger portion of it as possible, from desirable to undesirable space 

frame configurations, while the metaheuristic optimization results, are specific points in the design 

space which indicate where areas of optimums can be found and further compliment the design space 

resolution.   

To fully understand the background of the all the input and output parameters involved in the 

developed tool, they can be divided in five main parts which constitute the main scheme of the tool: 

 

A) Input data 

Case specific data  

 Surface geometry 

 Support conditions 

Definition specific data  

 Loads 

 Utilization 

 Max displacement 

 Buckling 

 Bending 

 Cross section set 

 Second order theory 

Mesh specific data  

 Bottom layer mesh – base mesh 

 Top layer mesh – offset mesh 

Parametric specific data 

 Truss height – mesh offset distance 

 Mesh density – target number of faces 

Optimization specific data 

 Cross section optimization 

 Space frame fitness parameters 

 

B) Space frame generation 

Geometrical model generation 

 

C) Structural analysis 

Structural model generation 

Structural analysis 
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D) Optimization 

Cross section optimization 

Galapagos – metaheuristic optimization 

 

E) Data recording and visualization 

Colibri  

Design Explorer 

 

07.2 A) Input data  

 

The input data category is divided into five main subcategories. Each of the categories has been 

defined to explain how the developed tool inputs should be used and have been used. The first step of 

utilizing the research tool is to set appropriate values for the input data categories. 

 

Case Specific data 

This data category is related to each specific case and is used to investigate a certain space frame 

configuration based on an input surface. A case consists of an input surface geometry accompanied 

with boundary conditions. In this MSc thesis research, the investigated case was a pentagon shaped 

double curved surface, supported on the external boundaries of the surface.  

 Surface geometry 

Firstly, this part deals with the initial input surface, which can be freely chosen, the tool was 

developed to handle almost any geometry, be it convex polygon based, concave polygon based, then 

relating to curvature, flat, singly curved, doubly curved, or free form and containing openings or not. 

This flexibility was developed to accommodate as much architectural freedom as possible and to have 

as much potential research options as possible. In this research these input surfaces are always long 

span structures (100 meters or more) mainly because space frames become more appropriate structural 

systems the longer the span is.  

 Support conditions 

Secondly, case specific data relates also to the support conditions, which can be based on 

external boundaries of the input surface, internal boundaries, combination of the two and finally point 

supported in characteristic points. 

 

Definition Specific data 

Relates to the general parameters which facilitate the comparison between various cases (input 

surface geometries accompanied with their discretization (choice of meshing) and configuration 

(Conway operator relation between top and bottom layer). They facilitate comparison by being 

invariant in the research, however there is an option to freely change them if one wishes to. However, 

it is important to pay attention to these parameters to have realistic structural behaviour and analysis. 

 Loads 

Always specified in terms of kN/m2 as a uniform vertical surface load. This is a total load, 

which encompasses the influence of snow, wind, and non-load bearing layers, considering a 

symmetrical fully loaded surface. Everything except self-weight which is automatically included. The 

chosen design load is 2.5 kN/m2, while this number might seem arbitrary, this load is adequate 

considering usual loadings of structures. A higher load can of course be specified if wished, however 

it is only important that each space frame configuration has the same load per m2 and same boundary 

conditions to be able to compare the results. 

 Utilization 

The utilization of space frame elements is limited to 0.9, thus a small safety factor of 1.1 is 

applied. This 10% reduction is a general precaution due to the complexity and large span of the space 

frames considered to mitigate possible deviations from the real-world behaviour of the structures, and 

to avoid the possibility of overstressed members. 
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 Max displacement 

For large spans, for example 100m and more, a choice of l/300 is considered adequate. Thus, 

the maximum displacement is always limited to 30 cm. 

 Buckling 

The structural analysis of the space frame structure can be carried out with or without 

considering buckling. In all cases buckling is considered, otherwise results would be potentially 

misleading. 

 Bending 

The structural analysis of the space frame structure can be carried out with or without 

considering bending as well. In all cases bending is not considered, since space frames are 3-

dimensional truss structures, they are considered as pin jointed, or hinged, no bending moments 

allowed, and loads are only applied in the nodes. Furthermore, the influence of bending moments in a 

well-designed space frame should be minimal or non-existent. Bending is relevant for space grid 

structures, which have no truss height to take up bending moments, and their connections must be 

considered as fixed to carry loads and achieve stability. 

 Cross Section Set 

There is a possibility to include many standard steel cross-sections as well as a possibility to 

limit their amount, however this limitation will influence the cross-section optimization, potentially 

leading to skewed or invalid results because of a potential lack of large enough sections or the possible 

omission of light sections through a set cross-section limitation. In this research circular hollow sections 

are chosen as the primary set of cross-sections according to EN10210-2, which consists of 251 possible 

cross section options, ranging from Φ21.3 x 2.3 mm up to Φ1219.0 x 25 mm 

 Second order theory 

The possibility to analyse the structure according to second order theory is present as well. 

However, this type of analysis is not relevant for axially loaded, pin jointed structures, free of bending 

moments, and the general assumptions of space frame behaviour. This relevance was tested, and results 

showed no influence. Thus, first order theory is chosen. 

 

Mesh specific data 

This data category relates to the mesh geometries being investigated. This data category is 

supposed to be changed to investigate how different mesh geometries influence load bearing behaviour 

of space frames. 

 Bottom layer mesh – base mesh 

This is the most important input data, basis of the research done. An initial mesh topology is 

chosen to form the bottom space frame layer, on which Conway operators will be applied to form the 

offset mesh. The relevant mesh options are Quad, Tri and Skeleton based quad mesh types. 

 Top layer mesh – offset mesh 

Using the created base mesh topology, the top layer mesh is generated using Conway operator 

relations, dual, kis and ambo. 

 

Parametric specific data 

This data category contains the main space frame parameters which are to be varied to find the optimal 

solution for a set case and mesh topology. 

 Truss height /Mesh offset  

Parameter slider from 1m to 5m maximum. This parameter controls the truss height of the space 

frame, that is the specified offset distance between top and bottom layer of mesh 

 Mesh density 

Target number of faces, the higher the number the smaller the space frame mesh cells.  

The larger the density the heavier the computation of the script. The lower limits for the number 

of faces parameter are set such that the smallest possible discretization of the surface is 1m x 1m cells, 

and the maximum is 5m x 5m 
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 Form finding height 

Expressed as the rise between top and bottom layer of space frame measured at the centroid of 

the surface shape. This way form finding influence can be easily visualized and measured. The 

difference between a form found space frame and not form found is that the form found will not have 

a constant truss height throughout the structure but a slightly cambering one depending on the form 

finding height. Form finding height is unrelated to space frame truss height. 

 

Optimization specific data 

This data category contains optimization specific data. It is intended to be constant in each 

space frame configuration calculation but can also be adjusted if wished. 

 Cross-section optimization  

By utilizing karamba3d Optimize cross section algorithm component, in each space frame 

configuration calculation (a specific set of parametric data), the most appropriate cross sections are 

chosen. The main inputs here are the table of cross sections to be applied in the design, along with the 

possibility of limiting the displacement. 

 Space frame structural mass optimization – metaheuristic algorithms 

Choice of algorithm for optimization by utilizing native grasshopper component Galapagos 

used for genetic algorithms or simulated annealing metaheuristic algorithm optimization. The main 

inputs in this step are the parametric specific data and the fitness function which is set to be maximized 

or minimized. The parametric specific inputs are iterated based on a meta-heuristic algorithm and a 

thus created space frame configuration is evaluated based on the fitness function (minimization of mass 

in case of this research) 

 

07.3 B) Space frame generation  

 

Depending on the chosen input parameters in step A, in this step the space frame geometry is 

generated instantly. The input surface has been meshed in a certain configuration constituting the 

bottom layer, and afterwards based on chosen Conway operator relation the top layer is formed. Then 

the two layers are connected in such a way to form a 3-d pyramid module space frame type, thus 

completing the space frame geometry model generation procedure 

 

07.4 C) Structural analysis  

 

The generated space frame geometry model from step B is translated into a parametric 

structural model using karamba3d parametric structural analysis plugin and calculated according to 

first order theory. In each new iteration the corresponding space frame geometry is structurally 

analysed and verified.  

 

07.5 D) Optimization  

 

In this step the analysed space frame is optimized by varying the input parameters and 

evaluating per each parameter set the fitness function (mass). This done by utilizing one of the available 

meta-heuristic algorithms, the genetic algorithm or simulated annealing algorithm. After several 

iterations of various parameter sets, an optimized solution is found, meaning the algorithm converges 

and differences between subsequent solutions become negligible. 

 

07.6 E) Data recording and visualization 

 

Instead of using the black-box approach of optimizing by using meta-heuristic algorithms, 

there is an option to set the range of each parametric specific data input in order to brute force 
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calculate a large number of space frame configurations by using the Colibri plugin, with all possible 

parameter combinations (according to set range of parameters) and record all the relevant output 

variables in order to capture the structural behaviour of the space frame in relation to the iterated 

input variables. Each solution is thus recorded by Colibri in an excel .csv file which can then be 

inputted into Design Explorer to view a parallel coordinate graph which encodes all the relations 

between the chosen parameters and output results. This graph, accompanied with the data in the .csv 

file is then used for analysing the results and concluding how a space frame configuration influences 

its load bearing behaviour.  
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08
  08 Space Frame Parametric Tool Procedure 

 

 

 

 

 

After presenting the main scheme of the tool in the previous chapter, the detailed procedure of 

how the tool works is presented here. The main scheme served as the main top-level overview of the 

logic behind the tool, in this section a much closer look at how the tool functions is shown. The detailed 

procedure of the developed grasshopper definition is presented in the following steps: 

 

1.) Input free-form surface  

2.) Bottom layer mesh – base mesh 

3.) Form finding 

4.) Top layer mesh – offset mesh 

5.) Deconstruct meshes – Conway operator top mesh - connectivity 

6.) Forming of space frame geometry 

7.) Structural analysis of space frame 

8.) Optimization 

9.) Data recording and visualization 

 

 
Figure 08.1 

Developed parametric tool – grasshopper definition 

 

08.1 Input free form surface 

 

This is the first step in utilizing the tool. The user inputs a desired NURBS surface to be 

transformed into a space frame structure. The tool allows for complete freedom in choice of the input 

surface. In this step the case specific data is thus inputted. Some of the examples below illustrate the 

various surfaces to be translated into a space frame structure. They range from the most basic, flat plane 

surface with no openings towards the most complex, double curved with openings. The developed tool 
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will mesh each of the inputted surfaces respecting its inner and outer boundaries. Surfaces such as the 

double curved y shape surface can be created in Rhino by first creating a top view outline of the surface 

to be created then creating a surface out of this closed boundary line and afterwards turning the control 

points of the NURBS surface on to manipulate them according to the desired geometry.  

 

 

 

 

 

 

 
Figure 08.2 
Various input surfaces 

 

08.2 Bottom layer mesh – base mesh 

 

After choosing the desired input surface geometry in step 1, the next step is to choose one of 

the three meshing options to discretize the input surface into the base mesh for forming the bottom of 

the space frame layer. One can choose triangular, quadrilateral and skeleton-based quadrilateral 

meshing procedures. The tri and quad meshing procedures are facilitated by native components newly 

available in Rhino 7 version, QuadRemesh and TriRemesh. The Skeleton-based quadrilateral mesh is 

generated utilizing compass_singular python library developed by Oval. Following the choice of 

meshing procedure, one then needs to set the target number of mesh faces, or the mesh density. The 

higher the density the smaller the average size of the mesh cells, the more intricate the space frame 

mesh. Mesh density is set either by defining the target number of mesh faces or by setting the average 

size a x a of the mesh cell. 

 

 

 

 

 

 

 
Figure 08.3 
Base mesh 
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Initially the developed definition facilitated all three mesh option types, however later it was 

divided into three separate definitions, a quad, tri, and skeleton-based definition. This was done to 

simplify the script and speed up its calculation. 

Below an illustration of how each of the three meshes look like on a pentagon shaped double 

curved surface viewed from a plan view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 08.4 

Base mesh pentagram example 

 

 

 

08.3 Form finding  

 

Once the bottom layer is formed, if specified a flat input surface initially, the option of form 

finding can be used to achieve a form found shell like surface for the space frame configuration. The 

bottom mesh is the main input for the form finding which is controlled through the form finding height 

parameter which is measured as the vertical distance from the centroid of the bottom mesh shape to 

the centroid of the form found mesh shape. This is also a highly important feature of the tool, as in the 

case study the influence of this form finding is investigated. It is a question of, starting from a flat space 

frame, is there a certain benefit in the cambering which can be achieved by form finding. This cambering 

or the form finding height can be very small for example 1-5 m or if 20 m, then the height turns from 

being a slight cambering towards the clear height of a shell-like surface with a space frame structure. 

The cambering or form finding height should be kept within certain limits, specifying, for example 40 
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m form finding height, one will generate a highly exaggerated surface which is like to an impossibly 

steep arch in an unfeasible grotesque futuristic gothic cathedral. 

 

 

 

 

 

 

 

 
Figure 08.5 
Form finding 

 

 

08.4 Top layer mesh – offset mesh  

 

After forming the base mesh layer, and form finding it if included, this form found mesh (or 

just the base mesh if the surface was already curved) is simply offset by a specified distance to create 

the top layer mesh. At this step we have formed the bottom and top layers of the space frame which 

are currently identical. 

 

 

 

 

 

 
Figure 08.6 
Top layer offset 

 

 

08.5 Deconstruct Meshes – Conway operator top mesh - connectivity 

 

After the meshes have been offset, each of them are deconstructed in to faces, edges, vertices 

and mid points of the edges. This is due to two main reasons. The first reason is to create the Conway 

operator relations to form the final geometry of the top layer mesh, by specifying a certain order of 

connecting the points. The order of connecting vertices is different for each Conway operator. Second 

reason is to specify the connectivity between the points of the top and bottom layers. The connectivity 

specified is to achieve a pyramid module. Essentially whatever the discretizations of the surface are, 

they are always connected to form pyramid modules. The pyramid shapes will depend on the shape of 

the base they are formed, or more specifically the shape of the mesh faces. 

 

 

 

 

 

 

 

 
Figure 08.7 
Deconstructed mesh points 
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08.6 Forming of space frame geometry 

 

Based on the deconstructed meshes and set rules to connect the points, the space frame line 

geometry is created, the top, bottom, and web layer. The development of this part of the definition, the 

connection of all the generated points into the correct geometries, was one of the more demanding 

parts. To correctly connect the points with line components, to generate desired geometry, care must 

be taken in managing the data structure of the points.  

 

 

 

 

 

 

 

 

 
Figure 08.8 

 Bottom layer 

 

 

 

 

 

 

 

 

 
Figure 08.9 

Web layer 

 

 

 

 

 

 

 

 

 
Figure 08.10 

Top layer 

 

 

 

 

 

 

 

 

 
Figure 08.11 

Space frame geometry 
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08.7 Structural analysis of space fame  
 

 

Figure 08.12 
Internal forces – structural analysis 

 

The generated parametric space frame geometry model is transformed into a parametric 

structural model. The lines are translated into truss elements and the points to hinged nodes and the 

points on the lower outer boundary of the space frame into pinned (translations in x y z directions fixed, 

rotations free) supports. An initial default set of cross sections are defined, and later automatically 

dimensioned. Self-weight is considered, a uniform mesh load is specified by using the top mesh as the 

input, meaning that the specified kN/m2 load is divided into appropriately distributed concentrated 

loads located in the top mesh vertices in the negative z direction (gravity). Steel S355 is assigned as the 

material. The dimensioning is done according to Eurocode 3, buckling considered, bending not 

considered. The structural model results are total mass, number of different cross sections utilized, 

displacement, internal forces, utilization of members. To minimize the mass of the structure, which is 

the primary fitness function for metaheuristic optimization, in every iteration the cross sections in the 

model are optimized along with the geometrical parameters of the space frame truss height, number of 

faces, and form finding height.  

 

08.8 Optimization 

 

Optimization can is done by using the Galapagos native grasshopper component which has the 

option of either utilizing Genetic algorithms or Simulated Annealing algorithm for meta-heuristic 

optimization methods. Optimization is done by varying the geometrical inputs of the space frame 

model (truss height, face number, form finding height), with a goal of minimizing the fitness function, 

the structural mass of the space frame. In each run of the algorithm a variant of the space frame 

geometry is structurally analysed, cross section optimized, its mass recorded. Through iteration the 

algorithms eventually converge to a particular set of input variable values, which give the lowest 

structural mass. The final solution can be considered as optimal, but not in the full sense of the word. 

The nature of the design problem and the size of the design space do not allow for finding just one 

optimal solution. Instead, the found solution is considered as good-enough achieved in short-enough 

amount of time. In this thesis research the meta-heuristic optimization mostly serves to pinpoint a 

plausible location of an optimized solution and arrive at an initial estimate of lowest structural mass. 

By location, the values of the geometrical parameters of the minimal mass version of the space frame 

are meant. This approach is complementary to the main limited brute force approach. 
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Figure 08.13 

Galapagos optimization – Simulated annealing 

 

 

08.9 Data recording and visualization 

 

To gain insight into how the mesh topology (base mesh, Conway operator relation for top 

mesh), space frame geometry (truss height, face number, form finding height) influences the load 

bearing behaviour of space frame (structural mass, number of cross sections), instead of relying on the 

black box process of meta-heuristic optimization, instead a limited brute force approach is applied. 

Using the colibri plugin, one can set several parameters of interest, and then set the number of divisions 

of each parameter value range. For example, if the truss height parameter division is set to 10, and the 

height ranges from 0 – 5 m, then there will be created 10 space frame configurations of truss heights 

with an 0.5 m increment (0.5, 1.0, 1.5, …, 4.5, 5.0). This division of each parameter is to avoid a 

combinatorial explosion. In Figure 8.11, the colibri setup is shown for a triangular base mesh case.  

 
Figure 08.14 

Colibri parameter divisions and number of iterations 

 

The relevant parameter and the divisions of their ranges are shown in the black outline below 

the component in the figure. Due to having three definitions, one for each base mesh type, the division 

of mesh type is only 1. There are three Conway operator relations to be investigated. 
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Figure 08.15 
Data recorded for each configuration calculated in a .csv file, intended for visualization in terms of a parallel coordinate graph by using 

Design Explorer 
 

Truss height, density and form finding parameters are all set with divisions of 10. Thus, 

considering all the parameters and their divisions, there will be 1 x 3 x 10 x 10 x 10 = 3000, space frame 

configurations to calculate. The total number of iterations possible, based on the size of each selected 

parameter domain, is 2 894 400 000 (two billion, eight hundred ninety-four million, four hundred 

thousand). To calculate each solution is not feasible, thus the limited approach with specifying a 

number of divisions per each parameter. For each of those configurations, results are recorded into a 

.csv excel file, which can then later be inputted into Design Explorer to visualize, in a parallel coordinate 

graph, how each of the calculated configurations relates to the input and output parameters. 

Furthermore, the data collected can be used to create graphs which show how each of the base mesh 

layers is influenced by each of the parameters (details in Chapter 09). 
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PART IV 
CASE STUDY 
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09
  09 Star polygon surface 

 

 

 

 

 

09.1 Input surface geometry 

 

In this chapter the case study procedure and results will be presented. The chosen input for the 

case study is a non-convex polygon, star polygon shape, flat surface, with a span of 160m. This surface 

is chosen because it is not clear from the beginning which mesh topology for this surface type would 

be considered as optimal, or if any of the different space frame configurations based on those mesh 

topologies have better structural performance than others. In the case of a rectangular flat surface, it is 

clear a simple structured quad mesh with a dual Conway operator relation to the top layer would be 

optimal, as this is the standard well known space frame configuration (pyramid modules, square base), 

executed many times so far. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.1 

Plan view of input surface with dimensions 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.2 

3d shape (with form finding) 
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09.2 Research Goal 

 

The main research goal of this thesis was to research the influence of mesh topology on the 

structural performance optimization of steel space frame structures by developing a parametric tool to 

generate a vast number of space frame configurations.  

The mesh topology being investigated in this thesis, consists of the three base mesh types; quad, 

tri, skeleton-based quad, accompanied with three possible Conway operator relations for each base 

mesh (dual, kis and ambo) to form the top mesh. Thus, the resulting space frame configurations from 

investigating those mesh topologies (on a certain input surface), can be put in the following categories 

based on mesh and operator combination: 

 

1.) Quad base mesh + Dual, Kis, Ambo (Q+D/K/A) – Figure 09.3 – 09.9 

2.) Tri base mesh + Dual, Kis, Ambo (T+D/K/A) – Figure 09.10 – 09.16 

3.) Skeleton-based quad base mesh + Dual, Kis, Ambo (S+D/K/A) – Figure 09.17 – 09.23 

 

The letters in the parenthesis represent a shorthand way of writing the names of result 

categories. To generate the various space frame configuration based on different pairs of base mesh and 

operator, a brute force approach was used to generate and record 3000 thousand solutions per category 

by utilizing Colibri plugin and then visualize the recorded data in a parallel coordinate graph with 

Design Explorer. 

Afterwards, the same recorded data was used to form graphs which show the relation between 

mesh operator pairs evaluated against both fitness functions, namely, mass (F1 vs Form Finding -

Figures 09.35-09.44) and stiffness (F2 – vs Form Finding – Figures 09.45.-09.54). As the initial brute force 

approach results showed that form finding has significant influence on optimal structural 

configurations, it was necessary to investigate in more detail, how exactly it influences the optimal 

solutions.  

Furthermore, metaheuristic optimization is also carried out and its results are recorded in the 

same graphs. The parallel coordinate graphs (Figures 09.24-09.33.) are used to investigate trends of how 

space frame configuration parameter relate to optimality criteria. With this case study three general 

questions should be answered regarding the space frame configurations on the pentagram surface:  

 

Q1.) Which combination of mesh and operator, out of the nine possible, will perform best and 

in which category? 

Q2.) Is there any benefit to form finding, what is the influence on F1 and F2? 

Q3.) How do the input parameter values influence the optimal solution? 
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Figure 09.3 
Quad mesh  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.4: Dual of quad mesh                                  Figure 09.5: Ambo of quad mesh                                Figure 09.6: Kis of quad mesh 

 

 

 

 

 

 
Figure 09.7 

 Quad – dual, 3d + form finding (FF) 

 

 

 

 

 
Figure 09.8 

 Quad – ambo, 3d + FF 

 

 

 

 
Figure 09.9 

Quad – kis, 3d + FF 
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Figure 09.10 
Tri mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 09.11: Dual of tri mesh                                     Figure 09.12: Ambo of tri mesh                                    Figure 09.13: Kis of tri mesh  

 

 

 

 

 
Figure 09.14 
Tri – dual, 3d + FF 

 

 

 

 

 
Figure 09.15 
Tri – ambo, 3d + FF 

 

 

 

 

 
Figure 09.16 
Tri – kis, 3d + FF 
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Figure 09.17 
Skeleton-based quad mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 09.18. Dual of skeleton mesh                  Figure 09.19. Ambo of skeleton mesh                    Figure 09.20. Kis of skeleton mesh 

 

 

 

 
Figure 09.21 
Skeleton - dual, 3d + FF 

 

 

 

 

 
Figure 09.22 
Skeleton - ambo, 3d + FF 

 

 

 

 
Figure 09.23 
Skeleton – kis, 3d +FF 

  



 
 

66 

09.3 Process and details 

 

The procedure of evaluating the input surface was done by using three separate grasshopper 

definitions: quad mesh definition, tri mesh definition and skeleton-based definition. Each of the 

definitions are the same in structure, the only difference is the meshing procedure. With three sperate 

definitions it was easier to both track and calculate solutions and lessen the risk of crashing or freezing 

of software.  Utilizing the Colibri plugin for each of the three definitions, 3000 space frame 

configurations have been calculated, thus 9000 in total. For each grasshopper definition the “Definition 

specific data”, as described in chapter 7, is kept constant, which enables comparison between different 

solutions, as they are all under the same “laboratory” conditions. All the parameters in the “Parametric 

specific data” category as described in chapter 7 are recorded for each calculated solution. The fitness 

parameters F1, structural mass, and F2, stiffness is also recorded. The following steps are repeated in 

each iteration: 

1) Input data  

2) Bottom/base layer mesh   

3) Offset mesh  

4) Deconstruct meshes  

5) Top layer creation  

6) Forming of space frame geometry model  

7) Structural analysis – struct. analysis + c/s optimization 

8) Recording results and corresponding parameter values 

 

The possible parameter values or ranges, both input and output, recorded at step 8) are as follows: 

Input: 

 Mesh type: Skeleton, Tri, Quad 

 Conway operator:  Kis, Ambo, Dual 

 Truss Height – 0 – 8m  

 Density – 0 – 5000 # (Edge length – 0 – 12m)  

 Form height – 0 – 40 m (Form finding) 

Output: 

 # Cross sections – 0 – 80 # 

 Elastic Energy – 0 – 2000 kNm 

 Mass steel - 0 – 200 kg/m2 

 

The 3000 space frame configurations per definition are generated by specifying the following divisions 

of the following input parameters:  

Mesh type – 1 division (either Q, T, S) 

Conway operators – 3 divisions (D, A, K) 

Truss height – 10 divisions – range from 0 to 8 m  

Form finding height – 10 divisions – from 0 to 10 m 

Number of mesh faces – 10 divisions – from 0 to 5000 

 

By multiplying the number of divisions of each parameter the total number of configurations 

is obtained, 1 x 3 x 10 x 10 x 10 = 3000. In each grasshopper definition this number of divisions is the 

same. This all possible thanks to the Colibri plugin. It functions as an automatic iterator and data 

recorder. The calculation of each of the 3000 solutions although automatic, is a relatively time 

consuming and computationally heavy process. The time to calculate a solution primarily depends on 

the type of grasshopper definition used and number of faces specified for the solution.  

The definition type influence is simply because of the three different meshing algorithms taking 

different amounts of time to generate a solution. There is also a slight influence of the generated 
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patterns, some are more intricate and thus simply have more line geometry, considering same number 

of faces.  

The time for the quad mesh definition to generate a solution, ranges from 5 – 30 s depending 

on mesh density. For the Tri mesh the calculation times range from 10 to 60 s and for the Skeleton 20 to 

120 secs. Based on experience during the process, the total time for generating 3000 solutions is about 

10 – 12 hours, thus 36 hours of computational time for generating 9000 solutions. In design practice this 

large a resolution of design space might not be needed; the computational time could be just a few 

minutes or hours. Especially if the design boundary conditions have The preliminary design analysis 

in coordination with other potential design team members could be carried out within a working day. 

Furthermore, metaheuristic optimization was carried out for each of the 9 possible space frame 

configurations in order.  The fixed parameters were, Mesh  

 

09.4 Analysis and Discussion of Results 

 

After generating the 9000 solutions (space frame configurations) and recording the resulting state 

the 11 parameters for each solution, into .csv file, this .csv file is input into Design Explorer to generate 

a parallel coordinate graph of the parameter results. This parallel coordinate graph is then used to 

analyse trends and categorized the results. (Figure 09.24)  The analysis is based on a deductive approach 

of viewing the results in the parallel coordinate graph. Within Design explorer there is an ability to 

omit desired axis from the graph to lessen the visual clutter and focus on certain aspects, that is “zoom-

in” on a set of relationships of interest. The “zoom-in” approach is also used when viewing how each 

of the displayed parameter values influences the other. One can select a range on the axis to be omitted. 

In other words, depending on what ones to research, the view of the parallel coordinate graph can be 

adjusted accordingly and thus form specific categories of results. 

 

The categories were formed on the following rationale. In any constituted result research 

category, there are two main fitness values which are considered as optimization goals, namely, least 

amount of steel (F1) and highest stiffness (F2). The constituted categories are either absolute or relative. 

By Absolute category it is meant that the none of the five input parameter ranges are limited, while the 

relative categories are simply formed by narrowing further the scope of parameter ranges, based on 

general trends, assessed from the brute force results (investigating parallel coordinate graph containing 

all 9000 solutions), showing an indication where to further narrow the parameter ranges. The absolute 

categories can be understood as broad design spaces which contain both desirable and undesirable space 

frame configurations (undesirable solutions have an extremely high structural mass, or extremely high 

deflections/low stiffness), while relative categories represent more realistic structural configurations. 

All of the above was done in order to assess in what general direction should further research go in 

regard to parameters and possible configurations. 

 

Thus, the specific categories constituted are:  

1.) Category 1 :Absolute – full parameter ranges of all five input parameters 

2.) Category 2 : Relative– form finding height parameter limited to 2% of span  

3.) Category 3 : Relative – truss height parameter range limited from cca. 5 m 
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Figure 09.24 

Parallel coordinate graph – 9 parameter axes 
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F1 F2 

F1 

 

To find which combination of mesh and operator performs best for each category, the parallel 

coordinate graphs are adjusted accordingly.  In Figure 09.25, the graph of all results is shown again, the 

red circle indicates the parameter range of interest. For the absolute category 1.), we first narrow the 

selection of solutions by viewing only the solutions which have the least amount of mass, afterwards the 

same is done for highest stiffness . This means narrowing the scope of the mass steel axis in the parallel 

coordinate graph indicated by the red circle (F1) and elastic energy (F2). Thus, the heaviest results and 

least stiff are omitted.  

 

 

Category 1: Absolute, full input parameter ranges 

 

The relevant axes set to be viewed in the graph, from left to right are as follows: Mesh type 

(Q/T/S),  Conway operator (D/K/A), truss height (0-8 m), mesh density (0-5000 faces), form height (0 -

40 m), stiffness/elastic energy (F2), mass (F1). The colours make it easier to identify which mesh type is 

in question when viewing the results.  Blue = Tri mesh, Purple = Quad mesh, Red = Skeleton mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.25 

Parallel coordinate graph – 7 parameter axes 

 

After omitting the heaviest results, the parallel coordinate graph view is thus narrowed to better 

asses the results. In Figure 09.26. The parallel coordinate graph state is shown, where we view just the 

results with the lowest amount of steel used. 

 

 
 

Figure 09.26 

Parallel coordinate graph – Cat. 1 – abs. – F1 – Q+A 
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Analysing the parallel coordinate graph in Figure 09.26 the lowest amount of steel usage will be 

achieved by the combination of Quad mesh and ambo operator. Thus the “winner” in category 1 

regarding F1 (lowest steel usage) is Q+A. The highlighted line, accompanied with the attributes window, 

shows which exact space frame Q+A configuration achieves least mass. 

 

To now view which combination in the absolute category wins in terms of highest stiffness, we 

reset the graph back to 09.25. and adjust so least elastic energy solutions are viewed only (Figure 09.27). 

 

 
 

Figure 09.27 

Parallel coordinate graph – Cat 1. – abs. – F2 – T+A 

 

Analysing the parallel coordinate graph in Figure 09.27 the lowest amount of elastic energy 

(highest stiffness) will be achieved by the combination of Tri mesh and ambo operator. Thus the 

“winner” in category 1 regarding F2 (lowest elastic energy/highest stiffness) is T+A. The highlighted 

line, accompanied with the attributes window, shows which exact space frame T+A configuration 

achieves least elastic energy/highest stiffness. 

 

Category 2: Relative, form finding height input parameter limited to 2% of span 

 

Analysing the parallel coordinate graph in Figure 09.28 the lowest amount of steel mass  will be 

achieved by the combination of Skeleton mesh and dual operator. Thus the “winner” in category 1 

regarding F1 (lowest steel mass) is S+D. The highlighted line, accompanied with the attributes window, 

shows which exact space frame S+D configuration achieves least steel mass. 

 

 
 

Figure 09.28 

Parallel coordinate graph – Cat 2 – rel. – F1 – S+D 

F2 

F1 
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Figure 09.29 

Parallel coordinate graph – Cat 2 – rel. – F2 – S+K 

 

Analysing the parallel coordinate graph in Figure 09.29 the lowest amount of elastic energy 

(highest stiffness) will be achieved by the combination of Tri mesh and ambo operator. Thus the 

“winner” in category 1 regarding F2 (lowest elastic energy/highest stiffness) is S+K. The highlighted 

line, accompanied with the attributes window, shows which exact space frame S+K configuration 

achieves least elastic energy/highest stiffness. 

 

Category 3.:  Relative, truss height range cca. 5 m 

 

Analysing the parallel coordinate graph in Figure 09.30 the lowest amount of steel mass  will be 

achieved by the combination of Skeleton mesh and ambo operator. Thus the “winner” in category 1 

regarding F1 (lowest steel mass) is S+A. The highlighted line, accompanied with the attributes window, 

shows which exact space frame S+A configuration achieves least steel mass. 

 

 
 

Figure 09.30 

Parallel coordinate graph – Cat 3 – rel. – F1 – S+A 

 

Analysing the parallel coordinate graph in Figure 09.31 the lowest amount of elastic energy 

(highest stiffness) will be achieved by the combination of Tri mesh and kis operator. Thus the “winner” 

in category 1 regarding F2 (lowest elastic energy/highest stiffness) is T+K. The highlighted line, 

accompanied with the attributes window, shows which exact space frame T+K configuration achieves 

least elastic energy/highest stiffness. 

 

F1 

F2 
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Figure 09.31 

Parallel coordinate graph – Cat 3 – rel. – F2 – T+K 

 

The summarized results are now presented again in respect to categories: 

 

1.) Category 1 :Absolute – full parameter ranges of all five input parameters  

- Least mass (F1) – Q+A 

- Highest stiffness (F2) – T+A 

2.) Category 2 : Relative– form finding height parameter limited to 2% of span  

- Least mass (F1) – S+D 

- Highest stiffness (F2) – S+K 

3.) Category 3 : Relative – truss height parameter range limited from cca. 5 m 

- Least mass (F1) – S+A 

- Highest stiffness (F2) – T+K 

 

Further analysis of results in relation to form finding height (FF) 

 

After, analysing the broad spectrum of brute force results, it was clear that the nine possible 

space frame configurations are by far mostly influenced by form finding height. Thus, the influence of 

form finding (FF) on F1 (steel usage) and F2 (stiffness) regarding the 3 possible mesh types and 3 Conway 

operators, thus nine possible configurations, is further investigated in detail, considering a more 

narrowed parameter scope. The parameter ranges are further narrowed, to obtain relevant results. Mesh 

density is from 500 to 1000 faces, truss height from 4-6 m. The categories of solutions can be constituted 

as: 

1.) Least amount of mass (F1) for the nine possible combinations of mesh and operator 

 (Q/T/S + D/A/K)  

2.) Least amount of elastic energy (F2) for the nine possible combinations of mesh and operator 

(Q/T/S + D/A/K) 

 

 

 

 

 

 

 

 

 

 

 

F2 
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1.) F1: Q/T/S + D/A/K  

 

F1: Q+D/A/K  

 

The data in the .csv file is adjusted according to the narrowed parameter ranges, and for each 

mesh type three scatter plot graphs are generated and the points curve fitted to form trend lines. One for 

each combination of Conway operator possible for the mesh type. The graphs are divided into the two 

above categories, they show the mass of steel vs. the form height. It can be seen from these graphs that 

there is an influence of form height on the steel usage. Especially when the form height is between 1-5 

m.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.32 

F1 vs. FF height – Q+D 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.33 

F1 vs. FF height – Q+A 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.34 

F1 vs. FF height – Q+K 
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F1: T+D/A/K 

 

Like least mass results (F1) for Quad + dual/ambo/ kis, the same influence of form finding, 

within 1 – 5 m of form finding height is found.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 09.35 
F1 vs. FF height – T+D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.36 
F1 vs. FF height – T+A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.37 
F1 vs. FF height – T+K 
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F1: S+D/A/K 

 

Like least mass results (F1) for Quad and Tri + dual/ambo/kis, the same highest influence of 

form finding is found, within 1 – 5 m of height. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.38 

F1 vs. FF height – S+D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.39 

F1 vs. FF height – S + A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.40 

F1 vs. FF height – S+K 
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Cumulative graph for F1 

 

In the cumulative graph (Figure 09.44) each line represents one of the nine diagrams presented 

in the last paragraph. They are colour coded in to three groups, quad group = blue, tri group = red, 

skeleton group = white. The line type indicates the Conway operator applied. Thus, the explanation of 

lines and colour codes is as follows:  

 

Q+D (Figure 09.32) = Solid blue line in Figure 09.41 

Q+A (Figure 09.33) = Dashed blue line in Figure 09.41 

Q+K (Figure 09.34) = Dash-double dot blue line in Figure 09.41 

 

T+D (Figure 09.35) = Solid red line in Figure 09.41 

T+A (Figure 09.36) = Dashed red line in Figure 09.41 

T+K (Figure 09.37) = Dash-double dot red line in Figure 09.41 

 

S+D (Figure 09.38) = Solid white line in Figure 09.41 

S+A (Figure 09.39) = Dashed white line in Figure 09.41 

S+K (Figure 09.40) = Dash–double dot white line in Figure 09.41 

 

Cumulative graph interpretation for F1 

 

Analysing the cumulative graph (Figure 09.41), from a broad perspective it is instantly noticeable 

that the choice of space frame configuration is highly influential on structural mass (F1) in the first form 

finding height parameter value ranges of 1-5 m. The spread between the graphs shows how influential 

the space frame configuration choice is on structural mass. Accordingly, one can choose from the graph 

an appropriate space frame configuration in relation to a desired form finding height, and at different 

parameter ranges, different configurations have least structural mass. Furthermore, in the viewed range 

of 1-5 m considering least mass (F1), there are many crossing points between space frame configuration 

result graphs, meaning there are points where two configurations have equal masses for a certain form 

finding height. Viewing the graph, there are clear differences between the following configurations in 

the range of 3-5 m form height; T+A (dashed red line), T+K (red dash-double dot line), S+K (white dash-

double dot line), while for T+D (solid red line), Q+K (blue dash-double dot line), Q+D (solid blue line), 

S+A (dashed white line), Q+A (dashed blue line) the steel mass per configuration differs in about +/-2 

kg/m2 . Nonetheless, at closer look, out of each of the nine graphs representing each possible space frame 

configuration, two extremes become apparent. Worst and best performing combination within a viewed 

parameter range, thus allowing ranking of solutions regarding structural mass (F1). Considering a form 

finding height of 3 – 5 m in the graph (where configuration choice is most noticeable), the rankings are 

as follows, from best to worst: 

 

1.) S+D  

2.) Q+A 

3.) Q+D  

4.) Q+K  

5.) T+D,  

6.) T+K 

7.) T+A.  

8.) Q+A 

9.) T+A 

 

Thus, the most efficient space frame configuration regarding least amount of mass optimality criteria 

(F1) in the viewed range of 3-5 m form finding height would be Skeleton dual and least efficient Tri 

ambo. The rankings in between best and worst solutions are not absolute, due to the overlaps between 
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each configuration graph, and closeness of them, meaning some could switch places depending on exact 

form finding height viewed between 3-5 m, however, the extremes in the viewed range are shown 

clearly. 
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Figure 09.41 

Cumulative graph of F1 vs FF height 
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2.) F2: Q/T/S + D/A/¨K 

 

F2: Q+D/A/K 

 

In this step the data is adjusted to create scatter plot graphs and trend lines regarding the 

combination of mesh and operator on F2, highest structural stiffness goal. Not the inverted graph, due 

to the inverted relationship between mass and stiffness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.42 
F2 vs. FF height – Q+D 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.43 
F2 vs. FF height – Q+A 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.44 
F2 vs. FF height – Q+K 
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F2: T+D/A/K 

 

Like results for Quad – F1 the same influence of form finding, within 1 – 5 m of height (5-10% of 

span) is found.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.45 

F2 vs. FF height – T+D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.46 

F2 vs. FF height – T+A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.47 

F2 vs. FF height – T+K 
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F2: S+D/A/K 

 

Like results for Quad and Tri – F1 the same highest influence of form finding is found, within 1 

– 5 m of height (5-10% of span). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.48 
F2 vs. FF height – S+D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.49 
F2 vs. FF height – S + A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 09.50 
F2 vs. FF height – S+K 
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1.1. Cumulative graph for F2 

 

In the cumulative graph for F2 (Figure 09.51) each line represents one of the nine diagrams 

presented in the last paragraph. They are colour coded again in to three groups, quad group = blue, tri 

group = red, skeleton group = white. The line type indicates the Conway operator applied. Thus, the 

explanation of lines and colour codes is as follows:  

 

Q+D (Figure 09.42) = Solid blue line in Figure 09.51 

Q+A (Figure 09.43) = Dashed blue line in Figure 09.51 

Q+K (Figure 09.44) = Dash-dot double blue line in Figure 09.51 

 

T+D (Figure 09.45) = Solid red line in Figure 09.51 

T+A (Figure 09.46) = Dashed red line in Figure 09.51 

T+K (Figure 09.47) = Dash-double dot red line in Figure 09.51 

 

S+D (Figure 09.48) = Solid white line in Figure 09.51 

S+A (Figure 09.49) = Dashed white line in Figure 09.51 

S+K (Figure 09.50) = Dash-dot double white line in Figure 09.51 

 

Cumulative graph interpretation for F2 

 

Analysing the cumulative graph (Figure 09.51), from a broad perspective it is instantly noticeable 

that the choice of space frame configuration is highly influential on elastic energy (stiffness) in the first 

form finding height parameter value ranges of 1-5m. The spread between the graphs is the largest, while 

at around 16 m height this spread flattens out and becomes less obvious meaning less difference in terms 

of structural stiffness between different space frame configurations. Naturally at points where the graphs 

cross one another, there is no difference between the two configurations.  

At closer look, out of each of the  nine graphs representing each possible space frame 

configuration, two extremes become apparent. Worst and best performing combination within a viewed 

parameter range, thus allowing ranking of solutions regarding stiffness (F2). Considering a form finding 

height of 3 – 5 m in the graph (where configuration choice is most noticeable), the rankings are as follows, 

from best to worst: 

 

1.) S+K  

2.) S+D 

3.) T+K  

4.) S+A  

 5.) Q+K  

 6.) Q+D 

 7.) T+D.  

 8.) Q+A 

 9.) T+A 

 

Thus, the most efficient space frame configuration regarding highest stiffness optimality criteria (F2 – 

least elastic energy) in the viewed range of 3-5 m form finding height would be Skeleton kis (S+K) and 

least efficient Tri ambo (T+A). 

 

 



 
 

83 

 
Figure 09.51 

 

Cumulative graph of F2 vs FF heigh 
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Further analysis of Brute force results – Parallel coordinate graphs 

 

By analysing the cumulative graphs in figures 09.41 and 09.51, which were generated by narrowing the 

initial broad brute force results towards more realistic parameter ranges, it was established that form 

finding height has an important influence on space frame configurations regarding least mass (F1) and 

least elastic energy (F2). Thus, trend established, further quantitative analysis of brute force results in 

relation to F1 is analysed in three different form finding height  parameter ranges. The parameter ranges 

are categorized as low (cca. – 2m form finding height), medium (cca. 10 m form finding height) and high 

(cca. 25 m form finding height). The formed categories facilitate further understanding of trends relating 

to form finding height influence on optimal solution. The following 27 parallel coordinate graphs in 

figures 09.52-09.78, show for each respective space frame configuration (Base mesh + operator pair) 

optimal solutions considering the fitness goal of F1 (least structural mass) according to posed high, 

medium, and low form finding height categories. Highlighted lines in the graphs represent the solution 

which achieved minimal mass and show accompanying input parameter values which achieve this 

solution. The end goal of this part of result analysis is to rank from best to worst specific space frame 

configurations regarding F1, least structural mass. 

 

 

 

 

Quad – D/A/K – FF-25 m 

 

Figure 09.52 – Q+D – brute force results – FF 25 m - F1(least amount of steel) 

 

  

Figure 09.53 – Q+A – brute force results – FF 25 m - F1  

 

Figure 09.54 – Q+K – brute force results – FF 25 m - F1 
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Tri– D/A/K – FF-25 m 

  
Figure 09.55 – T+D – brute force results – FF 25 m - F1 

 

 
Figure 09.56 – T+A – brute force results – FF 25 m - F1 

 
Figure 09.57 – T+K – brute force results – FF 25 m - F1 

 

 
Skeleton– D/A/K – FF-25 m 

 
Figure 09.58 – S+D – brute force results – FF 25 m - F1 

 

 
Figure 09.59 – S+A – brute force results – FF 25 m - F1 
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Figure 09.60 – S+K – brute force results – FF 25 m - F1 

 

 
Quad– D/A/K – FF-10 m 

 
Figure 09.61 – Q+D – brute force results – FF 10 m - F1 

 
 Figure 09.62 – Q+A – brute force results – FF 10 m - F1 

 
 

Figure 09.63 – Q+K – brute force results – FF 10 m - F1 

Tri– D/A/K – FF-10 m 

 
Figure 09.64 – T+D – brute force results – FF 10 m - F1 
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Figure 09.68 – T+A – brute force results – FF 10 m - F1 

 

 
Figure 09.66 – T+K – brute force results – FF 10 m - F1 

 

Skeleton– D/A/K – FF-10%-F1  

 
 Figure 09.67 – S+D – brute force results – FF 10 m - F1 

 
  Figure 09.68 – S+A – brute force results – FF 10 m - F1 

 

 Figure 09.69 – S+K – brute force results – FF 10 m - F1 

Quad– D/A/K – FF-2 m 
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Figure 09.70 – Q+D – brute force results – FF 2 m - F1 

 
Figure 09.71 – Q+A – brute force results – FF 2 m - F1 

 

 
Figure 09.72 – Q+K – brute force results – FF 2 m - F1 

 

 

Tri– D/A/K – FF-2 m 

 
Figure 09.73 – T+D – brute force results – FF 2 m - F1 

 

 
Figure 09.74 – T+A – brute force results – FF 2 m - F1 
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Figure 09.758 – T+K – brute force results – FF 2 m - F1 

 

 

Skeleton– D/A/K – FF-2%-F1 

 
Figure 09.76 – S+D – brute force results – FF 2 m - F1 

 

 

 
Figure 09.77 – S+A – brute force results – FF 2 m - F1 

 

 

 

Figure 09.78 – S+K – brute force results – FF 2 m - F1 
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Metaheuristic optimization results  

 

The results showed in previous graphs, figures 09.52-09.78., have also been checked by 

metaheuristic optimization, which always results in just one specific space frame configuration 

considered as optimal. The metaheuristic optimization was facilitated by the Galapagos native 

grasshopper plugin. 

Metaheuristic optimization was carried out for each of the 9 possible space frame configurations 

considering three categories of approximate form finding height values of: 25 m, 10 m, and 2 m. The 

variable parameters for the optimization were truss height, mesh density while form finding height is 

fixed in the three mentioned categories. This form finding height limits stem from analysing the 

cumulative graphs (09.44 and 09.54). Increasing form finding height above 25 m of span limit has no 

benefits at all in relation to lowering structural mass, and the shape of the structure becomes so 

exaggerated that it may be deemed unfeasible or irrelevant for the design problem. Above 25 m the space 

frame starts to resemble more a large span arched structure than a double curved space frame structure. 

The other limits of 10 m  and 2 m are introduced because they represent further interesting areas 

of form finding height in mentioned graphs. The idea is to see how a high (25 m), medium (10 m) and 

low (2 m) form finding height influences the structural mass and variable parameters. 

In table 09.02 the FF-25 m category is presented, Q+A is the optimal configuration in terms of 

steel usage, it is important to note that between the best and worst configuration there is a 58.14% 

difference in structural mass. Thus, in a practical design situation, considerable material savings can be 

achieved by choosing the appropriate space frame configuration. Furthermore, in the other two form 

finding height limit categories, the savings are about 47%.  

 

 
 

Table 09.01 – Metaheuristic optimization results – FF 25 m 

 

Viewing the results in Table 09.02., it is quite clear that in this category, a high form finding 

height is accompanied by a low truss height and high mesh density. 

 

 
 

Table 09.02 – Metaheuristic optimization results – FF 10 m 

FF 25 m Rank Mesh Type Conway 

Operator

Mass steel 

(kg/m2)

Truss Height 

(m)

Density 

(#faces)

Form Height 

(m)

+ % mass

1. QUAD AMBO 8.60 0.50 3561 23.40 0.00%

2. QUAD DUAL 9.40 0.50 3707 22.62 9.30%

3. TRI DUAL 9.46 0.50 4096 25.43 10.00%

4. TRI AMBO 9.98 0.50 4096 25.43 16.05%

5. SKELETON AMBO 10.11 2.94 1260 24.92 17.56%

6. SKELETON DUAL 10.74 2.87 1470 21.12 24.88%

7. QUAD KIS 11.00 0.50 3707 22.62 27.91%

8. SKELETON KIS 13.00 3.08 1760 24.24 51.16%

9. TRI KIS 13.60 0.50 5092 25.60 58.14%

FF 10 m Rank Mesh Type Conway 

Operator

Mass steel 

(kg/m2)

Truss Height 

(m)

Density 

(#faces)

Form Height 

(m)

+ % mass

1. QUAD AMBO 11.28 1.05 3886 10.40 0.00%

2. SKELETON AMBO 11.46 3.23 1260 10.54 1.59%

3. SKELETON DUAL 11.70 3.10 1680 10.50 3.70%

4. TRI DUAL 11.96 0.69 5052 10.73 6.01%

5. QUAD DUAL 12.04 1.05 3886 10.40 6.71%

6. TRI AMBO 12.77 0.52 5075 10.83 13.18%

7. QUAD KIS 13.72 1.05 3886 10.41 21.55%

8. SKELETON KIS 14.92 2.76 1680 10.52 32.25%

9. TRI KIS 16.54 1.55 3573 11.61 46.59%
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Viewing the results in the 10 m form finding height limit category, Table 09.03, the solutions 

having least mass are found at higher truss heights than for 25 m limit and for certain configurations 

lower mesh densities. 

 
 

Table 09.03 – Metaheuristic optimization results – FF 2 m 

 

Viewing the results in the 2 m form finding height limit category, Table 09.04, the solutions 

having least mass are found at even higher truss height than for 10 m and 25 m categories, while the 

mesh density is lower than in both categories.  

 

09.5 Conclusion 

 

Thus, analysing both brute force and meta heuristic optimization results, it is clear, that there is 

a significant difference between various space frame configurations in various parameter areas. Thus, 

space frame structures are influenced by their mesh topology. Furthermore, form finding height 

influences the structural mass of each configuration the most, and there are clear differences between 

them, showing how influential the choice of specific configuration is on the optimal result. It is 

interesting to note that even with a small form finding height, in relation to a flat space frame, 

considerable material savings can be achieved. The least efficient space frame would be a completely flat 

one. By just increasing the form finding height up to 1-3 m around 50% of material savings can be 

achieved. Furthermore, if one wants to favour least number of bars in the space frame, a low mesh 

density is beneficial. Thus, lower form finding heights might be optimal from that perspective. A lower 

mesh density means a higher average edge length of mesh edges. While optimality of space frame 

configurations is relative, depending on the posed criteria, certain space frame configurations will 

emerge as optimal. While this might seem trivial or obvious, with an appropriate space frame 

configuration choice one can optimize a space frame design, there is no “one size fits all” solution in this 

regard. The analysis carried out in this case study could be considered as one of the necessary steps in 

the overall design of space frame structures. It is highly beneficial to investigate many possible solutions 

within a relatively short time in the preliminary design phase, thus facilitating better quality designs, 

and lowering the risk of making wrong initial choices which then must be corrected in later design 

phases. Furthermore, considering that double curved large span space frame structures are often special 

projects with considerable project economy and technical challenges in execution, optimization and 

performance analysis is paramount for a successful design process.  

 

To conclude the initial questions from introductory paragraph of this chapter, can be answered 

as follows:  

 

Q1.) Which combination of mesh and operator, out of the nine possible, will perform best and 

in which category? 

 

Metaheuristic optimization results categories 

FF 2 m Rank Mesh Type Conway 

Operator

Mass steel 

(kg/m2)

Truss Height 

(m)

Density 

(#faces)

Form Height 

(m)

+ % mass

1. SKELETON DUAL 17.26 4.84 650 2.00 0.00%

2. TRI DUAL 18.52 5.12 840 2.00 7.28%

3. QUAD DUAL 19.44 7.04 500 2.00 12.62%

4. QUAD AMBO 19.53 7.05 504 2.00 13.14%

5. SKELETON AMBO 19.84 4.75 650 2.00 14.93%

6. SKELETON KIS 22.25 4.76 650 2.00 28.90%

7. TRI KIS 23.45 3.65 2179 2.00 35.84%

8. TRI AMBO 24.80 7.12 470 2.00 43.67%

9. QUAD KIS 25.34 4.91 2039 2.00 46.80%
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Q2.) Is there any benefit to form finding, what is the influence on F1 and F2? 

 

Form finding influences optimal space frame configuration choice the most. 

 

Q3.) How do the input parameter values influence the optimal solution? 

 

Optimal solutions within form finding height categories of 25%,10% and 2%, show a 

certain trend. For high form finding height (25% of span length), solutions with least mass have 

low truss heights (0.5 – 2m) and high number of mesh faces (3000+). For medium form finding 

heights (10% of span length) solutions with least mass have increased truss heights (1 – 3m) 

and a lower number of faces (cca.1000),  

Table 09.04 

Matrix of which combination of mesh and operator have emerged as winners in categories 

 

  

 Dual (D) Ambo (A) Kis (K) 

Quad (Q)  X Least amount of steel (Cat 1. 
-F1) 
Occurs at high form finding 
heights –25% of span length 

X 

Tri (T) Highest stiffness (Cat.1 -F2), 
occurs at high form finding 
heights – 25% of span length 

X Least number of different 
cross-sections utilized, 
accompanied with an 
average structural mass 

Skeleton (S) Least amount of steel, least 
number of cross-sections. 
Occurs at low form finding 
heights – 2% of span length 
 

Least amount of steel, mesh 
density less than 2000 faces. 
Form finding height 5-10% of 
span 

Highest stiffness, occurs at 
low form finding height – 2% 
of span length  
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10
  10 Conclusions and Recommendations 

 

 

 

 

 

10.1    Introduction  

 

The main goal of this research was to develop a parametric tool to investigate the relationship 

between mesh topology, Conway operators and structural behaviour of space frame structures formed 

based on them.  

In this chapter, the results will be discussed following with conclusions and followed up with 

future recommendations. It is important to note that all mentioned percentages in following 

conclusions are a rule-of- thumb or rough estimates based on analysis done in the case study chapter, 

stating precise percentages does not add quality to conclusions but potentially impacts the readability.  

Furthermore, the research problem as stated, or any similar research in the same sense, will 

always result in dealing with a multi-variable design space of the problem. With trying to expand the 

number of parameters, the search for the optimal design and gauging the influence of the parameters 

on the design, becomes less and less feasible.  

Another problem was raised in the use of the word “optimal” to describe the solutions. The 

question of what is meant by optimal in this MSc thesis research is highly important. With optimal it 

was not the idea to suggest that there is one optimal solution in general, but that there exist relative 

optimal solutions in the context of different posed optimality criteria. In this research, four optimality 

criteria were considered initially, which in the opinion of the author could be considered as the four 

general optimality criteria for any civil engineering design. Namely, mass, stiffness, aesthetics, and 

fabrication. Mass and stiffness were investigated, due to the possibility of those being objective and 

quantifiable criteria. Aesthetics for example is hard to objectify and quantify and is often in the eye of 

the beholder. Fabrication as an optimality criterion was considered, however, the possible formulation 

of criteria would have to be quite rigorous and informed by experts within the space frame construction 

industry and can be a thesis topic by itself potentially. 

However, even if all four of the optimality criteria could be implemented, this poses a question 

of how to weigh the influence of each of the criteria within the final solutions. There would have to be 

certain trade-offs specified, due to for example, the criteria of aesthetics and fabrication clashing 

together. What might be considered more aesthetic might prove much less fabricable.  

 

Thus, the chosen optimality criteria considered in this MSc thesis research were the mass and stiffness. 

For large span structures, minimizing the structural mass and thus achieving both a more sustainable 

and economic solution, is important. Furthermore, due to the large span, stiffness is also important to 

limit the possible deflections. A space frame with a large span that deflects excessively is not something 

that should be designed in the first place. 

The final conclusions, which were formed based on results of the case study, indicate more the 

direction towards where attention of the designer should be to optimize the design, rather than 

providing exactly quantified relations of parameters to achieve it. Furthermore, the tool can be used for 
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preliminary design investigation and optimization of space frame structure configurations based on 

free-form input surfaces.  

The parametric tool and thus the optimization process, can always be adjusted to specific 

project design requirements. For example, if there is a need for a minimal clearance height beneath the 

space frame structure, or a limit of space frame truss height due to desired aesthetical proportions in 

relation to total geometry of space frame, or a limited set of cross sections available on the market. 

 In general, any desired boundary condition can be imposed upon tool input parameters, thus 

narrowing the scope of the design space, and generating a new set of optimal space frame 

configurations.  

 

10.2     Research question answers  

 

In chapter 2, the main research question was stated as follows: 

 

Given an architectural free-form irregular surface model to discretize into a steel space frame con- 
figuration, what is the optimal structural pattern configuration regarding multiple optimality criteria 
(mass, fabrication, aesthetics, stiffness in regards of chosen pattern) and their realistic constraints (load 
bearing behaviour, deflection, available types of steel cross sections)?  

The posed research sub questions were as follows:  

 

1.) What are relevant surface tessellations/discretization’s/meshing options for generating space frame 
structures? 

2.) Is there any noticeable influence on structural performance of space frames regarding chosen 
tessellations? 

3.) Which space frame configuration is most appropriate considering optimality criteria? 
4.) What is the influence of the relevant parameters? 
5.) Which structural pattern discretization strategy is the most appropriate? 
6.) Which parameters governing the space frame structure configuration are most relevant for 

optimizing space frames? 
 

Answers to the following posed research questions are given as follows: 

1.) What are relevant surface tessellations/discretization’s/meshing options for generating space frame 
structures? 
 
Answer: Based on the literature study done, the relevant tessellations, which serve to form 
the bottom layer of space frame, were identified as: Quadrilateral, Triangular and Skeleton 
based mesh, accompanied with Dual, Kis and Ambo Conway operator relations to form the 
space frame top layer. 
 

2.) Is there any noticeable influence on structural performance of space frames regarding chosen 
tessellations? 
 
Answer: Based on the case study done, the initial hunch of space frames being insensitive 
towards the choice of tessellation was proved to be wrong. Thus, there is a noticeable 
influence of tessellation and Conway operator as presented in graphs in chapter 9. 

 

3.) Which space frame configuration is most appropriate considering optimality criteria? 

 

Answer: For the researched pentagram shaped surface, the skeleton based quad mesh often 
proved the most appropriate. The specific combination of skeleton based quad mesh and kis 
operator emerged as most appropriate considering high stiffness (F2), and skeleton dual in 
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terms of least material usage (F1) 
 

5.) Which structural pattern discretization strategy is the most appropriate? 
 
Answer:  Meshing is the most appropriate discretization strategy for creating space frame 
structures based on free-form input surfaces. The mesh approach respects the total geometry 
of the inputted surface, inner and outer boundaries, and shape of the surface. Initially the 
discretization strategy was based on creating sub surfaces on the input surfaces using the 
Isosurface component in grasshopper, with which one can specify the number of U and V 
divisions of the surface and create subsurfaces. This approach was lacking due to this strategy 
not respecting the total geometry of the input surface. For example, if a trimmed surface was 
tried to be discretized by this strategy it would discretize the untrimmed geometry. One 
would then have to cull the subsurfaces which were out of the boundary of the trimmed 
geometry. This was more complex, less controllable and resulted in a much slower script 
which would in the end output incorrect geometry. Furthermore, the subsurface approach 
does not allow for generating meshes such as the skeleton-based mesh. 

 

6.) Which parameters governing the space frame structure configuration are most relevant for optimizing 
space frames? 
 
Answer:  Optimization of space frame, in this case study, is understood as the minimization 

of structural mass (F1) or minimization of deflections (F2). The form finding height parameter 

influences these two fitness goals the most.  

10.3     Conclusion 

 

In this thesis research the following areas of influence were investigated to understand trends in 

parameter influence on optimal space frame structure configuration (top and bottom mesh topology): 

1.) Type of base mesh – Quad, Tri, Skeleton-based  

2.) Conway operator relations – Dual, Ambo, Kis 

3.) Mesh density – 500 – 5000 faces  

4.) Truss height – 0.5 m – 8 m 

5.) Form finding height – 2% - 25% of span 

The search for an optimal solution depends on the fitness function or goal posed. Furthermore, 

it depends on the number, scope and type of parameters thought of as important for the optimization 

of the space frame structure. With the tool developed in this thesis, the solutions can always be 

considered as 3 x 3 matrix (3 mesh types x 3 Conway operators) for which we evaluate goals (F1 or F2) 

regarding certain parameters (Mesh density, truss height, form finding height). 

The focus in this research was on the two goals (fitness functions), lowest mass (F1), highest 

stiffness (F2) in relation to three parameters, mesh density, truss height and form finding height.  

Form finding influences F1 and F2 the most. One hypothesis would be that with form finding 

the shape of the surface is adjusted to behave more like a shell or arch than a flat plate, thus lessening 

the required amount of steel and having a higher stiffness. For example, a flat space frame on a large 

span will behave like a plate, meaning truss height will be the main parameter for achieving adequate 

load bearing behaviour, and the cross sections will be large. It is important to note that even with a 

small form finding height (slight camber of the space frame), the structural mass can be considerably 

lowered, with 2% form finding height, up to 50% of material savings are achieved in relation to 

completely flat space frame.  

To understand how space frame configurations contribute to overall structural behaviour, two 

approaches were used. Namely, brute force approach and meta-heuristic optimization approach. The 

Brute force approach was applied to generate a broad spectrum of possible results, thus visualizing the 
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problem design space by 9000 discrete solutions. This approach facilitates understanding of which 

parameters are influential on optimal space frame configurations, by investigating the parallel 

coordinate graphs generated and generating further specific graphs such as the cumulative graphs for 

F1 (least mass) and F2 (highest stiffness) in relation to FF (form finding). 

The Metaheuristic optimization approach was used to further investigate optimal solutions 

within more narrowed form finding height parameter ranges. Specifically, the influence of form finding 

was further investigated for nine possible configurations at three specific form finding height 

parameter limits. First, maximum form finding height was allowed up to 25% of the span, then 10% 

and finally 2% of span length. These areas were chosen after analysing the cumulative graphs, where it 

was clear that after a form finding height of 25% of span length, there is no more influence on lowering 

the structural mass. Furthermore, investigating larger form finding height than 25% of span length 

creates highly exaggerated arched space frames, which do not make much sense as structures. This was 

investigated by analysing beforementioned brute force approach results, which were generated 

without limiting input parameter scopes, facilitating design space discretization in full parameter 

range, meaning both feasible, unfeasible, desirable, and undesirable solutions were generated. Thus, 

after the broad picture was established, for further analysis, a narrower parameter scope was defined 

for metaheuristic optimization.  

It was found that in the 25% form finding height limit category the space frame configurations 

with least mass have a small truss height (0.5 – 1 m) and high number of mesh faces (3000+). In the 10% 

configurations with least mass had a higher truss height than 25% category (1-2 m), and lower number 

of mesh faces (1000-2000). Finally in the 2% category, this trend continues further, and accordingly, 

truss heights are higher than in 10% category (+ 4m) and the number of mesh faces is lowest (less than 

1000). 

Analysing the trends of how parameters influence the optimal solution, it is thus clear, higher 

form finding heights, achieve material savings, lower truss height, and increase mesh density. 

Conversely, lowering form finding height, increases material usage (though generally the optimal 

masses are all lower than 20kg/m2 which is considered quite low for a steel structure), increases the 

truss height, and decreases number of mesh faces. A rationale for such structural behaviour can be 

explained by two phenomena. Firstly, as the form finding height from flat to double curved space 

frame, the structural action becomes from plate behaviour to shell-like behaviour. Exceeding 25% of 

span length form finding height entails more arch-like structural behaviour. Secondly, the relationship 

between form finding height, truss height and number of mesh faces is influenced by maintaining 

sensible angle ranges between bars of the space frame. All the optimal solutions found have angles 

between bars which are not to steep or too shallow, roughly that entails a range from 30-60 degrees.   

To conclude, out of the nine possible space frame configurations that were researched, the 

following matrix sums up which configurations emerged as optimal regarding lowest mass (F1) and 

highest stiffness (F2) criteria:  

 

Table 10.01 

Matrix of which combination of mesh and operator have emerged as winners in categories 

 

 Dual (D) Ambo (A) Kis (K) 

Quad (Q)  X Least amount of steel (Cat 1. 
-F1) 
Occurs at high form finding 
heights – 25% of span length 

X 

Tri (T) Highest stiffness (Cat.1 -F2), 
occurs at high form finding 
heights – 25% of span length 

X Least number of different 
cross-sections utilized, 
accompanied with an 
average structural mass 

Skeleton (S) Least amount of steel, least 
number of cross-sections. 
Occurs at low form finding 
heights – 2% of span length 
 

Least amount of steel, mesh 
density less than 2000 faces. 
Form finding height 5-10% of 
span 

Highest stiffness, occurs at 
low form finding height – 2% 
of span length  
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Table 10.02 

Design guideline depending on general form height categories 

 

Furthermore, the results can also be summarized in Table 10.2 as a design guideline for space 

frame structures in relation to desired form height. It can be used as a rough indication of which mesh 

and operator combination should be chosen in regards to desired goal (mass, stiffness) in respect to 

desired form height (2%,10%,25%). It can thus help in narrowing down the “width” of the design space, 

allowing for more investigation of the chosen “depth” of the design space. 
 

10.4 Further Recommendations 

 

Before discussing further recommendations, I will first describe here a few problems that 

occurred during the development and research for this thesis. The first and foremost problem 

encountered was the continuous occurrence of new ideas of how to restructure both this thesis, tool 

logic, and focus of research. Thus, the developed tool has a large amount of input data and possibilities 

for researching a vast number of combinations of the related parameters. This often created some 

confusion, in which parameter relations and influence should be investigated, because to investigate 

everything that is possible with the developed tool is not feasible in the scope of this MSc thesis. Thus, 

gradually the scope was narrowed to be adequate for MSc thesis and resulted in the presented case 

study and the conclusions.  

 

Considering the scope of research possible with the developed research tool, some 

recommendations can be given. The developed tool can facilitate preliminary design investigation and 

optimization of space frame structures based on nine possible structural configurations in a potential 

design setting. Depending on the hypothetical space frame project requirements, the tool can be 

adjusted to accommodate research accordingly. For example, in a particular design situation a flat space 

frame typology might be of interest (no form finding) and by simply inputting the desired flat 

geometry, the tool can generate similar results as in the case study, facilitating early design exploration 

and optimization. 

Additionally, in this thesis research space frame configurations where always based on 

pyramid module type connectivity between top and bottom layers and hinged boundary conditions 

between bars. A potential direction of research could be made into investigating other possible 

connections between top and bottom layer accompanied with appropriate boundary conditions (nodes 

could be set as fixed for example) and Vierendeel type of connectivity might be investigated. With slight 

adjustment, the tool can also facilitate investigation into space grid typology behaviour. Furthermore, 

the load cases considered were self-weight of the structure + symmetric point loads in nodes 

representing additional loads, such as self-weight of cladding. An interesting research direction might 

be to see how the space frame configurations are influenced by more complex load cases. These might 

entail asymmetric vertical loads due to snow, horizontal loads due to wind, or if the space frame 

Optimum Parameters 2% 10% 25%

min. mass mesh + operator Skeleton+Dual Skeleton-Ambo Quad+Ambo

truss height (m) 5 3 0.5

nuber of faces 650 1250 2600

mas (kg) 17,25 11.48 8.07

el.en. (kNm) 582 352 247

max. stiffness mesh + operator Skeleton+Kis Skeleton-Ambo Tri-Dual

truss height (m) 7 5.9 5.8

nuber of faces 250 300 290

mas (kg) 26.27 16.45 14.95

el.en. (kNm) 431 186 82
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structure should support certain point loads, such as a score screen on a stadium or a walkway which 

is suspended on the space frame structure. The ambiguity of the tool allows for design exploration only 

limited by the imagination of the designer and realistic project boundary conditions. 

Moreover, the parametric tool was developed within grasshopper and rhino, utilizing 

kangaroo plugin for form finding, karamba3d for structural analysis and cross section optimization, 

Galapagos for metaheuristic optimization and Colibri + Design Explorer for a brute force calculation of 

a vast number of space frame configurations, thus facilitating design space exploration to form 

conclusion about structural behaviour. Considering that grasshopper and rhino are the most common 

choice of parametric software, and the large number of additional plugins available, the choice for the 

same is clear. Even though the approach to creating the tool with rhino and grasshopper might be 

practical in terms of familiarity of designers with software, and consistency in software environment, 

due to inherent software limitations, the speed of the developed scripts is not optimal. This could be 

improved by applying a more custom software design approach, requiring building the functionality 

from ground-up and more extensive programming knowledge, thus imposing a trade-off, speed vs. 

ease of software implementation. The utilization of all CPU cores, parallel processing in general, 

combined with possible GPU utilization could greatly improve the speed of the tool. 
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Appendix 
 

 

PYTHON SCRIPT – COMPAS_SINGULAR  

 

 

 
 

DISCRETE MAPPING 

 

 
 

 
import rhinoscriptsyntax as rs 
from compas.datastructures import network_polylines 
from compas.datastructures import Network 
from compas.utilities import pairwise 
 
def point_xyz_to_uv(self, xyz): 
        return rs.SurfaceClosestPoint(self, xyz) 
 
def borders(self, border_type=0): 
        curves = rs.DuplicateSurfaceBorder(self, type=border_type) 
        exploded_curves = rs.ExplodeCurves(curves, delete_input=False) 
        if len(exploded_curves) == 0: 
            return curves 
        rs.DeleteObjects(curves) 
        return exploded_curves 
 
def discrete_mapping(self, segment_length, minimum_discretisation, crv_guids=[], 
pt_guids=[]): 
        Aborders = [] 
        for btype in (1, 2): 
            border = [] 
            for guid in borders(self, border_type=btype): 
                L = rs.CurveLength(guid) 
                N = max(int(L / segment_length) + 1, minimum_discretisation) 
                points = [] 
                for point in rs.DivideCurve(guid, N): 
                    points.append(list(point_xyz_to_uv(f, point)) + [0.0]) 
                if rs.IsCurveClosed(guid): 
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                    points.append(points[0]) 
                border.append(points) 
                rs.DeleteObject(guid) 
            Aborders.append(border) 
        outer_boundaries = network_polylines(Network.from_lines([(u, v) for border in 
Aborders[0] for u, v in pairwise(border)])) 
        inner_boundaries = network_polylines(Network.from_lines([(u, v) for border in 
Aborders[1] for u, v in pairwise(border)])) 
 
        # mapping of the curve features on the surface 
        curves = [] 
        for guid in crv_guids: 
            L = rs.CurveLength(guid) 
            N = max(int(L / segment_length) + 1, minimum_discretisation) 
            points = [] 
            for point in rs.DivideCurve(guid, N): 
                points.append(list(point_xyz_to_uv(f, point)) + [0.0]) 
            if rs.IsCurveClosed(guid): 
                points.append(points[0]) 
            curves.append(points) 
        polyline_features = network_polylines(Network.from_lines([(u, v) for curve in 
curves for u, v in pairwise(curve)])) 
 
        # mapping of the point features on the surface 
        point_features = [list(point_xyz_to_uv(f, rs.PointCoordinates(guid))) + [0.0] for 
guid in pt_guids] 
 
        return outer_boundaries[0], inner_boundaries, polyline_features, point_features 
 
a = surface 
b = D 
c = 5 
d = crv_guids 
e = pt_guids 
f = srf_guid 
 
result = discrete_mapping(f,b,c,d,e) 

 

BOUNDARY TRIANGULATION 

 

 

 
 

 
#import compas 
#from compas.geometry import delaunay_from_points 
from compas.rpc import Proxy 
proxy = Proxy("compas.geometry") 



 
 

105 

delaunay = proxy.delaunay_from_points_numpy 
from compas.datastructures import Mesh 
from compas.geometry import subtract_vectors 
from compas.geometry import length_vector 
from compas.geometry import cross_vectors 
from compas.datastructures import trimesh_face_circle 
from compas.geometry import is_point_in_polygon_xy 
from compas_rhino.artists import MeshArtist 
 
 
# Triangulate the input surface. 
def boundary_triangulation(outer_boundary, inner_boundaries, polyline_features=[], 
point_features=[], delaunay=None): 
 
    if not delaunay: 
        delaunay = delaunay_from_points 
 
    # generate planar Delaunay triangulation 
    vertices = [pt for boundary in [outer_boundary] + inner_boundaries + polyline_features 
for pt in boundary] + point_features 
    faces = delaunay(vertices) 
 
    delaunay_mesh = Mesh.from_vertices_and_faces(vertices, faces) 
 
    # delete false faces with aligned vertices 
    for fkey in list(delaunay_mesh.faces()): 
        a, b, c = [delaunay_mesh.vertex_coordinates(vkey) for vkey in 
delaunay_mesh.face_vertices(fkey)] 
        ab = subtract_vectors(b, a) 
        ac = subtract_vectors(c, a) 
        if length_vector(cross_vectors(ab, ac)) == 0: 
            delaunay_mesh.delete_face(fkey) 
 
    # delete faces outisde the borders 
    for fkey in list(delaunay_mesh.faces()): 
        centre = trimesh_face_circle(delaunay_mesh, fkey)[0] 
        if not is_point_in_polygon_xy(centre, outer_boundary) or 
any([is_point_in_polygon_xy(centre, inner_boundary) for inner_boundary in 
inner_boundaries]): 
            delaunay_mesh.delete_face(fkey) 
 
    return delaunay_mesh 
 
#print outer_boundary 
 
 
trimesh = boundary_triangulation(outer_boundary, inner_boundaries, polyline_features, 
point_features, delaunay=delaunay) 
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