
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Benchmarking Stateful Serverless
Functions

Author:
Martijn COMANS

Supervisor:
Dr. Asterios KATSIFODIMOS

Co-supervisors:
Dr. Marios FRAGKOULIS

Kyriakos PSARAKIS

A thesis submitted in fulfilment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

May 3rd, 2023

http://www.tudelft.nl
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

i

Declaration of Authorship
I, Martijn COMANS, declare that this thesis titled, “Benchmarking Stateful Serverless
Functions” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed: Martijn Comans

Date: April 27, 2023

ii

DELFT UNIVERSITY OF TECHNOLOGY

Abstract

Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

Benchmarking Stateful Serverless Functions

by Martijn COMANS

Serverless computing is an increasingly popular paradigm in cloud computing where
many of the operational challenges of running cloud applications, like server provi-
sioning and management, are left to the cloud provider. A popular form of server-
less computing is Functions-as-a-Service (FaaS), where the user submits functions
for which the resources are automatically provisioned and scaled. However, FaaS
functions are traditionally stateless, and thus rely on external services to handle
state. Stateful FaaS systems are an extension to traditional FaaS offerings which
have built-in function state management and function addressability, which allows
for functions to communicate and to form complex operations. This work introduces
a performance benchmark for stateful functions systems, based on an e-commerce
application. The benchmark includes two workflows based on two complex oper-
ations that involve multiple stateful functions. The workflows can be dynamically
altered to form different function calling structures. We provide reference imple-
mentations of the benchmark application for four current stateful FaaS systems, and
a benchmark client which runs the two benchmark workloads on these implementa-
tions. We show that our benchmark can be used to test and compare stateful systems
on performance, networking, cost and scalability, by running various experiments
on our reference implementations.

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

iii

Acknowledgements
Before the start of this work, I would like to thank several people that made this
thesis possible. First, I would like to thank Dr. Asterios Katsifodimos for his super-
vison and feedback throughout this project. Furthermore, I would like to thank Dr.
Marios Fragkoulis for his input early in the process. I would also like thank Kyr-
iakos Psarakis for his day-to-day supervision and frequent interesting discussions
that shaped this thesis.

Finally, I would like to express my heartfelt gratitude to my friends and family, and
in particular Daan, Henk-Jan, Nick, Olav, and Philippe, for their continued support
and encouragement during this long process.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Contributions . 2
1.2 Report outline . 2

2 Related work 3
2.1 Database benchmarks . 3
2.2 Serverless functions benchmarks . 4
2.3 Microservices benchmarks . 4

3 Design 5
3.1 Current benchmarks . 5

3.1.1 Specifications . 5
TPC-C . 5
YCSB . 6

3.1.2 Limitations . 7
3.2 Benchmark application . 8

3.2.1 Entities . 8
3.2.2 Operations . 8

Checkout . 8
Analytics query . 10

3.3 Benchmark client . 10
3.3.1 Workloads . 11

Checkout workload . 11
Analytics workload . 11

3.3.2 Distributions . 11
3.4 Extensibility . 11

4 Selected systems 13
4.1 Apache Stateful Functions . 13

4.1.1 Architecture . 13
4.2 Microsoft Orleans . 14

4.2.1 Architecture . 14
Transactions . 15

4.3 Cloudstate . 15
4.3.1 Architecture . 15

4.4 Cloudburst . 16

v

4.4.1 Architecture . 17
4.5 Comparison . 17

4.5.1 State management . 17

5 Implementation 19
5.1 Shared . 19

5.1.1 API . 19
5.1.2 Tracing . 19

5.2 Apache Stateful Functions . 19
5.2.1 Functions and Messages . 20
5.2.2 Gateway . 21

5.3 Microsoft Orleans . 21
5.3.1 Transactions . 22

5.4 Cloudstate . 22
5.5 Cloudburst . 23
5.6 Client . 24

5.6.1 Workload generation . 24
5.6.2 Log collection . 25

6 Experiments and evaluation 26
6.1 General setup . 26

6.1.1 Workloads . 26
6.2 Performance . 27

6.2.1 Maximum throughput . 27
Experiment question . 27
Experiment design . 27
Results . 28

6.2.2 Request latency . 29
Experiment questions . 29
Experiment design . 29
Results question 1 . 30
Results question 2 . 31
Results question 3 . 32

6.2.3 Networking . 33
Experiment questions . 33
Experiment design . 33
Results question 1 . 34
Results question 2 . 34
Results question 3 . 35

6.2.4 Cost . 36
Experiment questions . 36
Experiment design . 37
Results question 1 . 37
Results question 2 . 37

6.3 Scalability . 38
Experiment question . 38
Experiment design . 38
Results . 39

6.4 Development difficulty . 40
6.4.1 Lines of code (LOC) . 40
6.4.2 Subjective rating . 41

vi

7 Discussion 43
7.1 Limitations . 43
7.2 Future work . 44

8 Conclusion 45

A Application API Schema 46
A.1 Product . 46

A.1.1 Create new product . 46
A.1.2 Update product . 46
A.1.3 Query frequently bought together items 46

A.2 User . 47
A.2.1 Create new user . 47
A.2.2 Add credits to user . 47

A.3 Shopping cart . 47
A.3.1 Create new shopping cart . 47
A.3.2 Add product to shopping cart . 47

A.4 Order . 48
A.4.1 Checkout order . 48

B Source code 49

Bibliography 50

vii

List of Figures

3.1 Checkout operation entity request path 9
3.2 Analytics query request path . 10

4.1 StateFun architecture, from the StateFun documentation1. 14
4.2 Cloudstate architecture diagram, based on the cloudstate documenta-

tion4. 15
4.3 Cloudburst architecture diagram (Sreekanti et al., 2020) 16

5.1 Apache Stateful Functions application architecture 20
5.2 Sequence diagram of checkout operation in the Apache Stateful Func-

tions implementation . 20
5.3 Microsoft Orleans application architecture 22
5.4 Adjusted checkout operation request path in Cloudburst implemen-

tation. 23
5.5 Client architecture . 24

6.1 Throughput of checkout requests during a checkout benchmark work-
load, for the base deployment of the Orleans benchmark application. . 28

6.2 Measured maximum throughput in requests per second of the tested
systems while running the checkout and analytics workloads. The
Orleans implementation which uses ACID transactions is labelled as
“Orleans (T)”. Missing results signify that no sustainable throughput
could be reached. 29

6.3 Boxplot showing measured latency of requests while running the check-
out and analytics benchmarks with a stable throughput. The Orleans
implementation which uses ACID transactions is labelled as “Orleans
(T)” . 31

6.4 Mean request latency per number of products in checkout 32
6.5 Mean orleans analytics request latency at stable throughput load in

three request structure cases where one of the two request parame-
ters (top or depth) is fixed. Latency is plotted for each value of the
remaining parameter. 32

6.6 Mean percentage of latency in checkout request contributed by each
function, the API gateway, and network, under stable throughput. . . 34

6.7 Mean network latency percentage for each amount of products in
checkout measured under stable throughput. 35

6.8 Mean network latency percentage of Orleans analytics requests at sta-
ble throughput in three request structure cases where one of the two
request parameters (top or depth) is fixed. The mean network per-
centage is plotted for each value of the remaining parameter. 36

6.9 Mean cluster CPU core usage while running stable throughput exper-
iments. 37

6.10 Ratio of achieved stable throughput per vCPU core used. 38

viii

6.11 Max throughput per cluster size in nodes. 39

ix

List of Tables

4.1 Comparison of state management in selected stateful functions systems. 18

6.1 Latency numbers of checkout workload at stable throughput. 30
6.2 Latency numbers of analytics workload at stable throughput. 30
6.3 Scalability experiments with amount of n2-standard-4 equivalent nodes,

measured maximum throughput and deployment configuration. . . . 39
6.4 Lines of code (LOC) per implementation 40
6.5 Subjective rating of programming model and system understandability 41

1

Chapter 1

Introduction

The emergence of cloud computing brought new opportunities to the IT hardware
market (Armbrust et al., 2009). It dramatically reduced upfront costs for developers
and businesses to get access to compute resources and allowed companies with large
datacenters like Amazon and Google to share and profit from their underutilized
resources. In the traditional deployment model, developers needed to provision and
operate their own hardware for their applications, whereas in the cloud model, they
could now rent computing resources from cloud providers. Since cloud resources
are seemingly always available, businesses can scale their resources dynamically
according to utilization, reducing costs further.

However, managing cloud applications can still be a complex task for users. Server-
less computing is a relatively new paradigm for deploying and running cloud ap-
plications, where the developer submits only their code, and the cloud provider is
responsible for provisioning and managing the servers on which the code is run
(Jonas et al., 2019). In this model, system administration concerns like scaling, fault
tolerance and monitoring are left to the cloud provider. Furthermore, the cloud user
is only billed for the actual usage of resources. For the cloud provider, it is an op-
portunity to further optimize the utilization of their hardware (Baldini et al., 2017).
One of the most popular serverless models on cloud platforms is Functions-as-a-
Service (FaaS), where users submit simple functions that can be triggered to run
by various events. FaaS functions are stateless, making them easy to scale and run
in parallel. However, this means that functions rely on external services to handle
state, like cloud storage or databases. As functions can be executed on any server
that is available, data needs to be shipped to wherever the code is running, which
can cause increased latency (Hellerstein et al., 2019). Furthermore, functions can not
communicate and coordinate with each other directly, as they are short-lived and
non-addressable. This makes distributed computing protocols that enable guaran-
tees like data consistency virtually impossible. These limitations make current FaaS
offerings not suitable for many stateful, low-latency applications.

Stateful FaaS systems try to address these limitations, by offering built-in function
state management and allowing direct function-to-function calls, enabling complex
workflows. Examples of Stateful FaaS systems include Apache Stateful Functions1

and Cloudburst (Sreekanti et al., 2020). As more stateful functions systems are de-
veloped and presented, it becomes imperative to test and compare these systems.
For example, it is important to test and understand the implications of the various

1https://nightlies.apache.org/flink/flink-statefun-docs-stable

https://nightlies.apache.org/flink/flink-statefun-docs-stable

Chapter 1. Introduction 2

design decisions during the development of new stateful functions systems. Fur-
thermore, as these systems become more suitable for production applications, po-
tential users need to be able to evaluate systems on whether they are suitable for
their applications. Therefore, we argue that a standardized benchmark is necessary.

Current benchmarks do exist, for database systems (Raab, Kohler, and Shah, 1992;
Cooper et al., 2010; Dey et al., 2014) as well as for FaaS systems (Wang et al., 2018;
Copik et al., 2021) and microservices (Gan et al., 2019). While some aspects of these
benchmarks are relevant for stateful functions systems, they cannot be directly ap-
plied. Furthermore, existing benchmarks fail to properly test the features that are
unique to stateful functions systems.

This thesis will be focused on the following research questions:

RQ1. How can we design a benchmark to evaluate stateful serverless functions sys-
tems?

RQ1.1 What do current benchmarks for databases and cloud systems offer, that
is relevant for testing stateful serverless functions systems?

RQ1.2 How do we design a benchmark application that uses the unique charac-
teristics of stateful serverless functions?

RQ1.3 How do we design benchmark workloads and analyses that help us un-
derstand stateful serverless functions systems?

RQ2. How do current stateful serverless functions systems compare when tested
using this benchmark?

1.1 Contributions

In this work, we propose a performance benchmark designed specifically for stateful
FaaS systems. The design of the benchmark is composed of an e-commerce applica-
tion which is implemented on the tested system and a benchmark client which tests
the system by calling operations on the application. The application contains com-
plex operations which run over multiple functions and are unique to stateful FaaS
systems. We evaluate the benchmark by implementing the benchmark application
on current stateful FaaS systems and using the benchmark client to test and compare
the performance of these systems. Furthermore, we show that the benchmark allows
us to inspect and compare design decisions within stateful FaaS systems.

1.2 Report outline

In chapter 2, we will summarise related work in benchmarking cloud systems and
databases. Next, we describe the design of our benchmark application and client
in chapter 3. In chapter 4 we discuss the current stateful functions systems which
we have selected to implement our application on. In chapter 5 we describe the im-
plementation details of our benchmark application, for each of the selected systems.
After that, we describe the experiments we have performed on current stateful FaaS
systems to evaluate our benchmark in chapter 6. In chapter 7, we discuss our work
and propose topics for future research. Finally, in chapter 8, we summarise and
conclude our work.

3

Chapter 2

Related work

In this chapter, we will discuss related work on benchmarking stateful cloud sys-
tems. No benchmarks currently exist specifically for stateful serverless functions,
but existent work on benchmarking other database and cloud systems is relevant.
As stateful serverless functions combine the management of application data with
running function code, we address benchmarks for database systems and cloud de-
ployment architectures. First, we will address existing benchmarks for databases.
Then, we look at benchmarks for serverless functions and microservices.

2.1 Database benchmarks

Many benchmarks for database systems exist, with a prominent example being TPC-
C. TPC-C has existed since 1992 and was designed to test the performance of rela-
tional database systems (Raab, Kohler, and Shah, 1992). It is centred around an
order-entry system and includes several complex transactions related to managing
orders, payments and product stock. An even more complex OLTP (online transac-
tion processing) benchmark named TPC-E was approved in 2007 (Transaction Pro-
cessing Performance Council (TPC), 2015).

However, these benchmarks assume that the tested database systems can provide
ACID (atomicity, consistency, isolation, durability) properties, which many cloud
systems can not. YCSB is a benchmark introduced by researchers at Yahoo! aimed
at testing cloud serving, or “NoSQL”, databases, which typically compromise on
ACID properties to achieve better scalability and availability (Cooper et al., 2010).
The benchmark is focused on two areas: performance and scaling. YCSB evaluates
performance by increasing the throughput of requests to the tested system until the
system is saturated and the throughput no longer increases, and then measuring
the latency of the requests. Scalability is evaluated by adding more machines to
the system and measuring how much the latency reduces when the throughput is
constant and how much more throughput the system can handle. The workload
that YCSB generates is not modelled after a particular application but instead tries
to show how various workload characteristics that may appear in any application
influence the performance of the tested systems.

Dey et al. (2014) introduced an extension to YCSB called YCSB-T, which adds two
benchmark tiers to test transactional overhead and consistency. These tiers were
added to evaluate transaction support in emerging NoSQL database designs. In the
workloads of these tiers, the requests are transactions containing multiple CRUD
(create, read, update or delete) operations. The transactional overhead tier captures
the latency of each specific operation and calculates the overhead of running them

Chapter 2. Related work 4

in a transaction. The consistency tier detects anomalies in the database by running a
validation check on each database record after the workload.

2.2 Serverless functions benchmarks

With the introduction of Functions-as-a-Service (FaaS) offerings at most cloud providers,
evaluations for these services have started appearing in literature. Most work is fo-
cused on evaluating the performance and cost of the various commercial FaaS of-
ferings. For example, Wang et al. (2018) measured the coldstart latency of AWS
Lambda, Azure Functions, and Google Cloud Functions. Coldstart latency refers to
the extra time it takes the cloud provider to start up a new function instance before
the function is run, compared to reusing an existing instance. They further analyzed
the scalability of each of these services, measuring how many function instances
could be running at the same time. They did these and other experiments to under-
stand better how these services work behind the high-level API that is exposed to
the customer.

Copik et al. (2021) presented a collection of benchmark applications and workloads
for FaaS platforms, and use them to answer various questions about the perfor-
mance, cost and inner workings of the most popular FaaS offerings. Their bench-
mark suite can be extended to include other applications, and to add support for
other FaaS platforms.

2.3 Microservices benchmarks

Gan et al. (2019) introduced a benchmark suite of microservices, to test the implica-
tions of deploying a microservice application architecture in the cloud. Their suite
contains social network, media service, e-commerce, banking and internet-of-things
applications. The authors use these applications to evaluate the implications of using
microservices on hardware, operating systems, networking, cluster management,
and application design. A tracing system is built into the applications to monitor
latency in each microservice and to enable precise performance measurements. For
example, the authors show that under high load, there is relatively more latency due
to networking between services then when compared to latency under low load.

5

Chapter 3

Design

In this chapter, we will discuss the design of our benchmark. First, we address
the limitations of current benchmarks in the context of stateful serverless functions.
Then, we describe the design of both our benchmark application and our benchmark
client.

3.1 Current benchmarks

In chapter 2, we have shown some existing benchmarks created for database and
cloud systems. However, the discussed benchmarks are not well suited to test state-
ful functions systems, as they are either not easily applicable or do not test the dis-
tinctive features of stateful functions. To show this, we first summarize the spec-
ifications of the most important existing database benchmarks, TPC-C and YCSB,
and then discuss the limitations in the context of stateful functions. Of the types
of benchmarks that we discussed in chapter 2, database benchmarks are the most
applicable to stateful functions systems since the management of data is the most
significant factor in the performance of these systems.

3.1.1 Specifications

TPC-C

The TPC-C benchmark is based on the database model of an order-entry system
(Transaction Processing Performance Council (TPC), 2010). The TPC-C specification
includes strict criteria for the database systems that it tests. Most importantly, tested
systems need to feature ACID transactions. The benchmark schema contains ta-
bles for warehouses (Warehouse), districts (District), customers (Customer, History),
customer orders (New-Order, Order), order lines (Order-Line), products (Item) and
product stock (Stock). The workload of TPC-C consists of several business transac-
tions which execute one or more ACID database transactions. The transactions are
comprised of insert, read and update operations on the database tables. The follow-
ing business transactions are specified:

New-Order Performs a read-update transaction where a user completes a new or-
der. In this database transaction, first information is retrieved from the ware-
house, district and customer tables. Then, a new order is inserted in both the
New-Order and Order tables. For a random amount of items included in the
order, the price is retrieved from the Item table, the stock of that item is re-
tracted from the Stock table, and a new Order-Line row is inserted. Finally,

Chapter 3. Design 6

the price is calculated based on the items included in the order and the tax
percentages from the warehouse and district.

Payment Performs a read-update transaction where a user completes a payment.
In the transaction, the year-to-date balances of the Warehouse and District are
updated with the order value. Furthermore, a row in the Customer table is
selected either using the primary key, or the last name of the Customer. The
balance of this Customer is then updated and a new row is added to the His-
tory table.

Order-Status Performs a read-only transaction that requests the status of the most
recent order of a customer. First, a row in the Customer table is selected ei-
ther using the primary key or the customer’s last name. Then, the last order
corresponding to that Customer is retrieved from the Order table, and all cor-
responding Order-Line rows are retreived as well.

Delivery Performs a read-update transaction where a batch of up to 10 orders is
processed. This batch may be split up into multiple database transactions.
For every batched new order in the database transaction that is processed, the
oldest row is selected from the New-Order table with a given warehouse and
district ID. This row is then deleted, and the corresponding row in the Order
table is updated. Corresponding rows in the Order-Line table are updated,
and the amount values are summed to calculate the total amount for the order.
Then, the corresponding Customer row is selected and updated.

Stock-Level Performs a read-only transaction that checks the stock of recently sold
items. For a given warehouse and district, the last order ID is retrieved from
the District table. Then, a range query is executed on the Order-Line table to
retrieve all items from the previous 20 orders, up to the retrieved last order ID.
These items are selected from the Stock table and all rows with a stock amount
lower than a given threshold are counted.

The workload of TPC-C is constructed as a mix of the business transactions that are
described above. Each of the transactions, except for the New-Order transaction, has
a minimum percentage of executions of the total workload mix. The Payment trans-
action needs to be a minimum of 43% of the mix, and the Order-Status, Delivery and
Stock-Level transactions each make up a minimum of 4% of the mix. The measured
throughput of the tested system is measured only on the New-Order transaction, as
it makes up the rest of the mix of operations.

YCSB

In contrast to TPC-C, the YCSB benchmark is not based on a database model of a
particular realistic application (Cooper et al., 2010). Instead, each workload targets
just one database table with a variable number of fields. The workloads call one
of four implemented operations: insert, update, read and scan. Therefore, to use
the benchmark on a new database, only these operations need to be implemented
and exposed. Using these operations, low-level workflows can be implemented that
apply to many different real-world applications.

The core specification of YCSB includes the following workloads:

Chapter 3. Design 7

Workload A: Update heavy In this workload, 50% of the requests are update oper-
ations, and the remaining 50% are read operations. Database keys are chosen
using a zipfian random distribution.

Workload B: Read heavy In this workload, 95% of the requests are read operations,
and the remaining 5% are update operations. Database keys are chosen using
a zipfian random distribution.

Workload C: Read only In this workload, all requests are read operations. Database
keys are chosen using a zipfian random distribution.

Workload D: Read latest In this workload, 95% of the requests are read operations,
and the remaining 5% of requests insert a new database record. Database keys
are chosen using a distribution that favours the records that were inserted the
latest.

Workload E: Short ranges In this workload, 95% of requests are scan operations
that return up to 100 records per request, scanned in the database from a given
start key. The remaining 5% of requests are insert operations. Database keys
for the scan operation are chosen based on a zipfian distribution.

3.1.2 Limitations

While the TPC-C application design and workload do include elements that can be
used to benchmark stateful functions, the benchmark is mostly not applicable to
these systems. Firstly, since it assumes that the underlying database system sup-
ports ACID transactions. Many current stateful functions systems do not support
any form of ACID database transactions. Of the four systems that we selected to
test, which are described in chapter 4, only one offers support for ACID transactions.
Furthermore, the TPC-C workload includes operations that are not directly available
or suggested in stateful functions systems. For Example, in the Order-Status trans-
action, rows in the Customer table are selected using a non-primary key attribute,
the last name. Stateful functions can be seen as key-value systems, as functions are
in principle only addressable by a primary key. Therefore, non-primary key access
such as in the Order-Status and Payment transactions is not directly possible. The
Stock-Level transaction includes a range query on the Order-Line table to get the
latest entries based on the sequential order ID. Again, in distributed stateful func-
tions systems, the keys are not often sequential, and thus such a query is not directly
possible.

YCSB is more lenient in its requirements of the tested database. The workloads only
access database entries by primary key, and are thus more applicable to stateful func-
tions systems. The insert, update and read operations necessary for workloads A,
B, C, and D could be implemented for most stateful functions systems. Therefore,
YCSB could be used to evaluate the performance of the data management of single
stateful function invocations. However, both YCSB and TPC-C do not test properties
that are unique to stateful functions. Stateful functions are distinct from microser-
vices and databases in the way that each specific data entity, or stateful function, is
invoked individually, and that these invocations can be scheduled on different ma-
chines. Furthermore, an important property of SFaaS systems is that functions, or
data entities, can communicate with each other. In a complex operation that involves
multiple data entities or functions, the operation can often span multiple machines.

Chapter 3. Design 8

Decisions on stateful functions system design areas such as scheduling can there-
fore significantly impact the performance of these complex operations. To highlight
these changes between systems, a benchmark for stateful functions should have a
workload that includes a range of these operations.

3.2 Benchmark application

Like the TPC-C benchmark, we have chosen to base our benchmark on a real-world
application to demonstrate realistic performance results. Our benchmark is mod-
elled after a simple e-commerce application. Firstly, because this is a familiar and
relatable domain and secondly, since it gives us a framework of data entities and
scenarios to construct a workload with a lot of variety in operations. It can be argued
that using a real-world application for benchmarking only makes the benchmark rel-
evant for a small set of use cases. However, we try to design the workloads to have
different characteristics and to be dynamically adjustable, to make the benchmark
results applicable for a broader domain. Our benchmark application is a simplified
version of a web store backend, where products are managed and users can submit
orders for checkout. The application design consists of data entities, and operations
on these entities. In the stateful functions model, each data entity type and its corre-
sponding operations are implemented as a stateful function.

3.2.1 Entities

In the benchmark application, the following data entities are stored and managed:

Product The product entity represents each product in the webstore and keeps track
of the stock and price of the product. When products are sold, the stock de-
creases. Additionally, the product keeps track of other products that are often
sold with it.

User The user entity represents a user interacting with the webstore and keeps track
of the credits that a user can use to pay for products.

Shopping cart The shopping cart entity represents the shopping cart of a user in the
webstore, and keeps track of which and how many products a user adds to it.

Order The order entity is linked to a shopping cart and a user, and keeps track of
the status of an order.

3.2.2 Operations

For the Product, User and Shopping cart entities, the application includes simple
CRUD (create, read, update, delete) operations. Additionally, the application in-
cludes two more complex operations that span multiple data entities, and thus span
multiple function instances. These include the checkout operation and the analytics
query operation.

Checkout

The checkout operation includes all data entity types and represents the operation
that happens when a user wants to check out all the items that are in their shopping
cart. First, the contents of the shopping cart need to be collected. Then, for each of
the products in the shopping cart, the stock needs to be reduced with the amount of

Chapter 3. Design 9

that product in the cart. Additionally, the price of the products needs to be collected
and the total for the order needs to be calculated. Then, the user needs to pay that
amount from their credits and the order is completed.

Order

OrderUser

Product

Product

Shopping cart

Completed

Rollback stock

Rollback stock

Rollback stock

Retract credit

Retract stock

Retract stock

Retract stock

Get contentsCheckout

Update
analytics

total

price,success

amount

Product

Rollback stock

Rollback stock

Rollback stock

FIGURE 3.1: Checkout operation entity request path

The request path between all the entities in the checkout operation can be seen in
Figure 3.1. Each of the nodes represents an operation on a specific data entity, i.e.
a function instance, and the borders around the nodes indicate of which entity type
they are. As can be seen, after the contents are A rollback mechanism is added, to try
to keep the entities in a consistent state. Rollback functions are highlighted in red,
and functions part of the successful flow are highlighted in green.

In a successful checkout operation, the order entity calls the shopping cart entity
to get its contents. Then, each product in the cart is called in parallel, the stock
is retracted and the price of the product is returned. After that, the user entity is
called to retract the total for the order from the credits, and the checkout is com-
plete. However, when one or more products in the cart do not have enough stock
available, the operation returns unsuccessful. Then all stock changes are rolled back
and the checkout fails. Similarly, if the user does not have enough credits, the re-
tract credits operation returns unsuccessful and the stock changes are rolled back.
After a successful checkout, all products are updated to include the other products
in the order as bought together. This analytics update operation should be run in the
background, and the client should not wait for this operation to finish.

The checkout operation is one of the main operations in our benchmark workload,
due to two main characteristics of the request structure. Firstly, it shows communi-
cation between different types of entities. Some stateful functions systems may han-
dle these types of communications differently, for example because of differences in
scheduling protocols. Secondly, the request includes a fan-out calling pattern, when
all products included in the order are called concurrently to retract stock. Implicitly,
this also includes a fan-in calling pattern, since the operation waits for all retract
stock calls to return, before continuing. By including this pattern, we can test how
a stateful functions system deals with concurrent calls to different entities within an

Chapter 3. Design 10

operation. By varying the number of products that are included in an order, we can
inspect the effect of varying amounts of concurrent calls on operation latency.

ProductProduct

Product

Get frequent
items

Get frequent
itemsGet frequent

items

top n

Get frequent
items

top n

Get frequent
items

Get frequent
items

Get frequent
items

Get frequent
items

Depth 1 Depth 2 Depth 3

FIGURE 3.2: Analytics query request path

Analytics query

As discussed, each product entity keeps track of which products are frequently
bought together with it. The analytics query operation is called on a product to
collect this information. Depending on query parameters, it can include recursive
calls to other products. Figure 3.2 shows the path of requests an analytics query op-
eration can include. As in Figure 3.1, each node represents an operation on a specific
product. First, the “get frequent items” function is called on one product. The call
includes two parameters, a top n and a depth d. The top parameter n determines
how many of the top products that were frequently bought together with the prod-
uct that is called should be returned. If the depth parameter d is bigger than 1, each
of those top n products is then called with the same operation. This is repeated until
the depth d is reached. Since the depth starts at 1, at most 1−nd

1−n nodes are visited
during the request. All the collected top products from all visited product entities
are then returned from the query.

We include the analytics query in our benchmark workload since it allows us to test
the effects of different dynamic calling patterns unique to stateful functions. The
calling pattern of the request can be changed using the depth and top parameters.
For example, if top n = 1 and depth d > 1, we get a linear calling structure where
each product that is called at most only calls 1 other product. If top n > 1 and depth
d = 2, we get a fan-out pattern, where the first product that is called calls more than
one other product. Finally, if top n > 1 and depth d > 2, we get an exponential
fan-out pattern, where each product that is called calls multiple other products, as
shown in Figure 3.1.

3.3 Benchmark client

The benchmark client is responsible for running benchmark workloads on an imple-
mentation of our benchmark application.

Chapter 3. Design 11

3.3.1 Workloads

Two workloads are included in the benchmark, one that is focused on the check-
out operation, and one that is focused on the analytics query. These operations are
described in subsection 3.2.2.

Checkout workload

The checkout workload simulates the requests of users of the web store application
who are buying products. First, the user creates an account, which is represented by
the User data entity discussed in subsection 3.2.1, and adds credits to this account.
They then create a shopping cart and add a uniformly distributed random number
of products to their shopping cart. Finally, they run the checkout operation.

Analytics workload

The analytics workload simulates users using the analytics query to request a list
of frequently bought together products. The top n and depth d parameters are ran-
domly chosen to generate different calling patterns like described in subsection 3.2.2.

3.3.2 Distributions

In each of the workloads, product entities are randomly chosen to be included in
the request. For example in the checkout workload, where the user randomly picks
each product that is added to the shopping cart. In the analytics workload, each user
randomly picks a product to query from. When running a workload, the random
distribution that is used for these random choices can be changed, so the impact of
different distributions can be measured. This functionality is also included in the
YCSB benchmark (Cooper et al., 2010). We include the following distributions in
our client:

1. Uniform: We include the uniform distribution as a baseline distribution. This
distribution is easiest on the tested system, as the workload is distributed
evenly on all products stored in the system. This means that often requests
can run concurrently as they do not update the same product.

2. Zipfian: The Zipfian distribution simulates that a small number of products
are very popular (in the head of the distribution) and a large number of prod-
ucts are not very popular (in the tail of the distribution). This is included since
this could give a more realistic simulation of product popularity. This distribu-
tion is much more difficult for the tested system, as a small number of products
get the most requests, and thus many requests can not be run concurrently.

3.4 Extensibility

The design of our benchmark allows for extensibility in the future. As stateful func-
tions systems are further developed, new properties of these systems may emerge
that this benchmark does not sufficiently cover. Therefore, both the benchmark ap-
plication and the benchmark client can be extended to include more scenarios and
tests. In the application, more data entities and operations can be added. The client
can be extended to run other workloads and to add tests for other properties such

Chapter 3. Design 12

as state consistency. For the existing workloads in the client, more random distribu-
tions can be added to change the load on the system.

13

Chapter 4

Selected systems

In chapter 6, we use our benchmark to test current stateful functions systems. In this
chapter, we introduce the systems that we selected for the tests.

4.1 Apache Stateful Functions

Apache Stateful Functions (StateFun)1 is a stateful serverless application framework
that is built on top of the stream processing engine Apache Flink2. A StateFun ap-
plication is composed of addressable functions with local state. Each function can
have many instances with different state. Function instances can be called from out-
side the application, or from other functions. StateFun guarantees fault tolerance for
function state.

4.1.1 Architecture

The StateFun architecture is shown in Figure 4.1. The state of a StateFun application
is managed by an Apache Flink cluster, as the application functions are transformed
into a Flink stream processing application. Each function is represented as a stateful
operator in Flink. These operators are interconnected, allowing messaging between
them. Apache Flink guarantees that functions and state changes have exactly-once
semantics, and fault tolerance through snapshots of state (Carbone et al., 2017). Flink
workers, or TaskManagers, listen to incoming events and call corresponding func-
tions. StateFun provides ingress connectors for Apache Kafka and AWS Kinesis.
When Apache Kafka is used, the workers listen to specific message topics for each
externally invocable function. Each ingress message contains the identifier of the
specific function instance that is invoked. For each ingress message, the workers
retrieve the state of the invoked function instance, and then call the function im-
plementation, with the saved state. The functions then return any changes in state,
which are in return stored by the Flink workers. Functions can be deployed either
co-located with the Flink StateFun cluster, or externally as microservices or FaaS
functions. This is possible, since the workers call the functions with their state using
HTTP or gRPC. Since the state is shipped with every request, the deployed func-
tions themselves are stateless and can easily be scaled. Each function instance can
only be called once concurrently, to disallow concurrent changes in state. Functions
can send egress messages to Apache Kafka or AWS Kinesis, to communicate results
outside of the application.

1https://nightlies.apache.org/flink/flink-statefun-docs-stable/
2https://flink.apache.org

https://nightlies.apache.org/flink/flink-statefun-docs-stable/
https://flink.apache.org

Chapter 4. Selected systems 14

API Gateway

λλλ

Apache Flink StateFun Cluster

event stream ingress event stream egress

(Micro)Service
Endpoint

K8s Service

f(x,s) f(x,s) f(x,s)

K8s deployment
(containerized functions)

FaaS

HTTP / gRPC

FIGURE 4.1: StateFun architecture, from the StateFun documenta-
tion1.

4.2 Microsoft Orleans

Microsoft Orleans3 is a framework for developing distributed applications using the
virtual actor programming model (Bernstein et al., 2014). Orleans applications are
composed of Grains, which are entities with identity, behaviour and state. Grain
types are implemented as classes with local state and methods that define its be-
haviour. Grain types can have multiple individually addressable instances with
different state. Grains can be directly invoked from other grains, or from external
clients such as API gateways.

4.2.1 Architecture

Grain instances are activated and deactivated on demand by the Orleans runtime.
When a grain is invoked while it is not active, the grain state gets loaded into mem-
ory. This decreases the read latency of subsequent requests and decreases the load
on state storage. When a grain is not used for some time, the grain state is persisted
and the grain is removed from memory. Grain instances are hosted on clusters of
machines that run so-called silos. Silos coordinate with each other, for the distribu-
tion of grains and for fault tolerance. Grains are by default instantiated on a random
silo in the cluster. However, this can be changed to other grain placement strategies.
When a grain is activated on a silo, its location is stored in a global grain directory.
This directory is implemented as a distributed hash table (DHT) over all silos in
the cluster. Therefore, when an active grain is called, the silo that is hosting that
grain is queried in the DHT, and the call is forwarded to that silo. In the case a silo
crashes, invocations on grains that were activated on that silo will be handled by the
other silos. Persistent grain state is stored in external storage systems, such as Azure
Storage, Amazon DynamoDB, or a relational database management system. Grain
methods that change persistent state need to explicitly write the updated state to the
external storage system to ensure durability and consistency.

3https://dotnet.github.io/orleans/index.html

https://dotnet.github.io/orleans/index.html

Chapter 4. Selected systems 15

Transactions

Orleans also offers optional ACID transactions in which grains can participate, which
uses two-phase commit (2PC) with a modified locking protocol (Eldeeb and Bern-
stein, 2016). In many distributed systems that support transactions, two-phase com-
mit with strict two-phase locking (2PL) is used to guarantee atomicity and isolation
for the transaction. With strict 2PL, write locks on data included in the transaction
can only be released after the transaction is completed. In Orleans, locks on grain
state are released immediately after the prepare message in the 2PC protocol, so that
other transactions can write changes to that grain. However, subsequent transac-
tions that include the same grain are marked as dependent, while the first transac-
tion is not committed yet. The transaction coordinator keeps a list of all dependent
transactions. If any transaction aborts, all dependent transactions abort as well. In
this way, the transaction throughput on popular grains is increased while isolation
is still guaranteed.

4.3 Cloudstate

Cloudstate4 is a stateful serverless platform based on the Akka5 virtual actor frame-
work. Cloudstate applications are composed of addressable data entities with state
and behaviour, or stateful functions.

Kubernetes cluster
Akka cluster

Database

Incoming requests (gRPC)

Kubernetes pod

Akka Sidecar
Function
container

gRPC

Kubernetes pod

Akka Sidecar
Function
container

gRPC

gRPC

Kubernetes pod

Akka Sidecar
Function
container

FIGURE 4.2: Cloudstate architecture diagram, based on the cloudstate
documentation4.

4.3.1 Architecture

In Figure 4.2, the general architecture of Cloudstate is shown. In Cloudstate, user-
defined functions are deployed as containers on a Kubernetes cluster, while the state
of these functions is managed by Akka sidecars. These sidecars are automatically
deployed by Cloudstate for each function container, and form an Akka cluster of

4https://cloudstate.io/docs
5https://akka.io

https://cloudstate.io/docs
https://akka.io

Chapter 4. Selected systems 16

stateful actors. For fault tolerance, the stateful Akka actors are persisted on an ex-
ternal distributed datastore. The sidecars are deployed in the same Kubernetes pod
as their corresponding function container, and host actors that keep the state of the
corresponding entities in memory. Since function execution and the corresponding
state is located on the same machine, a lower latency is expected. Functions, or
entity types, can have multiple instances with state, each addressable via a unique
key. Entities can have two types: event sourced and conflict-free replciated data
type (CRDT). Event sourced entities are persisted as a journal of change events. In
case the actor storing a event sourced entity crashes, the state of the entity can be
reconstructed by replaying the journal of events. Periodically, event sourced entities
store snapshots to decrease the time needed to reconstruct an entity. Event sourced
entities only live on one machine at a time, and cannot be updated by two requests
concurrently. CRDT entities are based on mathematical data structures that can be
replicated over multiple machines, can be concurrently modified on these machines
without coordination, and can eventually be merged without conflicts, to get the ac-
tual state of the data type. If there are multiple containers deployed for the same
function type, function instances are distributed between them. All incoming and
outgoing communication with the functions goes through the sidecars. The sidecars
communicate with their user-defined function via gRPC. Therefore, all languages
with gRPC support can be used to implement the function behaviour. External com-
munication to the cluster, e.g. from a gateway, is also done via gRPC.

4.4 Cloudburst

Cloudburst (Sreekanti et al., 2020) is a stateful serverless functions framework based
on the Anna key-value store (Wu et al., 2019; Wu, Sreekanti, and Hellerstein, 2019).
Anna is an autoscaling key-value store (KVS) that stores state in mergeable mono-
tonic lattice data structures, a type of conflict-free replicated data type (CRDT). Server-
less functions registered to the Cloudburst runtime can read and write state stored
in Anna. All functions have access to any state that is stored in Anna by key, so
there is a clear separation between function code and state. This makes Cloudburst
different from the other discussed systems, where each function or entity can access
only its own state.

FIGURE 4.3: Cloudburst architecture diagram (Sreekanti et al., 2020)

Chapter 4. Selected systems 17

4.4.1 Architecture

The architecture of the cloudburst system is shown in Figure 4.3. The user-registered
functions are scheduled on a cluster of virtual machines, which host function execu-
tors. The function code itself is stored in the Anna KVS after it is registered by the
user. When a function request comes in, the request is forwarded by the load bal-
ancer and scheduler to a function executor. The function executor then retrieves
the function from the database and invokes it. If any state is accessed in the func-
tion, the executor retrieves that state from the KVS during execution. Each VM that
is running function executors keeps a cache of data from the KVS that is accessed
by the functions, to achieve lower latency. Executors read persistent state through
the cache, and the KVS is only queried if the requested key is not present in the
cache. The caches periodically push a list of their cached keys to the KVS, which in
turn periodically pushes updates to the caches that have outdated values. All state
stored by functions is wrapped in lattice data types by the function runtime. As all
functions can read any state from the KVS by key, the same value can be read and
updated concurrently. By default, values are stored in a lattice that merges using a
last-writer-wins (LWW) strategy. So, if a key-value pair is changed on multiple ma-
chines concurrently, the last written value is kept when the state is merged to keep it
consistent on all replicas. However, this can lead to loss of data. Workflows of mul-
tiple functions can be composed and registered as directed acyclic graphs (DAGs),
which forward the result of one function to the next when executed. When a DAG is
executed, Cloudburst guarantees repeatable read consistency within the DAG. This
means that if one function in the DAG reads a certain key-value pair that was read
by a previous function in the same DAG execution, it either sees the last update from
within the DAG, or the same value that was read earlier. Cloudburst DAGs cannot
be seen as transactions, as there are no atomicity and isolation guarantees.

4.5 Comparison

While the systems described above all provide some form of stateful serverless func-
tions, the architectures of these systems differ significantly.

4.5.1 State management

One of the most relevant differences for our experiments is how the systems man-
age function state, since this has a large impact on request throughput and latency.
In Table 4.1, the main differences in state management are shown. We specifically
show where the state of a function is located with respect to where the function is
executed, and if there is a cache of the function state local to the function execution.
This impacts if and how state is transmitted inside the system cluster, which in turn
impacts the latency of a request due to networking. Therefore, we also describe how
state is transmitted during a request.

In all systems, the state is persisted externally to the execution of the functions. In
StateFun however, it is possible to execute the functions natively on the Flink clus-
ter where the state is managed. However, this brings significant disadvantages, and
therefore it is recommended to deploy the functions separately. All systems except
StateFun include some form of caching of function state. In Orleans, if a Grain is
active, its state lives in the memory of the Silo that executes the grain. In Cloud-
state, the function state is present in the memory of the sidecar co-located on the

Chapter 4. Selected systems 18

TABLE 4.1: Comparison of state management in selected stateful
functions systems.

System Persistent state
location

State cache location State transmission

StateFun External (or co-
located) Flink
cluster

Not applicable State transmitted to func-
tion execution for every
invocation from Flink clus-
ter. After the invocation, the
state is transmitted back to
the Flink cluster.

Orleans External
database

In function execution
memory

State transmitted to external
database for every invoca-
tion that updates state, state
transmitted from database
when function (Grain) is not
active.

Cloudstate External
database

Co-located on machine
with function execution

State transmitted from side-
car co-located on the same
machine with function exe-
cution for every invocation.
If state is updated, a change
event or a CRDT is trans-
mitted to the external state
backend.

Cloudburst External
database

Co-located on machine
with function execution

State is retrieved from
database if the cache on
the function executor ma-
chine does not contain the
requested key. Otherwise,
the state is only retrieved
from the machine-local
cache. If updated, the state
is written to the database in
the background.

same machine as the function execution. In Cloudburst, key-value pairs are cached
on the machines that have function executors. It is expected that the systems that
implement caching have lower latency when the state of a function instance is read
by multiple subsequent requests.

19

Chapter 5

Implementation

In order to evaluate our benchmark design, we implemented the benchmark appli-
cation, discussed in section 3.2, in all selected systems that are discussed in chapter 4.
In this chapter, we first discuss the details that all implementations share. Then, we
discuss the details of each individual implementation. Furthermore, we discuss the
implementation of the benchmark client.

5.1 Shared

5.1.1 API

In order to make the benchmark client usable for all current and future application
implementations, all implementations must share the same interface. We have cho-
sen to make this an HTTP interface since HTTP APIs are widely used and tools to
stress test these APIs are available. The API schema can be found in Appendix A.

5.1.2 Tracing

To evaluate the performance of the tested systems, we measure the latency and
throughput of requests fired at the benchmark application. For complex requests
that visit multiple functions, like the checkout request specified in subsection 3.2.2,
we would like to see how a request progresses through the system and measure spe-
cific latency per function. This would allow us to get a better idea of the impact
of networking between function instances on latency. To enable the tracing of a re-
quest, we assign an ID to each external request which comes into the system. This
ID is then passed in each successive internal request through the system. For each
function, when an (internal or external) request comes in, the start and end of the
function execution are logged. Using the timestamps of the logs, we can then calcu-
late the internal latencies of networking and serialization, and function execution.

5.2 Apache Stateful Functions

In Apache Stateful Functions (StateFun), functions are called from outside the appli-
cation via Apache Kafka, a message broker. As we want all benchmark applications
to share an HTTP API, an API gateway layer is added which forwards all incoming
HTTP requests to the Kafka ingress. In Figure 5.1 the basic architecture of the appli-
cation is shown. The function code is deployed separately from the StateFun cluster
and called via HTTP.

Chapter 5. Implementation 20

Functions
containers

Functions
containers

API Gateway Apache Kafka

Process
Process

StateFun
cluster

Functions
containers

HTTP

HTTP Requests

FIGURE 5.1: Apache Stateful Functions application architecture

5.2.1 Functions and Messages

StateFun includes software development kits (SDKs) for Java, JavaScript, Python,
and Golang. We have chosen to implement the application functions using the Java
SDK since it was documented well. We have implemented the functions in the Kotlin
programming language, which fully interoperates with Java and runs on the Java
Virtual Machine. For each data entity described in subsection 3.2.1, we created a
function class, which defines the function state and logic. Based on which message is
passed to the function, either externally via Kafka or internally, different operations
on the state are executed.

API

API

Order

Order

ShoppingCart

ShoppingCart

Product_1

Product_1

Product_2

Product_2

Product_3

Product_3

User

User

Checkout (via Kafka/ASF)

GetCart

GetCartResponse

RetractStock

RetractStock

RetractStock

RetractStockResponse

RetractStockResponse

RetractStockResponse

RetractCredit

RetractCreditResponse

(via Kafka egress)

FIGURE 5.2: Sequence diagram of checkout operation in the Apache
Stateful Functions implementation

The functions are accessible for the StateFun cluster to call via an HTTP interface,
which is handled by the StateFun SDK. The web server which is recommended in
the StateFun docs, Undertow1, is used to host the functions. Communication to
and between functions in StateFun is done asynchronously, by sending messages to

1https://undertow.io

https://undertow.io

Chapter 5. Implementation 21

specific functions. An example of complex communication between multiple func-
tions can be found in Figure 5.2, where a sequence diagram of the checkout oper-
ation is shown. In this diagram, the messages that are sent between functions are
shown. First, the Checkout message is sent to the order function, which orches-
trates the checkout operation. The order function then sends a message to the shop-
ping cart to retrieve its contents, and stops execution. When the shopping cart func-
tion then sends a reply back to the order function, it resumes execution and sends
RetrackStock messages to all products in the shopping cart. Again, after all mes-
sages are sent, the order stops execution. When each response from the products
is received, the order function saves the response in its state and stops. When all
responses are received it continues and sends a RetractCredit message to the cor-
responding user function. Finally, when the response from the user is received, the
checkout is complete.

The analytics query, which was discussed in subsection 3.2.2 is implemented in a
similar way. Each product sends messages to its top products and keeps track of
which of them have replied. When all other products have replied, the product itself
replies to its caller.

To enable tracing as specified in subsection 5.1.2, all messages are wrapped in a
wrapper message which contains a request identifier. This identifier is then included
in all logs relating to that request.

5.2.2 Gateway

The API Gateway is implemented in the Kotlin programming language, using the
Spring Boot and Spring Web frameworks2. The gateway conforms to the shared
API schema and sends messages to StateFun functions via Kafka that correspond to
the API actions. Since StateFun works asynchronously, each HTTP request to the
gateway is closed once the message is sent. To get a proper indication of full request
latency, the gateway logs when a request comes in, and also when the full request
is done. The gateway knows when to log the end of a request by listening to an
egress Kafka topic, where StateFun functions submit messages to whenever the full
request is done. This can also be seen in Figure 5.2, where at the very bottom an
egress message is sent by the order function to the gateway via Kafka.

5.3 Microsoft Orleans

Microsoft Orleans only provides a C# SDK, so the benchmark application is imple-
mented in the C# language. All data entity types are implemented as grain classes,
which include their state and functions with logic. Communication between grains
is done automatically via Orleans, as interface functions of a specific grain can di-
rectly be called from other grain code, or from another colocated .NET process, such
as an API gateway. The basic architecture is shown in Figure 5.3. The API Gateway,
which is built using the API.NET web framework, is deployed and run together
with a grain silo, which starts, runs, and persists the implemented grains. For the
persistence of grain state, Orleans offers connectors to cloud databases like Azure
CosmosDB or AWS DynamoDB, or to a relational database. We have chosen to use
the relational database connector, since it allows us to pick an open source database
system like PostgreSQL.

2https://spring.io

https://spring.io

Chapter 5. Implementation 22

Orleans process

API Gateway

Grain Silo

Grain Grain Grain

Orleans process

API Gateway

Grain Silo

Grain Grain Grain
PostgreSQL

Orleans process

API
Gateway

Grain Silo

Product ProductUser

Order SC Product

FIGURE 5.3: Microsoft Orleans application architecture

Orleans uses the async/await functionality of C# when calling functions of Grains,
allowing the caller to wait for the asynchronous function to return. Using this func-
tionality, the API gateway waits for a grain call to return before returning the HTTP
call. It is also used to call multiple grains concurrently and wait until all return when
there is a fan-out pattern, such as in the checkout operation where the order grain
calls multiple products (see Figure 3.1).

For the tracing of complex operations, we make use of the request context feature of
Orleans. This enables us to set and store a request identifier when the operation is
called from the API gateway, which will then automatically be passed in any subse-
quent requests to other grains, where it will be available to include in the logs. As
the API gateway waits for the asynchronous grain call to finish, it can log both the
start and the end of the request, so end-to-end latency can later be calculated.

During the testing of the analytics query, we observed that deadlocks could occur
in certain queries. Orleans by default only allows grain instances to execute one
operation at the same time. In the analytics query, product grains call other product
grains asynchronously but wait for the results of that call. Since cycles are possible
in the analytics query call pattern, this could lead to deadlocks. However, Orleans
includes functionality to interleave grain calls, allowing later calls to execute while
one grain call is waiting for an asynchronous operation. When we annotated the
query methods to allow interleaving, no deadlocks were present anymore.

5.3.1 Transactions

As discussed in section 4.2, Orleans offers optional ACID transactions for changes
to grain state. Our base Orleans implementation does not use ACID transactions
since the other selected systems do not offer the same functionality. However, in
our experiments, we also wanted to test a transactional Orleans implementation to
show how much overhead Orleans transactions add. Most of our transactional im-
plementation is copied from the base implementation, but the grains were adapted
to use the transactional state API. Furthermore, all grain methods needed to be al-
lowed to interleave, as otherwise, deadlocks could occur due to transaction protocol
operations.

5.4 Cloudstate

The Cloudstate implementation of the benchmark application was written in the
Kotlin programming language. Cloudstate provides SDKs in various languages,

Chapter 5. Implementation 23

but we chose a JVM-based language like Kotlin since the Java SDK was one of the
most well-documented. Each of the data entity types was implemented as an event-
sourced entity in Cloudstate. In such a data entity class, each mutating operation
generates an event to mutate the state of the data entity. Operations on data entities
are called using the gRPC protocol3. An API gateway was added to conform to the
common API specification. This gateway is very similar to the gateway that we’ve
implemented for the StateFun implementation, as it is also built using Spring Boot
and Spring Web and implemented in Kotlin. The gateway for Cloudstate converts
the incoming HTTP request into gRPC calls to the Cloudstate entities. As gRPC calls
are synchronous, the gateway waits for the function calls to finish before returning
the HTTP request. As in the Orleans gateway, the start and end of the HTTP request
are logged to enable calculating the request latency later. In complex requests where
entities call other entities, gRPC is also used. Tracing was implemented by adding a
request identifier to each gRPC payload and manually passing it to each subsequent
call in a complex request.

5.5 Cloudburst

The Cloudburst application is written in Python, since it is the only language that
Cloudburst provides an API for. Cloudburst does not provide a paradigm for writ-
ing data entities or specifically addressable functions with state. Instead, Cloudburst
functions can access a key-value store to access state. In the application implemen-
tation, each operation on a data entity is written as a separate Cloudburst function.
Functions that mutate the state of an entity first retrieve state from the key-value
store, then mutate it and finally write it back to the store. The API gateway is also
implemented in Python, using the Flask framework4. It uses the Cloudburst API
to call the functions that correspond to the requested route, with the provided data
entity identifiers. Cloudburst calls are synchronous, and so the gateway waits for
the function to finish before returning the HTTP request.

To construct complex operations that use multiple functions, Cloudburst provides
an API to construct directed acyclic graphs (DAGs) of functions, which can then
be called as a single operation. However, this functionality is not sufficient to con-
struct a complex call with a fan-out pattern, such as the checkout operation shown
in Figure 3.1. Firstly, because there is no functionality to construct DAGs with a dy-
namic number of function calls, which is necessary in the checkout operation since
the number of products in a shopping cart can differ, and thus a dynamic number
of products are called. Furthermore, if a static DAG with a fan-out call is registered,
each of the functions that are concurrently called always receives exactly the same
parameters making it impossible to distribute work over these functions.

Retract stock
of all productsCheckout

Retract user
credit

retract_
success Rollback

stock of all
products

retract_
success Update

analytics

checkout_
succesGet cart

contents

FIGURE 5.4: Adjusted checkout operation request path in Cloudburst
implementation.

3https://grpc.io
4https://flask.palletsprojects.com

https://grpc.io
https://flask.palletsprojects.com

Chapter 5. Implementation 24

With these limitations on DAG structure, we could only construct complex opera-
tions with no fan-out patterns. For example, we implemented the checkout opera-
tion with only a linear chain of calls. The calling structure of the checkout imple-
mentation is shown in Figure 5.4. After the contents of the cart are retrieved, a single
function retracts the stock of all the products in the cart. Since no dynamic changes
to the DAG can be made, it is also not possible to abort the checkout early when for
example not enough stock is available. We implemented the rollback mechanism by
including a single function in the DAG after all the checkout steps are completed.
If there is not enough stock for one or more of the products in the shopping cart, a
failure flag is passed through all subsequent calls. If the failure flag is set, no credit
is retracted from the user, and only after that the stock of all products is rolled back
to its initial state. If there is enough product stock but the user does not have enough
credit, the failure flag is again set, and the products are rolled back in the last step.
The rollback step is always executed, but ignores the rollback if the checkout was
successful.

5.6 Client

The benchmark client is implemented in Python, and has two main responsibilities.
First, it generates the benchmark workloads used to test the benchmark application
implementations. Furthermore, it collects the logs that the benchmark application
produces to later analyze the performance of the tested system. The basic architec-
ture of the client is shown in Figure 5.5 and explained below.

Client

Benchmark Application

HTTP
Gateway Implementation

Workload generator

User User

User User

Kafka

Log collector
Logs

User User

Process

Process

FIGURE 5.5: Client architecture

5.6.1 Workload generation

To generate benchmark workloads, the client uses the Locust5 library to simulate
a large number of users which send requests to the HTTP API of the application.
The two workloads discussed in subsection 3.3.1 are implemented as Locust user
classes. Before the checkout workload is run, the client generates a specified number
of products in the tested system, which can then be used in the workload. The

5https://locust.io

https://locust.io

Chapter 5. Implementation 25

simulated users then choose random products from the generated product set to
add to their shopping cart using a specified random distribution, as discussed in
subsection 3.3.1. The identifiers of the generated products are saved, so they can be
reused in other benchmark runs.

5.6.2 Log collection

The client assumes that all logs that are generated by the benchmark application are
sent to an Apache Kafka topic. All of the selected systems are deployed on Kuber-
netes, and so we run a fluent-bit6 process on each Kubernetes node to forward all
logs to Kafka. The benchmark client spawns one or more Python processes that act
as Kafka consumers and save all received logs locally so that they can be analyzed
later.

6https://www.fluentbit.io

https://www.fluentbit.io

26

Chapter 6

Experiments and evaluation

In order to evaluate our benchmark, we run experiments on the implementations
of our benchmark application, using our benchmark client. We show that using
our benchmark, we are able to test and compare these systems in three domains:
performance, networking and scalability. In this chapter, we first discuss the general
setup of our experiments. After that, we describe the experiments and show and
discuss the corresponding results.

6.1 General setup

For all experiments, we use Google Cloud1 resources. As all of the selected systems
run on Kubernetes clusters, we use Google Kubernetes Engine (GKE) to provision
and manage the test clusters. For all deployments, Kubernetes version 1.23 is used.
Unless specified otherwise, we use clusters of n2-standard-4 machines (4 vCPUs,
16GB memory), with 100GB SSD storage. These nodes run the default container-
optimised operating system provided by GKE. We use the managed Prometheus
service2, to collect resource usage metrics exported from the Kubernetes cluster.

Unfortunately, our Cloudburst implementation is missing from any of the large-scale
experiments in this chapter, as we were unable to deploy Cloudburst and its corre-
sponding stack of services on GKE. The Hydro cluster repository3 does include in-
structions for deploying the stack on AWS EC2 machines using a custom script, but
this script does not work for deploying to other cloud providers.

6.1.1 Workloads

For our experiments, the workloads described in section 3.3 are used. As described
in subsection 3.3.2, either a uniform or zipfian distribution is used to select which
product IDs are used in the benchmark. In the experiments described below where
a zipfian distribution is mentioned, we use a zipfian distribution parameter of 1.25.
In our checkout workload experiments, the simulated user picks a uniformly dis-
tributed random number between 2 and 8, and adds that number of products to its
cart. The simulated users only choose from a list of 5000 products. In the experi-
ments using the analytics workload, the simulated user picks randomly from three
options relating to the analytics query parameters described in subsection 3.2.2:

1https://cloud.google.com
2https://cloud.google.com/stackdriver/docs/managed-prometheus
3https://github.com/hydro-project/cluster

https://cloud.google.com
https://cloud.google.com/stackdriver/docs/managed-prometheus
https://github.com/hydro-project/cluster

Chapter 6. Experiments and evaluation 27

1. A query with a linear calling pattern is requested: A top parameter of n = 1 is
chosen and the depth parameter is randomly chosen between 1 ≤ d ≤ 20.

2. A query with a fan-out calling pattern is requested: A depth parameter of d = 1
is chosen and the top parameter is randomly chosen between 2 ≤ n ≤ 20.

3. A query with an exponential calling pattern is requested: The top parameter
is randomly chosen between 2 ≤ n ≤ 10 and the depth parameter is then
randomly chosen between 2 ≤ d ≤ ⌊logn 1000⌋.

6.2 Performance

Our benchmark is focused on testing the performance of stateful functions systems.
The two main metrics of performance that we measure to compare the systems are
request throughput and request latency. First, we test the maximum throughput
that the systems can handle when running our workloads. We then use the mea-
sured maximum throughput and run the systems at a fraction of this throughput to
measure latency under a stable load. These experiments are described below. We test
the performance of the selected systems when deployed on a cluster of 5 machines.
On this cluster, 1 machine is used only to run an instance of Apache Kafka, which
handles the export of the application logs. In the deployment of the StateFun appli-
cation, this Kafka instance also handles the communication to the StateFun cluster.
The other 4 nodes are used to deploy containers for the application.

6.2.1 Maximum throughput

Experiment question

What is the maximum throughput that the stateful functions systems can handle
when running the checkout and analytics workloads, and what is the influence of
the random distribution used in the workload on this throughput?

Experiment design

We measure the maximum throughput that each 5-node setup can handle by increas-
ing the amount of simulated users in steps, each time letting the system acclimate
to a higher number of requests per second. We define the maximum throughput as
the maximum of the 10-second moving average of the measured throughput. We
take the maximum of the moving average instead of the actual measured maximum
throughput, as due to batching or other scheduling mechanisms in some seconds
many more requests finish than in others, which gives a false indication of the use-
ful throughput of the system. In the checkout workload, a locust user performs
multiple requests per simulation before finishing the checkout, but we measure only
the throughput of the final checkout request. For the analytics workload, only one
request is sent per simulation, which is used to measure the throughput.

An example can be found in Figure 6.1, where a maximum throughput experiment
of the Microsoft Orleans implementation is shown. In this case, the checkout work-
load is used, and a uniform distribution is used to select products. In the figure it
can be seen that during the workload, throughput is increased in 2-minute steps.
The throughput of the system, or more specifically the amount of requests that are
finished each second is shown in blue. The 10-second moving average is shown

Chapter 6. Experiments and evaluation 28

0 200 400 600 800 1000 1200
Time (s)

0

20

40

60

80

100

120

140
Th

ro
ug

hp
ut

 (r
eq

/s
)

Max throughput: 115.0
Throughput
MA(10)

FIGURE 6.1: Throughput of checkout requests during a checkout
benchmark workload, for the base deployment of the Orleans bench-

mark application.

in orange and its maximum value, which we use as maximum throughput, is an-
notated. In the maximum throughput experiments, the benchmark is run for 20
minutes, and the throughput is increased in 2-minute intervals.

Results

In Figure 6.2 the results of our maximum throughput experiments are shown. In
blue, the maximum throughput while using a uniform distribution for product se-
lection is shown, while in orange the result of using a zipfian distribution is shown.
In Figure 6.2a we see the maximum throughput for the checkout benchmark. In
both the Orleans and StateFun implementations there is a clear drop in through-
put when the zipfian distribution is used, compared to the uniform distribution.
However, the drop in throughput is much higher for the StateFun implementation
when compared to Orleans. With StateFun, we observe a 73.5% drop in throughput
when a zipfian distribution is used, while with Orleans this drop is 59.5%. Further-
more, we can see that when a uniform distribution is used, StateFun can reach a
maximum throughput that is more than twice as high as Orleans. When comparing
the results of non-transactional Orleans with transactional Orleans, we see that the
transactional overhead is significant. When a uniform distribution is used, trans-
actional Orleans has a throughput that is 42.6% lower than the non-transactional
version. Furthermore, the transactional Orleans implementation cannot sustain any
reasonable throughput when a zipfian distribution is used.

In Figure 6.2b, the maximum throughput results are shown for the analytics bench-
mark. For both the uniform and zipfian distributions, StateFun could not sustain any
throughput and the StateFun runtime crashed often while running the benchmarks.
The transactional Orleans implementation could not sustain any throughput while
using the zipfian distribution. In contrast, the non-transactional Orleans implemen-
tation is able to reach a maximum throughput that is much higher than the checkout
workload throughput. For Orleans, we can see that the drop in throughput when
using a zipfian distribution is less severe than in the checkout benchmark, 12.0%
compared to 59.5%. This can be expected, since the analytics data that is queried,

Chapter 6. Experiments and evaluation 29

Orleans Orleans (T) Statefun
0

50

100

150

200

250
M

ax
 th

ro
ug

hp
ut

Uniform
Zipf

(A) Checkout benchmark

Orleans Orleans (T) Statefun
0

100

200

300

400

500

600

700

M
ax

 th
ro

ug
hp

ut

Uniform
Zipf

(B) Analytics benchmark

FIGURE 6.2: Measured maximum throughput in requests per second
of the tested systems while running the checkout and analytics work-
loads. The Orleans implementation which uses ACID transactions is
labelled as “Orleans (T)”. Missing results signify that no sustainable

throughput could be reached.

is populated using a uniformly random selection of products, and thus the effect of
using a zipfian distribution is less severe. The transactional Orleans implementation
is able to sustain some throughput, although it is only able to reach a maximum
throughput of 29.9 req/s, 95.6% less than the non-transactional implementation.

6.2.2 Request latency

In order to compare the time that a client would have to wait for a request to finish,
we measure the request latency when the systems are running under a stable load.
As explained in chapter 3, the workloads are designed to have varying character-
istics in the request structure, to highlight how the systems handle concurrent and
subsequent calls within an operation. In this experiment, we therefore also measure
the impact of these varying characteristics of a request on its latency.

Experiment questions

1. What is the mean latency of a request when the system is running the bench-
mark workloads under a stable load, and how does the random distribution
used in the workload impact the latency?

2. How does the amount of products included in an order influence the latency
of the checkout request?

3. How do the analytics request parameters influence the request latency?

Experiment design

We define a stable load as 80% of the maximum throughput tested in subsection 6.2.1.
As our benchmark uses simulated locust users, we can not simulate a specific through-
put with great accuracy. Simulated users wait 1 second between running their tasks,

Chapter 6. Experiments and evaluation 30

TABLE 6.1: Latency numbers of checkout workload at stable through-
put.

System Distribution
Mean

latency
(ms)

95% 99%
Mean

throughput
(req/s)

Errors

Orleans Uniform 14.2 24.2 116.8 80.5 0.08%
Orleans Zipf 59.2 240.1 693.5 31.2 0.0%
Orleans (T) Uniform 24.8 33.9 71.9 46.3 0.51%
StateFun Uniform 256.6 413.0 968.3 164.4 16.42%
StateFun Zipf 266.7 427.0 503.0 51.6 4.06%

TABLE 6.2: Latency numbers of analytics workload at stable through-
put.

System Distribution
Mean

latency
(ms)

95% 99%
Mean

throughput
(req/s)

Errors

Orleans Uniform 43.7 158.0 285.6 486.7 0.0%
Orleans Zipf 32.7 116.1 211.7 430.0 0.0%
Orleans (T) Uniform 13.0 27.3 48.4 12.1 0.0%

but due to other operations and request latency, the simulated throughput is often
slightly lower than the amount of simulated users. Regardless, we do simulate an
amount of users that is 80% of the measured maximum throughput, but report the
resulting measured average throughput. All stable throughput experiments are run
for 10 minutes, in order to let the system acclimate to the throughput. We measure
latency using logs written by the API gateway layer of the implementations. For
Orleans, the latency measured is the time from when a request enters the gateway
to when the gateway returns the result to the HTTP client. For StateFun, the latency
measured is the time from when the request enters the gateway, to when the gate-
way reads the egress message linked to the request from Kafka, which indicates the
request is finished.

Results question 1

What is the mean latency of a request when the system is running the
benchmark workloads under a stable load, and how does the random
distribution used in the workload impact the latency?

In Table 6.1 and Figure 6.3a, latency statistics of the checkout workload at stable
throughput is shown. In Table 6.1, the mean latency per checkout request is shown,
together with tail latency at the 95th and 99th percentile. We see that on average,
StateFun has a significantly higher latency when compared to the Orleans imple-
mentations, regardless of the distribution that is used. Orleans has a significant in-
crease in latency when a zipfian distribution is used compared to the uniform distri-
bution, while StateFun sees no significant difference in latency when the distribution
is changed. Interestingly, the 99th percentile tail latency of Orleans with the zipfian
distribution used is higher than the same tail latency for StateFun. When compar-
ing the base Orleans implementation with the transactional variant, we can see that
the transactional overhead increases the average request latency by 74.6%. In the
boxplot in Figure 6.3a, we see that there are many outliers at higher latencies for all

Chapter 6. Experiments and evaluation 31

Orleans Orleans (T) Statefun

101

102

103

104

105

La
te

nc
y

Uniform
Zipf

(A) Checkout benchmark

Orleans Orleans (T) Statefun

101

102

103

La
te

nc
y

Uniform
Zipf

(B) Analytics benchmark

FIGURE 6.3: Boxplot showing measured latency of requests while
running the checkout and analytics benchmarks with a stable
throughput. The Orleans implementation which uses ACID trans-

actions is labelled as “Orleans (T)”

systems and distributions. However, the outliers for the Orleans applications are
relatively of much higher latency than the outliers for the StateFun application.

In Table 6.1, we also report the percentage of requests that do not return a successful
result, under the errors column. For Orleans, this is the percentage of requests that
do not return a 200 status code to the HTTP client. In StateFun, the API gateway can
not wait for requests to finish on the StateFun cluster before returning, so it always
returns a successful response after it forwards the request to Kafka. Therefore, we
define errors for StateFun as the amount of requests that did not return an egress
message while the benchmark was running. Interestingly, we see that StateFun does
not respond to a large percentage of requests, 16.42% when the uniform distribution
is used and 4.06% when the Zipfian distribution is used. In contrast, the error rate for
Orleans is much lower, with 0.08% of requests returning a non-200 response when
the uniform distribution is used.

In Table 6.2, we show latency statistics of the stable throughput experiments with the
analytics workload. We see that there is a slight decrease request in latency when the
zipfian distribution is used, however as discussed in subsection 6.2.1, there is not a
large impact of the usage of the zipfian distribution in the analytics workload, as the
analytics data is uniformly populated. In the boxplot in Figure 6.3b, we again see
that there are many outliers in the requests of the Orleans and transactional Orleans
experiments.

Results question 2

How does the amount of products included in an order influence the
latency of the checkout request?

In Figure 6.4, we show the mean latency of checkout requests per number of prod-
ucts included in the checkout. As specified earlier, checkout users add a randomly
chosen amount of products between 2 and 8 in their shopping cart before requesting

Chapter 6. Experiments and evaluation 32

2 3 4 5 6 7 8
Number of products in checkout

20

30

40

50
La

te
nc

y
(m

s)

Uniform
Zipf

(A) Orleans implementation

2 3 4 5 6 7 8
Number of products in checkout

240

250

260

270

280

290

La
te

nc
y

(m
s)

Uniform
Zipf

(B) StateFun implementation

FIGURE 6.4: Mean request latency per number of products in check-
out

a checkout. In the checkout workflow shown in Figure 3.1, all products are called in
a fan-out pattern. Ideally, when more products are called, no difference in latency
should be observed, as the product calls should be concurrent. In the Orleans imple-
mentation (Figure 6.4a), we see no discernible trend of an increased latency when
more products are included in the checkout, when a uniform distribution is used.
For the zipfian distribution experiment, we do see a slight increase in latency when
more products are added. For StateFun, the results are shown in Figure 6.4b. For
both distributions, we see a clear increase in request latency when more products
are added. This shows that for StateFun, there is some overhead when functions are
called concurrently.

5 10 15 20
Depth parameter value

20

40

60

80

100

120

140

160

La
te

nc
y

(m
s)

Linear call (n = 1)

5 10 15 20
Top parameter value

25

30

35

40

45

Single fan-out (d = 2)

2 3 4 5 6
Depth parameter value

20

40

60

80

100

120

140

160

180
Exponential fan-out (n = 3)

Distribution
Uniform
Zipf

FIGURE 6.5: Mean orleans analytics request latency at stable through-
put load in three request structure cases where one of the two request
parameters (top or depth) is fixed. Latency is plotted for each value

of the remaining parameter.

Results question 3

How do the analytics request parameters influence the request latency?

In Figure 6.5 we show the influence of the structure of the analytics request on its
latency. The results are shown only for the Orleans implementation, as it was the
only system that was able to run a stable throughput of the analytics workload. We
highlight three cases where either the top or depth parameter is fixed and show

Chapter 6. Experiments and evaluation 33

the latency per each value of the remaining parameter. In the first case, the top
parameter is set to 1 (n = 1), which shows the requests where products are called
sequentially. We see that when the depth of the query is increased, and thus the
amount of products that are called sequentially is increased, we also see a steady
increase in request latency.

In the second case, the depth parameter is fixed to 2 (d = 2), which shows the re-
quests where products are called in a fan-out pattern instead of sequentially. We
see a slight increase in latency when the top parameter is increased, representing an
increase in concurrently called products. This increase is much lower than in the lin-
ear call case, which shows that the Orleans deployment is able to run these product
invocations in parallel.

The third case shows an exponential fan-out request structure, where the top pa-
rameter is fixed to 3 (n = 3). This is a combination of sequential and concurrent
calls to products. The request latency is shown for each depth value between 2 and
6. In this case, the amount of products called in total during the request is equal to
1
2 (3

d − 1) where d is the depth parameter. We observe an increase in latency as the
depth parameter is also increased, which is slightly exponential. This is expected
when compared with the other two cases.

6.2.3 Networking

To get a better understanding of how the tested systems work, we inspect the origin
of the request latency. First, we show how much each layer in the application (API,
functions and networking) contributes to the overall request latency. To gain a better
understanding of the effects of request structure characteristics on latency as shown
in subsection 6.2.2, we measure the contribution of networking on latency for these
varying characteristics.

Experiment questions

1. How much does each application layer (API gateway, functions, and network-
ing) contribute to request latency?

2. How does the amount of products in an order influence the contribution of
networking on latency of the checkout request?

3. How do the analytics request parameters influence the contribution of net-
working on latency?

Experiment design

The measurements for these experiments are based on the same setup as the stable
load latency experiments in subsection 6.2.2. Since we pass a tracing identifier with
each internal request, we can follow the path of a request in the logs and calculate
the amount of time spent in each of the application layers. If a request contains
concurrent calls, the longest path is used in the calculation. For example, in the fan-
out pattern in the checkout operation, the product function execution that returns
a message to the order function at the latest time, is used to calculate the latency
components.

Chapter 6. Experiments and evaluation 34

Orleans Orleans (T) Statefun
0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f l

at
en

cy
Distribution = Uniform

Orleans Orleans (T) Statefun

Distribution = Zipf

Segment
API
Order
Shopping cart
Product
User
Network

FIGURE 6.6: Mean percentage of latency in checkout request con-
tributed by each function, the API gateway, and network, under sta-

ble throughput.

Results question 1

How much does each application layer (API gateway, functions, and net-
working) contribute to request latency?

In Figure 6.6 we show for each of the implemented functions and the gateway, how
much they contribute to the end-to-end latency of the checkout request, on aver-
age. All time between the measured function calls is shown as network time. These
measurements are taken at stable throughput. As the checkout request contains a
fan-out call to all products, we follow the longest path per request, i.e. the product
call that returns the latest. We can clearly see that request latency for StateFun is
almost completely classified as network time. This is expected, as StateFun does all
state processing before and after the functions are called. State is shipped to the func-
tion before it is executed, and the state that is returned by the function is then stored
after it stops executing. As we can only produce logs in the function code, we can
not trace the latency that the state management in the StateFun runtime produces.
For the Orleans implementation, we can more clearly see which data entities con-
tribute to request latency. When the state is updated in an Orleans grain, a database
write is done automatically. Therefore, the latency cost of updating database state
is included in our function latency measurements. We see, that under the uniform
distribution, the functions that contribute to a significant portion of the latency, are
the Product and User functions. These are also the only functions that update state
during the checkout process. For the transactional variant of Orleans, we see that
network latency is much more prominent. This is likely due to the protocol for trans-
actions that sends many requests to participating grains in the background. We also
see that for the normal Orleans implementation, network latency is more prominent
when the zipfian distribution is used in the workload. This is likely due to the fact
that requests need to wait for popular product grains to become available for execu-
tion.

Results question 2

How does the amount of products in an order influence the contribution
of networking on latency of the checkout request?

Chapter 6. Experiments and evaluation 35

2 3 4 5 6 7 8
Number of products in checkout

32

34

36

38

40

42

44
Ne

tw
or

k
tim

e
(%

)
Uniform
Zipf

(A) Orleans implementation

2 3 4 5 6 7 8
Number of products in checkout

99.58

99.60

99.62

99.64

99.66

99.68

Ne
tw

or
k

tim
e

(%
)

Uniform
Zipf

(B) StateFun implementation

FIGURE 6.7: Mean network latency percentage for each amount of
products in checkout measured under stable throughput.

In Figure 6.7 we compare the mean contribution of networking on latency to the
amount of products included in the checkout request. In Figure 6.7a we see the
results for the Orleans implementation. When a uniform distribution is used, we
observe a slight decline in the percentage of network time. In this case, networking
is not a limiting factor in concurrent calls within a request. In contrast, when the
zipfian distribution is used we observe an increase in the percentage of network
time. When more products are included in a checkout, the probability increases
that a product is chosen that is very popular. Therefore, it is likely that this relative
increase in network time is due to longer waiting times for a product grain to become
available for invocation. We can only measure when the invocation of a grain starts,
and so this waiting time is classified as network time.

In Figure 6.7b we show the results for the StateFun implementation. As discussed,
we cannot sufficiently distinguish network time and function state management
time in our logging. Therefore, almost all measured latency is due to networking.
We can see a slight rise in the percentage of network and state management time
when more products are processed in the checkout. This is expected, since the actual
stateless function execution which is the only other contributing factor in latency, is
easily parallelizable and should not increase the latency with more products.

Results question 3

How do the analytics request parameters influence the contribution of
networking on latency?

In Figure 6.8 we show how the analytics request characteristics influence the contri-
bution of networking to request latency. Like in question 3 of subsection 6.2.2, we
show three cases of varying request calling structures of the analytics benchmark
run on the Orleans implementation. First, we show the linear call request structure
(n = 1). We see that the percentage of network time increases when the depth pa-
rameter increases. When the amount of sequential calls is low, the contribution of
latency from the API layer is more significant and thus the percentage of network
time is lower. Since this workload is read-only, Orleans does not need to contact the
database during each product invocation, which means that the product latency for
each invocation is relatively low. When more products are called sequentially, the

Chapter 6. Experiments and evaluation 36

5 10 15 20
Depth parameter value

70

75

80

85

90

95
Ne

tw
or

k
tim

e
(%

)
Linear call (n = 1)

5 10 15 20
Top parameter value

Single fan-out (d = 2)

2 3 4 5 6
Depth parameter value

Exponential fan-out (n = 3)

Distribution
Uniform
Zipf

FIGURE 6.8: Mean network latency percentage of Orleans analytics
requests at stable throughput in three request structure cases where
one of the two request parameters (top or depth) is fixed. The mean
network percentage is plotted for each value of the remaining param-

eter.

absolute network latency increases linearly and therefore we see an increase in the
relative amount of network latency.

In the second case, we look at a single fan-out pattern (d = 2). We see that the per-
centage of network time decreases when more products are called concurrently in
the single fan-out. Since there is an implicit fan-in pattern directly after the fan-out,
the latency is dependent on the product entity that takes the longest to respond.
When the amount of products that are called concurrently increases, the chance
increases that a product is called that takes longer to respond. The absolute net-
work latency remains relatively steady when more products are called, and therefore
the relative amount of network time decreases. Furthermore, when more products
are called, more data is processed in the product invocations and in the API layer,
slightly increasing their latency.

The third case shows an exponential fan-out pattern where the top parameter is set
to 3 (n = 3). We observe an increase in the share of network time when depth is
increased. This means that for each depth increase, the network latency increases at
a faster rate than the product latency. As the amount of products called in the request
increases exponentially, this means that there is more data to transmit between the
functions, which can explain the higher increase in network latency.

6.2.4 Cost

An important aspect of cloud and serverless computing is resource usage, since it
directly influences the cost of running an application. Therefore, we look at the CPU
usage of each of the systems when we run our benchmark application under a stable
load.

Experiment questions

1. How much CPU resources do the systems use when running the benchmark
at a stable load?

2. What is the ratio of achieved throughput to CPU usage?

Chapter 6. Experiments and evaluation 37

Experiment design

For this experiment, the same setup as the stable load latency experiment subsec-
tion 6.2.2 is used. CPU core usage statistics are requested from Google Cloud, for
the time that the experiment was running. Google Cloud runs a managed instance
of Prometheus4, which collects the CPU core usage from the kubelet processes that
run on every node in the Kubernetes cluster.

Results question 1

How much CPU resources do the systems use when running the bench-
mark at a stable load?

Orleans Orleans (T) Statefun
System

0

1

2

3

4

5

6

7

8

M
ea

n
CP

U
us

ag
e

Uniform
Zipf

(A) Checkout benchmark

Orleans Orleans (T) Statefun
System

0

2

4

6

8

10

M
ea

n
CP

U
us

ag
e

Uniform
Zipf

(B) Analytics benchmark

FIGURE 6.9: Mean cluster CPU core usage while running stable
throughput experiments.

In Figure 6.9 we show the mean CPU core usage over the entire cluster of 5 n2-standard-4
machines with 4 vCPUs each. This includes the resource usage of all background
Kubernetes pods running on the system, including the log collection processes and
Kafka instance which all deployments share. We see that there is a drop in CPU
usage when comparing the zipfian distribution experiments with the uniform dis-
tribution experiments. This is expected since the zipfian workload is less easily par-
allelized over multiple machines and threads, which is also reflected in the measured
throughput in Table 6.1. Furthermore, we see a drop in CPU usage when Orleans is
run in transactional mode. This shows that a lack of CPU resources is not the main
cause for the lower throughput.

Results question 2

What is the ratio of achieved throughput to CPU usage?

In Figure 6.10 we show the ratio of stable throughput achieved per vCPU core used.
We can see that for the checkout benchmark, StateFun is able to achieve better stable
throughput per used vCPU core. While the CPU usage drops significantly when a

4https://prometheus.io

https://prometheus.io

Chapter 6. Experiments and evaluation 38

Orleans Orleans (T) Statefun
System

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
M

ea
n

th
ro

ug
hp

ut
 /

M
ea

n
CP

U
us

ag
e Uniform

Zipf

(A) Checkout benchmark

Orleans Orleans (T) Statefun
System

0

10

20

30

40

50

M
ea

n
th

ro
ug

hp
ut

 /
M

ea
n

CP
U

us
ag

e Uniform
Zipf

(B) Analytics benchmark

FIGURE 6.10: Ratio of achieved stable throughput per vCPU core
used.

zipfian distribution is used instead of a uniform distribution, the achieved through-
put per vCPU core is still lower for both Orleans and StateFun. The transactional
deployment of the Orleans application achieves a lower throughput per vCPU core
than the non-transactional deployment. This is expected since the transactional pro-
tocol adds more message processing per request.

6.3 Scalability

Most cloud-serving systems are designed to be horizontally scalable, in order to
serve very large workloads. This is also an important property of serverless systems,
as the cloud resource usage of such systems should scale with demand. We inspect
the horizontal scalability of the selected systems by measuring how the maximum
achieved throughput changes when more resources are added.

Experiment question

How does the amount of resources of the cluster running the benchmark application
affect the maximum throughput for the checkout workload?

Experiment design

In each of our scalability experiments, we change the amount of nodes in the Kuber-
netes cluster. In order to determine the optimal deployment for each node configura-
tion, we look at bottlenecks in the previous deployment. Bottlenecks are determined
by the CPU usage of the pods running on the cluster, which we collect for each ex-
periment. For example in the case of StateFun, if we observe that the Flink workers
are using close to the maximum of their respective CPU resources, we deploy an
extra worker instance on the node that is added in the next experiment. Our deploy-
ment of Orleans uses PostgreSQL as a state backend, which unfortunately cannot
be horizontally scaled to increase write throughput without implementing sharding
logic. Instead, we vertically scale the node that is running PostgreSQL. For example,

Chapter 6. Experiments and evaluation 39

instead of adding another n2-standard-4 node, we change the n2-standard-4 node
running PostgreSQL to a n2-standard-8 node with double the CPU and memory
resources. Virtually, we consider this as if another node was added. For each cluster
size that is tested, we determine the maximum throughput in the same way as in
subsection 6.2.1.

3 4 5 6 7
Cluster size (# nodes)

40

50

60

70

80

90

100

110

M
ax

 th
ro

ug
hp

ut
 (r

eq
/s

)

Uniform
Zipf

(A) Orleans implementation

3 4 5 6 7 8 9 10 11
Cluster size (# nodes)

100

150

200

250

300

350

400

M
ax

 th
ro

ug
hp

ut
 (r

eq
/s

)

Uniform
Zipf

(B) StateFun implementation

FIGURE 6.11: Max throughput per cluster size in nodes.

TABLE 6.3: Scalability experiments with amount of n2-standard-4
equivalent nodes, measured maximum throughput and deployment

configuration.

System Distribution Nodes
Max

throughput
(req/s)

Deployment

Orleans Uniform 4 106.0 2 orleans + 1 postgres
Orleans Uniform 5 115.0 3 orleans + 1 postgres
Orleans Uniform 6 115.7 4 orleans + 1 postgres
Orleans Zipf 4 41.6 2 orleans + 1 postgres
Orleans Zipf 5 46.6 3 orleans + 1 postgres
Statefun Uniform 4 194.0 2 functions + 1 worker
Statefun Uniform 5 266.0 2 functions + 2 worker
Statefun Uniform 6 286.3 3 functions + 2 worker
Statefun Uniform 8 348.8 4 functions + 3 worker
Statefun Uniform 10 386.8 6 functions + 3 worker
Statefun Zipf 4 69.1 2 functions + 1 worker
Statefun Zipf 5 70.5 2 functions + 2 worker
Statefun Zipf 6 115.4 3 functions + 2 worker
Statefun Zipf 8 187.0 4 functions + 3 worker
Statefun Zipf 10 232.1 6 functions + 3 worker

Results

In Figure 6.11 we show the measured maximum throughput per cluster size in
n2-standard-4 equivalent steps. The experiments are described in Table 6.3, which
shows for each experiment how many nodes are used for each process type. In
the case of Orleans, it shows how many nodes are used to run Orleans silos and
what the node equivalent is for the machine that runs PostgreSQL. For StateFun,
it shows how many nodes are used to run the function containers, and how many
nodes are used to run StateFun Flink workers. It should be noted that each node

Chapter 6. Experiments and evaluation 40

that runs a function container also runs an API gateway container. For StateFun, we
see a steady increase in maximum throughput when more nodes are added. Un-
fortunatly, we could not get Orleans to scale beyond the base deployment. Likely
due to bugs in the PostgreSQL connector, Orleans opened too many connections to
PostgreSQL, which resulted in many exceptions when running a higher amount of
request throughput. It is likely that Orleans is able to scale much better when an-
other backend for persistence is used, like Azure Storage or Amazon DynamoDB.
However, we were not able to test Orleans with these configurations.

6.4 Development difficulty

While performance is an important metric to compare stateful functions systems
with, the difference in the difficulty of implementing an application on a system is
important as well. To compare the selected systems in this regard, we first compare
the lines of code used to implement our benchmark application on each system.
Lines of code (LOC) can give an indication of the amount of effort necessary to im-
plement an application.

TABLE 6.4: Lines of code (LOC) per implementation

Implementation LOC (Total) LOC (Excl. gateway) Languages

Orleans 753 536 C#
Orleans (T) 789 559 C#
StateFun 971 705 Kotlin
Cloudstate 852 663 Kotlin, Protocol Buffers
Cloudburst 480 328 Python

6.4.1 Lines of code (LOC)

We show the LOC for each of the implementations in Table 6.4. We show two values
for each implementation, the LOC including and excluding the API gateway, which
is implemented for each system, but does not influence the application logic. We see
that the Cloudburst implementation uses the least amount of code, which is partly
because Python is a very concise language when compared to C# and Kotlin. Fur-
thermore, as described in chapter 5 the Cloudburst implementation does not share
all features included in the other implementations.

The Cloudstate and StateFun implementations both have a similar amount of code,
which is the most of all the implementations. They are both implemented in Kotlin,
which is a JVM-based language that is generally more concise than Java. Therefore,
if they would be implemented in Java, for which for example the StateFun SDK is
specifically written, the LOC would be even slightly higher. The StateFun SDK re-
quires a relatively large amount of code to implement the communication between
stateful functions. For example, StateFun requires you to manually send messages
to other functions and to forward incoming messages to a specific function to the
right action. In comparison, in Orleans all communication is abstracted away and
calls to other functions are disguised as normal procedure calls. In Cloudstate, a lot
of boilerplate code is necessary to implement the event-sourced functionality of the
event-sourced entities. Each operation on an event-sourced entity requires a com-
mand handler which handles the operation and sends out an entity change event if
the entity should be changed in the operation. Each entity change event requires an

Chapter 6. Experiments and evaluation 41

event handler which updates the local state of the entity. Finally, an event-sourced
entity requires a handler which can create a snapshot of the state, and a handler
which can recreate the state of the entity from a stored snapshot. Naturally, this is
an effect of the state management in Cloudstate, however, the SDK could offer an
abstraction for this that would make implementing entities much easier.

TABLE 6.5: Subjective rating of programming model and system un-
derstandability

System Programming model System understandability

Orleans ★ ★ ★ ★ ★ ★ ★ ★ ★ ✩
Orleans (T) ★ ★ ★ ★ ✩ ★ ★ ★ ✩ ✩
StateFun ★ ★ ★ ✩ ✩ ★ ★ ★ ✩ ✩
Cloudstate ★ ★ ★ ✩ ✩ ★ ★ ✩ ✩ ✩
Cloudburst ★ ★ ✩ ✩ ✩ ★ ★ ✩ ✩ ✩

6.4.2 Subjective rating

In Table 6.5 we give a subjective rating to each of the selected systems on the ease of
use of the programming model, and the system understandability. The lowest rating
for the programming model is given to Cloudburst, which regardless of its limited
set of features was hard to understand, partly due to missing or incorrect documen-
tation. Furthermore, the SDK doesn’t allow for a clear distinction between function
instances and therefore doesn’t include complex communication between function
instances. Therefore, its programming model doesn’t fully conform to the stateful
FaaS model. We also give Cloudburst a low rating for system understandability,
since it is difficult to understand how important properties like function scheduling
and state caching work and how they influence the application.

We have given the maximum rating to the programming model of Orleans since it
is very easy to use since a large portion of the data management and communica-
tion is abstracted away. While it is only possible to implement Orleans applications
in C#, it is very well integrated and easy to use for programmers already familiar
with normal C# and .NET development. Furthermore, the SDK has a lot of well-
documented features that do not exist on the other selected systems. For example,
Orleans allows to set a request context which can be accessed by any grain included
in a request, regardless of where the grain is executed. We have used this to imple-
ment distributed tracing. It’s not very difficult to understand how Orleans works,
especially for people familiar with distributed systems. Many properties of the sys-
tem are well-documented and can be changed by the programmer, such as how
grains are scheduled. Therefore, we have also given a high rating to the system
understandability of Orleans.

The transactional mode of Orleans is slightly harder to understand, as it uses an
elaborate protocol to run the distributed transactions. Furthermore, the transactional
API of the SDK is more limited than the non-transactional API. For example, if the
state of a grain is marked as transactional, every CRUD operation on that state is run
as a transaction. There is no way to mark a request as non-transactional. This can
be seen in our analytics request performance results, which show that the transac-
tional Orleans is less performant than normal Orleans, while the grain reads that are
performed do not have to be run as a transaction. For these reasons, we have given

Chapter 6. Experiments and evaluation 42

the transactional variant of Orleans a slightly lower score when compared to normal
Orleans.

As discussed, the SDK for Cloudstate requires the programmer to write a lot of boil-
erplate code to implement event-sourced entities. However, the basic functionality
of the SDK was reasonably documented and easier to understand than the Cloud-
burst SDK. Therefore we have given it a slightly higher rating than Cloudburst, but
lower than Orleans.

Our rating for the StateFun programming model is the same as for Cloudstate. While
the data management of function state is less work to implement when compared to
Cloudstate, the communication between functions requires more code in StateFun,
as discussed earlier in subsection 6.4.1. Furthermore, because of the asynchronous
messaging between functions, operations can become more complex to implement.
An example of this is the checkout operation in the StateFun implementation, of
which the messaging between the various functions is shown in Figure 5.2. For
system understandability, we rate StateFun slightly lower than Orleans, and slightly
higher than Cloudstate and Cloudburst. StateFun is built on the well-documented
and widely-used Apache Flink, which improves the understandability of the system.
However, some internal aspects of the system, such as the origin of the relatively
high request latency, are still difficult to understand due to the lack of internal tracing
capabilities. Therefore, we have ranked the system understandability as slightly
higher than Cloudstate and Cloudburst, but slightly lower than Orleans.

43

Chapter 7

Discussion

In the previous chapter, we have evaluated our benchmark design by conducting
various experiments. Firstly, we have shown that it can be used to evaluate the
general performance of a stateful functions system, and to compare throughput and
latency between different systems. Furthermore, we have shown that the benchmark
workloads can be used to analyse various properties of stateful functions systems,
such as the impact of networking on latency and the resource usage of these systems
while under a reasonable load. Finally, we have shown that the dynamic request
structures of our benchmark workloads allow us to analyse how the systems cope
with concurrency in different calling patterns, such as the fan-out and exponential
fan-out.

7.1 Limitations

Unfortunately, our analytics benchmark was only able to run on Orleans, and not
on the StateFun system. This was probably caused by the relatively high number
of internal requests per operation, especially in the exponential fan-out cases. The
workload could be tweaked to reduce the number of internal requests. However, we
observed that Orleans was able to achieve a significant throughput with the same
workload, and thus we consider the workload to be a valid stress test for stateful
functions systems. Therefore, we consider the fact that the workload could not be
run on the StateFun system as a flaw of StateFun, and not as a flaw of the benchmark.

Our analysis of network latency in subsection 6.2.3 was limited in the case of State-
Fun, since we were not able to properly analyse the internal workings of the StateFun
runtime. This restricted us to classify the time a request spent outside of our imple-
mentation as network latency, while the data management by the StateFun was done
in this time as well. An important recommendation to stateful functions systems is
to include the capability to trace a request throughout the system and the applica-
tion, which would allow for better profiling of request latency. Orleans includes the
option to store values in a request context, which is then available in any grain par-
ticipating in the request. This allowed us to set and log an identifier for each request,
allowing us to trace the request over the system. For StateFun we could only man-
ually add a request identifier to each internal message to be able to perform limited
request tracing. Better support for this in stateful functions frameworks would help
to further understand these systems.

A general limitation of our benchmark is that benchmarking a new system requires
a specific implementation of the benchmark application for that system. In contrast

Chapter 7. Discussion 44

to benchmarks such as YCSB (Cooper et al., 2010) and TPC-C (Transaction Process-
ing Performance Council (TPC), 2010), where only a thin driver layer between the
benchmark client and database is required, this requires significantly more time.
However, due to the nature of stateful functions, where state management and ap-
plication logic is combined, we see no alternative to this approach.

7.2 Future work

Our benchmark is mostly focused on measuring the performance of stateful server-
less functions. Further research into benchmarking stateful functions could explore
evaluating other aspects of these systems, such as transaction consistency. When
more stateful functions systems provide ACID transactions, as for example Orleans
does, benchmarks should test for inconsistencies. YCSB-T (Dey et al., 2014) does this
by including a validation check after the benchmark has run to measure inconsisten-
cies and give an anomaly score.

Another property of stateful functions systems that could be evaluated by future
benchmarks is their ability to scale while running a workload. YCSB includes a met-
ric called elastic scaleup, which measures the performance improvement of a database
system when an extra server is added while a workload is running. Ideally, a state-
ful functions system should be able to dynamically reconfigure while running, and
show a performance improvement quickly after a server is added. A closely related
property that can be evaluated is autoscaling, where the system automatically pro-
visions new instances according to demand.

45

Chapter 8

Conclusion

In this thesis, we have introduced a benchmark specifically designed for Stateful
Functions-as-a-Service (SFaaS) systems. The benchmark exists of a benchmark appli-
cation based on a simple e-commerce application that handles products, users, shop-
ping carts and orders, and a benchmark client which runs two benchmark work-
loads. The benchmark workloads call complex application operations that span
multiple stateful functions and are designed to test many different function calling
patterns. In this way, it differs from existing cloud systems benchmarks which are
not focused on SFaaS systems. We have implemented the benchmark application on
four selected stateful functions systems: Microsoft Orleans, Apache Stateful Func-
tions, Cloudstate and Cloudburst. We have evaluated our benchmark by comparing
these selected systems, with a range of experiments on cloud deployments of our
application implementations. We show that our benchmark can be used to compare
the performance of SFaaS systems, in the form of request latency and throughput.
Furthermore, we show that with the varied function calling structures of our work-
load, we can observe how request latency changes with concurrent and subsequent
function calls, and what the influence of internal networking is on this latency. By
observing cloud resource usage and request throughput, we show that our bench-
mark can also highlight the cost of running applications that are deployed on state-
ful functions systems. Finally, we show that the scalability of the systems can be
evaluated by observing the maximum request throughput when more computing
resources are added to the deployments. While we have designed our benchmark
to test the performance of stateful functions systems, we have also designed it to be
extendable by future work to test a wider range of properties.

46

Appendix A

Application API Schema

A.1 Product

A.1.1 Create new product

Route: POST \products

Body (JSON): Name Type

price Integer (optional)
stock Integer (optional)

Returns String

Description Adds a new product to the system and returns the ID of the new prod-
uct.

A.1.2 Update product

Route: POST \products\{id}

Body (JSON): Name Type

price Integer (optional)
stock Integer (optional)

Returns String

Description Updates the product with the given id.

A.1.3 Query frequently bought together items

Route: GET \products\{id}\freq-items

Query
params:

Name Type

top Integer (optional)
depth Integer (optional)

Returns List of strings

Description Query frequently bought together items of the product with the given
id. Uses the given query parameters as described in subsection 3.2.2.

Appendix A. Application API Schema 47

A.2 User

A.2.1 Create new user

Route: POST \users

Body (JSON): Name Type

credits Integer (optional)

Returns String

Description Adds a new user to the system and returns the ID of the new user.

A.2.2 Add credits to user

Route: PATCH \users\{id}\credits\add

Body (JSON): Name Type

credits Integer

Returns String

Description Adds credits to the users with the given id.

A.3 Shopping cart

A.3.1 Create new shopping cart

Route: POST \shopping-carts

Returns String

Description Creates a new shopping and returns the ID of the new shopping cart.

A.3.2 Add product to shopping cart

Route: POST \shopping-cart\{id}\products

Body (JSON): Name Type

productId String
amount Integer

Description Adds a given amount of the product with the given productId to the
shopping cart.

Appendix A. Application API Schema 48

A.4 Order

A.4.1 Checkout order

Route: POST \orders\checkout

Body (JSON): Name Type

cartId String
userId String

Description Run checkout for an order with the given shopping cart and user, as
described in subsection 3.2.2.

49

Appendix B

Source code

The source code of the benchmark application implementations for Orleans, Apache
Stateful Functions, Cloudstate, and Cloudburst, and the implementation of the bench-
mark client, can be found on GitHub via the following link: https://github.com/
mcomans/stateful-functions-benchmark.

https://github.com/mcomans/stateful-functions-benchmark
https://github.com/mcomans/stateful-functions-benchmark

50

Bibliography

Armbrust, Michael et al. (Feb. 2009). “Above the Clouds: A Berkeley View of Cloud
Computing”. In: p. 25.

Baldini, Ioana et al. (2017). “Serverless Computing: Current Trends and Open Prob-
lems”. In: Research Advances in Cloud Computing. Ed. by Sanjay Chaudhary, Gaurav
Somani, and Rajkumar Buyya. Springer, pp. 1–20. DOI: 10.1007/978-981-10-
5026-8_1.

Bernstein, Phil et al. (Mar. 2014). Orleans: Distributed Virtual Actors for Programmability
and Scalability. Tech. rep. MSR-TR-2014-41.

Carbone, Paris et al. (2017). “State Management in Apache Flink®: Consistent State-
ful Distributed Stream Processing”. In: Proc. VLDB Endow. 10.12, pp. 1718–1729.
DOI: 10.14778/3137765.3137777.

Cooper, Brian F et al. (2010). “Benchmarking Cloud Serving Systems with YCSB”.
In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 143–154.

Copik, Marcin et al. (2021). “SeBS: A Serverless Benchmark Suite for Function-as-a-
Service Computing”. In: Service Computing, p. 15.

Dey, Akon et al. (Mar. 2014). “YCSB+T: Benchmarking Web-Scale Transactional Databases”.
In: 2014 IEEE 30th International Conference on Data Engineering Workshops. Chicago,
IL, USA: IEEE, pp. 223–230. ISBN: 978-1-4799-3481-2. DOI: 10.1109/ICDEW.2014.
6818330.

Eldeeb, Tamer and Phil Bernstein (Oct. 2016). Transactions for Distributed Actors in the
Cloud. Tech. rep. MSR-TR-2016-1001.

Gan, Yu et al. (2019). “An Open-Source Benchmark Suite for Microservices and Their
Hardware-Software Implications for Cloud & Edge Systems”. In: Proceedings
of the Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS ’19. New York, NY, USA: Associa-
tion for Computing Machinery, pp. 3–18. ISBN: 978-1-4503-6240-5. DOI: 10.1145/
3297858.3304013.

Hellerstein, Joseph M. et al. (2019). “Serverless Computing: One Step Forward, Two
Steps Back”. In: 9th Biennial Conference on Innovative Data Systems Research, CIDR
2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org.

Jonas, Eric et al. (2019). “Cloud Programming Simplified: A Berkeley View on Server-
less Computing”. In: CoRR abs/1902.03383. arXiv: 1902.03383.

Raab, Francois Raab, Walt Kohler, and Amitabh Shah (1992). Overview of the TPC-C
Benchmark. Tech. rep.

Sreekanti, Vikram et al. (Aug. 2020). “Cloudburst: Stateful Functions-as-a-Service”.
In: Proceedings of the VLDB Endowment 13.12, pp. 2438–2452. ISSN: 2150-8097. DOI:
10.14778/3407790.3407836.

Transaction Processing Performance Council (TPC) (Feb. 2010). TPC Benchmark C,
Standard Specification, Revision 5.11. Tech. rep.

– (Apr. 2015). TPC Benchmark E, Standard Specification, Version 1.14.0. Tech. rep.
Wang, Liang et al. (2018). “Peeking behind the Curtains of Serverless Platforms”. In:

2018 USENIX Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA,

https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.1109/ICDEW.2014.6818330
https://doi.org/10.1109/ICDEW.2014.6818330
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://arxiv.org/abs/1902.03383
https://doi.org/10.14778/3407790.3407836

Bibliography 51

July 11-13, 2018. Ed. by Haryadi S. Gunawi and Benjamin Reed. USENIX Associa-
tion, pp. 133–146.

Wu, Chenggang, Vikram Sreekanti, and Joseph M. Hellerstein (Feb. 2019). “Au-
toscaling Tiered Cloud Storage in Anna”. In: Proceedings of the VLDB Endowment
12.6, pp. 624–638. ISSN: 2150-8097. DOI: 10.14778/3311880.3311881.

Wu, Chenggang et al. (2019). “Anna: A KVS For Any Scale”. In: IEEE Transactions
on Knowledge and Data Engineering, pp. 1–1. ISSN: 1041-4347, 1558-2191, 2326-3865.
DOI: 10.1109/TKDE.2019.2898401.

https://doi.org/10.14778/3311880.3311881
https://doi.org/10.1109/TKDE.2019.2898401

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Contributions
	Report outline

	Related work
	Database benchmarks
	Serverless functions benchmarks
	Microservices benchmarks

	Design
	Current benchmarks
	Specifications
	TPC-C
	YCSB

	Limitations

	Benchmark application
	Entities
	Operations
	Checkout
	Analytics query

	Benchmark client
	Workloads
	Checkout workload
	Analytics workload

	Distributions

	Extensibility

	Selected systems
	Apache Stateful Functions
	Architecture

	Microsoft Orleans
	Architecture
	Transactions

	Cloudstate
	Architecture

	Cloudburst
	Architecture

	Comparison
	State management

	Implementation
	Shared
	API
	Tracing

	Apache Stateful Functions
	Functions and Messages
	Gateway

	Microsoft Orleans
	Transactions

	Cloudstate
	Cloudburst
	Client
	Workload generation
	Log collection

	Experiments and evaluation
	General setup
	Workloads

	Performance
	Maximum throughput
	Experiment question
	Experiment design
	Results

	Request latency
	Experiment questions
	Experiment design
	Results question 1
	Results question 2
	Results question 3

	Networking
	Experiment questions
	Experiment design
	Results question 1
	Results question 2
	Results question 3

	Cost
	Experiment questions
	Experiment design
	Results question 1
	Results question 2

	Scalability
	Experiment question
	Experiment design
	Results

	Development difficulty
	Lines of code (LOC)
	Subjective rating

	Discussion
	Limitations
	Future work

	Conclusion
	Application API Schema
	Product
	Create new product
	Update product
	Query frequently bought together items

	User
	Create new user
	Add credits to user

	Shopping cart
	Create new shopping cart
	Add product to shopping cart

	Order
	Checkout order

	Source code
	Bibliography

