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Abstract

The limits of evolution have long fascinated biologists. However, the causes
of evolutionary constraint have remained elusive due to a poor mechanistic
understanding of studied phenotypes. Recently, a range of innovative ap-
proaches have leveraged mechanistic information on regulatory networks
and cellular biology. These methods combine systems biology models with
population and single-cell quantification and with new genetic tools, and
they have been applied to a range of complex cellular functions and engi-
neered networks. In this article, we review these developments, which are
revealing the mechanistic causes of epistasis at different levels of biological
organization—in molecular recognition, within a single regulatory network,
and between different networks—providing first indications of predictable
features of evolutionary constraint.
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1. INTRODUCTION

Elucidating the range of possibilities and limitations of evolutionary adaptation has been one of
the most evocative and complex problems in biology (6, 78). Evolution is sometimes strikingly
rapid but can also display long-term stagnation for reasons that often remain obscure. Resolving
this conundrum is central to understanding natural and laboratory evolution and important to
harnessing evolutionary optimization in protein and cellular engineering applications. At a con-
ceptual level, a wide variety of causes have been invoked to explain why new functions may fail
to evolve: Those functions may be impossible biochemically (5) or physically (18); a sufficiently
strong selection may be absent (22); or, alternatively, an organism’s genetic makeup may hamper
evolution (14, 38). Indeed, functional improvements that require multiple genetic changes are dif-
ficult to acquire by fixing each mutation one by one. The first empirical studies of such genetic
interdependencies were enabled by systematic genetic reconstruction of evolutionary intermedi-
ates and laboratory evolution (8, 37, 39, 54, 55, 75). Still, we have only begun to scratch the surface
of this multifaceted issue.

It has proven useful to break down the problem of genetic interdependence into a few ele-
mentary types of pairwise genetic interactions (14, 38). Briefly, reciprocal sign epistasis refers to
cases in which two independent disadvantageous mutations are simultaneously required for an
improved phenotype or fitness (56). It is reciprocal because both mutations influence each other’s
effect, and it is described using the term “sign” because the fitness effects of the mutations switch
between negative and positive. It is this type of interaction that constrains adaptive evolution the
most, since it implies that both mutations must be fixed simultaneously in a selective sweep—a
topic that is discussed further in Section 2. Evolution is less constrained when only one of the two
mutations switches its effect between negative and positive, which is referred to as regular sign
epistasis (75). In this case, some evolutionary pathways are inaccessible to adaptive evolution, but
others remain possible. Finally, one can distinguish between two cases that do not restrict adaptive
pathways: magnitude epistasis, where the occurrence of one mutation alters the magnitude of the
fitness effect of another mutation, and no epistasis, where mutational effects on fitness are additive
(54).

One of the major challenges in current evolutionary research is to go beyond description and
toward prediction. In this context, the notion of epistasis is useful because it provides the capacity
to classify and quantify evolutionary constraints. However, it only provides a part of the picture,
since it does not address the underlying molecular mechanisms. Recently, a series of studies ex-
ploited knowledge about the architecture of regulatory networks to begin filling this void. The
rationale for these studies is that this type of knowledge provides a mechanistic basis for notions
such as constraint and epistasis, which by themselves are mechanism independent. One can de-
termine how the quantifiable network properties, like topology, expression levels of constituent
genes, or molecular affinities, affect phenotype and fitness.Moreover,mathematical modelingmay
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be used to extensively explore the range of possible phenotypes, thus opening up the possibility
to predict constraints and epistasis.

This early stage of exploration of constraints in network evolution is characterized by a combi-
nation of experimental and theoretical innovations and has focused on elementary questions. For
instance, do regulatory trade-offs limit evolution, or can they also accelerate it? Are downstream
regulatory elements constrained differently than upstream elements? Does pleiotropy within net-
works frustrate or facilitate their evolution? In this review, these efforts are organized into three
sections, each considering a different level of biological organization, ranging from single molec-
ular interactions to highly interconnected networks.

2. EPISTASIS IN REGULATORY INTERACTIONS

Intermolecular binding is at the heart of all regulatory networks, whether it occurs between
membrane-associated effector proteins and kinases to transduce signals (51) or between transcrip-
tion factors and their DNA binding sites to regulate gene expression (4, 52). In this section, we
consider studies of how the physical binding of macromolecules impacts epistasis in a regulatory
system, how environmental changes modulate epistasis, and the relationship of these factors to
the predictability of epistasis and evolutionary constraint.

To function, transcription factors must bind their own cognate DNA binding site while avoid-
ing others. It has been proposed that such specific molecular recognition represents an architec-
tural feature that gives rise to epistasis (53). The rationale is that changing such lock–key systems
requires modifications in both key (transcription factor) and lock (binding site), as changing only
one of them yields nonmatching combinations (Figure 1a). Since scenarios where two (or more)
genetic changes occur in the same (selection) period are rare, such an architecture could prohibit
mutational trajectories to improved phenotypes under positive selection.

These core ideas are testable experimentally, as has been done using the archetypal model
system of transcriptional regulation: the lac operon in Escherichia coli (15). Owing to decades of
mutational and physiological study of this regulatory system, it is known that a few key operator
base pairs and a few amino acid residues in the binding interface of the lac repressor determine
binding specificity (34, 60). Consistent with the predictions, these key residues indeed display
reciprocal sign epistasis: Mutations in both the DNA binding site and repressor allowed binding
improvements, while mutations in either one alone only led to deterioration. Six key sites in the
transcription factor and the binding site were mutated. Of the 720 possible mutational pathways
going from one specifically binding transcription factor–operator pair to another, none of the
trajectories contained only mutations that improved the phenotype. From an adaptive landscape
perspective, these data thus indicated local optima separated by a valley (15).

Regulation allows cells to respond to environmental cues.The lac repressor, for instance, allows
repression of the lac operon in the absence of lactose, and expression in its presence, by inducing
a conformational change in the transcription factor that lowers its affinity to the DNA binding
site. The lac repressor should thus be able not only to bind the operator, but also to efficiently
release it in the presence of lactose. Analysis of the 720 possible mutational trajectories of the
lac repressor–operator combinations in this second environment also showed that none of the
mutational trajectories allowed continuous improvements. However, alternating between the two
environments did open up adaptive trajectories with constant improvements for each mutation.
With a computational method that describes the mutational and environmental transitions as a
Markov process, the crossing rate from the initial to the final genotype for all trajectories in the
landscape, including detours, could be determined. Interestingly, this rate is found to be maximal
when the rate of environmental switches compares with the mutation rate (15).
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Cross-environmental trade-offs appeared to be responsible for the adaptive accessibility of
adaptive trajectories: Sequences that were suboptimal peaks in one environment were transformed
into valleys in the other environment, thus allowing escape from a suboptimum (Figure 1b,c). In
other cases, inaccessible downward slopes were turned into accessible ascending slopes upon en-
vironmental change, allowing adaptive trajectories to surf (45) these slopes with positive selective
coefficients. Evolutionary constraints can thus be overcome by environment-dependent ratchet-
ing that allows the crossing of otherwise inaccessible regions in sequence space (15, 68).

This highlights the major role that the environment plays in the accessibility of biological
functions during selection by modulating genotype–genotype interactions (16) (Figure 1b). This
is important for more than just regulatory systems, as constraints due to mutations in nonregula-
tory but coding sequences can be affected as well by environmental change. A study that focused
on environment-dependent fitness effects constructed the genotype space of five mutations in the
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Figure 1 (Figure appears on preceding page)

(a) Molecular recognition in cellular regulation. The specific binding of a dimeric transcription factor (light green) to a DNA binding
site, which allows expression control of a downstream gene (blue), can be seen as a lock–key interaction. Mutating both binding partners
produces new lock–key combinations, while mutating either yields nonfunctional ones, as shown by systematic mutagenesis (46).
(b) Schematic diagrams illustrating how environmental change can affect the epistatic interactions between two mutations, a-to-A and
b-to-B. Mutations are depicted as vectors and denote the change in fitness in environment 1 (env1) and environment 2 (env2). In the
case of no genetic constraints, both mutations improve fitness independent of the environment and the genetic background. In the case
of G × E interaction, the environment changes the sign of a mutational effect (b-to-B), independently of the genetic background. The
mutation b-to-B lowers fitness in env1, and thus is inaccessible by adaptive evolution, but becomes accessible when changing to env2. In
the case of G × G interaction, the mutational effects depend on the genetic background, but not on the environment. In this case, both
mutational effects change sign depending on the genetic background (but not the environment), and thus correspond to reciprocal sign
epistasis. In the case of G × G × E interaction, both the environment and the genetic background determine the mutational effect. In
this case, the effect of b-to-B changes sign depending on the genetic background, but only in env1. (c) Schematic of an adaptive
landscape in two environments. Nodes (circles) indicate genotypes, and arrows indicate mutational steps of increasing fitness. Gray scale
depicts fitness, with darker tones indicating higher fitness. Note that this schematic depiction does not include the full genetic
multidimensionality of an adaptive landscape, e.g., it does not contain all pairwise genetic interactions, which may form epistatic motifs.
Without genetic constraints, all mutations are additive, and thus all trajectories from the lowest fitness genotype (white) to the optimum
(black) are accessible. In the case of G × E interaction, mutational effects deviate from additivity in Env2 (red circles, detrimental
mutants). Yet the landscape can be crossed in Env1 by alternating between Env1 and Env2 (dotted lines). In the case of G × G
interaction, the mutations are detrimental in both environments, with correlated effects in both environments blocking direct access to
the optimum by the creation of an adaptive valley. The landscape cannot be crossed by single-step mutations under positive selection.
In the case of G × G × E interaction, in both environments, mutations deviate from additivity as detrimental mutations block direct
access to the optimum by the formation of an adaptive valley in each environment. Yet the location of these mutants is different in both
environments, and parts of the landscapes are anticorrelated. Therefore, these landscapes can be crossed by single-step mutations under
fluctuating selection in Env1 and Env2 (dotted lines).

genome of E. coli andmeasured the phenotype of these genotypes in 1,920 environments (21).The
fitness effects of the mutations significantly changed in 203 environments. Moreover, by focusing
on the adaptive landscapes involving all interactions among these five mutations in the three en-
vironments with the most distinct effects, they observed significant changes in the topography of
the adaptive landscape; thus, epistatic interactions also differed in the different environments.

Environment-dependent epistasis can also affect the ability of a population to adapt to an en-
vironment that is gradually becoming more challenging. In laboratory evolution experiments, the
rate of environmental change (which modulates the selective pressure), as well as the chemical na-
ture of the environment (which determines the genotypes that may confer a benefit), determined
whether evolving populations could keep up with the imposed environmental change (23, 37). En-
vironmental circumstances can thus alter the sign of a mutational effect, its epistatic interactions
with other genetic changes (Figure 1b), and thus the course of evolution (17).

The level of ruggedness of genotype–phenotype landscapes does not appear to be specific to
the lac repressor system. A computational analysis based on the in vitro affinity between tran-
scription factors and their binding sites in eukaryotes found that most of these landscapes were
relatively rugged (1), i.e., they were neither as rugged as those obtained from randomly shuffled
genotypes, nor purely additive.Nonetheless,many of these landscapes were highly navigable, with
mutational trajectories in which binding affinity increased at eachmutational step.Does this imply
a form of evolutionary optimality of the transcription factor–binding site combinations found in
nature? Starr et al. (65) found hundreds of alternative transcription factor protein sequences that
use diverse binding mechanisms but perform their function at least as well as the transcription
factor that has historically evolved. As they noted, this indicates that “the outcome of evolution
depends on a serial chain of compounding chance events” (65, p. 409). Thus, they argue that, if
evolution had begun from a different ancestral starting point in sequence space, then different
genetic and biochemical forms would probably have evolved.
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The evolution of regulatory functions can also be constrained by multiple physical interac-
tions. In a regulatory system containing DNA-binding sites for both the RNA polymerase and a
transcription factor, both of these proteins compete for binding to an overlapping binding site on
the DNA (32). Lagator and colleagues (32) measured the phenotypes of both single and double
mutants; based on a thermodynamic model in which the sign and magnitude of the individual mu-
tational effects served as input, they could predict the effects of double mutations. Such models,
which take into account key functional parameters, may set the stage for the further prediction of
epistasis and, thus, the course of evolution based on the data available for single mutants.

3. EPISTASIS IN REGULATORY PATHWAYS

In this section, we discuss recent studies that have sought to quantify epistasis between genes
that act within a regulatory pathway. Unlike the proteins discussed in the previous section, these
proteins do not necessarily interact physically, but rather by performing one regulatory function
together. We examine the generality and consequences of such functional yet nonphysical inter-
actions and propose interpretations of recent experiments based on phenotype-to-fitness models,
also called geometric models. A first interpretation is that network structure can indeed explain
how epistasis between two genes arises. However, it is not a direct proxy: One cascade structure
can display different types of sign epistasis, depending on other details such as the nature of the
variable environment. Second, geometric models can provide a unified framework to interpret
both the evolutionary and the more classical phenotypic interpretations of epistasis, such as mu-
tations that can mask the phenotypic effects of other mutations. Finally, one can define general
conditions for sign epistasis to arise in any system: It does so when the optimal value of one pheno-
typic parameter, like the binding constant of a transcription factor, depends on another phenotypic
parameter within the network. These findings highlight how functional dependencies within reg-
ulatory networks can induce strong constraints in fitness landscapes.

Epistasis was originally used for scenarios in which certain genetic backgrounds masked
mutation-induced phenotypic variation (50). Such epistatic interactions between loci across the
genome are expected from a purely functional basis, without necessarily implying direct physical
interactions between mutated residues, as is, for instance, typically the case for genes within devel-
opmental pathways (49).Mechanistic biochemical models indicate that genes in parallel metabolic
pathways tend to interact negatively, as the flux catalyzed by a gene can be compensated by flux
in a parallel branch, redundantly allowing production of a same final metabolite. However, genes
in series within a chain should interact positively, as the removal of any of the catalytic species
would strongly reduce the overall metabolic flux (70). This suggests a direct relationship between
the network wiring and the observed epistasis (35, 62). However, the sign changes that are key to
adaptive fixation were not considered in any of these studies. In parallel, the idea of Fisher geo-
metric models has gained momentum to explain epistasis from biological mechanisms and their
function. In this case, generic Gaussian functions describe how fitness depends on a few pheno-
typic parameters. Although it is heuristic, this assumption can reproduce statistical distributions
of epistasis with few parameters (42) and generate a large variety of epistasis distributions (24,
76). This phenotypic view of epistasis and the classical genetic view are starting to be reconciled
using geometric models that describe phenotype–fitness relationships in mechanistic terms, using
information on the network in question. This approach has so far mainly been applied to small,
well-characterized networks (12, 13, 46, 70). While lacking the full cellular context, these studies
have revealed general causes of epistasis, and could serve as a basis for more phenomenological
long-term evolutionary models (41).
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As genes typically represent distinct DNA regions,mutations in one gene logically do not affect
the biochemical parameters of another gene, such as its binding constant or enzymatic activity.
This genetic modularity has been exploited recently to predict epistasis between genes (45). For
instance, in the lac operon, amutation in the transcription factor binding region impacts expression
level, and a mutation in the LacZ gene affects catalytic rates independently, although they do both
participate in the same physiological function. The independence of mutation effects on different
genes applies to regulatory cascades, a ubiquitous regulatory motif in cells, where an upstream
gene y regulates the expression of a downstream gene x, which itself regulates an output gene
(Figure 2a). Crucially for epistasis, mutational steps that affect the phenotypic parameters X are
orthogonal to mutational steps that affect the phenotypic parameters Y within the phenotype
space. Thus, either X or Y changes at each mutational step, but not simultaneously.

The resulting epistasis predictions could be verified experimentally by systematically com-
bining mutations within the different transcription factors that together form a regulatory cas-
cade and quantifying their input–output relationships, as in Reference 46. Based on that study, we
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Figure 2 (Figure appears on preceding page)

Predicted sign epistasis in a regulatory cascade. (a) A transcriptional cascade, where an input signal, such as an inducer, modulates the
expression level of the upstream gene y, which itself expresses a transcription factor that regulates a downstream gene x, which in turn
regulates the level of an output gene. Systematic combinations of mutations in genes x and y allow testing for the effect of combined
changes in the phenotypic parameters respectively called X and Y, as has been explored in Reference 46. For example, X may be the
binding constant of regulatory protein x to the promoter of the output gene. (b) Scenario yielding magnitude epistasis. (Top) The
performance or fitness of the system is measured as the output level in response to a single input that is fixed in time, as it would be in a
constant environment. (Middle) The corresponding phenotype-to-fitness relationship is computed as a function of parameters X and Y,
for example, the binding constants of the transcription factors x and y to their target promoters, using a mathematical model (46). Red
arrows represent the two ways by which mutations leading from X1 to X2 and from Y1 to Y2 can be combined to optimize fitness.
Importantly, given the independent effects of mutations on X and Y, trajectories are parallel to the axis. Given that, in this case, fitness
increases with both X and Y, the maximum values of X as a function of Y and of Y as a function of X, respectively denoted Xopt and Yopt,
are the straight thick gray lines on the right-hand side and top of the landscape, respectively. (Bottom) Given that Xopt and Yopt are
independent of, respectively, Y and X, the geometric model can only generate magnitude epistasis. (c) Scenario yielding regular sign
epistasis. (Top) Fitness is the total output range F = outmax – outmin in response to a variable environment providing wide input
variations, with the input going down to zero (signal is absent). (Middle) Fitness is optimal for intermediate values Xopt of X for fixed Y,
and Xopt is the thick gray curved line that varies as a function of Y. In the example mutational trajectories (red arrows), one path leads to
a decreasing step when mutating X first (circled minus sign). (Bottom) The starting phenotype X1 is optimal given Y1; thus, mutating it
can only lead to decreased fitness, causing the sign epistasis. (d) Scenario yielding reciprocal sign epistasis. (Top) The output is evaluated
in response to a more restricted range of input signals (the minimum input does not reach zero). (Middle) Both Xopt and Yopt are curved
and can lead to decreasing fitness when mutating X or Y first. (Bottom) The mutual dependence of the optima of X and Y on each
other’s values can generate reciprocal sign epistasis patterns.

discuss how functional relationships between genes produce epistasis and how they can be ex-
plained by the shape of the phenotype-fitness functions. We distinguish three major classes of
fitness functions.

First, consider a fitness that varies monotonically with phenotypic parameters X and Y, such
as the binding affinity of the transcription factor for its operator (Figure 2a). This case arises,
for example, when the fitness (or performance) would correspond directly to the output for any
fixed input that does not vary in time. We recover the classical notion of phenotypic epistasis,
as illustrated in Figure 2b: A mutation with a strong effect on X (in the most extreme case a
knock-out) cancels any observable variation of the output that could be caused by changes in Y.
Additionally, it is not possible to generate sign epistasis in this scenario. As discussed further below,
this is generally the case when the optimal value for X does not depend on Y and vice versa.

A second, qualitatively distinct, scenario is when the optimum of Y does depend on X, while
the optimal value of X does not depend on Y (Figure 2c). This situation is found when the fitness
corresponds to the dynamic range of the cascade, as quantified by the difference between the
minimal and maximal output expression levels, in response to widely varying input signals, as
has been shown in Reference 46. The landscape of this fitness function can generate sign epitasis,
with the specific property that only mutations in gene x can lead to decreasing fitness. This is most
easily seen when Y is at its optimum but X is not: Reaching a better X–Y combination cannot be
achieved bymutating Y first, as it is already at its maximum in the current X background.However,
fitness can increase in a stepwise manner, as X is not yet at its maximum and thus can be improved.
In this example, the evolutionary hierarchy reflects the functional hierarchy: The upstream gene
x must be mutated first because the optimum of the downstream gene y must be well tuned to
accommodate X expression but not the converse.

The last case is when the optimum of Y depends on X and the optimum of X depends on Y
(Figure 2d). This scenario is observed, for example, when the fitness again corresponds to the
dynamic range of the output but in response to input signals with variations over a smaller range.
By the same geometric reasoning as above, there are starting phenotypes leading to a decrease in
fitness when mutating x first or when mutating y first. This “or” relationship can become an “and”
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as exemplified in the mutational trajectory of Figure 2d, where reaching a better combination
X–Y in a stepwise manner requires first decreasing the performance of the cascade, independently
of the mutated phenotype. This scenario of reciprocal sign epistasis can be understood as a purely
functional version of lock–key constraints. It should be noted that geometric models exist where
both x-related and y-related sign epistasis exist, but they do not combine into reciprocal sign
epistasis. For example, as shown in Reference 46, slightly tilted Gaussian geometric models do
not combine mere sign epistasis into reciprocal sign epistasis, but strongly tilted Gaussian models
do.

Hierarchy within a cascade can be applied to interpretation of epistasis in a negative feed-
back loop in the galactose regulatory system in yeast (48): Mutants of the downstream GAL80
gene mask mutations in the upstream GAL3 gene. This corresponds to the geometric model in
Figure 2b, where the output corresponds to the intensity of the feedback, and mutations cause
strong knock-down effects. Epistatic effects from regulatory structure also appear when integrat-
ing signals at the same promoter, as studied bymutating a lambda phage promoter repressed by the
protein CI (33). In this case, loss of function in polymerase recruitment masks loss of function in
CI repression, but CI binding allows tuning expression in the presence of mutated but functional
polymerase recruitment, corresponding again to the scheme in Figure 2b. The main point to note
is that epistasis is predominantly explained by the regulatory logic, as opposed to the pleiotropy
caused by physical interactions (33), indicating a modularity in mutational effects, even within a
single regulatory sequence.

Epistasis caused by the functional dependence between the components of a network is also
observed in incoherent feedforward network motifs (61), which integrate an environmental signal
via two regulatory loops into a single output promoter that defines the phenotype. In this case,
the mutational effects were measured in regulatory loops comprising either a double activator or
a double repressor cascade. When mutations were introduced into the cis-regulatory regions of
the networks at each node separately, not all of the possible phenotypic states were accessible.
This suggests that the optimal phenotypic parameters of one gene depend on the phenotypic
parameters of other genes.However,whenmutations were introduced in the cis-regulatory regions
of the individual nodes simultaneously, this barrier could be overcome through epistasis between
the cis-regulatory region mutations. Overall, these results support the idea that epistasis originates
from the tuning of genetically independent phenotypic parameters with respect to each other.

Overall, we have seen how to use functional dependences to identify causes of sign epistasis:
Sign epistasis arises when the optimum of a module needs to be adjusted to the state of another
module. Generalization to a large number of phenotypic dimensions is possible (46) and sug-
gests that phenotypes whose phenotypic optima are mutually dependent (independent) generate
ruggedness (smoothness) in genotype-to-fitness landscapes. The interplay between phenotypes
and their optimality is also crucial during network rewiring, where the accessibility of evolution-
ary paths requires finely tuned steps to preserve function (64). So far, most mutational scanning
studies can be interpreted in large part through loss of function within networks. Revealing sign
epistasis systematically will instead require the combination of mutations with mild phenotypic
effects in the relative proximity of their optima (24).

4. EPISTASIS BETWEEN NETWORKS

In the previous sections, we discuss how epistasis constrains the evolution of regulatory interac-
tions and networks.A focus on the physical (19, 66) or functional (7, 79) features of these regulatory
systems allowed prediction of epistasis within a network of interest. Another situation arises when
selection drives interactions between networks. An interesting example is a recent experimental
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evolution study in Saccharomyces cerevisiae (31). In S. cerevisiae, formation of a polarized spot of
the GTPase Cdc42, a protein that cycles between an active GTP-bound state and an inactive
GDP-bound state, is an essential part of the cell cycle. As polarization serves as a paradigm for
symmetry breaking, a large amount of experimental and theoretical work has been dedicated to
identifying the major components of this network and their interactions (25, 43). The knowledge
that this work has generated makes this network an attractive system to study adaptive pathways.
Laan et al. (31) applied a strong perturbation to this module by deleting a scaffold protein with
a central role in symmetry breaking. The subsequent adaptation to the loss of this component
was restricted by sign epistasis, which constrained the order in which other network components
were mutated, leading to reproducible mutational pathways across multiple parallel lineages. Sur-
prisingly, this mutational pathway consisted of the inactivation of proteins rather than changes
to their biochemical properties, which was confirmed by reconstructing the mutational pathway
observed from natural evolution by synthetically deleting the genes. Another puzzling finding was
that the epistatic interactions that determined the adaptive pathway were not exclusively among
known network components, but also included a protein that was not considered to be part of
the polarization network. Thus, despite its well-studied nature, information about the interac-
tion network was insufficient to explain the relevant epistasis. This example highlights a generic
challenge when the system increases in size. Many selective pressures, particularly in response to
strong perturbations, elicit mutations throughout the genome,which limits predictive approaches.

The above discussion indicates that a trait can be restored by co-opting networks with some
functional overlap, rather than by reconstructing lost components. How the particular gene dele-
tions that facilitate this process in the polarity network do so remains elusive, but it is known that
networks involved in other cellular processes can affect polarity establishment (63, 77). This mode
of adaptation appears to not be specific to the example described above: A large-scale study that
tracked the adaptive response of S. cerevisiae to 187 different single-gene knock-outs showed that
compensatory mutations following gene deletions often partially restore affected traits without
restoring the original genomic expression pattern (69).Thus, evolution can exploit other networks
to rescue perturbed cellular functions (27, 59) by changing the connections between redundant
and connected networks, rather than by restoring the original network (Figure 3a–d).

Accessible pathways thus do not always depend only on the topology of the perturbed net-
work, but also on that of compensating networks and on their interconnections. When insight
into the relevant network features is incomplete, it is not straightforward to functionally explain
the observed epistasis, let alone offer predictions. Another consequence of networks being inter-
connected is that they typically give rise to pleiotropy: Not only is one trait affected by multiple
networks or mutations, but one network or mutation also affects multiple traits. Such pleiotropic
properties have long been thought to have important consequences for evolving populations: For
example, they are considered to maintain genetic variation (80), produce trade-offs (11, 40) and
be an important cause of the persistence of genetic diseases (2, 10).

The questions that naturally arise are: How prevalent is pleiotropy in cellular networks?Which
adaptive processes cannot be considered without the context of the entire cellular interaction net-
work? The view of universal pleiotropy,where amutation can potentially affect all selectable traits,
is implicit in the original geometric model from Fisher (20) and has been the dominant view for
many years (67). Within this view, one may consider whether the number of evolutionary con-
straints increases as the number of traits increases, seemingly contradicting the emergence and
adaptability of complex organisms (47). Due to practical challenges in empirically determining
the degree of pleiotropy in organisms, the discussion remained mainly based on theoretical mod-
els. However, new molecular biology techniques and interaction network databases have sparked
attempts to empirically quantify the number of pleiotropic genes in actual biological systems. For
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example,Wang and colleagues (74) used large data sets containing effects of gene deletions on dif-
ferent traits to determine the total pleiotropy on a genome-wide scale for S. cerevisiae,Caenorhabdi-
tis elegans andMusmusculus.Comparison to randomgene–trait relationships suggested that cellular
networks aremostlymodular,with only a small percentage of traits (1–9%of the traits included for
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Figure 3 (Figure appears on preceding page)

Pleiotropic interactions can facilitate and constrain evolution. (a–d). When the networks of two traits share interactions, but only one
network is under selection, the network not under selection can compensate for mutations in the other network. (a) The initial pathway
(green highlight) leads to activation of a trait-defining node (encircled blue node) through a shared component (purple node). (b) Deletion of
a central component in the network of trait 1 decreases fitness of the trait. (c) The network of trait 2 can buffer this deletion by taking
over some of the interactions of network 1 through the deletion of other components, (d) with the order in which these deletions can
take place being constrained by the interactions between the network of trait 1 and the network of trait 2, which can provide a
reconstruction of the activation pathway. Only pathways that improve trait 1 are accessible (green shaded area); they can have both
positive pleiotropic (PP, from mutation 1 to 2) or antagonistic pleiotropic (AP, from mutation 2 to 3) effects on trait 2. (e–i) When both
traits are under selection, connected networks can lead to additional constraints. (e) The two transcription networks regulating mating
pathways in yeast both use the transcription factor Ste12, causing them to partially overlap. ( f ) This overlap prevents the evolution of
Ste12 binding motifs in a cells, as this causes misexpression of a-specific genes (asgs) in α cells. (g–i) To maintain correct regulation of
asgs during evolution, the transcription network of α cells must first reorganize to obtain an inhibitor for asg expression, which releases
the constraint on the evolution of Ste12 binding motifs in a cells.

analysis) affected by pleiotropic genes. This result would advocate the view of modular pleiotropy,
where sets of traits covary, and only a subset of genes within a network exhibit pleiotropic effects.

However, a common objection is that pleiotropic interactions can remain undetected due to
experimental noise and detection limits.The absence of a standardizedmethodology for extracting
statistically significant interactions from experimental data has led to significant variations in the
estimates of genes with pleiotropic interactions, with a possible bias for modular pleiotropy (26).
The development of new, more sensitive methods for the extraction of significant interactions
from databases is required to settle this debate (30, 71).

Although the discussion on the extent of pleiotropy is far from resolved, the notion that
pleiotropic interactions exist and impact evolutionary trajectories is widely accepted (73). As dis-
cussed above, pleiotropy can lead to epistatic interactions between components of different net-
works, and both epistasis and pleiotropy make evolution dependent on the genetic background.
To understand how pleiotropy affects evolution, it is useful to focus on this interplay between
pleiotropic and epistatic interactions. Epistasis is broadly believed to guide evolution by imposing
constraints, and from a network perspective, antagonistic pleiotropy (AP) is considered to play
a central role in constraining the evolution of networks. The negative correlation between dif-
ferent traits in AP can make it difficult to simultaneously optimize multiple traits and can thus
restrict the number of accessible mutational pathways (Figure 3d). The extent of AP in yeast was
examined by Qian et al. (58). They tested 4,642 nonessential genes for antagonistic pleiotropy
by performing competition experiments of null mutants together with the wild type in different
environmental conditions. At least 13.6% of the analyzed genes displayed AP in the considered
environments, indicating its importance in restricting mutational pathways. Interestingly, they
found signs that antagonistic interactions between networks could be mitigated by changes in
trans-regulatorymolecules that regulate gene expression, rather than inDNA regulatory or coding
sequences. The ability of trans-regulatory molecules to serve as a source for alleviating constraints
is surprising, considering that their evolution is typically regarded to be heavily constrained itself
due to their extensive interaction networks (57, 72).

How trans-acting elements can resolve AP and alleviate constraints is illustrated by a study of
the pheromone response pathways between different yeast species (64).Haploid yeast cells can ex-
ist in two different mating types, a and α. In response to sensing pheromones of the opposite mat-
ing type, each of these upregulates the expression of genes required for the pheromone response
pathway. Although the upregulation of some of these genes is mating type specific (expression
in a or α), a large portion overlaps in both mating types (expression in a and α). In both mat-
ing types, the upregulation of these genes is induced by the conserved transcription factor Ste12.
Despite the conserved function of Ste12, Sorells and colleagues (64) found that different species

192 Nghe et al.

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

02
0.

49
:1

81
-1

97
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

D
el

ft
 U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y 

on
 0

5/
18

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



BB49CH09_Tans ARjats.cls April 28, 2020 18:43

maintained different network structures for the upregulation of mating type–specific genes: In
Saccharomyces, mating type a–specific genes (asgs) contain motifs for the direct binding of Ste12,
while Kluyveromyces and Candida required transcriptional coregulators for induction of the same
genes. However, evolution of a regulatory network for asgs where Ste12 is recruited by coregula-
tors to one where Ste12 directly binds asg promoters appeared to be inaccessible: Introduction of
the Ste12 binding sites of the Saccharomyces clade into the Kluyveromyces clade resulted in a loss of
regulation (Figure 3e, f ). Instead, the addition of a repressor for asg expression to the regulatory
network of mating type α cells was required prior to introducing Ste12 binding sites to prevent
their (mis)expression in α cells (Figure 3g–i).

Note that understanding why the pheromone response pathway in a cells cannot directly evolve
additional binding sites for asgs requires knowledge of the structure of the pheromone response
pathway in α cells. Otherwise, the requirement for evolving a repressor for asgs would appear as a
hidden parameter in the epistatic landscape, similar to those that appear as hidden parameters for
the polarization network of S. cerevisiae described above. The way in which interactions between
these pheromone response networks constrain evolution shows surprising similarities to sign epis-
tasis between components within a singlemodule: The adaptation in one network becomes benefi-
cial only when the structure of the other network changes (Figure 3e–i). It is tempting to consider
the analogy between AP and sign epistasis, but how concepts from epistasis relate to pleiotropy
in networks remains to be investigated. Apart from AP, which constrains evolution, interactions
that result in a positive correlation in the fitness level of different traits have been found to drive
coevolution of traits that are not under selection. For example, Desai and colleagues (28) found
that populations of budding yeast adapting to growth at high temperature also improved growth
at standard growth temperatures, although the molecular basis of this was not elaborated. This
shows how pleiotropic networks and the environment can interact to give surprising evolutionary
results. Unraveling these interactions at the molecular level, similar to what has been done for
epistatic interactions of the lac operon (15), can reveal new concepts that would explain adaptive
pathways at both the inter- and the intranetwork levels.

5. CONCLUSIONS

It is evident that evolutionary constraints are inherently interconnected with phenotypes. Indeed,
the genetic interactions that underlie constraint are quantified by their impact on phenotypes
and fitness (14, 38). As highlighted in this review, epistasis offers a route to predict evolutionary
constraint and potential—one of the major goals of evolution research. At the same time, owing
to the overwhelming complexity of this phenotypic puzzle, and its many missing pieces, such
prediction insights have been difficult to achieve. This humbling reality remains to a large extent,
as is also clear from the studies reviewed above. At all levels of biological organization that we
address, one encounters unknowns that pose limits to general predictive frameworks. For instance,
it is not known if the presence of adaptive valleys is general for molecular interactions other than
the well-studied lac system, how the geometric landscape prediction method can be applied to
naturally occurring pathways, and which redundant networks will be able to compensate for the
loss of core cellular functions.

Nonetheless, this new wave of quantitative studies provided the first tools to predict key epis-
tasis features.Within the wide range of studied systems, notable parallels and differences were ob-
served. Specific recognition was found to produce reciprocal sign epistasis, but its limiting effects
on adaptation could be mitigated by environmental interactions. The last section showed that in-
teractions between networks can overcome constraint by providing components that are coopted
into altered functions. In both cases, additional interactions could alleviate existing constraints,
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even as the type of interaction differed. This makes intuitive sense, since those extra interactions
(with the environment and with other networks) can be seen as dimensions that are orthogonal
to the initial genotypic space, and thus can allow escape from suboptima. Antagonistic pleiotropy
played a role in both processes, with mutations having contrasting effects on different phenotypes
and networks.

The level of prediction was found to depend on the scale of the system, as well as on the
selective pressures acting on it. At the smallest scale—that of molecular binding—epistasis was
merely implied by the specific nature of the recognition and ultimately depended on the details
of the molecular binding interface; the resulting genotype–phenotype map required experimental
reconstruction (15). Notably, such molecular details no longer appeared relevant at the interme-
diate scale of a single pathway, where epistasis instead emerged in a more predictable fashion from
the network topology (32, 33, 46). The key changes in binding affinity could be achieved by a wide
spectrum of mutations, suggesting that a coarse-grained description suffices when studying evo-
lution at the network scale. This is a promising realization: As larger systems are considered (59),
the basis of constraint does not necessarily become less predictable. However, for the largest scale
considered in this review—that of networks interacting in core cellular functions—it was shown
that predictions are more challenging because such networks are more interconnected with un-
known factors (31, 69).

Approaches similar to the ones discussed in this review, which exploit any functional informa-
tion for the prediction of constraint, can be applied more broadly. For instance, it is intriguing to
consider epistatic constraints in RNA molecules (36) and metabolic networks (3), as well as in the
evolution of complex traits (9), ecosystems (29), and disease (44).
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