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Abstract—Reusing software libraries is a pillar of modern
software engineering. In 2022, the average Java application
depends on 40 third-party libraries. Relying on such libraries
exposes a project to potential vulnerabilities and may put an
application and its users at risk. Unfortunately, research on
software ecosystems has shown that the number of projects
that are affected by such vulnerabilities is rising. Previous
investigations usually reason about dependencies on the depen-
dency level, but we believe that this highly inflates the actual
number of affected projects. In this work, we study the effect
of transitivity and granularity on vulnerability propagation in
the Maven ecosystem. In our research methodology, we gather a
large dataset of 3M recent Maven packages. We obtain the full
transitive set of dependencies for this dataset, construct whole-
program call graphs, and perform reachability analysis. This
approach allows us to identify Maven packages that are actually
affected by using vulnerable dependencies. Our empirical results
show that: (1) about 1/3 of packages in our dataset are identified
as vulnerable if and only if all the transitive dependencies are
considered. (2) less than 1% of packages have a reachable call
path to vulnerable code in their dependencies, which is far lower
than that of a naive dependency-based analysis. (3) limiting
the depth of the resolved dependency tree might be a useful
technique to reduce computation time for expensive fine-grained
(vulnerability) analysis. We discuss the implications of our work
and provide actionable insights for researchers and practitioners.

Index Terms—software vulnerabilities, Maven, fine-grained
analysis, software ecosystem

I. INTRODUCTION

Software reuse is one of the best practices of modern soft-

ware development [1]. Developers can easily access reusable

libraries through the online open-source repositories of popular

package management systems such as MAVEN, NPM, or PYPI.

SNYK reports that a prolific number of libraries is used in

projects (40 for the average Java project) and that security

vulnerabilities have steadily increased over the past few years

in software ecosystems such as MAVEN and NPM [2]. While

reusing libraries can substantially reduce development efforts,

research has shown that it may pose a security threat [3]

and that many applications rely on libraries that may contain

known security vulnerabilities [4]. Lauinger et al. [5] found

that 37% of websites in top Alexa domains have at least one

vulnerable JavaScript library. Once fixed, developers need to

update their dependencies to use the new version, however,

researchers have found that developers often keep outdated

dependencies, making their applications vulnerable to attacks

and exploits [6]. A lack of awareness regarding available

updates, added integration efforts, and possible compatibility

issues might represent factors that lead to this phenomenon.

Timing is crucial. The Heartbleed vulnerability, a security

bug in the OpenSSL library that was introduced in 2012,

remained unnoticed until April 2014 [7]. An Apache Log4j

vulnerability was discovered end of 2021 that affected around

35K Java projects, which propagated to around 8% of the

complete Maven ecosystem [8]. These examples show that it is

crucial to release fixes timely to not give attackers a chance to

develop exploits. We also need to gain a better understanding

of how fast vulnerabilities are discovered, how they affect an

ecosystem, and how long it takes until a fix is available.

In recent years, a number of studies investigate the impact

of security vulnerabilities and their propagation in the software

ecosystems [9]–[12]. The reasoning of these studies is limited

to package-level analysis: they consider a project vulnerable

if any (transitive) dependency contains a known vulnerability.

However, a package-level analysis cannot detect whether a

client application actually uses the vulnerable piece of code,

which can cause false results. Recent works [13], [14] have

overcome this limitation by performing fine-grained analysis

of dependency relations in call graphs, which, as a result,

increases the precision of vulnerability detection. However,

due to the computational cost of such analysis, these papers

have only considered a limited number of projects.

In this paper, we want to investigate both dimensions at once

to understand how vulnerabilities propagate to projects in the

Maven ecosystem. There is a trade-off to be made between

the extent of the ecosystem coverage and the precision of the

analysis, so we will investigate the effect of two opposing

forces: transitivity (direct vs. transitive dependencies) will sub-

stantially increase the search space, while a lower granularity
(package-level vs. method-level) has the chance to improve

precision. We will answer the following research questions

for the MAVEN ecosystem:

RQ1 How are security vulnerabilities distributed in Maven?

RQ2 How does vulnerability propagation differ for package-

level and method-level analyses?

RQ3 How do vulnerabilities propagate to root packages?

RQ4 Is it necessary to consider all transitive dependencies?
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By answering the formulated research questions, we aim to

provide new insights on the potential impact of software

vulnerabilities in the Maven ecosystem. Different from similar

studies on the NPM and PyPi ecosystems [9], [10], [12], our

research methodology for RQ2-4 is based on both coarse and

fine-grained analysis. Specifically, from the transitivity per-

spective, we will investigate how vulnerabilities propagate to

Maven projects by going from direct dependencies to transitive

ones. Additionally, we will investigate the difference between

coarse-grained analysis (i.e., package-level) and find-grained

analysis (i.e., method level) in vulnerability propagation. To

answer the above RQs, we have gathered a large dataset of

3M Maven projects and 1.3K security reports.

Our main empirical findings shows that, (1) transitivity

has a substantial impact on the vulnerabilities propagation in

Maven. Of 1.1M vulnerable projects, only 31% have known

vulnerabilities in their direct dependencies. (2) The level of

granularity is prominent when studying vulnerability propaga-

tion in the ecosystem. Only 1.2% of 1.1M transitively affected

projects are actually using vulnerable code in their depen-

dencies. (3) Among popular Maven projects, a vulnerability

may impose higher security risk to other dependent projects

if call-graph based analysis is considered. (4) Limiting the

maximum considered depth of transitive dependencies can be

useful to reduce the cost of computationally-expensive, fine-

grained analyses. A slight decrease in the recall of an analysis

can be traded off for a reduced computation time.

Overall, this paper presents the following main contributions:

• We compile a public dataset for Maven that allows to study

vulnerability propagation in Maven.1

• We combine insights from previous works and closely

investigate 1) a substantial part of the Maven ecosystem

2) using method-level analysis.

• We propose a differentiated view on transitivity that con-

siders the distance of dependencies to an application.

II. RELATED WORK

SOFTWARE ECOSYSTEM ANALYSIS. Different characteristics

of software ecosystems have been studied over the past decade.

In 2016, Wittern et al. [15] studied the evolution of the

NPM ecosystem from two perspectives: (1) the growth and

development activities (2) the popularity of packages. They

found that package dependencies have increased by 57.9%

from 2011 to 2015. Kikas et al. [16] proposed a network-based

approach for studying the ecosystems of JavaScript, Ruby,

and Rust. Their study shows that the growth of dependency

networks for JavaScript and Ruby. Also, the removal of a

single package can affect more than 30% of projects in the

ecosystem. Decan et al. [17] conducted an empirical analysis

of the similarities and differences between the evolution of

seven different software ecosystems. Their finding shows that

the package dependency network grows over time, both in size

and number of updates. Also, a small number of packages

1https://doi.org/10.5281/zenodo.7540492

Project A v0.1 (root) Project B v1.2

Direct Dependency

Main() Foo() Bar() Fun()

Project C v0.5
(vulnerable)

Zeta()

Transitive dependency

Fig. 1: A toy example that shows a root project is transitively

affected by a vulnerable dependency

account for most of the package updates. Wang et al. [18]

conducted an empirical study on the usages, updates, and risks

of third-party libraries in the Java ecosystem. The study found

that 60.0% libraries have at most 2% of their APIs called

across projects. Chowdhury et al. [19] conducted an empirical

study to understand the triviality of trivial JavaScript packages.

By considering the project and ecosystem usage, they found

that removing one trivial package can affect up to 29% of the

entire NPM ecosystem.

Different from the aforementioned work, our work provides

a new perspective on vulnerability propagation in Maven by

considering the effect of both transitivity and granularity.

IMPACT OF VULNERABILITIES ON SOFTWARE ECOSYSTEMS.

In recent years, researchers have been studied the poten-

tial impact of security vulnerabilities in evolving software

ecosystems. One of the earliest works is the master thesis of

Hejderup [20]. By considering 19 NPM packages, he studied

how many dependent packages are infected by a vulnerability

and how long it takes to release a fix after the publication

of a security bug. Decan et al. [9] studied the impact of

security vulnerabilities on the NPM dependency network.

Their study shows that approximately 15% of vulnerabilities

are considered high risk as they are fixed after their publication

date. Zimmermann et al. [11] studied security threats in the

NPM ecosystem. They found that a small number of JavaScript

packages could impact a large portion of the NPM ecosystem.

This implies that compromised maintainer accounts could be

used to inject malicious code into the majority of the NPM

packages. Pashchenko et al. [21] performed a qualitative study

to understand the role of security concerns on developers’

decision-making for updating dependencies. The study found

that developers update vulnerable dependencies if they are

severe and the adoption of their fix does not require substantial

efforts. Inspired by the work of Decan et al. [9], Alfadel

et al. [10] conducted an empirical analysis of security vul-

nerabilities in the PyPi ecosystem. Their findings show that

PyPi vulnerabilities are discovered after 3 years and 50% of

vulnerabilities are patched after their public announcement.

Recently, Liu et al. [12] studied vulnerability propagation and

its evolution in the NPM ecosystem by building a complete

dependency knowledge graph. Among their findings, they

found that 30% of package versions are affected by neglecting

vulnerabilities in direct dependencies.

Considering the mentioned empirical studies on the impact

202

Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2023 at 08:07:28 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: List of sources for gathering vulnerability data

Source License Updates

National Vuln. Database (NVD) Public Domain 2 hours

GitHub Advisories Public Domain Daily

project-kb (by SAP) Apache License 2.0 n/a

oss-fuzz-vulns (by Google) CC-BY-4.0 Daily

of security vulnerabilities, their research methodology is based

on dependency/package-level analysis, which highly over-

estimates the number of packages using vulnerable dependen-

cies. In contrast, we analyze projects in a lower granularity,

i.e., call graph level in addition to the package level.

III. TERMINOLOGY

In this section, using Figure 1, we define the terminologies

that we use throughout the paper.

1) A project is a reusable software component, e.g., junit.

We use Maven projects/packages interchangeably in the

text.

2) A (versioned) package is a unique release of a project, for

example, junit-4.12.

3) A dependency is a relation to a package whose function-

alities are re-used to develop new software. Dependencies

can be direct or transitive, e.g., the relation A→ B is direct,

while the relation A → C is transitive (through B).

4) A root package is the root of the dependency tree (e.g., an

application) and (transitively) depends on other packages.

5) A vulnerability is a defect of software that can be exploited

by attackers, e.g., to gain unauthorized system access [22].

6) A call graph is a directed control-flow graph that represents

the calling relationship between methods/callables in a

package. For instance, in Figure 1, Bar(), defined in

Package B, is a callable.

7) A vulnerable call chain is a sequence of function calls that

ends in a vulnerable callable. In Figure 1, the call chain

A.Main() → A.Foo() · · · → C.Zeta() is one such

example. Also, in this example, A.Main() → A.Foo()
is an internal call as both callables are defined in Package

A, whereas A.Foo() → B.Bar() is an external call as

B is a dependency of A.

IV. APPROACH

This section introduces our approach and the experimental

methodology. The overview of our data processing pipeline

is shown in Figure 2.

A. Vulnerability pipeline

VULNERABILITY PARSER. In order to create a knowledge

base of vulnerability data, we gather information from various

public sources (see Table I for details). Each data source

represents vulnerabilities in its own format and may not

have complete information about a vulnerability. Therefore,

we have created a single vulnerability format that aggregates

TABLE II: Description of our common vulnerability format

JSON Field Description

ID A unique id (E.g. CVE-2018-9159)

Purls Universal URLs that represent vulnerable pack-
ages [23]

CPE A structured naming scheme that represents informa-
tion technology systems, software, and packages [24]

CVSS score A numeric value for showing the severity of software
vulnerabilities from 0.0 to 10.0 [25]

CWE A list of software weakness types [26]

Severity level Qualitative severity rating scale based on CVSS
scores [25]

Published date The date that a vulnerability is publicly announced

Last modified date The date that a vulnerability’s metadata is updated

Description An English description of what software systems are
affected by a vulnerability

References Extra web links that provide more information about
a vulnerability

Patch Links to patch information and commits

Exploits Links to how to exploit a vulnerability

common metadata for further analysis. The various fields

of our vulnerability format are described in Table II. Our

vulnerability knowledge base contains 1,306 security reports.

PATCH FINDER. Patch information is not always available

in the references of vulnerabilities by security advisories.

Therefore, it requires manual effort to tag a reference as a

patch link. Also, to find vulnerable callables/methods, we do

need patch commits that show modified methods after fixing

a vulnerability.

We have devised a patch finding procedure to automate

the gathering of patch commits by analysing vulnerability

references. We perform the following steps to find patch

commits from references.

• For GitHub, GitLab or BitBucket references, if a reference

points to a commit, we directly parse the commit. In the

case of pull requests, we look for the merging commit and

parse it. For issues, we look for linked pull requests or

commits that mention them.

• In references to issue trackers (Bugzilla and Jira), we look

for attachments or references in the comments of an issue.

• If a reference points directly to a Git commit, SVN or

Mercurial revisions, we parse the linked code.

After parsing a patch commit, we compute the diff of modified

files in the commit. Then we create pairs of filenames and

their modified line numbers. This enables us to locate modified

callables in the patch commit.

B. Package/callable mapper

DETERMINE VULNERABLE PACKAGE VERSIONS. Consider-

ing the package-level analysis of vulnerabilities, we first iden-

tify the releases of a project that is affected by a vulnerability.

To do so, we extract and analyze vulnerability constraints in

security reports. Of all the considered vulnerability sources in

203

Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2023 at 08:07:28 UTC from IEEE Xplore.  Restrictions apply. 



Storage
Vulnerability Analysis

Dependency
Resolver

Call Graph
Construction

Vulnerability
Call Chain

Finder

Metadata Pipeline

Index Crawler

POM Analyzer

Dependency 
Extraction

Metadata
Extraction

Metadata
DB

Vulnerability Pipeline

Package/Callable 
Mapper

Vulnerability 
Parser Patch Finder

Fig. 2: Overview of our data processing pipeline

Table I, we only use the GitHub Advisory database2 to extract

vulnerability constraints as these get reviewed by an internal

security team before publication.
To explain the analysis of vulnerability constraints, consider

the vulnerability constraint >1.0,<2.0 which shows that

every version between 1.0 and 2.0 is vulnerable. To compute

affected releases of a project, we perform a similar approach

to the previous studies [9], which is described as follows. Let

us denote a project and its versions/releases by P and the set

V , respectively. To find the vulnerable versions of P , denoted

by Vn, affected by the vulnerability V , The package mapper

(See Figure 2) automatically performs the following steps:

1) Compute the set V by scraping available releases on Maven

Central at the time of the request.

2) To obtain the set Vn:

a) Analyze every vulnerability constraint defined in V and

find affected versions if they exist in V ,

b) Add all affected versions to Vn, i.e., Vn ⊂ V .

To obtain dependents that are affected by the vulnerable

project P , we simply check if dependents rely on one of the

affected versions in Vn.

DETERMINE VULNERABLE CALLABLES. Given a vulnerabil-

ity with patch information and an affected versioned packages,

to identify vulnerable callables, the callable mapper automat-

ically annotates the nodes of its call graphs with vulnerability

data as follows:

1) Identify the last vulnerable version Plv and the first patched

version Pfp.

2) For both Plv and Pfp, find files that are modified in the

patch commit.

3) Locate callables whose start and end lines include the

modified lines in the patched file(s) in Pfp.

4) For located callables, propagate the vulnerability to all the

affected versions for which we can find the same callables.

C. Metadata pipeline
MAVEN INDEX CRAWLER. For our study, we gather versioned

packages from Maven Central, which is one of the most popu-

2https://github.com/github/advisory-database

lar and widely-used repositories of Java artifacts. We consider

packages that were released between Sep. 2021 and Sep. 2022.

The resulting dataset consists of about 3M unique versioned

packages of about 200K projects. In Maven, versioned package

are differentiated by a unique Maven coordinate that consists

of a ids for group, artifact, and version (i.e., g:a:1.2.3).

POM ANALYZER. Maven projects are described in a central

configuration file, the pom.xml [27]. We parse these files

using the same utils that are built into Maven and extract

metadata information such as release date, Maven coordinate,

repository/sources URL, and the list of dependencies defined

in the POM file.

D. Storage

The results of both vulnerability and metadata pipelines are

stored in a relational SQL database. The database schema

has two SQL tables for storing metadata and dependencies

of versioned packages. For storing vulnerability data, there is

a SQL table to store vulnerability IDs and their corresponding

statement in a JSON field. Due to the space constraint, readers

can refer to our replication package for more information on

the database schema.

E. Analyzer pipeline

DEPENDENCY RESOLUTION. To assess how a vulnerability

in a Maven package affects other projects, it is necessary to

reconstruct the dependency set of a versioned package. We

resolve all versioned packages that are included in our dataset

using SHRINKWRAP,3 a JAVA library for MAVEN operations.

This downloads both the pom.xml files and the .jar files of

all relevant packages into the local .m2 folder. SHRINKWRAP

can resolve a complete dependency set for a given coordinate.

By statically analyzing the pom files, we can reconstruct

dependency trees from this dependency set, which allows

us to limit the resolution and, for example, to only include

dependencies up to a certain depth.

3https://github.com/shrinkwrap/resolver
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CALL-GRAPH CONSTRUCTION. To study the effect of granu-

larity on vulnerability propagation we perform callable-level

analysis on call graphs. We generate whole-program static call

graphs for a given Maven package using OPAL [28]–[30], a

state-of-the-art static analysis framework for Java programs.

We configure OPAL to use a Class Hierarchy Analysis (CHA)

for the call graph construction [29], [31], which scales well

for performing a large-scale study. We also configured OPAL

to run with an open-package assumption (OPA), which will

treat all non-private methods as entrypoints for the analysis.

This makes conservative worst-case assumptions and produces

sound call graphs [29], which is useful for security analysis

such as our vulnerable call chain analysis.

IDENTIFICATION OF VULNERABLE CALL CHAINS. To deter-

mine whether any method of a a versioned package calls

vulnerable code from one of its transitive dependencies, we

need to find at least one reachable path from the method

to another vulnerable method. To achieve this, we perform a

Breadth-First Search (BFS) on the whole-program call graph

of the versioned package plus its transitive dependencies.

While traversing the graph, we compute the shortest path

from the versioned package’s nodes to the vulnerable node(s).

Finally, we end up with a list of vulnerable call chains and

their corresponding vulnerabilities.

F. Implementation details & experimental setup

Our whole data processing pipeline (Figure 2) is written in

Java. The pipeline has extensible components that commu-

nicate with each other either via Apache Kafka messages

or through a Postgres database. We used JGraphT for graph

traversal and operations, which provides fast and memory-

efficient data structures. We ran our experiments on a Linux

server (Ubuntu 18.04) with two AMD EPYC 64-Core CPUs

and 512 GB of RAM. We used Docker and Kubernetes to have

multiple instances of our vulnerability analyzer application to

perform fine-grained analysis at a large scale. Using the above

Linux machine, it took about 2 months to analyze the whole

dataset with 3M versioned Maven packages.

V. EMPIRICAL RESULTS

In this section, we present the results of our empirical study.

For each RQ, we describe a motivation, the methodology

used to answer the research question, and discuss the obtained

results of our analysis.

A. RQ1: How are security vulnerabilities distributed in the
Maven ecosystem?

Previous work has shown a steady increase of

projects/packages in the NPM and PyPi ecosystems [9],

[10]. At the same time, security vulnerabilities have become

more prevalent over the past decade. As expected, an

increase in the infection of projects by vulnerabilities was

observed [10]. This also creates an opportunity for attackers

to craft exploits. Hence, in this RQ, we are motivated to study

the distribution of security vulnerabilities in our dataset from

three angles: (1) the evolution of discovered vulnerabilities

over time (2) how many versioned packages are affected

by vulnerabilities; and (3) what are the most commonly

identified types of vulnerabilities in Maven.

The results of RQ1 do not present an extensive analysis

of Maven vulnerabilities. Instead, we follow the example of

previous empirical studies [9], [10] and present useful statistics

from our vulnerability dataset that can inform future research.

METHODOLOGY. To answer the RQ1, we follow the method-

ology of Alfadel et al. [10] by performing three analyses

as follows. In the first analysis, we group the discovered

security vulnerabilities for the Maven projects by the time

they were reported. Then, we show how vulnerabilities and

affected Maven projects evolve per year. Additionally, we

group newly discovered vulnerabilities per severity level. This

helps to quantify the threat levels in the ecosystem.

In the second analysis, given that a vulnerability can

potentially affect many versioned packages, we show how

vulnerable Maven versioned packages are distributed. To do

so, we consider the version constraint in our dataset to identify

the list of affected versions by a vulnerability.

In the third analysis, we group the most commonly identi-

fied vulnerability types in the Maven ecosystem. In our dataset,

each vulnerability is associated with a Common Weakness Enu-
meration (CWE), a category of software weaknesses. Finally,

we count the frequency of vulnerability types to show the most

common vulnerabilities in the Maven ecosystem. Similar to the

first analysis, we break the analysis by severity levels to show

the distribution of threat levels for each vulnerability type.

FINDINGS. From Figure 3, it can be seen that both vulner-

abilities and affected projects have steadily increased in the

Maven ecosystem. For instance, in 2014, 15 Maven projects

were affected by vulnerabilities. In 2018, 223 Maven projects

were affected, an increase of almost 15 times.

Figure 4 shows the vulnerability introduction by severity

level. Overall, we observe that vulnerabilities with critical and

high severity levels have increased significantly over the past

couple of years. Considering vulnerabilities with high severity,

in 2017, 64 vulnerabilities were discovered, this number

doubled in 2021, i.e., 128 vulnerabilities. This suggests that

attackers may have a higher chance to craft an exploit and

damage the affected software systems.

From Figure 5a, it can be observed that Maven projects

release often with a median of 81 unique versions. The median

Maven project also has 26 vulnerable versions, which shows

that 32% of all projects are affected considering available

versions at the time of vulnerability discovery.

Our dataset contains 114 distinct software weaknesses

(CWEs). Table III shows the top 5 common software weak-

nesses in the Maven projects. Overall, these 5 software weak-

nesses account for 37% of all the discovered vulnerabilities.

The most common vulnerability type is the deserialization
of untrusted data (CWE-502), most of which are of critical

or high severity levels. This indicates a major threat to the

affected Maven projects by CWE-502.
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TABLE III: Top 5 most commonly found vulnerability types in Maven

Frequency by Severity

Vulnerability type (CWE) Freq. Critical High Moderate Medium Low

Deserialization of Untrusted Data (CWE-502) 166 52 85 17 12 0

Cross-site Scripting (CWE-79) 108 0 2 72 27 7

Improper Input Validation (CWE-20) 88 6 47 15 20 0

Improper Restriction of XML External Entity Reference (CWE-611) 78 21 32 10 11 4

Path Traversal (CWE-22) 65 4 24 18 19 0

Total 505 83 190 132 89 11

Fig. 3: Vulnerability Introduction Into Maven by Year

Fig. 4: Vulnerability Introduction by Year and Severity

(a) Total Projects (b) Vulnerable (c) Vulnerable (%)

Fig. 5: Vulnerability distribution among projects in the dataset

COMPARISON TO THE NPM AND PYPI ECOSYSTEMS. Simi-

lar to the existing studies on these two ecosystems [9], [10],

we also observe that security vulnerabilities have increased

over time. However, Maven packages have substantially more

releases, on median, 81 releases whereas PyPi, on the median,

has 29 releases. Also, as expected, Maven packages have more

vulnerable versions, i.e., 26, on the median, compared to 18,

on the median, in PyPi.

B. RQ2: How do vulnerabilities propagate to Maven projects
considering dependency- and callable-level analyses?

In the RQ2, we are interested in studying the effect of

transitivity and granularity on the propagation of security

vulnerabilities to Maven projects. This is different from prior

similar studies [11], [12], which considered a project as

vulnerable if one of its dependencies contain a vulnerability.

This overestimates the number of affected projects and hence it

may introduce false positives. Moreover, as shown in a recent

study [32], a project is not affected if it does not call vulnerable

code in its dependencies. Specifically, from the transitivity

perspective, we want to find out how many versioned packages

are potentially affected by a known vulnerability in their direct

or transitive dependencies. From the granularity perspective,

we want to know how many versioned packages are actually
affected by calling vulnerable code.

METHODOLOGY. To answer RQ2, we perform our experiment

on our Maven dataset using four distinct analysis settings:

Dp(max): A package-level analysis that includes all transi-

tive dependencies.

Dp(1): A package-level analysis on only direct dependencies.

Dm(max): A callable-level analysis that includes all transi-

tive dependencies. It computes how many versioned pack-

ages are actually affected by calling vulnerable code from

their transitive dependencies. In the whole-program call

graph that we create using the OPAL framework, we mark

nodes as vulnerable if modified functions in the patch

commit match the signature of the node. If there is at least

a path from a node of the root project to a vulnerable node

in its transitive dependencies, we consider the versioned

project affected by a vulnerability.

Dm(1): A callable-level analysis that is similar to Dm(max),
but which only considers direct dependencies.
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The subsequent sections will refer to these four defined

settings.

FINDINGS. Figure 3 shows the number of affected versioned

packages considering the four described analyses in the

methodology of the RQ2. Notice that the x-axis is scaled using

log10. Considering the Dp(max) analysis, we observe that

about 106 versioned packages are affected by a known vulner-

ability in their transitive dependency set. This amounts to 40%

of versioned packages in our dataset, affected by 517 CVEs.

Considering the Dp(1) analysis, however, only 369K package

versions are affected by using vulnerable direct dependencies,

which is significantly lower than that of the Dp(max) setting.

This is expected as the full transitive dependency set is larger

than a direct dependency set.

From Figure 6, we also observe that the callable level anal-

ysis, Dm, detects much lower vulnerable versioned packages

compared to the package level analysis, Dp, i.e., 104.15 � 106.

This is because for the Dm setting, we perform reachability

analysis to determine whether the vulnerable method in (tran-

sitive) dependencies are used whereas the Dp setting is naive

as it only checks the presence of a known vulnerability in

the (transitive) dependency set. Another intriguing observation

is that the set |Dm(1)| = 103.88 contains more than half of

the vulnerable versioned packages in the set |Dm(max)| =
104.15, i.e., |Dm(1) ∩Dm(m)|/|Dm(m)| = 0.53.

C. RQ3: How does the propagation of security vulnerabilities
affect root packages?

A security vulnerability in a popular package can propagate

to affect many other packages in the package dependency

network. This is also confirmed by a recent study [11],

showing that a small number of JavaScript packages can affect

a large portion of the NPM ecosystem. Therefore, we want

to study how the propagation of security vulnerabilities can

affect a large portion of packages and versioned packages

in the Maven ecosystem. We analyze this research question

from two perspectives: (1) how vulnerabilities propagate to

root packages by considering transitive dependencies and (2)

how vulnerabilities propagate to root packages by considering

the usage of vulnerable code in dependencies.

METHODOLOGY. We combine two different strategies to in-

vestigate how vulnerabilities propagate to root packages. First,

at the package level, we iterate through the full transitive

dependency set of versioned packages, which is already ob-

tained from the RQ2, i.e., the Dp(max) setting. We check

if at least one element in the dependency set has a known

vulnerability, if yes, we consider the root versioned package as

vulnerable. We list the top 10 frequent vulnerabilities that exist

in the dependency trees of all the versioned projects in our

dataset. This approach overestimates the number of affected

root packages, but it follows previous work [12].

Second, to analyze vulnerability propagation through vul-

nerable callables, we use the whole-program call graphs of ver-

sioned packages and their transitive dependencies from RQ2,

i.e., Dm(max), and then we extract known vulnerabilities,

Fig. 6: #Vulnerable packages with different analysis settings

Fig. 7: #Vulnerable packages on various dependency depths

Fig. 8: #Vulnerabilities on various dependency depths

Fig. 9: #Dependencies on various dependency depths

CVEs, and their corresponding vulnerable call chains. Given

these, we obtain the number of versioned packages that are

actually affected by the top 10 frequent CVEs.

FINDINGS. Table IV shows the top-10 CVEs that affect most

versioned packages in the Maven dataset considering both

dependency- and callable-level analysis. It can be observed

that the two Maven projects jackson-databind and

netty-codec-http potentially affect 375,607 versioned

packages in the Maven ecosystem, which is substantially

higher than any other CVEs reported in Table IV. Also, even

considering just the top-10 CVEs, together they already affect

786,921 versioned Maven projects, which accounts for 66.1%

of all the identified vulnerable versioned packages in the whole

dataset (see Dp(max) in Figure 6).
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TABLE IV: Top-10 CVEs that potentially/actually affect most package versions

Number of Packages %Proportion1

CVE ID Project Potentially Affected Actually affected D p(max) D m(max)

CVE-2020-36518 com.fasterxml.jackson.core:jackson-databind 233,430 1,153 19.6 8.1

CVE-2022-24823 io.netty:netty-codec-http 142,177 90 11.9 0.6

CVE-2022-24329 org.jetbrains.kotlin:kotlin-stdlib 82,060 32 6.9 0.2

CVE-2021-37137 io.netty:netty-codec 57,535 525 4.8 3.7

CVE-2021-22569 com.google.protobuf:protobuf-kotlin 57,095 390 4.8 2.7

CVE-2018-1000632 dom4j:dom4j 47,820 1,438 4.0 10.1

CVE-2022-25647 com.google.code.gson:gson 47,372 171 4.0 1.2

CVE-2020-8908 com.google.guava:guava 42,084 84 3.5 0.6

CVE-2022-22965 org.springframework:spring-webflux 38,882 572 3.3 4.0

CVE-2018-20200 com.squareup.okhttp:okhttp 38,466 30 3.2 0.2

1 The percentage of affected packages in the set Dp/m(max). See the methodology of the RQ2 for the definition of Dp/m(max).

The results of the callable-level analysis paint a different

picture. Only 4,485 versioned Maven packages are actually

affected by the top-10 CVEs. This clearly illustrates that

vulnerability analyses that only consider the package level

result in a significant overestimation of vulnerable packages

in the Maven ecosystem. A second important observation is

that any threat estimation will come to different conclusions,

depending on whether a package-level or a callable-level gran-

ularity is being considered. For instance, CVE-2022-24823
(second row), accounts for 11.9% of all potential affections,

but only for 0.6% actually affected elements. On the other

hand, CVE-2018-1000632 (sixth row) looks much less

problematic on first glance, being responsible for only 4% of

the potential affections. However, the number of actual affec-

tions that we found is even higher than the top-1 vulnerability

in the list. This suggests that Dp(max) and Dm(max) do

not necessarily correlate with each other when studying the

vulnerability propagation and its impact on other projects.

D. RQ4: Is considering all transitive dependencies necessary?

The Dm(max) setting can be deemed as the ”best” approach

to achieve high recall and precision in the vulnerability analy-

sis. However, to perform such analysis, one needs to compute

a whole-program call graph of a versioned package plus its

full transitive dependency set. This can be a very expensive

task if done at the ecosystem level, i.e., a large-scale study

with millions of versioned packages. This research question

investigates if it is possible to ”cut-off” dependencies that are

distant in the dependency tree. Such a pruning will reduce the

size of the dependency set and has a chance to speed up the

fine-grained analysis at the cost of a decrease in the recall of

the analysis. We want to analyze this tradeoff.

METHODOLOGY. We perform two analyses. First, we con-

struct whole-program call graphs for all the elements of

Dm(max) and perform a reachability analysis at the depen-

dency levels 1 to 5. This analysis produces five sets, i.e.,

Dm(1), . . . , Dm(5). All of them are a subset of Dm(max)
(e.g., Dm(2) ⊂ Dm(max)). In the second analysis, we find

the maximum dependency depth for each versioned package

in Dm(max). With this information, we iterate over the

elements of Dm(max) and count the number of reachable

vulnerabilities at each dependency level until the maximum

level is reached. We repeat this process for the other sets.

FINDINGS. Figure 7 shows the number of vulnerable ver-

sioned packages while performing callable-level analysis and

considering different dependency levels. Using only direct

dependencies, i.e., Dm(1), 55.8% of vulnerable versioned

packages are detected comparing to Dm(max). This observa-

tion is in line with the findings of RQ2 (see Figure 3). Every

additional layer can identify more vulnerable packages, but

dependency level 3 already reaches 94% coverage. Cutting

of at this level will result in an analysis that will miss some

vulnerabilities. While this might not be acceptable for security

sensitive analyses, other analyses could leverage this finding

to potentially save substantial computation time.

Figure 8 investigate these results with a different visu-

alization. The different plot lines represent packages with

vulnerabilities on the exact dependency level 1, 2, ..., 6+. The

y-axis shows how many of the existing vulnerabilities can

be found when the dependency tree is cut of at depth d.

As expected, vulnerable versioned packages with transitive

dependencies tend to be affected by more vulnerabilities than

versioned packages with only direct dependencies. However,

we see a common pattern across the different plots: the

increase slows and starts to converge at dependency level 3-

4. Programs that have such deep dependency levels also have

large dependency set, so for these projects, the potential saving

in the analysis effort seem to be particularly beneficial.

To estimate how much computation time can potentially be

reduced, we approximate the required computation time with

the size of the transitive dependency set. This is likely a lower

bound, as the number of call-graph edges grows much faster

than linearly. Figure 9 shows the distribution over the depen-

dency set sizes for all packages in Dm(max), which have a

dependency tree with the exact height. For example, the first

box plot in the diagram contains all versioned packages that

only have direct dependencies. The average size of their depen-

dency set is close to 0, whereas packages with 3 dependency

levels have a median of 24 dependencies, and 6+ dependency

levels even go up to a median of 147 dependencies. Even if
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we only assume a linear growth in computation time, filtering

the large applications to dependency level 3 would lead to

an enormous analysis speed-up of about 6 times. These large

applications are usually also the limiting factor when it comes

to computation timeouts or memory consumption of analyses.

VI. DISCUSSION

In this section, we discuss actionable results and provide

insights from our study.

GRANULARITY MATTERS. When studying security vulner-

abilities, granularity matters. As shown in RQ2 and RQ3,

dependency-level analysis highly overestimates the number of

vulnerable packages in the Maven ecosystem. A project is

not affected if the vulnerable code/callable is never reached.

This is also acknowledged in the previous related studies [9],

[12]. Also, for the NPM ecosystem, a similar observation was

found by saying that dependency-level analysis produces many

false positives [13]. To address this, the callable-level analysis

should be considered as it gives a more precise answer to

whether a user’s project actually uses the vulnerable code in

its dependencies. The results of our dependency-level analysis

look worrying: we found about 175K vulnerable versioned

packages in 2021 alone. The good news is that very few seem

to use vulnerable code, so most cases are actually not affected.

The looming threat of importing vulnerabilities from open-

source ecosystems is in fact much lower than popular believe.

More research is required to study this discrepancy.

TOWARDS INTELLIGENT SOFTWARE COMPOSITION ANALY-

SIS. A number of free and commercial software composition

analysis (SCA) tools exist that analyze the open-source com-

ponents of a project for security risks and license compliance.

Each of them differs widely in terms of accuracy, the quality

of the vulnerability database, and the level of granularity [33].

For instance, OWASP DC [34] analyzes dependency files

of a project and notifies developers if known vulnerabilities

are present in the project’s transitive dependencies. However,

as mentioned earlier, this level of granularity suffers from

imprecision, and it is also not helpful for developers to better

assess and mitigate the potential risk of using vulnerable

dependencies in their projects. Also, free tools like GitHub’s

Dependabot performs package-level analysis, though its fine-

grained analysis feature is in the beta state for the Python

ecosystem as of this writing [35]. Overall, we believe that

the next generation of SCA tools should have at least these

core features when analyzing vulnerabilities in projects: (1)

dependency depth (2) callable-level analysis (3) providing

users with a detailed description of what part of their code is

affected by vulnerabilities by showing, for example, vulnerable

call paths and required actions to mitigate the security risk.

TRANSITIVITY MATTERS. Transitivity matters when analyz-

ing projects’ dependencies for the presence of vulnerabilities.

Considering the results of RQ2 and RQ4, many versioned

packages are affected by known vulnerabilities in the transitive
dependencies no matter the granularity level, i.e., dependency-

or callable-level. For developers, this means that updating

direct dependencies may not eliminate the potential security

threat by a vulnerability. It is suggested for developers to use

an SCA tool and integrate it into their workflow or continuous

integration pipeline, which helps to frequently monitor the

transitive dependencies of their projects for the presence of

vulnerabilities and update them if needed. For the developers

of SCA tools, it is essential to analyze the whole transitive

dependency set of projects to improve the reliability of their

tools. We believe that SCA tools are not practical or useful if

they naively only consider direct dependencies.

POPULARITY. Popular vulnerable projects do not necessarily

have the largest impact on the ecosystem. RQ3 shows that

a security vulnerability in a popular package can potentially

affect many other dependent packages. This confirms previ-

ous results in the NPM ecosystem [11], which stated that

several popular JavaScript packages (in)directly affect thou-

sands of other packages. However, this observation is based

on a basic package-level analysis of transitive dependencies,

which is not precise enough to show the true impact of

vulnerabilities in the ecosystem. The results change, when

analyzed on the method-level. For instance, we found that

a vulnerability, CVE-2021-37137 in the popular Maven

project netty-codec-http potentially affects 142K other

packages when analyzed on the package level. However,

through a method-level analysis we only found 90 versioned

packages that were actually affected. On the other hand, the

CVE-2018-1000632 in the less popular Maven project

dom4j only affects 47K other packages on the package level,

but we found 1,400+ actually affected packages through a

method-level analysis. These results imply that popularity

might not as good an indicator for ecosystem impact as

originally thought. Better strategies to identify the critical

packages are required to protect ecosystems as a whole.

EXPENSIVE ANALYSES. Running ecosystem-wide, fine-

grained analyses is expensive. While fine-grained analysis

provides a new perspective in studying a software ecosystem,

it can be very computationally expensive to analyze millions

of projects. In this study, we managed to analyze 3 million

versioned Maven packages and study the effect of transitivity

and granularity on vulnerability propagation in Maven. From

our experience, ecosystem-wide fine-grained analysis requires

costly, powerful machines and sufficient time to perform.

Given the result of the RQ4, one insight that might be useful

for future work is to consider a lower dependency level (e.g.,

3 or 4) in call graph-based analysis assuming that a slight loss

of recall/precision is acceptable. This also may potentially

reduce the search space and computation time.

VII. THREATS TO VALIDITY

In this section, we describe possible threats to the validity of

the obtained results and findings and how we addressed them.

DATASET. In this study, we gathered a Maven dataset that

consists of 3M versioned packages over a period of one year

(from 2021-2022). We chose to gather data for one year mainly

for two reasons: (1) In our approach, we generate call graphs

209

Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2023 at 08:07:28 UTC from IEEE Xplore.  Restrictions apply. 



for fine-grained analysis, which can be expensive. For us,

it is not computationally feasible to perform this step for

the whole history of the Maven ecosystem, which has over

9.8M versioned packages [36] as of this writing. (2) The

main goal of this study is to show the effect of transitivity

and granularity on vulnerability propagation via fine-grained

analysis in Maven. Therefore, following the guidelines for

empirical software engineering research [37], we believe that

our sample size, 3M versioned packages, is sufficient to

achieve the said goal. With such a large sample size, we are

very confident that our findings would also hold for the whole

history of the Maven ecosystem.

VULNERABILITY MAPPING TO PACKAGE VERSIONS. As de-

scribed before, we analyze vulnerability constraints in security

reports to find the affected versions of a package by a vulnera-

bility. Based on our observation, vulnerability constraints often

only specify an upper bound on the range of affected versions.

This may falsely render older releases as vulnerable. No trivial

solution can address this limitation. However, with callable-

level analysis, we can check whether the vulnerable method

even exists in the previous releases, which can automatically

eliminate many incorrect cases.

CALL GRAPH ANALYSIS. We configure OPAL to use an Open-

Package Assumption to identify entrypoints when generating

call graphs. OPA prioritizes soundness over precision, meaning

that call graphs might have spurious edges, which may lead to

false positives when finding vulnerable call chains. However,

we argue that, for security-focused analysis, false negatives

can be more expensive and dangerous. If a method is falsely

identified as safe to use, it can potentially harm its users and

their organizations [38]. In contrast, false positives prevent

users to use a method and they can also be reviewed manually

by security experts if the needed functionality is costly to

implement. Moreover, as pointed out by Nielsen et al. [14], for

security-focused applications, a few false negatives are likely

more desirable than a large number of false positives.

In addition, our call graph analysis does not consider control

flow when assessing the reachability of vulnerable code or

methods. This means that a false positive alarm is produced if

required input to trigger the vulnerability is not provided [39].

VIII. SUMMARY

In this paper, we have studied the effect of transitivity and

granularity on how vulnerabilities propagate to projects via

fine-grained analysis in the Maven ecosystem. The method-

ology of our study is based on resolving transitive depen-

dencies, building whole-program call graphs, and performing

reachability analysis, which allows us to study vulnerability

propagation at both dependency and callable levels. Among

our findings, we found that, for security-focused applications,

it is important to consider transitive dependencies regardless

of the granularity level to minimize the risk of security threats.

Also, with the callable-level analysis, it is possible to provide a

lower bound for the analysis of vulnerability propagation in the

ecosystem and also overcome the over-approximation issue of

the dependency-level analysis. Overall, the implication of our

results suggests that call graph-based analysis seems to be a

promising direction for future studies on software ecosystems.
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