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List of symbols

List of symbols

Y, Ya Adhesive shear deformation

T, Ta Adhesive shear stress

Ha Poisson ratio adhesive layer

a; Tensile stress in adherent layer

i Poisson ratio adherent layer

™ Adherent layer shear stress

Ypi Adherent layer shear deformation

Oy Peel stress of the adhesive layer

&y Adhesive strain

d Adhesive layer thickness

da Diameter carbon tube

Ea Adhesive Youngs modulus

Ei Youngs modulus adherent layer

Flim Limit load

Fult Ultimate load

Ga Adhesive shear modulus

Gp;, Gpli Adherent shear modulus

Ki Moment reduction factor

Kips Hart-Smith reduction factor

Kieq Extra reduction factor

Kip Extra reduction factor for tapered joints
1 Lenght of the joint

Lnon-tap Lenght of the non-tapered area

Mi Applied joint edge moment

P Applied tension or compression load to a adherent layer
Ptot Total applied tension or compression load per unit width
qi Applied shear stress to the adherent layer
tas Thickness aluminium fitting

t Thickness carbon tube

tp, & Adherent thickness

Tratio Joint taper ratio

u,U Displacement in x-direction

v,V Displacement in y-direction

Vi Applied joint edge shear force
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Summary

The purpose of this report is to present finite difference models (FDM) for adhesively bonded joints
and the implementation in a computerized toolbox. Based on a literature study, linear elastic finite
difference models are derived. These are programmed in a MATLAB Toolbox.

The first model in the adhesive toolbox is the single lap joint loaded in tension or compression.
The model does not take into account the peel stresses and the solution therefore can be directly
compared to the Volkersen analytical solution. The results from the FDM models show good
agreement to the Volkersen solution.

The second model in the adhesive toolbox is the tapered lap joint loaded in tension or compression.
Also this model does not take into account the peel stresses The results found from the FDM
model show clearly, the positive effect of joint taper.

The third model in the adhesive toolbox is the stacked joint loaded in tension that can be found in
laminated structures. The peel stress is not taken into account in the model. From the results it is
remarkable to see how the effect of layer ending transmits through the thickness of the laminate.
The fourth model in the adhesive toolbox is a deformable plate bonded to an undeformable surface
with in plane shear loads. The differential equations are analytically solved.

The fifth model in the adhesive toolbox is a single lap joint loaded with in plane shear forces. This
model is analytically and numerically (FDM) solved. The analytical solution is similar to that of the
Volkersen solution for single lap joints loaded in tension or compression. There is a good
agreement between the numerical and analytical solution.

The sixth model in the adhesive toolbox is again the single lap joint loaded in tension or
compression. This model takes into account peel stresses as well shear stresses.

The seventh and last model in the adhesive toolbox the tapered lap joint loaded in tension or
compression. This model is the most complicated model in the toolbox sofar, it takes into account
both shear and peel stresses. To find the joint edge loads, the Hart-Smith K-factor plus an extra
reduction factor is used. This extra reduction factor is a function of the geometric parameters of the
tapered joint.

It can be concluded that computerized finite difference models are very useful design tools for
stress analysis of adhesively bonded joints.
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1

Introduction

Adhesive bonding has a long tradition in civil and military aviation. Besides riveting it is
today the major jointing technique. Due to the increasing use of modern materials, like
fibre reinforced plastics and fibre metal laminates, its application is still growing. Although
adhesive bonded joints are frequently used in aircraft structures, there is no comprehensive
information on mechanical analysis of thin joints available. The basic formula for the
mechanical analysis of adhesively bonded joints have been derived by Volkersen, Golland
and Reissner, Hart- Smith. They give analytical design formula but the formula are
restricted to simple lap joints.

An other approach is to solve the problem with a numerical method. There are two
relevant numerical methods namely Finite Element Method (FEM) and Finite Difference
Method (FDM).

The application of FEM is frequently mentioned and investigated but very less is found on
the use of FDM for analysis of adhesively bonded joints.

Recent studies in the SIMONA project group at the Delft University of Technology,
faculty of Aerospace Engineering required the development of an engineering design tool
for the design of the mirror support structure of the SIMONA Research Simulator.

The purpose of this report is to present the analysis of a number of different adhesively
bonded joints using of the finite difference method and its implementation into a
computerized design toolbox. The designed software has to be user friendly and must have
to run on a average computer. Therefore MATLAB 4.2 is used as the program language.
MATLAB 4.2 has excellent graphics, build in calculation tools and is very user friendly.
Based on literature studies, differential equations with boundary conditions are derived for
different joint types. These equations are transformed into finite difference equations.
Several verification simulations are done after implementation of the finite difference
equations in MATLAB. All computer calculations are done on a 486DX33Mhz with 4Mb
and a 486DX66Mhz with 12 Mb.

The contents of this report is as follows. Chapter 2 starts with the calculation of the shear
stress distribution in tension loaded joints. This is done for normal lap joints, tapered lap
joints and stacked joints. The shear stress analysis of shear loaded joints is discussed in
chapter 3. In chapter 4 finite difference models are developed for normal and tapered lap
joints with combined shear and peel stress. Chapter 5 describes the application of the
derived design tools in the design of the SIMONA under crown fitting. Chapter 6 ends this
report with conclusions and recommendations on the FDM to improve the models for
better and more realistic stress analysis.
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2

Shear stress analysis of adhesively bonded joints loaded in
tension or compression.

In this chapter the shear stress distribution in adhesively bonded joints loaded in tension is
analyzed. No peel stresses are considered. This model is suitable to describe the stress
distribution in tube - to - end - fitting joints and multi plated joints, where bending of the
adherents is prevented or negligible small. Therefore it is assumed that the adherents don’t
bend. The adhesive is exclusively loaded with shear stress. Part 2.1 starts with the derivation
of equations for single lap joints which are analytically and numerical solved. Expanding the
equations for tapered lap joints is the topic of part 2.2. This chapter ends with shear stress
calculations in multi plated stacked joints (2.3).

In this stage the adherents are assumed to be linear elastic isotropic materials. Further more it
is assumed that the adherents are in plane stress and the joint has unit thickness in z-
direction.

2.1 Single lap joints

2.1.1 Derivation of governing differential equations

Adherent 1: t1, E1

y-axis
— ]
Force P = I
A
T d
——
-
Force P
Adherent 2: t2, E2 x-axis, displacements u and v

figure 2.1: sign conventions of a single lap joint
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-

The basic equations are derived from the equilibrium of an infinitesimal small segment of
adherent one and two.

2
t;'g—rzo (21)
d’c
dx22 ¥l (22)

Expressions 2.3 and 2.4 give the relations between the stresses and the adherent
displacements, u and v, respective adherent 1 and 2.

du
01=E|a (23)
dv
U‘):Ea_ 2.4
1 =R (2.4)

The shear strain and stress in the adhesive can be related to the adherent displacements, u
and v with the following expressions

1 (2.5)

1=G,y (26)

Differentiation of 2.3 and 2.4 and substitution into 2.1 and 2.2 together with 2.5 and 2.6
results in

d’u G, 1

2 u-v)=0 %,
dx* d Et, (@=v) (473
d’v G, 1
2= 0 a —-v)=0 2.8
dx* d E.t, (=) (28)

The boundary conditions belonging to these equations are the following
Boundary conditions adherent 1:

d—“:—P— atx=0, —=0
Et,

atx=1
dx
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Boundary conditions of adherent 2:
dv dv
—=0 atx=0; —

P
=— atx=1
dx dx E.t,

2.1.2. Analytical solution: Volkersen Method

Already in 1938 Volkerson found the analytical solution for equations 2.7 and 2.8 (see
reference 7).

_c(x):G,P .1 cosh(l-x)+cosh(l-(l—x)) (29)
d Asnh(A-1)| E,t, t,E,

;L:J&(LJr 1 ] (2.10)
d \Et, E,t,

This final solution is programmed in MATLAB m-file Volkers.m (See appendix A and B).
Figure 2.1 shows the results of a symmetrical and an asymmetrical single lap joint.

Shear stress distribution: Volkersen

20 I I T
— t1=2=1 [mm]
18 —— t1=1[mm], {2 = 2 [mm]
E1=E2=72000 [MPa]
16 Ga=833 [MPa]
\ d=0.2 [mm]
14 P= 100 [N/mm]
o |
12
2 |
g 10
A\ ///
w
T\ /]
T\ Vi
7 \ /
D _____.._/
0 10 20 30 40 50 60

Length of the joint [mm]

figure 2.1: volkersons shear stress distribution
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2.1.3 Numerical solution: Finite Difference Method

To solve the equations ( 2.7 ) and ( 2.8 ) with its boundary conditions, the interval O - | is
divided into N-1 equal parts.

0 1 2 N-1 N N+1

x=0 x=1
For each part a finite difference equation is derived with the following expression.

2
U -2y +u, du
Ax? dx*

., +O(h?) (2.11)

This leads to a set of 2N-2 linear algebraic equations with 2N-+2 unknown variables of the
next form.

Ga 1 Ga 1
Ui +(=2-(Ax)———)U; + Ui + ((AX*)———) V; =0 2.12
i1 ( ( )dE,t,)J J*1 (( )dEIt,)J ( )
forj=1toN

Ga 1 Ga 1
Vi +(-2—-(Ax*)— Vi + Vi + ((AX?)— U=0 2.13
1+ ( ( )dEztz)J i+ ((X)dEztz)J ( )
forj=1toN

Substitution of the next boundary conditions in these two equations reduces the number of
unknown variables to 2N-2.

Uj-Up= QXL and Vyir-Vn = Ax 3
Elt1 Eztz

UN+1-UN=0 and VI-V¢.=0

T T TR R T T p———-
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The set of equations can be written in the following matrix expression.
A.U=B

The matrix is implemented in the MATLAB m-file normits.m (See appendix A and B). A
standard matlab routine will solve the equations by Gaussian elimination. Subtracting of the
displacements gives the shear stress in the adhesive. The calculations are done for the same
parameters as in 2.1.1 and displayed in figure (2.2). Comparison of the two methods shows
the similarity of the results.

Shear stress distribution: Volkersen

20
18
Volkersen
16 —FDM
t1=1[mm], £2=2 [mm]
14 E1=E2= 72000 [MPa]
\ Ga= 833 [MPa]
12 d=0.2 [mm]
P= 100 [N/mm]

Shear stress [MPa] =
5
L]

o] -]
1
—

=
0 10 20 30 40 50 60
Length of the joint [mm]

figure 2.2: ——  F.DM, .......... Volkersen Method
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2.2 Tapered lap joints
2.2.1 Derivation of governing differential equations
y -+t
3
1, i =
El
e il o,tdo,
01 = =
‘
/
—
G,y PR — e el y — o
+d
t, G,;7d0;
E2
i Gt
X, Ui

figure 2.4: sign conventions for tapered lap joints

The basic equations are derived from the equilibrium of an infinitesimal small segment of the
adherents 1 and 2. In these equations t1 and t2 are functions of x.

d’u, Gal

du, dt,
o ' TEd o dx

0 2.14
dx dx ( )

(u, —u,)+

d’u, Gal du,, dt,
t, +—— _— -+ —_—= 0 215
i U E, LTI A (1)

2.2.2 Solution by the finite difference method

For each point a finite difference equation is derived with formula 2.11, 2.14 and 2.15 and
the next expression.
ui+1 -~ — _dﬁ

e ! - +0(h) (2.16)
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Substitution of these equations into 2.14 and 2.15 leads to a set of 2N-2 linear algebraic
equations with 2N+2 unknown variables.

t, 1 (dt t;, Gal 1 (dt t,;
Uypiq {—20 L4 __[_—1] -2(—L)———} Uy —(—'J Lt Upjer +.oee
W {sz} { Ax\dx/; (Ax‘) d E,} o {Ax dx j+Ax2 ol

...... +{%l}uﬁ=o forj=1toN (2.17)
1
to) 1 (dt, t,, . Ga I 1(dt,) | b
S N AT B P R DI RO
2“'{Ax~} { Ax\dx/, B3 E| P A
...... +{%E:}Uu=0 forj=1toN (2.18)

Substitution of the following boundary conditions reduces the number of unknown variables
to 2N-2 and the equations can be solved.

Adherent 1. Adherent 2.
P P
Ui-Up= Ax———— atx=0; Vaer- V= Ax——— atx=1
Eltl(o) Eztz(l)
Uni-Un=0 atx=1; Vi-Vo=0 atx=0

Together with a geometric modeling routine the equations are entered in the MATLAB m-
file tapjntss.m (See appendix A and B). The equations are solved by Gaussian elimination.
The positive effect of joint taper can be seen in figure (2.6a), several shear stress
distributions are given for increasing taper. Taper reduces the shear stress maximum at the
end of the joint. The model can also be used for analysis of tapered joints with tapered areas
smaller then the overlap length. This is called a non - tapered area. Calculation results are
displayed in figure (2.6b).

N on T apered A rea

SE

Figure 2.5: Definition of non-tapered areal

<
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Shear stress distributions for increasing taper

10 | |
9 E1=E2= 72000 [MPa]
Ga= 833 [MPa] ‘
8 d= 0.2 [mm]
\ t= 2 [mm] /
w 7 Tlratio= 1/60
o “ T2ratio= 1.5/60 } }
E. 6 T3ratio= 1.9/60
£ \ Tératio= 2/60 } /
w
@ 5
£ I //
5\ /]
7N Va
2
1 . =
\\ /
0
0 10 20 30 40 50 60
Length of joint in [mm]
Full tapered joint with increasing non-tapered area
7
| |
E1=E2= 72000 [MPa]
6 \ Ga= 833 [MPa]
d=0.2 [mm]
\ t= 2 [mm] /
Tratio= 2/60
w5 ™
nz'. L1lnon-tap = 50 [mm]
c 4\ L2non-tap = 25 [mm] ¥
‘; L3non-tap = 10 [mm]
g L4non-tap = 50 [mm]
33
w 2 \\_ e P /
~ A S B P
0 10 20 30 40 50 60

Length of joint in [mm)]

Figure 2.6a and 2.6b: Shear stress distributions in tapered lap joints.
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2.3 Stacked lap joints

In this paragraph multi layer adhesively bonded joints will be analyzed which can be found in
composite and laminated structures. The general geometric of these joints is given in figure 2.7.

Configuration 2

figure 2.7: stacked joint configurations

To solve the problem two assumptions have to be made with respect to the boundary
conditions. The first assumption is found by applying the principle of the Saint Venant.
Which says that local disturbances remain bounded to the direct area of the disturbance.
Therefore it is reasonable to assume that all plates are stiffly attached to each other at some
distance from the actual bond.

Secondly it is assumed that the peel stresses in the adhesive between the facing plate ends
are negligible compared to the shear stresses.

2.3.1 Derivation of the governing differential equations

For the upper plates the equilibrium of an infinitesimal small segment yields
d’v,; G,
—d——u,, —u,,)=0 forj=1and 2 2.19
dx d,Et, ( " 2”) J . )
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For the lower ( N th) plates the next expression can be derived

d*uy
o GE"t — forj=land2  (220a)
N-1""N"N

In the intermediated ( i th ) layers the next expression follows from the equilibrium equations
for an infinitesimal small segment of each layer.

d’v,; G, G, ;
= i _aﬁ(ui_l'j _ui.j)_ 1EL (u-u- —u-”,‘j); forj=1and 2 (2.20b)

The boundary conditions for this problem at ‘infinity” are found using assumption 1, which
allow for the assumption that the displacements u are equal for all plates at a limited distance
from the last plate ending. The distance can be found with the program or guessed
educatedly. For the loaded sides of each layer the next expression yields

EitiPlcl 2
= f =1 N 21
[P R R a— s, (. 0 (221)

Assumption 2 for the unloaded sides of each layer yields

|P,|=0 fori=1toN (222)

2.3.2 Solution by the finite difference method

With the formulas ( 2.11 ) and ( 2.16 ), the differential equations are written in difference
equations. To do this the plates must be divided in properly chosen intervals.

0 1 i i+l i+2 i+3 i+4  i+5 i+6 N-1 N
S |
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With the use of a geometric modeling sequence the plates are partitioned and modeled as
above. This together with the difference equations and boundary conditions are programmed
in MATLAB m-file stackjoin.m ( See appendix A and B ).

Figure 2.9 shows the results for a joint of type number 1.

Used parameters: E1 =E2=E3 = 72000 [Mpa]
tl=1[mm], t2=2[mm], t3=1[mm].
G1 =G2 =833 [Mpa]
dl =d2=0.2 [mm]
Applied total load P = 100 [Mpa]

Shear stress distribution in adhesive layer 1

15

4 10 }

z /

€ s

£ K

i, e

5° 3 7

.10

o 10 20 30 40 50 60
Total length of the adhesive layer in [mm] ->
Shear stress distribution in adhesive layer 2
15

4 10 \

g \

g s

= //’

E 0 /_,._

5° 7 X

“ 10

'150 10 20 30 40 50 60

Total langth of the adhesive layer in [mm] ->

figure 2.9:  Shear stress distributions in stacked joint of configuration number !
with three adherent layers.

Figure 2.10 at the next page shows the result for a joint of type 2. It is remarkable to see
how the efect of layer ending transmits through the thickness of the laminate.
Used parameters:
All adhesive layers have similar G = 833 [Mpa] and thickness d = 0.2 [mm].
All adherent layers have similar E = 72000 [Mpa].
Thickness of adherent layers: t1 =t3 =3 [mm], t2 =t4 =2 [mm], t5 =1 [mm].
Applied total load P = 100 [Mpa]
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Shear stress distribution in adhesive layer 1

4
3
5 \
"
o
i =
-1
i, A
a \
-3
-4
0 20 40 60 a0 100 120
Total length of the adhesive layer in [mm)] ->
Shear stress distribution in adhesive layer 2
5
)
<
=
E 0
¢
5
0 20 40 &0 80 100 120
Total length of the adhesive layer in [mm] ->
Shear stress distribution in adhesive layer 3
5
i
¢
.
g 0
3
60 20 40 €0 80 100 120
Total length of the adhesive layer in [mm] -=
Shear stress distribution in adhesive layer 4
5
bl
a
=
E
E 0 ~
:
'50 20 40 60 80 100 120

Total length of the adbhesive layer in [mm] -=

figure 2.10:  Shear stress distributions in stacked joint of configuration number2
with five adherent layers.
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Shear stress analysis of joints with in plane shear loads

In this chapter the development of some theory and tools for plates loaded with constant shear
at the edges is described. Besides joints loaded in tension or compression there are many joints
in aircraft structures which are loaded with shear forces. At some distance from the place
where the loads are introduced into the plate, it is assumed that the shear stress is constant over
the width of the plate. With this assumption the problem reduces to a one-dimensional problem.
Part 3.1 starts with a deformable plate loaded with shear stress, bonded to an undeformable
surface. For two boundary conditions an analytical and a numerical solution are derived. The
theory of 3.1 is expanded into two deformable plates in part 3.2. Both an analytical and a finite
difference solution are given.

3.1 A plate bonded to an undeformable surface

In this part a plate loaded in shear adhesively bonded to an undeformable surface is studied.

pad

X,u

Figure 3.1: A plate bonded to a undeformable surface

In deriving the governing equations only shear deformations and stresses need to be
considerate. Because of the assumption that g is constant the problem is reduced to a one-
dimensional problem. Only the force equilibrium in x-direction has to be analyzed.
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dx
\ I| I| ‘: ] #x‘u
dy [N \
! A 4 L
L .
— - —— - ——
q
]
y
o Az
% U(y)
- _"I Gp t |
[
Y
-q—"— dy Y/ Ga d /
\
A J : [
— L
trdT, 777777 :
figure 3.2: Sign conventions and loads
Equilibrium of an infinitesimal small segment in x-direction yields
dr
—LEdy-t, =1,dy (3.1)

dy

The following expressions relate the shear stress to the shear deformation.
1, =Gp-y, (3.2)
1, =Gay, (33)

The compatibility equations are given by

‘/.-.(Y)=@ (34)

— S Eehe mEE gEm Emm e Gid® G ARi g mE BERARER. 0 Bl oEE B . | Seesss
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du
=— 3:5
Yo dy (3:5)
Differentiating of 3.2 and substitution with 3.3 to 3.5 into 3.1 gives
2
9—‘; o E - (3.6)
dy Gp-t,-d

The general solution of this second order differential equation is found in Van Duijn (Ref 13)

u=C,-e"* +C,.e"" witha= —58% _ (3.7)

Gp-t,-d
Constants Cy and C2 are calculated from the boundary conditions

dn 8 aty=1 (3.8)
dy Gp

When the other plate end is fixed, the second boundary condition becomes
u(0)=0 atx=0 (3.9)

When the other plate end is free and no loads are applied there, the second boundary condition
is.

du:

—=0 3.10
= (3.10)

The final solution belonging to boundary conditions 3.8 and 3.9 is.

u ] -(e"’;—e“"g) (3.11)

ens . EEpY
Gp-+/a (e’“{; +e"‘5)
For boundary conditions 3.8 and 3.10 the final solution is given by

u=GP‘-1J£.(elﬁ_le-lJi)'(eY£+e_wi) (3.12)
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Both solutions are programmed in the MATLAB m-file shlojnt1.m . Figure 3.3 shows both
solutions for the same parameters. Striking is the fact that both solutions are similar. Because
only the very first part of the adhesive carries the load, the other end ( x =0 ) is almost shear
free. This is only true for long plates, for small joint length a difference will be shown.

Shear stress distribution in the adhesive layer

12

Gplate = 28000 [MPa]

tplate = 1 [mm]

Gadhesive = 833 [MPa]

tadhesive = 0.2 [mm]

Applied shear stress = 10 [N/mm2]

e
o

o]

Shear force in [MPa] ->
E-S [¢]

|
2 j}
0 10 20 30 40 50
Length of the plate [mm] in y-direction

figure 3.3: Comparison between a fixed end and a free end of a joint
loaded with shear

T T T T T SEmeE Ul I ma
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3.2 Single lap joints

In this section the analysis of an adhesively bonded joint between two deformable plates loaded
with uniform shear stress is described. The theory of this part is an extension of part 3.1. It is
shown that the analytical solution and numerical solution have a form similar to the solution for
a lap joint loaded in tension (2.1).

3.2.1 Derivation of governing differential equations

y Z A
U(y)
'—_."i Gp, 4 [
3
t v Ga d
pl L
- - Viy) y
Y - Gps v | =
Ta d)" a X
Y
e —_—
T td g, Tpat Tp2

figure 3.4: Sign conventions and loads for two plates loaded with shear.

Equilibrium equations can be derived for small strips of both plates

Adherent 1

dt,

d—;dy-tp, =1,dy (3.13)
Adherent 2

dt

—”:!dy-tp2 = —1,dy (3.14)

dy
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Relating shear deformation to shear stress leads to the next expressions.
T, =GPV (3.15)
IpZZsz'YpZ (3!6)
1, =Ga-y, (3.17)
To solve the set of equations, the following compatibility equations are needed.
du
Yo = E (3.18)
dv
Ja 3.19
Y=gy (3.19)
u-v
_ 3.20
™3 (3.20)

Combination of equations 3.13 to 3.20 leads to the following two second order differential

equations

dyz Gpi 'tp'l'
oy [ oa
dy®

ﬂ—[—ca—d}-(u—v)=o

+ m}-(u—v):o

The boundary conditions belonging to this problem are

Adherent 1:
EiE:0 atx=0
dy
Adherent 2:
d_9 YV ax=o0
dy Gp, Gp,'t,
e e e g T TT

T ohrrr

du_9q __V
dy Gp, Gp,-t,
dv_,
dy

atx=1

atx=1

(3.21)

(3.22)
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3.2.2 Analytical solution: Volkersen method

Looking to equations 3.21 and 3.22 there is a clear resemblance between equations 2.7 and 2.8
of part 2.1.1., also the boundary conditions have the same structure. The only differences are
that E is replaced by G and P is replaced by V. Because both sets are of the same structure and
have similar boundary conditions, the solution is of the same structure. This means that the
Volkersen solution holds also for 3.21 and 3.22. Only E need to be replaced by G and P need
to be replaced by V.

t(x) _ G,V . 1 cosh(A - x) " cosh(A - (1 —x)) (323)
d Asinh(A-1)| G, Gt
A= G'( I ] (3.24)
d \G;t, G,t,
proof
subtract equations 3.21 and 3.22
e e s e
ool —V)—— u-v)=o (3.25)
dyz Gp, - tp! ( dy? Gp, -t ( )
u-v G,V 1 cosh(A-x) cosh(A-(l1-x))
=Ga B 3.26
*x) d d ksinh(l-l){ G.t, | 1G, 225
Differentiating 3.26 twice leads to
du_dv_ VA [cosh(h-x) , cosh(h-(1-x)) (327)
dx* dx* sinh(A-)| G,t, t,G, ‘

Enter 3.26 and 3.27 in equation 3.25 yields
0=0

Differentiating equation 3.26 once and entering the boundary conditions proves that equation
3.23 is the solution belonging to the given boundary conditions. The difference in sign for the
shear stress is caused by the different sign convention used by Volkersen.

T YT T R T e —  gE—— e e o a— - - et — s = e
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3.2.3 Numerical solution: Finite difference method

Since equations 3.21 and 3.22 have a structure similar to equations 2.7 and 2.8 the FDM
solution can be derived in a similar fashion. This is therefore not repeated here.

Both the analytical and numerical solution are programmed in MATLAB. For details see
svolkers.m and shlojnt2.m in appendix A. By comparing solution 3.23 with the FDM solution it
is clear that the adjusted Volkersen formula 3.23 is indeed the correct analytical solution of
equations 3.21 and 3.22. This is displayed in figure 3.5.

Shear stress distribution in the adhesive of a lap joint

16
| l | l
14 G1= 28000 [MPa]
G2= 28000 [MPa]
tl =1 [mm]
12 t2 =2 [mm]
A Ga =833 [MPa]
) 10 d=0.2 [mm]
o Shear force per unit width = 50 [N/mm]
2 g
)
7]
£ 6
:
24
w
2 K j
0
2

0 10 20 30 40 50 60
Length of the joint [mm]

figure 3.5: Comparison between Volkersen for shear loads and Numerical Solution for
Jjoints loaded with shear.
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4

Shear and peel stress analysis of adhesively bonded joints
loaded in tension or compression.

In many airplane structures plates are adhesively bonded and loaded with tensile forces. Because
of their flexibility, besides shear stresses also peel stresses will occur in these joints.

This chapter discusses how to model these effects in normal and tapered joints (4.2 and 4.3).
Part 4.1 gives some brief theory about edge moments and edge shear forces.

4.1 Definitions of boundary conditions

One of the major problems in analyzing peel and shear stress is the calculation of loads applied to
the adherent/ adhesive sandwich. Here only major remarks are presented in order to enable
understanding of the following parts. Thorough examination of this particular problem is beyond
the scope of this report.

Tensile loads applied to a lap joint cause a bending moment in both adherents. This is caused by
an offset between the lines of action of the tensile loads. To satisfy moment and force equilibrium
also shear forces will be introduced.

Undeformed joint

Deformed joint

M, V.P

T

TH) G

. My VP
L |

—

figure 4.1:  load sign conventions and joint deformations
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The maximum moments and shear forces that can occur are derived from the equilibrium
equations for the undeformed joint

P-(t,+d
M]wz_Lt:_) (4.1)
P-(t, +d
Mzm:——(;—l (42)
and V]=V2=0

In practice the joint adherents will deform ( bent ) under the applied loads. The effect of this is
that the lines of action come closer to each other and the end moments will decrease. The way
this effect is generally modeled, is by introducing a K-factor ( 0<K<1 ). This K-factor is a
function of geometry, stiffness of the adherents and applied force.

M]*=K1,M1m 0<Kl<l (43)
M,* =K2 . Momax 0<K2<1 (44)
With the reduced moments, the following equation for the shear forces is found

M, -M," - P.[%?- +dj

V=V, = 1 (45)

The problem that remains now is the estimation of the K-factor. This report is not meant to make
a thorough analysis in order to find such a realistic K-factor. Many people have done this before.
In Van Ingen and Vlot ( Ref 1) the K-factor of Hart-Smith for normal joints is recommended.
Therefore this factor will be used in the calculation programs of this report.

(46)

From figure 4.1 it can be seen that the edge moments will be larger with increasing stiffness of
the adherents. In other words the K-factor will increase with the adherent stiffness.
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The Hart-Smith K-factor only holds for normal lap joints. No formula is given for fully or
partially tapered adherents.

Ly non taper

SHIEH Tt
Sl S — VN I

L, non taper M,V P

figure 4.2:  load sign conventions and joint deformations

Due to their geometric tapered joints bent easier than normal lap joints. This
indicates that smaller bending moments are required in the deformed position. The flexibility of
the adherents depends on the rate of taper and the non-tapered length. It is suggested here that
this can be taken into account by adding an extra reduction factor to the Hart-Smith K-factor.

Kitp = Kins . Kired 0<Kiea< 1 (4.7)

Kira must be at least a function of I, lnen-tapered, tmax, tmin.. Using dimension analysis and some
engineering * feeling’

1

Ki,, = 1+%{[]—_1—}mﬂ5)[%]}

(48)

If full taper is used then the maximum reduction is 0.8, When no taper is used the reduction is 1.

The usefulness of this factor has to be further investigated. No proof will be shown here. In the
matlab-programs quantitative three options are given for the definitions of the end loads.

* enter specified end loads

* using Hart-Smith K-factor

* using Hart-Smith K-factor plus extra reduction factor.
For the specification of the required end loads it is important that the sign conventions for
equilibrium specifications are carefully followed.

T S i T i B o e ¥ e
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4.2 Single lap joints

In this section the mathematical development of a universal analysis of the shear and peel stress
distribution in an adhesively bonded joint is discussed. The adherents are in a state of plane
strain. They bend under the influence of the edge bending moments.

In part 4.1 the necessary boundary load conditions are derived by the method of Hart-Smith.
Part 4.2.1 begins with the derivation of the general governing equations. From the equations of
part 4.2.1 two high order differential equations can be obtained. In part 4.2.2. it is proven that
those equations cannot be solved by FDM. Therefore in 4.2.3. the problem is solved by the
derivation of six coupled first order differential equations wich are then solved with the finite
difference method.

4.2.1 Derivation of governing differential equations
In deriving the governing equations, the edge loads are chosen such that the equilibrium of the

bonded joint is satisfied. The following elementary part of an adherent /adhesive sandwich
subjected to a general loading system per unit width is taken to derive the equations.

Y.viv2 MaM
A [ S
Ti Y
T, +dT,
v, Y
M 12
! 1 ViV,
2 ]
Oy
1 <
| -
T, 12d M, +dM,
'}
Vi L
M, I
J Ty+dT,
|« = > VitV
X,ul,ul

Figure 4.3:  geometry of a single lap joint
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For each adherent combined with a half adhesive layer, the next equilibrium equations hold |

Adherent 1. Adherent 2.
(:llxl: T %z = (4.9)
%:cy %z—cy (4.10) |
-89 i)

The vertical displacements of the adherents are calculated from simple engineering bending
theory , Timoshenko 1991 ( Ref 14 ). With the assumption of bending in plane strain the vertical
displacements can be written as

Adherent 1. Adherent 2.

. v, -M,

d*v, -M
1 1 dx? :12_0_“13)

& 12(1-p,))

-E,t,’ (4.12)

‘Ept,

The horizontal displacements of the adherents are caused by tensile and moment loads. Besides
plane strain bending, the plate is assumed to be in plane stress tension. Therefore the horizontal
displacements of the adherents at the interface of adhesive / adherent become

6-(1-p,’
LT S ( t)-M. (4.13)
dx E, -t t,
6:(1-p,°
LN (-t )-Mz (4.14)
dx E,-t, t,
Assuming plain strain for relating stresses in the adhesive to strain, the next expressions are
produced
|
E, g, |
S, =7—% (4.15) .

low) |
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i (4.16)

To solve the differential equations two compatibility equations are required. These are found by
relating the adhesive strains to the adherents displacements as follows

"]

ey=(_"’;i) (4.17)

7=(u—‘;-ﬂ (4.18)

Together with the boundary conditions the system can now be solved.

4.2.2 Numerical solution 1: 2 high order difference equations

The shear and peel stress distributions can be described with two coupled differential equations
of the third and fourth order respectively. These equations are derived from the equations given
in4.2.1

d’t dt
E—KI&:—KZ-GY (4.19)
where

KI: f(Ga,d,u“u:it],tz?E]’EZ)
K2= f(Ga,d,Ll,,I-l;,t,.tz-EpEz)

and

d‘c dt
Y 1K3.0,=K4.-— 4.20
dx* % dx ( )

where
K3= f(Gastulauzat1!t2|E|)E2)

K4= f(Ga,d,u,,u1,.t,t,,E,,E,;)

 Emada. S 2 T TTTE AT T T
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Transforming equations 4.19 and 4.20 into difference equations requires a third order and fourth
order difference derivative. They are obtained using Taylor expansions (See Kan 1993 ). The
resulting derivatives are

dc

c,,—40, ,+60,-40,,+0,,, 3

boE A o] 2 4 O(Ax 421
el Ax* (ax’) (421)
Aty T, 27, 42T, — T, 4

oL o = 1+ 1+ - I +0 Ax 4.22
dx? |' 2Ax? ( ) ( )

The joint is divided into equal parts with N+35 iteration points.

0 L

-2 -1 0 1 N N N+1 N+2

Transforming of the third order differential equation 4.19 leads to a set of N-1 equations with
N+3 unknown variables. Only 3 boundary conditions are given for this equation. For the
analytical solution these would be sufficient ( See Crocombee 1989 ). Solving the equation by
FDM, one extra boundary condition is needed. The extra boundary conditions is found from a
first order approximation

T,—1T, dt

o e +0(Ax) (423)

Transforming of the fourth order differential equation 4.20 produces a set of N difference
equations with N+4 unknown variables. For this equation the tensile stresses at the four joint
edges are known, which are added to the set of equations

=l

(4.24)

0

>l

The resulting set of equations could not be properly solved, caused by the badly conditioned A-
matrix.

M an anam e o 8 L Sty s SRR et e - S S——
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4.2.3 Numerical solution 2: six first order difference equations

To overcome the problem caused by using two high order equations, another approach is tried.
It is possible to derive six first order differential equations to describe the problem, This method
has the disadvantage of a larger number of equations resulting in an increased calculation time. It
appears that for accurate results a high number of steps is required.

Starting point of the analysis is formed by the equilibrium equations of an adherent/ adhesive
sandwich cutted at a location x.

Vi Vi(x)

Ty(x)

\ M(x)

] Ma(x)

Tax)

Vy(x)

\j

figure 4.4: equilibrium of a cutted adhesive/ adherent sandwich

With the equilibrium equations, T>(x) and Ma(x) can be expressed as a function of T;(x) and
Mi(x)

T,(x)=T; ~T,(x) (4.25)

Mz(x)=(T11 _T‘](x))'[d"'%) _Ml(x)+M11 +V,-x (4.26)

B 0 EEs s ak GaeEES B S BEEEEEE B U EHIE 0 0 =
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Differentiating the compatibility equations once resp twice yields

ﬂ_l_[ﬁ_d&)
dx d \dx dx (42t)
di 2 2

E =l-[d i 8 "3] (428)
dx d \ dx” dx”

Together with the deformation formula of the adherents, formula 4.25 and 4.26, these equations
are expressed in Tj(x) and M,(x) only. By adding equilibrium equations 4.6 to 4.8 of adherent 1
a complete set of five equations is produced, four first order and one second order equation.

W, _E
x ! 2:(1+n,) (4.29)

%”y .__(1 —Eu’) (430)

t L

Bl S (4.32)
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The second order equation 4.28 is transfered into two first order differential equations

T )
%zl. uhl+M, +V, X—Tl(x .E_M](x).(L_,.L] (4.33)
dx d D2 D2 DI D2
ds)'_
—r =K (4.34)
dx

3 3

with Dl=— 2t _ and gt l

12-(1—;1;) 12:(1-p,°)

Using a first order difference derivative, the six differential equations are transformed into a
system of 6N algebraic difference equations with 6N+6 unknow variables.

Yisi _yi :d_y 5
= dx|,+0(Ax) (4.35)

There are six boundary loads given which are used as the boundary conditions for this problem.
This results in the next system which is programmed in MATLAB m-file normjntp.m (See

appendix A and B)

(4.36)

>l
|
I
=l

Figure 4.5 shows an example of a shear and peel stress distribution for a asymmetrical single
joint with an applied load of 100 [MPa] , using the Hart-Smith K-factor.
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Shear stress [MPa] in a single lap joint

10
9
l E1=E2= 72000 [MPa] (
8 tl1=t2 = 2 [mm]
\ Ga= 833 [MPa] I
7 d= 0.2 [mm]
Applied force P= 100 [N/mm] /

00 10 20 30 40 50 60
Length of the joint in [mm] =
Peel stress [MPa] in a single lap joint
10
E1=E2= 72000 [MPa]
8 t1=12 =2 [mm]
Ga= 833 [MPa]
d=0.2 [mm]
6 Applied force P= 100 [N/mm]
4
2
O\V \Yi
20 10 20 30 40 50 60

Length of the joint in [mm] >

Figure 4.5: Shear and peel stress distribution in a single lap joint ( N = 2000 steps )
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4.3 Tapered lap joints

In this section shear and peel stress distributions in adhesively bonded tapered joints are
analyzed. The theory discussed in this part is an extension, with the same assumptions, of the
theory of section 4.2. The major difference with the model mentioned in 4.2 is that the
geometric parameters are no longer constants but are now a function of x.

4.3.1. Derivation of governing differential equations

Y.vl,v2
e M +dM,
A /
t(x) +dt;
ty(x) TyHdT,
1/2d
—~ ViV,
¥ Y
Oy
A -
1/2d M,+dM,
ty(x)+dt,
\ T2+dT2
I= dx > VitdV,
Xulu2

figure 4.6: equilibrium of a tapered lap joint

The force equilibrium equations are the same as those in 4.2. The taper adds an extra term to the
moment equation

dM, d+t,(x) 1 dt,(x)
v {258 w0

d+t dt
——sz = vz _t[ Z(X)j +T2 (x)'l' I(X) ( 4.37 )

dx 2 2 dx
Also the formula 4.12 for the deformation remains the same. Only here the thickness is a function
of x.

Iv"—'r ———r - _—T T T T T T T TR T T VI T I T T T
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4.3.1. Numerical solution: six difference equations

To derive the six governing first order differential equations, moment and force equilibrium of a
cutted adhesive/ adherend sandwich is considered.

Vi(x)

Vi Ty(x)
y(x)
i /

M, (x)
My i
My(x)

t(x)
Tyx)

Vix)

X

Jfigure 4.7: equilibrium of a cutted tapered joint

From the equilibrium equations T2(x) and M,(x) can be expressed as functions of T,(x) and
M[(X)

T,(x)=T, - T,(x) (4.38)

M,(x) =T, -[d +5L%2—t"’—(39] —Tl(x)-[d+t1(x);7tz(x)] ~-M,(x)+M,, +V,,-x  (4.39)

Using the compatibility equations 4.24 and 4.25 the follow six governing equations are found

dT, E
oL T—— . 4.40
ax 2-(1+p,) 40
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kSO (441)

d?MxL =V,-v __E:-((C: 1 ‘ul(;)) -1 (x)-%-ﬁ“h((—x) (4.42)

& _ E,()t(x) S(-w) ol (=)

™ d-E {T( ) { E,(x)t (x) e ) hl(x)} 6-M,(x)- { e
E,(x)-t,(x)-(1-1,%) _6-(1-—LL12)-V”-X_T _6-(1~|.122)-(M”+T,,-h2(x))

--------- El(x)'t1(x)2 ll(x) " tz(x)

with hipo=n0+ () )“ @ ,q and  h2(x)= i(c')%tz(x—)m (443)

The second order equation is written as two first order differential equations

dKk 1 1 ‘hz(x)"'Mn + V- X hl(x) 1
—a El: D2(x) - Tt(x)‘ DZ(X) I( ) [_(_' )]ji (4-44 )
de, B 4

dx K (4%

E,(x)-t,(x)’
12-(l—u,2)

ey B2 ()

12:(1- uz)

with DI1(x)= and

—r———r W PP p———— TTT T T TITINENT Ty TIT I "TE T
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Equations 4.40 to 4.45 are transformed into six difference equations. Together with the
geometric generator of tapjntss.m (See appendix A and B), they are programmed in the matlab
file tapjntps.m (see appendix A and B).

Good results are obtained with more than 1000 points. From figure 4.8 it follows that the effect
of taper is less than in the case with only shear stress. This is caused by the end loads.

Through application of the extra reduction factor both peel and shear stress magnitudes are
smaller than for a Hart-Smith K-factor only. The validity of this reduction factor however needs -
to be proved analytically and in practice.

Shear stress in a tapered lapjoint

7
" E1=E2= 72000 [MPa]
t1=t2= 2 [mm)]
Tlratio= 1/60
\ T2ratio= 1/60
S Ga= 833 [MPa]
i d=0.2 [mm]
g Applied force P= 100 [N/mm] -
gt |
e |
1]
g \ / |
w |
2 g 7 |
\\ / |
! ~N— | 7 |
0
0 10 20 30 40 50 60

Length of the joint in [mm] ->

Shear stress max: 6.8 MPa for Hart-Smith K-factor only.
Shear stress max: 5.5 MPa for Hart-Smith plus extra reduction factor !

figure 4.8a: Shear stress distribution in a tapered lap joint ( N = 1000 steps )
Jor Hart-Smith K-factor and for extra reduction factor.

R T I - T T T —— - e — T o — —_ Ty —



Tapered lap joints: Numerical solution Page 37

Peel stress in a tapered lapjoint

7
6 E1=E2= 72000 [MPa]
t1=t2=2 [mm)]
5 T1ratio= 1/60
T2ratio= 1/60
Ga= 833 [MPa]
4 d= 0.2 [mm]
Applied force P= 100 [N/mm]

Peel stress in [MPa]->
3] w

-1

0 10 20 30 40 50 60
Length of the joint in [mm] ->

Peel stress max: 6.2 MPa for Hart-Smith K-factor only.
Peel stress max: 5.6 MPa for Hart-Smith plus extra reduction factor

figure 4.8b: Peel stress distribution in a tapered lap joint (N = 1000 steps )
for Hart-Smith K-factor and for extra reduction factor.
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S

The design of the SIMONA under crown fitting

This chapter is an example of how to use the adhesive design toolbox in a practical design task.

The example used here is the design of the SIMONA Research Simulator under crown fitting.
The simulator consist of three major parts, hydraulic motion system, composite shuttle and
display system. To hold and connect the the mirror of the visual display system to the shuttle,
the mirror is connected to an under and an upper crown structure. These mirror support
structures consist of carbon tubes which are adhesively bonded to aluminum fittings at both
ends. In all cases the under crown fittings carry the highest loads.

The aim is now to design a fitting without taper, but with low shear stresses to prevent creep.

Because the problem deals with bonding tubes, the peel stresses are negligible small. So the
theory of part 2.1 can be used. The given parameters are

Loads: Aluminum fitting:
Fim= 15327 [N] E1 = 72000 [MPa]
Safety factor = 2.7

Fa=2.7 * 15327 = 41383 [N]

Adhesive: 3MDP460 ( epoxy ) Carbon tube:

Ga=1833.33 [Mpa] E2 = 114000 [Mpa]

Tmax= 31 [N/mm?] ta=3.65 [(mm]
d.= 40 [mm)]

The parameters to design are

fitting thickness: tar

fitting length: I 35<1<65[mm]

adhesive thickness: d, 0.1<d<0.6 [mm)]
Initial values taken are 1 = 35 and d = 0.1. Choose the following options
i Both adherents the same stiffness:  t,s=(114/ 72) *3.65 = 5.78 [mm]
Less stiffness for the fitting: tar=4.78 [mm]
* More stiffness for the fitting: ~ ty=6.78 [mm]

Applied load is estimated as P = ( Fu/ (t*d.)) = 330 [Mpa]

YT T I T —p o g———— - - —_— - = =
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Using the analytical solution of Volkersen the next shear stress distributions follow.

Shear stress distribution: Volkersen

40

\
35
\

Shear stress [MPa] ->
nN N w
(9] o (9] o
| —
/ ﬁ
==

/

1 \\ 7
10 A

5 \ //

0

0 5 10 15 20 25 30 35
Length of the joint [mm]
figure 6.1: the effect of fitting thickness on the peek stresses
to = 4.78 [mm] , Tax = 38 [N/mmr’] tor = 5.78 [mm] , Tuax= 33 [N/mm’]

lar = 6.78 [mm] , Tnax = 34 [N/mm’]

Figure 6.1 shows that choosing equal stiffness, that is t,s= 5.78 [mm], for both adherents give
the lowest maximum shear stress in the adhesive.

For a joint length of | = 35 [mm] the shear stress are calculated withd=0.1,02, ...... ,05,06
[mm]. The same is done for | = 65 [mm)]. Figure 6.2 display the shear stress distributions. With
a joint length of 35 [mm] and an adhesive thickness of 0.2 [mm] the maximum shear stress
stays below Tmax. But to prevent creep in the adhesive layer, the shear stress must be much
lower. Eventually there is a length of 65 [mm] chosen and an adhesive thickness of 0.6 [mm].
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Shear stress distribution: Volkersen

35

w
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Shear stress [MPa] ->
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Shear stress distribution: Volkersen
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Jigure 6.2: the effect of adhesive thickness for a joint with length 35 and 65 [mm]
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6

Conclusions and recommendations

Conclusions

Finite difference methods (FDM) and models are very powerful tools for linear elastic analysis for
adhesively bonded joints. They are easy to program in a computer language like MATLAB 4.2. The
design MATLAB Adhesive Toolbox runs on all today's 486 computers with at least 4Mb.

To get an optimal performance of the toolbox, at least a 486DX2 with 12Mb or higher ( Pentium)

is required.

Although the derived models and tools are concerning linear elastic joints without spew-fillet, they give
very good results for low loads. Because the design tools are build for general dissimilar adherents a
very wide range of joint configurations can be analyzed. Just by changing the input parameters or
material properties the tool calculates new adhesive stresses and the operator can compare these result
with previous calculations. Both numerical or graphical.

This makes FDM and in particular the Adhesive Toolbox excellent engineering design tools for
adhesive stress analysis.

Recommendations
To improve the adhesive toolbox and get more realistic results. It is recommended to do some more

research on and expand the existing models with the following topics:

1. A thorough analysis needs to be made on realistic joint edge loads in a deformed
adherent/ adhesive sandwich.

2. In high loaded joints besides elastic deformation also plastic deformation of the adhesive
will occur. It is therefore recommended to expand the elastic adhesive model to a
elastic-plastic model. One could use Hart-Smith or Crocombees model.

3. All adhesive joint have in practice spew-fillets added deliberately or not. These fillets have
severe effects on the stress magnitudes in the adhesive. To get more realistic stress analysis
these fillets must be modeled and added to the existing models.
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‘ MATLAB Adhesive Toolbox Users Guide

The MATLAB Adhesive Toolbox consists of twelve so called m-files

- Volkers
- Svolkers
- Normjnts
- Normjntp
- Tapjntss
- Tapjntps
- Stack

- Stackcal
- Shlojnt1
- Shlojnt2
- Hartsm

- Hartsm2

Just by typing the name of the m-file after the MATLAB prompt will start the program. For
people who are not familiar with MATLAB, type 'help' or 'help help' to get all information about
the program. Also very cheap MATLAB Primers are available at most universities. The Primers
discusses all the basic MATLAB commands.

Installing the Toolbox and computer requirements |

* Copy the file: adhesive to C:/ matlab/ toolbox.

* Define a new search path in the master start up m-file 'MatlabBC' by adding the next
line: ';C:\MATLAB\toolbox\adhesive'...

* Computer requirements: at least a 486DX with 4Mb. For optimal working of the
program a 486DX2 with 12Mb or higher is recommended.
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volkers.m
Purpose:
Calculation of the volkersen shear stress distribution in a normal lap joint loaded with tensile forces.
Svnopsis:
volkers
Description:
P = tensile force per unit width
L = length of the joint
E1= E modules of plate 1
t1 = thickness of plate 1
] t2 = thickness of plate 2
-— El t, E2 = E modules of plate 2
P ! d = thickness of the adhesive
Ga = shear modules of the adhesive
Ga 3 d
E2 [ —
P
| |
Ji< L I references:
Roza Z.C.. 'The design of a MATLAB
Adhesive Toolbox', TU- Delft: Jan 1996.
svolkers.m
Purpose:
Calculation of the volkersen shear stress distribution in a normal lap joint loaded with shear forces.
Svnopsis:
svolkers
Description:
V = shear force per unit width
L = length of the joint
E 1= E modules of plate 1
L t1 = thickness of plate 1
/ _/ t2 = thickness of plate 2
/' / E2 = E modules of plate 2
d = thickness of the adhesive
v Ga = shear modules of the adhesive
Gl
Ju v
d | Ga
G2 ; 2 references:
Roza Z.C.. 'The design of a MATLAB
Adhesive Toolbox', TU- Delft: Jan 1996.
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normjnts.m

Purpose:

Finite difference calculation of the shear stress distribution in a normal lap joint loaded with tensile forces.
No bending of the adherends.

Svnopsis: normjnts

Description:

P = tensile force per unit width
L = length of the joint

E 1= E modules of plate 1

t1 = thickness of plate 1

2 = thickness of plate 2

o S El t E2 = E modules of plate 2
P d = thickness of the adhesive
Ga = shear modules of the adhesive
Ga }d
E2 t —
P
I |
[ L i
references:
Roza Z.C., 'The design of a MATLAB
Adhesive Toolbox', TU- Delft: Jan 1996.
normjntp.m
Purpose:
Finite difference calculation of the shear stress distribution in a normal lap joint loaded with tensile forces.
Bending of the adherends is allowed.
Synopsis: normjntp

Description: uses hartsm.m

P = tensile force per unit width
E1= E modules of plate 1
v, L = length of the joint

M, t1 = thickness of plate 1
El ¢ t2 = thickness of plate 2
P ! E2 = E modules of plate 2

. Ga = shear modules of the adhesive
] v, d = thickness of the adhesive
M M1 = boundary moment left
E2 4 M2 = boundary moment right
P V1 = boundary shear force left
| | V2 = boundary shear force right

boundary conditions options:

1 = Enter your own boundary loads with the above defined sign convention

2 = Calculation of moments and shear force by use of the Hart-Smith K-factor

references: Roza Z.C., 'The design of a MATLAB Adhesive Toolbox', TU- Delft: Jan 1996.
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tapjntss.m

Purpose:

Finite difference calculation of the shear stress distribution in a tapered lap joint loaded with tensile forces. No bending of
the adherends.

Svnopsis: tapjntss
Description:
P = tensile force per unit width
. L = length of the joint
! El= E modules of plate 1
P t1 = thickness of plate 1
— tye-o  E2 . E2 = E modules of plate 2
= : i L3 12 = thickness of plate 2
1 ¥ Ga= shear modules of the adhesive
et + = T — d = thickness of the adhesive
| P
Ly
| o references:
‘ L ‘ Roza Z.C., 'The design of a MATLAB Adhesive
Toolbox', TU- Delft: Jan 1996.
tapjntps.m
Purpose:

Finite difference calculation of the shear stress distribution in a tapered lap joint loaded with tensile forces. Bending of the
adherends is allowed.

Svnopsis: tapjntps

Description: uses hartsm2.m P = tensile force per unit width

L = length of the joint

E1=E modules of plate 1

t1 = thickness of plate 1

E2 = E modules of plate 2

2 = thickness of plate 2

M, Vi L d = thickness of the adhesive

‘_'1 Ga = shear modules of the adhesive

1 v M1 = boundary moment left
| tix=o E2 b M2 = boundary moment right

’y V1 = boundary shear force left

v Ga v d V2 = boundary shear force right

i i Boundarv conditions options:
e o o bt 1 = Enter your own boundary loads with the above

defined sign convention.

2 = Calculation of moments and shear force by use
My Vol of the Hart-Smith K-factor.

3 = Calculation of moments and shear force by use
of the Hart-Smith K-factor + an extra reduction
factor caused by the taper.

R

=

references:Roza Z.C., 'The design of a MATLAB
Adhesive Toolbox', TU- Delft: Jan 1996.
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stack.m !

Purpose:

Finite difference calculation of the shear stress distribution in the adhesive layers of a laminated stacked
joint loaded with tensile forces. Bending of the adherends is allowed.

Synopsis:

stack

Description:

uses stackcal.m

L,=Length of the it plate

P = total tensile force per unit width E;j= E modules of the i th plate
L = total length of the joint tj = thickness of the i th plate
Ga; = shear modules of the i th adhesive layer d; = thickness of the i th adhesive layer
|
references: |

Roza Z.C., 'The design of a MATLAB Adhesive Toolbox', TU- Delft: Jan 1996.
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shlojntl.m
Purpose:
Calculation of the analytical solution for a deformable plate bonded to a undeformable surface loaded with shear stress.
Synopsis: shlojntl
Description:
q = constant shear stress
Z L = length of the joint
L G1= shear modules of plate 1
VA Y t1 = thickness of plate 1
/ Y Ga = shear modules of the adhesive
d = thickness of the adhesive
Gl 7 ”
/4 boundary conditions aty = 0 :
1 = a fixed end
X ; a 7 2 = a free end with no loads
L) i references:
Roza Z.C., 'The design of a MATLAB Adhesive
Z i Toolbox', TU- Delft: Jan 1996.
shlojnt2.m
Purpose:
Finite difference calculation of the shear stress distribution in a normal lap joint loaded with shear forces.
Svnopsis: shlojnt2
Description:
V = shear force per unit width
L = length of the joint
G1= shear modules of plate 1
L t1 = thickness of plate 1
/ = G2 = shear modules of plate 2
/‘ / t2 = thickness of plate 2
Ga = shear modules of the adhesive
v d = thickness of the adhesive
Gl
tu v
d Ga
G2 ’ 2 references:
Roza Z.C., 'The design of a MATLAB
Adhesive Toolbox', TU- Delft: Jan 1996.
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HARTSM.M

%********i*************************************************'k****

%

% This m-file calculates the end moment loads for a lap
% joint using the Hart-Smith K-factor.
%

%**************************************t****i*********t*********

Mlm=- (P1* (£1+d)) /2;

M2m=(P1* (£2+d))/2;
1ab1=((12*p1*(1—mu1*2)1/(E1*t1*3}1*o.5;
1ab2=((12*91*(1-mu2*2))/(E2*t2*3)}*0.5;

Kh1=1/(1+(1ab1*1/21+(1/s)*(1ab1*1/2)*2);
Kh2=1/(1+(1ab2*1/2)+(1/6)*(1ab2*1/2]‘2);

M1=Kh1*M1m;
M2=Kh2*M2m;

Page 1

T e e T T T T T T T — TR T T



HARTSM2 .M

Ghhkhkhhhhhhhhhhhhdhhhhhdhhhdhhdhdrdhhhhhhhhhdhhhhhhhhhhhhhrhhrkhkhhhhk

%

% This m-file calculates the end moment loads for a lap
% joint using the Hart-Smith K-factor.
%

Shhhhhhhhhhhhhhhhhhhhhhhhkhkhkhkhkhkhkhkhhkhkhkhkhhhhhhhkhhhkhhhhhhhhkhhhhkhhdhdhd

Mlm=- (P1* (t1(1)+d))/2;
M2m= (P1* (t22+d)) /2;

labl=((12*P1* (1-mul”2))/(E1*t1(1)"*3))"0.5;
lab2=((12*P1* (1-mu2”2))/(E2*t22"3))"0.5;

Khl=1/(1+(lab1*1/2)+(1/6)*(labl*1/2)"2);
Kh2=1/(1+(lab2*1/2)+(1/6)*(lab2%1/2)"*2);

M1=Kh1*Mlm;
M2=Kh2*M2m;

Kril=1/(1+0.25*%((1-11)/1)*(t1(1)-t11)/t1(1));
Kr2=1/(1+0.25%({(1-12) /1) * (£22-t2(1)) /t22);
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NORMJNTP .M

%*******************t*************************************

@

This program calculates the shear stress and peel stress
in a single bonded lapjoint. The used method is FDM.

Copyright (c) 1995-96, Z.C. Roza
TU-Delft: faculty of aerospace engineering

Structures and materials Laboratory
%***********************i*'k'lr******************************

%
%
%
%
%
%
%

disp{ ' *******i***************i‘*****i************************* ! ) i

disp('This program calculates the shear stress and peel stress');

disp('in a single lapjoint by means of FDM') ;
disp( ! *'kk**************************************************** l) 3

clear;

[ . =
st*************t****** 1nputs ****it***i**(

l=input ('Length of the joint in [mm]: ');

n=input ('Total number of iteration steps ( > 1000): ');
d=input ('Thickness in [mm] of the adhesive layer: 2 I
ma=input ('poisson ratio of the adhesive: ');

Ea=input ('E modulus in [MPa] of the adhesive: JB

El=input ('E modulus in [MPa] of plate number 1: 1Y
mul=input ('Poisson ratio of plate number 1: ');
tl=input ('Thickness in [mm] of plate number 1: vy

E2=input ('E modulus in [MPa] of plate number 2: ');

mu2=input ('Poisson ratio of plate number 2: ');

t2=input ('Thickness in [mm] of plate number 2: ');

Pl=input ('Force per unit width [N/mm] : ');

disp(' ');
disp(l****it***********************i'*****'k'k*t******t************i L] ) -

disp ('Enter your own end moments/shear force (=1) or the program') ;

disp('calculates moments/shear forces by Hart-Smith (=2) K-factor');
dum=input (' What is your choose ?: ');

Page 1
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NORMJNTP.M

if dum == 1
Ml=input ('Moment per unit width [N/mm/mm] left: ');
Vli=input ('Shear force per unit width [N/mm] left: ');
M2=input ( 'Moment per unit width [N/mm/mm] right: ');
V2=input ('Shear force per unit width [N/mm] right: ');

else
hartsm;
V1= (M2-M1-P* ((t1+t2) /2+d))/1;
v2=V1;

end;

disp(' The calculated shear force (V) for the given moment:');
disp (V1) ;

disp(" '});

disp('I am calculating ') ;

%***************************************iii’i’i‘*i*i***********i********;

% Caculation of the A matrix;
%*i‘********ii‘**************************i**iii*i**i*******************;

dx=1/n; % step size;

Gal=-dx*Ea/ (2* (1+ma)) ;

D1=(E1*t1”3)/(12*% (1-mul”2)); D2= (E2*t2°3) / (12* (1-mu2"2) ) ;
hl=(t1+t2)/2 +d;

Ca=-dx*Ea/ (1-ma”2); C=dx*Ea* (t1+d)/(4*(1+ma)) ;

Ghhkhkhkhhkhhkdhdhkdhhhdhhhdhdhhdhhhhhhhhrhdhdhbhdhhhhhdhhhkhhhhkhrhrrkdrhhhd

A=sparse (6*n, 6*n) ;

for i=2:n-1
A(i,i-1)=-1; %$** Equations for P;
A(i,i)=1;

A(i,3*%(n-1)+1i)=Gal;

A(n+i,n+i-2)=-1; ¥** Equations for V;
A(n+i,n+i-1)=1;
A(n+i,5*n-1+1)=Ca;
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NORMJNTP.M

A(2*n+i,2*n-3+i)=-1; ¥** Equations for M;
A(2%*n+i,2*n-2+1)=1;
A(2*n+i,n-2+1i)=-dx;
A(2*n+i,3*n-3+1i)=C;

end;

%*'k********ti***************************k***i******ﬁ***************

af{l,1)=1; A(1,3*(n-1)+1)=CGal;

A(n,n-1)=-1; A(n,4*n-3)=Gal;

A(n+l,n)=1; A(n+l,5*n)=Ca;

A(2*n,2*n-2)=-1; A(2*n,6*n-1)=Ca;

A(2*n+1,2*n-1)=1; A(2*n+1,3*n-2)=C;

A(3*n,3*n-3)=-1; A(3*n,4*n-3)=C; A(3*%*n,2*n-2)=-dx;

%i**********************************************i‘************i****

C2=(1+(E2*t2) / (E1*t1) + (6* (1-mu2"2) *h1) /t2) / (E2*t2*d) ;
C3=6% ( (1-mu2”2) /t2-E2*t2* (1-mul”2) / (E1*t1*t1) )/ (E2*t2*d);

for i=2:n-1

A(3*n+i,3*n-3+1)=-1; %** BEquations for Gamma;
A(3*n+i,3*n+i-2)=1;

A(3*n+i,i-1)=-C2*dx;

A(3*n+i,2*n-3+1i)=-C3*dx;

A(4*n+i,4*n-2+1)=-1; %** Equations for K;
A(d*n+i,4*n-2+1i+1)=1;

A(4*n+i,2*%*n-3+i)=(dx/d) *(1/D1+1/D2) ;
A(4*n+i,i-1)=dx*hl/(d*D2);

A(5*n+i,5*n-1+1i)=-1; %** Equations for Epsilon
A(5*n+i,5*n+i)=1;
A(5*n+i,4*n-2+1)=-dx;

end;

%l’*********************************it*i****iiti***ii***************

A(3*n+1,3*n-2)=-1; A(3*n+1,3*n-1)=1;
A(4*n,4*n-3)=-1; A(4*n,4*n-2)=1;
A(4*n,n-1)=-dx*C2; A(4*n,3*n-3)=-dx*C3;

Page 3
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A{4*n+l,4*n-1)=-1; A(4*n+l,4*n)=1;

A(5*n,5*n-2)=-1; A(5*%*n,5*n-1)=1; _
A(5*%n,3*n-3)=(dx/d) * (1/D1+1/D2) ; A(5*n,n-1)=dx*h1l/(d*D2) ; |
A(5%n+1,5%n)=-1; A(5*n+1,5%n+1)=1; A(5*n+l,4*n-1)=-dx;
A(6*n,6*n-1)=-1; A(6*n,6*n)=1; A(6*n,5*n-2)=-dx;

%************************************************i*******************;

% Caculation of the B matrix;
%******i******************************ttti***t**************i********;

B=sparse (6*n,1);

B(1,1)=P1;
B(n+1,1)=V1;
B(2%n+1,1) =M1+dx*V1;

B(3*n+1,1)=(C2%*P1+C3*M1) *dx+ (-P1- (6* (1-mu2”2) * (M1+P1*h1)) /t2) * (dx/ (E2*t2*

B(4*n,1)=(-(6*%(1-mu2”2) *Vi*(1-dx))/t2-P1-(6*(1-mu2”2)* (M1+P1*hl))/t2)* (dx
2%d)) ;

B(4*n+1,1)=-((dx/d) * (M1/D1+M1/D2) +dx*h1*P1/(d*D2) )+ (dx/ (d*D2) ) * (M1+P1*h1)
B(5*n,1)=(dx/(d*D2) ) * (M1+P1*hl1+V1* (1l-dx));
for i=2:n-1
B(3*n+i,1)=(-(6*(1-mu2”2)*V1i*(i-1)*dx)/t2-P1l- (6% (1-mu2”2)* (M1+P1*
2) * (dx/ (E2*t2*d)) ;
B(4*n+i,1)=(dx/(d*D2) ) * (ML+4P1*hl1+V1*(i-1) *dx) ;
end;
%*********************************************t*t*********i***;

% Calculation of U vector;
%**ﬁ*i******ﬁ**************************t******t************i**;

U=A\B;

Ghhkkkkkkkhkkhkkhhkk* Regults **kkkdkddddhdhhrhhdhbhbddbhbdhdhhhhhd

x=0:1dx:1;
U=full (U) ;

disp(|****************************************************i******f);
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NORMJNTP .M

disp('Your results are displayed in figure 1 and 2');
disp{l**************************t*i**************************k***l);
disp('Maximum shear stress at x=0 and x=1 :');
disp(U(B*n—Z,l)*Gal/dx);disp(Ut4*n—2,l}*Ga1/dx);

disp ('Maximum peel stress at x=0 and x=1 :');

disp (U(5*n,1) * (-Ca/dx)) ;disp (U(6*n, 1) * (-Ca/dx)) ;

figure (1) ;

plot (x,U(5*%n:6%n,1) *(-Ca/dx)) ;

xlabel ('Length of the joint in [mm] ->') ;ylabel ('Peel stress in [MPa] ->
title('Peel stress in a normal lapjoint');grid;

figure(2);

plot(x,U(B*n-2:4*n—2,l)*(Gal/dx}};

xlabel ('Length of the joint in [mm] ->');ylabel('Shear stress in [MPa] ->

title('Shear stress in a normal lapjoint');grid;

SThhkkhkkkkkkkhkkhkk Checking the resulbg **kkkkkkdkkkkdhhhkkkhdkkhkii

Tau=trapz (x,U(3*n-2:4*n-2,1) * (Gal/dx));
Dwk=trapz(x,U(5*n:6*n,1)*{—Ca/dx));

disp('abs(P) found by integrating Tau:');
disp (Tau) ;
disp ('abs (Shear force V) found by integrating Sigma:') ;

disp (Dwk) ;




NORMJNTS .M

%*******************i********************************i**i***;

$Finite difference method for solving lap joints;
$This program calculates the shear stress in a lapjoint;

of o

Copyright (c) 1995-96, Z.C. Roza
TU-Delft: faculty of aerospace engineering

Structures and materials Laboratory
*****i********'ir********************************************;

o

a° o of

disp( Thkkhkhhkhkdhhhhhhhhhhhhddddhdddhrhhhhhhdhdhdhdbhdhdhdhdhbbhhkhbhhbkbkhhk! ) ;

disp('This program calculates the shear stress in the adhesive');

disp('of a lap joint under tensile force by the FDM');
disp('***********************************************************');

clear;

Shkkkkkkkkkh AR Rk *kkhkk InDUEE HKRK I KKK R IR,

l=input ('Length of the joint in [mm]: ');

d=input ('Thickness in [mm] of the adhesive layer: '};
Ga=input ('Shear modulus in [MPa] of the adhesive: '};

n=input ('Total number of iteration steps: ');

El=input ('E modulus in [MPA] of plate number 1: ');
tl=input ('Thickness in [mm] of plate number 1: ');

E2=input ('E modulus in [MPA] of plate number 2: ');
t2=input ('Thickness in [mm] of plate number 2: ');

P=input ('Tensile force per unit width [N/mm]: ');

%***I‘*******i***********it*t**ttt*********'k'k*'ki**i*i*****************;
% Berekening van de A matrix;

%ii*****************************************i************************‘-

dx=1/(n-1); % step size numerical method in [mm] ;

Page 1
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NORMJNTS .M

Cl=Ga/ (d*E1*t1l) ;
C2=Ga/ (d*E2*%t2) ;

Skkkkkkkkkkkkkxxx* gecond to n-1 th equation ***kkkkkkkkkkkhkdkhhhhkkkk,
A=sparse (2*n,2*n) ;

for i=2:1:n-1;

A(i: i-l)=1;
A(i,i)=-2-C1*dx"2;
A(i,i+1)=1;

A(i,n+i)=(dx"2)*C1;
A(n+i,i)=(dx"2)*C2;
A(n+i,n+i-1)=1;
A(n+i,n+i)=-2-(dx"2) *C2;
A(n+i,n+i+l)=1;

end;

% kkhkkkkhkkkhhkkk Firts and last equations of the plate***************;

A(l,1)=-1-(dx"2)*C1; A(1,2)=1; A(l,n+1)=(dx"2)*C1;

A(n,n-1)=1; A(n,n)=-1-(dx"2)*C1; A(n,2%n)=(dx"2) *C1;
A(n+l,n+l)=-1-(dx"2)*C2; A(n+l,n+2)=1; A(n+l,1)=(dx"2) *C2;
A(2*n,n)=(dx"2) *C2; A(2*n,2*n-1)=1; A(2*%n,2%n)=-1-(dx"2) *C2;

%*************'k***i**************************************************;

% Calculation of the B matrix;
%****************************************************i***'k***********;

B=sparse (2*n,1);

B(1)=-P*dx/ (t1*E1l) ; B(2*n)=P*dx/ (£2*E2) ;

%***************i******************************************t*********;

% Calculation of displacement vector u by Gaussian elimination;
%********************************************************************’-

Ul=A\B;
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NORMJNTS .M

%**********************t***i‘*********t*******************************;

% Calculations of the shear stress in the adhesive;
%*i‘******************************************************************;

for k=1:1:n;
Tau (k) =(Ga/d) * (U1 (k) -Ul (n+k) ) ;
end;

%*****i********I‘***********************************t****;

% Displaying and plotting results
%******t*k*****i****************************************;

disp (' L3 5

disp('Maximum shear stress left:');
disp(Tau(l));

disp('Maximum shear stress right:');
disp(Tau(n)) ;

x=0:dx:1;
plot (x, Tau) ;

xlabel ('Length of the joint [mm] ') ;ylabel ('Shear stress [MPal ->');
title('Shear stress distribution in the adhesive of a lap joint');
grid;

testf=trapz (x, Tau) ;

disp('Applied tensile force found by integrating Tau');
disp(testf);
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SHLOJNT1 .M

%*********t*******'k*********************************************

% This program calculates the shear stress in the adhesive

% layer of a deformable plate bonded to a undeformable plate

% under shear loading. The used method is a analytical solution
% of the governing equations. This is done for two different

% boundery condtions.

%

%

% Copyright (c) 1995-96, Z.C. Roza

% TU-Delft: faculty of aerospace engineering

% Structures and materials Laboratry
%***i******************‘l‘*******t****t**************************

dlSp': Tdkkhkhkhkhkhkhkhrr A AT AT AA A A A b hhkhhkhrhrhhhhhhhhhhhbhdhhhhhhhhdhrhhdd! ) H

disp('This program calculates the shear stress in the adhesive ');

disp('layer of a deformable plate bonded to a undeformable plate')

1

disp ('under shear loading. The used method is a analytical solution');

disp('of the governing equations. This is done for two different');

disp('boundary condtions.');

disp(' kkhkhhdkhkhkkhkhhkhkhhkhhhhkhhkhdhhhkhhhhhhhhhkhhkddhddbhhhdhhhddbrhhdd! ) H

clear;

Skkkkkkkk Kk hk Ak hkkkkk Inpubs FxA*kkkkkdkdk

l=input ('Length of the deformable plate in [mm]: ');
Gp=input ('Shear modulus in [MPA] of the deformable plate : ');
tp=input ('Thickness in [mm] of the deformable plate : ');

Ga=input ('Shear modulus in [MPa] of the adhesive: ');
d=input ('Thickness in [mm] of the adhesive layer: '};

n=input ('Total number of iteration steps: ');
g=input ('The applied shear stress [N/mm"2]: ');
disp{'*******************************************'};
disp(' Select one of the two boundry conditons:');
disp(' (1): one fixed end at y = 0');

disp(' (2): a free end at vy = 0');

bound=input ('Enter your choose : g

Shkkkkkkkhdhkkk Calculations of displacements khkkhkkhkhhhhkhhhhkhkhhhdhdhk

dy=1/n; % step size;

Page 1

I




SHLOJNT1.M

if bound==1

a=Ga/ (Gp*d*tp) ;
Cl=q/((a™0.5) *Gp* (exp(1*a™0.5) +exp(-1*a®0.5)));
y=0:dy:1;

U=zeros (n+1) ;

U=Cl* (exp(y*a”0.5) -exp(-y*a™0.5));

else
a=Ga/ (Gp*d*tp) ;
Cl=qg/((a”0.5)*Gp* (exp(1*a™0.5)-exp(-1*a®0.5)));
y=0:dy:1;
U=zeros (n+l) ;
U=C1l* (exp(y*a”0.5) +exp (-y*a”0.5));
end;

Tau= (Ga/d) *U;

disp(‘ khkkhkkhkkkkhkhkhkhkhkhkhkdhhhkhhkhkhhkhhhkhhkdhhhhhdhhhhk! ) H
disp('The shear stress at y = 0 is:');

disp (Tau(l));

disp ('The shear stress at y = 1 is:');

disp(Tau(n+l)) ;

testf=trapz (y, Tau) ;

disp('Applied shear stress found by integrating Tau');
disp(testf) ;

plot (y, Tau) ;grid;

xlabel ('Length of the plate [mm] in y-direction');
ylabel ('Shear force in [MPa] ->');

title('Shear stress distribution in the adhesive layer');
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SHLOJNTZ2.M

%*******************************t***********i*****i‘*************

o

This program calculates the shear stress in the adhesive
layer of two bonded deformable plates under shear loading.
The used method is the finite difference method.

Copyright (c) 1995-96, Z.C. Roza
TU-Delft: faculty of aerospace engineering

Structures and materials Laboratory
*************i‘i‘***********************************************

%
%
%
%
%
%
%
%
disp['***************************t***************t***********i**l);

disp ('This program calculates the shear stress in the adhesive ');
disp('layer of two bonded deformable plates under shear loading ') ;

disp('The used method is the finite difference method') ;
disp(|************i********************************************');

clear;

%********************* inputs ************;

l=input ('Length of the joint in [mm]: ');

Ga=input ('Shear modulus in [MPa] of the adhesive: ');
d=input (' Thickness in [mm] of the adhesive layer: '};
Gl=input ('Shear modulus in [MPA] of plate number 1: ") ;
tl=input ('Thickness in [mm] of plate number 1: i b

G2=input ('Shear modulus in [MPA] of plate number 2: ');

t2=input ('Thickness in [mm] of plate number 2: '};
n=input ('Total number of iteration steps: ');
V=input ('Shear force per unit width [N/mm]: ');

%**‘k***i'********i****************************************************;

% Calculation of the A matrix;
%********'k***************************'k**t*i**************************;

dx=1/(n-1) ; % step size numerical method in [mm];

C1=Ga/ (d*G1*t1) ;
C2=Ga/ (d*G2*t2) ;
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SHLOJNT2 .M

Grrkxkkkkkkkkkkk** gecond to n-1 th equation **kkkkkkkkkkkkkkkkkkkkhkk,
A=sparse (2*n,2*n) ;

for i=2:1:n-1;
A(i,i-1)=1;
A(i,i)=-2-C1*dx"2;
A(i,i+1)=1;
A(i,n+i)=(dx"2)*C1;
A(n+i,i)=(dx*2) *C2;
A(n+i,n+i-1)=1;
A(n+i,n+i)=-2-(dx"2) *C2;
A(n+i, n+i+l)=1;

end;

g *kkxkxkxkkkxx** PFirts and last equations of the plater*xxxxkk*k*kkkk**;

A(1,1)=-1-(dx"2)*C1; A(1,2)=1; A(1l,n+1)=(dx"2) *C1;

A(n,n-1)=1; A(n,n)=-1-(dx"2)*C1; A(n,2*n)=(dx*2) *C1;
A(n+l,n+l)=-1-(dx"2)*C2; A(n+1,n+2)=1; A(n+1,1)=(dx"2)*C2;
A(2*n,n)=(dx"2) *C2; A(2*n,2*n-1)=1; A(2%n,2*n)=-1- (dx"2) *C2;

%i*********************************ii*********************i*******i**;

% Calculation of the B matrix;
%****************************************************************i***;

B=sparse (2*n,1);

B(1)=-V*dx/(t1*G1l); . B(2*n)=V*dx/ (t2*G2) ;

%tt********************************************i**i**********i*******;

% Calculation of displacement vector u by Gaussian elimination;
%********************************************************************;

Ul=A\B;
%********************************************************************;

% Calculations of the shear stress in the adhesive;
%********************************************************************;
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SHLOJNT2 .M

for k=1:1:n;
Tau (k) =(Ga/d) * (Ul (k) -Ul (n+k) ) ;
end;

%********'ki********************i************************'-

% Displaying and plotting results

%**i*******i***t*********************************i******;

disp(‘****t*******i******************tl);
disp ('Maximum shear stress left:');
disp(Tau(1));

disp('Maximum shear stress right:');
disp(Tau(n)) ;

x=0:dx:1;

plot (x, Tau) ;

xlabel ('Length of the joint [mm]');ylabel ('Shear stress [MPa] ->');
title('Shear stress distribution in the adhesive of a lap joint');
grid;

testf=trapz (x,Tau) ;

disp('Applied shear force found by integrating Tau');
disp(testf) ;
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STACK.M

Shhkhkhhkhkhhkhhhhhhhhhh kb khkhdhhrh kA hh ks hhhkhkhbh bk hhdrdhth

%

% Stack.m

% This program calculates the shear stresses in a
% multi plated stackered joint. The used method is
% the " finite difference method ".

%

%

% Copyright (c) 1995-96, Z.C. Roza

% TU-Delft: faculty of aerospace engineering

% Structures and materials Laboratory
%********************I‘***************ii*i******************i*

disp ( Thbkkkkhkhkhkhhhhhdhhkhhhhhdhdddhdhdhhhhhhhhhhhbhhhhhhhdkdbrdrhhhdrhn! ) ¥
disp{"' )3

disp(' This program calculates the shear stresses in multi plated');
disp(' stackered joints by use of the finite difference method.');
disp(' ');

disp(' khkhkhkhkdhhkhhkhhkhkhkhhhhhhdhdhdhdhhhhdhdhhrdrdhdhhhhhhhhhhhkhhhkdddhhrhhhhdr! ) 3

disp (' ") ;

Frkkkkkkkkkkkkkk*k* INDUL DATAMELEYS ***kdkkkkkkxhkkkkhhkh kA XKk kkh kK% ;

PT=input ('The applied force per unit width [n/mm] : 1)
LT=input ('Total lenght of bonded laminated plates: s i
N=input ('Total number of iteration steps: ');
NP=input ('Total number of adherend layers: ');

for i=1:NP
disp(' Enter parameters of plate number:'),disp(i);
L(i)=input ('Lenght of the plate: ');
E(i)=input ('E modulus in [MPa] of the plate: ');
t (i) =input ('Thickness in [mm] of the plate : ');
disp(' ');

end;

for i=1:NP-1
disp(' Enter parametrs of adhesive layer number:'),disp(i);
d(i)=input ('Thickness in [mm] of the adhesive layer : ');
Ga (i) =input ('Shear modulus in [MPa]of the adhesive : ');
disp(' ');

end;
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el

for i=1:

end;

for i=

disp ('

1 =

STACK.M

Shkkhhkkhkkhhhhkhkkkk parameter checking sequence khkhkhkhkhkdhkhhdhhhkhkhkhhhhhhhdhk

disp(‘ kkkkhkhkhhhkhkhkdhrhhhhhdkrhhkhdhhhhhhdbhkhhddhhhhhhhhhhhhhrdrhkhdhhk

disp(' ')

disp(' Entered parameters of adherend layers from top to bottom.'
disp(' L(i): E(i): t(i):");

disp(' '};

NP

disp ([L(1),E(i),t(i)]);

disp(' ');

disp(' Entered parameters of adhesive layers from top to bottom.'
disp(' d(i): Ga(i):');

disp(* ');

NP-1

disp([d(i),Ga(i)]);

I};

diSp('*********** Press any key to continu ***kkkkkkkkhkkhkkkkkdhrx ) .

‘ end;
|
|
|

pause;

YN=input ('Are the entered parameters correct [yes= 1 / no= 2]: '};

| disp('I am calculating ');

' if YN

else

end;

stackcal;

stack;
disp (' 1)
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STACKCAL.M

%ti‘ii‘*'k*****************'t'k************************t*******************
%

% This program calculates the shear stresses in multi plated stackered
% joints using finite difference method. The used input file is caled
% stack.m

%

%

Copyright (c) 1995-96, Z.C. Roza

TU-Delft: faculty of aerospace engineering

Structures and materials Laboratory
khkkdkdhkkdkhkdhdkhkhkhkhhdhhhkdhbdhdbhdhdbhdbhdhbhhbhhkhhhhohbrhdhohdbhbbrrdbhhdhdrhrhhdhhhhddi

o o of o°

Fhrkkkkkkkkkkkkkkkk**x Building step size matrix DX ***k*xkdkkkkhhhhhhhkhx

DX=LT/ (N-1) ;

for i=1:NP
n(i,1l)=round (L (i) /DX)+1;

% n(i,2)=round((LT-L(i))/DX)+1;
% dx(irl}=L(l)/(n(i:1)_l];

% dx(i,2)=(LT-L(i))/n(i,2);
end;

Thhkhkhkhhkhhkkhkhkhhkdhdd Calculations of the end loads *******************;

for i=1:NP
P(i)=E(i)*PT*t (i) /(E*t"');
end;

%**************l’**************************************i**************;

% Calculation of the A and B matrix;
%******i*t*******I**ﬂ-************************************************;

dx2=DX"2;

A=sparse (N*NP, N*NP) ;

B=sparse (N*NP) ;

Thhkdkkk Top plate equations d ek Kk ok ke ke ok ok

Cl=Ga(l)/(d(1)*E(1)*t (1)) ;

for i=2:n(1,1)-1 g x*kkx* Jeft hand side ***#*;
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STACKCAL.M

A(i,i-1)=1;

Af(i,1)=-2-C1*dx2;

A(i,i+1)=1;

A(i,N+i)=Cl*dx2;
end;

A(1l,1)=-1-dx2*C1; A(1,2)=1; A(1,N+1)=C1l*dx2;
B(1)=-DX*P (1) /(E(1)*t(1));
A(n(1,1),n(1,1)-1)= 1; A(n(1,1),n(1,1))=-1-dx2*C1;

A(n(1,1),N+n(1,1))=Cl*dx2;

for i= n(1,1)+2:N-1; gxkk*x** right hand side *****;

A(i,i-1)=1;

A(i,1)=-2-C1*dx2;

A(i,i+1l)=1;

A(i,N+i)=Cl*dx2;
end;

A(n(1,1)+1,n(1,1)+1)=-1-dx2*Cl; A(n(l,1)+1,n(1,1)+2)=1;
A(n(1,1)+1,N+n(1,1)+1)=dx2*Cl;
A(N,N-1)=1; A(N,N)=-1-dx2*C1; A(N,2*N) =dx2*C1;

B(N)=DX*P (1) /(E(1)*t (1)) ;

s*x*xx** Bottom plate equations **x¥xkkkkk

Cnp=Ga (NP-1) /(A (NP-1) *E (NP) *t (NP) ) ;
Ndum=N* (NP-1) ;
Nduml=Ndum+n (NP, 1) ;

for i=Ndum+2:Nduml-1; sxxx* left hand side ***kx¥%;

A(i,i-1)=1;

A(i,i)=-2-Cnp*dx2;

A(i,i+1)=1;

A(i,-N+i)=Cnp*dx2;
end;
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STACKCAL.M

A (Ndum+1, Ndum+1) =-1-Cnp*dx2; A (Ndum+1,Ndum+2) =1;
A (Ndum+1, Ndum-N+1) =dx2*Cnp;

B (Ndum+1) =-DX*P (NP) / (E (NP) *t (NP) ) ;

A (Nduml, Nduml) =-1-dx2*Cnp; A (Nduml,Nduml -1)=1;

A (Nduml, Nduml-N)=dx2*Cnp;

for i=Nduml+2:NP*N-1 $**** right hand side ****#%%;
A(i,i-1)=1;
A(i,i)=-2-Cnp*dx2;
A(i,i+1)=1;
A(i, -N+i)=Cnp*dx2;
end;

A (Nduml+1l,Nduml+l)=-1-dx2*Cnp; A (Nduml+l,Nduml +2)=1;

A (Nduml+1l,Nduml-N+1)=dx2*Cnp;

A (NP*N,NP*N) =-1-dx2*Cnp; A(NP*N,NP*N-1)=1;
A (NP*N,NP*N -N)=dx2*Cnp;

B (NP*N) =DX*P (NP) / (E (NP) *t (NP) ) ;

Frxxxx*** Intermediate plates hokkkkkhkdkkkkkkkhkkhkkkkkkhkkkk Kk,

for i=2:NP-1; $**%* Number of plates **

T1=Ga (i-1)/(d(i-1)*E(i)*t (i));
T2=Ga (i) / (A(i)*E (i) *t (i));
T3=T1+T2;

Ndum=N* (i-1) ;
Nduml=Ndum+n (i, 1) ;

for j=Ndum+2:Nduml-1; Z*x*x* left hand side **%*
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STACKCAL.M

A(j,j-1)=1;
A(j,])=-2-T3*dx2;
A(3,3+1)=1;
A(5, -N+j) =T1*dx2;
A(j,N+5)=T2*dx2;

end;
A (Ndum+1, Ndum+1) =-1-T3*dx2; A (Ndum+1,Ndum+2) =1;
A (Ndum+1, Ndum-N+1) =dx2*T1; A (Ndum+1, Ndum+N+1) =dx2*T2;

B (Ndum+1)=-DX*P (i) /(E(1)*t (1)) ;

A (Nduml,Nduml)=-1-dx2*T3; A (Nduml, Nduml -1)=1;
A (Nduml, Nduml-N)=dx2*T1; A (Nduml, Nduml+N) =dx2*T2;
for j=Nduml+2:i*N-1; g**** right hand side ***

A(j,j-1)=1;
A(j,j)=-2-T3*dx2;
A(j,j+1)=1;
A(j,-N+j)=T1*dx2;
A(j,N+j)=T2*dx2;
end;
A (Nduml+1,Nduml+1)=-1-T3*dx2; A (Nduml+1,Nduml+2)=1;

A (Nduml+1,Nduml-N+1)=dx2*T1; A (Nduml+1l,Nduml+N+1)=dx2*T2;

A(N*i,N*i)=-1-dx2*T3; A(N*i,N*i -1)=1;
A(N*1i,N*i-N)=dx2*T1; A(N*i, N*i+N)=dx2*T2;
B(N*i)=DX*P (i) /(E(i)*t(i));

end;

%*******i*********************************************************t**,-

% Caculation of the u vector by Gaussian elimination;
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| STACKCAL.M |

%**********************************i*******************************t*;

Bl=B'; .
| U1l=A\B1; ’

%*******************i*****t**********************ii******************;

% Calculation of the shear stresses in the adhesive layers;
%***i*********t******************************************************;

Tau=sparse (NP-1,N) ;
for i=1:NP-1;

Gad=Ga (i) ;
dd=d (i) ;
for j=1:N; i
Tau (i, j)=(Gad/dd) * (Ul ((i-1)*N+3j)-UL((i*N)+3));
end;
end;

%********************************************************************;

% Plotting and plotting the results
%*i********i‘***********i**\\‘******t********i**************************;

x=0:DX:LT;

Tau=full (Tau) ;

subplot (2,1,1) ;plot (x,Tau(l,:)); grid;

xlabel ('Total length of the adhesive layer in [mm] ->');

ylabel ('Shear stress in [MPa] -s');

title('Shear stress distribution in a multi plated stackerd joint

subplot (2,1,2) ;plot (x,Tau(2,:)); grid;

xlabel ('Total length of the adhesive layer in [mm] ->');

ylabel ('Shear stress in [MPal] ->');

title('Shear stress distribution in a multi plated stackerd joint

disp(' PRESS ANY KEY TO CONTINU') ;
pause;
end; :

Thhkhhkhhkdhhhkhhkdhhhdhhdhhdkhhhkhhhhhh kA bk kh ko h ke khkkhh kb bk khkkhkhkhrdkdk*

o o

Intergrating Tau for numerical fault indication
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STACKCAL.M

%

%***************************i*******ii’*i***i*******l‘*****it**it****

|

|

| for j=1:NP-1;

| V(3)=0;

| for i=1:N-1
V(j)=V(j)+Tau(j,i) *DX;
end;

end;

disp(' P(i) found by integrating Tau over lenght 1:');
disp (V) ;
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SVOLKERS .M

**************************************************************l-

Volkersens analytical solution for single lapjoints loaded
with shear.

Copyright (c) 1995-96, Z.C. Roza
TU-Delft: faculty of aerospace engineering

Structures and materials Laboratory
**************************************************************,-

o\ o\® o\° o\° o o\ o o\°

disp( Thhkkhhkhkhkhhkhhhkhhhkhkkkdhhkhkhkhhkdhhkhhhhhhhkhkhhkhhhhhhhdddhhhkhhrhkhkk! ) Y
disp('This program calculates the shear stress in a lap joint');
disp('which is loaded with shear. This done by a modified') ;

disp('analytical solution of Volkersen');
disp ( Thhkdkdkhkhkhkhkhkkhkhkhhhkhhkhkhkhhhkhhhhkhhhhhhhhkhhkhhkhhkhkhhhhhhhhhkdhhhhk! ) i

clear;

$*** TInputs***;
l=input ('Length of the joint in [mm]: ');

d=input ('Thickness in [mm] of the adhesive layer: ');
Ga=input ('Shear modulus in [MPa] of the adhesive: ');

Gl=input ('E modulus in [MPA] of plate number 1: Mo
tl=input ('Thickness in [mm] of plate number 1: 'Yy

G2=input ('E modulus in [MPA] of plate number 2: )
t2=input ('Thickness in [mm] of plate number 2: ');

Q=input ('Shear force per unit width [N/mm] : vy ;

%*******************************************************;
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o o

formula of Volkersen;
*

* *****************************************************’-

labda=sqrt ( (Ga/d) * (1/(G1l*tl)+1/(G2*t2))) ;

V1=Ga*Q/ (d*labda*sinh (labda*l)) ;

v=[0:0.1:11";

Tauvolk=V1* (cosh(labda* (v)) / (G2*t2) + cosh(labda*(1l-v)) / (Gl*tl));

end;

*******************************************************'-

o

%

% Displaying and plotting results
%*******************************************************’-

disp ("' ")

disp ('Maximum shear stress:');

disp (Tauvolk (1)) ;

x=0:0.1:1;

plot (x, Tauvolk) ;

xlabel ('Length of the joint [mm]');ylabel ('Shear stress [MPa] ->');

title('Shear stress distribution: Volkerson') ;
grid;
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TAPJNTPS.M

%***i********i****i*****************illit****l‘*l‘l’****
This program calculates the shear and peel stresses
in a tapered lap joint with the finite difference
method.

Copyright (c) 1995-96, Z.C. Roza
TU-Delft: faculty of aerospace engineering

Structures and materials Laboratory
FhkhkFhk A Ak kAT hhhkdr ik hhkhkhkhkhkhthhkhkhhkhkdthdhddhkthdhhdhhtdhhih

%
%
%
%
%
%
%
%

clear
Ghkkkkkkkkhkhkkkkkkkkkkx Tnput *rkkkkkkkdkdh .

disp{l*******************t****************tt*t*******iik**tl}
disp('')

disp('This program calculates the shear stress distribution')
disp('and peel stress distribution in the adhesive layer of')
disp('a tapered lap joint.')

disp('')

disp{ Thhkdkdkkhkdhkhhhhdhdrhdhhdhhbdhdhbdbhhbdhbhhbhkdkbhhhbbhbhbhhddrhhbhhhd! }
disp('"')

l=input ('Length of the joint in [mm]: ');

n=input ('Total number of iteration steps ( > 1000): ');;

tl=zeros(n+l,1); t2=zeros(n+l,1);

d=input ('Thickness in [mm] of the adhesive layer: ');
ma=input ('poisson ratio of the adhesive: ');
Ea=input ('E modulus in [MPa] of the adhesive: )i

El=input ('E modulus in [MPa] of plate number 1: ');
mul=input ('Poisson ratio of plate number 1: !');

tl1(1)=input ('Thickness in [mm] of plate number 1 at X=0: '
tll=input ('Thickness in [mm] of plate number 1 at X=1l: ');
ll=input('length in [mm] of non tapered area of plate 1: ');

E2=input ('E modulus in [MPa] of plate number 2: '};
mu2=input ('Poisson ratio of plate number 2: ');

t2 (1) =input ('Thickness in [mm] of plate number 2 at X=0 : ')
t22=input ('Thickness in [mm] of plate number 2 at X=1 : ');
12=input ('length of [mm] of non tapered area of plate 2: ');
Pl=input ('Force per unit width [N/mm]l: ');

disp(' ');
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TAPJNTPS.M

dlsp( I T g e e L 2 L 2ttt 222X R R R RS AL R LR R R R R SRR E LN ) ¥

disp ('Enter your own end moments/shear force (=1),the program') ;

disp('calculates moments/shear forces by Hart-Smith (=2) K-factor');
disp('or the program uses Hart-Smith K-factor plus an extra reduction') ;
disp ('factor for taper (=3).'};

dum=input (' What is your choose ?: ');

if dum ==
Ml=input ('Moment per unit width [N/mm/mm] left: ');
Vli=input ('Shear force per unit width [N/mm] left: ');
M2=input ('Moment per unit width [N/mm/mm] right: ');
V2=input ('Shear force per unit width [N/mm] right: ');

elseif dum ==
hartsm2;
V1=(M2-M1-P1* ((tl(1)+t22)/2+d))/1;
v2=V1;

else
hartsm2;
M1=Krl*M1l;
M2=Kr2*M2;
Vi=(M2-M1-P1* ((t1(1)+t22)/2+d))/1;
v2=V1;

end;

disp (' The calculated shear force (V) for the given moment:');
disp (V1) ;

disp (' ') ;

disp('I am calculating ');

%****************t*******************i*ﬁ***i******************

% Calculation of joint taper
%t***********************************i*******'ki*i*************

dx=1/n; % step size;

if 11 == 0

dtix(1)=(t11-t1(1))/1;

Page 2

SRS SE MEman  f oEER css SEMSENEES o Ak Al 0 4 Al



TAPJNTPS.M

for i=2:n+1

£l (i)=t1(i-1)+dx*dtix(1);
dtlx(i)=dtix (1) ;

end; |

else

dtxl=(t11-t1(1))/(l-round(1l1l/dx) *dx) ;
dtlx(1)=0;

for i=2:round(1l1/dx +1)
t1(i)=t1(1);

dtlx (i) =0;

end;

for k=round(ll/dx +2) :n+l
tl(k)=t1l(k-1)+dtxl*dx;
dtix (k) =dtxl;

end;

end;

if 12 == 0
dt2x(1)=(t22-t2(1))/1;
for i=2:n+1
t2(i)=t2(i-1)+dx*dt2x(1) ;
dt2x (1) =dt2x(1) ;

end;

else

dtx2=(t22-t2(1))/(l-round(12/dx) *dx) ;
dt2x (1) =dtx2;

for r=2:n-round(1l2/dx)-1+1
t2(r)=t2(r-1)+dtx2*dx;
dt2x (r)=dtx2;

end;

for g=n-round(l2/dx)+1l:n+l

t2(q)=t22;
dt2x(q)=0;
end;
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end;

%*************ii*****************************************************;

% Caculation of the inertia momemt, moments arms, constants and C(i) ;
%**************i**ii******titit*************************i*******it***:

Dl=zeros (n+1,1) ; D2=zeros (n+1,1) ;
hl=zeros(n+l,1); h2=zeros (n+1,1) ;
C=zeros (n+1,1);

for i=l:n+1

D1(i)=(E1*t1(i)”*3)/(12*(1-mul”*2));

D2 (i) =(E2*t2(i)*3)/(12*(1-mu2"2));

hil(i)=(t1(i)+t2(i))/2 +d;

h2 (i) =(t1(1)+t2(i)) /2 +d;

C(i)=dx*Ea* (t1(i)+d)/(4*(1+ma));
end;

Gal=-dx*Ea/ (2* (1+ma)) ; Ca=-dx*Ea/ (1-ma”2) ;

%***iii********ﬁ*****************************************************;

% Caculation of the A matrix;
%i**i’i****t*t**i'********************************************I\‘********;

A=gparse (6*n,6%*n) ;
for i=2:n-1

A(i,i-1)=-1; %** Equations for P;
A(i,i)=1;
A(i,3*(n-1)+1)=Gal;

A(n+i,n+i-2)=-1; %** Equations for V;
A(n+i,n+i-1)=1;
A(n+i,5*n-1+1i)=Ca;

A(2*%n+i,2*n-3+1i)=-1; $** Equations for M;
A(2*n+i,2*%n-2+1)=1;

A(2*n+i,n-2+1)=-dx;

A(2*n+i,3*n-3+1)=C(1);

A(2*n+i,i-1)=(dx/2)*dti1x(1i);
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end;

%*******************ii*****************'l"l"l'**********************i*i

A(1,1)=1; A(1,3*(n-1)+1)=Gal;
A(n,n-1)=-1; A(n,4*n-3)=Gal;
A(n+l,n)=1; A(n+1,5*n)=Ca;
A(2*n,2*n-2)=-1; A(2*n,6*n-1)=Ca;
A(2*n+1,2*%n-1)=1; A(2*n+1,3*n-2)=C(1);
A(3*n,3*n-3)=-1; A(3*n,4*n-3)=C(n);
A(3*n,2*n-2)=-4dx; A(3*n,n-1)=(dx/2)*dt1lx(n) ;

D LI Ll L L et ettt e e R R R RS
C2=zeros (n+1,1) ; C3=zeros(n+1,1);
for i=1:n

C2(i)=(1+(E2*%t2 (1)) /(E1*t1(i))+(6*(1-mu2”2)*h1i(i))/t2(i))/(E2*t2(i)*d);
C3(i)=6*((1-mu2”2)/t2(i)-E2*t2 (i) *(1-mul”*2)/(E1*t1(i)*t1(i)))/(E2*t2(i)*d

end;
for i=2:n-1

A(3*n+i,3*n-3+1i)=-1; %** Equations for Gamma;
A(3*n+i,3*n+i-2)=1;

A(3*n+i,i-1)=-C2 (i) *dx;

A(3*n+i,2*n-3+1)=-C3 (1) *dx;

A(4*n+i,4*n-2+1i)=-1; %$** Equations for K;
A(4*n+i,4*n-2+1+1)=1;
A(4*n+i,2*n-3+1i)=(dx/d) * (1/D1 (i) +1/D2 (1)) ;
A(4*n+i,1i-1)=dx*h1(i)/(d*D2(i));

A(5*n+i,5*n-1+1i)=-1; $** Equations for Epsilon
A(5*n+1i,5*n+1i)=1;
A(5*n+i,4*n-2+1) =-dx;

end;

%*********************iii'iii**************************ii*i*********

A(3*n+l,3*n-2)=-1; A(3*n+l1,3*n-1)=1;
A(4*n,4*n-3)=-1; A(4*n,4*n-2)=1;
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A(4*n,n-1)=-dx*C2(n) ; A(4*n,3*n-3)=-dx*C3 (n) ;
|
| A(4*n+l,4*n-1)=-1; A(4*n+l,4%n)=1;
| A(5*n,5*n-2)=-1; A(5%n,5%*n-1)=1;
|

A(5*n,3*n-3)=(dx/d) *(1/D1(n)+1/D2(n));
A(5*n,n-1)=dx*hl(n)/(d*D2(n)) ;

| A(5*n+l1,5*%n)=-1; A(5*n+1,5%n+1)=1; A(5*n+1,4*n-1)=-4dx;
A(6*n,6*n-1)=-1; A(6%*n,6%*n)=1; A(6*n,5*n-2)=-dx;

%********i‘i’********************i’i‘************************************;

% Caculation of the B matrix;
%**********************t**i-******************************************;

B(1,1)=P1;
B(n+1l,1)=V1;
B(2*n+1,1)=M1+dx*V1-P1* (dx/2)*dtlx (1) ;

B=sparse (6*n,1) ;

B(3*n+1,1)=(C2(1)*P1+C3 (1) *M1) *dx+ (-P1- (6* (1-mu2”2) * (M1+P1*h2(1)))/t2(1))
2*t2 (1) *d) ) ;

B(4*n,1)=(-(6*(1-mu2”2) *Vi* (1l-dx))/t2(n)-P1l-(6* (1-mu2”2)* (M1+P1*h2(n)))/t
dx/ (E2*t2 (n) *d) ) ;

B(4*n+1,1) =-((dx/d) *(M1/D1(1)+M1/D2(1))+dx*h2 (1) *P1/ (d*D2(1))) +(dx/(d*D2(
1+P1*h2 (1)) ;
r

B(5*n,1)=(dx/ (d*D2(n))) * (M1+P1*h2 (n)+V1* (1-dx)) ;

for i=2:n-1
B(3*n+i,1)=(-(6*(1-mu2™2) *V1i* (i-1)*dx)/t2(i)-P1l-(6*(1-mu2”2)* (M1+

)))/t2(i)) *(dx/ (E2*t2 (i) *d)) ;

' B(4*n+i,1)=(dx/(d*D2(1i))) * (M1l+P1*h2 (i) +V1*(i-1) *dx) ;

end;

%************i***i*k***************************'kil‘***l’******'k*;

% Calculation of U vector;
%*******ir******'ki*****************t**ttttti****i*i***ii***t*ii;

U=A\B;

%***************** Results khkhkdkhkhkhkhkhkkkkkkhhkdhdhdhdhhhhkhkhkhkhkhhhhkhhd
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U=full (U) ;

disp('*********************************ii*t******************t*** | ) 5

disp('Your results are displayed in figure 1 and 2');

disp(' khkhkhkhkhkhkhhkhhkhhkhhhkhkhhkdhdhkhkhhkhkhhkdhkhhhhhhhdrhddrhdrdhhdhdhhdhhddd ') &
disp('Maximum shear stress at x=0 and x=1 :');
disp(U(3*n-2,1) *Gal/dx) ;disp(U(4*n-2,1) *Gal/dx) ;

disp('Maximum peel stress at x=0 and x=1 :');

disp (U(5*n,1) * (-Ca/dx)) ;disp(U(6*n,1) * (-Ca/dx)) ;

' x=0:dx:1;
|

figure (1) ;
plot (x,U(5*%n:6%*n,1) * (-Ca/dx)) ;

xlabel ('Length of the joint in [mm] ->');ylabel('Peel stress in [MPa] -»>

title('Peel stress in a tapered lapjoint') ;grid;
figure(2);
plot (x,U(3*n-2:4*n-2,1)* (Gal/dx));

xlabel ('Length of the joint in [mm] ->');ylabel ('Shear stress in [MPa] ->

title ('Shear stress in a tapered lapjoint');grid;

Sxkkkkkkkkkkkkkk%% Checking the results ****¥kkkkkxkkkkkkkhkhrrk*

Tau=trapz (x,U(3*n-2:4*n-2,1) * (Gal/dx)) ;
Dwk=trapz (x,U(5*%n:6*n,1) * (-Ca/dx)) ;

disp('abs(P) found by integrating Tau:');

disp (Tau) ;

disp ('abs (Shear force V) found by integrating Sigma:');
disp (Dwk) ;
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%*ii*******t*******************************t*ii*************:_
Finite difference method for solving lap joints;

Dit programma berekent de shear stresses in een lijmnaad;
m.b.v. de differentie methode;

Copyright (c) 1995-96, Z.C. Roza
TU-Delft: faculty of aerospace engineering

Structures and materials Laboratory
i‘*************'l'********************************************;

P o o O° o o° A d° o

clear

Skkkkkkdkkhrkhkkkkhkkkk Tnput *xkkkkkkkdkid;

disp{|***********i**i******t*i**************************i**l}
disp('"')

disp ('This program calculates the shear stress distribution')
disp('in the adhesive layer of a lap joint.')

disp('")

disp{ 1 *****************I‘i****i’i**************************** U )
disp('"')

l=input ('Length in [mm] of the lap joint: ');

d=input ('Thickness in [mm] of the adhesive layer : 1) ;
Ga=input ('Shear modulus in [MPa]of the adhesive : ');

n=input ('Total number of iteration steps: L I
tl=zeros(n,1); t2=zeros(n,1);

El=input ('E modulus in [MPa] of plate number 1 : ');

t1(1)=input ('Thickness in [mm] of plate number 1 at X=0: ' );

tll=input ('Thickness in [mm] of plate number 1 at X=1l: ');
li=input ('length in [mm] of non tapered area of plate 1: ');

E2=input ('E modulus in [MPa] of plate number 2 : )

t2 (1) =input ('Thickness in [mm] of plate number 2 at X=0 : )i

t22=input ('Thickness in [mm] of plate number 2 at X=l ¢ )y
12=input ('length of [mm] of non tapered area of plate 2: ');

P=input ('Force per unit width [MPa/mm] : ') ;

Ghhkdkhdhkhhhhhkhhk Calculations of constants kkkhkkkdkddkkdhkkdkdkkkkh

dx=1/(n-1); dx2=dx"2;
$dtix=(t11-t1(1))/1; dt2x=(t22-t2(1))/1;
Page 1
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Grrkkkkkkkkkkxx Calculations of joint taper ***xkkkkkkkkkkkk*

$for i=2:n
$t1(i)=t1(i-1)+dx*dtix;
$t2 (i) =t2 (i-1) +dx*dt2x;
%end;

if 11 ==
dtix(1)=(t11-t1(1))/1;

for i=2:n
£1(i)=t1(i-1)+dx*dtix(1);
dtix (i) =dtix (1) ;

end;

else

dtx1l=(t11-t1(1))/(l-round(1l1/dx) *dx) ;
dtlx(1)=0;

for i=2:round(1l1/dx +1)
tl(i)=t1(1);

dtix(i)=0;

end;

for k=round(l1/dx +2):n
tl(k)=t1l(k-1)+dtxl*dx;
dtix (k) =dtxl;

end;

end;

]
o

dtlx(1)=(t11-t1(1))/1;
for i=2:n
tl(i)=t1(i-1)+dx*dtix(1);
dtix(i)=dtix(1);

end;

else

dex1l=(t11l-t1(1))/(l-round(ll/dx) *dx) ;
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dtlx(1)=0;

for i=2:round(l1/dx +1)

| t1(i)=t1(1);
| dtix(i)=0;
. end;

for k=round(ll/dx +2):n
tl(k)=t1(k-1)+dtx1*dx;
dtlx(k)=dtx1;

end;

end;

if 12 == 0
dt2x(1)=(t22-t2(1))/1;
for i=2:n
£2(i)=t2(i-1)+dx*dt2x (1) ;
dt2x (i) =dt2x (1) ;
end;

else

dtx2=(t22-t2(1))/(l-round(1l2/dx) *dx) ;
dt2x (1) =dtx2;

for r=2:n-round(l2/dx)-1
t2(r)=t2(r-1)+dtx2*dx;
dt2x (r)=dtx2;

end;

for g=n-round(12/dx):n

t2(q) =t22;

dt2x(qg)=0;

end;
end;
GRE I F kR kR ko kkkk Rk kR ko k kR ko ko k ok ko Rk kkk ok ko hkhhh ko kk ok ko khkkkkhkkk ko
% Calculation of the A matrix; '
GhRrkhkhhhhhhhhhhhhkhhhkhhhhhhhhhhhhhhhhhkhkkkhhhhhhkhhk kb hkhhhhhhhkh sk .
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Cl=Ga/ (d*E1) ;
C2=Ga/ (d*E2) ;

A=sparse (2*n,2%n) ;

for i=2:1:n-1;

A(i,i-1)=t1(1i)/(dx2);
A(i,i)=-dtix (i) /dx -2*tl(i)/dx2 -C1;
A(i,i+1l)=dtix(i)/dx + tl1l(i)/dx2;
A(i,n+i)=C1;

A(n+i,1i)=C2;

A(n+i,n+i-1)=t2(i)/dx2;
A(n+i,n+i)=-dt2x (i) /dx -2*t2(i) /dx2 -C2;
A(n+i,n+i+l)=dt2x (i) /dx + t2(i)/dx2;
end;

G kkkkkkkkkhkkhkk ki kkkr*r*] coefficients **kkkkdkkkkkhhxn

A(l,1)=-dtix(1)/dx -t1(1)/dx2 -C1;
A(1l,2)=dtlx(1)/dx + t1(1l)/dx2;
A(l,n+1)=C1;

A{n,n-1)=t1l(n)/dx2;
A(n,n)=-tl(n)/dx2 -C1;
A(n,2*n)=C1;

A(n+1l,n+1)=-dt2x(1) /dx -t2(1)/dx2 -C2;
A(n+1,n+2)=dt2x(1) /dx + t2(1)/dx2;
A(n+1,1)=C2;

A(2*n,n)=C2;

A(2*n,2*n-1)=t2(n) /dx2;
A(2*n,2%n)=-t2(n) /dx2 -C2;

%********************************************************************:

% Calculation of the B matrix;
%********************************************************************;

B=sparse (2*n, 1) ;

B(1)=-P/ (dx*E1l) ; B(2*n)=(P*dx/ (t2(n) *E2) ) * (dt2x(n) /dx + t2(n)/dx2)
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%********i***********************************************************;

¢ Caculation of the u vector by Gaussian elimination;
%******i***********\\'******'ﬁ*****i-t*******************************i***;

Ul=A\B;

%********************************************************************;

% Calculation of the shear stresses in the adhesive layer;
%******i‘*******'k**********************************************'k******;

for k=1:1:n;
Tau (k) = (Ga/d) * (UL (k) -Ul (n+k) ) ;
end;

Tau(n)=Tau (n-1) +Tau (n-1) -Tau(n-2) ;

%****************************************ﬁ***************************;

% Plotting and plotting the results
%*********'l‘************************************************i*********;

disp(' ')

disp ('Your results are displayed in figure 1 and 2');
disp(' ')

disp('Shear stress at X=0 : '} ;disp (Tau(1l))
disp('Shear stress at X=1 : ');disp(Tau(n))
x=0:dx:1;

figure (1) ;

subplot (2,1,1) ;plot (x,t1) ;grid;

ylabel ('Thickness of plate [mm] ->');xlabel ('Length of the plate [mm] ->

title ('Geometry of plate 1')';
subplot (2,1,2) ;plot (x,t2) ;grid;

ylabel ('Thickness of plate [mm] ->'):xlabel ('Length of the plate [mm] ->'

title ('Geometry of plate 2')';

figure(2);

plot (x,Tau) ; grid;

xlabel (' Length of joint in [mm]');ylabel ('Shear stress in [MPal');
title (' Shear stress distribution in the adhesive of a lap joint')

%****i**********************************ﬁi******it**************i**

%
% Intergrating Tau for numerical fault indication
%
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%***********************************t******i’***i*****i*************

V=0;

for i=l:n-1
V=V+Tau (i) *dx;
end;

disp(' P found by integrating Tau over lenght 1l=');
disp (V) ;
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**************************************************************;
Volkersens analytical solution for single lapjoints.;

Copyright (c) 1995-96, Z.C. Roza
TU-Delft: faculty of aerospace engineering

Structures and materials Laboratory
**************************************************************;

o° o° o o o o o

disp(‘*******************************************************l);

disp ('This program calculates the shear stress in a lap joint') ;

| disp('by the analytical solution of Volkersen');
disp(l*******************************************************l);

| clear;

PLER] Inputs***;
l=input ('Length of the joint in [mm]: ');

d=input ('Thickness in [mm] of the adhesive layer: '
Ga=input ('Shear modulus in [MPal] of the adhesive: '

El=input ('E modulus in [MPA] of plate number 1: )
tl=input ('Thickness in [mm] of plate number 1: ');
E2=input ('E modulus in [MPA] of plate number 2: ") ;
t2=input ('Thickness in [mm] of plate number 2: ');
P=input ('Tensile force per unit width [N/mm] : VY

*******************************************************;

formula of Volkersen;
*******************************************************;

o o o\°
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labda=sqrt ( (Ga/d) * (1/ (E1*t1l) +1/ (E2*t2)));
V1=Ga*P/ (d*labda*sinh (labda*l)) ;

v=[0:0.1:1]";

Tauvolk=V1* (cosh(labda* (v)) / (E2*t2) + cosh(labda*(l-v)) / (E1l*tl));

end;

%*******************************************************,-

% Displaying and plotting results
%*******************************************************’-

disp (' ')

disp('Maximum shear stress:');
disp (Tauvolk (1)) ;

x=0:0.1:1;

plot (x, Tauvolk, 'w') ;

xlabel ('Length of the joint [mm]');ylabel('Shear stress [MPal
title('Shear stress distribution: Volkersen') ;
grid;
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