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18 

In this paper two methodologies  are investigated that contribute to better assessment of risks related to 19 

extreme rainfall events. Firstly, we use one-parameter bivariate copulas to analyze rain gauge data in the 20 

Netherlands. Out of three models considered, the Gumbel copula, which indicates upper tail dependence, 21 

represents the data most accurately for all 33 stations in the Netherlands. We notice seasonal variability, with 22 

rank correlation reaching maximum in winter and minimum in summer as well as other temporal and spatial 23 

patterns. Secondly, an expert judgment elicitation was undertaken. The experts’ opinions were combined using 24 

Cooke’s classical method in order to obtain estimates of future changes in precipitation patterns. Experts 25 

predicted mostly around 10% increase in rain amount, duration, intensity and the dependence between amount 26 

and duration. The results were in line with official national climate change scenarios, based on numerical 27 

modelling. Applicability of both methods was presented based on an example of an existing tunnel in the 28 

Netherlands, contributing to better estimates of the tunnel’s limit state function and therefore the probability of 29 

failure. 30 
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Introduction 31 

Extreme precipitation is a major source of threat to society and infrastructure. It causes, for example, 32 

disastrous flash floods, which in Europe were responsible for up to 1000 casualties during a single event 33 

(Barredo 2007). Excessive rainfall is also problematic in any areas covered by artificial surfaces, where water 34 

does not infiltrate the soil, but instead is removed by the drainage system. If the capacity of those systems is 35 

insufficient, water accumulates, resulting in not only direct damage, but also cessation of services. An example is 36 

the inundation of roads or tunnels, which apart from damaging their surfaces brings the traffic to a halt. This is of 37 

particularly high concern in the Netherlands, which is flat and relies on an extensive network of channels for 38 

water management. Moreover, it has high population density resulting in increased fraction of land covered by 39 

artificial surfaces—12% compared to an European Union average of 5%—and high volume of traffic on more 40 

than 2600 km of freeways and numerous other roads (Eurostat 2016). Therefore, precipitation is one of the most 41 

relevant variables investigated by the Royal Netherlands Meteorological Institute (KNMI) and other Dutch 42 

research organizations in the context of future climate scenarios for the Netherlands. 43 

The analysis of precipitation in context of risk to infrastructure involves not only deriving the probable 44 

amount of rainfall, but also its duration and intensity. High intensities exceeding drainage capacity are as 45 

problematic as a long, but not intense shower generating higher volume of water than a structure’s storage 46 

capacity. A joint distribution of the amount and duration of rainfall therefore allows to calculate the probability 47 

of an event higher than the structure’s resilience. Conversely, it can be used to define minimum design standards 48 

in a given location for certain types of infrastructure.  49 

A typical mathematical solution to this problem is to utilize depth-duration-frequency (DDF) or intensity-50 

duration-frequency curves (IDF). These describe either rainfall depth (i.e. total amount that has rained) or 51 

intensity as a function of duration for given return periods or probabilities of exceedance. The curves are derived 52 

by fitting a parametric probability distribution function is to precipitation data for fixed durations, e.g. 1, 2, 4, 8, 53 

12 and 24 hours. Then through a regression analysis a linear relation between the parameters of the underlying 54 

distribution function and the duration (or a transformation of it) is found. This approach was used as early as the 55 

1930s (Bernard 1932) and a large number of studies are available covering a vast selection of countries (e. g. 56 

Alam and Elshorbagy 2015, Ben-Zvi 2009, Haddad and Rahman 2014, Kotowski and Kaźmierczak 2013, 57 

Koutsoyiannis and Baloutsos 2000, Modesto Gonzalez Pereira 2014, Overeem et al. 2008). This standard 58 

approach relies on a linear regression based on a limited number of observation, though improvements using 59 

Bayesian statistics were also proposed (Van de Vyver 2015). 60 
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Another issue related to extreme rainfall is predicting the change in their frequency due to climate change. 61 

This can be done with numerical modelling of climate similarly as for other meteorological variables. However, 62 

the models are still not as reliable for precipitation as they are for temperature, for example (Jacob et al. 2007), 63 

especially the extreme sort which is of interest for us (Lenderink 2010). Furthermore, there is large variation in 64 

output between models and emission scenarios, leaving substantial uncertainty about how the distribution of 65 

heavy precipitation will change in the future (Rojas et al. 2011, Jacob et al. 2014). 66 

In this paper it is proposed to improve the calculation of extreme rainfall probability of occurrence by two 67 

methods, namely copulas and structured expert judgment. Firstly, it is intended to propose an alternative method 68 

to IDF curves by describing the joint distribution of rain amount and rain duration per shower through bivariate 69 

copulas. Secondly, a method to assess and combine expert opinions regarding dependence is presented. The 70 

method is generic and used in this paper to give an idea how experts perceive future trends in extreme rainfall. 71 

The study is an extension of the work presented in Morales Nápoles et al. (2015).  72 

 Both approaches are shown on examples from the Netherlands, with rainfall data used for analyzing the 73 

joint distributions (Sections “Materials and methods” & “Dependence of rain amount and duration”), and an 74 

expect judgment session with local experts assessing the influence of climate change on rainfall patterns in the 75 

Netherlands (Section “Expert judgment on precipitation”). Finally, it is presented how this information can be 76 

used in practice in infrastructure management (section “Impact of rain on infrastructure”). The case presented in 77 

that section refers to a hypothetical tunnel. As stated before, our goal is to present a generic methodology 78 

available to researchers for the characterization of precipitation and its use in risk assessment of infrastructure. 79 

Materials and methods 80 

Precipitation data and climate scenarios 81 

The data of interest comes from publicly available measurements of precipitation taken at weather stations 82 

operated by the KNMI (2016). A total of 33 stations were used, which are listed in Table 1 and presented on the 83 

map in Figure 1. For all stations the latest data are from 2013, but the length of the series varies from 12 (Wijk 84 

aan Zee) to 63 years (De Bilt), with an average of 30 years of data. For more details about the Dutch rain gauge 85 

network and methods for measuring rainfall the reader is referred to Overeem et al. (2008).  86 

For each station, rain data show the fraction of the hour during which rainfall was recorded and the amount 87 

of rain. The fractions are in 0.1 increments, ranging from 0.1 to 1, while the amount is in given in mm. The 88 
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information in which specific 6-minute interval it has been raining was not available. Therefore, certain 89 

assumptions had to be made in order to distinguish individual showers from the series. The procedure to 90 

aggregate hourly data into showers in presented in Figure 2. All consecutive periods where the fraction was 91 

equal 1 (i.e. it rained the full hour) were considered one shower. An hour with a fraction of 0.1–0.9 was joined to 92 

an adjacent hour with a fraction equal 1. However, if during two subsequent hours it rained only partially, they 93 

were considered separate showers. For each shower, three quantities were derived: duration in hours (XD), 94 

amount in mm (XA) and intensity in mm/hour (XI), which is the quotient of XA and XD. Our definition of a shower 95 

likely overestimates the actual number of separate rain events, as in a warm or occluded front rainfall is often 96 

patchy, raining only during a fraction of an hour, but for many hours. In the case of those low-intensity events, 97 

rainfall could also be erroneously not recorded. In this study only rain gauge measurements were used instead of 98 

modelled, radar or satellite data, which could help in identifying rain events (showers) better in terms of a 99 

meteorological system. Those drawbacks, however, should not affect the high-intensity events which are of 100 

interest in risk management.  101 

In the experts’ elicitation (see section “Structured expert judgment”) KNMI’s climate projections for the 21st 102 

century, known as KNMI’14, were used additionally to rain gauge data. They include a large number of variables 103 

and their expected changes between the reference period 1981–2010 and 30-year periods centered around 2030, 104 

2050 and 2085. The projections were made in four scenarios, derived from the results of 250 global climate 105 

simulation runs with EC-Earth model (http://www.ec-earth.org/). Detailed climate modelling for the Netherlands 106 

was done with RACMO2, KNMI’s in-house regional climate model (KNMI 2014). Four scenarios were 107 

considered: GL, GH, WL and WH. The ‘G’ scenarios correspond to an increase in global temperature by 1°C 108 

while the ‘W’ scenarios to an increase by 2°C. ‘L’ stands for small changes in air circulation patterns while ‘H’ 109 

indicates large changes for the same variable. The resulting projections were compared with the experts’ 110 

opinions on trends in average and extreme rainfall, for example.  111 

Bivariate copulas 112 

As expressed in the introduction, it is intended to model the dependency between rainfall amount and 113 

duration using copulas. A copula can be loosely defined as the joint distribution on the unit hypercube with 114 

uniform (0,1) margins. For the most comprehensive description of copulas the reader is referred to Joe (2014). 115 

The bivariate copula of two continuous random variables Xi and Xj, for i ≠ j, with joint distribution 𝐹𝐹𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗 is: 116 

𝐹𝐹𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� = 𝐶𝐶𝜃𝜃 �𝐹𝐹𝑋𝑋𝑖𝑖(𝑋𝑋𝑖𝑖),𝐹𝐹𝑋𝑋𝑗𝑗�𝑋𝑋𝑗𝑗��                                                            (1) 
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where the copula function C is indexed by a scalar or vector of parameters θ. Spearman’s rank correlation 117 

coefficient 𝑟𝑟�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�, a familiar measures of dependence, may be expressed in terms of θ, provided that it is 118 

scalar as: 119 

𝑟𝑟�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� = 12� 𝑢𝑢𝑢𝑢𝑢𝑢𝐶𝐶𝜃𝜃(𝑢𝑢, 𝑣𝑣) − 3
[0,1]2

                                                            (2) 

where u and v are marginal uniform variates on the interval [0,1]. The rank correlation is the usual Pearson’s 120 

product moment correlation ρ computed with the ranks of Xi and Xj, Pearson’s product moment correlation 121 

coefficient is:  122 

𝜌𝜌�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� =
𝐸𝐸�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� − 𝐸𝐸(𝑋𝑋𝑖𝑖)𝐸𝐸�𝑋𝑋𝑗𝑗�

�𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋𝑖𝑖)𝑣𝑣𝑣𝑣𝑣𝑣�𝑋𝑋𝑗𝑗�
                                                             (3) 

One parameter bivariate copulas have the convenient property of being parameterized by a single correlation 123 

value. However, different asymmetries in the joint distribution may be present in  different types of copulas. 124 

Here, three of the most frequently used copula families are considered: Gaussian, Gumbel and Clayton. First of 125 

those, the Gaussian copula,  has the following cumulative distribution function: 126 

𝐶𝐶𝜌𝜌(𝑢𝑢, 𝑣𝑣) = Φ𝜌𝜌�Φ−1(𝑢𝑢),Φ−1(𝑣𝑣)�, (𝑢𝑢, 𝑣𝑣) ∈ [0,1]2                                                 (4) 

where Φ is the bivariate Gaussian cumulative distribution and ρ is the product moment correlation 127 

coefficient of the normal variates. Second, the Gumbel copula, which is parameterized by δ, is defined as: 128 

𝐶𝐶𝛿𝛿(𝑢𝑢, 𝑣𝑣) = exp �−�[−log (𝑢𝑢)]𝛿𝛿 + [−log (𝑣𝑣)]𝛿𝛿�1/𝛿𝛿� , 𝛿𝛿 ≥ 1                                      (5) 

The last one, the Clayton copula is parameterized by α: 129 

𝐶𝐶𝛼𝛼(𝑢𝑢, 𝑣𝑣) = (𝑢𝑢−𝛼𝛼 + 𝑣𝑣−𝛼𝛼 − 1)−𝛼𝛼 ,𝛼𝛼 ∈ [−1,∞)                                                 (6) 

The different copula are used in extreme value to investigate certain dependence patterns related to the 130 

quantiles of the variables of interest. One such pattern is known as tail dependence. The upper tail dependence 131 

coefficient 𝜆𝜆𝑈𝑈 for two random variables Xi and Xj is defined as:  132 

𝜆𝜆𝑈𝑈 = lim
𝑢𝑢→1

𝑃𝑃 �𝑋𝑋𝑖𝑖 > 𝐹𝐹𝑋𝑋𝑖𝑖
−1(𝑢𝑢)|𝑋𝑋𝑗𝑗 > 𝐹𝐹𝑋𝑋𝑗𝑗

−1(𝑢𝑢)� = lim
𝑢𝑢→1

𝑃𝑃(𝑈𝑈 > 𝑢𝑢|𝑉𝑉 > 𝑢𝑢)                                       (7) 

Roughly, a value of 𝜆𝜆𝑈𝑈 > 0 in equation 7 indicates that it is likely (more than normal) to observe high values 133 

of, say, XD (rain duration) together with high values of XA (rain amount). Lower tail dependence would be 134 

defined similarly, but for low values of the marginals. In the Gaussian copula, there is no tail dependence 𝜆𝜆𝑈𝑈 =135 

0,  while in Clayton lower tail dependence 𝜆𝜆𝑈𝑈 = 2−1𝛼𝛼  is represented and the Gumbel copula presents upper tail 136 

dependence 𝜆𝜆𝑈𝑈 = 2 − 2
1
𝛿𝛿. These three types of copulas already cover a range of dependence structures that are 137 
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typically observed in the data. 138 

The existence of a tail dependence can be corroborated using two methods. Firstly, the statistic used in one 139 

of the “Blanket Tests” described by Genest et al. (2009)  will be computed as a goodness-of-fit measure. It is 140 

based on the Cramèr–von Mises M statistic. It can be computed for a sample of length n using the following 141 

formula: 142 

𝑀𝑀𝑛𝑛(𝒖𝒖, ) = � �𝐶𝐶𝜃𝜃�𝑛𝑛(𝒖𝒖) − 𝐵𝐵(𝒖𝒖)�2
|𝒖𝒖|

,𝒖𝒖 ∈   [0,1]2                                               (8) 

where 𝐵𝐵(𝒖𝒖) = ∑ 1(𝑈𝑈𝑖𝑖 ≤ 𝒖𝒖) is the empirical copula and 𝐶𝐶𝜃𝜃�𝑛𝑛(𝒖𝒖) is a parametric copula with parameter 𝜃𝜃�𝑛𝑛 143 

estimated from the sample. It can be noted that this statistic is the sum of squared differences between the 144 

empirical copula and the parametric estimate.  145 

As another diagnostics tool, semi-correlations are analyzed, which is an approach suggested by Joe (2014). 146 

The semi-correlations are the Pearson’s product moment correlation coefficients computed in the upper and 147 

lower quadrants of the normal transforms of the original variables. If the correlations are positive, semi-148 

correlations in the upper right (NE) and lower left (SW) quadrants are computed using the following formulas: 149 

𝜌𝜌𝑛𝑛𝑛𝑛 = 𝜌𝜌�𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗�𝑍𝑍𝑖𝑖 > 0,𝑍𝑍𝑗𝑗 > 0�                                                               (9) 

𝜌𝜌𝑠𝑠𝑠𝑠 = 𝜌𝜌�𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗�𝑍𝑍𝑖𝑖 ≤ 0,𝑍𝑍𝑗𝑗 < 0�                                                            (10) 

where �𝑍𝑍𝑖𝑖,𝑍𝑍𝑗𝑗� are the standard normal transforms of �𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�. Semi-correlations in the upper left (NW) and 150 

lower right (SE) quadrants are denoted 𝜌𝜌𝑛𝑛𝑛𝑛 and 𝜌𝜌𝑠𝑠𝑠𝑠 and defined similarly to (9) and (10) if the correlation is 151 

negative. In general, larger absolute values of the semi-correlations in a particular quadrant compared to the 152 

correlation for the entire sample and the opposite quadrant indicate tail dependence. 153 

Application of copulas to estimation of rainfall patterns is still fairly new (see e.g. De Michele and Salvadori 154 

2003). Large part of the applications focused on correcting climate model data (Laux et al. 2011), filling gaps in 155 

data series (Bárdossy and Pegram 2014), analyzing dependencies between stations (Schölzel and Friederichs 156 

2008) with some studies exploring the relationship of rainfall amount and duration (Serinaldi 2009, Balistrocchi 157 

and Bacchi 2011, Cantet and Arnaud 2014). In this study however, as pointed out earlier, we provide an 158 

approximation to the bivariate copula of amount and duration and corroborate it with data for the Netherlands. 159 

We also show how expert opinions regarding future trends for precipitation may be obtained in a structured way.  160 

Structured expert judgment 161 

Structured expert judgment is a method of quantifying and generalizing opinions of experts. Here, the so-162 

called Classical, or Cooke’s, method (Cooke 1991) is applied, which aims to derive rational consensus from 163 
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experts’ judgments. Roughly, experts are asked to provide their assessment over a continuous quantity. 164 

Importantly, they do not give a single ‘best estimate’, but rather their uncertainty distribution over certain 165 

quantities. The experts make their estimates in certain percentiles, most commonly the 5th, 50th and 95th 166 

percentile. Plainly, but not entirely strictly, speaking, the expert giving the 5th percentile expresses that he would 167 

be very surprised if the actual value of the variable in question was smaller than his 5th percentile estimate. 168 

Conversely, the 95th percentile estimate will be the value for which the expert would be surprised if the variable 169 

have exceeded it; the 50th percentile is thus the expert’s ‘best estimate’.  170 

The experts are asked two types of questions which they answer in the way described above (see section 1 171 

of Supplement 1 and Table S1). First group are the seed, or calibration, variables. These are quantities whose 172 

value is known, or will be known within the time frame of the research, to the analysts but not to the experts at 173 

the moment of the elicitation. The variables are used to assess the reliability of each expert. In Cooke’s model, 174 

two measures of performance are computed: the calibration and information scores (section 2 of Supplement 1). 175 

Roughly, calibration measures the degree to which experts are statistically accurate, while information measures 176 

the degree to which experts’ uncertainty estimates are concentrated relative to a background measure. Good 177 

expertise in the classical method refers to highly calibrated (typically calibration scores > 0.05) and highly 178 

informative experts.  179 

The combination of experts assessments is known as the Decision Maker (DM). This is a weighted average 180 

of individual estimates. The experts could be weighted equally (EWDM) or the weights can be determined based 181 

on the performance of experts in the seed variables, as measured by information and calibration. The weights are 182 

then used to calculate an uncertainty distribution for the second group of questions, known as the variables of 183 

interest. These are unknown quantities which the analyst wants to derive based on experts’ responses. Structured 184 

expert judgment was used in a variety of fields, most recently also in context of climate change, particularly sea 185 

level rise (Cooke 2013, Bamber and Aspinall 2013, Oppenheimer et al. 2016). 186 

The elicitation of dependence estimates from experts is a subject of active research. It has been observed in 187 

recent studies that though Cooke’s method is an appropriate estimate to get empirical validation of experts 188 

estimates over uncertainty distributions it fails to provide empirical evidence regarding expert’s ability to 189 

quantify dependence (Morales-Nápoles et al. 2014). For this reason the dependence-calibration score introduced 190 

in (Morales Nápoles O and Worm 2013) was used (also discussed in section 2 of Supplement 1). The dependence 191 

calibration score is a measure of distance between a certain dependence structure used for calibration purposes 192 

and estimates of this dependence structure provided by experts. A value close to one would indicate expert’s 193 
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ability to quantify dependence.  194 

The elicitation that is the topic of this paper was carried out on October 16 and December 8, 2014 at TNO 195 

(Netherlands Organization for Applied Scientific Research) in Delft, the Netherlands. A total of eight experts 196 

participated, with an expertise ranging from a PhD student to Full Professors in the fields of hydrology, 197 

climatology and meteorology. They represented Wageningen University, Delft University of Technology, the 198 

national weather service KNMI, a private weather forecast company MeteoGroup and HKV Lijn in Water, a 199 

consultancy firm based in the Netherlands. In this study a total of 15 calibration variables and 19 variables of 200 

interest were elicited. Some questions referred to historical climate (1975–2013) and were used for calibration 201 

while the others inquired about experts’ opinions on future climate (2015–2053). Most questions concerned 202 

rainfall occurring at De Bilt and Rotterdam weather stations, with a few referring to a larger group of stations. 203 

An example of a seed question is shown below: 204 

• For each of the following two stations: Rotterdam and De Bilt. Consider the shower data as described 205 

in [section “precipitation data and climate scenarios” of the paper] and think of the shower with the 206 

maximum value of rain amount in the period of interest (January 1st 1975 – December 31st 2013). 207 

What would this maximum value of rain amount be (in mm)? 208 

The experts gave here their estimates for the two stations providing the 5th, 50th and 95th percentile of their 209 

uncertainty distribution. The exact same question was asked for the 2015–2053 time period as a variable of 210 

interest. Having discussed the main methods and materials to be used in this research we now present the 211 

principal findings of the study. Additional details on expert judgment methodology and a summary of all 212 

questions used in the elicitation may be found in Supplement 1.  213 

Dependence of rain amount and duration 214 

Results for De Bilt station 215 

De Bilt weather station is located at the KNMI’s headquarters and has the longest data series of the entire 216 

network. It was chosen to present here the copula approach to analyzing showers; spatial and temporal variation 217 

in the Netherlands is shown in the next section. In Figure 3 the transformation from observations (left graph) to 218 

pseudo-observations (right graph) is shown. The pseudo-observations are the samples transformed to the interval 219 

(0,1) through the empirical margins. 220 

For this station, the rank correlation coefficient for the whole data series is 0.66. Ties, i.e. samples realizing 221 
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the same pair of values, are visible in the lower tail of the distribution – that is, for small values of both rain 222 

amount and duration. It also appears that more samples are concentrated in the upper right tail of the joint 223 

distribution than elsewhere. That feature suggests upper tail dependence. However, the upper tail dependence 224 

does not necessarily lead to the most intense showers. Even though the upper right corner of the distribution 225 

contains the highest amounts of rain per shower, it also contains the longest shower durations. There are 13 226 

showers with durations larger than half hour, which is about the 60th percentile of the distribution of XD, with an 227 

intensity larger than 20 mm per hour (marked red in Figure 3). These correspond to amounts of rain between 228 

12.6 and 31 mm. 229 

The shower data from De Bilt were fitted to three types of copulas and evaluated. The value of the test 230 

statistic M for Clayton, Gumbel and Gaussian copulas was 5.46, 4.33 and 4.42, respectively; the p-values 231 

amounted to 0.05, 0.097 and 0.082. It can already be noticed that the Clayton copula is not a preferable model 232 

for this particular station. However, the difference between Gaussian and Gumbel copulas is small, therefore 233 

both could potentially be a fair model for De Bilt’s shower data. More insights could be obtained by analyzing 234 

semi-correlations. In case of De Bilt, the overall Pearson’s product moment correlation for data transformed to 235 

standard normal is about 0.70, while for the upper right quadrant it amounts to 0.68 and much less (0.11–0.24) in 236 

the other quadrants (Figure 4). Thus, the semi-correlations indicate a preference for a model with upper tail 237 

dependence, such as the Gumbel copula.  238 

The findings are further supported by comparing empirical and parametric estimates of conditional 239 

probabilities in the upper joint tail, as shown in the left graph of Figure 4. In this graph, empirical and parametric 240 

estimates of P(U>u|V>u), i.e. the probability that rain amount will be larger than its uth percentile, given that the 241 

rain duration is observed above its uth percentile. It can be noticed that the empirical probability is closest to the 242 

parametric estimate from the Gumbel copula. For the 96th percentile (u = 0.96), the parametric (Gumbel) and 243 

empirical probabilities are the same. The conclusion is that out of the one-parameter copulas investigated here 244 

the Gumbel copula provides the best fit for data from De Bilt over the period 1951–2013. 245 

Temporal and spatial variability in correlation 246 

Analysis of shower time series indicated noticeable temporal variability. In Figure 5, the annual variations 247 

for De Bilt station are presented alongside seasonal and yearly correlations over two time periods, 1951–1980 248 

and 1981–2013. From year to year, Spearman’s rank correlation coefficient between rain amount and duration 249 

changes in the range of 0.54–0.78. Over time, there is a noticeable decline in the correlation. In the first time 250 

period it amounts to 0.69, while in the other it decreases to 0.64. The mean rank correlations were found 251 
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significantly different at the 5% confidence level with a Tukey-Cramer differences test (Duncan 1955, 252 

Ramachandran and Tsokos 2009). Significant difference is also visible for two seasons: winter and summer; it is 253 

also statistically significant at the 5% confidence level. In winter months (December, January, February) the 254 

correlation is almost 0.05 higher than the average for the whole in both time periods, while in summer (June, 255 

July, August) the link between the variables is weaker. In spring and fall the correlation is similar to the one 256 

observed when analyzing the whole year. Similarly, empirical estimates of P(U>u|V>u) for u=0.95 give the 257 

highest value in winter (0.79) and lowest in summer (0.62). However, the probability of joint occurrence of 258 

extreme rainfall amount and duration increased slightly between the two time periods, from 0.59 and 0.61, as 259 

opposed to a decline in correlation. That points to possible changes in dependency structure over time. 260 

The rainfall data also shows spatial variability, though due to relatively uniform terrain and small size of the 261 

Netherlands they are not much pronounced. Fig. 6 and Table 2 presents the rank correlations of XA and XD for the 262 

entire series available for each station for the whole year and by season. Most of the correlations are within the 263 

0.6–0.7 range, with the lowest (0.61 for the whole year) recorded in Eindhoven (370) and the highest in 264 

Soesterberg (265). The patterns of dependency between rain amount and duration show similarities to station De 265 

Bilt. In all but four stations the correlation is the highest in winter, and in all except one it is the lowest in the 266 

summer. Those outlying station had the highest correlation in spring, and lowest in fall. Empirical estimates of 267 

P(U>u|V>u) for u=0.95 are also relatively similar (0.55–0.64). Furthermore, of the one-parameter copulas 268 

analyzed here, Gumbel’s fits best to the data from all stations. Rainfall data from Soesterberg, located next to De 269 

Bilt, show almost identical properties as the highlighted station. More generally, coastal stations have slightly 270 

higher correlations, especially in spring and summer, while the lowest are observed in the south and central 271 

regions of the country. In Table 2 a drop in correlation over time can be noticed for all seasons for most stations. 272 

However, much less diversity between stations is observed in the most recent decades than in the preceding 273 

period. 274 

Expert judgment on precipitation 275 

Calibration, information and dependence calibration scores 276 

In this section the results of the expert judgment elicitation are analyzed. Firstly, results regarding the expert 277 

calibration and information scores are presented. In Table 3 (Table S2 in the supplement) the results of the 278 

analysis are presented based on all variables. Calibration and information scores are presented for the eight 279 
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experts as well as for three “decision-makers” (DM). The equal weight combination, which is a simple average 280 

of experts’ answers for each question, already gives a better calibration (0.092) than any individual expert (the 281 

highest individual calibration score is less than 0.001). On the other hand, the EWDM is less informative than 282 

any of the experts (0.16 compared to 0.60 for the expert with the lowest information score), since simple 283 

arithmetic averaging results in a very wide distribution. Weighting the expert opinions by their performance in 284 

seed variables gives a combination that improves both calibration and information, even though the information 285 

score is still lower than for the worst expert. Expert 7 has the best calibration score, but is the least informative, 286 

which is a typical pattern in the classical method. Nevertheless, the expert was given the highest weight when 287 

constructing the performance-based DM, with 66%. Expert 3, second most highly calibrated and in the middle in 288 

information, had 28% weight, and expert 8 had 5%. The remaining experts received a weight of a fraction of a 289 

percent. This happens, however, only without optimizing for the DM’s calibration score (α = 0). When 290 

optimizing for the DM’s calibration score (a = 0.0002236, which is the calibration score of the second best 291 

expert) only two experts are included in the decision-maker (last column of Table 3). Expert 7 received a 70% 292 

weight and expert 3 a 30% weight. This didn’t make a noticeable difference to the calibration score, but the 293 

information score increases again. The difference between the equal weight and performance-based (with DM 294 

optimization) decision-maker can be also seen in the example in Fig. 7. Both decision-makers are close in their 295 

means, but the latter has much lower uncertainty. Therefore, this performance-based combination (with DM 296 

optimization) was used to analyze the experts’ judgments on the variables of interest together with the equal 297 

weight combination to give a broader overview of experts’ thoughts on the subjects. 298 

In Fig. 7 it can also be seen how large the differences between the experts can be. Three of the experts were 299 

convinced that the maximum rain amount that occurred during a single shower in Rotterdam between 1975 and 300 

2013 was less than 60 mm, while two experts were certain it is above this value. Expert 1 had the largest 301 

uncertainty about the answer, with a very high mean of 200 mm. The experts who gave very small estimates 302 

were informative, but missed the actual value in their uncertainty distributions. Still, the performance-based DM 303 

gives a mean of 67.5 mm, which is not far from the observed value of 76.4 mm. The EWDM provided a fair 304 

estimate 58.1 mm, but again with a very large uncertainty distribution (12–247 mm), as it is substantially 305 

influenced by expert 1.  306 

In general, the score of individual experts are low. This together with a robustness analysis (Table S3 in 307 

Supplement 1) indicates that the excercise is not very robust to the choice of calibration variables. One reason for 308 

this is the fact that many of the methods used in this excercise (dependence elicitation and copula modelling for 309 
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example) are of very recent use in the field of interest.  A second possible explanation is the definition used in 310 

our excercise for showers which as explained earlier overestimates the actual number of separate rain events and 311 

is not of common use in this field.  312 

Additionally to the standard calibration, we analyzed the questions regarding dependence with a different 313 

approach. Extending the method discussed in Morales Nápoles, O.  & Worm, D (2013), we use the Hellinger 314 

distance to compare the Gumbel copula generated from the precipitation data and one constructed from an 315 

expert’s assessment of the tail dependence. We use the same measure under the Gaussian copula assumption in 316 

order to combine correlation matrices of experts. The methodology of this calculation is included in Supplement 317 

1, and the results are presented in Table 4. Gaussian (1 − 𝐻𝐻) and Hellinger (1 −𝐻𝐻𝐺𝐺) distances are shown here as 318 

a value in  the interval [0, 1], where 1 is a perfect match of the copulas. Because the experts did not directly 319 

assess the rank correlation between rain amount and duration, this was inferred from two estimates they 320 

provided, P(U>0.95|V>0.95) and P(U>0.95|V<0.50). The way to obtain these estimates is discussed in Morales 321 

et al 2008. In case of using the former estimate, Expert 3 achieved the highest result, while with the latter 322 

judgment, it is Expert 5 with highest score. Combining the results using the EWDM does not give satisfactory 323 

results, but the performance-based DM is much better. Using the estimate of P(U>0.95|V<0.50) gives better 324 

results, too, than using rank correlations based on P(U>0.95|V>0.95). 325 

 In previous studies regarding elicitation of dependence Morales Nápoles et al (2014) it was noticed that 326 

experts with highest calibration score are not necessarily the same experts with highest dependence calibration 327 

score. In this exercise experts 7 and 3 receive the highest weight in the combination according to Cooke’s 328 

method. Expert 7 is amongst the experts with lowest performance in assessing dependence. Expert 3 in contrast 329 

performs high in both elicitation of dependence and uncertainty. It is however observed that similarly to other 330 

exercises, a combination of expert opinions based on the dependence-calibration score typically outperforms 331 

individual expert opinions.  332 

Climate change predictions of experts 333 

As noted earlier, one of the main scopes of the EJ exercise was to obtain the experts’ assessment of future 334 

changes in precipitation patterns in the Netherlands. For that purpose, most questions asked both the historical 335 

occurrence (1975–2013) of rain as seed variables, and future occurrence (2015–2053) of rain as variables of 336 

interest. Having calculated the DM for each question, it is possible to know what is the experts’ consensus on 337 

changes in climate properties in the country and at particular locations. The projections, based on the 50th 338 

percentiles of the DM’s solutions to the questions, are presented in Table 5. For the vast majority of questions, 339 
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the experts predict an increase in extreme and average rainfall. There are, however, differences in assessment 340 

between the two types of DMs. For most questions, the EWDM shows higher increase than the performance-341 

based DM, except for predictions of shower duration.  342 

The first set of questions regarded maximum rain amount in Rotterdam and De Bilt. Experts’ estimate of this 343 

variable for 2015–2053 was typically 10 mm higher than for 1975–2013 in the 50th percentile and 20 mm higher 344 

in the 95th percentile. Most experts did not modify their lower (5th percentile) estimate, or adjusted it only 345 

slightly. Depending on the station and DM combination, the experts projected an 8–12% increase in rain amount. 346 

In contrast, most experts did not expect an increase in maximum shower duration. Three experts expected some 347 

increase, while the same number thought an opposite trend will happen. The performance-based DM with 348 

optimization shows only a 3% increase between the time periods, while the EWDM indicated almost no change 349 

in Rotterdam and even a decrease in De Bilt. It should be noted, however, that most experts significantly 350 

underestimated the historical maximum shower duration, which was 30–33 hours. A large spread of estimates of 351 

maximum rain intensity was also observed, though the DM’s 50th percentile was close to the actual value. In 352 

experts’ consideration, a 10–17% increase in maximum intensity may occur. All but one expert forecasted this 353 

increase. Meanwhile, four experts did not expect the average number of showers per year to increase. The same 354 

number grossly over- and underestimated the observed values in this variable. No expert considered the average 355 

number of showers to be different between the two analyzed locations, which is reasonable (in De Bilt there are 356 

only 7% more showers per year than in Rotterdam). 357 

Further questions analyzed the ability of experts to assess the joint distribution of rainfall amount and 358 

duration. Firstly, they were asked to estimate in what percentage of events, that the rainfall duration exceeded the 359 

95th percentile, the rainfall amount will also be above the 95th percentile. This is the same as estimates of 360 

P(U>u95|V>u95) described in section “Dependence of rain amount and duration”. The experts mostly 361 

underestimated the upper tail dependence between the two variables as described by the probability of interest. 362 

Only one of the experts considered any difference between Rotterdam and De Bilt. The performance-based DM’s 363 

consensus was 30% for the probability of interest, which is about half the actual value. This result supports the 364 

conclusion from previous studies that experts performance in the assessments of dependence should be 365 

calibrated differently than estimates of uncertainty. Moreover the combination of experts’ dependence estimates 366 

should also be performed with different procedures as those deign to assess uncertainty.  367 

 The two experts with highest overall performance did not forecast any change in the dependence, while the 368 

EWDM indicated a 9–10% increase, or about 2.5 percentage points. Another question was identical, but for the 369 
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rainfall duration being below the 50th percentile. It is very rare for rainfall amount to be higher than the 95th 370 

percentile, as it occurs only for about 0.2% of showers shorter than the median. This is nonetheless of large 371 

interest, as those showers have very high intensity. All experts overestimated the occurrence of such events and 372 

the average answer in the 50th percentile was about 1.5%. Only three experts thought that there will be an 373 

increase in the percentage of such events in the future, and one expert’s 50th percentile was lower for 2015–2030 374 

than for 1975–2013, however his upper and lower estimate remained the same. Average relative increase for the 375 

EWDM was 19%, but that corresponds to only 0.3 percentage points. For the performance-based DM, the 376 

difference is smaller than 0.2 percentage points.  377 

Some final questions were more general and related to the whole Netherlands or a set of 11 stations with 378 

long records. Those questions could be compared with some official KNMI predictions based on climate models. 379 

Firstly, the experts did well estimating the mean annual rainfall and predicted a 6–10% increase by 2015–2053. 380 

In the KNMI’14 scenarios, the increase is lower, only 2.5–5.5%. Secondly, more variation in uncertainty 381 

estimates was observed across experts for the maximum winter precipitation (mostly underestimated it by 382 

experts). The comparison is presented in Figure 8. The observed value during 1975–2013 was 351 mm. Green 383 

bars show KNMI’s observations and predictions (2050s) for the minimum–mean–maximum precipitation. The 384 

change in the winter maximum is predicted to be about 3.5–17%, depending on scenario. The largest increase is 385 

forecasted in the WH scenario (2°C temperature rise, high change in circulation), in contrast to mean annual 386 

precipitation, where the highest increase was found in WL scenario. The estimate of the DM of the maximum 387 

precipitation (red bars) is closer to the observed mean, however the range of the EWDM is very uninformative 388 

(100–530 mm). Large spread of individual experts’ estimates can be seen (orange bars). The uncertainty 389 

distributions of half of the experts are below the observed maximum. Interestingly, the performance-based DM’s 390 

prediction is a 9.9% increase by 2015–2053, which is almost identical to the average of the four KNMI scenarios 391 

(9.4% by 2050s) presented by KNMI (2015). The EWDM indicates a smaller increase (8.7%), while all experts 392 

indicated a rise is maximum winter precipitation by 10–50 mm.  393 

The final question regarded maximum summer rainfall  intensity. Again, there was a large spread in the 394 

answers, but all experts predicted an increase in intensity in the future. The performance-based DM’s consensus 395 

in the 50th percentile for 2015–2053 is 9.3% larger than for 1975–2013 (for EWDM, 15.4%). According to the 396 

KNMI, there is large uncertainty in the predictions of this parameter. The institute predicts that rain intensity 397 

considered in an hourly resolution (as opposed to 6 minutes used here) will change a least by 5.5–11% (GL 398 

scenario) up to 13–25% (WH scenario). The average of those predictions is 13.8%, so not far from the EWDM’s 399 
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estimate. 400 

Impact of rain on infrastructure and adaptation measures 401 

 402 

In this section we present an example application of the methodology described in the previous section. It is 403 

a model for flooding of a tunnel based on a Gumbel copula (see section “Dependence of rain amount and 404 

duration”) quantified with measurements for Rotterdam (1975–2013). This example is based on the model 405 

presented in Huibregtse et al. (2013, 2016). Although simplified data for an existing tunnel in the Netherlands is 406 

used, the example should be considered as a hypothetical case. Also the use of Rotterdam weather data does not 407 

imply that the tunnel is located anywhere near the meteorological station.   408 

The tunnel has two entrances, presented in Figure 9, and a drainage system comprised of pumps and cellars. 409 

During intensive rainfall, water may flow through the entrances at a rate higher than the pumping capacity. This 410 

will not cause a flooding, since the excess water is stored in the cellars. Inundation will occur then, only if the 411 

cellars’ capacity is exceeded during a long, intense shower. The tunnel has three cellars, each with three pumps 412 

(all elements with different capacity). The water is pumped between cellars if any is full. In such a configuration, 413 

the limit state (Z) function can be written as: 414 

𝑍𝑍 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − �𝐴𝐴 × 𝑋𝑋𝐼𝐼 − 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� × 𝑋𝑋𝐷𝐷                                                           (11) 

where Vcell is the capacity of the cellars (387 m3), A is the area from which the rainfall is collected (26265 415 

m2), Qpump is the capacity of the pumps (14 m3 per minute), XI is the rainfall intensity and XD is the rainfall 416 

(shower) duration. The parameters used in the model are summarized n Table 6. We can now perform a Monte 417 

Carlo simulation by randomly sampling the Gumbel copula. Out of 10,000,000 samples, the limit state was 418 

reached only in 63 samples. Given the average annual number of showers in Rotterdam (623.8), that corresponds 419 

to an annual probability of occurrence of 0.39%, or 1 in 254 years. In contrast, in station De Bilt, the return 420 

period is even lower – 792 years. The annual probability of occurrence in Rotterdam (return period of 1 in 254 421 

years) is similar to the desired standard for Dutch tunnels, which is a failure probability of 1 in 250 years 422 

(Huibregtse et al. 2013). The low probability of failure and the difference between the stations can be explained 423 

by the very extreme parameters of the shower. An average event in Rotterdam resulting in flooding of the tunnel 424 

discharged 29 mm of rain in 18 minutes. Very high intensity is therefore needed, of 1–4 mm per minute, to 425 

inundate the tunnel. None such event was observed in the empirical data, as shown in Fig. 3, but the copula 426 

indicates that such a possibility exists. 427 
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Using the results of the expert judgment, in order to investigate future trends in flooding we can modify the 428 

marginal distribution of rain amount and correlation with rain duration. The combined expert opinion indicates 429 

an increase of annual rainfall by 6% in the Netherlands and increase in number of showers by 0.2% in Rotterdam 430 

(performance-based DM see Table 5), therefore an average shower will have 5.8% more rain amount. The 431 

increase in correlation P(U>0.95|V<0.50), which is a good proxy for overall correlation as shown in Table 5, is 432 

expected to amount to 4.1% in Rotterdam. In this configuration, the probability of failure increased only slightly, 433 

to 0.0043%, or 1 in 235 years. The difference is small because the increase in rain amount was offset by the 434 

change in the dependence structure. Higher correlation translates in a lower probability of event occurring in the 435 

upper left quadrant, where the most of the events causing failure in our example is positioned.  436 

Discussion 437 

In this paper we have proposed the characterization of rain intensity through copulas. When modeling through 438 

copulas the marginal distributions and the dependence may be assessed separately. The assessment of marginal 439 

distributions by experts has been also extensively discussed in the past (Cooke 1991). The research related to the 440 

quantification of dependence models through expert judgments is only in its infancy (Werner et al. 2017). Here 441 

we provide a real-life exercise for the first time where expert opinions regarding dependence are quantified and 442 

combined in a structured protocol using the dependence calibration measure. In the context of climate change the 443 

copula models can be investigated not only for future predictions in the presence of data, but also when expert 444 

judgments are the only option available, as we have illustrated in the previous section and summarized in Table 445 

5.  The parameters used to investigate future predictions, including changes in marginal distributions or 446 

dependence, may be  selected  on the basis of empirical evidence, also when expert opinions serve as input for 447 

the models under investigation. Oppenheimer et al. (2016) remind us that in predicting the future we should not 448 

be too surprised when it arrives. They also argue that the degree of surprise can be measured by comparing new 449 

observations with the probability assigned to them by our quantification of uncertainty. The probability assigned 450 

to them depends, however, also on the dependence pattern of uncertain quantities. We propose one method to test 451 

empirically the performance of experts as assessors of dependence rather than assessors of uncertainty, but other 452 

methods may also be possible.  453 

With respect to the case study, we have illustrated a single infrastructure element (a tunnel) subject to a single 454 

hazard (extreme precipitation intensity). For decision makers,  a complex system consisting of multiple elements 455 

(roads, bridges, harbors, buildings, etc.) subject to different hazards (coastal flood, river flood, compound flood, 456 

16 

 



earthquakes, etc.) may be of interest. If this is the case the assessment of dependence would become even more 457 

critical. Yet, the methods discussed here may still be used to assess experts’ performance as dependence 458 

assessors at this scale if required. It should be noted that in this case the dependence between different 459 

infrastructure elements in the particular system under investigation, together with the hazard to which they are 460 

exposed, need also be addressed.  461 

Conclusions 462 

 463 

In this paper two methodologies were explored that contribute to better assessment of risks related to 464 

extreme rainfall events. First part was based on fitting one-parameter bivariate copulas for precipitation 465 

measurements from rain gauges in the Netherlands. It has been shown that from the three models considered, the 466 

Gumbel copula, which indicates upper tail dependence, represents the data most accurately. Rank correlation 467 

coefficient in the interval (0.6, 0.7) was observed across all 33 measurement station in the Netherlands. Upper 468 

tail dependence was also identified in all stations. Seasonal variability is noticeable, with the highest rank 469 

correlation and upper tail dependence in the winter, and the lowest in the summer. For station De Bilt, the value 470 

of the mean yearly rank correlation coefficient for the periods 1951–1980 and 1981–2013 was found to be 471 

significantly different, though the absolute value could be within sampling fluctuation. This decrease was 472 

observed for all seasons, albeit upper tail dependence actually increased in the same time period. Yet, the 473 

analysis presented here does not exhaust the wealth of copula types. For future research it is recommended to 474 

investigate also multiple-parameter copula families. 475 

In the second part of the study, an expert judgment elicitation was undertaken. The experts’ opinions were 476 

combined in a structured manner using Cooke’s (1991) classical method in order to obtain estimates of future 477 

changes in precipitation patterns. Experts predicted mostly around 10% increase in variables such as rain 478 

amount, duration, intensity and the dependence between amount and duration.. For three variables, which could 479 

be compared with KNMI’14 scenarios, based on numerical modelling, the experts’ forecasts were similar. Their 480 

expectation is a higher increase of annual precipitation than KNMI’s models predict; for maximum winter 481 

precipitation amount and maximum summer rain intensity, the difference depended on the method of combining  482 

of experts’ opinions. Experimental results of calibrating experts’ opinions on dependency structure were also 483 

presented. They were based on the difference between copula parameter estimates by the experts and taken from 484 

actual data. Similar conclusions as observed in previous studies may be provided. The calibration and 485 
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combination of expert’s dependence estimates must be done with measures different than those used in Cooke’s 486 

method. This is an active research area and the methods are still in their infancy. Much remains to be done in this 487 

area.   488 

Applicability of both methods was presented based on an example of an existing tunnel in the Netherlands. 489 

A bivariate distribution of rain amount and duration is an efficient solution of the tunnel’s limit state function, 490 

showing that the probability of failure in the historical climate is low (less than 1 in 250 years). Within the 491 

parameters analyzed in the EJ exercise, the effect of climate change was limited, though more research is needed 492 

with the use of multivariate copulas. 493 
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Figure Captions List 585 

 586 

 587 

 588 

Fig. 1. Location of KNMI weather stations used in this study. 589 

Fig. 2. Aggregation of rainfall data into showers. 590 

Fig. 3. Rain amount (XA) and duration (XD): original observations (left) and pseudo-observations (right). Showers 591 

lasting more than 0.5 h with intensity higher than 20 mm/h are marked red. 592 

Fig. 4. Left: rain amount and duration transformed to standard normal, with semi-correlation for each quadrant. 593 

Right: empirical and parametric estimates of P(U>u|V>u) for different probabilities u at De Bilt. 594 

Fig. 5. Rank correlation between rain amount and duration for De Bilt by year and season.  595 

Fig. 6. Spatial and seasonal variability of rank correlation between rain amount and duration in the Netherlands. 596 

Fig. 7. Comparison of expert opinions, the consensus (decision-maker) and observations for maximum rain 597 

amount for a shower in Rotterdam, 1975-2013. Bars indicate the 5th, 50th and 95th percentile.  598 

Fig. 8. Comparison of expert opinions, the consensus (decision-maker), KNMI climate scenarios and 599 

observations for winter precipitation amount in the Netherlands. Bars indicate the 5th, 50th and 95th percentile. 600 

Fig. 9. Schematized (not to scale) representation of the tunnel used as test case . 601 

 602 

  603 
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Table 1. List of KNMI weather stations used in this study. All stations have an end date of 31-12-2013. 604 

 605 

  606 

No. Name Start date No. Name Start date No. Name Start date 
210 Valkenburg 1-1-1973 273 Marknesse 1-1-1994 323 Wilhelminadorp 1-1-1994 
235 De Kooy 1-1-1957 275 Deelen 1-1-1983 330 Hoek van Holland 1-1-1996 
240 Schiphol 1-1-1974 277 Lauwersoog 1-1-1994 344 Rotterdam 1-1-1974 
249 Berkhout 1-1-2000 278 Heino 1-1-1994 348 Cabauw 1-1-1987 
251 Hoorn (Terschelling) 1-1-1995 279 Hoogeveen 1-1-1994 350 Gilze-Rijen 1-1-1977 
257 Wijk aan Zee 1-1-2002 280 Eelde 1-1-1957 356 Herwijnen 1-1-1994 
260 De Bilt 1-1-1951 283 Hupsel 1-1-1994 370 Eindhoven 1-1-1985 
265 Soesterberg 1-1-1975 286 Nieuw Beerta 1-1-1994 375 Volkel 1-1-1975 
267 Stavoren 1-1-1994 290 Twenthe 1-1-1975 377 Ell 1-1-2000 
269 Lelystad 1-1-1994 310 Vlissingen 1-1-1957 380 Maastricht 1-1-1958 
270 Leeuwarden 1-1-1975 319 Westdorpe 1-1-1994 391 Arcen 1-1-1994 
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Table 2. Temporal and seasonal variability of rank correlation between rain amount and duration at weather 607 

stations in the Netherlands with more than 38 years of record, split into two equal periods. The data are averages 608 

from annual correlations. * indicates that the difference in correlation is significant at p=0.05 between the two 609 

time period. 610 

No. Name Correlation between XA and XD – 1st period Correlation between XA and XD – 2nd period 
Year DJF MAM JJA SOM Year DJF MAM JJA SOM 

210 Valkenburg 0.711 0.768 0.694 0.695 0.712 0.639* 0.697* 0.654 0.600* 0.636* 
235 De Kooy 0.692 0.697 0.730 0.715 0.675 0.641* 0.683 0.663* 0.633* 0.623* 
240 Schiphol 0.687 0.744 0.717 0.652 0.666 0.625* 0.663* 0.665* 0.595* 0.619* 
260 De Bilt 0.703 0.743 0.705 0.682 0.699 0.638* 0.688* 0.643* 0.602* 0.649* 
265 Soesterberg 0.737 0.751 0.736 0.711 0.762 0.663* 0.718 0.648* 0.610* 0.675* 
270 Leeuwarden 0.590 0.580 0.638 0.574 0.603 0.645* 0.682* 0.673 0.604 0.646* 
280 Eelde 0.693 0.724 0.718 0.662 0.696 0.614* 0.642* 0.633* 0.596* 0.621* 
290 Twenthe 0.582 0.626 0.599 0.541 0.600 0.635* 0.709* 0.626 0.580 0.659* 
310 Vlissingen 0.678 0.714 0.674 0.672 0.679 0.640* 0.696 0.655 0.601* 0.631* 
344 Rotterdam 0.603 0.649 0.608 0.588 0.603 0.652* 0.712* 0.666* 0.596 0.650* 
375 Volkel 0.585 0.621 0.592 0.564 0.602 0.636* 0.701* 0.632 0.590 0.656* 
380 Maastricht 0.675 0.705 0.684 0.655 0.695 0.616* 0.665* 0.634* 0.551* 0.656 

 611 

  612 
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 613 

Table 3. Calibration, information and weights for expert judgment elicitation of rainfall. 614 

Expert Calibration 
Information Weights for performance-based 

combination (%) 

All variables Calibration 
Variables 

Without DM 
optimization 

With DM 
optimization 

Experts      
Expert 1 1.95·10-10 1.12 1.26 <0.01 - 
Expert 2 1.25·10-7 1.21 1.44 0.02 - 
Expert 3 2.24·10-4 0.96 1.08 28.49 30.16 
Expert 4 1.81·10-8 0.93 1.01 <0.01 - 
Expert 5 7.58·10-8 1.32 1.47 0.01 - 
Expert 6 5.73·10-12 0.85 1.05 <0.01 - 
Expert 7 8.47·10-4 0.60 0.66 65.98 69.84 
Expert 8 4.46·10-5 1.02 1.04 5.49 - 
Decision-maker (DM)      
Equal weight combination 
(EWDM) 0.092 0.16 0.17 x x 

Performance-based combination 
(without DM optimization) 0.127 0.29 0.31 x x 

Performance-based combination 
(with DM optimization) 0.127 0.38 0.42 x x 

 615 

  616 
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 617 

Table 4. Results of calibration based on rank correlation, Gaussian (1 − 𝐻𝐻𝐺𝐺) and Hellinger (1 −𝐻𝐻) distance.  618 

Category Rotterdam 
V>0.95 

De Bilt 
V>0.95 

Rotterdam 
V<0.5 

De Bilt 
V<0.5 

1 − 𝐻𝐻𝐺𝐺         
Expert 1 0.809 0.812 0.894 0.897 
Expert 2 0.889 0.892 0.766 0.769 
Expert 3 0.960 0.963 0.853 0.856 
Expert 4 0.746 0.769 0.960 0.963 
Expert 5 0.832 0.812 0.979 0.982 
Expert 6 0.733 0.736 0.730 0.733 
Expert 7 0.787 0.790 0.730 0.733 
Expert 8 0.809 0.812 0.894 0.897 
1 − 𝐻𝐻 

    Expert 1 0.822 0.825 0.900 0.903 
Expert 2 0.895 0.899 0.784 0.787 
Expert 3 0.962 0.965 0.862 0.865 
Expert 4 0.767 0.787 0.962 0.965 
Expert 5 0.843 0.825 0.980 0.983 
Expert 6 0.756 0.759 0.753 0.756 
Expert 7 0.802 0.805 0.753 0.756 
Expert 8 0.822 0.825 0.900 0.903 
Calibration score 

    Equal-weight DM 0.814 0.817 0.837 0.841 
Performance-based DM 0.960 0.963 0.979 0.982 
Rank correlation (solution) 

    Equal-weight DM 0.264 0.264 0.326 0.326 
Performance-based DM 0.578 0.578 0.608 0.608 
Realization 0.622 0.617 0.622 0.617 

 619 

  620 
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Table 5. Projected change in precipitation according to expert judgments (performance-based DM with 621 

optimization), 50th percentile. 622 

 623 

* The same values of rainfall given by the experts for both locations. 624 

  625 

Variable 

Projected change (2015–2053 
relative to 1975–2013) 

Performance-
based DM 

Equal weight 
DM 

Maximum rain amount in a shower in Rotterdam +7.6% +9.7% 
Maximum rain amount in a shower in De Bilt +9.0% +12.1% 
Maximum shower duration in Rotterdam +3.1% +0.2% 
Maximum shower duration in De Bilt +2.9% –1.3% 
Maximum rain intensity in Rotterdam +10.0% +17.0% 
Maximum rain intensity in De Bilt +10.0% +14.0% 
Average number of showers per year in Rotterdam/De Bilt* +0.2% +2.2% 
P(U>0.95|V>0.95) in Rotterdam 0.0% +9.1% 
P(U>0.95|V>0.95) in De Bilt 0.0% +10.4% 
P(U>0.95|V<0.50) in Rotterdam/De Bilt* +4.1% +18.9% 
Average yearly rain amount in the Netherlands +6.0% +9.9% 
Maximum winter rain amount in the Netherlands +9.9% +8.7% 
Maximum summer rain intensity in the Netherlands +9.3% +15.4% 
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Table 6.  Characteristics tunnel (used as test case). 626 

Characteristic Value Unit 

Length Entrance 1 320  m 

Length Entrance 2 530  m 

Length of the closed part of  the tunnel 547.5 m 

Width tunnel 30.9  m 

Area where water is collected 

(Multiplying length of entrances by width of tunnel) 26265 m2 

Volume of middle pump cellar  71  m3 

Volume main pump cellar 1 158  m3 

Volume main pump cellar 2 158  m3 

Number of pumps per cellar 3 - 

Capacity per pump of middle cellar 1.332  m3/min 

Capacity per pump of main cellars 1.67  m3/min 

 627 
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