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Abstract: In sewer systems sewage from different areas is often treated in a shared Waste Water
Treatment Plant (WWTP). Currently the flows from different areas are usually determined by
needs local to that area. During dry weather this may result in large variations in the flow into
the WWTP. There are two reasons why this may be undesirable. Due to design peculiarities
of some WWTP’s this may disrupt the treatment process and necessitate the use of additional
energy and chemicals. In other cases areas are connected to the same pressurized transport pipe
line, so energy costs may be higher when multiple stations use the line at the same time. Due
to the daily variation in the sewage flow from domestic and light industrial sources, limits on
temporary in system storage and due to limitations on the range of discharges the pumps can
deliver, minimizing the flow variations can be a complex problem. Under the assumption of a
periodic inflow sufficient conditions for the existence of a solution are given. The conditions
imply the existence of a repeatable pattern of a length less than a day.

Keywords: Environmental engineering; Waste treatment; Scheduling algorithms.

1. INTRODUCTION

In river deltas, polders and other areas with little natural
relief, sewer systems are highly dependent on pumps for
the transport of sewage over longer distances. For shorter
distances (several city blocks), gravity drives the flow.
Transport to a Waste Water Treatment Plant (WWTP)
is usually by pressurized pipeline. More details on Dutch
sewer systems can be found in NLingenieurs Sewer Sys-
tems Workgroup (2009). Often several areas with their own
local sewer system at village or city district level share
a WWTP. If they also share part of the pipeline to the
WWTP then it may save energy if we avoid running the
pumps at the same time. If the WWTP is sensitive to flow
change then coordinating the running of the pumps will
improve the efficiency of the WWTP. General information
on the control of sewer systems can be found in Marinaki
and Papageorgiou (2005); Ocampo-Martinez (2010); van
Nooijen and Kolechkina (2013); Garćıa et al. (2015).

2. PRACTICAL PROBLEM STATEMENT

For a group of five large sewer systems that discharge
to the same WWTP very large inflow variations under
dry weather circumstances were disrupting the biological
processes at the WWTP. The responsible organizations
decided to investigate the possibility of reducing those
variations. Limits on local storage, variation in the inflow
into the sewer system over the day and limits on realizable
pump flows make the problem non-trivial. This paper
not discuss the design of a practical control system for
this problem. It will deal only with establishing sufficient
? postprint, final version at DOI: 10.1016/j.ifacol.2016.07.483

conditions for a solution to the coordination problem to
exist within the constraints imposed. The importance of
this demonstration lies in the fact that, depending on the
specific constraints, the problem itself may very well either
unsolvable or NP complete.

To show the problem may be NP complete we reduce a
version of it to a multiple subset sum problem. Suppose
we have m pumps that have a fixed capacity qi that can
be either on or off. Moreover, we have a fixed time step ∆t
and we can store n time steps worth of (stepwise constant)
inflow qin,i in each system. Finally, suppose that for all
i = 1, 2, . . . ,m we have

ni =

∑n
k=1 qin,i (k)

qi
∈ N (1)

with ni < n. Now define

qtgt =
1

mn

m∑
i=1

n∑
k=1

qin,i (k) (2)

To obtain an an outflow that discharges all inflow we need
to find xik ∈ {0, 1}, i = 1, 2, . . . ,m, k = 1, 2, . . . , n such
that we

maximize

m∑
i=1

n∑
k=1

qixij (3)

subject to
m∑
i=1

qixik ≤ qtgt, k = 1, 2, . . . , n (4)

n∑
k=1

xik ≤ ni, i = 1, 2, . . . ,m (5)



which is the multiple subset sum problem with ni identical
objects of weight qi, see for example Caprara et al. (2000).

3. ABSTRACT PROBLEM STATEMENT

3.1 General statement

We have m pairs (Vi, Qi), i = 1, 2, . . . ,m where Vi is a
closed, bounded, non-negative interval in R that represents
the lower and upper bounds on the volume of sewage
that can be stored in sewer system i and Qi is a closed,
bounded, non-negative interval in R that represents the
lower and upper bounds on the range of flows that the
pumping station for sewer system i can generate. Each
pumping station will either be off or be generating a flow
in Qi. Each system has an inflow given by a non-negative
integrable function qin,i. We are looking for a set of non-
negative integrable functions qi, together with a set of
starting volumes v0,i such that for all t ≥ 0

qi (t) ∈ {0} ∪Qi (6)

and

v (t) = v0,i +

t∫
τ=0

qin,i (τ)− qi (τ) dτ ∈ Vi (7)

such that the variation over time of the inflow to the
WWTP,

qwwtp (t) =

m∑
i=1

qi (t) (8)

is minimal.

3.2 Simplified problem

We assume that the inflows are periodic with period Tp

and that the solution should result in a constant inflow
into the WWTP, from mass conservation it follows that in
that case we must have

qwwtp =
1

Tp

Tp∫
τ=0

m∑
i=1

qin,i (τ) dτ (9)

4. CONDITIONS FOR EXISTENCE OF A SOLUTION

4.1 Road map

We will start by deriving conditions that are sufficient for a
solution to exist when inf Qi = 0 for all i. Next we derive
conditions that show we can keep the separate districts
within the allowed volume range in case inf Qi > 0.
We will then show that the simplified problem reduces
to a problem of optimal use of a rectangular piece of
material to create constrained smaller rectangles. Finally
some conditions will be given that guarantee existence of
a solution of the simplified problem.

4.2 Basic assumptions

We are considering only dry weather circumstances. Dur-
ing heavy precipitation events other rules apply. The
design of sewer systems is almost always such that the

installed pumping capacity exceeds the maximum dry
weather flow. We will therefore assume that qin is bounded

‖qin,i‖∞ <∞ (10)

and that
‖qin,i‖∞ < supQi (11)

Usually, the pumping stations are designed for local op-
eration, the pump starts when a certain water level in
the wet well is exceeded and pump stops when the level
drops below a second, lower levels. In other words, we
may assume that there is sufficient local storage to run
the pumps a reasonable time.

4.3 Existence of a solution with zero lower bound on pump
capacity

A necessary condition for the existence of a solution is that
the equivalent one district case, with volume

Vtotal =

m∑
i=1

Vi (t) (12)

and flow range

Qtotal =

m∑
i=1

Qi (t) (13)

should have a solution. Here addition is interval addition.
The following lemma provides a condition for the existence
of a solution for the one district case that is verifiable by
computer.

Lemma 1. Given a pair (V,Q), a starting volume interval
V0 , a bounded periodic inflow qin with period Tp and a
time step ∆t such that n = Tp/∆t is a positive integer, if

q̄ =
1

Tp

Tp∫
τ=0

qin (τ) dτ ∈ Q (14)

‖qin‖∞ < supQ (15)
and

V0 +

k∆t∫
τ=0

(qin (τ)− q̄) dτ ⊆ (16)

[inf V + ∆t supQ, supV −∆t supQ]

for k = 0, 1, 2, . . . , n then a constant outflow

q (t) = q̄in (17)

will keep the stored volume between the bounds specified
by V .

Proof.

The condition implies that the volume will be within the
bounds [inf V + ∆t supQ, supV −∆t supQ] at the end of
a time step. The boundedness of qin (Equation 15) together
with the periodicity of the inflow places the solution in V
for all t.

Next we consider multiple districts.

Lemma 2. If we have m districts and there is a constant
flow solution for the separate districts then there is a
solution such that the sum of the flows is constant and
equal to qwwtp as defined in Equation 9.

Proof.

This follows immediately from the definitions.



4.4 Existence of a solution with a non-zero lower bound
on pump capacity

If there is a solution for a district with the outflow equal
to the mean inflow but the mean inflow is lower than inf Q
then we need to examine whether a solution with non-
constant outflow exists for that district. Given the fact
that we need to combine this with outer districts to get a
sum of outflows that is constant, we need to examine how
much room we have to shift the time intervals that the
pump for a given district is on. Following the reasoning of
Lemma 1, we see that Equation 15 together with

V0,i +

k∆t∫
τ=0

(qin (τ)− q̄in,i) dτ ⊆ (18)

[inf Vi + ∆t (q̄in,i + supQi) , supVi −∆t (q̄in,i + supQi)]

for k = 0, 1, 2, . . . , n will keep the stored volume between
the bounds specified by Vi for any qi that satisfies

(k+1)∆t∫
τ=k∆t

(q̄in,i − qi) dτ = 0 (19)

We see that if the separate districts satisfy Equation 18
then we will have enough freedom to build a repeatable
pattern of pumping within a time step ∆t. It then becomes
a question of filling a rectangle with horizontal side ∆t and
vertical side

q̄in,total =
1

Tp

Tp∫
τ=0

m∑
i=1

qin,i (τ) dτ (20)

with rectangles Ri,j (of which there are ni > 0 for district
i) in such a way that for i = 1, 2, . . . ,m

ni∑
j=1

Ri,j = q̄in,i∆t (21)

and the height of Ri,j lies in Qi for j = 1, 2, . . . , ni. There
is literature on this type of problem as it occurs in many
industries, albeit mostly for fixed size rectangles, see for
example Dyckhoff (1990).

If q̄in,total ∈ Qi for all i then it is clear that there is a
solution. If this is not the case then we first reduce the
problem by creating rectangles for all pumps i that cannot
run together with another pump, in other words where

q̄in,total − inf Qi < min
j 6=i

inf Qj (22)

We are then left with a subset of pumps that we need to
fit into a somewhat narrower rectangle. So, in principle we
can consider just the problem where some pumps can run
either solo or in combination with another pump and at
least one can run only in combination with another pump.

5. EXISTENCE OF A SOLUTION FOR A SPECIFIC
CASE

In the case that provided the reason for this study there
will be either just one or at most two pumps that cannot
provide q̄in,total.

Lemma 3. Suppose the sewer systems satisfy Equation 18.
Let J be the set of all sets of pumps that can produce
q̄in,total. If there is a subset J such that each pump occurs

in exactly one element of J and there is a flow setting for
the pumps I ∈ J such that

∀i1, i2 ∈ I ⇒
q̄in,i1

qi1
=
q̄in,i2

qi2
= λ (I) (23)

then a repeatable pattern exists.

Proof.

Let group I run for time λ (I) ∆t, this discharges q̄in,i∆t
from sewer system i for each i ∈ I and λ (I) q̄in,total∆t
at flow rate q̄in,total to the WWTP, each pump occurs
exactly once in a group I so the total volume discharged
is q̄in,total∆t.

The values in Table 1 show that for an average flow of
1840m3/h only system 4 cannot run solo. We can run 1,3,5

Table 1. Pump station data

Mean inflow Pump capacity
lower bound upper bound

(m3/h) (m3/h) (m3/h)

System 1 881.4 1000 4250
System 2 293.5 1060 2000
System 3 263.8 1600 3280
System 4 124.7 300 1200
System 5 182.6 550 1900

solo and pair systems 2 and 4 as required by Lemma 3.
Check on pairing of 2 and 4. We need to solve

300 + 900x

124.7
=

1060 + 940y

293.5
300 + 900x+ 1060 + 940y = 1840

900x+ 940y = 480

780

124.7
− 1060

293.5
= 940

(
1

124.7
+

1

293.5

)
y

y = 0.246

x = 0.276

6. CONCLUSION

The question of the existence of a pumping strategy for
a group of pumping stations linked to the same WWTP,
that evens out the daily pattern of inflow into the sewer
systems, is non-trivial. Under the assumption of a periodic
inflow there are computer verifiable sufficient conditions
that reduce the question of the existence of a pumping
strategy over the whole day to the existence of a repeatable
pattern of a length less than a day. For a simple case
conditions for the existence of a solution are given.
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