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1
Introduction

In line with the increasing urgency in the sustainable transition of aviation, recent years have seen
an increase in publications related to measures reducing the environmental impact of flight [1]. While
novel aircraft propulsion systems would allow for zero-emission flight to be achieved, the implementa-
tion time frame of such solutions risks extending beyond current sustainable development goals. On
the other hand, innovations aimed at reducing aviation’s impact through operational measures are able
to be implemented on a larger scale more quickly than their hardware innovation counterparts [2]. This
fact highlights the significance of such innovations in the mitigation of aviation’s impact as these would
apply to all types of operational aircraft in the sky [3].

While previous studies have examined the environmental inefficiencies of Air Traffic Management (ATM)
operations [4], and other optimal flight paths [5], the actual steps needed to, on an operational level,
reduce aviation’s environmental footprint remain largely unclear. This study is motivated by the desire
to understand ATM-related environmental inefficiencies by bridging the gap between the sources of
environmental inefficiencies and their causal effects. It aims to provide a scientific foundation for flight
operators and air traffic controllers to identify the primary factors contributing to excess emissions in
air travel and assess their impact. This knowledge will empower them to make informed decisions to
pave the way for a sustainable future in aviation.

Ultimately, the project’s objective is to assess the potential of causal analysis methods in uncovering the
most significant inefficiencies in ATM operations that contribute to the negative environmental impact of
aviation. The report is structured such that, through a scientific paper, Part I presents the final findings
of the performed research, and Part II presents the surrounding literature which forms the scientific
foundation of this study.

1
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Part I

Scientific Paper
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Abstract—Addressing the increasingly urgent
need for sustainable aviation solutions, this paper
explores operational innovations as a quicker and
more scalable addition to novel zero-emission
propulsion systems. Through the use of regression-
based causal inference methods, this study aims
to understand the relationship between flight
fuelburn inefficiency and the factors causing these
inefficiencies. Such an approach allows for the
attribution of inefficiencies to factors on an overall
scale, requiring less specific domain knowledge for
initial results. A case study, involving a sample
of 100,000 flights, representative of European
operations, reveals that airspace structure (3.2%
increase in inefficiency) and turbulence along the
flight plan (2.5% increase) are the leading causes,
while variations in average airspeed, congestion,
and crosswind contribute the least to flight inef-
ficiency. A compilation of the results shows that
the performed analysis leaves 61% of the observed
flight inefficiency unaccounted for. Future work
would include the exploration of different metrics
even closer to actual climate and air quality effects,
as well as detailed uncertainty quantification.
The developed flight inefficiency prediction model
allows experimentation with counterfactual scenar-
ios, contributing to the global transition towards
more sustainable air transport networks.

Index Terms—causal inference, sustainable avia-
tion, air traffic management, machine learning ap-
plications.

I. Introduction

The urgent need for sustainable aviation systems has
prompted an increasing number of publications

exploring measures to mitigate the environmental im-
pact of flights [1]. While novel zero-emission propul-
sion systems are envisioned, their implementation time
frame risks extending beyond current sustainable de-
velopment goals. In contrast, operational innovations
offer a quicker and more scalable approach to address
aviation’s impact [2], with the potential to impact all
currently operational aircraft [3].

While previous studies have delved into the gener-
ation of optimal flight trajectories [4–10], the current

state-of-the-art, in large part, treats flight trajectories
as an isolated problem rather than considering them
in a network form by taking into account potential
interactions between flights. This simplification over-
looks a crucial aspect of real-world Air Traffic Mana-
gement (ATM) dynamics, limiting the implementation
of such optimal trajectories into actual air transport
operations [11].

Bridging the gap between the analysis of individual
flights and the one of multiple flights, former studies
have assessed the performance of ATM networks as a
whole [12–15]. Previous work in this domain has pri-
marily relied on simple metrics, such as route exten-
sions, time, or capacity, with recent efforts focusing on
more fuel-centric metrics [15]. However, the limited use
of metrics closely tied to environmental impacts, such
as fuelburn, has resulted in an incomplete understand-
ing, often relying on proxy indicators.

Advancing the understanding of flight inefficiency,
causal inference methods have, to a limited extent, pre-
viously been applied. These aim to attribute a portion
of flight inefficiency to measured causal factors. Often
these have been confined to a narrow scope, typically
centered around a small number of routes [16], a single
Area Control Center (ACC) [17], or a specific phase
of flight [18]. To the best of the authors’ knowledge,
none have studied inefficiency at a continental scale nor
considered fuelburn as the reference inefficiency metric.
This work aims to further understand ATM-related in-
efficiencies by considering Europe-wide fuelburn in a
causal inference analysis, providing a scientific foun-
dation for flight operators and air traffic controllers to
identify the driving factors contributing to the environ-
mental impact of air travel.

With the current state-of-the-art, improving flight
efficiency could be envisaged through a “bottom-up”
approach. This entails determining feasible optimal
trajectories for implementation in reality. While this
approach allows for specific restrictions to be consid-
ered, it necessitates significant computational resources
and information, leading to results that may not be
easily generalized to a larger scale.

In contrast, this paper proposes a “top-down” ap-
proach to expand the scope of ATM performance and
improvement studies through a detailed use of causal
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inference methods. By attributing causal relations to
inefficiency factors on an overall scale, this approach
allows for subsequent detailed analysis. The advan-
tage of such an approach lies in its requirement for
less specific domain knowledge to obtain initial results,
providing relevant directions for future research.

Thus far, this paper’s introduction has provided the
motivation behind the performed research. Section II
details the methods used for the analysis. In Section III
the selected case study is defined with the results pre-
sented in Section IV. The cumulated findings of the
paper are presented Section V with a discussion, to-
gether with the conclusion and recommendations found
in Section VI.

II. Methodology

A. Causal Inference by Regression Modeling

1. General Causal Inference Framework
Causal inference is the discipline that aims to deter-

mine the cause-and-effect relationships governing vari-
able change [19]. Not to be confused with correla-
tion, which simply describes how two variables tend
to change together.

A fundamental issue of causal inference is the inabil-
ity to observe the outcome variable both in the presence
of a certain treatment variable and what would have
happened without this intervention of this same treat-
ment variable [20]. The difference between these two
outcomes can be attributed to the causal effect of the
treatment variable. Commonly, Randomized Control
Trials (RCT) are considered the most reliable method
for quantifying this effect.

However, in applications such as the one of this
study, it would be practically infeasible to perform
such a trial. Alternatively, regression-based causal in-
ference methods are proposed where regression models
can be used to compare actual situations with coun-
terfactual situations. Stemming from the “potential
outcome framework” [21], the causal impact of treat-
ment can mathematically be formulated as described
in Equation 1.

T = E[Y a − Y a∗], (1)

where a and a∗ represent the different exposure levels
of treatment A, Y represents the potential outcome
under these conditions, and T the treatment effect.

The robustness of causal inference findings is com-
monly quantified using p-values that estimate the prob-
ability that a more extreme value than observed from
the test, is found assuming that the null hypothesis
is true, i.e., no causal relation exists. Mathematically
this is described in Equation 2.

p-value = P (|X| ≥ |x| |H0) , (2)

where X is the test statistic, x is its observed value
and H0 the null hypothesis.

2. Flight Inefficiency Prediction Model
Within the causal inference framework, a prediction

model is developed to predict a flight’s efficiency from
input factors of interest. While previous work has
implemented linear regression [16] and Random For-
est [17], this paper proposes the use of a gradient-
boosting algorithm (XGBoost [22]). This is because
boosting algorithms can be less prone to over-fitting
when applied to a wider range of data sets [23]. Addi-
tionally, the faster training time of the XGBoost algo-
rithm would allow for the training of multiple models,
offering comparison possibilities to this study. Hyper-
parameter tuning of the model is done using an open-
source Bayesian optimization package, Hyperopt [24].
The final set of hyperparameters is described in Ap-
pendix E.

The performance of the prediction model is quanti-
fied by considering to what extent the variations within
the dataset are explained by the trained model, using
the adjusted R2 metric, as applied in the work of Liu
et al. [16] and Marcos et al. [17]. Mathematically this
metric is described in Equation 3.

R2 = 1− SSR
SST

,

Adjusted R2 = 1− (1−R2) · (n− 1)

n− k − 1
,

(3)

where SSR represents the Sum of Squared Residuals,
SST is the Total Sum of Squares, n, is the number
of observations, and k is the number of features. For
legibility, this paper will refer to adjusted R2 as R2.

B. Flight Features
The following subsection presents the features de-

scribing possible causes of inefficiency for a given flight.
These input factors are then used by the regression
model to predict the efficiency factor of a given flight.

1. Feature Definition
The features used as input for the flight inefficiency

prediction model are initially compiled and iterated
from domain knowledge in part acquired from the lit-
erature described in Section I. Feature definition iter-
ation was then performed using a correlation matrix,
to redefine, combine, or remove features with a Spear-
man correlation index above 0.8. The final correlation
matrix is detailed in Appendix C.

This step is performed to reduce the possible effects
of multicollinearity. While this phenomenon does not
per-see affect prediction performance with forest-based
methods, it may cause unreliable feature importance
results, which in turn could have undesired effects dur-
ing causal inference by reducing the independence and
interpretability of features.

To be able to implement categorical information in
a regression model, the data need to be encoded to a
numerical value. For this application, the categorical
data was encoded using target encoding. This method

6



simply replaces the categorical feature with the aver-
age outcome (“target”) value of all instances of this cat-
egory. The choice for encoding is made due to its ability
to handle high cardinal categorical features while pre-
serving the overview of features, facilitating the cre-
ation of counterfactual scenarios required within the
causal inference framework.

2. Causal and Mediating Factors
Within the final selection of flight features, a dis-

tinction was made between causal and mediating fac-
tors. While the former is the subject for which this
study attempts to quantify the causal effect on flight
inefficiency, the latter represents factors that may indi-
rectly affect flight inefficiency. As such mediating fac-
tors do not necessarily affect flight inefficiency them-
selves, but may do so in combination with a causal
factor. It should be noted that causal factors may also
show mediating effects. The allocation of features to
the causal factor or mediating factor group was done
using domain knowledge.

C. Flight Sampling
Due to computational restrictions, it would be prac-

tically infeasible to compute flight inefficiency requir-
ing sampling to be applied to the entire population of
available flights. While previous research [16, 17] have
opted to limit the scope of study to a manageable num-
ber of flights, this paper proposes the use of a scaled
test to determine the required sample size for accurate
estimation of results over the entire population. For
the quantification of similarity, the Jaccard similarity
index is used, as described in Equation 4.

J(A,B) =
|A ∩B|
|A ∪B|

, (4)

where A is the sample of size n, and B is the entirety
of the available data. The index ranges from 0 to 1,
where 0 indicates no similarity, and 1 identical data
sets. The factors considered for similarity are described
in Appendix D.

1. Determining Required Sample Similarity
The performed analysis relies on the assumption that

similar data sets will provide similar causal inference
results. From this assumption scaled causal inference
simulations are performed where the error between
causal inference using the entire scaled population set,
and multiple different-sized scaled sample sets are com-
pared. The different scaled samples are then related to
the population set through the Jaccard similarity in-
dex. The relation between the different sample and
population sets is described in Figure 1, where the en-
tire population represents the totality of the available
dataset, and scaling refers to random sampling from
this dataset. The sample size ranges from 100 to the
scaled population size, increasing in increments of 500
flights.

Scaled
Sample

Scaled
Population

Entire
Population

Fig. 1. Illustration of the relationship between
the entire population, scaled population, and
scaled sample sets.

For each scaled population set, the smallest possi-
ble similarity index, for which the causal effect error,
of the scaled sample, is consistently within 5% of the
causal effects computed using the scaled population.
This is then repeated over multiple scaled population
sizes. This analysis aims to gain insight into what the
required Jaccard similarity index of a sample is, to re-
turn causal effects with an acceptable error margin if
this was performed with the entire population. The
size of the sample to population sizes is in this scaled
test selected such that their ratio would be similar as
one would expect with the entire dataset.

2. Determining Required Sample Size
To determine the required sample for this analysis,

the Jaccard similarity index between the entire popu-
lation of available data, and the different sample sizes
using different sampling methods was determined. Two
common sampling methods are considered: (1) random
sampling, and (2) stratified sampling with the strata
described in Appendix D. The minimal required sam-
ple size then corresponds to the sample size for which
the required sample similarity, from the previous para-
graph, is achieved.

III. Description of Case Studies

A. Considered Flights

1. Scope of Case Study
The case study was conducted for a year (2019) of

pre-Covid European flights. This geographical selec-
tion was done by filtering for the flights for which the
departure and arrival ICAO airport codes start with ‘E’
or ‘L’, while excluding airports on the French overseas
territories, Portuguese Islands of Azores and Madeira,
as well as the Norwegian island of Svalbard. Additional
filtering of flights was applied due to limitations in data
availability and aircraft performance models. In the
end, only the four months available in the Eurocontrol
R&D data [25] (March, June, September, and Decem-
ber) and flights with aircraft types compatible with the
used aircraft performance model, OpenAP [26], were
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considered. Finally, military, business, general avia-
tion, and flights with the same departure as arrival
airport were excluded from this analysis.

Overall, 2,012,702 flights were considered before
sampling. This resulted in an average of 17,000 daily
flights considered in the analysis.

2. Sampling of Flights
Through the method described in Section II.C the

final sample of flights was determined. Figure 2 plots
the scaled population size, for the smallest sample’s
Jacquard similarity index required for the causal in-
ference results of the sample, to be within 5% of the
results returned using the entire population. The re-
sults show how the required Jaccard similarity index
converges below 0.025 as the population size increases
beyond 4,000 flights.

Figure 3 shows the Jaccard similarity index to the
entirety of the dataset described in the previous para-
graph, for a sample of a given size. It is found that
stratified sampling and random sampling show similar
performance for small sample sizes but that stratified
sampling outperforms random when the sample size
increases beyond 100,000 flights.
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Fig. 2. Smallest required Jaccard similarity in-
dex for causal inference error to population size,
to population size.
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Fig. 3. Sample Jaccard similarity index to sam-
ple size.

The combination of both figures indicates that a

sample size larger than 20,000 would lead to results
similar to the ones retrieved from considering the entire
population dataset. In addition, for this sampling size,
the choice of sampling method would have a limited ef-
fect on the results. The final sample selected for causal
inference is a random sample of 100,000 flights. This
is because such a sample would be a manageable num-
ber of flights to run given the computational resources
available for this research. This sample size would also
provide more than enough data to account for the flight
trajectory optimizer failing or other sources of error
during the analysis.

B. Flight Inefficiency, Wind, and Airspace Data

1. Flight Inefficiency
Flight inefficiency at individual flight level was quan-

tified by considering the ratio of actual over optimal fu-
elburn using OpenAP [26] and its corresponding trajec-
tory optimizer [7]. This ratio-based flight inefficiency
metric was selected due to it allowing for broader com-
parison between flights of different distances, as com-
pared to excess fuelburn metrics. The actual flight
trajectories were taken from the Eurocontrol R&D
database [25] and up-sampled into a trajectory of 15-
second resolution using the traffic library [27]. Flight
inefficiency of the total sample of flights is defined by
the sum of all actual fuelburn, over the sum of all op-
timal fuelburn. This is retrieved using the relation de-
scribed in Equation 5,

ysample =

∑N
i=1 yflighti · FBopti∑

FBopt
, (5)

where N represents all the flights in the sample,
ysample is the inefficiency ratio of the entire sample,
yflighti the inefficiency ratio of flight i, and FBopt is
the optimal fuelburn for that flight. An overview of
the number of flights considered and flight inefficien-
cies can be found in Table II, while the distribution of
flight inefficiencies in the considered sample is attached
to Appendix B. The discrepancies in the number of
flights compared to the original sample size are a re-
sult of the flight trajectory optimizer, OpenAP.top [7],
failing to converge.

A simple analysis of the flights, for which trajectory
optimization has failed, indicates that the optimizer’s
performance was not disproportionately affected by ex-
treme wind conditions. Additionally, no geographical
biases in the failed set of flights were observed. When
considering aircraft types, disparities in optimization
success rates were found, however, the author deemed
that attempting to correct for this bias may inadver-
tently introduce other biases. Moreover, the set of
take-off mass ratios also shows different optimization
success rates suggesting the potential for increased un-
certainty in the causal upper (or lower) bounds of the
causal relations. This impact appears negligible given
the small observed variations in Section IV.A. Further
details of the analysis on the failed set of flights are
provided in Appendix F.
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2. Wind and Airspace Data
Used both for determining fuelburn and for flight fea-

tures, wind data is retrieved from the ERA5 hourly re-
analysis model [28]. As the used optimizer only accepts
windfields at a certain time, the considered windfield
for each flight is the wind conditions for the hour of
departure. This is to compare actual and optimal tra-
jectories in the same windfield, together with limiting
the computational load of the analysis.

Additional information used for flight features is ob-
tained from the Eurocontrol R&D database [25] and
includes the last filed flight plans, time spent in each
Flight Information Region (FIR), aircraft (type) used,
airline, as well as the previously mentioned actual tra-
jectory flown by a given flight.

C. Selected Features
The final list of features utilized is presented in Ta-

ble I while the final overview of feature definitions is
presented in Appendix A. The final selection was based
on domain knowledge and aims to provide a complete
coverage of possible inefficiency factors while limiting
possible overlap between causal factors. The details on
how the final set of features is defined are presented in
Appendix A.

TABLE I. Final selection of features.

Causal Factors Mediating
Factors

Wind Departure Airport
Cross Wind Arrival Airport
Turbulence Aircraft Type
Airspace Structure Airline
Departure Congestion
Arrival Congestion
En-Route Congestion
Average Air Speed

D. Final Flight Inefficiency Prediction Model
The achieved performance of flight inefficiency pre-

diction models for each take-off mass fraction is de-
tailed in Table II. The final R2 of the model is in line
with previous studies where the model’s R2 used in the
study of Marcos et al. [17] ranges between 0.7 and 0.9,
while the ones used in Liu et al. [16] range between 0.2
and 0.8.

The computed 18% flight fuelburn inefficiency is in
line with the findings from Sun et al. [29] which applies
the same trajectory data source and optimization al-
gorithm to a smaller subset of flights between France
and The Netherlands. Eurocontrol [15] estimates a fu-
elburn inefficiency of around 10% for which the differ-
ence can be attributed to the fact that for their esti-
mate, the best-performing trajectory is considered as
reference rather than the overall optimum, as is the
case in the estimates presented in Table II.

E. Description of Counterfactual Scenarios
To quantify the causal effect of a given feature, the

considered counterfactual scenario is the one where the
influence of each inefficiency factor leads to minimal
flight inefficiency. By utilizing the model detailed in
Section III.D, one can analyze the scenario where a
specific factor maintains a constant value across all
flights. This analysis allows for the retrieval of the av-
erage flight inefficiency ratio for the entire set of flights,
assuming this variable had remained constant through-
out the entire dataset. Repeating this simulation over
a wide range of values leads to the causal relationship
between the influence of each factor, and the resultant
flight inefficiency ratio.

TABLE II. Summary of flight inefficiency com-
putations and prediction model results.

Take-Off Mass
Fractions

0.65 0.75 0.85 0.95

Flights Considered
Number of Flights 81,484 73,246 64,814 57,7476
Average Inefficiency 1.181 1.183 1.182 1.182

Model Performance
R2 0.501 0.520 0.536 0.550
Percentage Mean Error 0.09% 0.08% 0.08% 0.08%

IV. Results

A. Relation of Causal Factors to Flight Inefficiency
The following subsection provides insight into the

relation between flight inefficiency and the different
causal factors through their figures. Also, the distri-
bution of the factor in the used data is plotted in the
background. Each plot presented in this subsection
is, assuming a normal distribution, cropped to show a
range of two standard deviations (95% of values), of
the counterfactual value range. Estimations are made
for a range of take-off mass fractions between 0.65 and
0.95, denoted as m0.

1. Wind
Figure 4 provides the found relation between the

along the Great Circle track wind and flight ineffi-
ciency. This relation suggests the minimum flight in-
efficiency to be around median tailwind (−11.6 m/s)
conditions with inefficiency steadily increasing upon
deviation from this minimal value.

Figure 5 shows the relation between the cross Great
Circle track wind, and flight inefficiency. The results
indicate a slightly decreasing inefficiency between 0
and 13.2 m/s crosswind. Beyond this value, a small
increase in inefficiency with increasing crosswind is
found.

2. Turbulence
Figure 6 shows flight inefficiency to steadily increase

with increased turbulence on the last filed flight path.
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Fig. 4. Causal relation between along Great
Circle track wind and flight inefficiency, accom-
panied by the distribution of along Great Circle
track wind in the sample of flights.
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Fig. 5. Causal relation between cross Great Cir-
cle track wind and flight inefficiency, accompa-
nied by the distribution of cross Great Circle
track wind in the sample of flights.

Minimal flight inefficiency is found as the turbulence
along the flight path reaches zero.

3. Airspace Structure
Figure 7 exposes a strong relation between airspace

structure scores and flight inefficiency with the
strongest increase in flight inefficiency after median
airspace structure metric values. Minimal flight in-
efficiency is returned as the airspace structure metric
reaches zero.

4. Excess Congestion
Figure 8, Figure 9, and Figure 10 respectively repre-

sent the departure, arrival, and en-route congestion.
The former two relations indicate little causal relation
between excess departure or arrival congestion on flight
inefficiency. The latter plot shows minimal inefficiency
to be at the median en-route congestion with opera-
tions becoming more inefficient when deviating from
this median congestion. The increase in inefficiency is
found to be larger for below-average than for above-
average congestion.
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Fig. 6. Causal relation between turbulence
along flight plan and flight inefficiency, accom-
panied by the distribution of turbulence along
flight plan in the sample of flights.
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Fig. 7. Causal relation between airspace struc-
ture and flight inefficiency, accompanied by the
distribution of airspace structure in the sample
of flights.

5. Average Airpeed
Figure 11 shows the relation between the difference

in the average airspeed per route and flight inefficiency.
Here zero represents the average speed flown on that
route. Average airspeed (zero on the plot) represents
the least inefficient operations with deviations from
this value leading to an increase in flight inefficiency.
Surprisingly, a decrease in average airspeed leads to a
sharper increase in flight inefficiency than an increase
in average airspeed.

B. Causal Effect of Causal Factors
While Section IV.A provides insight into the rela-

tions between inefficiency factors and flight inefficiency,
the following subsection attributes an inefficiency con-
tribution to a given factor by setting its influence to
the one where minimal flight inefficiency is found. This
counterfactual value is retrieved by taking the minima,
averaged over all four mass fractions, of the curves pre-
sented in Section IV.A. Table III presents a summary
of the found causal effects for which the results are
split between the average change of efficiency and the
variance of the distribution of the considered flights.
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Fig. 8. Causal relation between departure con-
gestion and flight inefficiency, accompanied by
the distribution of departure congestion in the
sample of flights.
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Fig. 9. Causal relation between arrival conges-
tion and flight inefficiency, accompanied by the
distribution of arrival congestion in the sample
of flights.

When considering the effect of each factor, it was
found that airspace structure, together with turbulence
along the flight plan contributes the most to the inef-
ficiency of pre-COVID flight operations. The low p-
values associated with these computed effects confirm
the presence of a causal relationship. On the other
hand, the relatively high p-values associated with wind
and average airspeed indicate that, from the performed
analysis, no conclusive causal effects can be attributed
to these features.

The change in outcome variance represents the ex-
tent the spread of flight inefficiencies, in the sample, is
caused by a certain variable. The results show airspace
structure and turbulence to be responsible for the most
variation between flight inefficiencies, whereas conges-
tion contributes the least. Interestingly, average air-
speed is found to be responsible for a relatively large
reduction in outcome variance considering its small
causal effect. Furthermore, the uncertainties regard-
ing the unknown take-off mass differ between factors
where turbulence and along Great Circle track wind
along the flight plan provide the largest uncertainty.
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Fig. 10. Causal relation between en-route con-
gestion and flight inefficiency, accompanied by
the distribution of en-route congestion in the
sample of flights.
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Fig. 11. Causal relation between difference to
average airspeed and flight inefficiency, accom-
panied by the distribution of difference to aver-
age airspeed in the sample of flights.

C. Comparison of Total Flight Inefficiency Computa-
tions
The following subsection aims to provide insight into

the completeness of the considered causal factors by
comparing the total flight inefficiency using different
methods. This comparison is shown in Table IV.

TABLE IV. Total flight inefficiency comparison
including mass uncertainty.

Sum of
Effects

Minimal
Effect

Reference
Value

−0.054±0.026 −0.071±0.020 −0.182±0.001

Where the “sum of effects” represents the sum of each
causal effect, the “minimal effect” value considers the
counterfactual scenario where all the causal inefficiency
factors are set to their minimum, and the “reference
value” is retrieved by comparison of actual trajectories
and optimal, as described in Section III.B.

By comparing the “sum of effects” and the “minimal
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TABLE III. Summary of causal inference results.

Causal Effect / Change in Outcome Value Change in Outcome Variance

incl. Mass Uncertainty p-value incl. Mass Uncertainty

Wind 0.012± 0.012 0.317 −0.016± 0.002

Crosswind −0.003± 0.001 0.000 −0.014± 0.001

Turbulence −0.025± 0.006 0.000 −0.041± 0.005

Airspace
Structure

−0.032± 0.003 0.000 −0.043± 0.000

Departure
Congestion

−0.002± 0.001 0.150 −0.010± 0.001

En-Route
Congestion

−0.007± 0.001 0.000 −0.011± 0.001

Arrival
Congestion

−0.000± 0.000 0.003 −0.011± 0.001

Average
Airspeed

0.004± 0.002 0.264 −0.017± 0.001

effect”, one can understand the level of overlap between
factor effects, i.e., how much a portion of a factor’s ef-
fect is also visible in another factor. When both these
values are equal one would conclude that the set of fea-
tures are completely independent. The case where the
sum of effects is smaller than the minimal effect would
indicate the presence of mediating relations between
features while the opposite would indicate an overlap
between factor definitions. The results, presented in
Table III, show a 0.017 (24% of minimal effect) lower
sum of effects than the minimal effect, suggesting the
presence of mediating effects.

Similarly, one can compare “minimal effect” ineffi-
ciency to the “reference value” to understand how much
of the observed inefficiency is covered by the selected
set of causal factors. The results show a 0.111 (61%
of the reference value) lower minimal effect inefficiency
than the reference values for the same sets of flights,
indicating that the selected features do not completely
cover the seen inefficiency, through comparison of op-
timal and actual trajectories, in flight operations.

D. Sensitivity Analysis
Figure 12 shows a simple sensitivity analysis per-

formed on the computed causal effects. Presented are
the causal effects of the considered factors returned
over multiple rounds of simulation, found when ran-
domly splitting the available data in half, as well as the
removal of one of the considered features. The findings

from the sensitivity analysis suggest that the causal in-
ference results are similarly sensitive to the data used
as the inclusion of features.

Per feature, the variance in determined causal effects
differs as well. For instance, the effects of airspace
structure and turbulence show large variations while
the other factors remain relatively constant. Addition-
ally, certain effects, such as turbulence, show a larger
sensitivity to feature removal than data split, possibly
indicating an increased connection of this feature to
other features.

When considering the average value of the causal ef-
fect of certain features, different causal effects are found
from both sources of sensitivity. For instance, airspace
structure shows on average a lower causal effect when
subjected to data split as compared to feature removal,
also indicating a possible increased connection between
features. These hypotheses are further strengthened by
the correlation matrix presented in Appendix C.

V. Discussion

A. Comparison with Literature
Summarized in Table III, this study found turbu-

lence along flight plans and airspace structure to be
the largest contributors to flight inefficiency in Euro-
pean airspace. While the reliability of such results is
in large part dependent on the comparison to other
publications, few papers are available on the subject.
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Fig. 12. Sensitivity analysis.

This discrepancy highlights the requirement for more
research on the topic. The author is not aware of any
papers that are directly comparable to this one, how-
ever, a pair of similar studies is available for limited
comparison.

1. Weather Contribution
The work of Liu et al. [16] found over a limited selec-

tion of US-based origin-destination pairs that convec-
tive weather events and wind are the largest contrib-
utors to lateral flight inefficiency. While this research
makes similar conclusions for turbulence, it can not
attribute a similar causal effect to wind. This differ-
ence is not surprising as it can be explained by the fact
that flights deviate from the optimal lateral routing to
make use of favorable winds, as described by Vergnes
et al. [6].

2. Airspace Structure and Air Traffic Control
Marcos et al. [17] performed a causal inference of

cruise flight at the level of a single European Area
Control Center. The results of that publication sug-
gest that route structure is the most influential factor,
and congestion a low influence. Which is in line with
the results described in Table III.

B. Coverage of Selected Features
Section IV.C presents an initial insight into the cov-

erage of the selected features. While the analysis,
shown in Table IV, suggests that 61% of the observed
inefficiency is not covered by the selection, it should be
noted that the reverse statement, i.e., that 39% of the
observed inefficiency is covered, does not hold. This
is a consequence of the fact that the mediating effects
of the not-included features, on the included features
are unknown. It may be that through the addition of
another feature, the percentage covered by the feature
selection changes more than only the addition of the
causal effect of this new feature. Therefore, the usage
of this analysis can only be interpreted as a measure
of completeness where no quantitative conclusions can

be taken from.
Similarly, one is not able to extrapolate the extent of

mediation between features, from the observed values
in Section IV.C, due to unknown effects from the not
included features. The current results underline the
importance of considering these effects in future work.

C. Excess Congestion Definition
Figure 8, Figure 9, and Figure 10 consider the rela-

tion between congestion and flight inefficiency by con-
sidering the actual congestion of a flight in the hour
of the flight. In reality, however, airspace capacity is
managed by controlling flights in the hours before high
congestion is expected to spread the load. Therefore, it
may be that there is a misalignment between the used
congestion values in this study, and the flights that
were actually affected by congestion. This misalign-
ment could be a potential explanation for the counter-
intuitive increase in inefficiency seen at reduced en-
route congestion observed in Figure 10.

D. Relation Between Airspeed and Fuelburn
Figure 11 at first glance presents somewhat surpris-

ing results for which the finding can be better under-
stood when considering absolute fuelburn. At lower
airspeed, the required thrust to overcome drag may
not necessarily decrease as induced drag becomes more
important. Combined with the longer flight times ex-
pected with a lower airspeed, the total fuelburn of the
flight will increase. Alternatively, at higher airspeed,
the induced drag will decrease while the parasite drag
increases, causing a net increase in drag. Combined
with a reduced flight time this could overall result in
similar total fuelburn. The fact that the results show
a change in the trend line around the average airspeed
indicates that most flights operate at minimal drag con-
ditions.

Another factor contributing to these results can be
provided by the fact that flying at higher altitudes is
often connected with flying at higher speeds and vice
versa. Flights at higher altitudes will have to overcome
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less drag due to reduced air density, thereby requiring
less fuel, and decreasing the inefficiency ratio.

E. Extension of Results to Excess Fuelburn

By directly comparing actual and optimal fuelburn,
this work considers all flight control dimensions (lat-
eral, vertical, speed, and time) thereby carrying over
fewer of the limitations from previous studies which of-
ten utilize inefficiency metrics with a limited number
of dimensions, such as lateral inefficiency. This in turn
makes the results of Section IV present more relevant
insights into the improvement potential of current op-
erations.

That said, the fuelburn inefficiency ratio does
present some limitations when considering absolute ex-
cess fuelburn. As such, inefficiencies are not evenly dis-
tributed through all flight lengths where shorter flights
tend to have higher inefficiency values than longer ones.
This however does not per se translate to large excess
fuelburn quantities as shorter flights also tend to in to-
tal burn less fuel. Extending this point to the results of
Section IV, means that in the current findings, shorter
flights will be more represented than if one were to
consider absolute excess fuelburn values.

F. Extension of Results to Environmental Effects

While this study provides an important step towards
understanding the causes of fuelburn inefficiencies, the
reader should be aware of the limited application of
these results to actual climate and air quality impacts.
The development of causal inference studies on these
impacts will in large part be dependent on the devel-
opment of rapid optimizers and estimators for these
outcomes of interest. Due to the more complicated na-
ture of these topics, including not only different emis-
sion species but also local atmospheric conditions, more
variation in the outcome variable would be expected,
requiring more data and features to provide accurate
results.

G. Take-Off Mass Uncertainties

Most notable in Figure 4 and Figure 11, a flip in
the “ranking” of causal relations returned from each
mass fraction is observed. This particularity could be
explained by the fact that on one side of the flip, the
actual take-off mass may be underestimated (or overes-
timated) through the selected mass fraction range. As
such for headwind conditions, the same mass range is
likely to underestimate the actual take-off mass while
for tailwind conditions, when take-off masses are more
likely to be smaller, the mass range will be overesti-
mating the actual mass.

In the same figures, areas of larger difference be-
tween the estimates from the four mass fractions can be
noted. Conditions of larger differences could indicate
areas of larger uncertainties related to the unknown
take-off mass assumption.

H. Multitude of Sensitivities and Uncertainties

As this work combines many different models and
data sources, the results are sensitive to a large part
of uncertainties extending beyond the scope of the
analysis. As such uncertainties regarding engine and
aircraft-specific performance from OpenAP [26], or
possible errors in the Eurocontrol [25] dataset are
largely unaccounted for in this analysis. This, com-
bined with a multitude of other uncertainties from the
causal inference framework, presents a large limiting
factor on the possible sensitivity analysis.

VI. Conclusions and Recommendations
Concluding this paper may lead to more questions

than answers, however, that is exactly the added value
of the proposed top-down approach to understanding
flight inefficiency. What started as a simple comparison
between actual and optimal flight trajectories has made
evident several possible leads to explaining the reason
behind these differences.

A causal inference analysis on a scaled set of 100,000
flights, representing all flights within a year of Eu-
ropean flights, led to causal relations between flight
fuelburn inefficiency and the causal factors of inter-
est. Then, the causal effects of flight inefficiency in
the European airspace were attributed to these fac-
tors. It is suggested that airspace structure (3.2% in-
crease in inefficiency) and turbulence along the flight
plan (2.5% increase) are the leading causes of flight
inefficiency while changes in average airspeed, conges-
tion, and crosswind contribute the least. Subsequent
analysis of the results shows that in the current selec-
tion of inefficiency factor part of flight inefficiency can
be attributed to mediating effects between factors. Ad-
ditionally, it was found that 61% of the observed flight
inefficiency remains unaccounted for.

Based on the results, recommendations for future re-
search are provided. First, to take the next step in un-
derstanding the causes of environmental inefficiencies
in air traffic management networks, it will be required
to consider different inefficiency metrics even closer to
actual climate and air quality effects.

Secondly, a detailed uncertainty quantification of the
performed methods would be beneficial to provide a
certainty range for the retrieved causal effects. By
compiling many sources of data and various models,
so have their errors and uncertainties been combined.
This effect is currently in large part unknown.

Finally, different scopes of study should be consid-
ered to isolate specific areas of inefficiency together
with their mediating effects. For instance, by only
considering flights between one origin-destination pair,
one can mitigate part of the observed effects of airspace
structure in the final distribution of flight inefficiencies.
Similarly, one could consider causal effects at individ-
ual flight levels to better understand the connection
between retrieved causal effects and changes in spa-
tiotemporal trajectories.
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Appendix

A. Feature Definition
The following appendix details the definition of the

features used in this paper. All metrics are shifted such
that zero indicates no or average contribution depend-
ing on the features.

1. Wind
The along the Great Circle track wind indicates the

contribution of wind to the required air distance to be
flown by a given flight. This is computed by taking the
component in line with the direct route between the
origin and destination of the average wind component

at these two locations. The other component of the
average wind is the cross Great Circle track wind. Both
are visually represented in Figure 13.
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Fig. 13. Illustrative explanation of wind fea-
tures.

2. Turbulence Along Flight Path
Turbulence along the flight path is defined as the sum

of absolute vertical wind components along the last
filed flight path. This can be expressed mathematically
by Equation 6.

TFlight Path =

n∑
i=1

|wVerticali | , (6)

where TFlight Path is the turbulence along the flight
path, n is the number of data points along the last filed
flight path, and wVerticali represents the vertical wind
component at the i-th data point.

3. Airspace Structure
The airspace structure metric aims to provide an es-

timate of how much a given flight’s operations were
affected by specific airspace-related restrictions. These
include Standard Instrument Departures (SIDs), Stan-
dard Terminal Arrival Routes (STARs), entry/exit
points between Flight Information Regions (FIRs), or
areas of restricted airspace.

Air traffic constraint points are defined by, per
origin-destination pair, counting the number of times
a given coordinate is included in a flight trajectory.
The points with frequencies beyond the 95th percentile
are then taken forward as major air traffic constraint
points, where the departure and arrival coordinates
were excluded. The contribution of airspace struc-
ture is estimated by considering the number of major
air traffic constraint points, from all origin-destination
pairs, crossed by a flight per nautical mile flown, as
described in Equation 7.

SAirspace =

∑N
i=1 Fi

dflown
, (7)

where SAirspace is the airspace structure metric, N is
the number of major air traffic constraint points, Fi the
frequency of flights passing over that given constraint
point, and dflown is the actual distance flown by the
aircraft of that flight. Figure 14 presents a visual ex-
ample of flight routes with high and low constrained
scores, ie., the airspace structure metric, on trajecto-
ries from Oslo (OSL) or Bergen (BGO), to Amsterdam
(AMS).
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Fig. 14. Visual example of air traffic constraint points for flight departing from OSL and BGO
towards AMS.

It should be noted that for legibility only the major
constraint points computed for the origin-destination
pairs OSL to AMS and BGO to AMS are plotted. In
the actual analysis, all major constraint points from all
included origin-destination pairs are considered. This
is to be able to capture airspace-related restrictions
from flights taking a vastly different route than the
majority between these city pairs, providing a more
complete picture of airspace structure. An example of
this can be seen between OSL and AMS where a sin-
gle trajectory passes westwards of the shown restricted
airspace to join the last part of the highly constrained
routes between BGO and AMS.

4. Departure and Arrival Congestion
The congestion values of a flight at departure or ar-

rival are given by Equation 8.

CDep/Arr =
NTO|h +NL|h

Average(NTO +NL)|h
− 1, (8)

where CDep/Arr is the congestion value, NTO|h and
NL|h are, respectively, the number of take-off or land-
ings at that given airport at a given hour h.

5. En-Route Congestion
Equation 9 gives the mathematical representation of

the en-route congestion metric used in the analysis. It
is defined as the sum of the percentual difference in
congestion in a given Flight Information Region (FIR)
multiplied by the time spent in that region along an
entire flight,

CER =

( ∑n
i=1 (NFIRi

|h · TFIRi
)∑n

i=1 (Average (NFIRi
) |h · TFIRi

)

)
· 1∑n

i=1 (TFIRi
)
− 1,

(9)

where CER is the congestion metric, NFIRi
|h is the

number of flights within that FIR at hour h, TFIRi
is

the time spent in that FIR of the flight of interest, and
n represents the different FIRs crossed by the flight of
interest.

6. Average Airspeed Difference
The metric used to describe the difference in flight

speed is mathematically described in Equation 10.
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Sdiff =
dact

tact
− walong track

Average
(

dact

tact
− walong track

)
|O−D

− 1, (10)

where Sdiff is the speed metric, dact the actual dis-
tance flown, tact the actual flight time from take-off
to landing, walong track the along Great Circle track
wind component, and O−D represents a given origin-
destination pair.

B. Distribution of Computed Flight
Inefficiency

Figure 15 shows the right-skewed distribution of
flight inefficiency ratios for the considered sample of
flights. The ratios were computed for different mass
fractions (m0) and correspond to the actual over opti-
mal fuelburn returned from OpenAP [30].

The difference in peak height between mass fractions
is due to the differences in the number of flights per
mass fraction. Noteworthy is the fact that a small por-
tion of flights (2.5 %) show flight inefficiency ratios be-
low one, which irrationally would indicate the optimal
operations are less efficient than the actual ones. This
comes from modeling uncertainties related to the un-
known specifics of a given flight such as, among others,
the take-off mass, specific engine, or air-frame perfor-
mance. These uncertainties can then lead the model
to return flight inefficiency ratios below one.
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Fig. 15. Distribution of computed flight ineffi-
ciency for the considered sample of flights.

C. Feature Correlation
Figure 16 presents the final correlation matrix used

to select and define the final set of features to be used
in the flight inefficiency prediction model. Important
is to note that no correlations above 0.8 are found.

D. Similarity Strata
Table V presents the strata used to determine sam-

ple similarity with each other. The selection of these
strata was made using domain knowledge to, with read-
ily available data, cover the main driving areas leading
to flight inefficiency.

TABLE V. Strata used to determine Jaccard
similarity.

Similarity Strata
Peak/Off-Peak Hours
Departure Airport
Arrival Airport
Month
Weekday
Hour of Day
Aircraft Type
Airline

E. Hyperparameter Tuning
The final hyperparameter values used in the devel-

oped prediction, as well as the range for which the pa-
rameter was tuned, are described in Table VI.

TABLE VI. Hyperparameter tuning results.

Hyperparameter Range Final Value

Learning Rate 1× 10−10 to 1 1.90×10−1

Max Depth 2 to 24 20

N Estimators 10 to 999 809

Subsample 0.5 to 0.8 0.79

Colsample Bytree 0.5 to 0.8 0.60

Scale Pos Weight 0.01 to 2 1.34

Reg Lambda 0 to 299 58

Gamma 0 to 299 0

F. Failed Flights

A. Wind and Geographical Location
Figure 17 presents the distribution of failed to suc-

cessful flights against the min-max normalized wind
metrics, plotted on the y-axis, including all mass frac-
tions. The distribution of flights is normalized such
that the areas of failed and successful flights are the
same. In the plot, it can be observed that the dis-
tribution of flights does not vary significantly between
failed and successful flights indicating that, most likely,
no bias from extreme winds has inadvertently been in-
duced by the optimizer failing. Furthermore, when
plotting the routes of the failed flights on a map, no
concentration was found along a geographical location
which could indicate the presence of geographical bi-
ases.
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Fig. 16. Spearman correlation matrix of causal features included in the model.
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Fig. 17. Comparison of normalized wind metric
distribution in flights where optimizer has failed
or succeeded for all mass fractions combined.

B. Aircraft Type and Take-Off Mass Fraction
Figure 18 presents the distribution of failed to suc-

cessful flights to aircraft type codes including all mass
fractions. It can be noted that certain aircraft types
are over- or under-represented in the set of successfully
optimized flights. As such, in the final results, A320
operations are over-represented compared to other air-
craft type operations. While the argument could be
made that this bias should be corrected by readjusting
the distribution of aircraft types in the final set of se-

lected flights, doing so may inadvertently cause other
biases unknown to the author. For this reason, this
bias was accepted in the results.
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ceeded for all mass fractions combined, with an-
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Part II

Supplementing Literature Review
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2
Environmental Impact of Aviation

Understanding the environmental inefficiencies of ATM networks requires the understanding of what
elements of flight negatively impact the environment. It is then important to consider how these effects
are quantified as well as what the theoretical environmental optima would look like. The following chap-
ter provides the relevant state-of-the-art for the proposed research topic of this study.

2.1. Sources of Environmental Impact
When considering the environmental impact of aviation, this can be split into two main areas: the emis-
sion of pollutants and the production of excess noise [3]. The former impacts the Earth’s air by inducing
climate change as well as adverse health effects related to the worsening of air quality, while the latter
also causes negative health effects next to annoyance for surrounding communities [6]. Within the
scientific community, research in this field is often split into three subjects: climate impact, air quality
assessment, and excess noise studies.

In this study, a focus will be placed on the emissions side of aviation’s impact, measured by the excess
fuel burned due to flight operations. The considerations supporting the use of fuel burn instead of more
direct climate or Air Quality (AQ) metrics rely on the added complexity required by having to combine
an atmospheric model with emission data, which is required to incorporate detailed environmental im-
pact metrics at the level of the current state-of-the-art. A significant limitation of this choice is that it will
not be possible to take into account the effects of contrail-cirrus cloud formation. Noise considerations
were also not taken into account as within the scope of focusing on the cruise portion of the flight, the
effects of noise disturbance will be negligible.

A review of scientific literature [7] has highlighted the sector’s focus on the climate impact of aviation,
and in particular the resultant CO2 emissions of aero-engine combustion during flight. However, as
of the 1999 Special International Panel on Climate Change (IPCC) report [3] it has been known that
non-CO2 effects from aviation fuel burn emissions represent a significant portion of aviation climate
impact. This discrepancy emphasizes the need to further advance the understanding, and awareness,
of aviation’s environmental impact beyond CO2 emissions.

More recent studies, confirm the large effect of non-CO2 effects, such as the one of Lee et al. [8] for
which the current estimate of aviation is that it is responsible for approximately 5% of human-induced
Radiative Forcing (RF). Figure 2.1 provides an overview of the relative elements contributing to the
climate impact of aviation globally. An important takeaway from this figure is to consider the large
confidence intervals for non-CO2 effects in the current knowledge which can make studies relying on
accurate estimation of aviation impact on the environment, including non-CO2 effects, difficult. For
the sector to reduce its contribution to global warming, it will be required to operate at net-zero CO2
emissions while also being able to reduce the warming effects from non-CO2 emissions. This advance
in the understanding of non-CO2 can also be identified as a major trend within the scientific community.
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Figure 2.1: Best estimates for climate forcing terms for global aviation from 1940 to 2018 [9] [8].

Regarding air quality degradation considerations, in addition to carbon dioxide, aircraft engines emit
a range of pollutants, such as nitrogen oxides (NOX), particulate matter (PM), sulfur dioxide (SO2),
volatile organic compounds (VOCs), carbon monoxide (CO), and unburnt hydrocarbons (HC), which
upon breathing have been linked to adverse health effects. These adverse health effects include im-
paired immune, cardiovascular, and respiratory functions, next to an increased response to allergens.
Additionally, the emission of these species can lead to environmental damage through the formation
of smog [10] [9].

That said, it is important when assessing the results of such studies to consider that a reduction in fuel
burn will, due to the different effects of emissions species, not necessarily result in a reduced detrimen-
tal climate or air quality impact [3]. Additionally, a reduction in air quality impact does not always entail
a reduced climate impact and vice versa. This particularity comes from the climate impact of contrail
formation which may in some cases overrun the benefits achieved from air quality improvements from
total emission reductions.

In section 2.2, an overview of the identified quantification methods in literature will be provided. To-
gether with what sources of impact for the envisaged scope of this study a decision can be made to
environmental impact metrics.

2.2. Quantification of Excess Environmental Impact
In the context of quantitatively assessing the surplus environmental impact of aviation, it is required
to understand the quantification of the impact associated with a specific (set of) flight(s), as well as
delineate the theoretical minimum. This section outlines the different methodologies identified in the
existing literature.
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2.2.1. Determining Flight Emission
Variousmethods exist to translate flight activities into emissions with or without the inclusion of positional
information as input. The first type of methods employed aim at simulating actual aircraft trajectories,
and from there determining the engine emissions using accurate aircraft performance models such as
the Base of Aircraft Data (BADA) [11], or an open-source alternative such as the one developed by Sun
et al. [12]. An advantage of such models is that they are able to take into account the different engine
settings, particularly relevant for the estimation of CO, UHC, NOX, and soot emissions. This combined
with actual flight profiles increases the accuracy of the resulting estimations.

Other methods use important simplifications to extract emission estimates while using fewer compu-
tational resources, such as the one employed by Simone et al. [13], which utilized historical airport
departure and arrival information to gauge aviation emissions. More recent examples of such a method
being applied are found in the studies of Quadros et al. [14] and Seymour et al. [15]. Alternatively, as
highlighted in a Eurocontrol report [16], a flight phase-focused approach that approximates an entire
flight to the sum of different flight phases, in combination with time or distance performance indicators,
could also be used for rapid emission estimation.

Depending on the performed analysis a trade-off would therefore need to be made to determine the
required level of detail. While trajectory-simulation-based techniques provide accurate spatiotempo-
ral and magnitude information on engine emissions, they require significantly more computational re-
sources and are often restricted by data availability. A consequence of this limitation is that only a
limited amount of flights can be taken into account, as opposed to methods simplifying flight move-
ments.

2.2.2. Impact Quantification
With emission information, a global impact estimation could be made. As aviation emissions alter
Earth’s chemical concentrations in the atmosphere, the spatial-temporal emission information can then
be combined with atmospheric data and models (or assumptions) to determine the global climate im-
pact [17]. As mentioned in section 2.1, combining emission information with atmospheric data extends
beyond the scope of this study due to its complexity and required computation resources which will be
required to achieve this level of accuracy.

Fundamentally, however, the climate and air quality impact of aviation is not simply proportional to the
amount of emissions as also briefly explained in section 2.1 [8] [18]. With the aim of advancing the
body of knowledge in this field, it would be desirable to nonetheless consider the effects on climate and
air quality degradation due to aviation operations. A suitable method found in the literature would be
to consider the societal climate and air quality impact as derived in the work of Grobler et al. [19], and
employed in the study of Sun et al. [20].

This metric assigns a price (USD) for the societal costs induced by the increased Radiative Forcing (RF)
for the climate impact cost, and mortality for the air quality cost, both a consequence of the pollution
induced by the aero-engine emissions. Combined with the ability of aircraft performance models such
as OpenAP [12] to return emission information this would provide a rapid, and initial, insight towards
non-CO2 effects at play, allowing for broader generalization of this study’s results. For cruise-level
emissions in the European domain, the costs correspond to the ones presented in Table 2.1 [20] [19].

Table 2.1: Aggregated marginal climate cost and air quality cost due for cruise-level emissions based on Monte Carlo
simulations for the EU domain from [19] used in [20].

Emissions Species Unit Climate Cost Air Quality Cost (EU)
CO2 USD/tonne CO2 45 -
H2O USD/tonne H2O 2.8 -
SOx USD/tonne S -20 000 42 000
NOX USD/tonne NOX as NO2 -940 31 000
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Table 2.1 continued from previous page
Emissions Species Unit Climate Cost Air Quality Cost (EU)
CO USD/tonne CO - 270

2.2.3. Optimal Reference Trajectory
To be able to quantify a given “inefficiency” one will be required to define an “optimal” such that one can
compare actual observations. In literature, three different methods of doing this have been identified
(1) flown distance reduction, (2) fuel burn reduction, and (3) climate impact reduction.

The first form of inefficiency quantification involves comparing the flight’s “ground distance”, that is, the
total distance on the ground traced directly below the aircraft. In theory, the shortest route would then
be the greater-circle route between the origin and the destination airport. While this is a simple and
efficient method to estimate the most optimum route, study results may be misleading when efficiency
gains due to wind are not taken into account [21].

The second method builds on the shortcomings of the first and involves reducing fuel burn emissions
by minimizing air distance instead of ground distance. The advantage of this form of optimization is that
it accounts for all control dimensions (lateral, vertical, speed, and time), and through such better links
to environmental consequences [21]. Additionally, this method is able to include weather phenomena
as is the case in the optimizer developed by Ramee et al. [22]. Current airline practices indicate a pref-
erence for flight plans that align with optimized fuel burn routes, as it reduces operational costs [23].
Additionally, comparing actual flights to these optimal operations would provide a better insight into
environmental consequences compared to the first described method. To make these studies possible,
open-source optimizers such as OpenAP.top [24] have shown promising results in providing optimal
routing comparable to closed-source alternatives. An additional step that could be taken in sustain-
ability studies consists of utilizing emission species to infer climate or air quality metrics without the
inclusion of detailed atmospheric models or data, such as described in subsection 2.2.2 and Table 2.1.
This principle is also applied by OpenAP.top [24] to perform trajectory optimizations on various outlooks
(20, 50, and 100 years) of Global Warming Potential (GWP) and Global Temperature Potential (GTP).
Methods that do include detailed atmospheric models or data are summarized below.

The third method, and the most recent development in this field, consists of routing for reduced climate
impact. While routing for reduced fuel burn will reduce direct emissions from aviation, it may be so that
through this method flights are routed through climate-sensitive regions, where warming contrails could
be formed. For this reason, various studies, such as the one from Lim et al. [25], Yamashita et al. [26],
or Roosenbrand et al. [27] have looked into developing free routing models that consider these effects
by combining satellite remote sensing, atmospheric science, and aircraft surveillance data. One main
advantage of these types of studies is that it is able to include the climate effects of contrails, however,
the resulting estimations do show a considerable amount of variability originating from variations in
weather conditions [28]. As a result, it may be difficult to include these effects in the quantification of
an inefficiency factor, as obtaining consistent results would be more challenging.

A point to underscore regarding the current state-of-the-art in optimal flight trajectories is the focus on
addressing flight inefficiency as an isolated optimization problem. Existing studies have often not ac-
counted for the potential interactions that may arise when multiple flights operate in a network system,
thereby simplifying a crucial aspect of real-world air traffic management dynamics. This scientific gap in
the literature limits the implementation of current optimal trajectories into actual air transport operations
[29].

2.2.4. Quantification Uncertainties and Challenges
Exact answers to inefficiency quantification questions are however hard to provide the inherent uncer-
tainties regarding the results. The reviewed literature highlights the following considerations.

Most apparent in analyses of multiple short flights, variations in trajectories lead to large variations in
the estimated inefficiency results making accurate conclusions more challenging [20] [30]. When con-
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sidering excess fuel burn metrics, it should additionally be noted that variations in vertical flight profiles
will be additional sources of variation, as denoted in the study of Pasutto et al. [31].

Secondly, the lack of access to essential data regarding take-off mass and cost index settings, which
is necessary for calculating fuel burn inefficiency, can pose challenges for the study. This data is often
restricted due to commercial sensitivity concerns. Sun et al. [32] for this reason accounted for the
unknown take-off mass by considering a masses fraction between 0.65 and 1 times relative to the max-
imum take-off mass. Finally, for full flight trajectory simulations such as the ones utilizing BADA [11] or
OpenAP [12] significant computational resources are required potentially limiting the scope of possible
analysis.
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3
Air Traffic Management Inefficiencies

While chapter 2 dives into the specific environmental impact of a flight, the following subsection aims
to bridge the gap between studying one aircraft and the operations required for a network of multiple
flights. This is done by assessing where additional sources of (environmental) inefficiencies come into
play in an Air Traffic Management (ATM) network.

The study of Reynolds [4] presents an overview of the various sources of flight inefficiencies in the
different flight phases, simplified in three areas (1) Departure terminal area, (2) en-route, and (3) ar-
rival terminal area, as seen in Figure 3.1. Although this classification offers valuable information about
potential causes of inefficiency in a flight’s time distribution, linking these sources to stakeholders who
potentially could act on these identified inefficiencies becomes more challenging. For this reason, in
this study, it is proposed to classify ATM system inefficiencies into four categories (1) Weather-related,
(2) Airspace-related, (3) Air Traffic Control-related, and (4) Airline-related.

Figure 3.1: Overview of potential causes of flight inefficiency [4].

The following section will present how each of the four used inefficiency categories affects flight effi-
ciency, as well as how these factors have been quantified in scientific literature.

3.1. Weather-Related Inefficiencies
The contributing factors to this type of inefficiency are the effects of convective weather phenomena
and wind. Convective weather can force aircraft to deviate from their intended flight path to avoid turbu-
lence, while wind conditions can result in longer air distances being flown due to sections of the flight
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being flown into a headwind.

Liu et al. [33] employed for their analysis US-based data sets consisting of both wind field information
as well as an hourly summary of convective events. The effect of wind on a given flight was then quan-
tified by considering the sum over the entire flight of the individual wind field components in line with
the nominal direction of flight. Through this, an estimate of the additional or reduced “air-distance” con-
tribution to the flight can be made. In the same study, the effect of convective weather is quantified by
an exposure metric proportionally weighted to the distance between the convective phenomenon and
the aircraft flight track. For EU-based studies considering weather effects, the ERA5 data repository
[34] is commonly used.

3.2. Airspace Related Inefficiencies
This type of inefficiency encompasses various kinds of flight restrictions that arise from the organization
of the airspace, such as predefined routes, restricted or special-use airspace, and route deviations due
to the partitioning of airspace into different Flight Information Regions (FIRs). The author proposes to
classify airspace-related inefficiency factors into two main groups (1) structures for workload distribu-
tion, and (2) fixed routes for traffic simplification. The latter can be both during en-route phases and
during departure or arrival procedures through Standard Instrumental Departures (SIDs) and Standard
Terminal Arrival Routes (STARs). The former refers to the separation of airspace and tasks into differ-
ent (upper) FIRs, Traffic Maneuvering Areas (TMA), and Tower Control (CTR).

Previous studies have looked at different factors to understand specific sources of airspace-related
inefficiencies better. For instance, the study of Pasutto et al. [31], considered the inefficiency contribu-
tion of the airspace through comparison of the “best-performer”, defined as the best achievable profile
considering all constraints between O-D pairs, and the “ideal performer” defined as the theoretical most
optimum profile. The best-performer route was determined by the routing employed by the 10% of best-
performing flights per season.

Another approach is one implemented in the study of Marcos et al. [35] which considered, among
others, a Horizontal Flight Efficiency (HFE) metric that could be split into two components (1) local
extension, i.e. the extra distance flown compared to the shortest possible distance between entry/exit
points within an FIR, and (2) the interface contribution, i.e. the distance between the ideal entry/exit
point for a flight, and the planned entry/exit point. It should be noted that for the classification of ineffi-
ciency sources, the local components can directly be attributed to the sector in question while another
sector could also influence the interface component.

3.3. Air Traffic Control-Related Inefficiencies
Air Traffic Control inefficiencies, in essence, arise from two different reasons, the first originates from
the various measures implemented to ensure separation between aircraft, ranging from vectoring to
holding patterns. The other reason could be requests made from the flight deck for airline-specific
efficiency reasons such as a change in cruise altitude or a direct-to-way point. Commands given by
an Air Traffic Controllers (ATCo) are typically one of three options: heading, speed, or altitude changes.

Studies such as one of Olive et al. [36] present both rule-based and statistical methods to detect ATC
commands such as en-route flight plans and arrival holding patterns. While these methods would pro-
vide the insight required for a detailed analysis of the role of ATC during a flight, other studies have
employed proxy indicators to estimate the overall influence of ATC commands during a flight. For in-
stance, Marcos et al. [35] approximated the impact of ATC by considering congestion in a given FIR or
the time of departure (peak/off-peak hours).
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3.4. Airline Related Inefficiencies
The choices made by airlines before and during the flight, such as the selected route, velocity, and
requested flight level are influential inefficiency factors. In essence, operators seek to reduce their di-
rect operating costs, which encompass various factors such as fuel costs, flying time costs, and route
charges [16]. This may result in the operation of flights over longer distances, leading to increased fuel
consumption, in order to save costs on route charges (related to Air Traffic Management), or flying at
lower altitudes to reduce flying time costs (related to airline internal factors). For this reason, flight plans
submitted by airlines may not necessarily represent the most fuel-efficient routes due to factors such
as the cost index, speed, fuel and flight planning policies, and the use of Collaborative Flight Planning
System (CFSP) software [16]. Specific to European studies it should be noted that the effect of ATC
charges is more significant due to large differences happening over a small area [4].

In the available literature, the work of Leones et al. [37] proposes revised ATM Key Performance Indi-
cators (KPIs) that introduce the airspace user’s viewpoint. This analysis made use of equity indicators
to capture how inefficiency indicators are spread between different airlines. This is done by looking at
the mean inefficiency for all airlines combined, and then the difference of each airline’s specific means
to highlight different underlying strategies.

A factor interesting to highlight from this study is the different strategies employed by airlines with re-
gard to the treatment and execution of their flight plans. While some may almost always reach their
requested flight level, some may only do so a limited number of times. Additionally, by applying this
method “company routes” could potentially be identified highlighting the preferred routing of an airline
[37].

While these factors are generally not included or related to ATM’s performance, they do have a signif-
icant impact on the fuel consumption between O-D pairs. Future work to improve the environmental
efficiency of air travel will have to consider the collaboration between the various airspace stakeholders
[16].

3.5. Summary of Inefficiency Factors
Summarizing the above-described categorization of inefficiencies the following Table 3.1 proposes a
complete overview of ATM network inefficiency (sub)categories, an aspect not explicitly found in the
studied state-of-the-art.

Table 3.1: Categorized summary of air traffic management inefficiency factors.

Categories Sub-
Categories

Description

Wind Extra “air distance” flown due to the difference between air
and ground speeds.

Weather Convective
Weather

Deviation from optimal flight path due to adverse weather
conditions.

Workload
Distribution

Procedures linked to the division of airspace into different
regions (FIR, TMA, CTA).

Airspace Fixed
Routing

Set points in a route which should be followed.

Separation Intervention of Air Traffic Controllers to ensure a safe dis-
tance between aircraft.

Air Traffic Control Flight-Deck
Request

Pilot’s initiative to deviation from the flight plan.

Airline - (Economic) Choices made by an airline at all stages of op-
eration.

Combining the reviewed literature on this subject, two areas of study have been found to be underrepre-
sented in the state-of-the-art. The first area is within the airline-related inefficiencies where, most likely
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due to the commercially sensitive nature of this topic, relatively few published studies are available.
This leaves an area of uncertainty regarding the reason behind variations in flight inefficiency. With the
current openly-available knowledge the extent of airline-related factors remain in large part invisible,
effectively excluding them from most performed analysis.

For the second area of knowledge, the complexity of global airspace structures and challenges in sep-
arating airspace from ATC-related inefficiencies, together with limited openly available data, make the
generalization of results to large airspace difficult. This is more so the case for European flights com-
pared to US flights, where an immense amount of variables have to be taken into account for a complete
representation to bemade. This has limited the extent to which these inefficiencies have been studied in
large international airspaces, to simpler metrics such as the comparison of flights to a “best-performer”.

Furthermore, while there is substantial literature on air traffic management inefficiencies, most studies
rely on simple metrics like route extensions, time, or capacity, with recent efforts focusing on more fuel-
centric metrics [16]. This means little understanding of air traffic management performance on metrics
close to the environmental impact is available leaving only speculations to be made based on the avail-
able “proxy” indicators as for example route extension and time. Most commonly flight inefficiency has
been defined as the excess distance flown, leaving the use of excess fuel burn, air quality, or climate
impact metric for future research.



4
Causal Inference of Flight Trajectories

While in general, it was found that only a few papers were available that look into utilizing data to
understand causality in the context of aviation operations, some examples of use cases were found.
The following presents these findings by first looking at what specific causal inference methods were
used, before discussing how the available data was processed and used in this case.

4.1. Introductory Principles of Causal Inference
It is important to distinguish between correlation and causation. Correlation shows how two variables
tend to change together, while causation uncovers the cause-and-effect relationship, revealing the
laws governing variable changes [38]. Presented in the foundational “potential outcome framework”
proposed by Rubin [39], the causal impact of an exposure on an outcome may be mathematically
formulated as follows:

T = E[Y a − Y a∗] (4.1)

Where a and a∗ represent the different exposure levels of treatment A, Y represents the potential out-
come under these conditions, and T the treatment effect. The causal effect of a variable is then defined
as the change in outcome resulting from a specific treatment while holding all other variables constant.

Central to estimating causal effects is to account for the effect of so-called confounders, which are
variables that affect both the treatment variable and the outcome. A common example confounder in
medicine studies is age as it will have an effect on whether a patient is assigned a given treatment, as
well as the rate of recovery of a patient. Causal inference methods then rely on methods that are able
to account for the effect of confounders [40].

Both the treatment and confounder effects may influence the outcome directly and indirectly, via a me-
diator which itself has no direct effect on the outcome. Both types of effects may differ. Figure 4.1
graphically summarizes the different ways factors can affect an outcome of interest.
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Figure 4.1: Graphical summary of factor influence on outcome variable within the causal inference framework [41].

Generally, two principles have been identified in the literature: (1) propensity-score-based methods,
and (2) regression-based methods.

Propensity-score-based methods, as the name suggests, rely on a propensity score, i.e. “probability
of treatment” to account for the effect of confounding on the outcome. The propensity score can then
be used to group or weigh observed outcomes with different treatments, but similar propensity scores.
Visually this process would be depicted as in Figure 4.2.

Figure 4.2: Visual representation of propensity-score based methods of causal inference 1.

Where then the average difference of the propensity score-matched pairs, called Individual Treatment
Effect (ITE), results in the treatment’s Average Treatment Effect (ATE).

Regression-based methods rely on applying machine learning techniques to observational data to pre-
dict an outcome based on covariate and treatment inputs. The resultant model can then be used to
simulate counterfactual outcomes from which the causal effects of the input variables can be deter-
mined. Mathematically this can be represented as described in Equation 4.2 [42].

1Visuals taken from : https://towardsdatascience.com/propensity-score-5c29c480130c
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ITEi = f̂ (Xi = 1, Zi)− f̂ (Xi = 0, Zi)

ATE =
1

N

∑
i

ITEi
(4.2)

Where f̂ represents the selected regression model, Xi the treatment status, Zi the covariates, and N
the number of observations.

From its historical origins, causal inference is often described using medical jargon. While this offers
a clear explanation of the method’s functioning, it may lead to confusion regarding how this can be
applied to an aviation use case. To address this, definitions of the used jargon for this aviation use
case are provided:

• Outcome: The degree to which excess fuel burn is induced by a given situation. This could for
example be quantified as an inefficiency percentage or a quantity of excess fuel burn.

• Treatment: An ATM inefficiency factor for which the effect on the outcome is to be analyzed.
These will correspond to the elaborated factors identified in chapter 3.

• Confounders: All other factors that may influence the outcome and treatment effects of interest,
which are not currently being seen as the treatment variable.

• Mediators: Factors that may indirectly affect the treatment outcome through a treatment and/or
confounder variable. This would correspond to factors not necessarily discussed in chapter 3,
but which may have an effect.

An advantage offered by these data-driven causal inference methods is that they allow for causal analy-
sis to be performed in fields where it may not (practicably) be possible to perform a Randomized Control
Trial (RCT), such as is the case in large-scale Air Traffic Management studies. Additionally, the above-
mentioned framework allows for more robust conclusions to be made as compared to correlation-based
analysis traditionally used in low-risk fields of study [38].

A significant limitation of this method however is the requirement of having sufficient knowledge of the
subject at hand to define causal relations between factors. This is due to the fact that current causal
inference methods are not able to account for hidden confounders meaning that all should be defined
beforehand. In the future, this limitation could potentially be overcome when methods around causal
discovery, i.e. the determination of causal relations, have matured further [43].

4.2. Methods Used in Literature
In the available literature, various aviation applications were found for causal inference. The following
section summarizes the found literature by first presenting the studies related to flight trajectories, be-
fore developing studies applied to other domains but for which the methods are still of interest.

Flight Trajectory Studies The following studies aim to understand what the cause is of certain vari-
ations in flight routes. Marcos et al. [35] used a random forest regression model to understand ineffi-
ciency sources at the Area Control Center (ACC) level. Random forests were chosen due to their ability
to capture non-linear dependencies and their resistance to overfitting compared to single decision trees
or Neural Networks (NN). The relative importance of features was obtained by evaluating the rate of
misclassification when excluding one feature from the out-of-bag dataset. Using the method developed
by Wong et al. [44], the training data was augmented by adding samples with random noise, resulting
in reduced error between validation and testing.

Liu et al. [33] took a different approach in their study on lateral flight efficiency in the US. They used two
subsequent regression models, logistic regression and linear regression, to model the strategic route
choice before en-route deviations. This approach aimed to mitigate overfitting risks when considering
all factors in a single model. The study built upon the observation of significant variations in inefficiency
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for similar flight conditions in a previous study [45]. It suggested that route inefficiency is influenced by
a two-step decision process involving strategic routing and tactical rerouting.

Szenczuk et al. [46] employed a single linear regression model to study vertical flight efficiency during
descent at two major airports. The reduced issue of overfitting was attributed to the narrower focus of
the study. Linear regression models, including the one used in this study, have a limitation in that they
can only consider linearly related factors.

Other Causal Inference Studies Besides studies on flight trajectories, within aviation other applica-
tions of causal inference have been found. Interesting methods used in those studies are presented in
the following paragraphs.

Shah [47] applied causal inference to evaluate the impact of ground delay absorption on overall air-
borne delay in the ATM community. The study advocated for the use of propensity score methods, as it
was argued that it would provide more robust results than regression-based models. The main reason
is that propensity score methods are grounded in formal statistical frameworks, and avoid extrapolating
beyond the observational data, as could be the case with regression-based methods.

Baker et al. [48] used the Granger causality framework to examine the causal relationship between
regional aviation and economic growth. However, this framework’s link to causal relations is debated
as it relies heavily on temporal relationships rather than causal ones [49]. This doubt relates to the
fallacy of “Post hoc ergo proter hoc”, where conclusions are based solely on the order of events [50].

Wilke et al. [51] investigated the causes of airport surface safety occurrences and used correlation-
based statistical methods to gain insights into potential factors contributing to these events.

4.3. Feature Selection and Data Preparation
To apply the methods described in section 4.2, the model’s input features must be determined. In
the causal inference framework, this refers to selecting the causal factors for analysis. The strategies
commonly used are extensions of each other where one first relies on supporting literature and data
availability, potentially supplemented by the author’s expertise. Then secondly, one can opt to employ
an analytical approach. Both these strategies are presented in this section.

Literature, Available Data, and Own Insight Approach In the available literature, the majority of
the found studies performed feature selection through literature review and own insights of the author
on the topic. Examples of papers where this method of feature selection has been applied are the ones
from Liu et al. [33], and Szenczuk et al. [46].

It should be noted that as this study is performed in the US, data availability will differ for European stud-
ies. As such, the implementation of Traffic Management Initiatives (TMIs) and Special Activity Airspace
(SAA), both used in the study of Liu et al. [33], indicators are not in the same way applicable to studies
in European airspace.

What is interesting to note in the feature selection of these studies, is the different chosen levels of
detail for the features. For example, convective weather phenomena were split into five variables in
the study of Lui et al. [33], while in the study of Szenczuk et al. [46] a single indicator was used to
cover all aspects. This is most likely the result of a trade-off between analysis complexity, and the data
availability in combination with the scope of the study, as the former considers the cruise segment of
flight, and the latter only the descent phase.

Although differences remain in the feature selection between studies, the following groups of consid-
ered causal features could be identified:
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1. Nominal route variations
2. Wind contribution
3. Convective weather
4. Flight path restrictions
5. Congestion

Analytical Approach In the study of Marcos et al. [35], analytical methods for data exploration and
selection for input features are presented. The method involved visually analyzing an initial selection of
features from expert consultation to determine their suitability for the prediction of the chosen flight ef-
ficiency indicator. In parallel, to support the visual justifications, the following four statistical correlation
indicators were computed between the efficiency indicator and the different features to help support
the selection: Peasron’s, Spearman’s, Distance, and Mutual Information correlation factors.

A feature heavily correlated to flight efficiency can hint towards a possible causal relation between these
two factors. Next to this, the outputs of these correlation metrics can then also be used to assess what
methods could possibly be used for causal inference. For instance, if a feature scores high in Pearson’s
correlation, a linear regression model could be suitable whereas if it were to score high in Spearman’s
correlation and low in Pearson’s correlation a non-linear relationship is likely. Then a linear regression
model would not be suitable.

4.4. Findings of Previous Studies
Summarizing the results of previous studies will not only allow for the comparison of findings but for
an idea to be formed of what results one could expect when performing similar studies. The following
section presents the found causal influence as well as an introduction to future work discussions.

Feature Influence Results While it should be noted that the considered studies did not explicitly
address fuel burn. Therefore, the conclusions drawn regarding inefficiency causes cannot be directly
generalized to excess fuel burn, as discussed in chapter 3. Nonetheless, the findings and insights from
these previous studies serve as valuable starting points for the proposed research.

Regarding a limited selection of origin-destination (O-D) pairs in the US analyzed by Liu et al. [33],
significant variations were observed among different O-D pairs. Overall, convective weather and wind
effects were identified as having the greatest impact on flight inefficiency, although it should be noted
that the study also emphasized the fact that no single identifiable cause can be noted.

At the Area Control Center (ACC) level of analysis, as demonstrated in the European study by Marcos
et al. [35], the route structure and flight direction were suggested as the most influential factors. It
is important to note that this study did not consider weather effects. Contrary to expert expectations,
congestion, and daily variability were found to have a low influence, potentially due to the study being
conducted in February, a period with lower flight intensity.

Regarding flight trajectory performance during arrival at two major Brazilian airports, the study con-
ducted by Szenczuk et al. [46] highlighted the significant role of airspace structure in vertical perfor-
mance variations. Also, it was observed that certain trajectory patterns consistently showed lower
efficiency. In terms of causal effects, this study provided evidence of the impact of arrival demand,
weather conditions, and traffic flow management on vertical performance. Among the observed fac-
tors, convective weather phenomena were identified as the most significant contributors to inefficiency.

Limitations and Recommendations for Future Work Just as important to consider are the limita-
tions and recommendations for future work from the previously performed research.

In the work of Liu et al. [33] difficulties were encountered when attempting to pinpoint the various
causes of flight inefficiency due to all effects being found to be relatively similar. A possible reason
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given for was given to be the largely homogeneous distribution of the attributes across the various
flight path alternatives. This would mean that not enough variation of the features would be available in
the training model, thereby making it harder to estimate the effect on flight efficiency due to this factor
when it is varied. Alternatively, it could be possible that for the flights considered, the identified causes
average each other out. The study of Marcos et al. [35], highlighted the lack of data as a source of
error due to (1) exclusion of both wind and convective weather conditions, and (2) ATC shortcuts which
currently can’t be deterministically predicted.

Furthermore, in the course of this literature review, an observation was made that previous research
predominantly focused on the primary causal factors of interest, often overlooking the potential influ-
ence of mediators. This omission raises the likelihood of confounding in the obtained results.



5
Conclusion of Literature Review

The performed literature review has highlighted a research gap that could contribute to a better under-
standing of the necessary measures for reducing the environmental impact of aviation. While previous
studies have focused on the quantification of aviation’s environmental impact and others on optimizing
flight trajectories for reduced impact, this study aims to understand the underlying dynamics leading
to the disparity between current and optimal operations. Although some studies have explored the
causality of Air Traffic Management (ATM) inefficiencies, to the best of the author’s knowledge, none
have evaluated inefficiency causality with metrics closely tied to environmental improvements, such as
excess fuel consumption.

To employ metrics such as excess fuel burn, the developed model will need to consider all control di-
mensions (lateral, vertical, speed, and time) simultaneously, a particularity not previously required in
existing studies. In the current state-of-the-art, researchers have previously made use of excess fuel
burn metrics by comparing actual trajectories with optimal routes computed by flight path optimizer.
However, this approach has not been extended to the scale of the entire European airspace with the
same level of detail. The inclusion of additional control dimensions also requires the consideration of
a broader spectrum of ATM inefficiency factors, all of which impact fuel consumption. While an overall
comprehension of factors that may contribute to a change in flight efficiency is present, only a few stud-
ies have considered the entirety of inefficiency factors together. To fill this research gap, both of these
scientific innovations must be addressed through well-founded assumptions and decisions regarding
flight subset sampling and the selection of causal features.

The aim is to establish a scientific foundation that flight operators and air traffic managers can utilize to
identify the key factors responsible for excessive emissions in air travel and to determine their level of
influence. By doing so, these stakeholders will be equipped with the necessary tools to make informed
decisions regarding the path toward a sustainable future for aviation. Furthermore, the novel frame-
work proposed in this study may facilitate more precise estimates of inefficiencies in aviation emission
inventories. Ultimately, the objective of this project is to create and assess a framework for the large-
scale use of causal inference methods in uncovering the most significant inefficiencies in Air Traffic
Management (ATM) that contribute to the adverse environmental effects of aviation. Further confirm-
ing this research gap, the use of causal inference methods in the context of aviation environmental
impact analysis has also been hypothesized in the state-of-the-art compiled by Gao et al. [52].
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