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Abstract

Super-resolution microscopy methods are able to image samples with improved resolution
over the diffraction limit. Single-molecule localization microscopy (SMLM) methods break
the diffraction limit by sparsely activating fluorescent emitters. The resulting sparsity in the
emission signal can be exploited by estimation algorithms, which enables localization with
improved precision. Modulation enhanced SMLM (meSMLM) methods further increase the
localization precision by combining SMLM techniques with patterned illumination. By using
prior information to refine emitter position estimates, iterative meSMLM (imeSMLM) meth-
ods such as iterative MINFLUX are able to locally improve the resolution.
For (me)SMLM methods, the Cramér-Rao lower bound (CRLB) is often used to assess the
localization precision. The CRLB bounds the variance of arbitrary unbiased estimators from
below. As the CRLB treats estimands as deterministic unknowns, a prior distribution on the
estimands cannot be incorporated into the bound. Therefore, the effect of prior information
on the localization precision of imeSMLM methods is not captured by the CRLB.
The Van Trees inequality (VTI) is a Bayesian variant of the CRLB. Because it treats esti-
mands as random variables with a known prior distribution, it is able to account for the effect
of prior information on the estimator precision. It is therefore able to accurately bound the
localization precision of imeSMLM methods from below.
An imeSMLM method is considered, in which the positions of sinusoidal intensity patterns are
controlled over the course of multiple iterations. Intensity minima of sinusoidal patterns are
placed symmetrically around the current estimate of the emitter position, at a distance based
on the localization precision of the previous iteration. This strategy balances the information
content of signal photons with the need for robustness to estimation errors.
Using the VTI, we derive a fundamental limit on the localization precision of imeSMLM
methods that make use of standing wave illumination patterns. This limit shows that in the
absence of background, the information content of signal photons increases exponentially as
a function of the iteration count. Using Monte Carlo simulations, the maximally achievable
localization precision for different illumination pattern placement control strategies was eval-
uated. The VTI allows to assess the performance of pattern placement control strategies and
is therefore a promising method for optimal control of imeSMLM methods.
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Preface
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“One can take the point of view that in the 20th century, it was the lenses which
were decisive. And the lens makers were the “kings”. One had to go to them and
ask them for the best lenses to get the best resolution. But how is it today? No,
it is not the lens makers. This resolution game is not about lenses anymore.”
— Stefan W. Hell, Nobel Lecture, December 8, 2014.





Nomenclature

Symbol Quantity Unit
α Objective half-angle rad
A Normalization constant for illumination pattern -
c Speed of light in vacuum m/s
Cθ̂ Covariance matrix of θ̂ -
∆x Pixel size in x-direction m
∆y Pixel size in y-direction m
fθ Probability density function, dependent on θ -

h(r)2 Gaussian point spread function in position r -
I(θ) Fisher information matrix -
J Bayesian information matrix -
JD Bayesian data information matrix -
JP Bayesian prior information matrix -
k Wave number 1/m
L Spatial pattern period m
λem Wavelength of emission light m
λ(θ) Prior probability distribution on θ -
L(θ|x) Likelihood function of θ, given measurements x -
`(θ|x) Log-likelihood function of θ, given measurements x -
m Modulation contrast -
M Amount of iterations -
µ Poisson mean, in particular expected photon count photons
n Index of refraction -

nMC Amount of Monte Carlo samples -
nx Amount of pixels in x-direction -
ny Amount of pixels in y-direction -
NA Numerical aperture -
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xvi Nomenclature

Symbol Quantity Unit
pθ Probability mass function, dependent on θ -
P Illumination pattern intensity -
r Position vector m
σ Standard deviation of a random variable -

σCRLB Localization precision Cramér-Rao lower bound m
σVT Localization precision Van Trees inequality m
σPSF Standard deviation of Gaussian PSF m
t Time s
θ Parameter, used in estimation -
θ Parameter vector, used in estimation -
θ̂ Estimate of parameter vector θ -
θx Emitter x-position m
θy Emitter y-position m
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x x-coordinate m
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y y-coordinate m
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z z-coordinate m
φ Phase of a wave rad
φ0 Initial phase of a wave rad
φk Pattern phase in iteration k rad
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Chapter 1

Introduction

Optical microscopes have greatly enhanced the knowledge about life on a microscopic scale.
By overcoming a fundamental resolution limit, super-resolution fluorescence microscopy meth-
ods are able to image cells with nanoscopic precision. In this chapter, we introduce the topic
of super-resolution microscopy by discussing important concepts and methodologies. This
will ultimately build up to the motivation for this thesis.
In Section 1-1, fluorescence microscopy is introduced. Section 1-2 will discuss the diffrac-
tion limit, which is a fundamental limit on the resolution on optical microscopes. Next, in
Section 1-3, super-resolution microscopy will be introduced as a way to circumvent the diffrac-
tion limit. Recently proposed modulation-enhanced single molecule localization microscopy
(meSMLM) methods, which are able to further improve the localization precision with respect
to classical super-resolution microscopy methods, are discussed in Section 1-4. Section 1-5
contains the thesis motivation and the outline of this text is given in Section 1-6.

1-1 Fluorescence microscopy

For decades, optical microscopes have played a key role in understanding life. After his devel-
opment of the first single lens microscope in the seventeenth century, Antoni van Leeuwenhoek
(a fellow Delftian) was able to observe bacteria, red blood cells and larvae [8]. The latter
observation was solid evidence to dispute the theory of generatio spontanea, which was the
classical idea that life could originate from dead or lifeless subjects. Van Leeuwenhoek and
his primitive microscope provided key evidence to advance the knowledge about life.
Since then, light microscopes have undergone significant developments. For our purposes, the
discovery of fluorescence microscopy is of particular interest. Before we discuss the design
of an epifluorescence microscope, we briefly explain the principle of fluorescence. In short,
fluorescence is a process where a fluorescent emitter absorbs light, after which it re-emits light
again when a certain time has passed [1].
To give a detailed explanation of fluorescence, we have to introduce electron energy levels
and transitions. This can be done through a so-called Jabłoński diagram [1], as shown in
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2 Introduction

Figure 1-1(a). A Jabłoński diagram displays the energy states of the electrons in an atom or
molecule on the vertical axis, to indicate energy transitions.

Figure 1-1: (a): Example of a Jabłoński diagram for a fluorophore. When a photon is absorbed
by a fluorophore, an electron can move from the ground state GS0 to a higher energy state
ESn (Transition 1). In a higher energy state ES2, the electron quickly dissipates energy through
vibrational losses, such that it ends up at the lowest excited energy state (Transition 3). When
the electron returns to the ground state, the dissipated energy can be dispersed as heat or to
a quenching molecule (Transition 2) or it is emitted as a photon, of which the wavelength is
determined by the Stokes shift (Transition 4). Source: Adapted from [1].
(b): As a result of energy losses, the emission wavelength is higher than the excitation wavelength.
This effect is called the Stokes shift. Source: Adapted from [2].

In Figure 1-1(a), electrons initially reside in the ground state GS0. When light of a specific
wavelength hits a fluorophore, a photon can be absorbed by the fluorophore and this moves
an electron from the ground state to a higher energy state ESn [1]. After an electron has
moved to a higher energy state (ES2 in Figure 1-1(a)), it quickly moves back to its lowest
excited energy state (ES1 in Figure 1-1(a)). This is accomplished through vibrational energy
losses and the lost energy is dissipated as heat.
When going from the lowest excited state to the ground state, the electron once again needs
to release energy [1]. This energy can be lost as heat (non-radiative relaxation) or it can be
dispersed to a quenching molecule, both of which will not result in fluorescence. The last
option to disperse energy is through releasing a photon, and this is called fluorescence.
Note that, as energy is lost during the transitions, the emitted photon will have a longer
wavelength than the absorbed photon, under the assumption that a single photon is used
in the initial excitation. The difference between the maxima of the emission and excitation
spectra is called the Stokes shift [9], and it is illustrated in Figure 1-1(b).

The difference between the illumination and emission wavelengths can be exploited to image
emitters using fluorescence. To explain this, we discuss the design of an epifluorescence
microscope. An example of an epifluorescence microscope is shown in Figure 1-2.

Dylan Kalisvaart Master of Science Thesis



1-1 Fluorescence microscopy 3

Figure 1-2: Design of an epifluorescence microscope. White light from a light source passes
an excitation filter, to discard all wavelengths that do not match the absorption spectrum of
the used fluorophores. This light is reflected by the dichroic mirror and illuminates the sample.
Fluorophores in the sample send out emission light, which is magnified by the lens array and which
can pass the dichroic mirror as a result of the Stokes shift. This light is filtered once more by an
emission filter, after which it is recorded by a detector. Source: [1].

In Figure 1-2, light from a light source enters the microscope. Figure 1-2 depicts a white light
source, but as an alternative one could use a single-mode laser as a light source [1]. This is
advantageous, as it can produce (almost) monochromatic light of high enough intensity to be
used in fluorescence microscopy.
As a first step, it is important to filter the excitation light, such that only light in the ab-
sorption spectrum of the fluorescent emitter remains. In this way, unwanted excitation is
minimized, which may reduce the time it takes for a fluorophore to bleach. The filtering is
done through an excitation filter, which is usually band-pass to achieve the aforementioned
goal.
After passing through the excitation filter, light encounters a dichroic mirror (DM) [10]. This
mirror is a special filter, which reflects certain wavelengths, while letting others pass. It should
be chosen, such that the excitation wavelengths are reflected, while the emission wavelengths
(which are different as a result of the Stokes shift) pass.
After being reflected by the dichroic mirror, excitation light passes through an array of lenses.
These lenses focus the excitation light into the sample plane. The sample has been labeled
with fluorophores. In particular, the fluorophores and sample have been treated, such that
the fluorophores attach to particular molecules in the sample. While illuminated, the fluo-
rophores emit photons, which are focused into the camera plane by the lens array.
By the choice of the dichroic mirror, the emission wavelengths can pass through, which means
they have been separated from the excitation wavelengths and can be imaged on a camera.
However, some unwanted wavelengths may still have passed the dichroic mirror. An emission
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4 Introduction

filter is placed in the emission path after the dichroic mirror, to filter out these unwanted
wavelengths. After this, the light is focused on a camera, resulting in an image of the sample.
The main advantages of (epi)fluorescence microscopy are its selectivity, its relatively high
signal to background ratio (SBR) and its minimal invasivity [1]. As the sample needs to
be labeled with fluorophores, they can be chosen or treated such that they attach to spe-
cific molecules in the sample. Furthermore, as the emission light is filtered, the microscope
discriminates between excitation and emission light. Because of this, the background of the
image is reduced (or the contrast in the image is enhanced), resulting in a high SBR. Lastly,
fluorescence microscopy is particularly suited for biological purposes, as it is a minimally in-
vasive technique.
A drawback of epifluorescence microscopy is the significant sample volume that is illuminated
at a time. Most importantly, this reduces the contrast of the image, as light of fluorophores
in the background cannot be distinguished from light of fluorophores in the image plane [10].
Consequently, the image resolution decreases. This issue is solved in other microscope types,
such as TIRF microscopy [11] and confocal microscopy [12, 13].

1-2 Resolution

Due to the effects of diffraction, wavefronts of light coming from a point source cannot be fo-
cused into an infinitesimally small spot. The image of a point source is called the point spread
function (PSF) of the imaging system [14]. The PSF is proportional to the two-dimensional
Fourier transform of the complex amplitude of the wavefront in the pupil plane of the optical
system. The intensity of a point spread function for an unaberrated optical system with a
circular aperture is called the Airy pattern and it is shown in Figure 1-3.

Figure 1-3: Simulated Airy pattern, which occurs as a result of diffraction when focusing light
from a point source into the image plane. Source: [3].

The PSF carries information about the effect of the imaging system on the image. Note that a
point source is very similar to a Dirac delta function: it is infinitesimally small and maximally
bright. Because of this, the PSF is often referred to as the two-dimensional spatial impulse
response of an imaging system [14].
As the imaging system does not add or subtract energy from the object, a common assumption
is that the PSF h(x, y)2 is normalized:

∫∫
R2 h(x, y)2dxdy = 1 [14]. Furthermore, the PSF is

not dependent on the position of the point source in the object plane.
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1-2 Resolution 5

As an object can be seen as collections of point sources, the PSF can be used to compute the
image of any object by convolution, as shown in Equation (1-1).

g(x, y) = h(x, y)2 ⊗ f(x, y) (1-1)

In Equation (1-1), g(x, y) denotes the intensity of the image and f(x, y) denotes the intensity
of the object. The ⊗ operator represents a two-dimensional convolution. From Equation (1-1),
we can see that the image is a smoothed version of the object, with the smoothing being done
by the PSF. This is also illustrated in Figure 1-4, which shows how a PSF smooths an object.

Figure 1-4: Example of how a point spread function (PSF) smooths an object, through the
convolution of Equation (1-1).

Figure 1-4 shows that as a result of smoothing of the object by the PSF, features in an image
may become indistinguishable. The degree to which features are distinguishable is quantified
through the resolution of an optical system. Specifically, the resolution of an optical system
specifies the distance two objects need to be apart, for their images to be distinguishable (or
resolved) [14].
To quantify the best possible resolution that can be achieved by a light microscope, the
Abbe criterion can be used. It is defined as the highest spatial frequency (i.e. the smallest
periodicity) of an object that is able to pass through the objective [15]. The Abbe criterion,
often also called the diffraction limit, is shown in Equation (1-2).

σx,y = λem
2NA (1-2)

In Equation (1-2), σx,y is the lateral diffraction limited resolution, λem is the wavelength of
emission light and the numerical aperture NA is given by NA = n sinα. Here, n represents
the refractive index of the medium in which the objective lens is working and α represents
the maximal half-angle of light that can enter the objective.
Due to the diffraction limit, the resolution σx,y of a light microscope takes values around
[150, 400] nm. For example, if we take green light with a wavelength of 500 nm and a nu-
merical aperture of 1.3, we find a resolution σx,y = 192 nm. While this certainly is a small
number, it is not enough to differentiate between proteins, small molecules or viruses, all of
which are (roughly speaking) in the range of 1 nm to 100 nm [16, 17].
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1-3 Super-resolution microscopy

Super-resolution microscopy methods break the diffraction barrier of Equation (1-2) [16].
Originally, methods used either the illumination path [18, 19] or the emission path [17, 20,
21, 22] of the microscope. For our purposes, the latter category of methods is of interest.
Methods that use the emission path (often called single-molecule localization microscopy
(SMLM), or localization microscopy) sparsely activate fluorescent labels and exploit the
resulting sparsity in the emission signal to estimate emitter positions with high precision
[17, 23, 24].
The objective of SMLM is to isolate emitters in space and in time [16]. With isolation in
space, we mean that molecules that are visible at the same time should be located outside of
a range defined by the diffraction limit. Because of this, their PSF’s appear separately in an
image.
With isolation in time, we mean that only one molecule within a range defined by the diffrac-
tion limit may be visible at a time. Without temporal separation, the PSF’s of neighboring
emitters overlap in the same image. Temporal separation results in their PSF’s appearing on
separate images, thus making them individually distinguishable.
To achieve this spatio-temporal separation, a key role is played by fluorescence. SMLM meth-
ods sparsely activate fluorescent emitters, such that there is a high probability of (at least
some) isolated PSF’s appearing on every image frame. Using the recorded isolated PSF’s, an
estimation algorithm can be used to localize molecules with increased precision.
The localization precision of SMLM methods is proportional to σx,y√

θI
, where σx,y is the diffrac-

tion limit of Equation (1-2) and where θI is the number of collected photons from one emitter.
From this, it can be seen that SMLM is able to circumvent the diffraction limit, by recording
multiple signal photons.

To obtain estimates of emitter positions and their localization precision, SMLM methods
acquire and process data. Based on [4] we present the following image processing pipeline to
obtain images of samples and to process the raw image data into a super-resolution image.
This pipeline is illustrated in Figure 1-5.

1. Data acquisition

2. Pre-processing

3. Detection

4. Localization

5. Post-processing

6. Visualization

We briefly outline the steps of the image processing pipeline of Figure 1-5. In the data
acquisition step, data from an SMLM experiment is acquired. During each measurement, a
random, sparse subset of fluorescent emitters is activated. There is a high probability that
(at least some) PSF’s are spatially separated. When recording the next image, a new set
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1-3 Super-resolution microscopy 7

Figure 1-5: Image processing pipeline to obtain images of samples and to process the raw images
data into a super-resolution image using single-molecule localization microscopy (SMLM). In the
data acquisition step, a sample (labeled with emitters) is imaged at multiple time instances. As
a result of blinking or photobleaching, a small, random subset of emitters is active in each frame.
During pre-processing, measured (scaled) intensity values are converted to photon counts, to be
used in a fitting model. Next, during the detection step, regions of interest that contain emitters
are cropped from each image frame. During localization, emitter positions are estimated for
each region of interest. In the post-processing step, the outcomes of the localization step are
assessed, checked for errors and corrected. Examples of this are quality control, drift correction
and combining multiple localizations. Lastly, the results are visualized. Source: [4].

of emitters will be activated, which means that temporal separation is also achieved. This
ultimately results in a stack of images, each of which contains many (likely) separated PSF’s
[24].
Next, the images should be pre-processed. In [4], images (containing recorded intensity data)
are corrected for offset and gain. In this way, photon counts instead of intensity data can be
used in the image formation model.
In the detection step, regions of images that contain emitter signals should be selected [4].
There are many possible ways to select these regions of interest (RoIs), such as cropping out
a region if a certain photon count threshold is exceeded or doing a generalized likelihood ratio
test (GLRT) [25].
In the localization step, emitter positions are estimated for each region of interest. Simply
picking the maximum intensity pixel is not sufficient, as the resolution is then limited by the
pixel size [4]. A basic method that can estimate the emitter position with subpixel precision
is the center of mass algorithm [26]. However, this does not take any information we have
about the PSF or the imaging model into account. In [27], it is proposed to localized using
maximum likelihood estimation (MLE). A detailed description of this method is given in
Chapter 2.
Apart from estimating the emitter position, another important part of the localization step
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8 Introduction

is to determine the localization precision. After all, the goal is to localize emitters with
improved precision over the diffraction limit. Finding out the estimation error is non-trivial
in an experimental scenario, as the true estimator position is unknown. Hence, estimation
error bounds are often used to estimate the localization precision [28]. We introduce two
estimation error bounds, namely the Cramér-Rao lower bound and the Van Trees inequality,
in Chapter 2.
In the post-processing step, the outcomes of the localization step are assessed, checked for
errors and corrected. In [4], three parts of the post-processing step are discussed: quality
control, drift correction and combining multiple localizations. In the quality control part, the
outcomes of the detection step and the localization step are compared, to decrease the false
positive and false negative rates in the detection step. In the drift correction part, images
are corrected for moving emitters. The last part of post-processing is to combine multiple
localizations belonging to the same emitter, to estimate the position of this emitter with
improved precision.
In the final step, the results are visualized. Ultimately, one ends up with a set of localized
molecules, an estimate of their localization precision and a visualization that combines these
quantities [24].

1-4 Modulation-enhanced single-molecule localization microscopy

Recently, methods have been developed that make use of both the illumination path and the
emission path of a microscope [5, 6, 7, 29, 30, 31]. Instead of using uniform illumination,
like in the classical SMLM methods, these modulation enhanced single-molecule localization
microscopy (meSMLM) methods use patterned illumination. In this way, the recorded emis-
sion signals are modulated, which increases the information content. meSMLM methods are
therefore able to improve the resolution of optical microscopes even further.
In this section, we take a look at recently introduced modulation enhanced single-molecule
localization microscopy (meSMLM) methods. In Subsection 1-4-1, we discuss MINFLUX
[5, 6], which modulates the emitter signal with a doughnut-shaped illumination beam. In
Subsection 1-4-2, we introduce SIMFLUX [7], which makes use of a sinusoidal illumination
pattern.

1-4-1 MINFLUX: Doughnut-shaped beam illumination

In this subsection, we explain how MINFLUX is able to localize emitters. Furthermore, we
discuss an iterative variant of MINFLUX, which locally improves the resolution around the
emitter position.
In MINFLUX, a doughnut-shaped beam is combined with maximum likelihood estimation to
decrease the amount of signal photons needed to achieve a given resolution [5]. A doughnut-
shaped beam, as illustrated in Figure 1-6, is a circular illumination pattern with high intensity
on the boundaries and low or zero intensity in the center.

To localize an emitter with MINFLUX, a triangulation-like procedure is used. This is illus-
trated in Figure 1-6. Suppose we know from an earlier scan of the sample that an emitter
(star in Figure 1-6) is located in a ring (dashed circle in Figure 1-6). A doughnut-shaped
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1-4 Modulation-enhanced single-molecule localization microscopy 9

Figure 1-6: Figure from [5], illustrating how MINFLUX estimates an emitter position (located
at the star) through triangulation with the STED doughnut shaped beam. If it is known that an
emitter is contained in a ring (dashed circle), probing with the doughnut beam at four different
locations (the blue, purple, red and yellow dots) result in different photon counts. If the emitter
is close to the doughnut zero, it will emit a low amount of photons. If the emitter is far from the
center of the doughnut beam, it will emit a high amount of photons. From these measurements,
the molecule position can be estimated. Source: Adapted from [5].

beam is used with a diameter that is at least twice the diameter of this ring.
By positioning the illumination minimum of the doughnut-shaped beam in the center of the
ring and at the boundary (blue, purple, red and yellow dots in Figure 1-6) and measuring
the fluorescent response, we get information about the position of the emitter. If the emitter
is close to the intensity minimum of the doughnut-shaped beam, it will emit a low amount
of photons. If the emitter is far from the intensity minimum of the doughnut-shaped beam,
it will emit a high amount of photons. The information content of signal photons is thus
increased, as the emission signal carries additional information on the position of the emitter
relative to the doughnut-shaped beam. As such, emitters can be localized with increased
precision.

Being able to triangulate the emitter position with a small triangulation ring increases the
localization accuracy [5]. Iterative MINFLUX [6] uses prior information from earlier measure-
ments to redefine the triangulation ring during each iteration. This procedure is illustrated
in Figure 1-7.
First, the sample is scanned until an emitter is found. In the initial step, the emitter position
is estimated by probing around the emitter with a Gaussian laser beam in four positions.
This gives an estimate of the emitter position that is accurate enough to start the MINFLUX
triangulation. In each iteration, the radius of the triangulation ring is reduced by three times
the estimated localization precision of the previous iteration. The MINFLUX triangulation
is now performed on the smaller triangulation circle, using doughnut-shaped beams. In the
next iteration, the radius of the triangulation circle is reduced again and the process repeats.
In [6], it is argued that increasing the amount of iterations significantly improves the localization
precision over MINFLUX. Furthermore, it is beneficial to do more iterations instead of col-
lecting more photons per iteration, as photons become more informative when the amount of
iterations increases.
In practice, the amount of iterations cannot be increased indefinitely. By increasing the
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Figure 1-7: In SIMFLUX, sinusoidal illumination patterns are used to modulate the emission
signal. Standing wave illumination is used in two directions with three equidistant phase shifts
between 0 and 2π. The emission signal produced by the emitter (red dot) is modulated because
of this. If the Source: Adapted from [6].

amount of iterations, we need to accept that the amount of signal photons per iteration is
reduced as a result of e.g. bleaching of the fluorescent emitter. Because of this, the signal-
to-background ratio for each iteration lowers and the resolution is perturbed by background
(or, in the worst case, the emitter is no longer contained in the triangulation circle and the
procedure does not converge to the emitter position anymore). Hence, the process is iterated
until the signal-to-background ratio is below a predefined threshold.

1-4-2 SIMFLUX: structured illumination

In this subsection, we discuss how SIMFLUX uses structured illumination to increase the
information contained in images.
The main drawback of both MINFLUX and iterative MINFLUX is that the processes are not
suitable for imaging large samples. The triangulation regions are small (in [5], 50 nm, 100 nm
and 150 nm were used) and the procedure is hard to parallellize in practice [7]. SIMFLUX is
a wide-field technique and as such, it is able to image emitters over a large field of view.
In SIMFLUX [7], sinusoidal intensity patterns are used to modulate the emission signal.
This increases the information content per signal photon over SMLM methods, enabling
localization with improved resolution. This is illustrated in Figure 1-8.

Sinusoidal intensity patterns are generated in the sample plane by interference of two plane
waves. Patterns are oriented either in the x- or y-direction. In each direction, the pattern
is phase shifted three times with an equidistant spacing and emission signals are recorded
per pattern orientation and position. Similar to what was seen for MINFLUX, the recorded
emission signal is modulated by the sinusoidal illumination patterns: if an emitter was lo-
cated near a minimum of the sinusoidal illumination pattern, the corresponding photon count
is low, and vice versa. This additional information makes it possible to image emitters with
increased precision.
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Figure 1-8: In SIMFLUX, sinusoidal illumination patterns are used to modulate the emission
signal. Standing wave illumination is used in two directions with three equidistant phase shifts
between 0 and 2π. The emission signal produced by the emitter (red dot) is modulated because
of this. Source: Adapted from [7].

1-5 Thesis motivation

As discussed in the previous sections, localization precision plays an important role to as-
sess the quality of super-resolution methods. To characterize the localization precision of
(me)SMLM methods, the Cramér-Rao lower bound (CRLB) is often used [28]. Under mild
assumptions on the likelihood function of the acquired data, the CRLB bounds the variance
of unbiased estimators from below [32]. It is shown in [27] that in SMLM, the variance of the
maximum likelihood estimator approximately converges to the CRLB for 100 or more signal
photons. The CRLB can thus be used to estimate the localization precision of (me)SMLM
methods.
However, the CRLB cannot be used to accurately estimate the localization precision of
iterative modulation enhanced single-molecule localization microscopy (imeSMLM) methods,
such as iterative MINFLUX. As imeSMLM methods use prior information to improve emitter
position estimates over the course of multiple iterations, a suitable error bound should be able
to incorporate prior information. The CRLB treats estimands as deterministic variables and
as such, it is not able to incorporate prior information on the estimands into the localization
precision. For this reason, the CRLB fails to estimate how prior information affects the
localization precision.
In this text, we use the Van Trees inequality (VTI) as a Bayesian alternative to the CRLB
if prior information on the estimands, such as the emitter position, is available. The VTI
treats estimands as random variables with a known prior distribution, which makes it suited
to bound the localization precision of imeSMLM methods from below. Specifically, we use
the VTI to develop a fundamental limit on the localization precision of imeSMLM methods,
where standing wave intensity patterns are used for the localization.
In addition, the VTI can be used as an objective function in optimal control of iterative
meSMLM methods. In this text, we study an example where the positions of sinusoidal in-
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tensity patterns (as used in SIMFLUX) are chosen to maximize the information content per
signal photon. If the amount of signal photons that are recorded per iteration is fixed, this
optimization problem can be solved by finding the pattern positions that minimize the VTI.
We show that the information content of signal photons increases exponentially as a function
of the iteration count in the absence of background. Furthermore, we find that intensity
minima should be placed directly on the (estimate of the) emitter position to maximize the
information content of photons. As this pattern placement may cause robustness issues due
to the effect of estimation errors, we introduce two alternate pattern position control strate-
gies that balance performance and robustness. Using Monte Carlo simulations, we are able
to evaluate the performance of these pattern position control strategies using the VTI as a
performance metric.

1-6 Outline

This text is structured as follows. Chapter 2 discusses the mathematical background on
maximum likelihood estimation, the Cramér-Rao lower bound and the Van Trees inequality.
Sections 2-1 introduces likelihood functions. In Sections 2-2 to 2-4, maximum likelihood es-
timation and estimation error bounds are discussed.
In Chapter 3, the main findings of this thesis are described in the form of a manuscript. In
the manuscript, an image formation model for an imeSMLM method will be described and
the Van Trees inequality will be used to estimate the localization precision of this method.
Results include a fundamental limit on the localization precision of imeSMLM and simula-
tions of the localization precision under the effects of background and image discretization.
Three supplementary notes are included, which derive important results from the main text.
In Chapter 4, the thesis is concluded with a summary of the main findings. Furthermore,
we recommend ways to improve this research and we provide an outlook on future develop-
ments regarding control of imeSMLM methods. Lastly, in Appendix A, rigorous proofs and
derivations for results in the main text are found.
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Chapter 2

Parameter estimation

In this chapter, the mathematical background for maximum likelihood estimation is outlined.
In addition, lower bounds on the estimation error are formulated. In Section 2-1, the likelihood
function is introduced. In Section 2-2, the Cramér-Rao lower bound is formulated. In Section
2-3, the maximum likelihood estimator and its properties are outlined. In Section 2-4, we
introduce the Van Trees inequality as the Bayesian extension of the Cramér-Rao lower bound.

2-1 Likelihood functions

In this section, we introduce the likelihood function, which will be used in the coming sec-
tions to compute the Cramér-Rao lower bound, to introduce maximum likelihood estima-
tors and to compute the Van Trees inequality, respectively. Suppose we have a data set
x = [x1, x2, ..., xn]T , which can be seen as realizations of independent and identically dis-
tributed (i.i.d.) random variables [X1, X2, ..., Xn]T . Assume furthermore that the underlying
distribution of these random variables is known, up to a parameter vector θ ∈ Rm. To indi-
cate the dependence of the probability mass function (for discrete random variables) on θ, we
write it as pθ(x). Similarly, we write fθ(x) for the probability density function for continuous
random variables.
The likelihood function L(θ|x) for these measurements describes the probability of obtain-
ing precisely the measurements x = [x1, x2, ..., xn]T when realizing [X1, X2, ..., Xn]T , given a
value of the parameter θ [33]. The likelihood function is defined in Definition 2.1.

Definition 2.1. (Likelihood function) Suppose we have a data set x = [x1, x2, ..., xn]T ,
which can be seen as realizations of i.i.d. random variables [X1, X2, ..., Xn]T , of which the dis-
tribution depends on the parameter vector θ ∈ Rm. For discrete random variables [X1, X2, ..., Xn]T ,
the likelihood L(θ|x) is given by:

L(θ|x) =
n∏
i=1

pθ(xi)
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For continuous random variables [X1, X2, ..., Xn]T , the likelihood L(θ|x) is given by:

L(θ|x) =
n∏
i=1

fθ(xi)

In maximum likelihood estimation (see Section 2-3), it is the objective to maximize the
likelihood function by an optimal choice of θ. Maximizing the expression of Definition 2.1 by
setting the first derivative to zero may be computationally intensive, as the product rule for
differentiation needs to be applied repeatedly [34]. For discrete random variables, there is a
second drawback. As probability mass functions take values between 0 and 1, the formulation
of the likelihood function of Definition 2.1 goes to zero as the amount of measurements n
increases, which is undesirable for numerical optimization routines.
Hence, the likelihood is often replaced by the log-likelihood `(θ|x) = log(L(θ|x)) (where log
denotes the natural logarithm). As the logarithm is a monotonically increasing function,
L(θ|x) and `(θ|x) attain their extreme values for identical θ. Furthermore, the use of a
logarithm turns the product terms in Definition 2.1 into a sum of logarithms, which can be
differentiated using the sum rule for differentiation. The log-likelihood functions for discrete
and continuous random variables are shown in Equations (2-1) and (2-2), respectively.

`(θ|x) =
n∑
i=1

log(pθ(xi)) (2-1)

`(θ|x) =
n∑
i=1

log(fθ(xi)) (2-2)

2-2 Cramér-Rao lower bound

In this section, we introduce the Cramér-Rao lower bound (CRLB), which bounds the variance
of any unbiased estimator from below. We do so for scalar and vector estimators, respectively.
The CRLB is a lower bound on the variance of any unbiased estimator of an unknown, but
deterministic, parameter [32]. Many similar bounds exist: noteworthy alternatives are the
Van Trees inequality (see Section 2-4) or the Bhattacharyya bound [36], which have their
individual advantages and disadvantages with respect to the CRLB.
The main advantage of the CRLB with respect to the aforementioned bounds is that it is
relatively easy to obtain an analytical expression for the CRLB [32]. Furthermore, maximum
likelihood estimators will converge to the CRLB when the amount of measurements increases
[34]. Because of this, the CRLB is often used in conjunction with maximum likelihood esti-
mators in estimation problems [28].
Theorem 2.1 presents the scalar variant of the CRLB, based on [32]. A proof of this theorem
can be found in Appendix A-1.
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Theorem 2.1. (Cramér-Rao lower bound for a scalar estimator). Let x = [x1, x2, ..., xn]T
represent a data set, which can be seen a realization of i.i.d. random variables [X1, X2, ..., Xn]T
with a distribution depending on a parameter θ. Suppose that the likelihood function L(θ|x)
is continuously differentiable with respect to θ ∈ R and that its support {x|L(θ|x) > 0} does
not depend on θ. Then, the variance of any unbiased estimator θ̂ of θ satisfies:

Var(θ̂) ≥ 1
−E[∂

2`(θ|x)
∂θ2 ]

:= CRLB(θ)

where the derivative is evaluated at the true value of θ and where the expectation is taken
with respect to the likelihood function L(θ|x). Here, I(θ) = −E[∂

2`(θ|x)
∂θ2 ] is called the Fisher

information.

Note that the CRLB as presented in Theorem 2.1 generally depends on the parameter θ [32].
As a result, it is difficult to find the underlying CRLB for a practical estimation problem, as
the parameter θ is unknown (if not, there would be no reason to estimate it). This problem,
among other problems, is addressed by the Van Trees bound in Section 2-4.

In super-resolution microscopy, it is a common practice to estimate multiple model parame-
ters simultaneously [27]. Because of this, there is a need for a multivariate CRLB. The CRLB
for multivariate estimation problems is shown in Theorem 2.2. A proof of this theorem is
given in Appendix A-2.

Theorem 2.2. (Cramér-Rao lower bound for a vector estimator). Let x = [x1, x2, ..., xn]T
represent a data set, which can be seen a realization of i.i.d. random variables [X1, X2, ..., Xn]T
with a distribution depending on a parameter vector θ ∈ Rm. Suppose that the likelihood func-
tion L(θ|x) is continuously differentiable with respect to θ and that its support {x|L(θ|x) > 0}
does not depend on θ.
Define the entries of the Fisher information matrix I(θ) to be:

[I(θ)]p,q = −E
[
∂2`(θ|x)
∂θp∂θq

]

where the derivatives are evaluated at the true value of θ and where the expectation is taken
with respect to the likelihood function L(θ|x). Assume that I(θ) is invertible.
Then, the covariance matrix Cθ̂ of any unbiased estimator θ̂ of θ satisfies Cθ̂ − I

−1(θ) � 0
(that is, Cθ̂ − I

−1(θ) is positive semi-definite).

2-3 Maximum likelihood estimation

In this section, we introduce maximum likelihood estimation (MLE) as a practical way to
estimate model parameters from data.
Recall from Section 2-1 that the likelihood function L(θ|x) indicates the probability of re-
alizing precisely the data set x = [x1, x2, ..., xn]T when realizing i.i.d. random variables
[X1, X2, ..., Xn]T , of which the probability distribution depends on some unknown parameter
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vector θ ∈ Rm. The intuition behind maximum likelihood estimation is to maximize the
probability of realizing the obtained data by an optimal choice of the parameter θ.
To obtain the maximum likelihood estimate θ̂ for θ, we thus need to solve the maximization
problem of Equation (2-3) [32].

θ̂ = arg max
θ

L(θ|x) (2-3)

From both an analytical and a numerical point of view, maximizing the likelihood function
itself may be a bad idea. Maximizing the likelihood function by setting the first derivative
to zero may be computationally intensive, as the product rule for differentiation needs to
be applied repeatedly [34]. For discrete random variables, there is a second drawback. As
probability mass functions take values between 0 and 1, the formulation of the likelihood
function for discrete random variables, as shown in Definition 2.1, goes to zero as the amount
of measurements increases, which is undesirable for numerical optimization routines.
Note that these were precisely the reasons why the log-likelihood function `(θ|x) was in-
troduced before. Hence, an alternative approach is to maximize the log-likelihood instead.
This gives rise to the optimization problem shown in Equation (2-4). As the logarithm is a
monotonically increasing function, L(θ|x) and `(θ|x) attain their extreme values for identical
θ.

θ̂ = arg max
θ

`(θ|x) (2-4)

As such, it can be concluded that the maximum likelihood framework provides a systematic
way to construct estimators. Furthermore, maximum likelihood estimators have some de-
sirable properties [34], of which we will discuss four. First of all, the maximum likelihood
estimator is asymptotically unbiased. Note that nowhere in the maximum likelihood frame-
work, we impose that the estimator should be unbiased. As such, there is no guarantee that
the maximum likelihood estimator is unbiased for finite amounts of measurements. However,
as the amount of data points goes to infinity, the maximum likelihood estimator becomes
unbiased [34].
A second desirable property is that the maximum likelihood estimator asymptotically attains
minimal (co)variance, given by the Cramér-Rao lower bound, as long as the likelihood func-
tion satisfies the assumptions as stated in Theorem 2.1 or Theorem 2.2. This is a very strong
property: the Cramér-Rao lower bound is a lower bound on the variance of arbitrary unbiased
estimators, and as the maximum likelihood estimator attains it, it is an efficient estimator.
These two properties of asymptotic unbiasedness and asymptotic minimum variance, are
highly useful in super-resolution microscopy [27]. Namely, as shown in [27], the variance of
the maximum likelihood estimator can be considered to have converged to the Cramér-Rao
lower bound for relatively low amounts of photons (for classical SMLM methods, this happens
around 100 photons [27]). Because of this, the Cramér-Rao lower bound can be used as a
measure for the localization precision of a maximum likelihood estimate.
The next important property of the maximum likelihood estimator is that its distribution is
known asymptotically [38]. Suppose that θ̂ denotes the maximum likelihood estimator for θ
and that the Fisher information I(θ) for the corresponding log-likelihood function is known.
Then, the maximum likelihood estimator θ̂ is normally distributed if the amount of data
points goes to infinity, with mean θ and covariance I−1(θ), or θ̂ ∼ N (θ, I−1(θ)).
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The last property of maximum likelihood estimators that we will discuss is that they satisfy
the so-called invariance principle for estimators [34]. Suppose that θ̂ denotes the maximum
likelihood estimator for θ. Furthermore, let g(x) be an arbitrary, invertible function. The
invariance principle for estimators then states that g(θ̂) is the maximum likelihood estimator
for g(θ).

2-4 Van Trees inequality

In this section, we introduce the Van Trees inequality, which can be seen as an extension of
the traditional CRLB to account for prior information or biased estimators.
The Cramér-Rao lower bound, as introduced in Section 2-2, is often used to estimate the
localization precision of (me)SMLM methods, as it is a tight lower bound on the variance
of maximum likelihood estimators if more than 100 photons are collected [27]. However, it
suffers from some significant drawbacks.
The main drawback of the CRLB is that it cannot incorporate prior information on the es-
timand θ. As the CRLB treats θ as a deterministic parameter, it cannot include a prior
distribution on θ in its lower bound on the (co)variance. For imeSMLM, where information
from previous measurements is used to improve the quality of the current measurement, the
CRLB is not able to tightly bound the localization precision of the maximum likelihood esti-
mate.

This problem is addressed by the Van Trees inequality (VTI) [38], which can be seen as an
extension of the Cramér-Rao lower bound into a Bayesian statistics formulation. As the VTI
treats the estimand θ as a random variable with a known prior distribution, it is able to
incorporate prior information into a lower bound on the estimation error. Furthermore, it is
able to bound the mean squared error of biased estimators from below.
Suppose a data set x = [x1, x2, ..., xn]T was obtained, which can be seen as realizations of
i.i.d. random variables [X1, X2, ..., Xn]T , of which the probability distribution depends on
some unknown parameter θ ∈ Rm. The corresponding likelihood function for this data set
is L(θ|x) and the corresponding log-likelihood function for this data set is `(θ|x). Suppose
furthermore that we have access to a prior distibution λ(θ) on the parameter vector θ. We
define two expectation operators, as shown in Equations (2-5) and (2-6).

EL[.] =
∫
Rn

[.]L(θ|x)dx (2-5)

Eλ[.] =
∫
Rm

[.]λ(θ)dθ (2-6)

Note that Equation (2-5) describes the expectation operator, used in evaluating the CRLB.
Equation (2-6) describes the expected value with respect to the prior distribution on θ. We
can combine these expectation operators, as shown in Equation (2-7).

Eλ,L = Eλ[EL[.]] =
∫
Rm

∫
Rn

[.]L(θ|x)λ(θ)dxdθ (2-7)
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Note that L(θ|x) =
∏n
i=1 fθ(xi) = p(x|θ) by the definition of the likelihood function, where

p(x|θ) denotes the joint probability density function of x, conditioned on θ. By the definition
of the conditional probability, L(θ|x)λ(θ) = p(x|θ)λ(θ) = p(x,θ), where p(x,θ) denotes
the joint probability density function of x. Hence, Equation (2-7) is indeed an expectation
operator.
Equations (2-5) to (2-7) are used in the Van Trees inequality. The Van Trees inequality,
as formulated in [42], is stated in Theorem 2.3. A proof for this theorem can be found in
Appendix A-3.

Theorem 2.3. (Van Trees inequality for a scalar estimator).Let x = [x1, x2, ..., xn]T
represent a data set, which can be seen a realization of i.i.d. random variables [X1, X2, ..., Xn]T
with a distribution depending on a parameter θ ∈ R. Suppose that the likelihood function
L(θ|x) is continuously differentiable with respect to θ and that its support {x|L(θ|x) > 0}
does not depend on θ.
Let a prior probability density function λ(θ) on the parameter θ be known. Suppose that λ(θ)
is absolutely continuous and that λ converges to zero at the endpoints of its domain1.
Then, the mean squared error of any estimator θ̂ of θ satisfies:

MSE(θ̂) = Eλ,L[(θ̂ − θ)2] ≥ (JD + JP )−1

where the data information JD is given by

JD = Eλ[I(θ)] = Eλ

[
EL

[(
∂`(θ|x)
∂θ

)2]]

= Eλ

[∫
Rn

(
∂`(θ|x)
∂θ

)2
L(θ|x)dx

]

and where the prior information JP is given by

JP = I(λ) = Eλ

[(
∂ log(λ(θ))

∂θ

)2]
=
∫
R

(
∂ log(λ(θ))

∂θ

)2
λ(θ)dθ

Furthermore, (JD + JP ) can be rewritten as J = Eλ,L
[(

∂ log(p(x,θ))
∂θ

)2
]
, where p(x, θ) de-

notes the joint probability density function of x and θ. The scalar J is called the Bayesian
information.

As with the Cramér-Rao lower bound, the Van Trees inequality can be generalized for vector
estimators. The proof follows similar steps as multivariate CRLB-proof and the scalar Van
Trees inequality proof, as shown in Appendices A-2 and A-3. Hence, we state the multivariate
Van Trees inequality in Theorem 2.4 and we refer to [38] for its proof.

1A special case of this is that the domain of λ(θ) is compact (i.e. closed and bounded by the Heine-Borel
theorem) and that λ(θ) is zero at the boundaries of its domain.
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Theorem 2.4. (Van Trees inequality for a vector estimator). Let x = [x1, x2, ..., xn]T
represent a data set, which can be seen a realization of i.i.d. random variables [X1, X2, ..., Xn]T
with a distribution depending on a parameter θ ∈ Rm. Suppose that the likelihood function
L(θ|x) is continuously differentiable with respect to θ and that its support {x|L(θ|x) > 0}
does not depend on θ.
Let a prior probability density function λ(θ) on the parameter θ be known. Suppose that λ(θ)
is absolutely continuous and that λ converges to zero at the endpoints of its domain.
Then, the mean squared error matrix MSE(θ̂) = Eλ,L[(θ̂ − θ)(θ̂ − θ)T ] of any estimator θ̂ of
θ satisfies:

(
Eλ,L[(θ̂ − θ)(θ̂ − θ)T ]− (JD + JP )−1

)
� 0

That is, Eλ,L[(θ̂−θ)(θ̂−θ)T ]−(JD+JP )−1 is positive semi-definite, where the data information
matrix JD is given by

[JD]p,q = [Eλ[I(θ)]]p,q = Eλ

[
EL

[
∂`(θ|x)
∂θp

∂`(θ|x)
∂θq

]]

= Eλ

[∫
Rn

∂`(θ|x)
∂θp

∂`(θ|x)
∂θq

L(θ|x)dx
]

and where the prior information matrix JP is given by

[JP ]p,q = [I(λ)]p,q = Eλ

[
∂ log(λ(θ))

∂θp

∂ log(λ(θ))
∂θq

]
=
∫
Rm

∂ log(λ(θ))
∂θp

∂ log(λ(θ))
∂θq

λ(θ)dθ

Furthermore, (JD + JP ) can be rewritten as J with Jp,q = Eλ,L
[
∂ log(p(x,θ))

∂θp

∂ log(p(x,θ))
∂θq

]
, where

p(x,θ) denotes the joint probability density function of x and θ. The matrix J is called the
Bayesian information matrix.

From Theorems 2.3 and 2.4, it can be seen that the VTI does not depend on the parameter
vector θ anymore, as it is integrated away using the prior distribution. Hence, the Van Trees
inequality successfully incorporates prior information into its bound on the mean squared
error, as required.
One caveat in using the Van Trees inequality is that the expectation with respect to the
prior distribution is generally difficult to compute. While this expectation can be computed
analytically for special cases of the log-likelihood and the prior distribution, one generally
resorts to numerical evaluation of the expectations [43, 47]. We will return to this in Chapter
3, where we present importance sampling Monte Carlo integration as a numerical method to
estimate the value of integrals.
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Chapter 3

Precision in iterative modulation
enhanced single-molecule localization

microscopy

In this chapter, the findings of my thesis are discussed in the form of a manuscript. Further-
more, three supplementary notes are appended in which important results are derived.
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Precision in iterative modulation
enhanced single-molecule
localization microscopy

Abstract Modulation enhanced single-molecule localization microscopy (meSMLM) meth-
ods achieve increased resolution by combining SMLM techniques with patterned illumina-
tion. By using prior information to refine emitter position estimates, iterative meSMLM
(imeSMLM) methods as iterative MINFLUX are able to locally improve resolution. The
Cramér-Rao lower bound (CRLB) cannot be used to accurately estimate the localization
precision of imeSMLM methods, because it treats estimands as deterministic unknowns. By
treating estimands as random variables with a known prior distribution, the Van Trees in-
equality (VTI) can be used to bound the localization precision of imeSMLM methods from
below. An imeSMLM method is considered, where the positions of standing wave illumina-
tion patterns are controlled over the course of multiple iterations. Using the VTI, we derive
a fundamental limit on the localization precision of imeSMLM methods that make use of
standing wave illumination patterns. This limit shows that in the absence of background, the
information content of signal photons increases exponentially as a function of the iteration
count. Using Monte Carlo simulations, the maximally achievable localization precision for
different illumination pattern placement control strategies was evaluated. The VTI allows to
assess the performance of pattern placement control strategies and is therefore a promising
method for optimal control of imeSMLM methods.

3-1 Introduction

Superresolution fluorescence microscopy methods, such as stimulated emission depletion (STED)
[18, 19], structured illumination microscopy (SIM) [44, 45], photoactivated localization mi-
croscopy (PALM) [17] and stochastic optical reconstruction microscopy (STORM) [23, 24],
are able to circumvent the diffraction limit of light. STED and SIM use patterned illumi-
nation to increase the localization precision. On the other hand, single-molecule localization
microscopy (SMLM) methods as PALM and STORM improve resolution over the diffraction
limit by sparsely activating fluorescent emitters and exploiting sparsity in the emission light
to estimate emitter positions with increased precision.
Recently, methods were proposed that make use both the illumination and the emission path
of a microscope, to further increase the localization precision. These modulation enhanced
SMLM (meSMLM) methods use patterned illumination to sparsely activate emitters in a
sample, after which emitter positions are estimated from the sparsity in the emission light.
Methods as SIMFLUX [7], SIMPLE [30] and repetitive optical selective exposure (ROSE)
[31] use a standing wave intensity pattern for the illumination, while MINFLUX [5] uses
a doughnut-shaped intensity pattern. Axial resolution was increased through modulated
localization (ModLoc) [29, 46], which uses a pattern with structure in lateral and axial direc-
tions.
Localization precision can be increased locally around the emitter by iteratively adapting
meSMLM methods, based on prior information on the emitter position that was generated
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by previous measurements. These methods are called iterative meSMLM (imeSMLM) meth-
ods. In [6], an iterative variant of MINFLUX is discussed, where the position of an emitter
is estimated through triangulation with doughnut-shaped intensity patterns. This estimate
and its localization uncertainty are used as prior information to reposition and shrink the
triangulation region, after which the emitter position is estimated again. This procedure lo-
cally improves precision in the neighborhood of the emitter. Furthermore, it is argued that
increasing the iteration count is preferred over increasing the amount of signal photons per
iteration, as the information content of signal photons increases over the course of iterations.

To characterize the localization precision of (me)SMLM methods, the Cramér-Rao lower
bound (CRLB) is often used [28]. Under mild assumptions on the likelihood function of the
acquired data, the CRLB states that for any unbiased estimator θ̂ of the parameter vector
θ, it holds that Cθ̂ − I−1(θ) is positive semi-definite, where Cθ̂ denotes the estimator co-
variance and I−1(θ) denotes the Fisher information [32]. In a scalar scenario, the CRLB
thus bounds the estimator variance from below. As maximum likelihood estimators attain
the CRLB asymptotically, the CRLB can be used to estimate the localization precision of
SMLM methods. It is shown in [27] that in SMLM, the covariance of the maximum likelihood
estimator approximately converges to the CRLB for 100 or more signal photons.
However, the CRLB cannot be used to accurately estimate the localization precision of
imeSMLM methods. As imeSMLM methods use prior information to refine emitter posi-
tion estimates over the course of multiple iterations, a suitable error bound should be able
to incorporate prior information. The CRLB treats estimands as deterministic variables and
as such, it is not able to incorporate prior information into the localization precision. For
this reason, the CRLB fails to estimate how prior information affects the localization precision.

In this paper, we use the Van Trees inequality (VTI) as a Bayesian alternative to the CRLB
if prior information on the estimands, such as the emitter position, is available. The VTI
treats estimands as random variables with a known prior distribution, which makes it suited
to bound the localization precision of imeSMLM methods from below. Specifically, we use the
VTI to develop a fundamental limit on the localization precision of imeSMLM methods, where
standing wave intensity patterns are used for the localization. Furthermore, we simulate the
effects of illumination pattern position control on the localization precision. We show that in
the absence of background, the information content of signal photons increases exponentially
as a function of the iteration count. In addition, we are able to evaluate the performance of
pattern position control strategies using the VTI as a performance metric.
The remainder of this paper is structured as follows. First, an imeSMLM method that uses
standing wave illumination patterns is modeled in Section 3-2. Then in Section 3-3, the VTI
is applied to this image formation model. Section 3-4 discusses the obtained results and the
paper will be concluded in Section 3-5. Lastly, we elaborate on further applications of the
VTI in Section 3-6.

3-2 Image formation model

In this section, we discuss the image formation model used to estimate the localization pre-
cision in this text. A detailed derivation of this model is included in Supplementary Note 1.
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We consider an epifluorescence microscopy setup, where a single emitter is illuminated with
patterned intensity profiles during M iterations and for which read-out noise is assumed to
be negligible. As in [7], we consider standing wave intensity patterns with controllable spatial
phase shifts φx,k, φy,k in two orthogonal orientations. In each iteration k ∈ {0, 1, · · · ,M−1} of
the localization procedure, one x-oriented pattern Px,k(x, y, φx,k) and one y-oriented pattern
Py,k(x, y, φy,k) are used to illuminate the sample. These patterns can be described by:

{
Px,k(x, y, φx,k) = 1

4M [1 +m cos (ωx− φx,k)]
Py,k(x, y, φy,k) = 1

4M [1 +m cos (ωy − φy,k)]
(3-1)

where m ∈ [0, 1] denotes the modulation contrast of the pattern and ω (rad/m) denotes the
spatial frequency of the pattern.

The point spread function (PSF) h(x, y)2 is assumed to be Gaussian:

h(x, y)2 = 1
2πσ2

PSF

exp
(
−x

2 + y2

2σ2
PSF

)
(3-2)

where σPSF (m) denotes the standard deviation of the Gaussian PSF.
In the absence of read-out noise, the photons collected on position (x, y) of the camera during
iteration k can be modeled as realizations of a Poisson process with mean µk(x, y) [27], given
by:

µk(x, y) = θI [Px,k(θx, θy, φx,k) + Py,k(θx, θy, φy,k)]h(x− θx, y − θy)2 + θbBk(x, y) (3-3)

where coordinates (θx, θy) (m) denote the emitter position, θI (photons) and θb (photons/m2)
respectively denote the expected signal photon count and the expected background photon
count per area over all iterations in case an emitter is illuminated with maximum intensity
light. These estimands are collected in the parameter vector θ = [θx, θy, θI , θb]T . Furthermore,
Bk (m2) depends on the PSF and the illumination pattern (see Supplementary Note 1) and
accounts for the effect of imperfect illumination on recorded background. For the illumination
pattern described in Equation (3-1), Bk(x, y) is given by:

Bk(x, y) = 1
2M + m

4M exp
(
ω2σ2

PSF

2

)
cos(ωx− φx,k) + m

4M exp
(
ω2σ2

PSF

2

)
cos(ωy − φy,k)

(3-4)

To model the effects of discretization of the image due to finite camera pixel size, Equation
(3-3) has to be integrated over the pixel area. We consider a rectangular camera pixel array
without dead space between pixels, with nx pixels in x-direction and ny pixels in y-direction.
In addition, let all pixels be rectangular, with size ∆x in x-direction and ∆y in y-direction
and with the center of pixel i ∈ {1, 2, · · · , nxny} located at (xi, yi). Equation (3-3) then reads
as follows:
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µi,k = θI [Px,k(θx, θy, φx,k) + Py,k(θx, θy, φy,k)]Ex(xi, θx)Ey(yi, θy) + θbBi,k (3-5)

where Bi,k (m2) depends on the detector pixel area, the PSF and the illumination pattern (see
Supplementary Note 1) and accounts for the effects of finite camera pixel area and imperfect
illumination on recorded background. Bi,k and Eu(ui, θu) (with u = x or u = y) are given by:

Bi,k = ∆x∆y
2M + m∆x

2Mω
exp

(
−ω

2σ2

2

)
cos(ωyi − φx,k) sin

(
ω∆y

2

)
(3-6)

+m∆y
2Mω

exp
(
−ω

2σ2

2

)
cos(ωxi − φy,k) sin

(
ω∆x

2

)

Eu(ui, θu) = 1
2erf

(
ui − θu + ∆u

2
σPSF

√
2

)
− 1

2erf
(
ui − θu − ∆u

2
σPSF

√
2

)
(3-7)

Using this image formation model, the CRLB for individual iterations can be computed. It is
shown in [7, 27], that for a parameter vector θ, the entries of the Fisher information matrix
Ik(θ) during each iteration k are given by:

[Ik(θ)]p,q =
N∑
i=1

1
µi,k

∂µi,k
∂θp

∂µi,k
∂θq

(3-8)

3-3 Van Trees inequality for iterative localization precision

In this section, we discuss the Van Trees inequality (VTI) and its application to imeSMLM
methods. In Subsection 3-3-1, we introduce the Van Trees inequality as a way to bound
the mean squared error of estimators from below in case prior information is available. We
show in Subsection 3-3-2 how the VTI can be applied to compute the maximally achievable
localization precision of imeSMLM methods. In Subsection 3-3-3, we elaborate on how the
pattern positions φx,k and φy,k should be chosen to maximize the information content per
collected signal photon. Lastly, in Subsection 3-3-4, we explain how importance sampling
Monte Carlo integration can be used to compute numerical estimates of the VTI.

3-3-1 Van Trees inequality

In imeSMLM, prior information on the emitter position plays an important role in maximizing
the information content of signal photons. The CRLB cannot include prior information on
estimand vector θ, as it treats estimands as deterministic unknowns (i.e. they do not have
a probability distribution). As prior information cannot be incorporated into the CRLB, it
will fail to accurately estimate the localization precision of these methods.
The VTI [38, 42] is a Bayesian variant of the CRLB. By treating the estimand vector θ as
a random variable with a known prior distribution, it can incorporate prior information into
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the localization precision. A second advantage is that the VTI can bound the mean squared
error of biased estimators from below, while the CRLB only bounds the localization precision
of unbiased estimators.
The VTI can be used to bound the mean squared error of any estimator θ̂ of the parameter
vector θ from below if a data set x ∈ Rn, of which the distribution depends on θ, and a
prior distribution λk−1(θ) on the parameter vector are available in each iteration k of the
localization procedure [38, 42]. Under regularity conditions on the likelihood function L(θ|x)
and the prior distribution λk−1(θ) (see Supplementary Note 2), the mean squared error matrix
MSE(θ̂k) = Eλk−1

[∫
Rn(θ̂k − θ)(θ̂k − θ)TL(θ|x)dx

]
of any estimator θ̂k of θ during iteration

k satisfies:

(
Eλk−1

[∫
Rn

(θ̂k − θ)(θ̂k − θ)TL(θ|x)dx
]
− (JD,k + JP,k)−1

)
� 0 (3-9)

That is, Eλk−1

[∫
Rn(θ̂k − θ)(θ̂k − θ)TL(θ|x)dx

]
− (JD,k + JP,k)−1 is positive semi-definite,

where the data information matrix JD,k is given by:

[JD,k]p,q = Eλk−1 [[Ik(θ)]p,q] (3-10)

where the Fisher information Ik(θ) is given by Equation (3-8). The prior information matrix
JP,k is given by:

[JP,k]p,q = [I(λk−1)]p,q = Eλk−1

[
∂ log(λk−1(θ))

∂θi

∂ log(λk−1(θ))
∂θj

]
(3-11)

3-3-2 Localization precision for imeSMLM

The VTI can be used to estimate the maximally achievable localization precision of imeSMLM
methods in case a maximum likelihood estimator or a maximum a posteriori estimator is used
for localization. To be able to formulate the VTI, a prior distribution on the parameter vector
θ = [θx, θy, θI , θb]T needs to be chosen. It is shown in [38] that the maximum likelihood esti-
mator asymptotically follows a multivariate normal distribution, with mean θ and covariance
I−1(θ). Alternatively, one can say that for an increasing amount of signal photons, the max-
imum likelihood estimator becomes more unbiased and attains minimum covariance given by
the CRLB.
Results from [27] show that in SMLM, the maximum likelihood estimator approximately
attains these properties for 100 or more signal photons. For this reason, errors made in
the localization will mostly be a result of estimator covariance, which means that the mean
squared error and the covariance are approximately equal for high signal photon counts. Con-
sequently, it can be expected that the mean sqaured error bound provided by the Van Trees
inequality is dominated by the effect of covariance for high signal photon counts as well. This
means that the VTI is an indication of the maximally achievable localization precision.
By combining maximum likelihood estimation or maximum a posteriori estimation with the
VTI, the localization precision of imeSMLM methods can be simulated. This iterative pro-
cedure is illustrated in Figure 3-1.
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Figure 3-1: Simulation of the localization precision of imeSMLM using the Van Trees inequality
(VTI). In the first iteration, the Fisher information matrix I0(θ) is computed. The resulting
maximum likelihood estimate is asymptotically N (θ, I−1

0 (θ)) distributed, and we choose this as
a prior on the next iteration. In every following iteration, the VTI is evaluated using the prior,
resulting in the data information matrix JD,k and the prior information matrix JP,k in iteration k.
As the next prior, we choose N (θ, (JD,k +JP,k)−1). This iteration continues until the maximum
amount of iterations M is reached.

In the first iteration, the Cramér-Rao lower bound I−1
0 (θ) is evaluated. The corresponding

maximum likelihood estimator θ̂0 will approximately be Gaussian distributed, with mean θ
and covariance I−1

0 (θ).
An important realization is that the approximate distribution of the maximum likelihood
estimator can be used as a prior distribution for the next Van Trees evaluation. In iteration
1, we take the prior distribution λ0(θ) to be the probability density function of a multivariate
Gaussian distribution, with covariance I−1

0 (θ). As the asymptotic mean θ of the maximum
likelihood estimator is unknown, we take the maximum likelihood estimate θ̂0 as the mean
of the prior distribution. We then evaluate JD,1 = Eλ0 [I1(θ)] and JP,1 = I(λ0). We can say
that the new maximum likelihood estimate θ̂1 is approximately Gaussian distributed, with
mean θ and covariance (JD,1 + JP,1)−1 and use this to formulate the new prior distribution
λ2(θ).
In each new iteration k, we take the prior distribution λk−1(θ) to be the probability density
function of a multivariate Gaussian distribution, with mean θ̂k−1 and covariance
(JD,k−1 + JP,k−1)−1. We then evaluate JD,k = Eλk−1 [Ik(θ)] and JP,k = I(λk−1). We can now
say that the new maximum likelihood estimate θ̂k is approximately Gaussian distributed,
with mean θ and covariance (JD,k + JP,k)−1 and we use this to formulate the new prior dis-
tribution λk(θ). This continues, until M iterations are completed.

3-3-3 Choice of pattern positions

Using prior information on the emitter position, the pattern positions φx,k and φy,k can be
selected to maximize the information content of signal photons.
If we keep the amount of photons that are retrieved during a single iteration constant during all
iterations, the patterns that minimize the localization precision VTI maximize the information
content of signal photons. This procedure is illustrated in Figure 3-2.
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Figure 3-2: Optimization procedure to select pattern positions that maximize the information
content of signal photons. In the initialization step, no prior information is available and pattern
positions φx,0 = φy,0 = 0 are chosen. The resulting CRLB is used to determine a prior for the
next iteration. For all further iterations k, φx,k and φy,k are chosen to minimize the localization
precision VTI for a fixed amount of photons, after which the realized VTI is used to determine a
prior for the next iteration.

In the initialization step, no prior information is available. Therefore, the pattern positions
are chosen to be φx,0 = φy,0 = 0 by default. A parameter estimate θ̂0 is obtained and the
CRLB can now be computed, which results in a N (θ̂0, I

−1
0 (θ)) prior distribution for the next

iteration.
To select patterns in a further iterations k, pattern positions φx,k = φy,k should be chosen to
minimize the mean squared error given by the VTI. The amount of signal photons is fixed
per iteration and therefore a minimal mean squared error corresponds to a maximum amount
of information contained in signal photons. Consequently, this procedure allows us to locally
increase the localization precision around the emitter position.
The pattern positions that minimize the localization precision in both the x- and y-directions
are given by:

{
φx,k = ωθ̂x,k − π
φy,k = ωθ̂y,k − π

(3-12)

or 2π-multiples of these positions. That is, for the information content of signal photons to
be maximal, the intensity minimum of the standing wave patterns should be placed on the
current position estimate.
This result can easily be explained. Suppose that the pattern positions are chosen, such that
each intensity minimum is placed exactly on the emitter position. For simplicity, let us also
assume that the modulation contrast m = 1, such that the intensity minimum has zero in-
tensity. As the emitter is illuminated with zero intensity light, it will not emit any photons.
We therefore need to wait infinitely long to receive the fixed amount of signal photons.
For this to happen, two scenarios are possible. Either the emitter is located perfectly in
the intensity minimum, or nothing is located in the intensity minimum. These scenarios are
equivalent for the CRLB, as it does not incorporate prior knowledge on the emitter position
into the localization precision. As no emitter signal is recorded during this iteration, the
CRLB stays equal.
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On the other hand, the VTI is able to differentiate between these scenarios. Using the prior
information, the VTI expresses its confidence in that there is indeed an emitter located in this
position, resulting in a decrease of the mean squared error. The prior information thus adds a
significant amount of information content to signal photons in case an emitter is illuminated
with (near-)zero intensity light.

If the objective is solely to maximize the information content of signal photons, the robustness
of the iterative localization procedure could be destroyed. This is indeed the case for the
pattern positions of Equation (3-12). If the current position estimate is imprecise, intensity
minima will be placed away from the true emitter position and the newly obtained prior
distribution will add little information.
To increase the robustness of the iterative localization method, the intensity minima of two
patterns φ+

k and φ−k can be placed symmetrically around the current estimate of the emitter
position. In each iteration, the distance between the intensity minima can be decreased, locally
improving the localization precision around the current estimate of the emitter position.
In this text, we will explore two variants of this approach. First, we introduce a pattern
position control strategy where illumination minima are placed symmetrically around the
current estimate of the emitter position, in which the distance between the emitter position
and an intensity minimum scales with the localization precision of the previous iteration.
This control strategy is given by:

{
φ±x,k = ω(θ̂x,k−1 ± ασx,k−1)− π
φ±y,k = ω(θ̂y,k−1 ± ασy,k−1)− π

(3-13)

In the pattern positions of Equation (3-13), the localization precision σk−1 estimated in the
previous iteration is used to place the intensity minima of current patterns in the proximity
of the estimated emitter position. Therefore, robustness guarantees can be given under the
assumption that the estimator distribution is approximately Gaussian. We will explore the
performance using α = 1, α = 3 and α = 6, which respectively entrap the true emitter
position between the intensity minima with 68.3%, 99.7% and 99.9% probability during each
iteration. As a drawback of this method, the localization precision σk−1 must be computed
before a new pattern can be placed, thus requiring online adaptations to the pattern positions.
To circumvent the need for online adaptations, we propose a second pattern position control
strategy where illumination minima are placed symmetrically around the current estimate of
the emitter position and where the distance between the emitter position and an intensity
minimum is given by a predetermined constant. This control strategy is given by:

φ
±
x,k = ωθ̂x,k−1 ± π

βk
− π

φ±y,k = ωθ̂y,k−1 ± π
βk
− π

(3-14)

In the pattern positions of Equation (3-14), a predefined factor π
βk

is used to position intensity
minima around the emitter position estimate. As these pattern positions are known before-
hand, they are suited for offline pattern control. However, robustness guarantees cannot be
given for arbitrary model parameters. We will explore the performance using β = 2 and
β = 3.
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3-3-4 Numerical evaluation

In many practical scenarios, Equation (3-10) is difficult to compute analytically or it results
in complicated expressions for the localization precision. Aside from certain special cases (of
which two will be discussed in Subsection 3-4-1), one generally resorts to numerical methods
to evaluate the VTI [43, 47].
Due to the fact that we use a Gaussian prior, an appropriately chosen numerical quadrature
should be able to cover an infinite domain of integration, to ensure convergence to the true
data information matrix. Furthermore, as we consider a multivariate integral over R4, the
curse of dimensionality may cause slow convergence. Therefore, numerical integration meth-
ods that efficiently distribute function evaluations are preferred.
As we can easily sample from a multivariate Gaussian distribution, importance sampling
Monte Carlo integation (IMC) is a suitable method to evaluate Equation (3-10). In short,
Monte Carlo integration methods sample from a known probability distribution. These sam-
ples are used to evaluate the integrand, after which the value of the integral is estimated by
averaging the obtained integrand values [48]. If the domain of the sampling probability dis-
tribution equals or contains the domain of integration, asymptotic convergence to the integral
value is guaranteed under the law of large numbers [49].
In conventional Monte Carlo integration, a uniform distribution is used as a sampling prob-
ability. For the reasons named earlier, this is not sufficient for our purposes. In IMC, the
sampling probability distribution is chosen to maximize the similarity with the integrand. By
choosing a sampling distribution with an infinite domain, integrals over infinite domains can
be evaluated. Furthermore, by distributing sampling points such that important regions of
the integrand are sampled more often, the variance of the IMC estimator can be reduced with
respect to the conventional Monte Carlo estimator.
Equations (3-10) and (3-11) show that the Van Trees bound requires the following two ex-
pectations to be computed:

[JD,k]p,q = Eλk−1 [[Ik(θ)]p,q] =
∫
Rm

[Ik(θ)]p,qλk−1(θ)dθ (3-15)

[JP,k]p,q = Eλk−1

[
∂ log(λk−1(θ))

∂θp

∂ log(λk−1(θ))
∂θq

]
=
∫
Rm

∂ log(λk−1(θ))
∂θp

∂ log(λk−1(θ))
∂θq

λk−1(θ)dθ

(3-16)

By randomly sampling data points [θ1,θ2, · · · ,θnMC ]T from the i.i.d. random variables
[Θ1,Θ2, · · · ,ΘnMC ]T , each of which has the density function λk−1(θ), the IMC-estimates
ĴD,k and ĴP,k of Equations (3-17) and (3-18) can be used to estimate JD,k and JP,k, respec-
tively.

[ĴD,k]p,q = 1
nMC

nMC∑
s=1

[Ik(θs)]p,q (3-17)

[ĴP,k]p,q = 1
nMC

nMC∑
s=1

([
∂ log(λ(θ))

∂θi

]
θ=θs

[
∂ log(λ(θ))

∂θj

]
θ=θs

)
(3-18)
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For the simulations of Section IV, nMC = 50000 Monte Carlo samples were used. It was
found empirically that over the entire range of acquired signal photon counts and iterations,
the sample standard deviation of the evaluated integrand values lies below 2% of its sample
mean, implying convergence of the Monte Carlo integration for the given amount of samples.

3-4 Results and discussion

In this section, we present the theoretical and numerical results of our study. In Subsection
3-4-1, analytical expressions for fundamental limits on the localization precision are described
and analyzed. Subsection 3-4-2 gives an overview of the simulations and the used model
parameters. In Subsection 3-4-3, the effect of the amount of iterations and pattern positioning
on the localization precision is explored. Lastly, in Subsection 3-4-4, the effect of the initial
pattern position and estimation errors on the localization precision are simulated.

3-4-1 Theoretical limit

Under some assumptions on the image formation model, analytical expressions for the localization
precision can be derived using the VTI. We limit ourselves to one-dimensional localization.
Furthermore, as discussed in Section 3-3-3, we consider two sinusoidal patterns φ+

k and φ−k
of which the intensity minima have been placed symmetrically around the estimate of the
emitter position.
Lastly, we assume the expected signal photon count θI is a known constant (i.e. we do not
estimate it), we ignore background such that θb = 0 and we assume that the modulation
is perfect, such that m = 1. Under these three assumptions, the derived theoretical bound
serves as a fundamental limit on the localization precision. That is, the localization precision
of the imeSMLM method of Section II can only be worse than the fundamental limit, due
to estimation uncertainty on θI , the effects of background and imperfect modulation. The
effects of estimation uncertainty on θI and background on the localization precision will be
explored through numerical simulations in Sections 3-4-3 and 3-4-4.
We will present results in two scenarios. In the first case, we disregard the effect of dis-
cretization due to the finite size of camera pixels. As a result, this expression represents
the maximally achievable localization precision of an imeSMLM method where sinusoidal in-
tensity patterns are used, given a Gaussian PSF and a sequence of pattern positions. The
localization precision is given by (see Supplementary Note 3):

σx,k ≥ σx,k−1

(
2+

θIω
2σ2
x,k−1

4M

(
1 − (cos(ωθ̂x,k−1 − φ+

x,k) + cos(ωθ̂x,k−1 − φ−x,k)) exp
(

−
σ2
x,k−1ω

2

2

))
(3-19)

+
θIσ

2
x,k−1

4Mσ2
PSF

(
1 + (cos(ωθ̂x,k−1 − φ+

x,k) + cos(ωθ̂x,k−1 − φ−x,k)) exp
(

−
σ2
x,k−1ω

2

2

)))− 1
2

Master of Science Thesis Dylan Kalisvaart



32 Precision in iterative modulation enhanced single-molecule localization microscopy

If the pattern positions of Equation (3-13) are substituted into Equation (3-19), we obtain:

σx,k ≥ σx,k−1

(
2 +

θIω
2σ2
x,k−1

4M

(
1 + 2 cos(ωασx,k−1) exp

(
−
σ2
x,k−1ω

2

2

))
(3-20)

+
θIσ

2
x,k−1

4Mσ2
PSF

(
1− 2 cos(ωασx,k−1) exp

(
−
σ2
x,k−1ω

2

2

)))− 1
2

From Equation (3-20), several conclusions can be drawn. It can be seen that the contribu-
tion of the expected signal photon count θI to the localization precision grows exponentially
as σx,k−1 decreases. This implies that the information content per signal photon grows as
the amount of iterations increases. In the ideal scenario, it is thus favorable to increase the
amount of iterations indefinitely.
However, increasing the amount of iterations results in a lower amount of signal photons per
iteration, lowering the signal-to-background ratio in each iteration. The exponential scaling
may therefore be destroyed by background. In practice, it thus makes sense to limit the
amount of iterations. Furthermore, we assume here that the mechanical resolution of illu-
mination positioning system is not limiting, such that every illumination pattern position
between −π and π can be reached. In practice, this becomes increasingly difficult for small
σx,k−1, preventing the exponential limit to be reached for high amounts of iterations.

In the second scenario, the effects of image discretization by the camera are investigated. In
addition to all previous assumptions, a camera with a single, infinitely large pixel is considered.
Under this additional assumption, the localization precision is given by (see Supplementary
Note 3):

σx,k ≥ σx,k−1

(
2+ θIω

2

4M σ2
x,k−1

(
1− (cos(ωθ̂x,k−1 − φ+

x,k) + cos(ωθ̂x,k−1 − φ−
x,k)) exp

(
−
σ2
x,k−1ω

2

2

)))− 1
2

(3-21)

By comparing Equations (3-19) and (3-21), it becomes apparent that discretization only
affects the influence of the PSF on the localization precision. In the worst-case discretization
of Equation (3-21), the terms involving the standard deviation of the PSF have disappeared
from the expression, causing a precision loss. This is mainly a problem for earlier iterations
where σx,k−1 is large. However, as σx,k−1 decreases, the exponential scaling of the localization
precision is retrieved.

3-4-2 Simulations and parameter values

To evaluate how the VTI increases the information content of signal photons with respect
to the CRLB in an SMLM scenario, four simulations were done. These simulations explore
the effects of the amount of iterations, the choice of pattern positioning, the effect of the
initial pattern placement and the effect of estimation errors on the localization precision. As
orthogonal patterns are used, the localization precision in x- and y-direction is equal. We
will therefore only present the localization precision in the x-direction. In Figures 3-3 and
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3-4, the effects of pattern positioning and the iteration count on the localization precision
are simulated. The sensitivity of localization precision to the initial pattern position and
estimation errors is explored in Figures 3-5 and 3-6.

An overview of the used model parameters is contained in Table 3-1. These model parame-
ters were adopted from [7] are considered to be representative of an imeSMLM experiment
where standing wave intensity patterns are used to illuminate the sample. The modulation
contrast was set to 1 to isolate the effects of background and image discretization from the
effect of imperfect modulation and to accelerate convergence of the IMC estimation. In all
simulations, the acquired amount of signal photons was kept constant at 2000 photons and
signal photons were distributed equally over the iterations.

Table 3-1: Model parameters used in the localization precision simulations for sinusoidal illumi-
nation with a Gaussian point spread function. Parameters were based on those used in [7].

Quantity Symbol Value
Wavelength of emission light λem 680 nm
Emitter position (x-direction) θx 0 nm
Emitter position (y-direction) θy 0 nm
Expected background count θb 8 photons/pixel

Pixel size (x-direction) ∆x 65 nm
Pixel size (y-direction) ∆y 65 nm

Amount of pixels in x-direction nx 11 pixels
Amount of pixels in y-direction ny 11 pixels

Numerical aperture NA 1.49
Standard deviation of PSF in x- and y-directions σPSF 114 nm

Pattern frequency ω 25.8·106 rad/m
Modulation contrast m 1

3-4-3 Effect of iterations and pattern positioning

From the theoretical limit discussed in Subsection 3-4-1, it was found that illumination pat-
tern placement control can exponentially increase the information content of signal photons,
making an increase of the iteration count preferred over an increase of the amount of photons
per iteration. The effects of pattern positioning and the iteration count on the localization
precision will be simulated in this subsection.
In Figure 3-3, the information content of signal photons over the course of iterations is ex-
plored for different pattern position placement strategies. The pattern positions described
by Equations (3-13), (3-14) with α = 3 and β = 3 were used during 1, 3 and 5 iterations
and the resulting localization precision was evaluated using the Van Trees inequality. These
results are compared with the theoretical limit of Equation (3-19). The emitter position
(θx, θy) = (0 nm, 0 nm) was used and 3 iterations were simulated. Intensity minima were
placed symmetrically around the true emitter position, to eliminate the effect of estimation
errors.
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Figure 3-3: Simulated localization precision in x-direction as a function of the acquired amount
of signal photons, when sinusoidal intensity patterns are positioned (a) using Equation (3-13)
with α = 3; or (b) using Equation (3-14) with β = 3. Simulated results are compared against the
theoretical limit of Equation (3-19). The emitter position (θx, θy) = (0 nm, 0 nm) was used and
3 iterations were simulated. Intensity minima were placed symmetrically around the true emitter
position, to eliminate the effect of estimation errors.
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From Figure 3-3(a), it can be concluded that the information content of signal photons is
increased as a result of the pattern placement of Equation (3-13). As discussed for the theo-
retical limit, increasing the iteration count further increases the information content per signal
photon. In addition, the relative difference between the simulated non-ideal localization pre-
cision and the theoretical limit increases as the amount of iterations grows. This is explained
by the fact that the influence of background and discretization on the localization precision
accumulates as the amount of iterations increases, as lowered precision σx,k−1 in a previous
iteration is carried over to the next iteration.
From Figure 3-3(b), it can be concluded that the information content of signal photons is
increased as a result of the pattern placement of Equation (3-14). However, compared to the
pattern placement of Figure 3-3(a), significantly less information is obtained by using this
strategy for pattern placement. As the pattern placements are not adapted based on the cur-
rent localization precision, the distance between the intensity minima decreases significantly
slower during early iterations. In contrast to Figure 3-3(a), the relative difference between
the simulated non-ideal localization precision and the theoretical limit stays approximately
constant as the amount of iterations grows. As the pattern positions do not depend on the
localization precision of earlier iterations, lowered precision in previous iterations does not
significantly alter the localization precision achieved in the current iteration.

In Figure 3-4, the effect of increasing the iteration count on the localization precision was
simulated for the pattern positions described by Equations (3-13), (3-14). Photons are equally
distributed over iterations, such that 2000 photons are acquired when the maximum amount
of iterations is reached. As before, these results are compared against the theoretical limit of
Equation (3-19), the emitter position (θx, θy) = (0 nm, 0 nm) was used and intensity minima
were placed symmetrically around the true emitter position.

From Figure 3-4, it can be seen that independent from the chosen pattern placement strategy,
increasing the iteration count also increases the localization precision. Furthermore, it can be
seen that the pattern placement strategy of Equation (3-13) outclasses the theoretical limit of
the strategy of Equation (3-14), which is again a result of the fact that the distance between
the intensity minima decreases significantly slower during the early iterations.
For higher amounts of iterations, it can be seen that the pattern placement of Equation (3-13)
begins to stagnate as it deviates further from its theoretical limit, due to the accumulating
effects of background and discretization. On the contrary, the pattern placement strategy of
Equation (3-14) does not show an increasing deviation from its theoretical limit, as it is less
affected by repeated loss of localization precision.
As a remark, it should be noted that the simulated localization precision values are unrealis-
tically low. For example, localization precision values of 10−5 to 10−7 nm are not realistically
achievable, given e.g. the size of emitters. As the emitter size was not included in the image
formation model, these values do appear in simulations. It does show that in practice, either
a low amount of iterations is needed or a low amount of signal photons needs to be acquired
to achieve a desired localization precision.
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Figure 3-4: Simulated localization precision in x-direction as a function of the maximum amount
of iterations, when sinusoidal intensity patterns are positioned using Equation (3-13) with α =
1, 3 or 6 or using Equation (3-14) with β = 2 or 3. Simulated results are compared against
the theoretical limit of Equation (3-19). Photons are equally distributed over iterations, such
that 2000 photons are acquired when the maximum amount of iterations is reached. The emitter
position (θx, θy) = (0 nm, 0 nm) was used and intensity minima were placed symmetrically around
the true emitter position, to eliminate the effect of estimation errors.
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3-4-4 Effect of initial guess and estimation errors

In imeSMLM, the localization precision is also affected by the initial guess for the emitter
position and errors made when estimating the emitter position. If we are able to place
the intensity minimum of the initial pattern close to the true emitter position, then the
prior distribution on the emitter position becomes more precise in early iterations. However,
estimation errors can cause deterioration of the localization precision, as there now is an
offset between the true emitter position and the center between the intensity minima. In this
subsection, we investigate the sensitivity of the localization precision to these factors.

In Figure 3-5, the emitter position θx is varied over 50 equidistantly spaced values in [−λ/2, λ/2]
while the initial pattern position φx,0 = 0 is kept constant. In all further iterations, the inten-
sity minima were again placed symmetrically around the true emitter position, to eliminate
the effect of estimation errors. Photons are equally distributed over iterations, such that 2000
photons are acquired when the maximum amount of iterations is reached.

From Figure 3-5, it can be seen that the localization precision is strongly affected by the
initial pattern position. If the intensity minimum of the initial pattern is placed closed to
the emitter position, the information content of signal photons grows sharply. However, if
the intensity maximum is placed over the emitter position, the initial localization precision
is low. This effect grows larger in the absence of background, as indicated by the differences
between the theoretical and simulated localization precision.
Figure 3-5(a) shows that the achievable localization precision with the pattern placement
strategy of Equation (3-13) is permanently affected by the initial guess, as improved precision
in an early iteration allows for closely spaced intensity minima during future iterations. This
does not apply to the achievable localization precision with the pattern placement strategy of
Equation (3-14), as shown in Figure 3-5(b) and it is thus able to asymptotically eliminate the
effect of the initial pattern placement on the localization precision using this pattern position
control strategy.

In Figure 3-6, the intensity minima for all pattern iterations were placed symmetrically around
the true emitter position plus an offset of σx,k−1 or 2σx,k−1. By doing so, the worst-case sce-
nario of accumulating estimation errors can be simulated. As before, the emitter position
(θx, θy) = (0 nm, 0 nm) was used and 3 iterations were simulated.

From Figure 3-6(a), it can be seen that estimation errors have a small, but increasing effect
on the localization precision. In the first iteration, the difference between the fundamental
precision limit and the precision that was disturbed by an estimation error is insignificant.
As such, the intensity minima are placed closer together in the next iteration, approximately
independent from the estimation error. As the region of increased localization precision has
grown smaller, the effect of estimation errors increases in the next iterations. Based on the
theoretical and simulated localization precision, we can conclude that the effect of estimation
estimation errors on the localization precision is not significantly influenced by background
and image discretization. The same principle applies to the pattern placement strategy of
Equation (3-14), as shown in Figure 3-6(b). Because the intensity minima converge slowly for
this strategy, the effects of estimation errors on the localization precision are less significant
for low amounts of iterations.
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Figure 3-5: Simulated localization precision in x-direction as a function of the global emitter
x-phase ωθx, when sinusoidal intensity patterns are positioned (a) using Equation (3-13) with
α = 3; or (b) using Equation (3-14) with β = 3. Simulated results are compared against
the theoretical limit of Equation (3-19). Photons are equally distributed over iterations, such
that 2000 photons are acquired when the maximum amount of iterations is reached. The initial
pattern position φx,0 = 0 was used and intensity minima were placed symmetrically around the
true emitter position in for k ≥ 1, to eliminate the effect of estimation errors.
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Figure 3-6: Simulated localization precision in x-direction as a function of the acquired amount
of signal photons, when sinusoidal intensity patterns are positioned (a) using Equation (3-13)
with α = 1, 3 or 6; or (b) using Equation (3-14) with β = 2 or 3. Simulated results are compared
against the theoretical limit of Equation (3-19). Intensity minima were placed symmetrically
around the true emitter position plus an offset of σx,k−1 or 2σx,k−1, to investigate the effect of
estimation errors on the localization precision. The emitter position (θx, θy) = (0 nm, 0 nm) was
used and 3 iterations were simulated.
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3-5 Conclusion

In imeSMLM methods, resolution is improved locally around an emitter position by using
prior information that was derived from earlier iterations. The CRLB cannot be used as a
precision measure for imeSMLM methods, as it treats estimands as deterministic unknowns.
As such, prior information cannot be incorporated in the CRLB.
By treating estimands as random variables with a known prior distribution, the Van Trees
inequality can be used to estimate the maximally achievable localization precision. The Van
Trees inequality is useful for estimating the localization precision in imeSMLM, as it is able
to account for the effect of prior information that is generated over the course of iterations.
Furthermore, the VTI can be used to simulate the effects of illumination pattern position
control on the localization precision and is therefore a promising method for optimal control
of imeSMLM methods.
We derived a theoretical limit on the localization precision of imeSMLM methods that make
use of standing wave illumination patterns, in the absence of estimation uncertainty on the sig-
nal photon count and background fluorescence and with perfect modulation. This fundamen-
tal limit cannot be surpassed, as the aforementioned effects can only worsen the localization
precision of imeSMLM methods. Using this limit, we have shown that under the above as-
sumptions, the information content of signal photons increases exponentially as a function of
the iteration count.
In addition, the Van Trees inequality was used to assess the performance of illumination
pattern position control strategies. While the information content per signal photon can
be maximized by illuminating an emitter with an intensity minimum, robustness and per-
formance criteria can be balanced by symmetrically surrounding an emitter with intensity
minima of standing waves, after which the distance between these minima is reduced over the
course of multiple iterations. By coupling this distance reduction to the localization precision
of the previous iteration, a significant performance increase with respect to predefined scaling
was simulated, although this makes the method susceptible to accumulating precision loss
through the effects of background and image discretization by the camera.

3-6 Outlook

The Van Trees inequality can be used to estimate the localization precision for a wide range
of imeSMLM methods. The Van Trees inequality can easily be adapted to deal with other
illumination pattern types, such as the doughnut-shaped beam used in (iterative) MINFLUX
[5, 6], or the 3D-SIM pattern [50], which can be used for three-dimensional localization.
Furthermore, the Van Trees inequality can be used to assess the performance of illumination
pattern control strategies and is therefore a promising performance metric in optimal control of
imeSMLM methods. While we limited ourselves to fixing the amount of photons per iteration,
fixing the acquisition time per iteration may result in different optimal pattern positions,
as the amount of received photons per iteration now depends on the pattern position. In
addition, optimal pattern positions may change in case multiple emitters need to be localized
by the same pattern placement control strategy. Lastly, we expect that optimal control for
iterative three-dimensional localization methods is a challenging problem, as the objectives
of improving lateral and axial resolution are not necessarily aligned.
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Optimal control of iterative localization methods using the Van Trees inequality does not
have to stay limited to illumination control only. In [51], the CRLB was used to engineer a
PSF that minimizes the sum of the localization precisions in the x-, y- and z-directions. We
expect that the Van Trees inequality can be used for a similar purpose, where an optimal
PSF can be engineered for every iteration of an iterative localization method.
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Supplementary Note 1
In this note, we give an extensive derivation of the image formation model of Section 3-2.

Model for photon collection An image gk(x, y) of an object function fk(x, y) in iteration
k is formed through a convolution with the PSF h(x, y)2 of the optical system, as shown in
Equation (3-22).

gk(x, y) = h(x, y)2 ⊗ fk(x, y) (3-22)

In Equation (3-22), ⊗ denotes the two-dimensional convolution operator. We must assure
that the total area under the PSF equals 1 to preserve conservation of energy. As a result,
h(x, y)2 describes the relative amount of PSF that falls on an infinitesimal area dxdy. This
results in the normalization condition of Equation (3-23).

∫∫
R2
h(x, y)2dxdy = 1 (3-23)

Next, we formulate the object function f(x, y). Consider a point emitter, located at position
(θx, θy). Such an emitter can be modeled as δ(x − θx, y − θy), where δ denotes the Dirac
delta function. Under uniform illumination, the expected amount of photons emitted by this
emitter is θI and a background count θb is expected. Therefore, under uniform illumination,
we find an object description θIδ(x− θx) + θb.
Let an illumination intensity pattern be denoted by P (x, y), with 0 ≤ P (x, y) ≤ 1 for all
(x, y) ∈ R2. Note that this illumination will affect both the amount of photons emitted by
the sample, as well as the background count. The resulting object function fk(x, y) is shown
in Equation (3-24).

fk(x, y) = Pk(x, y)(θIδ(x− θx, y − θy) + θb) (3-24)

To obtain an expression for the image function gk(x, y) from Equation (3-22), the point spread
function h(x, y)2 and the object function fk(x, y) are convolved. The resulting expression is
given by Equation (3-25).

gk(x, y) = θIh(x− θx, y − θy)2Pk(θx, θy) + θb

∫∫
R2
h(τ, γ)2Pk(x− τ, y − γ)dτdγ (3-25)

As a next step, we discretize the image function gk(x, y) using the camera pixel area Ai, where
i denotes the pixel index. To discretize the image function, we integrate it over all (x, y) ∈ Ai
to obtain the expected amount of photons on the i’th pixel during iteration k, µi,k. We find:

µi,k = θIPk(θx, θy)
∫∫

(x,y)∈Ai

h(x−θx, y−θy)2dxdy+θb
∫∫

(x,y)∈Ai

(∫∫
R2
h(τ, γ)2Pk(x− τ, y − γ)dτdγ

)
dxdy︸ ︷︷ ︸

Bi,k

(3-26)

Dylan Kalisvaart Master of Science Thesis



3-7 Supplementary information 43

Note that the parameters θx, θy, θI and θb appear in the expression for µi,k. Therefore, the
Poisson model under consideration can be used to estimate θx, θy, θI and θb from data, using
maximum likelihood estimation. Furthermore, note that Bi,k is a constant, which does not
depend on the emitter position, but only on the pixel area, the PSF and the illumination
pattern. We can thus give a compact expression for the Poisson mean µi,k, as shown in
Equation (3-27).

µi,k = θIPk(θx, θy)
∫∫

(x,y)∈Ai
h(x− θx, y − θy)2dxdy + θbBi,k (3-27)

Let us assume a camera, for which all pixels have the same shape and size. Let all pixels be
rectangular, with length ∆x in x-direction and ∆y in y-direction. Furthermore, let (xi, yi)
denote the center coordinates of the i’th pixel. Equation (3-27) then becomes Equation (3-28).

µi,k = θIPk(θx, θy)
∫ xi+ ∆x

2

xi−∆x
2

∫ yi+ ∆y
2

yi−∆y
2

h(x− θx, y − θy)2dxdy + θbBi,k (3-28)

We assume that PSF h(x, y)2 is Gaussian. In two dimensions, it is given by Equation (3-29).
Note that for the Gaussian PSF model, the condition of Equation (3-23) is satisfied.

h(x, y)2 = 1
2πσ2 e

−x2−y2

2σ2 (3-29)

Furthermore, note that the exponential term in Equation (3-29) can be split in a product of
two exponentials, of which one is dependent on x and of which the other is dependent on y.
Using these insights, we can further simplify the expression for the Poissonian mean:

µi,k = θIPk(θx, θy)
(∫ xi+ ∆x

2

xi−∆x
2

1
σ
√

2π
e−

(x−θx)2

2σ2 dx
)

︸ ︷︷ ︸
Ex(xi,θx)

(∫ yi+ ∆y
2

yi−∆y
2

1
σ
√

2π
e−

(y−θy)2

2σ2 dy
)

︸ ︷︷ ︸
Ey(yi,θy)

+θbBi

We use the error function to write explicit expressions for Ex(xi, θx) and Ey(yi, θy):

Ex(xi, θx) = 1
2erf

(
xi − θx + ∆x

2
σ
√

2

)
− 1

2erf
(
xi − θx − ∆x

2
σ
√

2

)

Ey(yi, θy) = 1
2erf

(
yi − θy + ∆y

2
σ
√

2

)
− 1

2erf
(
yi − θy − ∆y

2
σ
√

2

)

Using this expression, we can simplify Equation (3-28) even further. We then obtain the
Poissonian mean µi as shown in Equation (3-30).

µi,k = θIPk(θx, θy)Ex(xi, θx)Ey(yi, θy) + θbBi (3-30)
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Model for illumination We consider standing wave illumination as discussed in [44]. To
construct this pattern, two beams are focused such that they intersect in the focal plane.
We assume the beams consist of monochromatic light and that the waves have the same
polarization. The beams interfere in the focal plane and form the sinusoidal SIM illumination
pattern. This pattern is sinusoidal in one lateral direction (e.g. the x-direction) and does
not vary as a function of other lateral coordinate. Hence, we can analyze the pattern in one
dimension first, after which it can be generalized for two dimensions.
Before we model the illumination pattern, we establish some notation and axis conventions.
These are shown in Figure 3-7.

Figure 3-7: Zoomed-in view of the back focal plane of the objective lens of a SIM-setup to
establish notation and axis conventions. Boxed numbers indicate beam indices, corresponding to
their diffraction orders.

From [44], we infer that the individual beams after the objective lens may be approximated
as plane waves. From [14], we use the fact that we can write monochromatic plane waves in
complex exponential form as shown in Equation (3-31).

U(r, t) = Aei(k·r−ωt+φ) (3-31)

In Equation (3-31), A describes the amplitude of the wave, k is the wave vector with length

||k||2 = 2π
λ (i.e. the wavenumber, with λ the wavelength), r =

[
x
z

]
is a vector of spatial

coordinates, ω = 2πf = 2πc
λ is the angular frequency of the wave (with f the frequency of the

wave and c the speed of light), t is the time and φ is the initial phase shift.
From Figure 3-7, we can see that waves -1 and 1 are rotated with respect to the z-axis.
This rotation can be captured by a linear transformation, included in the wave vector k.
This results in the wave vectors for waves -1 and 1 as shown in Equations (3-32) and (3-33),
respectively.

k−1 = 2π
λ

[
− sin(α−1)
cos(α−1)

]
(3-32)

k1 = 2π
λ

[
sin(α1)
cos(α1)

]
(3-33)
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Using Equation (3-31), we end up with the expressions for waves -1 and 1 as shown in
Equations (3-34) and (3-35), respectively.

U−1(x, z, t) = A−1e
i(k−1·r−ωt+φ−1) = A−1e

i( 2π
λ

(− sin(α−1)x+cos(α−1)z)−ωt+φ−1) (3-34)

U1(x, z, t) = A1e
i(k1·r−ωt+φ1) = A1e

i( 2π
λ

(sin(α1)x+cos(α1)z)−ωt+φ1) (3-35)

We now make an assumption to simplify the model. If the optical system used to construct
this pattern is perfectly aligned and if all components are perfect (i.e. they contain no
manufacturing defects), it must hold that α−1 = α1. While perfect alignment and perfect
components cannot be guaranteed, we assume that the differences are small enough such that
the above assumption is valid.
The wave pattern due to interference can be described by summing up Equations (3-34) and
(3-35). Under the above assumption, the result of summing up Equations (3-34) and (3-35)
is found in Equation (3-36).

U(x, z, t) = A−1e
i( 2π

λ
(− sin(α1)x+cos(α1)z)−ωt+φ−1) +A1e

i( 2π
λ

(sin(α1)x+cos(α1)z)−ωt+φ1) (3-36)

In the image formation model, we are interested in the intensity pattern I(x, z). For scalar
waves, it is defined in [14] as the infinite time average of the squared magnitude of U(x, z, t).
This definition is shown in Equation (3-37).

I(x, z) = lim
τ→∞

1
τ

∫ τ/2

−τ/2
U(x, z, t)U∗(x, z, t)dt (3-37)

In Equation (3-37), U∗ denotes the complex conjugate of U .
From [44], we know that the pattern is time invariant when we assume monochromatic illu-
mination. This also follows from the expression of U(x, z, t)U∗(x, z, t), as shown in Equation
(3-38).

U(x, z, t)U∗(x, z, t) = A2
−1 +A2

1 + 2A−1A1 cos
(4π
λ

sin(α1)x− φ
)

(3-38)

In Equation (3-38), φ = φ−1 − φ1. This parameter can be used to control the spatial pattern
shift. As U(x, z, t)U∗(x, z, t) is time invariant, Equation (3-37) simplifies to Equation (3-39).

I(x, z) = U(x, z, t)U∗(x, z, t) (3-39)

Let us introduce the beam intensities I−1 = A2
−1 and I1 = A2

1 for beams -1 and 1, respectively.
Furthermore, for the intensity pattern to be consistent with the derived image formation
model, we include a normalization constant K, which will be chosen such that the maximum
total illumination received by an emitter equals at most 1. Using these expressions, we end
up at the intensity pattern model of Equation (3-40).

Master of Science Thesis Dylan Kalisvaart



46 Precision in iterative modulation enhanced single-molecule localization microscopy

P (x) = K

[
I−1 + I1 + 2

√
I−1I1 cos

(4π
λ

sin(α1)x− φ
)]

(3-40)

We will make some additional adjustments to the pattern description of Equation (3-40) for
convenience. First of all, we substitute the pattern frequency ω = 4π

λ sin(α1). Note that ω is
inversely proportional with the Abbe diffraction limit λ

2NA in air. This is not unexpected, as
the pattern itself is, at best, also diffraction limited. While we did not derive the result for
an arbitrary immersion medium with index of refraction n, it can be shown that the inverse
propotionality relation still holds in this case [7].
Next, we factor out (I−1 + I1). As the constant K has not been defined, we replace K

I−1+I1 by

a new constant A for simplicity. Furthermore, we replace 2
√
I−1I1

I−1+I1 by the modulation contrast
m. Note that for perfect modulation, I−1 = I1 and thus m = 1.
The expression resulting from these adjustments is found in Equation (3-41).

P (x) = A [1 +m cos (ωx− φ)] (3-41)

Next, we generalize this pattern to two dimensions. We consider an intensity pattern sequence,
consisting of standing waves with different phase shifts in two orthogonal orientations. For
each iteration k ∈ {0, 1, ...,M − 1}, with M the amount of pattern placement iterations, we
define the standing wave illumination pattern Pk = Px,k + Py,k as shown in Equation (3-42).
Note that for each orientation individually, the standing wave pattern of Equation (3-41) is
retrieved.

{
Px,k(x, y, φx,k) = A [1 +m cos (ωx− φx,k)]
Py,k(x, y, φy,k) = A [1 +m cos (ωy − φy,k)]

(3-42)

We choose the normalization constant A to ensure that the maximum possible illumination
received by any emitter is equal to 1. That is,

∑M
k=0 Px,k(x, y, φx,k) + Py,k(x, y, φy,k) ≤ 1 for

all (x, y) ∈ R2 and for all φx,k, φy,k ∈ [−π, π], with equality for at least one (x, y) ∈ R2 and
φx,k, φy,k ∈ [−π, π]. This can be achieved by setting A = 1

4M .

Lastly, we derive the constant Bi,k from Equation (3-26). As the Gaussian PSF is separable
in x and y, we find:

Bi,k =
∫∫
{x,y}∈Ai

(∫∫
R2
hx(τ)2hy(γ)2Px,k(x− τ, y − γ, φx,k)dτdγ

)
dxdy

+
∫∫
{x,y}∈Ai

(∫∫
R2
hx(τ)2hy(γ)2Py,k(x− τ, y − γ, φy,k)dτdγ

)
dxdy

=
∫ xi+ ∆x

2

xi−∆x
2

(∫ yi+ ∆y
2

yi−∆y
2

∫ ∞
−∞

hy(γ)2dγdy
)(∫ ∞

−∞
hx(τ)2Px,k(x− τ, y, φx,k)dτ

)
dx

+
∫ yi+ ∆y

2

yi−∆y
2

(∫ xi+ ∆x
2

xi−∆x
2

∫ ∞
−∞

hx(γ)2dτdx
)(∫ ∞

−∞
hy(γ)2Py,k(x, y − γ, φy,k)dγ

)
dy
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= ∆y
∫ xi+ ∆x

2

xi−∆x
2

(∫ ∞
−∞

hx(τ)2Px,k(x− τ, y, φx,k)dτ
)
dx

+∆x
∫ yi+ ∆y

2

yi−∆y
2

(∫ ∞
−∞

hy(γ)2Py,k(x, y − γ, φy,k)dγ
)
dy

Evaluating these improper integrals results in the following expression for Bi,k:

Bi,k = ∆x∆y
2M + m∆x

2Mω
exp

(
−ω

2σ2

2

)
cos(ωyi − φx,k) sin

(
ω∆y

2

)
(3-43)

+m∆y
2Mω

exp
(
−ω

2σ2

2

)
cos(ωxi − φy,k) sin

(
ω∆x

2

)
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Supplementary Note 2
In this note, we state the multivariate Van Trees inequality and its assumptions, based on its
formulation in [38, 42]. A proof of this theorem can be found in [38].

Let x = [x1, x2, ..., xn]T represent a data set, which can be seen a realization of i.i.d. random
variables [X1, X2, ..., Xn]T with a distribution depending on a parameter θ ∈ Rm. Suppose
that the likelihood function L(θ|x) is continuously differentiable with respect to θ and that
its support {x|L(θ|x) > 0} does not depend on θ.
Let a prior probability density function λ(θ) on the parameter θ be known. Suppose that
λ(θ) is absolutely continuous and that λ converges to zero at the endpoints of its domain.
Then, the mean squared error matrix, MSE(θ̂) = Eλ,L[(θ̂− θ)(θ̂− θ)T ] of any estimator θ̂ of
θ satisfies:

(
Eλ,L[(θ̂ − θ)(θ̂ − θ)T ]− (JD + JP )−1

)
� 0 (3-44)

That is, Eλ,L[(θ̂−θ)(θ̂−θ)T ]−(JD+JP )−1 is positive semi-definite, where the data information
matrix JD is given by

[JD]p,q = [Eλ[I(θ)]p,q] = Eλ

[
EL

[
∂`(θ|x)
∂θp

∂`(θ|x)
∂θq

]]

= Eλ

[∫
Rn

∂`(θ|x)
∂θp

∂`(θ|x)
∂θq

L(θ|x)dx
]

(3-45)

and where the prior information matrix JP is given by

[JP ]p,q = [I(λ)]p,q = Eλ

[
∂ log(λ(θ))

∂θp

∂ log(λ(θ))
∂θq

]
=
∫
Rm

∂ log(λ(θ))
∂θp

∂ log(λ(θ))
∂θq

λ(θ)dθ

(3-46)

Furthermore, (JD +JP ) can be rewritten as J with Jp,q = Eλ,L
[
∂ log(p(x,θ))

∂θp

∂ log(p(x,θ))
∂θq

]
, where

p(x,θ) denotes the joint probability density function of x and θ. The matrix J is called the
Bayesian information matrix.
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Supplementary Note 3
In this note, theoretical limits on the localization precision are derived using the Van Trees
inequality. We limit ourselves to one-dimensional localization. Furthermore, we assume the
expected signal photon count θI is a known constant (i.e. we do not estimate it), we ignore
background such that θb = 0 and we assume that the modulation is perfect, such that m = 1.
Lastly, we assume that the point spread function is a Gaussian with standard deviation σPSF .
We will derive results in two scenarios. In the first case, we disregard the effect of discretization
due to the finite size of camera pixels. In the second scenario, a camera with a single, infinitely
large pixel is considered. In both situations, expressions are derived in case 1 or 2 pattern
positions are used on the x-axis during a single iteration.

No pixelation In the one-dimensional case when one pattern position φx,k is used, the illu-
mination pattern in iteration k is given by Equation (3-47).

Px,k(x) = 1
2M [1 +m cos(ωx− φx,k)] (3-47)

Under the presented assumptions, we find the expected photon count (as a function of the
x-coordinate, since the image is not discretized) of Equation (3-48), with its first partial
derivative with respect to θx being given by Equation (3-49).

µk(x) =
θI

2M [1 + cos(ωθx − φx,k)]
σPSF

√
2π

e
− (x−θx)2

2σ2
PSF (3-48)

∂µk
∂θx

(x) =
θI

2M
σPSF

√
2π
e
− (x−θx)2

2σ2
PSF

(
x− θx
σ2
PSF

+ x− θx
σ2
PSF

cos(ωθx − φx,k)− ω sin(ωθx − φx,k)
)
(3-49)

The Fisher information in iteration k is then given by Equation (3-50).

Ik(θx) =
∫
R

1
µk(x)

(
∂µk
∂θx

(x)
)2

dx (3-50)

=
θI

2M
1 + cos(ωθx − φx,k)

(
ω2 sin2(ωθx − φx,k) + 1

σ2
PSF

(1 + cos(ωθx − φx,k))2
)

= θI
2Mω2(1− cos(ωθx − φx,k)) + θI

2Mσ2
PSF

(1 + cos(ωθx − φx,k))

We choose the prior information available in iteration k ≥ 1 to be normally distributed with
mean θ̂x,k−1 and variance σx,k−1 = 1√

I0(θx)
(for k = 1) or σx,k−1 = 1√

Jk−1
(for k ≥ 2). The

resulting prior information, its natural logarithm and its partial derivative with respect to θx
are given by Equations (3-51)-(3-53).
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λk−1(θx) = 1
σx,k−1

√
2π

exp
(
−(θx − θ̂x,k−1)2

2σ2
x,k−1

)
(3-51)

log(λk−1(θx)) = log
(

1
σx,k−1

√
2π

)
− (θx − θ̂x,k−1)2

2σ2
x,k−1

(3-52)

∂ log(λk−1(θx))
∂θx

= −2(θx − θ̂x,k−1)
2σ2

x,k−1
(3-53)

The data and prior information in iteration k are then given by Equations (3-54) and (3-55),
respectively.

JD,k =
∫
R
Ik(θx)λk−1(θx)dθx (3-54)

= θIω
2

2M

(
1− cos(ωθ̂x,k−1 − φx,k) exp

(
−
σ2
x,k−1ω

2

2

))

+ θI
2Mσ2

PSF

(
1 + cos(ωθ̂x,k−1 − φx,k) exp

(
−
σ2
x,k−1ω

2

2

))

JP,k =
∫
R

(
∂ log(λk−1(θx))

∂θx

)2
λk−1(θx)dθx (3-55)

= 1
σx,k−1

√
2π

∫
R

(
2(θx − θ̂x,k−1)

2σ2
k−1

)2

exp
(
−(θx − θ̂x,k−1)2

2σ2
x,−1

)
dθx

= 1
σ2
x,k−1

Then the Bayesian information is given by Equation (3-56).

J = JD + JP (3-56)

=
1 + θIω

2

2M σ2
x,k−1

(
1− cos(ωθ̂x,k−1 − φx,k) exp

(
−σ2

x,k−1ω
2

2

))
σ2
x,k−1

+

θIσ
2
x,k−1A

σ2
PSF

(
1 + cos(ωθ̂x,k−1 − φx,k) exp

(
−σ2

x,k−1ω
2

2

))
σ2
x,k−1

Dylan Kalisvaart Master of Science Thesis



3-7 Supplementary information 51

By the Van Trees inequality, we find for the localization precision:

σx,k ≥ σx,k−1

(
1 +

θIω
2σ2
x,k−1

2M

(
1− cos(ωθ̂x,k−1 − φx,k) exp

(
−
σ2
x,k−1ω

2

2

))
(3-57)

+
θIσ

2
x,k−1

2Mσ2
PSF

(
1 + cos(ωθ̂x,k−1 − φx,k) exp

(
−
σ2
x,k−1ω

2

2

)))− 1
2

Suppose now that two patterns are used of which the intensity minima are symmetrically
placed around the current estimate of the emitter position (such as in Equations (3-13),
(3-14)). Let us call the pattern placed to the right of the estimate of the emitter position φ+

k

and the pattern placed to the left of the estimate of the emitter position φ−k . Their combined
illumination pattern can then be described as:

Pk(x) = 1
4M [2 +m cos(ωx− φ+

x,k) +m cos(ωx− φ−x,k)] (3-58)

The derivation is entirely analogous to the derivation for one pattern. We therefore immedi-
ately present the result:

σx,k ≥ σx,k−1

(
2+

θIω
2σ2
x,k−1

4M

(
1 − (cos(ωθ̂x,k−1 − φ+

x,k) + cos(ωθ̂x,k−1 − φ−x,k)) exp
(

−
σ2
x,k−1ω

2

2

))
(3-59)

+
θIσ

2
x,k−1

4Mσ2
PSF

(
1 + (cos(ωθ̂x,k−1 − φ+

x,k) + cos(ωθ̂x,k−1 − φ−x,k)) exp
(

−
σ2
x,k−1ω

2

2

)))− 1
2

Single camera pixel We now assume a single, infinitely sized pixel is used for the recording.
Consequently, the expected photon count needs to be integrated with respect to x over the
entire real axis, losing information about the PSF in the process. The updated expected
photon count is given by Equation (3-60), with its first partial derivative with respect to θx
being given by Equation (3-61).

µk = θI
2M [1 + cos(ωθx − φx,k)] (3-60)

∂µk
∂θx

= −ωθI2M sin(ωθx − φx,k) (3-61)

The Fisher information in iteration k is then given by Equation (3-62).

Ik(θx) = 1
µk

(
∂µk
∂θx

)2
=

(
−ωθI

2M sin(ωθx − φx,k)
)2

θI
2M [1 + cos(ωθx − φx,k)]

(3-62)

= ω2θI
2M (1− cos(ωθx − φx,k))
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Using the prior information of Equation (3-51), the data and prior information in iteration k
are given by Equations (3-63) and (3-64), respectively.

JD,k =
∫
R
Ik(θx)λk−1(θx)dθx = ω2θI

2M

(
1− cos(ωθ̂x,k−1 − φx,k) exp

(
−σ2

x,k−1ω
2

2

))
(3-63)

JP,k =
∫
R

(
∂ log(λk−1(θx))

∂θx

)2
λk−1(θx)dθx = 1

σ2
x,k−1

(3-64)

Then the Bayesian information is given by Equation (3-65).

J = JD + JP =
1 + θIω

2σ2
x,k−1

2M

(
1− cos(ωθ̂x,k−1 − φx,k) exp

(
−σ2

x,k−1ω
2

2

))
σ2
x,k−1

(3-65)

By the Van Trees inequality, we find:

σk ≥
σx,k−1√

1 + θIω2σ2
x,k−1

2M

(
1− cos(ωθ̂x,k−1 − φx,k) exp

(
−σ2

x,k−1ω
2

2

)) (3-66)

Suppose now that two patterns are used of which the intensity minima are symmetrically
placed around (the estimate of) the emitter position, as described by Equation (3-58). An
analogous derivation then results in the following expression for the localization precision:

σx,k ≥ σx,k−1

(
2+

θIω
2σ2
x,k−1

4M

(
1− (cos(ωθ̂x,k−1 − φ+

x,k) + cos(ωθ̂x,k−1 − φ−
x,k)) exp

(
−
σ2
x,k−1ω

2

2

)))− 1
2

(3-67)
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Chapter 4

Conclusion

In this chapter, we conclude the thesis. First, in Section 4-1, we will summarize the main
findings of the study. In Section 4-2, we recommend further improvements on topics dis-
cussed in this text and we provide an outlook on the future of control in iterative localization
microscopy.

4-1 Summary of study

Optical microscopy is a key tool in observing and understanding life on a microscopic scale.
Fluorescence microscopy is particularly suited for biological applications, as it is a minimally
invasive technique and as it can differentiate between structures by its high selectivity. How-
ever, due to the wave nature of light, diffraction in the optical system places a physical limit
on the resolution of an optical microscope. The Abbe diffraction limit states that, for two
points to be individually distinguishable, they should be a distance σx,y = λem

2NA apart, where
λem denotes the wavelength of emission light and where the numerical aperture NA depends
on the microscope objective and the immersion medium. While diffraction-limited imaging
may result in resolutions around 200 nm, it is not enough to differentiate between proteins,
molecules or viruses, all of which are in the range of 1 nm to 100 nm [17].
Fortunately, methods have been discovered to circumvent the diffraction barrier. These meth-
ods are called super-resolution microscopy methods. Super-resolution microscopy methods
break the diffraction barrier by increasing the information contained in emission signals [16].
In single-molecule localization microscopy (SMLM), fluorescent emitters in the sample are
sparsely activated. By only allowing a random, sparse subset of fluorescent labels to emit at
a time, there is a high probability that only a single emitter is active within a region defined
by the diffraction limit. This creates a sparsity in the emission signal, which separates emis-
sion signals of different emitters in time and space. As a result of this sparsity, estimation
algorithms can estimate emitter positions with increased precision over the diffraction limit.
Recently, methods have been developed that combine SMLM techniques with patterned illu-
mination. These modulation enhanced SMLM (meSMLM) methods are able to improve the
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resolution of optical microscopes even further. Patterned illumination modulates the emission
signal, increasing the information content of signal photons. Estimation algorithms can be
used to extract this additional information, resulting in improved localization precision.
By iteratively controlling the positioning of illumination patterns, resolution can be improved
locally around an emitter. This is done in iterative meSMLM (imeSMLM) methods, such as
iterative MINFLUX [6]. Estimates of the emitter position and the localization precision in
previous iterations are used as prior information in the current iteration. Based on the prior
information, new pattern positions are selected to achieve improved localization precision
with respect to earlier iterations.

Localization precision plays an important role to assess the quality of super-resolution meth-
ods. For (me)SMLM methods, the Cramér-Rao lower bound (CRLB) is often used to estimate
the localization precision. The CRLB bounds the (co)variance of arbitrary unbiased estima-
tors from below. The (co)variance of maximum likelihood estimators converges asymptotically
to the CRLB and [27] shows that it is approximately attained for 100 or more signal photons
in SMLM.
For imeSMLM methods, the CRLB cannot be used to accurately estimate the localization
precision. As the CRLB treats estimands as deterministic unknowns (i.e. without a distri-
bution), a prior distribution on the estimands cannot be incorporated into the bound. As
such, the effect of prior information on the localization precision in imeSMLM methods is not
captured by the CRLB.
The Van Trees inequality (VTI) is a Bayesian variant of the CRLB. As it treats estimands as
random variables with a known prior distribution, it is able to incorporate prior information
on e.g. the emitter position into its estimation of the localization precision of imeSMLM
methods. It is therefore able to accurately bound the localization precision of imeSMLM
methods from below. In addition, as the VTI allows us to predict the localization precision
of imeSMLM methods, it opens up the possibility of optimal control for iterative localization
methods.

We have modeled an imeSMLM method, that controls the position of sinusoidal intensity
patterns to locally increase the localization precision around the emitter. Intensity minima
of sinusoidal patterns were placed symmetrically around the current estimate of the emitter
position, at a distance based on either the localization precision of the previous iteration or a
predetermined constant. These strategies balance the information content of signal photons
with the need for robustness to estimation errors. Using the VTI, the localization precision
of this method was estimated.
We derived a fundamental limit on the localization precision of imeSMLM methods that
make use of standing wave illumination patterns, in the absence of estimation uncertainty
on the signal photon count and background fluorescence and with perfect modulation. This
fundamental limit cannot be surpassed, as the aforementioned effects can only worsen the
localization precision of imeSMLM methods. Using this limit, we have shown that under the
above assumptions, the information content of signal photons increases exponentially as a
function of the iteration count.
In addition, the Van Trees inequality was used to assess the performance of illumination pat-
tern position control strategies. It was found that if the distance between intensity minima
and the emitter position scales with the localization precision of the previous iteration, the
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information content of signal photons is increased the most. However, this makes the method
susceptible to accumulating precision loss through the effects of background and image dis-
cretization by the camera.

4-2 Outlook

In this section, we recommend further improvements on topics discussed in this text and
we provide an outlook on the future of control in iterative localization microscopy. First,
we discuss how the numerical evaluation of the VTI can be improved to allow for fast op-
timal control. We then elaborate on how the 3D-SIM illumination pattern can be used for
imeSMLM in three dimensions. Lastly, we discuss iterative learning control and reinforcement
learning as promising control strategies for pattern control in imeSMLM methods.

As discussed in Chapter 3, evaluation of the VTI is done through numerical evaluation in
many practical scenarios. For the VTI to be usable in as a performance metric in (online)
control, it is essential that it can be evaluated quickly and reliably.
The performance of the IMC estimator is not satisfactory on these criteria. For low signal
photon counts, high background counts and imperfect modulation, the covariance of the IMC
estimator grows sharply. In these cases, the covariance of the prior distribution λk−1(θ)
(which is used as a sampling distribution in IMC) grows, which widens the distribution and
increases the amount of samples needed for a precise evaluation of the VTI. This is undesir-
able, as the covariance of the IMC estimator scales with the sample covariance. Therefore, to
reduce the covariance of the VTI by 10 times, approximately 100 times as many samples are
needed. This slows evaluation of the VTI down significantly.
Furthermore, the covariance of the IMC estimator decreases the reliability of control methods
based on the VTI. The covariance of the IMC estimator perturbs function evaluations of the
VTI by a random error. This is problematic for optimization routines that rely on function
evaluations, as evaluated values of the VTI behave like random variables. This uncertainty
on the function value decreases convergence speed and it may even prevent convergence.
To enable (optimal) control that uses the VTI as a performance metric, the speed and reli-
ability of its evaluation should thus be increased. We advise to use integration methods for
this, that efficiently distribute samples over an infinite domain of integration. An example of
such a method is Bayesian quadrature [52]. In contrast to IMC, Bayesian quadrature treats
the numerical estimation problem as a statistical inference problem. A prior distribution
(usually a Gaussian process) is placed on the integrand and it is used to select function evalu-
ations that minimize the (co)variance of the posterior distribution of the integral. Doing this
maximizes the information gained by function evaluations, as the similarity of neighboring
function values is exploited.

Next, we elaborate further on the potential of 3D-SIM pattern control. In this text, sinusoidal
intensity patterns were used in an imeSMLM method to locally improve localization precision
in two dimensions. A similar methodology can be used to locally improve localization precision
in three dimensions, by making use of the 3D-SIM pattern [50]. The 3D-SIM pattern has
structure in lateral and axial directions, as shown in the simulation of Figure 4-1.
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Figure 4-1: Simulated 3D-SIM illumination pattern. (a): 3D view of the pattern. (b): Cross-
section of pattern in (x, z)-plane, for y = 0 nm. (c): Cross-section of pattern on x-axis, for y = 0
nm, z = 0 nm. (d): Cross-section of pattern on z-axis, for x = 0 nm, y = 0 nm.

From Figure 4-1, it can be seen that the 3D-SIM intensity is sinusoidal in the z-direction and
that it consists of two overlaid sinusoids of different frequencies in the x- and y-directions.
As such, a similar approach to that of Chapter 3 can be followed, where intensity minima of
the 3D-SIM pattern are placed symmetrically around the emitter position in the x-, y- and
z-directions, effectively boxing in the emitter between intensity minima.
For optimal control with the 3D-SIM pattern, a performance metric should weigh lateral and
axial precision. In [53], the σ3D metric is used for this. σ3D is given by:

σ3D = 4π
3

√
det(I−1

xyz(θ)) (4-1)

where Ixyz(θ) denotes the Fisher information related to the emitter position (θx, θy, θz). A
similar criterion could be used for the VTI, where only the components of the Bayesian
information matrix related to the emitter position (θx, θy, θz) are included in the measure.
The σ3D metric weighs the individual localization precisions in x-, y- and z-directions based on
their covariance. Using σ3D could thus make for a challenging multivariable pattern placement
control problem, where the total signal photon budget needs to be distributed among axial
and lateral localization precision.
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We have seen that the VTI can be used to assess the performance of imeSMLM methods,
based on their localization precision for a single emitter. In a simulation, minimization of
the VTI is therefore a satisfactory way to determine optimal pattern positions. In practice,
model inaccuracies and disturbances likely require control to acquire improved resolution.
Three control objectives are of particular relevance for control of imeSMLM methods. First
of all, the localization precision should be as high as possible for the chosen pattern positions.
We have also discussed the importance of control strategies that are robust to estimation er-
rors. In practice, multiple emitters are imaged at a time. Hence, there is practical importance
to maximize robustness and performance over a range of emitter positions.
Based on these control objectives, we expect intelligent control methods to be particularly rele-
vant. We will briefly discuss the potential of iterative learning control (ILC) and reinforcement
learning (RL).
ILC is an open-loop control strategy suited for repetitive processes, that improves the per-
formance of a system by learning from earlier iterations [54]. By using the error signal of
the previous iteration, the previous control action is slightly altered to obtain a new control
action, which should result in improved system performance. By repeating this process, op-
timal control actions can effectively be learned.
In the proposed imeSMLM method, pattern positions are repeatedly selected to minimize the
VTI. As such, iterative learning control may be used to iteratively improve pattern positions.
The choice of the error signal is important here, as it should be a measure for the distance
between the true emitter position and its estimate. A possible choice for the error signal could
be the difference between the likelihood functions of the current and previous measurements.
If the current pattern position is better than the previous one, the likelihood of the current
measurements is larger than that of the previous measurements, and vice versa. Furthermore,
the difference between the likelihood functions of the current and previous measurements gets
smaller as the patterns converge to the optimal pattern, which will also cause convergence of
the ILC approach.
Another promising intelligent control method is reinforcement learning (RL) [55]. In RL, an
agent (the controller) interacts with its environment (the process). This changes the state of
the environment, for better or for worse. A reward policy is used to assess the new state of
the environment, after which the agent is adapted based on this reward policy.
RL is a suitable candidate for pattern position control in imeSMLM. The controller deter-
mines pattern positions to improve the localization precision. The likelihood of the current
measurements can be used as a reward policy, to assess the effectiveness of a pattern place-
ment. This can be used to update the controller, such that it learns optimal pattern positions
over time. Alternatively, the log-likelihood of the current measurements can be used as a
reward policy, to accelerate the convergence speed of RL at the cost of robustness.
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Appendix A

Proofs and derivations

This appendix contains proofs and derivations which were referred to in the main text.

A-1 Proof of Theorem 2.1

Let θ ∈ R arbitrary. Before we prove the theorem, we will first show that the regularity
condition E

[
∂`(θ|x)
∂θ

]
= 0 follows from the assumptions on L(θ|x).

E
[
∂`(θ|x)
∂θ

]
=
∫
Rn

∂`(θ|x)
∂θ

L(θ|x)dx

=
∫
Rn

1
L(θ|x)

∂L(θ|x)
∂θ

L(θ|x)dx

=
∫
Rn

∂L(θ|x)
∂θ

dx

By assumption, we know that L(θ|x) is continuously differentiable with respect to θ and that
its support {x|L(θ|x) > 0} does not depend on θ. It must therefore hold that L(θ|x) either
has a bounded support in x without dependency on θ, or that it has infinite support, is
continuously differentiable with respect to θ and that the integral converges uniformly for all
θ. In these cases, we may use Leibniz’s integral rule to interchange the differentiation and
integration operators [56]. We then obtain:

E
[
∂`(θ|x)
∂θ

]
= ∂

∂θ

∫
Rn
L(θ|x)dx = ∂

∂θ
(1) = 0

We now start the proof of the theorem. We start by a general proof of the CRLB for a scalar
parameter α = g(θ), where the probability density function is parametrized by θ. Later, we
will apply this to the specific case g(θ) = θ, which will prove the theorem.
Consider any unbiased estimator α̂ of α. By unbiasedness, it must follow that:
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E[α̂] =
∫
Rn
α̂L(θ|x)dx = α = g(θ)

We differentiate both sides of the equation with respect to θ. Note that we can again apply
Leibniz’s integral rule to interchange differentiation and integration, by the assumptions on
L(θ|x). We obtain:

∂

∂θ

∫
Rn
α̂L(θ|x)dx = ∂

∂θ
g(θ)

∫
Rn
α̂
∂L(θ|x)
∂θ

dx = ∂g(θ)
∂θ

We can now subtract a term αE
[
∂`(θ|x)
∂θ

]
=
∫
Rn α

∂`(θ|x)
∂θ L(θ|x)dx. By the derived regularity

condition, this term must be equal to zero, which means we can freely subtract it from the
left-hand side of the equation. We then find:

∫
Rn

(α̂− α)∂L(θ|x)
∂θ

dx = ∂g(θ)
∂θ

Note as before that ∂L(θ|x)
∂θ = 1

L(θ|x)
∂L(θ|x)
∂θ L(θ|x) = ∂`(θ|x)

∂θ L(θ|x). We substitute this into the
expression on the left-hand side, to get:

∫
Rn

(α̂− α)∂`(θ|x)
∂θ

L(θ|x)dx = ∂g(θ)
∂θ

E
[
(α̂− α)∂`(θ|x)

∂θ

]
= ∂g(θ)

∂θ

Next, we make use of the Cauchy-Schwarz inequality. We use the following formulation, as
presented in [56]:

(E[XY ])2 ≤ E[X2]E[Y 2]

Application of the Cauchy-Schwarz inequality on the left-hand side of the equation, with
X = (α̂− α) and Y = ∂`(θ|x)

∂θ then gives:

(
∂g(θ)
∂θ

)2
= E

[
(α̂− α)∂`(θ|x)

∂θ

]2
≤ E

[
(α̂− α)2

]
E
[(

∂`(θ|x)
∂θ

)2]

Note that Var(α̂) = E
[
(α̂− α)2] by definition. Substitution of this fact and some algebraic

reordering then gives:

(
∂g(θ)
∂θ

)2
≤ Var(α̂) · E

[(
∂`(θ|x)
∂θ

)2]
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Var(α̂) ≥

(
∂g(θ)
∂θ

)2

E
[(

∂`(θ|x)
∂θ

)2
]

Lastly, under the assumptions on L(θ|x) that allow application of Leibniz’s integral rule,
we can apply Lemma A.1 (which is shown and proven in Appendix A-4) to conclude that
E
[(

∂`(θ|x)
∂θ

)2
]

= −E
[
∂2`(θ|x)
∂θ2

]
. This gives the following formulation of the variance bound for

the general case α = g(θ):

Var(α̂) ≥

(
∂g(θ)
∂θ

)2

−E
[
∂2`(θ|x)
∂θ2

]
For the special case under consideration, choose g(θ) = θ. Then ∂g(θ)

∂θ = 1, which returns the
Cramér-Rao lower bound:

Var(θ̂) ≥ 1
−E

[
∂2`(θ|x)
∂θ2

] := CRLB(θ)

as required.

A-2 Proof of Theorem 2.2

Let θ ∈ Rm arbitrary. Before we prove the theorem, we will first show that the regularity
condition E

[
∂`(θ|x)
∂θi

]
= 0 follows from the assumptions on L(θ|x) for all i ∈ {1, 2, . . . ,m}.

E
[
∂`(θ|x)
∂θi

]
=
∫
Rn

∂`(θ|x)
∂θi

L(θ|x)dx

=
∫
Rn

1
L(θ|x)

∂L(θ|x)
∂θi

L(θ|x)dx

=
∫
Rn

∂L(θ|x)
∂θi

dx

By assumption, we know that L(θ|x) is continuously differentiable with respect to θ and
that its support {x|L(θ|x) > 0} does not depend on θ. It must therefore hold that L(θ|x)
either has a bounded support in x without dependency on θ, or that it has infinite support,
is continuously differentiable with respect to θ and that the integral converges uniformly for
all θ. In these cases, we may use Leibniz’s integral rule to interchange the differentiation and
integration operators [56]. We then obtain:

E
[
∂`(θ|x)
∂θi

]
= ∂

∂θi

∫
Rn
L(θ|x)dx = ∂

∂θi
(1) = 0

We now start the proof of the theorem. We start by a general proof of the CRLB for
a parameter vector α = g(θ), where g acts on all entries of θ separately and where the
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probability density function is parametrized by θ. Later, we will apply this to the specific
case g(θ) = θ, which will prove the theorem.
Consider any unbiased estimator α̂ of α. By unbiasedness, it must follow that for all i ∈
{1, 2, . . . ,m}:

E[α̂i] =
∫
Rn
α̂iL(θ|x)dx = αi = g(θi)

We differentiate both sides of the equation with respect to θi. Note that we can apply
Leibniz’s integral rule to interchange differentiation and integration, by the assumptions on
L(θ|x). We obtain:

∂

∂θi

∫
Rn
α̂iL(θ|x)dx = ∂

∂θi
g(θi)∫

Rn
α̂i
∂L(θ|x)
∂θi

dx = ∂g(θi)
∂θi

We can now subtract a term αiE
[
∂`(θ|x)
∂θi

]
=
∫
Rn αi

∂`(θ|x)
∂θi

L(θ|x)dx. By the derived regularity
condition, this term must be equal to zero, which means we can freely subtract it from the
left-hand side of the equation. We then find:

∫
Rn

(α̂i −αi)
∂L(θ|x)
∂θi

dx = ∂g(θi)
∂θi

Note as before that ∂L(θ|x)
∂θi

= 1
L(θ|x)

∂L(θ|x)
∂θi

L(θ|x) = ∂`(θ|x)
∂θi

L(θ|x). We substitute this into
the expression on the left-hand side, to get:

∫
Rn

(α̂i −αi)
∂`(θ|x)
∂θi

L(θ|x)dx = ∂g(θi)
∂θi

Consider now the case i 6= j, where both i, j ∈ {1, 2, . . . ,m}. Let us consider the following
integral:

∫
Rn

(α̂i −αi)
∂`(θ|x)
∂θj

L(θ|x)dx =
∫
Rn
α̂i
∂`(θ|x)
∂θj

L(θ|x)dx−
∫
Rn
αi
∂`(θ|x)
∂θj

L(θ|x)dx

=
∫
Rn
α̂i
∂L(θ|x)
∂θj

dx−αi
∫
Rn

∂`(θ|x)
∂θj

L(θ|x)dx

=
∫
Rn
α̂i
∂L(θ|x)
∂θj

dx−αiE
[
∂`(θ|x)
∂θj

]

Note that by Leibniz’s integral rule, we may interchange the differentiation and integration
operators in the first term. Furthermore, by the derived regularity condition, the second term
is equal to zero. The integral thus reduces to:
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∫
Rn

(α̂i −αi)
∂`(θ|x)
∂θj

L(θ|x)dx = ∂

∂θj

∫
Rn
α̂iL(θ|x)dx

= ∂

∂θj
E[α̂i] = ∂g(θi)

∂θj

We have now derived the result
∫
Rn(α̂i−αi)∂`(θ|x)

∂θj
L(θ|x)dx = ∂g(θi)

∂θj
for i = j and i 6= j. For

convenience, let us combine these results in vector-matrix form, as follows:

∫
Rn

(α̂−α)
(
∂`(θ|x)
∂θ

)T
L(θ|x)dx = ∂g(θ)

∂θ

Let us now pre-multiply the above equation by aT and post-multiply by b, where a and b are
arbitrary real vectors of appropriate dimensions, which do not depend on x. We then have:

∫
Rn
aT (α̂−α)

(
∂`(θ|x)
∂θ

)T
bL(θ|x)dx = aT

∂g(θ)
∂θ

b

E
[
aT (α̂−α)

(
∂`(θ|x)
∂θ

)T
b

]
= aT

∂g(θ)
∂θ

b

From [56], we infer that the expectation operator is an inner product on Rn and hence, we
may use the Cauchy-Schwarz inequality. In vector form, it is given by the following expression
[57]:

(
E
[
XTY

])2
≤ E

[
XTX

]
E
[
Y TY

]
Here, X and Y are arbitrary real vectors of appropriate dimensions.
Application of the Cauchy-Schwarz inequality on the left-hand side of the equation, with
X = (α̂ − α)Ta and Y =

(
∂`(θ|x)
∂θ

)T
b then gives (where Cα̂ denotes the covariance matrix

of α̂):

(
aT

∂g(θ)
∂θ

b

)2
=
(
E
[
aT (α̂−α)

(
∂`(θ|x)
∂θ

)T
b

])2

(
aT

∂g(θ)
∂θ

b

)2
≤ E

[
aT (α̂−α)(α̂−α)Ta

]
E
[
bT
(
∂`(θ|x)
∂θ

)(
∂`(θ|x)
∂θ

)T
b

]
(
aT

∂g(θ)
∂θ

b

)2
≤ aTCα̂abTE

[(
∂`(θ|x)
∂θ

)(
∂`(θ|x)
∂θ

)T]
b

Note that for each pair i, j ∈ {1, 2, . . . ,m} we have by Lemma A.1 (which is proven in
Appendix A-4):
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E
[
∂`(θ|x)
∂θi

∂`(θ|x)
∂θj

]
= −E

[
∂2`(θ|x)
∂θi∂θj

]
= Iij(θ)

where Iij(θ) denotes entry (i, j) of the Fisher information matrix. Substituting this into the
inequality gives:

(
aT

∂g(θ)
∂θ

b

)2
≤ aTCα̂abT I(θ)b

Consider now the off-diagonal entries of I(θ). If i 6= j, then Iij(θ) = Iji(θ), as the partial
derivatives are interchangeable (by Fubini’s theorem [56]). Therefore, I(θ) and its inverse are
symmetric, which means I−T (θ) = I−1(θ). Also, for some vector u of appropriate dimensions,
we have:

uT I(θ)u = uTE
[(

∂`(θ|x)
∂θ

)(
∂`(θ|x)
∂θ

)T]
u

= E
[
uT

(
∂`(θ|x)
∂θ

)(
∂`(θ|x)
∂θ

)T
u

]

= E

∣∣∣∣∣
∣∣∣∣∣
(
∂`(θ|x)
∂θ

)T
u

∣∣∣∣∣
∣∣∣∣∣
2

2

 ≥ 0

Hence, I(θ) is positive semi-definite. Therefore, all its eigenvalues are non-negative. Fur-
thermore, as I(θ) is assumed to be invertible, it must has no eigenvalues equal to zero. This
means I(θ) has only strictly positive eigenvalues, which means it is positive definite.

Recall that a and b were chosen to be arbitrary real vectors of appropriate dimensions, which
do not depend on x. We can now retrieve the Cramér-Rao lower bound from this expression
by a smart choice of b. Choose b = I−1(θ)

(
∂g(θ)
∂θ

)T
a. This gives us:

(
aT

∂g(θ)
∂θ

I−1(θ)
(
∂g(θ)
∂θ

)T
a

)2

≤ aTCα̂aaT
(
∂g(θ)
∂θ

)
I−T (θ)I(θ)I−1(θ)

(
∂g(θ)
∂θ

)T
a

(
aT

∂g(θ)
∂θ

I−1(θ)
(
∂g(θ)
∂θ

)T
a

)2

≤ aTCα̂aaT
(
∂g(θ)
∂θ

)
I−T (θ)

(
∂g(θ)
∂θ

)T
a

As I(θ) is symmetric, so is its inverse, which means I−T (θ) = I−1(θ). This gives:

(
aT

∂g(θ)
∂θ

I−1(θ)
(
∂g(θ)
∂θ

)T
a

)2

≤ aTCα̂a
(
aT
(
∂g(θ)
∂θ

)
I−1(θ)

(
∂g(θ)
∂θ

)T
a

)

Furthermore, as I(θ) is positive definite, I−1(θ) is also positive definite. This means the
term

(
∂g(θ)
∂θ

)
I−1(θ)

(
∂g(θ)
∂θ

)T
is at least positive semi-definite (as

(
∂g(θ)
∂θ

)
could be the zero
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vector). Lastly, it must then also hold that
(
aT ∂g(θ)

∂θ I−1(θ)
(
∂g(θ)
∂θ

)T
a

)
is at least positive

semi-definite and since it is scalar, it must be non-negative. We therefore have:

aT
(
Cα̂ −

∂g(θ)
∂θ

I−1(θ)
(
∂g(θ)
∂θ

)T)
a ≥ 0

As a was arbitrary, we can conclude that
(
Cα̂ − ∂g(θ)

∂θ I−1(θ)
(
∂g(θ)
∂θ

)T)
� 0.

For the special case under consideration, choose g(θ) = θ. Then ∂g(θ)
∂θi

= 1 for all i, which
returns the Cramér-Rao lower bound:

(
Cα̂ − I−1(θ)

)
� 0

as required.

A-3 Proof of Theorem 2.3

First, recall from the proof in Appendix A-1 that by the assumptions on the likelihood func-
tion, the regularity condition EL

[
∂`(θ|x)
∂θ

]
= 0 is satisfied. Furthermore, by the assumptions

on the prior distribution, we have:

∫ ∞
−∞

∂L(θ|x)λ(θ)
∂θ

dθ

= [L(θ|x)λ(θ)]∞−∞ = 0

Suppose we have an estimator θ̂(x). This estimator does not depend on θ by definition and
hence we have:

∫ ∞
−∞

θ̂(x)∂L(θ|x)λ(θ)
∂θ

dθ = θ̂(x)
∫ ∞
−∞

∂L(θ|x)λ(θ)
∂θ

dθ = 0

We will expand the term
∫∞
−∞ θ

∂L(θ|x)λ(θ)
∂θ dθ using integration by parts. Under the assumptions

on λ(θ), we have:

∫ ∞
−∞

θ
∂L(θ|x)λ(θ)

∂θ
dθ = [θL(θ|x)λ(θ)]∞−∞ −

∫ ∞
−∞

L(θ|x)λ(θ)dθ

= −
∫ ∞
−∞

L(θ|x)λ(θ)dθ

We combine the previous two equations to get:

∫ ∞
−∞

(θ̂(x)− θ)∂L(θ|x)λ(θ)
∂θ

dθ =
∫ ∞
−∞

L(θ|x)λ(θ)dθ
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We integrate both sides of the previous equation over x with the domain of integration being
Rn. We then obtain:

∫
Rn

∫ ∞
−∞

(θ̂(x)− θ)∂L(θ|x)λ(θ)
∂θ

dθdx =
∫
Rn

∫ ∞
−∞

L(θ|x)λ(θ)dθdx

∫
Rn

∫ ∞
−∞

(θ̂(x)− θ)∂L(θ|x)λ(θ)
∂θ

dθdx =
∫
Rn

∫ ∞
−∞

p(x, θ)dθdx

∫
Rn

∫ ∞
−∞

(θ̂(x)− θ)∂L(θ|x)λ(θ)
∂θ

dθdx = 1

where p(x, θ) denotes the joint probability density function of x and θ. We continue to work
on the previous equation, by dividing and multiplying by L(θ|x)λ(θ):

∫
Rn

∫ ∞
−∞

(θ̂(x)− θ) 1
L(θ|x)λ(θ)

∂L(θ|x)λ(θ)
∂θ

L(θ|x)λ(θ)dθdx = 1

∫
Rn

∫ ∞
−∞

(θ̂(x)− θ)∂ ln(L(θ|x)λ(θ))
∂θ

L(θ|x)λ(θ)dθdx = 1

Note that we can freely swap the order of integration, as no function depends on both x and
θ and as no bound contains a dependency on either x or θ. Therefore, by the Fubini-Tonelli
theorem [56], we have:

∫ ∞
−∞

∫
Rn

(θ̂(x)− θ)∂ ln(L(θ|x)λ(θ))
∂θ

L(θ|x)λ(θ)dxdθ = 1

Eλ,L
[
(θ̂(x)− θ)∂ ln(L(θ|x)λ(θ))

∂θ

]
= 1

We now apply the Cauchy-Schwarz inequality, as discussed in Appendix A-1. That is,
(E[XY ])2 ≤ E[X2]E[Y 2]. We then have:

Eλ,L
[
(θ̂(x)− θ)2

]
Eλ,L

[(
∂ ln(L(θ|x)λ(θ))

∂θ

)2]
≥ 1

Note that by definition, MSE(θ̂) = Eλ,L
[
(θ̂(x)− θ)2

]
. By rewriting the above inequality, we

obtain:

MSE(θ̂) ≥ 1

Eλ,L
[(

∂ ln(L(θ|x)λ(θ))
∂θ

)2
]

Note that, by the definition of the conditional probability, p(x, θ) = L(θ|x)λ(θ). Therefore,
the Bayesian information matrix J is given by

J = Eλ,L

[(
∂ log(p(x, θ))

∂θ

)2]
= Eλ,L

[(
∂ ln(L(θ|x)λ(θ))

∂θ

)2]
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which proves the first part of Theorem 2.3.
We now show that this Bayesian information matrix can be split up in a data matrix JD and
a prior matrix JP . We start at the expression for J :

Eλ,L

[(
∂ ln(L(θ|x)λ(θ))

∂θ

)2]
=
∫ ∞
−∞

∫
Rn

(
∂ ln(L(θ|x)λ(θ))

∂θ

)2
L(θ|x)λ(θ)dxdθ

=
∫ ∞
−∞

∫
Rn

(
∂ ln(L(θ|x))

∂θ
+ ∂ ln(λ(θ))

∂θ

)2
L(θ|x)λ(θ)dxdθ

=
∫ ∞
−∞

∫
Rn

(
∂ ln(L(θ|x))

∂θ

)2
L(θ|x)λ(θ)dxdθ

+2
∫ ∞
−∞

∫
Rn

∂ ln(L(θ|x))
∂θ

∂ ln(λ(θ))
∂θ

L(θ|x)λ(θ)dxdθ

+
∫ ∞
−∞

∫
Rn

(
∂ ln(λ(θ))

∂θ

)2
L(θ|x)λ(θ)dxdθ

=
∫ ∞
−∞

∫
Rn

(
∂`(θ|x)
∂θ

)2
L(θ|x)λ(θ)dxdθ

+2
∫ ∞
−∞

∫
Rn

∂ ln(L(θ|x))
∂θ

∂ ln(λ(θ))
∂θ

L(θ|x)λ(θ)dxdθ

+
∫ ∞
−∞

(
∂ ln(λ(θ))

∂θ

)2
λ(θ)

∫
Rn
L(θ|x)dxdθ

=
∫ ∞
−∞

∫
Rn

(
∂`(θ|x)
∂θ

)2
L(θ|x)λ(θ)dxdθ

+2
∫ ∞
−∞

∫
Rn

∂`(θ|x)
∂θ

∂ ln(λ(θ))
∂θ

L(θ|x)λ(θ)dxdθ

+
∫ ∞
−∞

(
∂ ln(λ(θ))

∂θ

)2
λ(θ)dθ

= JD + 2
∫ ∞
−∞

∫
Rn

∂`(θ|x)
∂θ

∂ ln(λ(θ))
∂θ

L(θ|x)λ(θ)dxdθ + JP

We now only have to show that
∫∞
−∞

∫
Rn

∂`(θ|x)
∂θ

∂ ln(λ(θ))
∂θ L(θ|x)λ(θ)dxdθ = 0 to complete the

proof. We do so as follows:
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∫ ∞
−∞

∫
Rn

∂`(θ|x)
∂θ

∂ ln(λ(θ))
∂θ

L(θ|x)λ(θ)dxdθ

=
∫ ∞
−∞

∂ ln(λ(θ))
∂θ

λ(θ)
∫
Rn

∂`(θ|x)
∂θ

L(θ|x)dxdθ

=
∫ ∞
−∞

∂ ln(λ(θ))
∂θ

λ(θ)EL
[
∂`(θ|x)
∂θ

]
dθ = 0

where the last result follows from the regularity condition EL
[
∂`(θ|x)
∂θ

]
= 0. This completes

the proof.

A-4 Proof of Lemma A.1

In this section, we prove the following auxiliary lemma:

Lemma A.1. Suppose that a likelihood function L(θ|x) is continuously differentiable with
respect to θ and that its support {x|L(θ|x) > 0} does not depend on θ. For the entries of the
Fisher information matrix, we then have:

Iij(θ) = −E
[
∂2`(θ|x)
∂θi∂θj

]
= E

[
∂`(θ|x)
∂θi

∂`(θ|x)
∂θj

]

Before we prove the lemma, we will first show that the regularity condition E
[
∂`(θ|x)
∂θi

]
= 0

follows from the assumptions on L(θ|x) for all i.

E
[
∂`(θ|x)
∂θi

]
=
∫
Rn

∂`(θ|x)
∂θi

L(θ|x)dx

=
∫
Rn

1
L(θ|x)

∂L(θ|x)
∂θi

L(θ|x)dx

=
∫
Rn

∂L(θ|x)
∂θi

dx

By assumption, we know that L(θ|x) is continuously differentiable with respect to θ and
that its support {x|L(θ|x) > 0} does not depend on θ. It must therefore hold that L(θ|x)
either has a bounded support in x without dependency on θ, or that it has infinite support,
is continuously differentiable with respect to θ and that the integral converges uniformly for
all θ. In these cases, we may use Leibniz’s integral rule to interchange the differentiation and
integration operators [56]. We then obtain:

E
[
∂`(θ|x)
∂θi

]
= ∂

∂θi

∫
Rn
L(θ|x)dx = ∂

∂θi
(1) = 0

Let i, j arbitrary. We start the proof with the definition of the Fisher information as given in
Theorem 2.2:
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Iij(θ) = −E
[
∂2`(θ|x)
∂θi∂θj

]

= −E
[
∂2 log(L(θ|x))

∂θi∂θj

]

Note that for the case i = j, we have

∂2 log(L(θ|x))
∂θ2

i

= ∂

∂θi

[ 1
L(θ|x) ·

∂L(θ|x)
∂θi

]

=
∂2

∂θ2
i
L(θ|x)

L(θ|x) −
( ∂
∂θi
L(θ|x)

L(θ|x)

)2

=
∂2

∂θ2
i
L(θ|x)

L(θ|x) −
(
∂

∂θi
log(L(θ|x))

)2

And therefore

Iii(θ) = −E

 ∂2

∂θ2
i
L(θ|x)

L(θ|x) −
(
∂

∂θi
log(L(θ|x))

)2


= −E

 ∂2

∂θ2
i
L(θ|x)

L(θ|x)

+ E
[(

∂

∂θi
`(θ|x)

)2]

For the statement to be true, we now need to show E

 ∂2
∂θ2
i

L(θ|x)

L(θ|x)

 = 0. We do so as follows:

E

 ∂2

∂θ2
i
L(θ|x)

L(θ|x)

 =
∫
Rn

∂2

∂θ2
i
L(θ|x)

L(θ|x) L(θ|x)dx

=
∫
Rn

∂2

∂θ2
i

L(θ|x)dx

=
∫
Rn

∂

∂θi

∂L(θ|x)
∂θi

dx

=
∫
Rn

∂

∂θi

1
L(θ|x)

∂L(θ|x)
∂θi

L(θ|x)dx

=
∫
Rn

∂

∂θi

∂`(θ|x)
∂θi

L(θ|x)dx

By again applying Leibniz’s integral rule, we interchange differentiation and integration and
we have:
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E

 ∂2

∂θ2
i
L(θ|x)

L(θ|x)

 = ∂

∂θi

∫
Rn

∂`(θ|x)
∂θi

L(θ|x)dx

= ∂

∂θi
E
[
∂`(θ|x)
∂θi

]
= 0

where the last equality results from the regularity condition. As E

 ∂2
∂θ2
i

L(θ|x)

L(θ|x)

 = 0, we can

write for Iii(θ):

Iii(θ) = E
[(

∂

∂θi
`(θ|x)

)2]

which completes the proof for the case i = j.

Now consider the case i 6= j. For this case, we have

∂2 log(L(θ|x))
∂θi∂θj

= ∂

∂θi

[
1

L(θ|x) ·
∂L(θ|x)
∂θj

]

=
∂2

∂θi∂θj
L(θ|x)

L(θ|x) −
∂
∂θi
L(θ|x)

L(θ|x)

∂
∂θj

L(θ|x)
L(θ|x)

=
∂2

∂θi∂θj
L(θ|x)

L(θ|x) −
(
∂

∂θi
log(L(θ|x))

)(
∂

∂θj
log(L(θ|x))

)

And therefore

Iij(θ) = −E

 ∂2

∂θi∂θj
L(θ|x)

L(θ|x) −
(
∂

∂θi
log(L(θ|x))

)(
∂

∂θj
log(L(θ|x))

)
= −E

 ∂2

∂θi∂θj
L(θ|x)

L(θ|x)

+ E
[(

∂

∂θi
log(L(θ|x))

)(
∂

∂θj
log(L(θ|x))

)]

For the statement to be true, we now need to show E
[

∂2
∂θi∂θj

L(θ|x)
L(θ|x)

]
= 0. We do so as follows:

E

 ∂2

∂θi∂θj
L(θ|x)

L(θ|x)

 =
∫
Rn

∂2

∂θi∂θj
L(θ|x)

L(θ|x) L(θ|x)dx

=
∫
Rn

∂2

∂θi∂θj
L(θ|x)dx

=
∫
Rn

∂

∂θi

∂L(θ|x)
∂θj

dx
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=
∫
Rn

∂

∂θi

1
L(θ|x)

∂L(θ|x)
∂θj

L(θ|x)dx

=
∫
Rn

∂

∂θi

∂`(θ|x)
∂θj

L(θ|x)dx

By again applying Leibniz’s integral rule, we interchange differentiation and integration and
we have:

E

 ∂2

∂θi∂θj
L(θ|x)

L(θ|x)

 = ∂

∂θi

∫
Rn

∂`(θ|x)
∂θj

L(θ|x)dx

= ∂

∂θi
E
[
∂`(θ|x)
∂θj

]
= 0

where the last equality results from the regularity condition. As E
[

∂2
∂θi∂θj

L(θ|x)
L(θ|x)

]
= 0, we can

write for Iij(θ):

Iij(θ) = E
[(

∂

∂θi
`(θ|x)

)(
∂

∂θj
`(θ|x)

)]

which completes the proof for the case i = j. As the statement holds for both i = j and i 6= j,
this completes the proof.
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List of Acronyms

CRLB Cramér-Rao lower bound
DM dichroic mirror
GLRT generalized likelihood ratio test
i.i.d. independent and identically distributed
imeSMLM iterative modulation enhanced single-molecule localization microscopy
ILC iterative learning control
meSMLM modulation enhanced single-molecule localization microscopy
MLE maximum likelihood estimation
PSF point spread function
RL reinforcement learning
RoIs regions of interest
SBR signal to background ratio
SMLM single-molecule localization microscopy
VTI Van Trees inequality
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