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Abstract
Standard deep learning utensils, in particular feed-
forward artificial neural networks and the back-
propagation algorithm, fail to adapt to sequential
learning scenarios, where the model is continu-
ously presented with new training data. Many al-
gorithms that aim to solve this problem exist, but
their performance is heavily influenced by factors
such as the properties of the environment, the non-
stationarity of the input/output data, and the intrin-
sic characteristics of the utilised models. In this
paper, we design an activation function-adapted
framework for reinitializing neurons in continual
learning, which aims to preserve the network’s abil-
ity to learn and adjust to new data. A novel utility
measure is introduced, which estimates the activa-
tion value of each neuron. The proposed strategy
selectively reinitializes neurons exhibiting the low-
est and highest activation values, which are typi-
cally detrimental to the learning performance, par-
ticularly in continual learning contexts. We eval-
uate the proposed framework across different sce-
narios using various activation functions and show
that simple strategies—when well-matched to the
model’s activation function—can effectively miti-
gate plasticity loss in simple supervised learning
tasks.

1 Introduction
The field of Continual Learning (CL) focuses on developing
practical machine learning approaches for sequentially train-
ing machine learning models on new tasks without catas-
trophically forgetting the preceding task data [1]. Connec-
tionist networks face the problem of gradually forgetting old
information when learning from new data [2]. This phe-
nomenon has been defined as the loss of plasticity in Con-
tinual Learning. Formally, CL strategies aim to balance the
trade-off between plasticity — the ability to learn from new
data — and stability — the retention of past information.

There does not exist a solitary definition of plasticity which
encapsulates all the underlying aspects of this phenomenon
[3]. For example Lyle et al. [4] refers to plasticity as the
quality of a particular point in parameter space to serve as
a starting point for objective optimization, and Berariu et al.
[5] refers to plasticity as ”the difference in performance be-
tween a pretrained model — e.g. one that has learned a few
tasks already — versus a freshly initialized one”.

Plasticity loss in deep learning can stem from a plethora
of factors operating on different conceptual levels. For ex-
ample, when analyzing the network properties of the model,
factors such as the loss landscape sharpness [6], shifts in
the effective rank dynamics [7], issues like vanishing gra-
dients [8], and a high number of dormant/dead neurons [9]
can all exacerbate the plasticity loss phenomenon. A perpe-
trator present in almost all loss of plasticity occurrences is
the non-stationarity (change of distribution) of the input data
[4]. This aspect closely links CL to the field of deep Rein-

forcement Learning (RL). In deep RL, distribution shifts oc-
cur naturally – even without changing tasks – for example,
through changes in state visitation distribution due to an up-
dated policy or changes in an agent’s target distribution due
to an improved value function in temporal difference learning
[3], [10]. Hence, understanding the mechanism behind the
plasticity loss phenomenon and mitigating this loss is crucial
if we wish to develop deep RL agents which can rise to the
challenge of complex and constantly changing environments
[6].

Multiple strategies exist which mitigate the plasticity loss
in CL. These strategies can be grouped into the following cat-
egories [3]:

• Non-Targeted Weight Resets: strategies where the
weights of some parts of the network are either reset or
re-sampled from the initial weight distribution. Popu-
lar approaches include Shrink and Perturb [11], which
performs weight regularization and injects noise into the
network.

• Targeted Weight Resets: strategies that extend on the
previous category, which selectively reinitialize the neu-
rons of a network. Existing approaches include Contin-
ual Backpropagation [12], which resets neurons based
on a heuristic measure of neuron utility.

• Parameter Regularisation: strategies that regularise
the parameters’ norms. Common approaches include
ensuring small weights magnitudes through frameworks
like L2 regularisation [13].

• Feature Rank Regularisation: strategies that discour-
age feature rank collapse, a metric correlated with high
performance in CL. Common approaches include Direct
Singular Value Regularisation [7], which introduces a
loss function that aims to maintain a high feature rank in
the underlying network.

• Custom Activation Functions: activation functions
specifically designed for maintaining plasticity in CL.
Existing approaches include Parameterised Exponential
Linear Units (PeLU), which introduces learnable param-
eters that allow the network to respond to distribution
shifts in the input data [14].

There exist many strategies that are able to mitigate plastic-
ity loss in CL, but the area of research that explores learning
strategy adaptations to the underlying activation function of
the network remains underexplored. It is thus worth inves-
tigating whether the activation function has enough intrinsic
characteristics that can be leveraged for successfully solving
the issue of plasticity loss in CL.

In this paper, we present an approach aimed at harmo-
niously matching a parameter reset algorithm to the activa-
tion function of the underlying prediction network, with the
main goal of maintaining plasticity in deep CL. A new heuris-
tic utility score measure is introduced, similar to that of the
Continual Backpropagation model, which assesses the ‘ac-
tivity’ of a particular neuron during the training process of
the network. We explore the effect of resetting both low and
high-utility score neurons during the backpropagation pro-
cess. This initiative’s motivation is that the neurons that reach
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these two groups typically adversely affect the mitigation of
plasticity loss in CL, because low utility score neurons ‘strug-
gle’ during the training process, and high utility score neurons
‘dominate’ it.

The goal of this research is to expand the knowledge on
how algorithms that are well-matched to the model’s activa-
tion function can effectively mitigate plasticity loss in simple
supervised learning tasks. The resulting designed framework
is capable of mitigating plasticity loss in the proposed exper-
imental setup and outperforms some existing state-of-the-art
approaches when applied to networks that use various activa-
tion functions on their hidden layers.

In Section 2, the Continual Backpropagation algorithm is
presented, serving as an inspiration for the framework pro-
posed in the same section. In Section 3, we introduce the
experimental setup and in Section 4 present the performance
of the proposed framework across different metrics, such as
prediction accuracy, model running time, gradient covariance
matrix and effective parameter rank. We draw the conclusions
on our research in Section 5 and reflect upon the responsible
aspects of it in Section 6.

2 Methodology
This section serves as the foundation of the proposed method
for maintaining plasticity in deep CL. It presents the Contin-
ual Backpropagation algorithm and its limitations, then the
theoretical considerations supporting our decision choices
and formalises the proposed algorithm.

Preliminaries
The recently proposed Continual Backpropagation algorithm
aims to increase the plasticity while also maintaining high
stability performance in CL. The algorithm selectively
reinitializes neurons in the network. This reinitialization
adds a source of variability to the model, restricting this
variability to those units that are less frequently used, thereby
preserving the past knowledge of the more dominant neurons
in the network.

The heuristic utility measure for every neuron is defined
as:

ul[i]← η · ul[i] + (1− η) · |al,i,t| ·
nl+1∑
k=1

|wl,i,k,t| (1)

where ul[i] - the contribution utility of the ith hidden unit in
layer l at time t, al,i,t - the activation output of the ith hidden
unit in layer l at time t,wl,i,k,t - the weight connecting the ith
unit in layer l to the kth unit in layer l+1 at time t, nl+1 - the
number of units in the layer l + 1, and η - the decay factor.

This utility function is used for selecting which neurons to
reinitialize during the backpropagation process. The intuition
behind this utility measure is that the product of the units’
activation and outgoing weights gives information about how
valuable this connection is to its consumers. Consequently,
it makes sense to reinitialize neurons with a low utility mea-
sure, giving the network the capacity to learn and at the same
time preserve some of its important knowledge gained so far
during the training process.

Dohare et al. [12] presents the performance of the Contin-
ual Backpropagation algorithm across multiple common se-
tups in CL, such as the online permuted MNIST [6] or Con-
tinual Image Net [15]. The algorithm successfully alleviates
the plasticity loss of the learning system, but the reported
experiments are based solely on learning networks that use
ReLU as the activation function of their hidden layers. As we
asses in our experiments, in the best case, the Continual Back-
propagation algorithm successfully preserves the plasticity of
the network, but, in the worst case, it predicts the outcomes no
better than a network trained using simple backpropagation.

This indicates a severe limitation of the Continual Back-
propagation algorithm, due to its dependence on the ReLU
activation function for the network’s hidden layers. This mo-
tivates the design of a new utility measure and reset approach
for CL, which can be easily adapted to the activation function
of the network.

Theoretical Considerations
The proposed approach aims at maintaining plasticity in
deep CL by having its hyperparameters advantageously
matched to the underlying activation function of the network.
This method emerged from the simple idea of heuristically
increasing the magnitudes of the gradients of the problematic
neurons during the training process of the network.

Most families of activation functions suffer from a few
common problematic regions. Some of these problems are
presented in Figure 1. The majority of the problematic re-
gions are related to the high magnitude post-activation values
of the function, both positive and negative. It is thus worth
designing reinitialization strategies which target neurons re-
lated to these two groups. A more detailed rationale behind
the process of the analysis of gradient computations and how
one can design an approach aimed at maintaining the plastic-
ity of the network in CL is presented in Appendix A.

As a metric to measure how valuable a neuron is during the
training process of the network, the following utility measure
is proposed:

ul[i]← η · ul[i] + (1− η) · al,i,t (2)

where the terms have the same meaning as in Equation 1.
Equation 2 defines the utility value of a neuron as a

decaying sum of the activation values of that neuron during
the training process of the network. This represents a
simplification of Equation 1, since it doesn’t consider the
outgoing weights of the node for which it calculates the
utility value. This utility measure represents a good indicator
of whether a neuron relates to the problematic region of low
post-activation valued neurons or high post-activation valued
neurons. Additionally, we apostolate that the activation value
alone encapsulates enough information about the incoming
weights of a node, and that it represents a cost-effective
indicator for whether the node suffers from the vanishing
gradient or the exploding gradient problem [16].

Algorithm Design
For the rest of the paper, we use the terms ‘rescaling’,
’reinitializing’ and ‘resetting’ interchangeably, as the latter
two are the terms usually used in CL literature for denoting
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Figure 1: Illustration of some of the problems faced by deep learning
activation functions(vanishing gradients and big weights). The top
row represents ReLU, and the bottom row represents tanh.

an anthropic change that has been applied to some parts of
the network. In this case, this change represents the rescaling
of the weights and biases of some neurons of the network.

Firstly, let clow denote the scaling factor of the low-utility
score neurons, those neurons that are more likely to be associ-
ated with problematic regions that induce vanishing gradients
during training, for example. Additionally, let ρlow denote the
replacement rate for the low utility score neurons of the net-
work. This constant determines the frequency at which the
neurons are rescaled for each particular layer of the network.
A subtle but important consideration is the introduction of
a table agel

L−1
l=0 , which measures the number of steps since

the last time that a neuron’s weights and biases have been
rescaled. By introducing a maturity threshold m, we can pro-
tect the neurons from being rescaled too often, since it might
take time for the utility measure of a neuron to calibrate af-
ter it has been rescaled. The variable cntlow,l

L−1
l=0 serves as a

counter, which counts the number of neurons that should be
reinitialized at the current time during the training process of
the network. Additionally, let dl denote the initial distribution
of the weights of the hidden layers.

We introduce analogous variables for the high utility score
neurons of the network: chigh, ρhigh and cnthigh,l

L−1
l=0 . The

reason behind having two different strategies is that the opti-
mal strategy for rescaling the weights and biases of the low-
utility score neurons and ameliorating their plasticity loss
symptoms is likely distinct from the optimal strategy for
rescaling the weights and biases of the high-utility score neu-
rons of the network. Intuitively, the low-utility score neu-
rons of the network should be stimulated, and the high-utility
score neurons of the network should be decelerated during

the training process. The formalised pseudo-code of the pro-
posed algorithm is presented in Algorithm 1.

The values of clow, chigh, ρlow, ρhigh represent constant hy-
perparameters that should be chosen before the start of the
training process. A rational approach for finding their opti-
mal values is to perform a grid search on the corresponding
problem whenever possible.

Algorithm 1 Modified Continual Backpropagation

1: Input: low/high replacement rates ρlow, ρhigh; low/high
coefficients clow, chigh; decay rate η; maturity threshold
m

2: Initialise weights {wℓ}L−1
ℓ=0 with wℓ ∼ dℓ

3: Initialise utilities {uℓ}L−1
ℓ=0 ← 0

4: Initialise ages {ageℓ}L−1
ℓ=0 ← 0

5: Initialise counters cntlow,ℓ
L−1
ℓ=0 , cnthigh,ℓ

L−1
ℓ=0 ← 0

6: for each input xt do
7: ŷt ← f(xt; w) ▷ forward pass
8: L ← ℓ(yt, ŷt) ▷ evaluate
9: Update w with SGD (or variant) ▷ back-prop

10: for ℓ = 1 to L− 1 do
11: ageℓ ← ageℓ + 1 ▷ age each unit
12: Update uℓ using (2)
13: neligible ← #{i | ageℓ,i > m}
14: cntlow,ℓ += ρlow neligible
15: if cntlow,ℓ ≥ 1 then
16: r ← argmini uℓ,i ▷ least-useful unit
17: wℓ−1[:, r]← clow · wℓ−1[:, r] ▷ reset inputs
18: ageℓ,r ← 0
19: cntlow,ℓ −= 1
20: end if
21: cnthigh,ℓ += ρhigh neligible
22: if cnthigh,ℓ ≥ 1 then
23: r ← argmaxi uℓ,i ▷ most-useful unit
24: wℓ−1[:, r]← chigh · wℓ−1[:, r] ▷ reset inputs
25: ageℓ,r ← 0
26: cnthigh,ℓ −= 1
27: end if
28: end for
29: end for

3 Experiments
In this section, we introduce the online permuted MNIST
problem. We continue by presenting the model that will be
used throughout the experiments, and describing the metrics
that the models will be assessed on.

Problem Description
A computationally cheap problem based on the MNIST
dataset [17] was chosen for this research. The MNIST
dataset consists of 60000 (scaled down to 10000), 28×28,
greyscale images of handwritten digits from 0 to 9, together
with their correct labels. The small number of classes and
simple image structures reduce the computational cost for
training models on this dataset, which helps carry out many
more experiments under a larger variety of different condi-
tions, enabling us to perform more extensive and profound
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research on the topic.
Scenarios commonly used in generating CL tasks involve

permuting and/or splitting the available dataset [18]. In our
case, we use the former one. The training process is divided
into multiple tasks. Each different task is defined by the way
we permute the pixels within the context of the original im-
age’s shape. Such an example is presented in Figure 2. For
each new task, we draw a new permutation of the original
image’s structure, permute the whole dataset based on this
permutation, and consider the result as the next task that the
model will be trained on.

Figure 2: The process of generating different input configurations
for each training task in the online permuted MNIST experiment.
Each particular image of the dataset is altered according to a unique
pre-determined random permutation at the beginning of a new task.

Model Setup
As a base model, we use feed-forward artificial neural net-
works with 3 hidden layers and 100 neurons per layer. We
use Kaiming Initialization [19] for initializing the weights of
the model, and predict the classification output of each of the
10 classes using the Softmax activation function [13]. The
network is trained on a single pass through the data. In all
the experiments, we use a batch size of 1 datapoint. For each
batch, the network estimates the probabilities of each of the
10 classes, compares them to the correct label and performs
stochastic gradient descent on the cross-entropy loss. The
learning rate used for this experiment is constant and set to
0.003. The reason behind this choice is that the learning rate
represents a hyperparameter that greatly influences the be-
haviour of the model. It is beyond our scope of research to
compare the performance of models that use different learn-
ing rates during the training process.

Each experiment was performed by using 3 different
seeds. For each particular task, the average accuracy of the
model was measured across all 103 datapoints that the task
consists of. In the presented plots, the performance of the
model represents the mean and standard deviation calculated
by considering a running window of size n = 5 over the
results of individual tasks. The primary experiments were
carried out on two network architectures: one with hidden
layers employing ReLU activation functions, and another
which uses tanh activations. A more general experiment
involving a deeper architecture with interleaved activation
functions is presented in Section 4.

Evaluation and Scoring
The primary metric used to evaluate the models’ performance
is their prediction accuracy on the online permuted MNIST
problem. Additionally, due to the increased burden of
resetting weights during the backpropagation process, the
runtime of the model will also be measured. To gain better
insights into the optimisation behaviour and generalisation

abilities of the neural network, we will inspect the gradient
covariance matrix and effective rank of the neural network.

The gradient covariance matrix measures the dot product
of the gradients of different data point samples of the input
dataset [3]. In particular, given sample indices i and j, the
gradient covariance matrix is defined as:

Ck[i, j] =
⟨∇θL(θ, xi),∇θL(θ, xj)⟩
∥∇θL(θ, xi)∥ · ∥∇θL(θ, xj)∥

(3)

The gradient covariance matrix gives insights into whether
updates between a pair of datapoints generalise. One can
think of a positive covariance as an indicator of generalisation
for a pair of inputs, and a negative covariance as an indicator
of interference [6]. Additionally, a pronounced block struc-
ture of the gradient covariance matrix indicates a sharp and
unstable loss landscape [3]. The gradient covariance matrix
represents an expensive-to-compute metric, as a model can
have a significant number of parameters. It is thus usually
calculated by sampling a limited number of data points from
the input space of the problem.

The effective rank assesses how evenly distributed the sin-
gular values of the Singular Value Decomposition (SVD) of
a matrix are. Intuitively, the singular values of the diagonal
term of the SVD represent the magnitudes of stretching and
scaling of different bases in the matrix’s transformation con-
text. A low effective rank of the features of a model implies
that the model maps dissimilar inputs to similar prediction
embeddings, thus making it more complicated to fit a classi-
fier to these predictions [20]. The effective rank is a measure
commonly used to asses the quality of the learned features of
a model, as higher effective rank usually correlates to a higher
performance in CL [21].

Roy et al. [22] introduces the following formula for mea-
suring erank(A), the effective rank of a matrix A of dimen-
sion M ×N :

erank(A) = exp(H(p1, p2, . . . , pQ)) (4)

where H(p1, p2, . . . , pQ) is the (Shannon) entropy given by:

H(p1, p2, . . . , pQ) = −
Q∑

k=1

pk · ln(pk)

with Q = min(N,M), pk =
σk

∥(σ1, σ2, . . . σQ)T ∥1
, and

σ1 ≥ σ2 ≥ . . . ≥ σQ ≥ 0 representing the singular values of
the diagonal matrix of the SVD of A.

4 Results
In this section, we present and discuss the results of the
conducted experiments. We start with the hyperparameter
search for designing the ReLU and tanh strategies. We
continue by presenting the results of the experiments and
introducing a more general, deeper network experiment.

Hyperparameters
We have performed a hyperparameter search for clow, chigh,
ρlow, ρhigh used by the proposed algorithm. The found results
are indicated in Table 1. The search space for cbig and clow
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consists of several values in the range [−2, 2], as having
scaling coefficients with greater magnitude can lead to
exploding weights. Additionally, we consider several values
in the interval [0, 1] for ρlow and ρhigh, as larger rates would
reinitialize neurons too often.

The hyperparameter values selected for the ReLU-based
strategy correspond to those yielding the highest accuracy on
a ReLU-activated network. Similarly, the parameters selected
for the tanh-based strategy were chosen based on their opti-
mal performance on a tanh-activated network. Additionally,
we have performed a hyperparameter search for the Continual
Backpropagation algorithm and the L2 regularisation frame-
work. The results of the search and the values for the other
constant hyperparameters of the models are presented in Ap-
pendix B.

The results of the grid search for the clow, chigh, ρlow, ρhigh
can be interpreted as follows:

• For the ReLU strategy, the clow of −0.5 flips the sign of
the node’s input, which automatically activates the gra-
dient in case it was 0 before, while also shrinking the
weights of the node. We can interpret chigh of 0.5 as a
factor which reduces the weight’s magnitude, not allow-
ing the network to commit to some particular feature,
while also pulling the neuron away from the problematic
high activation value region of the activation function.

• For the tanh strategy, we can interpret both the chigh of
0.2 and the clow coefficient of 0.5 as steps taken in the
activation function towards the place where the gradi-
ent is the greatest, that is, the 0 point. The approach is
different from L2 regularisation due to its use of replace-
ment rates ρlow and ρhigh which only shrink the weights
occasionally.

An insightful result is the fact that for both strategies, the
values of ρhigh and ρlow are higher than the lowest explored
value for these parameters, 10−7. This means that indeed,
reinitializing the low-utility and high-utility neurons does
help with maintaining plasticity, and that these groups
adversely affect performance of the model in CL. Addition-
ally, the values of the mentioned parameters are also lower
than the maximum possible inspected value, most probably
because reinitializing neurons too often adversely affects the
stability of the model during the training process.

Accuracy and Effective Rank
As shown in Figure 3, the accuracy of the simple backprop-
agation model decreases with each subsequent task, which
showcases its lack of plasticity. Moreover, the effective
rank of the backpropagation algorithm also decreases, which
is expected. The Continual Backpropagation algorithm
preserves its plasticity if the underlying activation function
is ReLU, but loses its plasticity and displays similar per-
formance both for the accuracy and effective rank when
the underlying activation function is tanh, which exhibits a
significant limitation of the algorithm. The L2 framework
maintains its plasticity in both scenarios, thus serving as a
baseline for preserving plasticity in CL.

The designed ReLU strategy outperforms the other strate-
gies, achieving a performance of (88.65 ± 0.4%) (mean and

std) across all tasks, compared to (86.23 ± 0.4%) of L2
regularisation and (84.98 ± 0.7%) of tanh strategy when
used on a ReLU-activated network. The tanh strategy out-
performs the other strategies, achieving a performance of
(87.60 ± 0.32%) compared to (86.45 ± 0.37%) of L2 reg-
ularisation and (84.12 ± 0.5%) of ReLU when used on a
tanh-activated network. This demonstrates that the chosen
parameters, when tuned to the underlying activation function,
are able to preserve the plasticity of the network while also
maintaining a high classification accuracy. The drop in per-
formance of 1.05 p.p of the tanh strategy compared to the
ReLU strategy in their native scenarios can be attributed to
multiple reasons and indicates some possible limitations of
the proposed framework, but further research is needed to
make more accurate claims.

Interestingly enough, even though the performance of the
strategies decreases when used on the opposite activation
function scenario, the algorithms still preserve some plastic-
ity of the model, as they perform better than simple backprop-
agation. Additionally, when inspecting the efficient rank of
the ReLU strategy, we can see that it is lower than that of the
Continual Backpropagation model for the ReLU activation
scenario, even though the accuracy of the model is higher, and
drops drastically in the tanh scenario, even though its accu-
racy is significantly higher than that of backpropagation and
Continual Backpropagation. Gulcehre et al. [23] argues that
the association between effective rank and agent performance
is not as straightforward as previously assumed in offline RL
scenarios. Our empirical analysis shows that while a low-
prediction accuracy usually indicates a significant drop in the
effective rank of the feature matrix, the implication doesn’t
usually work the other way around.

One might notice a slight increase in performance for
the majority of the models for the first few tasks of the
training process. This result is consistent with deep-learning
applications in which the learning system is first trained
on a large dataset and then fine-tuned on a smaller, more
relevant dataset [12]. In the case of ReLU strategy applied
on the ReLU activated network, this increase is maintained
throughout the training process, as the network might still
remember some relevant patterns of the previous training
task, while a network trained from scratch can not benefit
from any prior memory component.

Running Time
Rough estimates for the running time statistics of the back-
propagation model, Continual Backpropagation model and
the designed ReLU strategy are presented in Table 2. All ex-
periments were conducted on the DAIC - the TU Delft High
Performance Computing (HPC) Cluster [24], using one CPU
per task from the available types of CPUs1. The experiments
were run using 3 batch sizes (1, 10, 100). As it turns out,
the batch size represents an important hyperparameter which
heavily influences the performance of the models in CL. It is
especially important for the Continual Backpropagation and
ReLU strategy models, most probably due to the granularity

1https://daic.tudelft.nl/docs/system/compute-nodes/#list-of-all-
nodes
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Strategy ρhigh ρlow cbig csmall

ReLU 10−2, 10−3,
10−4, 10−5,
10−6, 10−7

10−2, 10−3,
10−4, 10−5,
10−6, 10−7

−2, −1, −0.5,
−0.2, 0, 0.2,
0.5, 1, 2

−2, −1, −0.5,
−0.2, 0, 0.2,

0.5, 1, 2
tanh 10−2, 10−3,

10−4, 10−5,
10−6, 10−7

10−2, 10−3,
10−4, 10−5,
10−6, 10−7

−2, −1, −0.5,
−0.2, 0, 0.2,

0.5, 1, 2

−2, −1, −0.5,
−0.2, 0, 0.2,
0.5, 1, 2

Table 1: Values used for the grid searches to find the best set of hyperparameters for the proposed algorithm tested on the permuted MNIST.
The best-performing set of values for each activation strategy is in bold.

Algorithm Size (#params) Batch Size Inference time (ns) Backprop (ns) Epoch time (s)
1 12.6± 0.33 41.56± 2.10 8.11± 0.15

Backpropagation 10 29.94± 0.06 21.09± 0.13 1.54± 0.01
99710 100 59.56± 6.8 44.44± 0.12 0.30± 0.03

(784 inputs, 1 17.04± 4.28 199.58± 84.40 20.77± 5.02
Continual Backpropagation 3 hidden 10 19.13± 1.15 235.59± 21.08 1.77± 0.02

layers of 100 100 42.88± 0.37 291.45± 23.86 0.30± 0.01
nodes, 10 outputs) 1 12.44± 0.12 230.13± 22.11 16.05± 0.15

ReLU 10 19.18± 0.40 233.95± 7.57 1.88± 0.04
100 51.51± 9.97 293.16± 6.43 0.39± 0.08

Table 2: Running time statistics for different models and varying batch sizes applied on a ReLU-based network for the online permuted
MNIST problem. We report the average time and standard deviation for a sample size of n = 3 seeds.

that defines the way that we compute the utility function
of the reinitialization approaches. We omit presenting the
accuracy performance based on the batch size as this is
beyond the scope of this research.

As expected, the inference time is almost the same for all
three models, since the introduced reinitialization approach
doesn’t change the way predictions are inferred. The average
backpropagation time is significantly higher for the Contin-
ual Backpropagation and ReLU strategy models. This is due
to the fact that the neurons’ reinitialization procedure is con-
sidered a part of the backpropagation process. The average
backpropagation time is similar between the Continual Back-
propagation model and the ReLU strategy model, whereas
the latter slightly outperforms the former in average epoch
time for a batch size of 1. The backpropagation algorithm, as
expected, outperforms the other two algorithms, achieving a
speed-up factor of 1.97 compared to the ReLU strategy model
for a batch size of 1.

The results suggest that incorporating a plasticity preser-
vation mechanism imposes a significant computational
overhead. However, as this overhead is highly sensitive to
the algorithm’s hyperparameters — particularly the reinitial-
ization rates ρlow and ρhigh — it is challenging to provide a
precise estimate of the additional cost incurred.

Gradient Covariance
The gradient covariance matrices were measured right at
the beginning of a new task, to asses how the gradients of
the model behave when encountering the ‘stress’ of having
to adapt to a new data distribution. Due to the increased
complexity of computing the gradient covariance matrix,
we have chosen to sample only 50 arbitrary data points
from the MNIST dataset, adapted to the distribution of the

underlying task. For this experiment, the training process
was extended to 700 tasks, with the hope of being able to
draw more conclusions from the behaviour of the gradients
of the network. The covariance matrices are presented in
Figure 4.

When visually inspecting the ReLU-based gradient covari-
ance matrices, one can note that the ReLU backpropagation
algorithm suffers from pronounced magnitudes of the gra-
dients, which is a bad sign, especially since there is a high
number of both positive and negative covariances of the gra-
dients, which interfere with each other. For the Continual
Backpropagation algorithm, the covariance magnitudes are
smaller, which is a good indicator for the lack of interference
between gradients, both positive and negative. Similarly, the
ReLU strategy has slightly higher magnitudes, but also the
majority of them are positive. These results are consistent
with the accuracy of the predictions of these strategies.

For the tanh-based gradient covariance matrices, one can
note the drastic increase in negative covariance values, both
in number and magnitude, of the Continual Backpropagation
model, which negatively influences the optimisation prop-
erties of the network. On the other hand, the gradients of
the proposed tanh strategy are slightly positively correlated,
which means that during training, the gradients of different
data points generalise, leading to faster convergence and, on
average, higher classification accuracy. This experiment once
again has shown the loss-of-plasticity phenomenon of the
backpropagation algorithm, and the low adaptability of the
Continual Backpropagation algorithm to different activation
functions. It also gave insights into the gradient behaviour of
the analysed models early into the training process of a new
task.
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Figure 3: Online MNIST accuracy of models using ReLU and tanh activation strategies. Top row represents the accuracy and the effective
rank for networks using the ReLU activation function. The bottom row represents the accuracy and the effective rank for networks using the
tanh activation function. The results represent the average and standard deviation taken over 3 seeds for a running window of size (n = 5).

Twisted Activations
Employing various activation functions can be beneficial for
the performance of deep models. For example, Hochreiter
et al. [25] introduces the Long Short-Term memory, which
leverages a combination of different activation methods
that induce a memory component to the network, whereas
Howard et al. [26] shows that by varying different activation
functions, one can improve the latency of the model while
maintaining similar performance. This gives us motivation
for the next experiment, which uses as a base model a
network that employs different activation functions for
different layers of the network. The new network contains 5
hidden layers, instead of 3, and the corresponding activation
functions of the hidden layers are as follows: ReLU, ReLU,
tanh, tanh, ReLU. This combination was chosen randomly
among all the possible 25 = 32 combinations of hidden
layers that make use of these 2 functions. We run the simple
backpropagation algorithm as a baseline for a network that
loses its plasticity during training and an L2 model, which
acts like a baseline for a network that preserves its plasticity
in CL. We also run the following three models:

• A network which employs the designed ReLU strategy

for all the hidden layers of the network (denoted as
strategy relu).

• A network which employs the designed tanh strategy
for all the hidden layers of the network (denoted as
strategy tanh).

• A network which alternates the 2 strategies based on the
corresponding hidden layer of the network (denoted as
strategy combined).

• A network which alternates the 2 strategies based
on the corresponding hidden layer of the network,
but employs the suboptimal strategy (denoted as
strategy opposite).

The obtained results are presented in Figure 5. The back-
propagation algorithm displays a big loss of plasticity, even
starting from the first tasks of the training process. Next,
we notice that the strategy that combines the best layer-wise
strategies, depending on each layer’s activation function, out-
performs the other approaches. The performance is com-
parable to that of the tanh strategy when applied on a na-
tive tanh network and lower than that of the ReLU strategy
when applied on a native ReLU network, as shown in Figure
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Figure 4: Gradient Covariance Matrices computed at the beginning
of the 700th task for 50 datapoints. The top row represents the ma-
trices of the backpropagation, Continual Backpropagation and de-
signed ReLU strategy when applied on a ReLU-based network. The
bottom row represents the matrices of the backpropagation, Contin-
ual Backpropagation, and designed tanh strategy when applied on a
tanh-based network.

Figure 5: Online MNIST accuracy for the deeper network experi-
ment. The results represent the average and standard deviation taken
over 3 seeds for a running window of size (n = 5).

3. Further research is needed to explain this phenomenon.
Additionally, even though the L2 regularisation doesn’t dra-
matically decrease in prediction accuracy, it still loses some
plasticity during the training process. We also notice that the
ReLU and tanh strategies are comparable in performance with
L2 regularisation. We assume that this is because the strate-
gies are still correctly employed on some layers that use the

same activation function as the ones for which the strategies
were designed. Finally, the strategy that uses opposite activa-
tions compared to the corresponding network layer performs
the worst among our designed strategies, as anticipated. This
experiment has reinforced our belief that there is a strong
correlation between classification accuracy and selecting the
most suitable reinitialization algorithm for each layer of the
network.

5 Conclusions and Future Work
This research focused on developing a framework for main-
taining plasticity in CL that adapts its corresponding reini-
tialization strategy to the underlying activation function of
the network. We have introduced a custom utility measure
that estimates the activation value of each neuron. The strat-
egy reinitializes neurons that have either low or high activa-
tion values, groups that are usually problematic during deep
learning, especially in CL. We have identified that existing
approaches, such as Continual Backpropagation, do not gen-
eralise well to various activation functions, and assessed that
the proposed algorithm can adapt to ReLU and tanh, which
come from two different families of activation functions. We
have presented the prediction accuracy performance of the
proposed model on the online permuted MNIST problem,
along with other common metrics in CL, such as effective
rank, gradient covariance matrix, and analysed its running
time statistics. To the best of our knowledge, the concept of
reinitializing neurons with high utility scores is novel, distin-
guishing our approach from prior work such as the Continual
Backpropagation algorithm, which focuses solely on reini-
tializing low-utility neurons.

Two techniques related to the proposed reinitialization al-
gorithm are LayerNorm [27] and BatchNorm [28]. Layer-
Norm normalizes each feature within a sample, while Batch-
Norm normalizes each feature across a batch of samples. It is
worth investigating the BatchNorm approach in particular, as
it also aims to reduce the magnitudes of post-activation val-
ues, aligning with the core principle of the newly introduced
strategy. The main difference between the two approaches is
that the proposed strategy only selectively reinitializes neu-
rons, whereas BatchNorm does so for every single batch of
data. For a performance evaluation of BatchNorm on the per-
muted MNIST problem, one can consult Appendix C.

Several directions for further investigating the usefulness
of the proposed model remain. Firstly, it should be assessed
whether the framework can mitigate plasticity loss in more
general scenarios, including various supervised learning and
deep RL popular benchmarks. Second, the model’s ability to
generalise to various activation functions — such as SeLU,
GeLU, and others — should be assessed. Finally, evaluat-
ing the rate at which the model forgets previously acquired
knowledge when exposed to new data distributions would
provide valuable insights into its stability–plasticity trade-
off.

6 Responsible Research
In this section, we reflect on the ethical aspects, address the
broader implications and discuss the reproducibility of the
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conducted research. Additionally, we also outline the specific
ways in which LLMs assisted our research.

Transparency and Reproducibility
We have made sure that the results of our research are
reproducible and transparent. We provided a public Github2

repository, which is forked from the repository that was
introduced in [12] and contains the implementation of
the Continual Backpropagation algorithm. Our codebase
contains the implementation of the designed algorithms,
models and configuration files of the performed experiments.
Additionally, it is capable of downloading the public MNIST
dataset on which the experiments were performed. All the
experiments, except for the measurement of the gradient
covariance matrix, were performed by using 3 different
seeds to ensure robust and reliable estimation of the obtained
results. In the case of the gradient covariance matrix, only
one seed was used, as this metric can’t be averaged across
multiple runs.

Limitation and Scope
The corresponding designed algorithm can mitigate plasticity
loss in the online permuted MNIST experiment for net-
works which use ReLU or tanh as their activation function.
However, this algorithm wasn’t tested on other common CL
benchmarks. Hence, the model should be properly inves-
tigated before being used in scenarios involving important
decision-making or interaction with humans.

Unreported Research
Other utility functions and algorithms were tested as well
during the research, but the majority of them didn’t yield
positive results and have not been described in this report due
to the space constraints of the report and the time constraints
of the project. This research initially started with the scope
of exploring the effect of reinitializing high-utility score neu-
rons on the performance of the Continual Backpropagation
algorithm, but, after the reveal of some limitation of the Con-
tinual Backpropagation algorithm, it was reconceptualized
to designing a more robust algorithm for resetting both high
and low utility score neruons for solving the plasticity loss
problem in CL.

Use of LLMs
LLMs have been used during this research for improving the
grammar, style and spelling of the paper contents and for
improving the visual figures of the obtained results. Some of
the most representative prompts are presented in Appendix
D.
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A Computing Gradients
The standard equations for calculating the outputs, activa-
tions, and the gradients of the weights of a layer in a neural
network are as follows:

z(L) = w(L) · a(L−1) + b(L) (5)

a(L) = σ(z(L)) (6)

∂C

∂w(L)
=

∂z(L)

∂w(L)
· ∂a

(L)

∂z(L)
· ∂C

∂a(L)
(7)

where C - the cost function, w(L) - the weight tensor of the
L-th hidden layer, z(L) - the inputs of the L-th layer, a(L) -
the activation value of the L-th layer, and σ - the activation
function of the L-th hidden layer.

The second term of Equation 7 can be artificially easily
manoeuvred by scaling the weights and biases of the layer by
some constant factor. Let us denote such a scale factor by c.
In this case, the old and new outputs of that node satisfy the
following equation: z(L)

new = c · z(L)
old , and a

(L)
new = σ(z

(L)
new) =

σ(c · z(L)
old ). Plugging these relation in Equation 7 leads to:

∂Cnew

∂w
(L)
new

=
∂z

(L)
old

∂w
(L)
old

·
∂σ(c · z(L)

old )

c · ∂(z(L)
old )

· ∂Cnew

∂σ(c · z(L)
old )

(8)

The first term of Equation 8 is exactly the same as the first
term of the pre-scaling backpropagation product. The last
term of Equation 8 depends on the way the loss function is
measured in the network. The second term, however, can
‘steer up’ the activation function value of a particular neu-
ron. In the case of a vanishing gradient problem, by carefully
choosing a value for the scaling coefficient c, one can shift the
post-activation value of the corresponding neuron in a more
favourable region that is capable of catalysing the behaviour
of the gradient of that neuron.

B Hyperparameters
The hyperparameter search results for the Continual Back-
propagation algorithm and the L2 regularisation framework
are indicated in Table 3 and Table 4, respectively. The con-
stant hyperparameters of the models are presented in Table
5.

Algorithm Weight Decay
ReLU Strategy 0.001, 0.0001,

0.00001
tanh Strategy 0.001, 0.0001,

0.00001

Table 3: Values used for the grid searches to find the best weight
decay for L2 regularisation tested on the permuted MNIST. The
chosen values are shown in bold.

Algorithm Replacement Rate
ReLU Strategy 10−2, 10−3,

10−4, 10−5,
10−6, 10−7

tanh Strategy 10−2, 10−3,
10−4, 10−5,
10−6, 10−7

Table 4: Values used for the grid searches to find the best replace-
ment rate for the Continual Backpropagation algorithm tested on
the permuted MNIST. The chosen values are shown in bold.
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Name Value
decay rate (η) 0.99
maturity threshold (m) 100
step size 0.003
num features 100
num hidden layers 3

Table 5: Constant hyperparameters used across all runs for all the
models.

C BatchNorm
BatchNorm computes the mean and standard deviation for
each feature across a particular mini-batch of data. It does
so by applying the following formula:

y =
x− E[x]√
V ar[x] + ϵ

· γ + β (9)

where x - initial distribution of a particular feature of the in-
put data, y - computed normalised distribution, γ, β - learn-
able parameter vectors, and ϵ - small constant added to the
variance to avoid division by zero.

For this experiment, we have employed 4 standard back-
propagation models, with batch sizes of 5, 10, 50, and 100
data points, respectively. The base network was augmented
by adding a BatchNorm layer between every hidden layer
and activation layer of the network. The resulting prediction
accuracies are shown in Figure 6. While all of the models
maintain an almost stable performance throughout this ex-
periment, their overall accuracy is notably lower than that
achieved by the proposed strategy in our paper. This sug-
gests that selectively reinitializing neurons during CL has the
potential to be more effective for preserving the plasticity of
the network than constantly normalising the activation values
of the neurons for each data point.

D LLM Prompts Used
Some of the most representative prompts are presented in Ta-
ble 6.

Figure 6: Online MNIST accuracy measured for the BatchNorm
models. The results represent the average and standard deviation
taken over 3 seeds for a running window of size (n = 5).

Scope Prompt
Grammar, Style and
Spelling

Improve the scien-
tific tone and read-
ability of this pas-
sage: ...
Give suggestions on
how to improve this
passage:...
Rewrite this para-
graph into another
one that is easier to
understand: ...

Visual Figures How to leave more
space between these
figures: [image],
[code]
Refactor this table
such that there is no
separator between
adjacent columns:
[LaTex]
Improve the styling
of this table: [La-
TeX]

Table 6: Representative LLM prompts used for the scope of the re-
search.

11


	Introduction
	Methodology
	Experiments
	Results
	Conclusions and Future Work
	Responsible Research
	Acknowledgments
	Computing Gradients
	Hyperparameters
	BatchNorm
	LLM Prompts Used

