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Introduction 1
Embedded systems are all around us. They are the brains of all the intelligent devices
that help us in our every day life. Televisions, set-top boxes, cell phones, digital cameras,
car navigation systems, electronic driving assistance [30]. Consumer applications demand
more and more functionalities and processing power. For example, smartphones offer
nowadays a wide range of very features, such as Wi-Fi, Internet, touch-screens, high
definition video playing, recording and encoding, gaming, GPS, USB connections and
flash card readers. Embedded systems offer all these features on a single Systems on
Chip (SoC), consuming less power, important for the portable devices, at a unit price of
a few US dollars.

The complexity of these SoCs grows due to the increasing number of heterogeneous
and independent applications integrated on a single chip. Applications run over one or
more processors, such as General Purpose Processors (GPPs), Digital Signal Processors
(DSPs), or Application Specific Processors (ASPs) [13]. Applications might share also
resources, such as memories or other peripherals. Generically we will call these proces-
sors and peripherals Intellectual Properties (IP). Following Moore’s Law, the number
transistors doubles roughly each two years and due to the market pressure SoCs inte-
grate an ever-higher number of IPs. However, hardware design is difficult and the design
productivity is highly based on IP reuse [19]. Therefore, integrating an always-growing
number of many applications and IPs in one SoC requires an scalable interconnect [9].

In the last years there have been large efforts in Networks on Chip (NoC) field.
NoC paradigm provides the scalable and modular interconnect that can easily provide
a communication infrastructure for large-scale designs [6][2]. By implementing Quality
of Service (QoS) mechanisms the NoC is able to give reliable communication services
with guaranteed throughput and bounded latency. Such NoCs suitable to be generated
automatically are helping the system designer to create interconnects that meet the
specific application requirements [11].

Field Programmable Gate Arrays (FPGA) prototyping is a technique that allows
faster and cheaper validation of SoCs designs [24]. The RTL description of the hardware
is synthetised and mapped onto the specific logic gates of the FPGA. The result is a
cycle-accurate system that can be used for SoC validation. However, NoCs occupy a
large portion of the FPGA resources. The reason for this is that signal routing and
floorplanning is very complex in FPGAs, and also responsible of the main area cost.

By using more than one FPGA it is possible overcome the lack of logic resources
for emulating large SoCs [37]. Hence, a system must be partitioned into a number of
sub-systems, each of them implemented on one FPGA. Off-chip communication between
these FPGAs is thus required.

Prototype boards typically include only one FPGA chip. Although multi-FPGA
boards exist, to interconnect sub-systems implemented on each FPGA an interconnec-
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2 CHAPTER 1. INTRODUCTION

tion scheme is required. Furthermore, they can not be upgraded with more chips if a
future SoC design requires more logic resources. A multi-board approach can be more
challenging, but adding more logic resources is easier and thus the resulting system more
flexible. Almost all prototype boards include several communication standards, such as
Ethernet, USB or PCI-Express, that can be used for FPGAs interconnection. Finally,
multi-board solution is more generic since it can be also used with multi-FPGA boards.

Companion chips allows to optionally extend the functionality of a SoC [29]. This
might be interesting for chip makers, who can offer a SoC offering basic functionalities for
the low-end market, and the same SoC plus the companion chip offering extra features
for the high-end devices. This increases the sales of the basic SoC, lowering its price
per unit, and reduces the design time of the high-end systems, because only the new
functionalities need to be designed. If the SoC uses a NoC, extending the interconnect
to the companion chip might reduce the design and verification time by hiding the off-
chip link complexity from the IPs and applications.

In this thesis we explore the potential of extending a NoC with off-chip communi-
cation capabilities. Our aim is to give an unified view of the NoC to the applications,
independently of the FPGA on which they execute. The resulting system, two NoCs
connected by a bridge, should provide the same functionality as a single NoC, while
guaranteeing a minimum throughput and bounded latency. Applications show the same
functional behavior when running on a cluster of sub-systems compared with the orig-
inal system. Such an off-chip bridge must keep the QoS of the application in terms of
throughput and latency requirements.

Furthermore, run-time configuration of the on-chip interconnect for different usecases
is also essential [15]. The configuration is done by a host, typically a microcontroller or
processor. The host is responsible of the carrying out all the configuration procedures
and also might work as system monitor. An off-chip bridge will allow to move the host to
a Personal Computer (PC) or any other off-chip processor. Thus, configuration can be
performed remotely, and the system be accessed from the outside of the chip, simplifying
the system debug and verification.

Therefore, the problem we want to solve is:

Design, implement and test an off-chip bridge that enables the extension of
a NoC among two or more chips, while providing the applications QoS, and
allowing the access from an external host such as a PC to the SoC or sub-
SoCs.

This thesis is organized as follows: In Chapter 2 some other research efforts in-
volving the interconnection of separate chips are reviewed. Chapter 3 describes the
Æthereal NoC in depth and introduces the concepts needed for understand the bridging
requirements and schemes discussed in Chapter 4. Chapter 5 presents the design of the
bridge, describing the mechanisms and techniques used to achieve the requirements. The
implementation in hardware and software is shown in Chapter 6, together with the con-
figuration process of the NoCs. The bridge is test and verified in Chapter 7. Finally, in
Chapter 8 the conclusions of this thesis are given, including recommendations for future
research.



Related Work 2
Significant research efforts have been done in different fields that needs to partition or
extend a NoC among several chips. Therefore off-chips links are needed in order to
implement a connection between NoCs or with other devices.

A design for off-chip NoC interfaces is proposed in [1]. This work is adapted to Glob-
ally Asynchronous Locally Synchronous (GALS) architecture. The interface is placed at
the physical layer in order to offer a unified view of the NoC protocol to different NoC-
based subsystems. Such interface uses one parallel connection of 78 signals between chips
per each bidirectional link.

The concept of sub-NoCs and the way of interconnecting them is discussed in [8].
Such interconnections are placed at the network level but maintaining guaranteed service,
which introduce some additional issues. They give two possible solution for the flow
control: global end-to- end flow control and local end-to-end flow control. In the first
approach flow control is at the level of the whole NoC and local flow control is at
the sub-NoC level. Furthermore this paper also shows the architecture of the TDMA
synchronizer, that is in charge of adapt the TDMA slot tables between two sub-NoCs
keeping the guaranteed service.

Some other work has been carried out in the field of emulating one ASIC with several
FPGA’s with developing purposes. The work presented in [23] shows how multi processor
SoC (MPSOC) with 48 cores can be fitted in 4 FPGA’s by extending the NoC (Arteris)
with off chip synchronous links. A multi purpose emulation platform which can be used
with different NoC topologies is presented in [22]. Network links between routers placed
in different chips are emulated by using high speed serial links as inter chip or inter
board connections. Serial links are chosen due to their great degree of scalability and
the simpler configuration and setup. The drawback of this configuration is that the off
chip link introduces 40 cycles latency. Therefore according with results of this paper the
latency between two IP is two or three times bigger if there is an off chip link in NoC.

NoCs with off chip links may extend the functionality of the chip. In [29] the NoC
has one off chip link for increasing the number of tasks that the SoC can perform by
connecting with a companion chip. Therefore the resulting system SoC is more flexible
and easily upgradeable. This technique also allows to sell the common IPs to other cus-
tomers and encapsulating the differentiating functionality in the companion chip. The
new chip might be a FPGA instead of an ASIC since the production may be lower. The
interconnection link of [29] (called HSEL) is PCI Express or a proprietary link intercon-
nect technology. HSEL is directly connected to two master and two slave NI ports, at
the transport level. As a result the system is more flexible since new functionality can
be spliced in at any step of the existing process. However, there is an increasing of the
power consumption, area and latency.

Bridges can be added to the NoC not only for interconnecting NoCs, but also for

3



4 CHAPTER 2. RELATED WORK

connecting other different devices. In [21] a bridge is developed to interface a multi-core
SoC, built using NoC paradigm, to the Internet. The bridge operates above the network
layer in the NoC side and at the application layer at the Internet side. Otherwise, if
the bridge is operating below the application layer at the Internet side all the IPs must
implement the TCP/IP stacks, what may waste more area. The delay that such bridge
introduces is in the range of hundreds of microseconds. This might seem very high values
for the latency in a chip, but taking into account that this bridge will send data through
the Internet it is very likely that the latency introduced by Internet may be even higher.

Multi-processor systems can also take advantage of the intrinsic multi hop nature of
the NoC, that can allow inter-chip and inter-board connection in a transparent way for
the IPs [38][25][4]. In [38] the design and implementation of a inter-chip interconnect
for 4 DSP’s per chip is presented. Inter-chip interconnect module is responsible for the
conversion and transmission of data between multiple SoCs using PCI Express as off
chip connection. The inter-chip module is made up of two components: QPB, the asyn-
chronous bridge module and the PCI-Express interconnect module. QPB implements the
conversion between NoC packets and the PCIExpress packets. Therefore the bridge is
located at the data link level. Since there are different clock frequencies in the intra-chip
connections than in the inter-chip connections, the QPB is also in charge of accommo-
dating the data rates using an asynchronous FIFO. The results show that this solution
has a big throughput (around 1.5 Gbps) and the latency is around 22 PCI-Express clock
cycles.

An architecture for scalable computing machine built using FPGA nodes is proposed
in [25]. Such architecture allows to implement large scale computing applications using
a heterogeneous combination of hardware accelerators and embedded microprocessors
spread across many FPGAs. All the computing units are interconnected by a flexible
communication network. This architecture does not use a NoC for intra-FPGA com-
munication but direct links. Serial multi-gigabit transreceivers implement inter-FPGA
communication. This links can eventually emulate 10 Gigabit Ethernet or Infiband
protocols in order to create a inter-cluster communication. This architecture also imple-
ments an off chip communication controller (OCCC) [5] for providing reliability between
tasks. This high-speed communication architecture is implemented over SERDES and
it achieves a throughput between 0.3 and 2 Gbps and a latency between 1 and 12 mi-
croseconds, depending on the packet size.
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This chapter gives an overview of the NoC to which the bridging scheme is applied. First,
Section 3.1 introduces Æthereal NoC [12] and presents its main features. Section 3.2 de-
scribes some of the interesting modules of the Æthereal that are important to understand
the bridging scheme selection and bridge operation. In Section 3.3 the protocol stack is
discussed together with the functionalities provided by each layer. Finally, Section 3.4
shows the procedure for configuring the NoC, and enabling application communication.

3.1 Æthereal Overview

Æthereal NoC is an interconnection network that allows to combine a large number of
Intellectual Properties (IP) into a working SoC improving the scalability and the resource
sharing. This chapter will introduce Æthereal architecture and operation as well as its
protocol stack [14].

Due to the realtime communication requirements that many IPs might need, Æthereal
provides guaranteed services (GS) like uncorrupted, lossless communication, ordered
data delivery, guaranteed minimum throughput and bounded latency. Best Effort (BE)
traffic is also possible. BE traffic still provides lossless communication and in order
delivery, but using the available throughput and latency left by the GS. These features
are essential for the construction of robust SoCs. In addition, Æthereal also decouples
the different behaviors of the IPs even while sharing communication resources. Hence,
the SoC developers can test their IPs independently of each other.

In order to provide such decoupling between IPs, Æthereal chooses contention-free
routing, or pipelined Time-Division-Multiplexed (TDM) circuit switching. Thus, GS
communication requires resource reservation. A connection must be opened before the
IP can transmit data, and it must be closed to release the resources. This configuration
process is done by the host, typically a microcontroller placed on the SoC.

3.2 Architecture

Æthereal blocks are shown in Figure 3.1. When IP1 wants to fetch some data from the
main memory a bus transaction i.e. a read transaction for instance is initiated in the IP
data port. In this case IP1 is using distributed memory, so it is connected to a target
bus that decodes the address and forwards the message to the appropriate initiator port.
At this point, the read request message is serialized by the target shell. The elements of
the request, such as address, command or burst size will be placed into individual words
of streaming data. This words are 37 bits wide.

The streaming data is fed into the input queue of the Network Interface (NI). There
the streaming words are packetised and sent to the router as flow control digits (flits).

5



6 CHAPTER 3. ÆTHEREAL

Figure 3.1: An example of a SoC that uses Æthereal Network on Chip as intercon-
nect [16].

Thus, each packet may have one or more flits. Flits in turn are divided in physical digits
(phits), the words that are sent over the wires between two modules. The first phit of
each packet carries the header, which has the path of the packet and credits.

Based on the input queue and the configuration of the NI, the NI arbiter schedules
the flits of the packet and sets its path in the header. According to such path, the
routers of the network will forward the flits until they reach their destination NI. Due
to the contention-free routing, no arbitration is needed in the routers.

The destination NI takes the streaming data from the packet and places the phits in
the output queue. The initiator shell deserializes the request and issues a transaction in
its initiator port. The shell could be directly connected to the target IP2 if the latest
is not shared with more initiators, otherwise an initiator bus would be needed, like for
IP3, which is shared by IP1 and IP4.

Finally, the response is generated by the target, serialized by the shell and fed into
the NI as streaming data. Once this data is scheduled, it crosses the router network all
the way back until it gets stored in the output queue of the first NI. The target shell
recomposes the response and sends it back to the bus and this to IP1.

Æthereal gives interconnection services to the applications of the SoC. Thus, many
times applications need to share the network and some memory mapped targets, with
some latency and throughput requirements. However, in Æthereal arbitration only takes
place in the NIs and in the initiator buses. However, due to contention-free routing,
there is no need of any additional arbitration inside the network [27]. The NI arbiter
has a programmable TDM table that regulates the injection of GS flits in the network in
such a way that two flits can never arrive at the same link at the same time. Thus, the
network can not experience congestion. This implies that each connection behaves like
an two independent FIFOs (one for each direction), enabling predictability and allowing
to guarantee bounded latency and minimum throughput per channel.

3.3 Æthereal Protocol Stack

Æthereal is designed to give a suitable communication service to a wide variety of appli-
cations with different requirements. Thus, it implements three types of communication:
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Figure 3.2: Interconnect protocol stacks [16].

memory-mapped, streaming, and network communication [16], each with its own stack.
Figure 3.2 shows how these stacks could be divided into five layers according to the
seven-layer Open Systems Interconnection (OSI) reference model [7].

3.3.1 Network Stack

The network stack is based on connections [28] that provide bidirectional communi-
cation channels between two NIs guaranteeing in order delivery thanks to end to end
flow control. Each connection identifies the communication of an application and its
properties, such as guaranteed throughput, bounded latency and jitter. As shown in
Figure 3.2 connections correspond to the transport layer of the stack. Thus, from NI to
NI a connection behaves like two FIFOs (one per direction). One IP feeds data in the
input streaming port that later is delivered to another receiver IP at the other end of
the network. Æthereal connections must be created with the desired properties before
being used, reserving resources inside the network such as buffer space or percentage of
the link usage. Connections must be closed after they are used, in order to release the
resources for new connections.

Connections data is carried from one NI to other by the routers. They are responsible
of routing packets according to the content of the header. Æthereal routers have no
routing table because the path that each packet must follow at each router is in the
header. GS traffic only needs one-word buffer per input port at routers. There is
no arbitration done at routers because the network is designed to be contention-free.
Arbitration and scheduling is done by the NIs at the level of flits, and each flit is made
of three phits, that are the signals that cross from one router to the next one.

Routers have buffers for BE traffic. BE flits are scheduled when there is no GS
traffic and the next router in the path has enough buffer space. Thus, BE flits have
local-link flow control. Contention between two BE packets is solved with Round-Robin
arbitration.
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3.3.2 Streaming Stack

The streaming stack only includes the data link and the physical layer. This stack is
used by the NIs, Clock Domain Crossing (CDC) modules and shells. IPs might also take
advantage of this stack if they have streaming ports. Such streaming ports make use of
a simple FIFO interface with a valid and accept handshake. With this mechanism the
data link level is able to handle the flow control of each individual word of streaming
data. When reading from a streaming port that has no data available (e.g. due to an
empty FIFO) or writing to one that can not accept more data (e.g. due to a full FIFO)
causes a process to stall. Thus, the data link layer provides flow control in the streaming
stack.

Figure 3.2 also shows how NIs bridge between the network stack and the streaming
stack and connections offer bi-directional point-to-point streaming communication with-
out any assumption on the time or value of the individual words. This is the most basic
type of communication that an IP can use.

NIs are also in charge of buffering, arbitration and flow control. They store each
packet until it can be scheduled. The scheduling is done at the granularity of flits. GS
flits are send to the router according with the TDM table and the credits available at
that moment. The flits of the BE packets are sent only when there are no GS flits waiting
and when the router has enough buffer space. Each port of the NI can handle data for
one connection. NIs works as follows: A shell or an IP places data words on the NI input
FIFO. When there are enough credits, this data words are packetised and sent inside
the time slot assigned for that connection in the TDM table, which is programmable.
This guarantees that inside the network there is no contention, and thus buffering is not
needed in the routers. The routers forward the packet according to the path that is in the
packet header. When a packet arrives to the remote NI, its data is stored in the output
FIFO of the corresponding port. The credits are sent back when data is consumed in
the output FIFO.

The interconnect (buses and shells) may have different clock frequencies than the
network thanks to the CDCs. These modules allow to implement heterogeneous SoCs in
terms of clock frequency and phase, which is specially important in large designs.

3.3.3 Memory-mapped Stack

Memory-mapped protocols are based on a request-response transaction model and have
interfaces with dedicated groups of wires for command, address, write data, read data,
flags, masks, etc [33][26]. Shells bridge between the memory mapped stack and the
streaming stack by serializing requests and responses and feeding them into the NIs.
Hence, shells allow point-to-point memory mapped communication by translating the
transactions into streaming words and vice versa. Therefore the complexity of the net-
work and its streaming nature remains hidden for the IPs that communicate by address-
ing the location that they want to access. There are two kinds of shells depending on the
functionality. Target shells are connected to the initiator ports of the master IPs and
serialize the request and deserialize the response. Initiator shells deserialize the request
and forward it to the target ports of the slave IPs.
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Some initiator memory-mapped IPs often need to communicate with multiple tar-
gets or use distributed memories. Additionally, memory-mapped targets may also be
shared by multiple initiators. Thus shared targets must be arbitrated, and initiators
transactions multiplexed accordingly to the protocol of the target port. Such arbitra-
tion and multiplexing can not be done by the network since it only offers point-to-point
connections, without ordering neither synchronization between them. Such problems are
addressed outside of the network, and are solved by placing very simple buses between
the shells and the IPs. Thus ordering and synchronization of the transactions takes place
at the session layer and is carried out by the initiator buses while target buses forward
the request to the right target based on the address of the requests.

3.4 Æthereal Configuration

Æthereal provides configuration and control infrastructures, allowing the SoC to adapt
to different applications that may run at different moments. This reconfigurability must
be performed by some IP (typically a microcontroller) that we call the host. The host
is able to open and close connections by changing the values of the TDM slot table
in the NI through its dedicated control port. The address layout is configured at the
programmable buses, that allow to change the way they decode the transaction addresses.
In other words, by programming the buses in the right way the host can choose over
which connection is carried a transaction according with the address. Additionally, NIs
must also be able to set the proper path in the header of each packet and hence they
need to be programmed accordingly.

This configuration is done in a distributed fashion. The host is able to reach the
control ports of all the NoC modules using interconnect itself, without any additional
infrastructure at the network level. Figure 3.3 shows an example of configuration archi-
tecture possible in Æthereal. The local control bus in Figure 3.3(a) is a fixed address
decoder. This bus allows the host to perform transactions over different connections.
Thanks to the first port of the control bus (called local port), the host is able to open
and close control connections to other remote control buses. The second port (called
remote port) enables the host to use the previous opened connections and configure
the remote modules. The third port (programming port) is used for configure the pro-
grammable target bus. This bus is used for the application in which the host is the
initiator. The host accesses the remote control buses (Figure 3.3(b)) through the net-
work using the control connection opened before. The remote control bus is used to
configure the connections at the remote NI and to configure the remote programmable
buses. IPs could also be configured in a similar way.

3.4.1 Initializing the NoC and Opening a Connection

The configuration of the NoC is divided in two steps: Initialization and connection set
up. During the initialization, the host sets the configuration connections. After that,
the connections required for the applications are opened.

The configuration connections have the request channel, that goes from the remote
port of the local NI (port 2 in Figure 3.3(a)) to the control bus of the remote NI (port 5
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(a) (b)

Figure 3.3: Local (a) and remote (b) control buses [14].

in Figure 3.3(b)) and the response channel, that goes backwards from the remote NI to
the remote port of the local NI. For the initialization stage the host writes the path of
the remote NI in the local NI through the local port 1. Now the request channel is thus
open. The host uses this channel to configure in the remote NI (port 5 and 6) the path
to the local configuration port and to open the response channel. Before configuring the
next remote NI, the request channel is closed. This procedure is done for each NI of the
Network. At the end of the initialization stage, all the remote NIs have one response
channel going to the local NI for configuration purposes, but there is only one request
channel for configuration open at a given time.

To open a connection between two NIs, both NIs must be configured. First, the host
establishes the request channel with the target NI as described before. Second, it writes
in the configuration registers of the remote NI (port 6 in Figure 3.3(b)) the path of the
new connection and allocates the TDM slots if the connection has GS. Third, the host
programs the remote bus if needed. Fourth, the host closes the request channel. The
procedure is repeated for configuring the request channel of the connection.

Closing a connection is more challenging than opening one. The reason is that
ensuring that no information is lost requires significant effort. Before disable the ports
of a connection, the host must wait until:

• No new request are going to be initiated.

• All ongoing transactions between initiators and targets must be allowed to finish.

• No data is crossing the network.

The network can not know about any potential outstanding transaction, thus IPs them-
selves must implement some sort of mechanism to ensure that no reconfiguration is
perform before finishing doing their work.

To make sure there is no streaming data crossing the network, the host must wait
until data leaves the input queue, crosses the network, and is consumed from the output
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queue. The credits must be delivered to the destination as well. The host can check this
conditions in the configuration ports of the NIs. When this conditions are satisfied, the
host can proceed to close the connection guaranteeing that no data will be lost. Closing
a connection in the NI only requires to unset the enable flag of the corresponding port
and unset the slots.

BE traffic does not employ end-to-end flow control to ensure that no data is stored
in the routers, an special tagged message as an end-of-stream marker is needed, thus
requiring cooperation of the IPs.
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Bridging Schemes 4
The goal of this chapter is to provide an overview of the possible locations for placing a
bridge that will allow extending the NoC with off-chip communication capabilities. The
well-defined Æthereal stack, discussed in the previous chapter, and its layered division
will allow to develop a systematic study of the different options available for imple-
menting the off-chip bridge. Figure 4.1 shows the whole protocol stack and the three
different communications provided by Æthereal: distributed shared memory, point-to-
point shared memory, and point-to-point streaming. All of this communications may
have guaranteed service or best-effort service. Figure 4.1 also shows the places and
the layers were the bridge could be placed, according to the stack used and the layers
involved.

Section 4.1 discuss the requirements that will characterize the bridging schemes dis-
cussed in Section 4.2. Finally, Section 4.3 will show the conclusions.

4.1 Bridging Requirements

To come into possible bridging schemes in Æthereal, some requirements will be defined
in order to characterize the a bridging scheme. We can characterize a bridging scheme
based on the following parameters:

• Transparency: The bridge must be hidden from the IPs. In order to send data
or send a request, IPs would have to do exactly the same operations no matter

Figure 4.1: Possible locations for the bridge.

13
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whether the target is in the same side of the bridge or in the other side. This
means that the addressing scheme of the whole system must remain the same and
can not be affected by the bridge. The simplest way to achieve transparency is by
designing a bridge that operates at least one layer below the one that the IP is
using. With a transparent bridge, the IPs will not need special configurations nor
modifications in their interface with the NoC to be placed in a bridged system.

• Decoupling: Each part of the bridged must be able to run in different chips or even
in different boards. Therefore two subNoCs can have different clock frequencies
and or phases. Given the previous requirement of transparency, the bridge must
support the full decoupling among the two sub-systems. Thus, the bridge must
take care of the physical and temporal dependencies such as voltage levels, distance
between boards, clock frequencies and phases differences, etc. The off-chip link
will solve the board-to-board differences, while the bridge must have to adapt with
some physical differences between the off-chip link and the sub-systems. Since GS
in Æthereal is based on contention-free routing, the bridge must guarantee that
GS packets must arrive to the routers synchronized with the TDM table of each
sub-NoC. Thus, if a given bridging scheme does not need coherence among the
TDM tables of both sub-NoC, we will say that such scheme is decoupled. Similarly
this affects the clocks of both sub-NoCs. If the clocks do not need to have the same
frequency and/or phase, the system is thus decoupled.

• Quality of Service: The bridge must preserve the Quality of Service (QoS) that
is provided by the network. Inevitably the bridge and the off-chip communication
will introduce more latency and perhaps a maximum throughput constraint. This
would have to be bounded in order to the support for realtime traffic (traffic that
needs to arrive its destination before a given deadline) that the NoC gives. Since
the goal is to provide application QoS, both sub-NoCs and the bridge must have
QoS.

• Area Cost: Since the bridge is meant to be implemented in silicon or in an FPGA
low area cost would be desirable. Buffers and memory in general tend to use large
portions of silicon so a good bridge design would not need to store too much data.
The concept of area cost includes the number of pins (that are normally an scarce
resource) used for the off-chip link, and the amount of board resources that it would
need. Thus, parallel bridging will be much more expensive than serial bridging.

• Performance: The time cost in terms of latency introduced by the bridge must
also be kept as low as possible. High latencies may also damage the throughput
of the applications that use the memory-mapped stack. When an initiator issues
a request, it must wait for the response. Thus, the round-trip delay may damage
the number of transactions per unit of time that an IP can execute. To compare
the latency introduced by the proposed schemes, the following sections will assume
that the delay and bandwidth of the link is always constant and equal for both
directions.
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4.2 Bridging Schemes

Figure 4.2 illustrates seven different bridging schemes, showing the layer they are and
the data granularity they use. It also shows when arbitration is required and the amount
of off-chip links needed. The following sections discuss each scheme in detail, and char-
acterize them according in terms of transparency, decoupling, QoS and latency.

(I) Physical (II) Link (III) Network

(IV) Transport (V) Transport

(VI) Transport

(VII) Session Legend

Figure 4.2: Bridging schemes.

4.2.1 Physical Layer

The physical layer is the lowest layer of the stack. The proposed solution for bridging
at this layer is scheme I of Figure 4.2. Such bridge would be placed at points 4 or 5
of Figure 4.1. The bridge acts as the NoC link wires, requiring to have a parallel link
and a complete clock synchronization, both in frequency and phase, between the two
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sub-systems. Such clock dependency and parallel links are expensive if sub-systems are
far away each other, i.e. in two different boards. Thus, this scheme does not meet neither
the decoupling requisite, nor the cost requisite. On the other hand, the transparency
requirement is fulfilled because scheme I is placed at the lowest layer.

BE traffic flow is controlled at the link level [12]. When one flit is received, one credit
is sent back. This bridge introduces a significant round-trip delay due to the off-chip
latency, thus increasing the overall latency. The throughput of the system would also
be affected because a flit has to wait for the previous flit to arrive to the other side and
for the credit to come back. Moreover, the QoS can not be preserved because it may
happen that the second flit carries GS traffic, and is waiting for a BE flit.

4.2.2 Link Layer

By adding a buffer to the previous design we obtain Scheme II (Figure 4.2). The bridge
behaves like a NoC link when is placed at this layer and therefore it will only have
one input and one output at each side. Similar to Scheme I there is still a tight time
dependency between both sides of the bridge and it requires an expensive parallel link
to connect both subsystems. Mesochronous links, shown in [17], can relax the time
dependency only to a frequency dependency, so both subsystems could have different
phases.

At this level the bridge is similar to a pipelined NoC link, which is transparent to
the packets and it must offer reliability and in order delivery service. Hence, the bridge
must guarantee that its buffers will not overflow, so implementing some kind of local flow
control mechanism is required. Furthermore, the buffer is shared among all the traffic,
both BE and GS. When a BE packet enters in the queue, GT packets that might come
after will have to wait to be transfer, damaging the QoS of the whole system. Scheme
II has even worse round-trip delay as scheme I, so the latency of the system is still bad.

4.2.3 Network Layer

In Figure 4.2, scheme III goes one level up in the protocol stack, reaching the network
layer. The bridge is still similar to a pipelined link, but the key difference is that it
introduces another buffer. This scheme splits the traffic in two specific virtual channels
per QoS class: one for BE and another for GS. QoS is now available, solving the problem
of the bridging at the link layer. The bridge is now taking over the role of a router. Thus,
the bridge is managing data at the form of packets. In this scheme the local flow control
is only needed for BE packets, since the GS ones are scheduled by the TDM tables at the
NIs. GS packets arrive when the router at the other side can accept them. Meanwhile,
BE packets might need to wait until there is space in the receiver buffer. The receiver
buffer must be signaled back when has enough space for a BE packet.

However, this scheme does not solve the time dependency between the two sub-
systems. TDM tables at each side still need to be synchronized and coherent. Such
synchronization it is very hard and expensive to achieve. Furthermore, the delay or
skew introduced by the off chip link must be taken into account and be compensated
somehow. Due to the contention-free routing, routers do not have buffers, and therefore
no packet can arrive to a router outside of its TDM slot scheduled for that packet in the
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(a) (b)

(c)

Figure 4.3: Correct contention-free routing (a), and the same NoC with slot unalignment
problems (b) or frequency problems (c).

receiver router. Figure 4.3 shows the possible problems due to clock skew or frequency
differences. System 4.3(a) shows that channel c0 has slots 0, 3 assigned while channel c1
has slots 1, 2. Thus, words traveling on c0 never arrive at the same time to the router
than words of channel c1.

In Figure 4.3(b) the off-chip link adds TDM phase difference to the data transmission.
Such phase could be introduced by delay of the off-chip link or by a phase difference of
multiple cycles between clock1 and clock2. The result is that one subsystem sees that
the other subsystem is one (or more) TDM slot behind or ahead. This slot shifting leads
to data colliding at the router output. Figure 4.3(c) illustrates a frequency difference
between each system clock. Now, as one system runs faster, some words are received in
the wrong slot, and leading to possible contention on the router, what is not allowed by
Æthereal.

One possible architecture for a bridge that operates at this layer is shown in Fig-
ure 4.4. This bridge has the advantage that it sends data through the off-chip link in the
network format. Hence, at the other side the router may be fed directly from the bridge,
without queuing the flits. This may lead to reduce the latency and save area resources
in one of the chips.
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Figure 4.4: Bridge architecture for the transport layer.

This scheme keeps the QoS over the system, since BE traffic and GS traffic are
decoupled. However, the cost increases compared to the previous scheme, since now we
need two buffers and two off-chip links. The latency is still not good due to the long
round-trip delay, same as it happens with scheme I and II. The transparency requirement
is met because there is no need of packet header modification inside the bridge, which
can transport any packet that arrives to its input.

The clock phase dependency can be solved at the link layer with a mesochronous link
like in Scheme II, but the system is not completely decoupled since it requires to have
same frequency at both sides. Furthermore, both NoCs need same number of slots and
the same slot length. Due to this dependencies and the kind of clock synchronization
required for implementing this bridge, the off-chip link would be strongly limited both
in distance and thus connectivity. Another approach could be to introduce arbitration
in the bridge, which leads us to Scheme IV, one layer up in the protocol stack.

4.2.4 Transport layer

By placing the bridge at point 3 in Figure 4.1, between the shell and the NI, we obtain
Scheme IV of Figure 4.2. Such bridge leaves the task of dealing with the TDM tables
to the NIs because connections end at the first sub-NoC and restart again in the second
sub-NoC. NIs also take care of end-to-end flow control within each sub-NoC. Thus, the
bridge is in charge of sending streaming data (messages) through the off-chip link but
it also implements flow-control over the off-chip link because now it is possible that the
receiver NI would not accept the word that has been sent over the bridge. There is also
link level flow-control between the bridge and the NI, with FIFO protocol.

This scheme is transparent for the other modules of the NoC and supports both
streaming and memory-mapped communication. Since bridging is now out of the network
stack, data words do not need to arrive at a determined moment because the NIs will
scheduled them according with the TDM table configuration. Therefore each subsystem
may have different clocks and the TDM table of one sub-NoC does not need to be



4.2. BRIDGING SCHEMES 19

synchronized with the other. In fact, one subsystem may have different table/slot sizes,
or different number of slots assigned for the same connection than the other subsystem.
Moreover, by using CDCs it is possible to place the sub-NoCs in different clock domains
than the bridge and hence leading to a highly decoupled system.

The main drawback of this scheme is that the connections cross the bridge in parallel.
Such a solution might be very expensive in terms of area cost because it needs to replicate
the logic for transferring the streaming words to the off-chip packets and it also spends a
lot of chip pins and on-board resources. However, dedicated resources for each connection
guarantee the QoS of GS is preserved in the whole system.

Another drawback that may appear is underutilization of the off-chip links when the
connections carry transaction based messages. In this scheme the connections do not
share the off-chip link, so the bridge channel will be empty all the time between the
request is sent and the response is received.

Scheme V solves the problem by multiplexing several connections over same off-chip
link. The bridge allocates a percentage of the transmission time to each connection,
accordingly to their needs. The arbitration could be done in a TDM basis or with any
other scheduling algorithm that gives QoS, maintaining bounded latency and a minimum
throughput for each application. Since both sub-NoCs have QoS within the network
stack, we can say that this scheme fulfills the QoS requirements.

This scheme still needs to establish flow-control across the off-chip link for each
connection. The bridge communicates with the NIs with the FIFO valid/accept protocol,
this is, link level flow-control. The off-chip link must guarantee minimum throughput
and maximum latency in order to support GS connections. If various connections send
messages over the bridge, some (de)multiplexing architecture is needed which might
increase the area cost.

Regarding the time dependency, it is not longer required to have synchronization
between both sub-NoCs. Having same clock frequency and fixed skew is not needed. Of
course, the off-chip link must be reliable and offer in order delivery. In order to add
guaranteed service over the bridge the off-chip link must provide also bounded latency
and minimum throughput. Therefore we can say that the decoupling requirement both
in time and among connections is fulfilled.

Additionally, schemes IV and V give some other options for structuring the NoC
among two different chips. Figure 4.5 shows two different ways of split the system
showed in Figure 3.1 with a bridge that follows scheme V (For scheme IV would be the
same, but with two off-chip links, one per connection). In Figure 4.5(a) the bridge splits
two sub-NoCs. The first one has IP1 and IP3. There are three connections: IP1 → IP3,
IP1 → IP2 and IP4 → IP2. The last two need to jump from one chip to the other so
the bridge must have two connections. However there is no need of having one sub-
NoC in each sub-system. Figure 4.5(b) only has IP1 in chip 1. Thus, the shells might be
connected directly to the bridge, and no network is needed in this chip. This configuration
might be interesting in case of large IPs, or temporal IPs that are only needed for testing
and debugging stage, i.e. a microcontroller doing the task of a monitor.



20 CHAPTER 4. BRIDGING SCHEMES

(a)

(b)

Figure 4.5: Bridge placed at the transport layer, between networks (a) and between the
network and the interconnect (b)

4.2.5 Transport layer, Memory-mapped stack

At the transport layer we can move the bridge to point 2 of Figure 4.1. This implies that
the bridge is now working in the memory-mapped stack as shown before in Figure 3.2.
Consequently it will not handle neither connections nor streaming data, but it must deal
with transactions. Thus, it has initiator and target ports in order to communicate with
IPs, shells and/or buses. According to this scheme we would need one link per each
initiator-target pair that crosses the bridge. Since transactions have a parallel nature,
the bridge can have to use parallel off-chip links, as show in Scheme VI, or serialize the
transactions.

So far in schemes I-V the data on a link has been a sequence of words (phits). In
scheme VI the bridge sends transaction elements, requests and responses, that might
be serialize in order to use the less expensive serial off-chip links. Serializing parallel
transactions from the bus format to serial data messages is shown in Figure 4.6(a). At
the other chip, the bridge gets the messages from the off-chip link and it converts them to
the bus protocol. Finally the shell converts the transaction to serial streaming data, that
is fed into the NI. This is very inefficient because the shell and the bridge are performing
the same task. In fact, the shell is a bridge between the memory-mapped stack (parallel)
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(a)

(b)

Figure 4.6: Bridge at the session layer (a) and the simplified version (b).

and the streaming stack (serial).

A simplified architecture, shown in Figure 4.6(b), has less overhead while provides
the same functionality. This solution removes the redundant (de)serializers and leads to
a design that is very similar to the one proposed in scheme V.

Any of these two solutions have a big impact in terms of area cost, both on the
silicon and on the board. As shown in scheme VI each initiator-target pair requires to
have its own bridging resources. Even worse, due to the request-response nature of the
transactions, each of the off-chip links is likely to be underutilized.

Another disadvantage of scheme VI is that it does not support streaming communi-
cation. An IP that has an streaming interface can not be used in the SoC unless major
changes in the IP itself. Only connections that carry memory-mapped communication
would be allowed to cross the bridge. Hence the transparency requirement is not fulfilled.

4.2.6 Session layer

Moving one layer up, the bridge reaches the session layer. Such bridge is illustrated
in scheme VII of Figure 4.2. This bridge can be placed at point 1 or 2 of Figure 4.1.
The main difference with scheme VI is that now the bridge is in charge of multiplexing
transactions, thus allowing to have only one off-chip link. In order to provide QoS and
support GS arbitration between transactions is required. Thus the off-chip link, that
might be parallel or serial, can be shared among several initiator-target pairs improving
its utilization compared to scheme VI. A serial link would require to add a serializer,
increasing the complexity of the implementation.
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Similarly to the previous scheme, the streaming communication is not supported
since we are out of the streaming stack, thus degrading the transparency capabilities of
the bridge. However, point-to-point memory mapped communication is still available
since it is a simple case of shared memory mapped communication.

Since converting transactions to packets is more complex than converting messages
to packets, the latency might be bigger than in scheme V. Another drawback is that
interleaving transactions might lead to loose the order between them, to deadlock, or
to underused throughput or bursty traffic in the off-chip link due to bridge stalls while
waiting for responses. Stalls damage the latency, and the lost of order among different
transactions lead us to say that the decoupling requirement is not fulfilled. Furthermore it
is much more simple interleaving messages than transactions and this may have negative
impact on the area cost on the silicon, compared to scheme V.

Another problem of this scheme is that the bridge may have to implement interfaces
for all the bus protocols supported by Æthereal, increasing the design time and damaging
the modularity of the whole system because a different bridge must be implemented for
each bus protocol. Depending on the specific details of the bus protocols, interleaving
transactions of different bus protocols might not be even possible.

4.3 Summary

Table 4.1: Comparison of the different bridging schemes.
Stack Scheme Transp. Decoupl. QoS Cost Latency

Network
I Physical Good Very bad Bad Regular Bad
II Link Good Very bad Bad Regular Bad
III Network Good Very bad Good Bad Bad

Streaming
IV Transport Good Very Good Good Very Bad Good
V Transport Good Very Good Very Good Very Good Good

Memory VI Transport Bad Good Good Very Bad Bad
mapped VII Session Bad Regular Bad Bad Bad

Table 4.1 summarizes the discussion of the previous section. With all this informa-
tion, we can conclude that the best option for bridging between two sub-NoC placed in
different boards is scheme V. It fulfills the requirements of transparency and decoupling,
while providing QoS at a low cost in terms of silicon and board resources. Furthermore,
and thanks the transparency, it also allows to keep Æthereal configuration architecture.
In the following chapters the design and implementation of a bridge that follows scheme
V will be discussed.
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The purpose of the bridge is to provide a connection between two NoC in such way that
two IPs can send data between each other in a transparent fashion.

1Gigabit Ethernet link is chosen due to its high throughput and its availability in
almost all the commercial FPGA boards in the market. Some FPGAs, moreover, are
equipped with hardwired Ethernet Mac modules saving logic resources. The drawback
of using this modules is that the bridge will be dependent on the hardware available at
the FPGA and at the board.

The bridge is divided in two different parts according to the protocol is dealing with.
On one side it has ports that accepts the streaming data words (phits) coming from the
NoC, and on the other side Ethernet frames goes to the Ethernet link. Thus, the bridge
must deal with the physical layer of the NoC and with MAC and physical layers of the
Ethernet stack, always trying to reduce latency and maximize the throughput.

5.1 Architecture

The bridge is set at the NoC transport level. From the NoC point of view, the bridge
creates connections between two different NIs located in different chips. Thus, data that
comes out from one port of the NI on one chip will be fed to the NI on the other chip.
Such data will be sent through an Ethernet link. In order to increase the utilization of
the link and to allow more flexibility, it is designed to allow multiple connections over
the same bridge. Thus, the bridge has multiple input and output ports, one for each
connection.

In Figure 5.1(a) it is possible to see the multiple bridge connections from the NoC
point of view. The other parts of the NoC will not realize that two different NoC are
involved in the communication. The IPs or shells will use a point to point streaming
communication either for on chip communication or for off chip communication. Fig-
ure 5.1(b) shows that multiple connections may share the same off chip link. Such
connections may also have different source or destination NIs.

The NoC provides flow control at the transport level, that is, between two NIs. Flow
control also exists in the data links from the IP to shell and from the shell to the NI. Since
both NoCs may have different data rates, the buffers in the receiver side of the bridge
may overflow if the transmitter side sends data too fast. In order to avoid buffer overflows
in the NIs or in the bridge we need to introduce flow control in the bridge connection,
between the NIs of each chip. Thus, the bridge module will have both transmission and
receiving buffers per connection and it will use a credit based technique to prevent those
buffers from overflowing. Such buffers will also adapt the different data rates of the NoCs
and the Ethernet link. In Figure 5.2 we can now see that the flow control covers all the
path between the source and the destination.
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(a)

(b)

Figure 5.1: Logical view (a) and link view (b) of the connections across the bridge. The
connections share the same off chip link.

Figure 5.2: Flow control between IPs

5.2 Connection Multiplexing and Scheduling

Since multiple connections can be sent over the Ethernet link, a multiplexing mechanism
is required. The chosen approach involves chopping the payload of the Ethernet frame in
sections, that we will call slots. The data carried by each slot is uniquely associated with
one connection by the connection identifier. In the receiver side such identifier is used
to select the output buffer where the data must be placed and it does not need to know



5.3. FLOW CONTROL 25

Figure 5.3: TDM slot allocation.

the scheduling policy that was used on the transmitter side. Thus, the bridge can use
dynamic scheduling policies like Round Robin. Other advantage of this scheme is that
when using Time Division Multiplexing it will be possible to change the slot assignments
at run time.

In order to decide which slots belong to a connection, the bridge has three possible
scheduling policies: Time Division Multiplexing, Round Robin (RR) and priority based
scheduling. With priority scheduling the bridge assigns the next slot to the connection
that has the biggest priority. If its buffer is empty, the slot is assigned to the next
connection in the priority scale. With Round Robin policy, each connection can only
use one slot consecutively. The next slot is for the next connection that has data in the
buffer.

When the bridge is using TDM, the slot table is used. This slot table has as many
entries as slots are in the ethernet frame. The table assigns each slot to one connection,
and a connection may have zero, one or more slots assigned. Since the slot table is a
RAM memory, it is possible to reprogram it at runtime. The slot table is connected to a
memory-mapped port of the bridge. Thus, each entry has a unique address in the NoC
and the user is able to effectively change the throughput assigned to a connection by
writing the connection number in the table entry, as it is shown in Figure 5.3. The more
slots a connection has, the more throughput it can use.

A connection identifier is sent along with the data in each slot. The advantage of this
technique is that the receiver side of the bridge does not need to know the configuration
of the slot table of the transmitter, making easier the configuration of the bridge.

5.3 Flow Control

In order to keep end to end flow control and avoid data lost it was decided to add a credit
based flow control mechanism on the off chip link. The bridge implements flow control
at the transport level so there are two FIFOs per connection, one for data coming from
the NOC ( Tx FIFO ) and other for data coming from the Ethernet (Rx FIFO). FIFOs
store phits, the data unit of the data link level.
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The Tx FIFO has a credit counter associated to it. Each time a phit goes out of the
Tx FIFO, the counter is decremented. If the counter is zero, no more phits can be sent.
When credits are received from the other side of the bridge, they are added to the credit
counter, so the connection can start sending phits again. The value of this credit counter
will never be bigger than the number of available positions in the Rx FIFO. Thus, it is
not possible for the transmitter to send data if there is no free space in the receiver.

The Rx FIFO has another counter associated that keeps track of how many positions
have become available, called phit counter. Each time a phit goes out of the FIFO to
the NoC the phit counter increases and when it reaches a preset trigger value, its value
(credits) is sent to the other side of the bridge as soon as possible, and will be added
to the credit counter of the other side. Then the counter associated to the RX FIFO is
reset to zero. Even if the preset value is not reached credits may be sent back to the
Tx FIFO when there is no other data to be sent. To avoid deadlock stalls, the trigger
value must be lower than the size of the Rx FIFO. Since connections are bidirectional
credits are sent back in a slot of the reverse channel. Therefore a connection must have
allocated slots in both sides of the bridge. Credits have a dedicated place in the packet
format, as we will show later, but they can be sent at any other place inside the slot
if the trigger value is reached. This mechanism is necessary to avoid starvation and
support very asymmetric connections, i.e. a connection that has many slots assigned in
one direction and only one for the credits in the other.

In Figure 5.4 we can see an example of how the credit based flow control works. In
Figure 5.4(a) phits arrive to the transmitting buffer and it has enough credits to send
them to the other chip. When those phits are sent the credit counter is decreased in an
equal amount (see Figure 5.4(b)). When the receiver consumes a phit it increases its
own counter. When this counter reaches the trigger value in Figure 5.4(c), its value is
sent back to the transmitter side in order to update the credit counter as it is shown in
Figure 5.4(d). Figure 5.4(e) shows the case where the credits are sent back even when
they did not reach the trigger value, because the link was free at that time.

5.4 Ethernet Packet Scheduling

The Ethernet (IEEE 802.3 standard [20]) frame format has a very big overhead, as is
shown in Figure 5.5. It needs 6 bytes for each address, 2 bytes for length, and 4 bytes
for CRC the preamble, and a minimum payload of 46 bytes. Thus the minimum MAC
frame size is 64 bytes large. In the physical layer of Ethernet a preamble of 8 bytes and
an interframe gap are added, so the minimum frame length is 84 bytes.

On the other hand NoC phits are 37 bits. Since the MAC layer of Ethernet deals
with complete bytes instead of bits, phits will be encapsulated in 5 bytes. The shells
are going to be used in the implementation convert a write transaction of one word into
3 phits. Each extra word in the transaction requires one extra phit. Read transactions
only need 2 phits for the request, and as many phits as requested words for the response.
The maximum amount of words that can be requested in one transaction is 32.

Using one frame for sending each transaction means that we will be using 84 bytes for
sending 15 bytes (simple write request) of useful data. By doing some simple calculus we
can see that such solution would not be efficient and the performance would be extremely
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(a)

(b)

(c)

(d)

(e)

Figure 5.4: Example of the flow control mechanism.

Figure 5.5: 802.3 MAC Frame.

low.

η =
Data

Frame size
=
sreq × sphit (bits)

Leth (bits)
(5.1)

Where sreq is the number of words of the request or the response, sphit = 37bits
and Leth is the length of the Ethernet frame. Figure 5.6 shows the efficiency when an
Ethernet packet carries only one transaction. The graph illustrates this scheme is highly
inefficient for small transactions. For example a 10 word write transaction would barely
reach 50% of the link capacity. Due to the minimum size of the payload of the Ethernet
frame, during the first part of the graph the frame size remains constant and therefore
the efficiency grows linearly. When the transaction fills the payload the frame size starts
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Figure 5.6: Bandwidth utilization of the Ethernet link.

increasing as well.

The other issue with this solution is that a frame can not be sent as soon as a phit
arrives to the bridge because the MAC layer has to send first the preamble, adding more
latency.

Other option could be waiting for a minimum number of phits, but this is not feasible
due to some reasons: if a reading command arrives to the bridge it would wait for more
phits but they are not going to arrive since the module is waiting for the respond to
the completion of the reading command, leading to a deadlock situation. A timeout
mechanism would solve this issue, but then we will find that the bridge had to wait for
sending Ethernet frames with a few phits (because of the timeout), so the latency is
bigger and the efficiency is still poor. Furthermore, frames can not be sent immediately
one after the other due to the preamble and the interframe gap.

With the aim of increasing the efficiency without damaging the latency, the bridge
uses a solution based on sending larger frames than it is needed and with fixed length.
Such frame is divided in slots, that carries the phits of one connection. If any phit is
available in the queue or arrives at that the very moment the slot is been sent, it will
be placed on the payload. The larger the frame and the slots are, the bigger chances
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that when a phits arrives can be placed on the Ethernet frame without waiting too much
time. Thus the efficiency would increase when big amounts of data arrive to the bridge
while the latency would be kept at its minimum.

Then main drawback of the described system is that it sends frames even if there is
no data to be sent. This does not have major issues when operating only with Ethernet
links but in a future it will be possible to allow the bridge sending Ethernet frames
through an Ethernet switches. Sending frames in a fast and regular basis even if there is
no data to be send may not be feasible since it could overload the switches. In this case
another packet scheduling mechanism might be necessary, including a good throughput
planning and quality of service.

5.5 Packet Format

The payload of the frame is divided in slots plus one identifier byte at the beginning for
debugging purposes. The first byte of the slot carries the slot identifier. The two most
significant bits of the slot identifier will always be ”01” and the other six bits of the byte
are the connection number, meaning that all the data carried on the slot belongs to that
connections.

The second byte is used to send back the credits of the connection. The most signif-
icant bits of the credit bytes will be ”10”. The following six bits are the amount of free
slots in the receiving FIFO that is in the transmitting side. If more credits are needed
the transmitter can send more credit bytes, but always in a slot of the corresponding
connection.

Phits will be placed after the credit byte(s). In order to know whether one byte of
the slot is part of a phit or not, the bridge provides a little header to each phit. The
first three bits must be set at ”1” and the thirty seven bits of the phit data after, which
makes exactly five bytes. Thus, when the receiver finds a byte that starts with the bits
”11”, it means that the following 37 bits transport a phit. From this 37 bits, the first 5
bits are in the first byte, and the other 32 bits are in the following four bytes.

If the first two bits of a byte are set to ”0” means that that byte does not contain any
useful data (garbage data). Thus, phits can start at any byte in the slot, and two might
be placed one just after the other or with any amount of garbage bytes in between, as is
shown in Figure 5.7. This allow to place a byte in the slot at any time the phit arrives
to the bridge, emptying the buffer and leaving space for more data.

Assuming a bridge that uses the maximum frame length (Peth =1500 bytes of pay-
load) and Ns = 10 slots per frame, it is possible to find out the efficiency of this protocol.
So each slot has sslot = 150 bytes. Thus, the number of phits per slot is:

phitsslot =
150− 2

5
= 29 phits (5.2)

The minus two is due to the connection byte and the credit byte. Finally the efficiency
for this system is:

η =
Ns × phitsslot × sphit (bits)

Leth max × 8 (bits)
=

10× 29× 37

1542× 8
= 86.98% (5.3)
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Figure 5.7: Protocol format

Thus, the throughput will be 870Mbps if the bridge is using the full bandwidth of
1Gbit Ethernet.

5.6 Formal Model

Æthereal NoC offers performance analysis in such a way that the designer can verify that
the requirements of each application are met. The characterization of the applications
and the NoC behavior is done by constructing models, given as variable-rate dataflow
graphs [14][18]. To model a system with two sub-NoCs we propose in this thesis to model
each sub-NoC individually, and insert a model of the bridge in between.

In order to construct a model the bridge we propose to use the same approach as
Æthereal: a cyclo static data flow graph [3][31]. The connections that cross the bridge
are scheduled by using a TDM scheme. Thus, according with [18] each one of those
connection that crosses the bridge can be seen as a latency rate server.

The data flow graph for modeling the bridge is the same that is described in [18]
and is shown in Figure 5.8. In this model data and credits have different channels and
each channel has different actors for modeling the latency and rate. Actors vd,θ and vd,ρ
model the scheduling latency and the rate regulation they suffer in the sender side of
the bridge, and actor vd,φ model the latency introduced by the MAC and the physical
layer of the Ethernet link, both in the sender and in the receiver. The three actors on
the credit path have the same purpose.

The numbers in the tip of the arrow represents the number of tokens that must be
at each actor in order to send tokens to the next actor. The number of tokens that are
sent is in the tail of the arrow.

The response time τd,θ of actor vd,θ is τd,θ = θd + dd(td) where θd is the time that
it takes to the bridge to accept one word from the FIFO and dd(td) is the worst case
latency for data. The latency in this actor might be experienced for more than one data
word at a time. Actor vd,ρ bounds the rate at which data and credits can be sent. The
response time of this actor is τd,ρ = pn/ρd where pn is the period of the TDM table in
cycles, and ρd is the maximum number of words that can be sent in one TDM period
assuming that there are always credits available. The black dot in the arrow means of
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Figure 5.8: Bridge dataflow model

Figure 5.9: Ethernet frames from the TDM slots point of view.

this actor means that token (data phit in this case) only can be sent one by one. τd,φ is
the delay that introduces the Ethernet link.

Figure 5.9 is an example of the Ethernet frames that the bridge sends. Each one
of the squares represents one slot, assigned to one connection. The gap slots model the
time between frames and their header. Let be ns = 2 the maximum number of words ( 5
bytes) in each slot. Thus, for this example the TDM period would be pn = 10 ∗ 2 = 20.
For the connection 1 graph this leads to τd,ρ = 20/(2∗2) = 5. The example in Figure 5.9
that in the worst case data will have to wait during seven slots, thus dd(td) = 7 ∗ 2.
Assuming that θd = 1, we obtain τd,θ = 15.

With all this values it is possible to model any TDM table configuration of the bridge.
This model would allow the designer to know whether the application requirements will
be met or not.
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Implementation 6
This chapter shows how a bridge with the features described in Chapter 5 is implemented.
In Section 6.1 the hardware bridge is presented. Section 6.2 shows the details of a software
bridge implementation and. Section 6.3 and Section 6.4 discuss the configuration of a
NoC with the host located outside the bridge and the configuration of two sub-NoCs.

6.1 Hardware Bridge Implementation

This section shows how the bridge is implemented in RTL. The bridging logic is meant
to be independent of the lower technology, thus being possible to implement it in silicon
or in any FPGA. However, the Ethernet hardware is very hardware dependent due
to the high time requirements that it needs. Furthermore, Ethernet requires to use
a specific chip for implementing the physical layer (PHY chip). There are multiple
protocol choices for interfacing with this family of chips (MII, GMII, RGMII, SGMII),
all of them standardized. The test platform in this work is the Xilinx ML510 board [32]
which has a Virtex-5 FPGA [36]. This board has two physical Ethernet chips with their
corresponding connectors, increasing the testing opportunities for the future. One of
this PHY chips has both GMII and SGMII interfaces, while the other only is accessible
through SGMII. For simplicity and because this standard consumes less pins of the
FPGA we will use SGMII for interfacing with both PHY chips.

6.1.1 Hardware Module Description

The top level module description is depicted in Figure 6.1. Note that this figure only
shows one bridge with one Ethernet interface. The bridging logic implements all the
mechanisms shown in the previous chapter. It multiplexes the NoC connections that
come out of the NI, implements flow control within the Ethernet link and converts the
NoC words to bytes. The bytes are fed into the Ethernet MAC module provided by Xilinx
and called Tri-mode Ethernet MAC (TEMAC) [34]. This module adds the preamble,
padding and the Frame Check Sequence (FCS) to the frames. The TEMAC also deals
with the negotiation required for setting the link speed, 10, 100, or 1000 Mbps, selecting
whether the link is duplex or half-duplex, etc. The TEMAC module is already embedded
in the Virtex 5 FPGAs, saving logic resources for other purposes.

TEMAC uses the SGMII interface to connect with the PHY chip. SGMII interface
sends and receives serial data at 1Gbps over four wires (two differential signals for sending
and another two for receiving). For that reason, frames must be serialized at a General
Purpose Transreceiver (GPT) [35] using 8b/10b encoding. The GPT is an special module
from Xilinx that takes care of very low level this like ensuring that all the signals and
clocks are synchronized and have the same delay. Finally, frames arrive to the PHY chip,
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Figure 6.1: Top view of the bridging system.

that sends them to the other side of the link, where they will go through the reverse
decoding process until arriving to the other NoC.ding process until arriving to the other
NoC.

The bridge has one input FIFO and one output FIFO per port. This FIFOs store the
data words of each connection when they can not be sent immediately. Moreover they
act like a sort of Clock Domain Crossing because they are dual clock FIFOs and hence
they decouple the bridge from the clock domain of the NoC. This is specially important
because the Ethernet logic must work with a clock frequency of 125 MHz , while the
NoC will typically work with a different clock of 50-200 MHz in the FPGAs, or at even
higher frequencies in silicon, around 500MHz [10].

The module description of the transmitter (from the NoC to the Ethernet module)
side of the bridge, is shown in Figure 6.2. The flow control logic generates a phit valid
signal whenever there is one or more phits in the queue and when there one or more
credits for transmitting. Signal phit accept is asserted when the serializer gets the phit
and thus, the phit is removed from the queue and the credit counter is decremented.

The phit counter keeps track of how many empty positions are available in the output
FIFO. This FIFO stores the phits that come from the Ethernet link and delivers them
to the NoC. When the NoC accepts one phit, the phit counter is incremented by one.
When its value is over a predefined trigger value t, the signal credit tx request is asserted
to indicate that it is needed to send the value of the phit counter for reloading the credit
counter at the other side of the bridge. Once this value is sent, the phit counter is reset
to zero.

The serializer gets the phits from the FIFO and split them into bytes and adds the
header to both the phits and the credits. If the credit tx request signal is set to one,
the serializer will send the credit value. Otherwise, it will send only the credit value at
the beginning of the slot. Finally, the frame sender finite state machine (FSM) deals
with the handshake signals of the Ethernet module, selects between sending the header
(source address, destination address, frame length and frame number) or the payload,
that is the output of the serializer. The frame sender FSM also signals the serializer and
the scheduler when a new frame starts.

The scheduler has a TDM selector counter and a TDM table. The counter, change
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Figure 6.2: Bridge module description (TX)

the address that is fed into the TDM RAM each N cycles. Therefore N is the size of
each slot in frame bytes. The resulting address determines which is the slot been sent,
and the output of the TDM RAM the connection that can send data over this slot.
The connection number is send to the multiplexer, and this selects which connection
signals from the flow-control stage will be fed into the serializer. The TDM table of
the scheduler can have a default configuration, but it can also be changed through the
memory-mapped port of the bridge.

In Figure 6.3 that the frame is received from the Ethernet MAC module. The frame
receiver gets the payload data from the frame, and feeds it into the deserializer. This
module reconstructs the phits and recognizes the connection labels, and the credits. The
connection number is used in the demultiplexer, selecting the appropriate connection at
each given time.

After the phit passes through the demultiplexor it is pushed into the FIFO. Due to the
flow control system, described in the previous chapter, the output FIFO must always
have at least one empty memory position for the phit. Thus, no phits are dropped.
When the phit comes out of the output FIFO, it goes to the NoC, and the phit counter
is incremented.

When credits value is received, the credit valid signal is asserted and they are added
to the credit counter of the input FIFO. In this way the transmitter will never run out
of credits if the receiver has enough space in the FIFO to accommodate phits.
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Figure 6.3: Bridge module description (RX)

6.1.2 Hardware Implementation Results

In the previous section we saw how the bridge was built. Now the area cost of the bridge
will be explained. Since the implementation is done on a FPGA, Figure 6.4 shows the
number of resources consumed in terms of Slices. Those are the results obtained with
Xilinx ISE 11.4 for bridges with different amount of bidirectional ports. As expected,
the amount of registers and memory resources grow linearly with the number of ports
due to the input and output FIFOs of each port. In this test FIFOs are 64 phits depth,
therefore 64 is also the maximum number of credits.

Finally, a 12-port bridge implementation occupies the 6% of the Virtex-5 logic re-
sources.

6.2 Software Bridge Implementation

The hardware bridge connects the system not only with other prototype boards, but also
with a PC. The PC has an Ethernet card that allows to capture Ethernet frames, but
in order to send or receive useful data to the NoC, this data must be encoded in such a
way that the hardware bridge and the NoC understands it. Therefore the PC needs a
software implementation of the bridge and the NoC protocol stack. This software must
provide streaming and memory-mapped communication with the IPs of the bridge, as
well as NoC configuration resources.

This section will describe how a NoC Application Programming Interface (API) that
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Figure 6.4: Bridge area cost.

offers the required kind of communication is implemented. As proof-of-concept appli-
cation, a command line tool that uses the NoC API is also implemented, providing
configuration and basic debugging commands.

6.2.1 Description of the NoC Software Library

The following description of the NoC API will follow a bottom-up approach, starting
from the low level access to the Ethernet hardware and finishing with the transaction
level functions.

The Ethernet hardware is accessed via the Linux sockets, as shown in Figure 6.5.
Opening a socket to the low level network facilities of the Linux kernel gives the NoC
API the possibility of sending its own tailored frames. The very low level functions of
the NoC API are also in charge of building the frames, writing the correct headers and
Frame Correction Sequence. Through some ioctl functions the network card of the PC
is set in promiscuous mode. In this mode the Ethernet card turns off the address filter
and accepts each and every incoming frame, without taking care of the destination MAC
address. Otherwise, the hardware system implemented in the board would have to be
synthetised for every PC it is connected to because the destination MAC address of the
hardware bridge is coded in the firmware. This could be quite annoying for large systems
which takes hours to be synthesized.

During the NoC API initialization, two threads are spawned, one for receiving and
another for sending Ethernet frames from and to the hardware bridge. The receiving
thread decodes incoming frames and places the streaming words (phits of 37bits) in the
queue of the corresponding connection. When credits are received, the receiving thread
adds the new credits to the credit counter associated with the transmitting queue. The
transmitting thread takes the phits from the transmitting FIFO and places them into
an frame. This frame will be sent when it is full of data, there is no more data in any
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Figure 6.5: NoC API software description.

transmitting queue, or some software IP executes a flush(), forcing the Tx thread to
send a frame. Tx thread also takes the phit counter and puts its value in the correct
slot. Whenever a phit is consumed from the Rx FIFO by the memory-mapped API, the
phit counter is increased, thus keeping the credit-based flow-control implemented by the
hardware bridge.

Streaming communication API can be used by calling write phit() and read phit()
functions. This functions places a phit in the transmitting queue and takes a phit out of
the receiving queue, respectively. read phit() can be blocking when there is no data in
the Rx FIFO. write phit() can also be blocking, stalling the execution of the PC program
when there is not enough space in the Tx FIFO. The blocking/non-blocking behavior is
controlled through a flag passed to the functions.

The streaming stack of the NoC API is used by the memory-mapped stack. Soft
Master API relays in transaction master() function. This function performs a transaction
on the hardware system. The request message is formed by encoding the command, the
size of the transaction and the address. In case of a write request, the data and mask
are also placed into phits. This phits are placed into the Tx FIFO. This function also
waits for the response when performing reading requests.

NoC API does not provide address decoding. Therefore, the user of the API must
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specify over which connection the transaction is going to be sent or received. We choose
not to implement address decoding because we believe that configuring such decoder
would be more complex for the user than simply choose the right connection identifier.

Slave software IPs can be implemented thanks to slave serve() function. For imple-
menting an slave in the PC, the designer will need to call this function, giving to it the
identifier of the connection. This function will block until it receives a request. The
request is passed to process transaction(). The designer must implement the desired
functionality in this function. There is an example developed, which prints in the screen
the address and value of write requests. The full NoC API is in Appendix A.

6.3 NoC Configuration from PC

One of the goals of developing an off-chip bridge was configuring the NoC from the PC.
As discussed in chapter 3, the host only needs to have access to one streaming port (from
now on, the remote port), placed in the local NI, and the configuration memory-mapped
port of the local NI. This was previously shown in Figure 3.3(a). In order to move the
host to the PC, we propose a bridge with four configuration connections (Figure 6.6)
plus some other connections for user applications:

• Connection 0: This connection will be used to configure the bridge itself. It will
be connected to an initiator shell, further connected to the configuration port of
the bridge.

• Connection 1: This connection will be used to configure the local NI. Since the
configuration port is a memory-mapped target, an initiator shell is needed.

• Connection 2: This connection will be forward to the remote port of the local NI.
The destination of this port is the control buses of the remote NIs. By configuring
the local NI, is possible to select the remote control bus to be configured.

• Connection 3: This connection is optional and only needed when there is a pro-
grammable bus with ports connected to the local NI. This bus will exists as long
as the old host IP remains there. That is a decision of the NoC designer.

• More connections can be used for accessing another IPs, such as shared memories.

The main advantage of this scheme is that the configuration procedure of the NoC
does not need to be changed. From the point of view of the local NI and the remote NI
and control buses the system remains the same.

Æthereal toolchain automatically generates the C code that configures the NoC. This
code access the NoC local and remote ports performing read and write transactions on
the address space of the local or remote connections, respectively. We reuse this code
by changing the low level IO functions, called art write() and art read(). Figure 6.7
shows the code of both options. When the host is in the FPGA, the address is masked
accordingly depending if the write/read is local or remote. When the host is on a PC,
the code perform a transaction to the local or the remote connection.
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Figure 6.6: Network configuration from a PC using the bridge.

The first thing the host must do is configuring the bridge through connection 0. It
should allocate at least one slot for connection 1 and one slot for connection 2. Then the
host must start configuring the NoC as it was described in Section 3.4. In order to open
the response channels with the remote NIs, the host has first to configure the request
channel in the local NI through connection 1 and the configure the remote NI through
connection 2. The API makes sure that the local NI is configured before the data is sent
to the remote port.

Opening a connection between two NIs is done in the same way as in Section 3.4.
The host opens the request channel that goes from the local NI to the remote NI, sets
configures the response channel of the connection to be open and closes the request
channel. Finally, the host opens a request channel with the other remote NI, configures
a request channel between the two remote NIs, and closes the configuration request
channel.

If the host wants to open a connection between a remote NI and itself, it needs
to configure the request channel on connection 4 using connection 1. Finally, it must
also configure the bridge to allocate the desired resources in the off-chip link. Closing a
connection between the host and a remote NI requires two additional steps. The host
must check that there is no data traversing the off-chip link or stored in the bridge queues
(both in the software and in the hardware parts), and remove the resources allocated for
that connection at the bridge.

6.4 Configuring Two Sub-NoCs

This section will describe how the configuration of two sub-NoCs is done. For simplicity
we place the host in one of the sub-NoCs, but it could be a PC, however. In Figure 6.8(a)
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the host is connected to the local NI of sub-NoC 1, in a similar way as in Figure 3.3(a).
Therefore the configuration procedure of this sub-NoC follows the same steps as described
in Section 3.4. The host must open four connections with remote NI that is connected
to the bridge. Until this point, the bridge is treated like any other IP.

The bridge that is in the second sub-NoC (Figure 6.8(b)) follows the same connection
pattern as the one described in Section 6.3. Port one is used for configuring the bridge,
port two is for configuring the remote local NI (the NI that is connected to the bridge in
the second sub-NoC), and port three for the configuration of the other NIs of the second
sub-NoC (remote remote).

In order to configure the whole NoC (both sub-NoCs), the host must follow the next
steps:

• First NoC is configured as usual. Additionally, the host sets up four connections
to communicate with the bridge (connections 0, 1, 2 and 3). Connections between
the other NIs and the bridge are also set (connection 4).

• With connection zero, the host can modify the slot table of the local bridge, allo-
cating bandwidth for the request channel of connections 1, 2 and 3.

• With connection one, the host modifies the slot table of the remote bridge and
allocates bandwidth for the response channel of connection 1, 2 and 3. Connection
1 needs a response channel because the credits need to come back.

• Now the host have full access to connections 2 and 3. This connections are the
local port and the remote port, respectively, of the second sub-NoC. Thus, the
host only has to run the configuration procedure of the second sub-NoC. The only
difference is that instead of doing the write/read transactions over the local and
remote ports, it does them over the remote local and the remote remote ports.
This can be easily done by changing two masking addresses in the code.

• Finally, the host can configure the TDM table of the bridge in such a way that it
opens the application connections, like connection 4. This is done at the end of the
configuration process, and hence IPs of a sub-NoC can not send data to the other
sub-NoC before both are well configured. This acts like a simple booting system
avoiding data lost. If a connection sends data to the bridge before the configuration
is finish, this data will be stalled at the bridge until it is safe to cross the off-chip
link.

At the end of the configuration process of the system illustrated in Figure 6.8 we
achieve communication between the initiator IP in sub-NoC 2 and the target IP in sub-
NoC 1. This communication is carried over by connection 4. Connection 4 goes from
the remote NI of sub- NoC 1 to the NI of the bridge, crosses the bridge, and the goes
from the NI of the bridge in sub-NoC 2 to the remote NI of the sub-NoC 2.
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#define LOCAL CONN 1

#define REMOTE CONN 2

// "where" can be either REMOTE or LOCAL

void art write(unsigned address, unsigned data, place t where) {
#ifndef PC // Address based configuration

if (where == REMOTE) { // Add REMOTE mask

address = (CFG EQUAL | RMT EQUAL | address);

}
else { // Add LOCAL mask

address = (CFG EQUAL | LCL EQUAL | address);

}
unsigned volatile* const addr = (unsigned * const) address;

*addr=data;

#else // Connection based configuration

if (where == REMOTE){
conn->c number = REMOTE CONN;

}
else {

conn->c number = LOCAL CONN;

}
transaction master(conn, WR, address, (int *)&data, 0);

#endif

}

unsigned art read(unsigned address, place t where) {
unsigned data;

#ifndef PC // Address based configuration

if (where == REMOTE) { // Add REMOTE mask

address = (CFG EQUAL | RMT EQUAL | address);

}
else { // Add LOCAL mask

address = (CFG EQUAL | LCL EQUAL | address);

}
unsigned const volatile * const addr = (unsigned * const) address;

data=*addr;

#else // Connection based configuration

if (where == REMOTE){
conn->c number = REMOTE CONN;

}
else {

conn->c number = LOCAL CONN;

}
transaction master(conn, RD, address, (int *)&data, 0);

#endif

return data;

}

Figure 6.7: IO code for NoC configuration when the host is in an embedded processor
on the FPGA or in the PC
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(a)

(b)

Figure 6.8: System configuration with two sub-NoCs.
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Test Cases 7
This chapter shows the results of the experiments done. In Section 7.1 the bridge is
tested for streaming data traffic, and some results about the latency and performance
are shown. Section 7.2 test the bridge in a simple environment were the performance in
terms of transaction latency is measured. Two test cases are presented in Section 7.3
and 7.4. The first one is a SoC with a host outside of the FPGA. The second one shows
a SoC divided in two different FPGAs.

7.1 Standalone Bridge Performance (Streaming)

For testing the performance of the bridge with streaming communication, the test-bench
illustrated in Figure 7.1 places two bridges in the same FPGA. Traffic Generators (TG)
are attached to the ports of one bridge, and Measurement Units (MU) are attached to
the other. TGs injects phits in the bridge ports according with a preset rate. The type of
the traffic is uniform. TGs also write a timestamp, the value of timer, in each phit when
these are accepted by the bridge. Therefore, when a MU receives one phit, compares the
timestamp with the timer value, and computes the latency for that phit.

Figure 7.2 shows the latency results for different injection rates, and different number

Figure 7.1: Standalone bridge for testing streaming communication.
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Figure 7.2: Latency of the streaming traffic.

of slots assigned to the connection. The setup used Ethernet frames with a payload of
1400 bytes and slots of 100 bytes. FIFOs were 64 phits deep.

The flat segment of the graph corresponds to the throughput where the latency is
guaranteed. When the number of slows assigned to one connection grows the latency
starts dropping because they have to wait less time for their TDM slots. For example if
a connection has only one slot assigned it is probable that when it tries to send one phit
it will need to wait for its slot. On the other hand, the phits of a connections that has all
the slots reserved will not need to wait for been sent. The graph also shows that when
the TGs generate more traffic than the bridge can send, the latency grows dramatically.
This is because there are not enough slots for carrying all the phits, and these have to
wait in the FIFOs, increasing the latency of the system, and loosing the QoS.

7.2 Standalone Bridge Performance (Memory mapped)

For testing how the bridge affects the performance when carrying memory-mapped com-
munication we have designed a simplified system that only has one initiator-target pair
and two IPs, along with shells, but not with the network core modules, such NIs or
routers.

With this test we aim to isolate and show the latency introduced by the bridge
when is placed in the interconnect. For this we have developed the systems described
in Figure 7.3. A MicroBlaze (µB) processor accesses an external RAM in two different
ways: directly through the PLB bus or through a simple NoC interconnect. This NoC
interconnect is only has the memory-mapped and streaming stacks. System 7.3(a) is used
to measure the latency introduced by other modules different from the bridge. Following
path 1, the µB issues a request that is converted from the PLB protocol to the NoC
bus protocol by the PLB to DTL converter. The target shell serializes the transaction
and the streaming that is fed into the initiator shell directly (7.3(a)) or through the
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(a)

(b)

Figure 7.3: Standalone memory-mapped control (a) and full (b) tests.

bridge (7.3(b)). Then the request is deserialized and passed to the RAM controller. If
the request is a write operation the µB can know when it is done by polling the RAM
directly through the PLB bus (path 2). All the blocks run with a 125 MHz clock.

Subtracting the latency of system (a) to the latency of system (a) we can know how
much latency the bridge introduces in the transactions.

We have obtained that the latency introduced by system (a) is 50 cycles. For sys-
tem (b) we have obtained the graph shown in Figure 7.4. The latency decreases when
the number of slots assigned increases, as expected because the time the transaction
waits for its assigned slot is shorter. However, the latency can not be lower than 237
cycles (in average) due to the gap slots in the TDM table. This gap slots can not be
used because they model the time that the headers of the Ethernet packet that need to
be sent (Section 5.6), and the fixed latency of the link (220 cycles).
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Figure 7.4: Latency of the memory-mapped traffic.

7.3 Test Case: NoC with external host

The system used for testing the bridge when connected with a PC is illustrated in Fig-
ure 7.5. This system interconnects two tiles, a shared memory and a microcontroller
running as system monitor. Each tile has a microprocessor inside, together with instruc-
tion and data memories, three Direct Memory Access (DMA) controllers, three input
external memories (cmemin) and three output external memories (cmemout). DMA
modules fetch data from their cmemouts and writes it in the cmemins of the other tile.
They also can read from the cmemins of the other tiles or the shared memory and store
the data in its one cmemout. Therefore, DMA modules move the data between the
cmemout of its own tile and the cmemin of other tile or the shared memory. Each tile
has three groups of DMA controllers, cmemout and cmemin. Hence, each tile has three
initiator ports and three target ports. The main memory of the system is shared by four
initiators: the monitor, two tiles, and the host. All the transactions with the shared
memory are arbitrated by the initiator bus.

The configuration of the network is done from an external PC. First, the host con-
figures the bridge, allocating slots for the local connection and the remote connection.
The host the opens a request channel with NI2 by configuring NI1. With this request
channel the host has access to the configuration port of NI2 and can configure the re-
sponse channel for that connection. The host waits until the configuration data is sent
by polling the credit counter of the local NI. The same process is done with NI3 and
NI4, creating response channels for each remote NI. Following there is an example of
this procedure:

// Configuring the Bridge

>setcon 0

>write 0x00 0

>write 0x01 1
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Figure 7.5: NoC with a PC as host.

>write 0x02 2

>write 0x03 3

// Configuring the NoC

>nocconf

// Configuring the response channels of the NIs

- Set Credits on LOCAL

Writing Address 100, connection 1 : <- 30000009

- Set Slots on LOCAL

Writing Address 200, connection 1 : <- 0

--- NI 0

-Open config request channel

Writing Address 0, connection 1 : <- c0000002

- Set Credits on REMOTE

Writing Address 100, connection 2 : <- 30000009

- Set Slots on REMOTE

Writing Address 200, connection 2 : <- 0

- Configuring the path

Writing Address 0, connection 2 : <- c0000001

--- NI 1

-Open config request channel
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Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000004

- Set Credits on REMOTE

Writing Address 100, connection 2 : <- 30000009

- Set Slots on REMOTE

Writing Address 248, connection 2 : <- 0

- Configuring the path

Writing Address 0, connection 2 : <- c0000004

--- NI 2

-Open config request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000008

- Set Credits on REMOTE

Writing Address 100, connection 2 : <- 30000009

- Set Slots on REMOTE

Writing Address 248, connection 2 : <- 0

- Configuring the path

Writing Address 0, connection 2 : <- c0000004

Once all the response channels are open, the host starts configuring the connections that
will provide communication services for the applications. First, the host opens the configuration
request channel (from NI1 to NI2) and sets the credits, the slots and the path of the request
channel of the application connection (from NI2 to NI3). Then it changes the configuration
request channel to NI3 and opens the response channel of the application connection (from NI3
to NI2). If needed the configuration of the bus is also possible. The host only needs to open the
configuration request channel and access them with the right address.

This is an example of how a connection is opened. The full log of the configuration is in
Appendix B.1.

// From slave to master NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000008

- Set Credits

Writing Address 104, connection 2 : <- 3000000d

- Set Slots

Writing Address 220, connection 2 : <- 1

Writing Address 224, connection 2 : <- 1

- Set Path

Writing Address 4, connection 2 : <- c0000028

// From master to slave NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000002

- Set Credits

Writing Address 108, connection 2 : <- 30000013

- Set Slots

Writing Address 22c, connection 2 : <- 2

Writing Address 230, connection 2 : <- 2

- Set Path

Writing Address 8, connection 2 : <- c0000018



7.4. TEST CASE: NOC WITH TWO SUB NOCS 51

// Configuring target bus

- Open configuration request channel

- Set addr decoder

Writing Address 504, connection 2 : <- 7ff00000

Writing Address 404, connection 2 : <- 2000001

Through the fourth connection of the bridge, the host can access the shared memory. Using
the command line it is possible to see and change the contents of the shared memory:

>setcon 3

>read 0 1

38

>write 0x00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

>dump 0x00 20

0: 1 4: 2 8: 3 c: 4

10: 5 14: 6 18: 7 1c: 8

20: 9 24: a 28: b 2c: c

30: d 34: e 38: f 3c: 10

40: 11 44: 12 48: 0 4c: 0

>

Therefore we can conclude that the configuration procedure was correct.

7.4 Test Case: NoC with two sub NoCs

The second test case, shown in Figure 7.6, consist of two sub-NoCs connected by the bridge.
Each sub-NoC has one of the tiles described in the previous section. The first sub-NoC (NoC1)
has also a microprocessor working as host. NoC2 contains the shared memory. There are 9
connections crossing the bridge:

• Connection brdg conf : Through this connection the host can configure the remote bridge,
allocating the needed resources for the other connections.

• Connection rmt lcl : The host uses this connection for configuring NI4 in NoC2. In this
way the host is able to open request channels for configuring NoC2.

• Connection rmt rmt : The host uses this connection for configuring NI5 and NI6. In this
NIs is where the request and response channels of the application connections will be
configured.

• Other connections: Used for application communication.

The configuration procedure of NoC1 is the same as any single chip NoC. In this test case the
bridge does not need to be configured because its TDM table was preloaded at synthesis with the
correct values and therefore all its connections have the correct slots allocated. For configuring
NoC2, the host uses the same program that it would use if they were in the same chip, without
NoC1 in the middle. The only change is masking the remote and local addresses so the host uses
now rmt lcl instead of the local port, and rmt rmt instead of the remote port.

For example, this is the opening of a request channel on NoC1 and on NoC2

Configuring NoC1... Configuring NoC2...

- Set Credits on LOCAL

LOCAL WRITE addr 0x80000100 LOCAL WRITE addr 0x76000100

- Set Slots on LOCAL
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(a)

(b)

Figure 7.6: System with two sub-NoCs.
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LOCAL WRITE addr 0x80000200 LOCAL WRITE addr 0x76000200

--- NI 0

-Open config request channel

LOCAL WRITE addr 0x80000000 LOCAL WRITE addr 0x76000000

- Set Credits on REMOTE

REMOTE WRITE addr 0x80004100 REMOTE WRITE addr 0x77004100

- Set Slots on REMOTE

REMOTE WRITE addr 0x80004200 REMOTE WRITE addr 0x77004200

- Configuring the path

REMOTE WRITE addr 0x80004000 REMOTE WRITE addr 0x77004000

The full log of the configuration can be seen in Appendix B.2.
Once both NoCs are configured, the host can access the shared memory, and read and modify

its contents, proving that the configuration procedure was correct.
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Conclusions 8
In this thesis, an off-chip bridge for a Network on Chip (NoC) is proposed. This bridge allows
to successfully extend the NoC over to different chips, while preserving the Quality of Service
(QoS) of the applications and hiding the complexity of the off-chip interconnection from the IPs.

Several bridging schemes are described in detail characterizing them according with a well
defined requirements in terms of transparency, decoupling and QoS. This systematic approach
shows that the best layer for placing a bridge is the transport layer, multiplexing several con-
nections over one off-chip link. The bridge can provide QoS thanks to the TDM scheduling at
the granularity of streaming data words. The bridge also preserves end-to-end flow control by
implementing local-link flow control with a credit based mechanism.

This design is implemented in RTL and tested in an FPGA. There is also a software imple-
mentation that allows to configure the NoC from a remote PC with an Ethernet card. Moreover,
this thesis also implements a procedure for configuring one NoC from the outside of the chip
using the bridge, and another procedure for configuring systems with a Noc divided into two
subNoCs by a bridge.

Finally the bridge implementation is tested on an FPGA in standalone environment. Two
other test cases are also tested: one with a NoC that is configured and debugged from the
outside, and another SoC with two sub-NoCs. No one of the tiles used in those SoCs needed to
be changed, only the NoC and the configuration code was different.

This work proves that is possible to implement a bridge that allows to extend a NoC over two
FPGAs, while providing end-to-end QoS, transparency, and decoupling. Moreover, one possible
NoC configuration method is described. This method reuses the configuration process provided
by Æthereal, and only two steps more are needed to open one connection. Therefore the NoC
designer can have much more logic resources at his disposal. This bridge also allows to design
SoCs with companion chips expending less time in developing and verifying the interconnect.
The main disadvantage is that the bridge introduces more delay significantly compared with the
delay introduced by the NoC, mainly due to the delay introduced by the Ethernet link.

This work has also resulted in one research paper that will be published and presented at
the Design, Automation, and Test in Europe DATE) conference of 2011.

8.1 Future Work

Currently, the bridge is usable and has a reasonable performance. Continuing the same vein of
research, we propose some other uses or extensions for the bridge that might be interesting:

• Allow the bridge to connect with more than one board by using an Ethernet switch,
increasing the amount of resources available for the designer. This must be done carefully,
because if the buffers of the switch get full, ethernet frames will be dropped.

• Adding some mechanism for recovering from frames lost. For example, adding the TCP/IP
layers between the bridge and the Ethernet. This would also increase the connectivity of
the SoC, because the IPs of the NoC could have access to resources located on Internet.
This adds great challenges because TCP protocol introduces a high latency, and can not
provide QoS.
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• Develop an integrated simulation and verification toolchain. Starting with a SystemC
description of the SoC, it would be interesting to study the possibility of moving the
system to the FPGA step by step. When the systemC simulation is working, the designer
can implement the NoC and one of the IPs in the FPGA, while the other IPs run as
processes in a PC. The communication between the hardware IPs and the software IPs is
provided by the NoC, by the hardware bridge, and by the software bridge. This may allow
faster developing and upgrading of the SoCs.

• Finding the best way of partitioning large SoCs can be challenging. Developing a tool that
automatically finds the optimal place of the bridge in the NoC based in a cost model of
the applications and the SoC could be interesting.

• Integrate the formal model of the bridge with the formal model of the NoC to analyze the
unified systems at the design time.
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[28] Andrei Rădulescu and Kees Goossens, Communication services for networks on chip,
Domain-Specific Processors: Systems, Architectures, Modeling, and Simulation (Shuvra S.
Bhattacharyya, Ed F. Deprettere, and Jürgen Teich, eds.), Marcel Dekker, 2004, pp. 193–
213.

[29] Frits Steenhof, Harry Duque, Björn Nilsson, Kees Goossens, and Rafael Peset Llopis, Net-
works on chips for high-end consumer-electronics tv system architectures, DATE ’06: Pro-
ceedings of the conference on Design, automation and test in Europe (3001 Leuven, Belgium,
Belgium), European Design and Automation Association, 2006, pp. 148–153.



BIBLIOGRAPHY 59

[30] Frank Vahid and Tony D. Givargis, Embedded system design: A unified hardware/software
introduction.

[31] Maarten H. Wiggers, Marco J. G. Bekooij, and Gerard J. M. Smit, Modelling run-time
arbitration by latency-rate servers in dataflow graphs, Proceedingsof the 10th international
workshop on Software & compilers for embedded systems (New York, NY, USA), SCOPES
’07, ACM, 2007, pp. 11–22.

[32] Xilinx Inc., ML510 Embedded Development Platform User Guide, UG356 (v1.1),
http://www.xilinx.com/support/documentation/boards_and_kits/ug356.pdf, De-
cember 2008.

[33] , Processor Local Bus (PLB) v3.4, April 2009.

[34] , Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC User Guide, UG194
(v1.9), http://www.xilinx.com/support/documentation/user_guides/ug194.pdf, Oc-
tober 2009.

[35] , Virtex-5 FPGA RocketIO GTP Transceiver User Guide, UG196 (v2.1), http://
www.xilinx.com/support/documentation/user_guides/ug196.pdf, December 2009.

[36] , Virtex-5 FPGA User Guide, UG190 (v5.3), http://www.xilinx.com/support/

documentation/user_guides/ug190.pdf, may 2010.

[37] S. Xu and H. Pollitt-Smith, A multi-microblaze based soc system: From systemc model-
ing to fpga prototyping, Rapid System Prototyping, 2008. RSP ’08. The 19th IEEE/IFIP
International Symposium on, June 2008, pp. 121 –127.

[38] Yaming Yin and Shuming Chen, Design and implementation of a inter-chip bridge in a
multi-core SoC, Design & Technology of Integrated Systems in Nanoscal Era, 2009. DTIS
’09. 4th International Conference on, April 2009, pp. 102–106.

http://www.xilinx.com/support/documentation/boards_and_kits/ug356.pdf
http://www.xilinx.com/support/documentation/user_guides/ug194.pdf
http://www.xilinx.com/support/documentation/user_guides/ug196.pdf
http://www.xilinx.com/support/documentation/user_guides/ug196.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf


60 BIBLIOGRAPHY



Software API A
This appendix shows the NoC API. This API provides communication with from a PC to a NoC
that has a bridge. It implements the functionality of a bridge for sending and receiving phits,
but in software instead of hardware. Since most of the modules of a SoC are memory-mapped,
it also implements the conversion from DTL transactions to phits doing the same serialization
as the shells. This allow the user to read and write from memories in an easy way.

/*

* DATALINK API.

* With this API is possible to send individual phits through any connection of the

* bridge.

*/

/*Initializes the communication with the NoC

* dl returns the data of the datalink socket.

* socket needs to contain an initialized ethernet socket.

*/

int init noc comm(t datalink *dl, t eth socket *socket);

/*Closes the communication with the NoC */

void close noc comm(t datalink *dl);

/*

* Sends a phit to the noc.

* dl is the datalink socket.

* connection is the connection number where the phit will be sent.

* data is a pointer to an array with phit. It has a fixed lenght of 5 bytes.

* first 3 bits of data[0] are not sent to the NoC

* flags. If is set to one, this function will stall until the phit is sent.

*/

int write phit(t datalink *dl, int connection, char *data, int flags);

/*

* Receives a phit to the noc.

* dl is the datalink socket.

* connection is the connection number where the phit will be received.

* data is a pointer to an array with phit. It has a fixed lenght of 5 bytes.

* first 3 bits of data[0] are not valid.

* flags. If is set to one, this function will stall until a phit is received.

*/

int read phit(t datalink *dl, int connection, char *data, int flags);

void print phit(unsigned char *phit);

/*
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* BUS API.

* With this API is possible to send or read data words to the target ports of the NoC.

* bridge.

*/

enum command type {WR=0, RD=1};

// DTL socket

typedef struct {
t datalink *dl; // Datalink socket

int c number; // connection over which transactions will be sent

} t dtlbus;

extern t dtlbus *conn;

/*

* Returns a pointer to DTL socket.

*/

t dtlbus *create connection();

/*

* Closes the DTL socket.

*/

void destroy connection(t dtlbus *conn);

/*

* Initiates a transaction

* conn is a DTL socket.

* command can be WR or RD, for a write or read transaction.

* address is the address of the transaction

* data is an array that contains the words to be sent to the target, or

* the buffer where the result of a read will be stored

* size is the size of the transaction, in words.

*/

int transaction master(t dtlbus *conn, int command, unsigned address, int *data, int size);

/*

* This function waits for a transaction. It implements the functionallity of a target port.

* When a transaction is received it calls the function "process transaction".

* After process transaction returns this function keeps waiting for more transactions.

*/

void slave serve(t dtlbus *conn);

/*

* This function is called by slave serve whenever a request is received.

* It is intended to be overwriten by the user of the API. Otherwise it prints the content of the requests.

* Command indicates whether the request is a read or a write.

* data is an array that contents the words of a write transaction, or where the words must be returned in

* case of a read transaction

* size is the number of requested words.

*/

void process transaction(int command, unsigned address, int *data, int size);



NoC Configuration B
This appendix contains the configuration logs of the test cases.

B.1 NoC Configured from PC

AEthereal Command Interpreter

// Configuring the Bridge

>setcon 0

>write 0x00 0

>write 0x01 1

>write 0x02 2

>write 0x03 3

// Configuring the NoC

>nocconf

// Configuring the response channels of the NIs

- Set Credits on LOCAL

Writing Address 100, connection 1 : <- 30000009

- Set Slots on LOCAL

Writing Address 200, connection 1 : <- 0

--- NI 0

-Open config request channel

Writing Address 0, connection 1 : <- c0000002

- Set Credits on REMOTE

Writing Address 100, connection 2 : <- 30000009

- Set Slots on REMOTE

Writing Address 200, connection 2 : <- 0

- Configuring the path

Writing Address 0, connection 2 : <- c0000001

--- NI 1

-Open config request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000004

- Set Credits on REMOTE

Writing Address 100, connection 2 : <- 30000009

- Set Slots on REMOTE

Writing Address 248, connection 2 : <- 0

- Configuring the path

Writing Address 0, connection 2 : <- c0000004
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--- NI 2

-Open config request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000008

- Set Credits on REMOTE

Writing Address 100, connection 2 : <- 30000009

- Set Slots on REMOTE

Writing Address 248, connection 2 : <- 0

- Configuring the path

Writing Address 0, connection 2 : <- c0000004

//Configuring Application

// From slave to master NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000004

- Set Credits

Writing Address 104, connection 2 : <- 30000006

- Set Slots

Writing Address 200, connection 2 : <- 1

Writing Address 214, connection 2 : <- 1

- Set Path

Writing Address 4, connection 2 : <- c0000014

// From master to slave NI

- Open configuration request channel

- Set Credits

Writing Address 104, connection 1 : <- 3000001a

- Set Slots

Writing Address 204, connection 1 : <- 1

Writing Address 208, connection 1 : <- 1

Writing Address 20c, connection 1 : <- 1

Writing Address 210, connection 1 : <- 1

Writing Address 214, connection 1 : <- 1

- Set Path

Writing Address 4, connection 1 : <- c0000014

art_dbg_write = 3

//Configuring Application

// From slave to master NI

- Open configuration request channel

- Set Credits

Writing Address 108, connection 2 : <- 30000008

- Set Path

Writing Address 8, connection 2 : <- 40000018

// From master to slave NI

- Open configuration request channel
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Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000002

- Set Credits

Writing Address 104, connection 2 : <- 30000008

- Set Path

Writing Address 4, connection 2 : <- 40000024

// Configuring target bus

- Open configuration request channel

- Set addr decoder

Writing Address 500, connection 2 : <- 7ff00000

Writing Address 400, connection 2 : <- 78000001

art_dbg_write = 35

//Configuring Application

// From slave to master NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000008

- Set Credits

Writing Address 104, connection 2 : <- 3000000d

- Set Slots

Writing Address 220, connection 2 : <- 1

Writing Address 224, connection 2 : <- 1

- Set Path

Writing Address 4, connection 2 : <- c0000028

// From master to slave NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000002

- Set Credits

Writing Address 108, connection 2 : <- 30000013

- Set Slots

Writing Address 22c, connection 2 : <- 2

Writing Address 230, connection 2 : <- 2

- Set Path

Writing Address 8, connection 2 : <- c0000018

// Configuring target bus

- Open configuration request channel

- Set addr decoder

Writing Address 504, connection 2 : <- 7ff00000

Writing Address 404, connection 2 : <- 2000001

art_dbg_write = 67

//Configuring Application
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// From slave to master NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000008

- Set Credits

Writing Address 108, connection 2 : <- 3000000d

- Set Slots

Writing Address 228, connection 2 : <- 2

Writing Address 22c, connection 2 : <- 2

- Set Path

Writing Address 8, connection 2 : <- c0000038

// From master to slave NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000002

- Set Credits

Writing Address 10c, connection 2 : <- 30000013

- Set Slots

Writing Address 234, connection 2 : <- 3

Writing Address 238, connection 2 : <- 3

- Set Path

Writing Address c, connection 2 : <- c0000028

art_dbg_write = 99

//Configuring Application

// From slave to master NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000008

- Set Credits

Writing Address 10c, connection 2 : <- 30000008

- Set Path

Writing Address c, connection 2 : <- 40000048

// From master to slave NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000002

- Set Credits

Writing Address 110, connection 2 : <- 30000008

- Set Path

Writing Address 10, connection 2 : <- 40000038

art_dbg_write = 131

//Configuring Application
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// From slave to master NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000004

- Set Credits

Writing Address 10c, connection 2 : <- 3000000c

- Set Slots

Writing Address 208, connection 2 : <- 3

Writing Address 20c, connection 2 : <- 3

- Set Path

Writing Address c, connection 2 : <- c0000012

// From master to slave NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000008

- Set Credits

Writing Address 110, connection 2 : <- 30000012

- Set Slots

Writing Address 200, connection 2 : <- 4

Writing Address 230, connection 2 : <- 4

- Set Path

Writing Address 10, connection 2 : <- c000000d

// Configuring target bus

- Open configuration request channel

- Set addr decoder

Writing Address 500, connection 2 : <- 7ff00000

Writing Address 400, connection 2 : <- 78000001

art_dbg_write = 163

//Configuring Application

// From slave to master NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000002

- Set Credits

Writing Address 114, connection 2 : <- 3000000d

- Set Slots

Writing Address 23c, connection 2 : <- 5

Writing Address 240, connection 2 : <- 5

- Set Path

Writing Address 14, connection 2 : <- c0000058

// From master to slave NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000008

- Set Credits

Writing Address 114, connection 2 : <- 30000013
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- Set Slots

Writing Address 204, connection 2 : <- 5

Writing Address 208, connection 2 : <- 5

- Set Path

Writing Address 14, connection 2 : <- c0000058

// Configuring target bus

- Open configuration request channel

- Set addr decoder

Writing Address 504, connection 2 : <- 7ff00000

Writing Address 404, connection 2 : <- 1000001

art_dbg_write = 195

//Configuring Application

// From slave to master NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000002

- Set Credits

Writing Address 118, connection 2 : <- 3000000d

- Set Slots

Writing Address 244, connection 2 : <- 6

Writing Address 248, connection 2 : <- 6

- Set Path

Writing Address 18, connection 2 : <- c0000068

// From master to slave NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000008

- Set Credits

Writing Address 118, connection 2 : <- 30000013

- Set Slots

Writing Address 20c, connection 2 : <- 6

Writing Address 210, connection 2 : <- 6

- Set Path

Writing Address 18, connection 2 : <- c0000068

art_dbg_write = 227

//Configuring Application

// From slave to master NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000002

- Set Credits
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Writing Address 11c, connection 2 : <- 30000008

- Set Path

Writing Address 1c, connection 2 : <- 40000078

// From master to slave NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000008

- Set Credits

Writing Address 11c, connection 2 : <- 30000008

- Set Path

Writing Address 1c, connection 2 : <- 40000078

art_dbg_write = 259

//Configuring Application

// From slave to master NI

- Open configuration request channel

Reading Address 100, connection 1

Writing Address 0, connection 1 : <- c0000004

- Set Credits

Writing Address 110, connection 2 : <- 30000006

- Set Slots

Writing Address 218, connection 2 : <- 4

Writing Address 21c, connection 2 : <- 4

- Set Path

Writing Address 10, connection 2 : <- c0000024

// From master to slave NI

- Open configuration request channel

- Set Credits

Writing Address 108, connection 1 : <- 3000001e

- Set Slots

Writing Address 218, connection 1 : <- 2

Writing Address 21c, connection 1 : <- 2

Writing Address 220, connection 1 : <- 2

Writing Address 224, connection 1 : <- 2

Writing Address 228, connection 1 : <- 2

- Set Path

Writing Address 8, connection 1 : <- c0000044

art_dbg_write = 291

>setcon 3

>read 0 1

38

>write 0x00 0x1000

>write 0x04 0xa

>write 0x08 0x445
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>write 0x10 0x3e8

>dump 0x00 6

0: 1000

4: a

8: 445

c: 0

10: 3e8

14: 0

>write 0x00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

>dump 0x00 20

0: 1

4: 2

8: 3

c: 4

10: 5

14: 6

18: 7

1c: 8

20: 9

24: a

28: b

2c: c

30: d

34: e

38: f

3c: 10

40: 11

44: 12

48: 0

4c: 0

>

B.2 NoC with two sub NoCs

Configuring NoC1...

init aethereal

- Set Credits on LOCAL

LOCAL WRITE addr 0x80000100

- Set Slots on LOCAL

LOCAL WRITE addr 0x80000200

--- NI 0

-Open config request channel

LOCAL WRITE addr 0x80000000

- Set Credits on REMOTE

REMOTE WRITE addr 0x80004100

- Set Slots on REMOTE

REMOTE WRITE addr 0x80004200

- Configuring the path
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REMOTE WRITE addr 0x80004000

--- NI 1

-Open config request channel

LOCAL READ addr 0x80000100

data = 0

LOCAL WRITE addr 0x80000000

- Set Credits on REMOTE

REMOTE WRITE addr 0x80004100

- Set Slots on REMOTE

REMOTE WRITE addr 0x80004200

- Configuring the path

REMOTE WRITE addr 0x80004000

CFG INIT COMPLETE

//Configuring Application

// From slave to master NI

- Open configuration request channel

- Set Credits

REMOTE WRITE addr 0x80004104

- Set Slots

REMOTE WRITE addr 0x8000420C

REMOTE WRITE addr 0x80004210

- Set Path

REMOTE WRITE addr 0x80004004

// From master to slave NI

- Open configuration request channel

- Set Credits

LOCAL WRITE addr 0x80000104

- Set Slots

LOCAL WRITE addr 0x80000204

LOCAL WRITE addr 0x80000208

LOCAL WRITE addr 0x8000020C

LOCAL WRITE addr 0x80000210

LOCAL WRITE addr 0x80000214

LOCAL WRITE addr 0x80000218

- Set Path

LOCAL WRITE addr 0x80000004

// Configuring target bus

- Open configuration request channel

- Set addr decoder

LOCAL WRITE addr 0x80000D00

LOCAL WRITE addr 0x80000C00

//Configuring Application

// From slave to master NI

- Open configuration request channel

- Set Credits

REMOTE WRITE addr 0x80004108
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- Set Path

REMOTE WRITE addr 0x80004008

// From master to slave NI

- Open configuration request channel

LOCAL READ addr 0x80000100

data = 0

LOCAL WRITE addr 0x80000000

- Set Credits

REMOTE WRITE addr 0x80004104

- Set Path

REMOTE WRITE addr 0x80004004

// Configuring target bus

- Open configuration request channel

- Set addr decoder

REMOTE WRITE addr 0x80004500

REMOTE WRITE addr 0x80004400

//Configuring Application

// From slave to master NI

- Open configuration request channel

LOCAL READ addr 0x80000100

data = 0

LOCAL WRITE addr 0x80000000

- Set Credits

REMOTE WRITE addr 0x8000410C

- Set Slots

REMOTE WRITE addr 0x80004224

REMOTE WRITE addr 0x80004228

- Set Path

REMOTE WRITE addr 0x8000400C

// From master to slave NI

- Open configuration request channel

LOCAL READ addr 0x80000100

data = 0

LOCAL WRITE addr 0x80000000

- Set Credits

REMOTE WRITE addr 0x80004108

- Set Slots

REMOTE WRITE addr 0x8000424C

REMOTE WRITE addr 0x80004250

- Set Path

REMOTE WRITE addr 0x80004008

// Configuring target bus

- Open configuration request channel

- Set addr decoder

REMOTE WRITE addr 0x80004504

REMOTE WRITE addr 0x80004404

//Configuring Application
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// From slave to master NI

- Open configuration request channel

LOCAL READ addr 0x80000100

data = 0

LOCAL WRITE addr 0x80000000

- Set Credits

REMOTE WRITE addr 0x80004110

- Set Path

REMOTE WRITE addr 0x80004010

// From master to slave NI

- Open configuration request channel

LOCAL READ addr 0x80000100

data = 0

LOCAL WRITE addr 0x80000000

- Set Credits

REMOTE WRITE addr 0x8000410C

- Set Path

REMOTE WRITE addr 0x8000400C

//Configuring Application

// From slave to master NI

- Open configuration request channel

- Set Credits

REMOTE WRITE addr 0x80004110

- Set Slots

REMOTE WRITE addr 0x80004254

REMOTE WRITE addr 0x80004258

- Set Path

REMOTE WRITE addr 0x80004010

// From master to slave NI

- Open configuration request channel

LOCAL READ addr 0x80000100

data = 0

LOCAL WRITE addr 0x80000000

- Set Credits

REMOTE WRITE addr 0x80004114

- Set Slots

REMOTE WRITE addr 0x80004204

REMOTE WRITE addr 0x80004208

- Set Path

REMOTE WRITE addr 0x80004014

//Configuring Application

// From slave to master NI

- Open configuration request channel

LOCAL READ addr 0x80000100

data = 0
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LOCAL WRITE addr 0x80000000

- Set Credits

REMOTE WRITE addr 0x80004114

- Set Path

REMOTE WRITE addr 0x80004014

// From master to slave NI

- Open configuration request channel

LOCAL READ addr 0x80000100

data = 0

LOCAL WRITE addr 0x80000000

- Set Credits

REMOTE WRITE addr 0x80004118

- Set Path

REMOTE WRITE addr 0x80004018

//Configuring Application

// From slave to master NI

- Open configuration request channel

- Set Credits

REMOTE WRITE addr 0x8000411C

- Set Slots

REMOTE WRITE addr 0x80004214

REMOTE WRITE addr 0x80004218

- Set Path

REMOTE WRITE addr 0x8000401C

// From master to slave NI

- Open configuration request channel

- Set Credits

LOCAL WRITE addr 0x80000108

- Set Slots

LOCAL WRITE addr 0x8000021C

LOCAL WRITE addr 0x80000220

LOCAL WRITE addr 0x80000224

LOCAL WRITE addr 0x80000228

LOCAL WRITE addr 0x8000022C

LOCAL WRITE addr 0x80000230

- Set Path

LOCAL WRITE addr 0x80000008

// Configuring target bus

- Open configuration request channel

- Set addr decoder

LOCAL WRITE addr 0x80000D04

LOCAL WRITE addr 0x80000C04

//Configuring Application

// From slave to master NI

- Open configuration request channel

- Set Credits
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REMOTE WRITE addr 0x80004120

- Set Slots

REMOTE WRITE addr 0x8000421C

REMOTE WRITE addr 0x80004220

- Set Path

REMOTE WRITE addr 0x80004020

// From master to slave NI

- Open configuration request channel

- Set Credits

LOCAL WRITE addr 0x8000010C

- Set Slots

LOCAL WRITE addr 0x80000234

LOCAL WRITE addr 0x80000238

LOCAL WRITE addr 0x8000023C

LOCAL WRITE addr 0x80000240

LOCAL WRITE addr 0x80000244

LOCAL WRITE addr 0x80000248

- Set Path

LOCAL WRITE addr 0x8000000C

// Configuring target bus

- Open configuration request channel

- Set addr decoder

LOCAL WRITE addr 0x80000D08

LOCAL WRITE addr 0x80000C08

confdone

0 40404040 0 0

Configuring NoC2...

init aethereal noc 2

- Set Credits on LOCAL

LOCAL WRITE addr 0x76000100

- Set Slots on LOCAL

LOCAL WRITE addr 0x76000200

--- NI 0

-Open config request channel

LOCAL WRITE addr 0x76000000

- Set Credits on REMOTE

REMOTE WRITE addr 0x77004100

- Set Slots on REMOTE

REMOTE WRITE addr 0x77004200

- Configuring the path

REMOTE WRITE addr 0x77004000

--- NI 1

-Open config request channel

LOCAL READ addr 0xF6000100

data = 0

LOCAL WRITE addr 0x76000000

- Set Credits on REMOTE

REMOTE WRITE addr 0x77004100

- Set Slots on REMOTE

REMOTE WRITE addr 0x77004200
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- Configuring the path

REMOTE WRITE addr 0x77004000

CFG INIT 2 COMPLETE

//Configuring Application

// From slave to master NI

- Open configuration request channel

- Set Credits

LOCAL WRITE addr 0x76000104

- Set Slots

LOCAL WRITE addr 0x76000208

- Set Path

LOCAL WRITE addr 0x76000004

// From master to slave NI

- Open configuration request channel

- Set Credits

REMOTE WRITE addr 0x77004104

- Set Slots

REMOTE WRITE addr 0x77004204

REMOTE WRITE addr 0x77004208

- Set Path

REMOTE WRITE addr 0x77004004

//Configuring Application

// From slave to master NI

- Open configuration request channel

- Set Credits

LOCAL WRITE addr 0x76000108

- Set Path

LOCAL WRITE addr 0x76000008

// From master to slave NI

- Open configuration request channel

- Set Credits

REMOTE WRITE addr 0x77004108

- Set Path

REMOTE WRITE addr 0x77004008

//Configuring Application

// From slave to master NI

- Open configuration request channel

LOCAL READ addr 0xF6000100

data = 0

LOCAL WRITE addr 0x76000000

- Set Credits

REMOTE WRITE addr 0x77004104

- Set Slots

REMOTE WRITE addr 0x7700420C
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- Set Path

REMOTE WRITE addr 0x77004004

// From master to slave NI

- Open configuration request channel

LOCAL READ addr 0xF6000100

data = 0

LOCAL WRITE addr 0x76000000

- Set Credits

REMOTE WRITE addr 0x7700410C

- Set Slots

REMOTE WRITE addr 0x7700420C

- Set Path

REMOTE WRITE addr 0x7700400C

//Configuring Application

// From slave to master NI

- Open configuration request channel

LOCAL READ addr 0xF6000100

data = 0

LOCAL WRITE addr 0x76000000

- Set Credits

REMOTE WRITE addr 0x77004108

- Set Path

REMOTE WRITE addr 0x77004008

// From master to slave NI

- Open configuration request channel

LOCAL READ addr 0xF6000100

data = 0

LOCAL WRITE addr 0x76000000

- Set Credits

REMOTE WRITE addr 0x77004110

- Set Path

REMOTE WRITE addr 0x77004010

//Configuring Application

// From slave to master NI

- Open configuration request channel

- Set Credits

REMOTE WRITE addr 0x77004114

- Set Slots

REMOTE WRITE addr 0x77004210

- Set Path

REMOTE WRITE addr 0x77004014

// From master to slave NI

- Open configuration request channel

LOCAL READ addr 0xF6000100

data = 0

LOCAL WRITE addr 0x76000000
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- Set Credits

REMOTE WRITE addr 0x7700410C

- Set Slots

REMOTE WRITE addr 0x77004204

- Set Path

REMOTE WRITE addr 0x7700400C

//Configuring Application

// From slave to master NI

- Open configuration request channel

LOCAL READ addr 0xF6000100

data = 0

LOCAL WRITE addr 0x76000000

- Set Credits

REMOTE WRITE addr 0x77004118

- Set Path

REMOTE WRITE addr 0x77004018

// From master to slave NI

- Open configuration request channel

LOCAL READ addr 0xF6000100

data = 0

LOCAL WRITE addr 0x76000000

- Set Credits

REMOTE WRITE addr 0x77004110

- Set Path

REMOTE WRITE addr 0x77004010

confdone
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