
Delft Center for Systems and Control

Repositioning in shared mobility
systems
Combining model predictive control and approximate dy-
namic programming.

M.G. Vinks

M
as

te
ro

fS
cie

nc
e

Th
es

is

Repositioning in shared mobility
systems

Combining model predictive control and approximate dynamic
programming.

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

M.G. Vinks

August 17, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Repositioning in shared mobility systems

by
M.G. Vinks

in partial fulfillment of the requirements for the degree of
Master of Science Systems and Control

Dated: August 17, 2022

Supervisor(s):
Dr.ir. A. Dabiri Supervisor

Dr.ir. F. Schulte Second Super

Reader(s):
Dr.ir. A. Dabiri. First Reader

Dr.ir. F. Schult Reader-two

Dr.ir. B.Beirigo. Th. Reader-three

Abstract

The global market for personal mobility has transformed over the last decade. Traditional taxi
services have to compete with the emergence of ride-hailing services such as Uber and Lyft.
Rapid developments in available algorithms and real-time inter-connectivity of travellers and
vehicles offer mobility-on-demand (MOD) services new possibilities to maximise the efficiency
of the ride-hailing process. It is well established that rebalancing can enable the true potential
of a ride-hailing fleet. In this context, rebalancing is defined as the redistribution of idle
vehicles over the service area of a ride-hailing operator.

In the search for the optimal rebalancing strategy, model predictive control (MPC) and
approximate dynamic programming (ADP) methodologies are active fields of research. How-
ever, the computational burden of MPC limits the length of the predictive horizon in large
MOD applications. This thesis proposes a novel algorithm that combines ADP and MPC.
More specifically, we integrated a value function into the MPC framework as a terminal cost.
We shorten the horizon of MPC and propose to use the value function as a long-term planner.

For the terminal cost, we continue research into piece-wise linear value function approxima-
tion. We implement a novel multi-period approximation of the value function, where we
use the maximum repositioning length as the horizon. In our case study, the value-based
repositioning strategy offers comparable service quality to conventional MPC at 5.2% of the
computational burden.

The hybrid ADP-MPC algorithm offers flexible horizon partitions between the multi-period
value function and MPC. It addresses the shortcomings of both ADP and MPC algorithms
in repositioning problems. At peak performance, it offers an increase of 4.5% in service rate
and a decrease of 5.2% in the average waiting time over conventional MPC, at roughly half
the computational burden.

Keywords: Ride-hailing, Mobility on demand, Model predictive control, Approximate Dy-
namic programming

Master of Science Thesis M.G. Vinks

ii

M.G. Vinks Master of Science Thesis

Table of Contents

Acknowledgements v

1 Introduction 1
1-1 Problem statement . 2
1-2 Research questions . 3
1-3 Thesis outline . 4

2 On-demand transportation 5
2-1 Shared mobility . 5

2-1-1 Ride-hailing . 5
2-1-2 Micro-mobility . 7
2-1-3 Shared mobility problems . 7

2-2 Model description and problem formulation . 8
2-2-1 Routing network . 9
2-2-2 Optimal rebalancing . 9
2-2-3 Multi period travel times . 13

2-3 Summary . 15

3 Approximate dynamic programming for MOD 17
3-1 Introduction to ADP . 17
3-2 Approximate value iteration . 19

3-2-1 Gradients and value functions . 20
3-2-2 Linear approximations . 21
3-2-3 Piecewise-linear approximations . 22
3-2-4 Artificial Duals . 25

3-3 A multi-period value function . 26
3-4 Summary . 28

Master of Science Thesis M.G. Vinks

iv Table of Contents

4 Learning-based MPC 31
4-1 Model predictive control . 31

4-1-1 MPC in MOD . 32
4-2 Combining ADP and MPC . 34
4-3 Summary . 35

5 Case study 37
5-1 Set up . 37
5-2 Case study A: Linear and piece-wise linear approximations 40

5-2-1 Linear and piece-wise linear approximations 40
5-2-2 Parameters of piecewise-linear approximate value iteration (PLAVI) . . . 42
5-2-3 Verification . 48
5-2-4 Summary . 49

5-3 Case study B: Combining the horizon through value functions 50
5-3-1 Conclusions . 52

5-4 Case study C: Manhattan network . 54
5-5 Conclusions . 57

6 Conclusion and discussion 61
6-1 Conclusions . 61
6-2 Future work . 64

A Supportive Figures 67
A-1 Fleet Configuration . 67
A-2 Case study A . 68

B Supportive Tables 69
B-1 OD matrix . 69

Bibliography 71

Glossary 77
List of Acronyms . 77
List of Symbols . 77

M.G. Vinks Master of Science Thesis

Acknowledgements

When I started working on my thesis in November of 2020, I was oblivious to the challenges
I still to come. Over this past year and half, I have learned that overcoming habits is one the
key challenges of life. Luckily, I had proper guidance along the way. I would like to thank all
my supervisors, A. Dabiri, F. Schulte and B. Beirigo for their assistance and guidance during
this thesis.

Delft, University of Technology M.G. Vinks
August 17, 2022

Master of Science Thesis M.G. Vinks

vi Acknowledgements

M.G. Vinks Master of Science Thesis

“In the future, car ownership will be the exception, not the rule. Shared mobility
will give the streets to the people and the personal automobile will be remembered
as the product of capitalistic consumerism.”
— Ties Vinks

Chapter 1

Introduction

Urbanisation of the world over the last century has put tremendous pressure on our trans-
portation networks. Existing transportation infrastructure often operates at or near full
capacity, whilst demand keeps increasing [1]. Congestion and low air quality have become a
characteristic of fast-growing cities [2]. Spatial and economic incentives often prohibited the
expansion of car infrastructure in city centres. Alternative modes of travel, such as metro and
tram, deal with overcrowding during peak hours. Furthermore, public transport is subject
to the last mile problem, which refers to the availability of transportation services from the
nearest public transport hub to a home or office. These issues trouble the access to mobility
of citizens. Innovations in the last decades have led to the emergence of shared mobility ser-
vices as a new type of last-mile transportation. Shared mobility—the shared use of a vehicle,
bicycle, or other mode—is an innovative transportation strategy that enables users to gain
short-term access to transportation modes on an "as-needed" basis [3]. By a shift towards
collaborative use of service through the advancements in location-based services and cloud
technologies, shared mobility-on-demand (MOD) services rise to complement the existing
services [4].

MOD is a transportation concept led by innovation. It capitalises on the data exchange
among travellers and other parts of the transportation infrastructure, such as train and bus
networks, to generate integrated and multi-modal options for travelling. Furthermore, it
encourages inter-connectivity between transportation modes and promotes choice in personal
mobility. According to MOD, transportation is a commodity where each mode of travel has
economic values that are distinguishable in terms of cost, journey time, wait time, the number
of connections, convenience, and other attributes [3]. Through MOD, travellers have access
to a network of safe, affordable and reliable transport options.

In the search for efficient last-mile transportation, ridesharing has become an ambiguous term.
According to Furuhata et al.[5]: "Ridesharing refers to a mode of transportation in which
individual travellers share a vehicle for a trip and split travel costs". However, ridesharing
is frequently used as a collective term for all types of on-demand transportation companies
[6, 7, 8, 9]. In this work, we share the second perspective and use ride-pooling for the mode

Master of Science Thesis M.G. Vinks

2 Introduction

of transportation where a single vehicle is shared among multiple individual travellers and
ridesharing as the term for shared mobility services.
In the ridesharing market, ride-hailing is currently the dominant service type [10]. Traditional
ride-hailing operators provide door-to-door transport in an urban environment. Customers
order a car from a mobile application, where after the available driver pool receives the origin
and destination of the ride request. Once a driver accepts the request, the customer receives
the current location of the driver and an estimated pick-up time. The ride-hailing driver picks
up the client and transports him to their destination.
Ride-hailing companies, such as Uber, operate a network of independent drivers that provide
transportation to customers in privately owned vehicles. Traditionally, ride-hailing platforms
just offered a constant influx of trips in exchange for a share of the ride fare. The focus was to
provide a convenient alternative mode for last mile trips, while generating maximum revenue
for the operator. However, MOD services focus on a traveller centric ride-hailing service,
where the goal is to provide the highest quality journey from a travellers perspective. In
ride-hailing, quality can be expressed as journey time. In the achievement of minimal journey
time in ride-hailing, fleet management plays an integral role.
In this thesis, we consider ridesharing modes from a travellers perspective. The appeal of a
mode is measured primarily in terms of availability and price [11]. The former is the focal point
of active fleet management strategies. The availability is expressed in terms of total journey
time, divided into waiting and in-vehicle time. The average waiting time is a metric of the
balance between the ridesharing supply and demand. Fleet management strategies relocate
idle vehicles to provide maximum availability for potential customers. In ridesharing, this type
of predictive positioning problem is known as a rebalancing problem. Proper rebalancing can
provide additional revenue for ridesharing operators and drivers. Ultimately, it optimises the
waiting time of customers.

1-1 Problem statement

A key operational challenge in shared mobility is the problem of asymmetric demand. In
morning rush hours, most demand originates from residential areas to business districts.
Without proper fleet management, asymmetric demand inevitably depletes some areas of
vehicles while in other areas vehicles accumulate. In this work, we aim to improve the data
and computational efficiency of fleet management in ridesharing.
Ridesharing fleet management deals with the allocation of resources, i.e., vehicles, to tasks,
i.e., ride-request. In this type of resource allocation problem, we seek to find the optimal
allocation of a fixed amount of resources to activities to minimise the cost incurred by the
allocation [12]. In a rebalancing problem, the goal is to allocate resources in real-time in
response to stochastic demand. For idle vehicles, we find optimal locations that minimise the
response time to future demand. A rebalancing strategy finds a minimal cost routing solution
for idle drivers and ensures optimal availability of the ridesharing service. Devising efficient
operating strategies for ride-hailing fleet management is an active area of research.
Model predictive control (MPC) is a well-established model-based control method that first
gained popularity in the control of industrial chemical processes at the end of the last century
[13]. MPC combines three main elements: a predictive model, feedback correction, and

M.G. Vinks Master of Science Thesis

1-2 Research questions 3

optimisation over a receding horizon. The framework is very flexible in design and within
MOD research MPC optimises the availability of the fleet within a prediction horizon [8, 9,
14, 15, 16]. It produces a fleet management strategy by repeatedly solving an optimisation
problem using predictions of future demand and the movement of vehicles. The complexity
of the optimisation problem is mainly dependent on model complexity and size. As most
ride-hailing companies operate regional services, the MOD models that capture the door-to-
door dynamics are extensive and highly complex [17]. Therefore, the computational burden
of successful use of MPC in repositioning problems is high.

In contrast to predictive fleet management, rebalancing strategies can be learned iteratively.
Approximate dynamic programming (ADP) uses a value function, an efficient method to
determine the value of being in a state, to solve sequential decision-making problems. A
fundamental property of value functions is that they satisfy recursive relationships. During
the iteratively learning process, the value function is continually updated and exploited.
The process is terminated once the value function no longer changes. This optimal value
function is then used to efficiently solve sequential decision-making problems. Due to the
complexity of the fleet management problem, an exact version of the value function cannot
be computed but has to be approximated. In fleet management, ADP methodologies are
an active field of research [18, 19, 20]. Due to the iterative approximation of the value
function, large-scale problems suffer from what is known as the curse of dimensionality [21] .
It refers to the exponential increase in learning computations required as we increase problem
complexity and size. Since the approximation of value function can be done preemptively, a
hybrid predictive and learning strategy can potentially reduce the computational burden of
conventional predictive strategies.

1-2 Research questions

In this work, we explore the benefit of rebalancing strategies for better availability in on-
demand transportation. The main goal is to reduce the computational complexity of MPC
methods by reducing the prediction horizon while maintaining it’s performance. To this
extent, we aim to answer the following main research question:

Can MPC and ADP be combined for computationally efficient rebalancing of
MOD ride-hailing services?

The main challenge of the thesis will be to design a value function approximation (VFA) that
can be implemented within an MPC framework. The following sub-questions will be used to
answer the main research question:

1. Can we capture the dynamics of ride-hailing into a MOD model? We design a MOD
model that closely mimics the real-life interactions of a ride-hailing service. The simula-
tion of door-to-door ride-hailing is essential for the assessment of repositioning strategies.

2. Can we learn a value function for rebalancing operations MOD in networks? ADP
offers a plenty of different VFA methods. We focus on linear and piece-wise linear value
approximation.

Master of Science Thesis M.G. Vinks

4 Introduction

3. Can value function approximation be utilised as a terminal cost within the MPC frame-
work to provide real-time realisable rebalancing of MOD in networks? We design a
hybrid framework for optimal control of MOD systems. A value function provides the
value of states beyond the horizon of the MPC.

1-3 Thesis outline

The outline of this work is as follows. Chapter 2 offers an introduction to ride-hailing and
introduces a general MOD model. Chapter 3 shortly recaps the background knowledge for
ADP and presents two value-based learning algorithms. Chapter 4 introduces model predic-
tive control and presents a novel hybrid learning and planning repositioning algorithm. The
proposed strategies of Chapter 3 and Chapter 4 are evaluated in the case studies in Chapter 5.
Finally, the main conclusions are discussed in Chapter 6.

M.G. Vinks Master of Science Thesis

Chapter 2

On-demand transportation

This chapter gives a general introduction in on-demand transportation. We offer insight into
the process flow of a typical ride-hailing service and shortly introduce the general rebalancing
problem. Lastly, we introduce a ride-hailing mod! (mod!) model.

2-1 Shared mobility

The rise of shared mobility services in the recent years have made the last mile trip more con-
venient. Fig. 2-1 showcases the evolution of on-demand transportation enabled by innovations
in location-based services and connectivity.

Currently, ride-hailing services such as Lyft and Uber complement the public transport ser-
vices. Ride-hailing companies enable travellers to match up with independent drivers at short
notice. The popularity of Uber and Lyft show the appeal of ride-hailing apps. Additionally,
(electric) micro-mobility services have risen as a new form of last-mile trip transportation.
This section gives a short introduction to ride-hailing and micro-mobility.

2-1-1 Ride-hailing

Ride-hailing is a modern taxi service where you hail a ride from a mobile application rather
than a street corner. A typical ride-hailing application integrates three core modules: pricing,
matching and repositioning. Fig. 2-2 highlights these decision modules in the ride-hailing
process. Supplementary routing modules find the shortest travel time between an origin and
a destination. They provide turn-by-turn guidance to the drivers on the road network. The
pricing module computes the costs of transportation. First, each ride request is priced and
represented to the customer. Upon acceptance by the customer, the request is added to the
open order list. Afterwhich, the matching module assigns orders to drivers. Each order is
matched to a driver from the idle driver pool. When a match is found, the driver picks up the
passenger and fulfils the inquiry. Upon drop-off, the driver receives a fare and is reintroduced

Master of Science Thesis M.G. Vinks

6 On-demand transportation

Figure 2-1: The evolution of on-demand transportation in three phases(inspired by [22]). (a)
On-demand 1.0: A reflection of a market dominated by dail-a-ride and traditional taxi services.
(b) On-demand 2.0: Status quo, the rise of shared mobility services (c) On-demand 3.0: Prospect
of a future with fully autonomous mobility services.

into the available driver pool. For the customer, the ridesharing process has ended. The
driver can remain idle at the drop off location until a new ride request is presented or he can
reposition. The repositioning module shows idle drivers promising locations in the prospect
of future ride inquiries.

Figure 2-2: The process flow of a ridesharing service [6]. The coloured boxes represent different
decision modules. In this work, we evaluate repositioning strategy by simulation of a ride-hailing
service.

Ride-hailing drivers only accept one ride request at a time. In ride-pooling mode, a driver can
accept multiple requests at a time. To enable ride-pooling, the process flow of ride-hailing
service has to be reworked and extended, which is beyond the scope of this work. Ride-pooling
is more related to dynamic pickup and delivery problems, where spatiotemporally distributed
demand must be picked up in and delivered in specific time windows [23, 24]. In literature,
ridesharing can refer to both ride-pooling and ride-hailing. To avoid ambiguity, in this work
we consider a rebalancing problem to be of the ride-hailing type.

M.G. Vinks Master of Science Thesis

2-1 Shared mobility 7

2-1-2 Micro-mobility

Vehicle rental services have been around for decades, however, advancements in location-
based services have lifted shared mobility rental schemes to a new level. Classic station-based
ridesharing rental schemes require a customer to return the leased vehicle to a fixed set of
stations. For example, in the city of London the public bicycle scheme, commonly known
as Boris bikes, has been operating for over ten years [25]. The stations are strategically
spread over the city, located near other transport hubs. However, these station-based services
suffered from several flaws that have been tackled by the new micro-mobility services.
Since building and maintaining physical stations is expensive, micro-mobility services operate
a fleet of ridesharing vehicles that freely roam the service area. The type of vehicles ranges
from (electric) mopeds to bicycles and scooters. Location-based services within each vehicle
place restrictions on vehicle parking. At transportation hubs designated areas are reserved
for the parking of micro-mobility vehicles [26].
In micro-mobility, customers drive to their destination by short-time lease of a rental vehicle.
The vehicles can be unlocked through a ridesharing app and are often paid by the minute.
The station-based vehicles had a longer rental time and first have to be returned to the rental
station before another customer could use them [25]. A customer pays in advance for a rental
period, e.g., 24 hours, and has to return it within this given period. However, micro-mobility
vehicles, once parked, are ready to be used by another customer.
From a MOD perspective, micro-mobility services largely draw from the same demand pool
as ride-hailing services. Differences in convenience, e.g. driving yourself versus being driven,
make that the customer bases do not entirely overlap. However, micro-mobility is another
option for efficient last-mile transportation. Thus, the demand pattern of both modes is
comparable. Therefore, reposition of idle vehicles is relevant to micro-mobility. For the
current generation of micro-mobility vehicles, additional personal is required for repositioning
operations. Developments in autonomous routing reduce the need for human interference. As
we move toward autonomous mobility-on-demand (AMOD) services in the near foreseeable
future, ride-hailing and micro-mobility services will merge into a universal on-demand service.

2-1-3 Shared mobility problems

In this section, we give an introduction to the core operational problems in ride-hailing.
We shortly cover pricing and matching problems and then introduce the general rebalancing
problem.
In ride-hailing process, each new request first visits the pricing module, as seen in Fig. 2-2
The customer receives a quota of the estimated trip fare and can choose to either reject or
accept the quota. The trip fare denotes the cost for passengers and the income of the drivers.
Pricing is a macro-level lever to influence the supply and demand of ride-hailing [27, 6]. Both
are sensitive to the price of trips. Pricing problems explore the sensitivity of customers and
drivers to pricing decisions. A prime example of price sensitivity is price surging, increasing
prices in times of higher demand. Dynamic pricing policies respond in real-time to fluctuations
in supply and demand.
The matching of riders and drivers is a bipartite matching problem where both supply and
demand are dynamic [28]. Ridesharing matching falls into the broader class of dynamic

Master of Science Thesis M.G. Vinks

8 On-demand transportation

matching problems for on-demand markets [29]. Challenges in matching problems come from
the uncertainty in travel times, supply-demand (SD) distribution and exit-entrance behaviours
of drivers and passengers. Matching can be done continuously or in batches at timed intervals.
A distinct feature for ridesharing matching is the spatiotemporal nature. Trips times vary
in length and can be influenced by the presence of congestion. Each trip changes the spatial
state of a driver and their eligibility to accept new requests is dependent on their proximity
to the request. Within the scope of ridesharing, rebalancing is a tool to influence the supply
distribution of a matching problem.

In this work, we consider the operators perspective to a fleet rebalancing problem. An operator
needs to construct sets of routes for idle ridesharing vehicles. The proposed routes aim to
improve the overall availability of ridesharing vehicles over a given service area. The system-
wide rebalancing problem, also known as fleet management, vehicle allocation/repositioning
or driver allocation problem in literature, is, in essence, a resource allocation problem. This
problem seeks to find an optimal allocation of a fixed amount of resources to activities so as
to minimise the cost incurred by the allocation [12]. We differentiate a rebalancing problem
in that repositioning is done in real-time to deal with non-stationary global SD distributions.

The aim is to proactively dispatch idle vehicles to new locations to better align the vehicles
and customers distribution. Alignment of vehicle and customer distribution is beneficial for all
parties in ridesharing services. The operator’s primary objectives are to maximise revenue and
offer the best customer experience. In shared mobility services, only occupied vehicles generate
revenue. Ride-hailing drivers revenue is fare-based and thus a higher occupancy rate will
increase his overall income. A driver might incur additional costs for moving empty, however,
the additional revenue generated from potential customers will compensate for these costs.
To maximise revenue, both the operator and driver want to increase the overall occupancy
rate.

The occupancy rate is improved through better availability of the service. From a MOD
perspective, customers opt for the most efficient mode of transport. In general, travellers will
opt for the ridesharing mode with the shortest queue time. The queue time, also known as
waiting time, denotes the time spent waiting between transportation modes. The goal is to
optimise the average waiting time for all potential customers.

From the view of spatio-temporal movement, order matching can be viewed as a special case
of vehicle repositioning trough trip fulfilment [30]. From this perspective, a single problem can
solve the matching and rebalancing tasks simultaneously. In this case, the challenges of the
matching problem are inherited. We deal with uncertainty in travel times, SD distributions
and exit-entrance behaviour of ride-hailing drivers and passengers. The general MOD ride-
hailing problem consists of the joint optimisation of pricing, matching and vehicle rebalancing.
In this work, we emphasise the rebalancing aspect of the ride-hailing problem.

2-2 Model description and problem formulation

In this section, we propose a fluid-based network optimisation problem for vehicle reposition-
ing and demand matching. We formulate the vehicle repositioning and demand matching
optimisation problem as a mixed-integer linear program (MILP) We present our basic model
as a deterministic Markov decision process, which is applicable to many other types of resource

M.G. Vinks Master of Science Thesis

2-2 Model description and problem formulation 9

allocation applications [20, 31]. For national convenience and clarity, our initial formulation
assumes that all decisions take a single time period to complete. In Section 2-2-3, we dismiss
this assumption and present its implications on our solution methodology.

2-2-1 Routing network

For the spatial-temporal representation of the service area of a shared mobility service, we
follow the language of dynamic resource management [19, 20, 32]. In this framework, vehicles
are resources and trips are loaded movements. We want to service trip requests over a
maximum period of time T for a given service area:

T = Set of time periods over which we want to full-fill rideh-hailing demand, {0, 1, . . . , T}.

We update the model at discrete intervals ∆t. Each vehicle is described by a single attribute
vector a, which solely captures the current location of the car:

a =
(

a1
)

=
(

location
)

A = Set of all possible car attribute vector a.

The location a1 corresponds to a node in the street network graph G(N , E) where N is
the set of nodes (locations) and E is a set of directed edges (streets). Modern ride-hailing
applications are connected via the cellular network which provide precise GPS coordinates of
drivers and passengers in real-time. We work with a high-resolution street network, obtained
from OpenStreetMap [33] using OSMnx [34]. As in Beirigo et al. [17], we discretize real-
world street coordinates into a network of nodes, in which nodes cannot be further than
thirty seconds away from another, assuming an average speed of 20km/h. The real-world
street coordinates are replaced by the closest node in the street network. In this fine grain
street network, we simulate door-to-door ride-hailing trips.
We similarly describe each trip with a three attributes vector b:

b =

 b1
b2
b3

 =

 no

nd

w

 =

 origin
destination

delay

B = Set of trip attribute vectors b.

Where b1 and b2 describe the origin and destination nodes of a trip respectively. Each trip
request has a built-in delay attribute w. Upon arrival of a ride-request, we initialise w = 0.
Individual trip orders arrive in continuous time, the trips arriving between t − 1 and t are
therefore collected and serviced at time step t. Trips that cannot be serviced at the current
time step t are backlogged and added to the next trip batch at time t + 1, with their delay b3
incremented. Upon reaching their delay threshold wmax, a trip is rejected.

2-2-2 Optimal rebalancing

In this work, we simultaneously consider the trip matching and vehicle repositioning problems.
However, vehicle move on the street-level network, while matching and repositioning decisions
are made based on an aggregate network.

Master of Science Thesis M.G. Vinks

10 On-demand transportation

Aggregate network
To define the aggregate network, the service area is commonly split in to zones either using
a grid of geometric shapes [35, 19], district borders (see Fig. 2-3) [36, 37] or a data driven-
approach, based on the origin and destination of trips [38, 15, 8]. To identify the balance
between ride-hailing supply and demand, we simplify the street network graph into a network
of virtual stations I. We aggregate the demand and supply of each zone at a virtual station
i ∈ I, as in Fig. 2-3(c). We represented each zone with a node i and construct an aggregate
network for the demand matching and repositioning problems.

Figure 2-3: Steps in network aggregation. a) Locate all current trip requests and vehicles. b)
Divide the service area in zones. c) Aggregate all demand and vehicle at the virtual station for
each zone and identify the inter-zonal demand

In this work, we employ regional centres that serve as virtual stations, adapted from Beirigo
et al. [17]. The network of regional centres is the result of a variant of the facility location
problem as proposed by Toregas et al. [39]. The goal of this problem is to determine the
minimum set of facilities in a street network graph G(N , E) that can be reached by all others
within a set time limit of s time units.
System State
We gather relevant ride-hailing information in our state vector St, which we define as:

St = (Rt, Dt) = The current state of the system at time t.

The state vector details the number of vehicles Rt and the current ride-hailing demand Dt

present within each zone at time t. For each node i, we define a resource vector Rit as:

Rit = The number of resources with at location i ∈ I at time t ∈ T .
Rt = The resource state vector at time t.

= (Rit)i∈I

and a demand vector D as:
Dijt = Number of trips from origin i ∈ I to destination j ∈ I at time period t ∈ T

Dt = The demand state vector at time t.

= (Dijt)i,j∈I

M.G. Vinks Master of Science Thesis

2-2 Model description and problem formulation 11

Decisions
Given the current state St of the network, we define the different movements within the
network. The movements are decision variables of the problem. We formulate the following
types of decision variables:

xp
ijt = Number of vehicles moving loaded from location i ∈ I

to j ∈ I at time period t ∈ T .
xr

ijt = Number of vehicles moving empty from location i ∈ I
to j ∈ I at time period t ∈ T .

xd
ijt = Number of trip requests with origin i ∈ I and destination to j ∈ I

not serviced at time period t ∈ T .

In this formulation, staying in place is seen as an empty movement xr with i = j. Our decision
variables are limited by the following constraints:∑

(xp
ijt + xd

ijt) = Dijt ∀i , j ∈ I , ∀t ∈ T (2-1a)∑
j∈I

(
xp

ijt + xr
ijt

)
= Rit ∀i , ∈ I , ∀t ∈ T (2-1b)

xr
ijt , xp

ijt , xd
ijt ∈ Z+ ∀i , j ∈ I , ∀t ∈ T (2-1c)

where Eq. (2-1a) denotes the conservation of passengers, Eq. (2-1b) denotes the conservation
of vehicles and Eq. (2-1c) ensures integer movements.
Transition Function
In our network, we describe how the position of our vehicles changes over the simulation
period. Since each decision only takes a single period ∆t, the resource state at the next time
period can be described for a node i as:

Rj,t+1 =
∑
i∈I

(xr
ijt + xp

ijt) ∀j ∈ I, ∀t ∈ T (2-2)

To compute the new demand vector Dt+1, we first backlog all trips that have not been serviced
at the current time step. For each route between nodes i and j, we first increment the delay
of each individual trip b in xd

ijt. We consequently remove the trips where w > wmax and
denote the residual demand as dij,t+1.
We assume the arrival of new trips to be exogenous information. This is new information that
arrives from an exogenous source between t−1 and t. We collect new demand for ride-hailing
arriving between time t and t + 1 into D̂t+1. For each origin destination pair, we describe the
new demand vector Dij,t+1 at time t + 1 as:

Dij,t+1 = dij,t+1 + D̂ij,t+1 ∀i ∈ I j ∈ I , ∀t ∈ T (2-3)

Cost function
In this work, all decisions have an associated contribution or cost. For clarity, we include the
travel time τij between node i and j, which we assume is equal to ∆t for now. For the trip
decisions, we can denotes the contribution as:

cp
ijt = pbase + (ptime − ctime) · τij − cdelay · wd (2-4)

Master of Science Thesis M.G. Vinks

12 On-demand transportation

Where ctime represents the operational cost of a vehicle. pbase and ptime denote the base and
time depended fare respectively. In this work, we do not focus on the effect of pricing schemes
on service quality. We therefore adopt the pricing schemes of [18], where the base fare and
time depended fare are derived from TLC standardised metered fare [40]. We penalise for
the current delay w with the cost parameter cdelay. We acknowledge that this formulation
depreciates delayed trips, however we cover this during the decision execution, Section 2-2-3.

For the repositioning tasks, we formulate the cost as follows:

cr
ijt =

{
cstay, i = j

ctime · τij otherwise
(2-5)

where the ctime represents the operational cost of a vehicle and τij the travel time between
node i and j. cstay represent the operational cost of staying idle i.e., parking cost

For the backlogged trips, we denote the cost as follow:

cd
ijt =

{
creject, w = wmax

cdelay · w otherwise
(2-6)

where creject denotes the cost of rejecting a trip.

We summarise the contribution of all decisions at time t in our general contribution as:

C(xt) =
∑

i,j∈I
(cp

ijtx
p
ijt − cr

ijtx
r
ijt − cd

ijtx
d
ijt) (2-7)

where the first term denotes the gain from servicing trips, the second the cost resulting from
the repositioning operations and the third a penalty for backlogging passengers.

For any initial state S0 and a known demand pattern D, we can formulate the deterministic
objective function F as:

F (S0) = max
x

∑
t∈T

C(xt) =
∑
t∈T

∑
i,j∈I

(cp
ijtx

p
ijt − cr

ijtx
r
ijt − cd

ijtx
d
ijt) (2-8)

Fleet configuration
MOD promotes new businesses models that enhance the traveller experience [41]. Recent ad-
vancements in autonomous routing have sparked interest in the potential of fully autonomous
ride-hailing services. As such, AMOD systems could rise as the next big step in personal
mobility.

In this work, we opt for the employment of fully autonomous vehicles. Whilst, current
autonomous vehicles still have limited capability when it comes to handling complex road
situations, in mobility on demand literature it is commonly assumed that fully autonomous
vehicles are available [42, 6]. The assumption merges the ridesharing drivers and operators
into one entity, removing one human element from the system. It removes uncertainty in the
behaviour of ridesharing drivers. To elaborate, in ridesharing services the revenue of drivers
is generally fare-based. Each driver will want to maximise their revenue. Competition among
drivers will make drivers act selfishly. Human selfish drivers can choose to decline short trips
or ignore rebalancing requests. Furthermore, human drivers can choose to enter and exit the

M.G. Vinks Master of Science Thesis

2-2 Model description and problem formulation 13

system at any time. Implementing the entrance and exit behaviour of drivers is complex and
introduces stochasticity to the fleet size [32]. Autonomous vehicles are fully compliant and
will always follow the instructions given, removing internal competition.
We consider a fixed fleet size |R|. For any given demand scenario, the optimal fleet-size can
be determined by the optimal rebalancing strategy of Iglesias et al. [8]. This formulation
introduces the starting positioning and size of the fleet as a decision variable R0 at the first
time step. For a known deterministic demand pattern DT , we formulate the following optimal
rebalancing optimisation problem:

max
x,R0

∑
t∈T

∑
i,j∈I

(cp
ijtx

p
ijt − cr

ijtx
r
ijt) (2-9a)

subject to
Rj,t+1 =

∑
i∈I

(xr
ijt + xp

ijt) ∀j ∈ I, ∀t ∈ T (2-9b)

∑
xp

ijt = Dijt ∀i , j ∈ I , ∀t ∈ T (2-9c)
Rit = 0 , ∀i ∈ I , ∀t ∈ T , t > 1 (2-9d)

xr
ijt , xp

ijt , Ri0 ∈ Z+ ∀i , j ∈ I , ∀t ∈ T , (2-9e)

Where Eq. (2-9b) denote the dynamics of the fleet as in Eq. (2-2), Eq. (2-9c) ensures trips are
serviced instantly and Eq. (2-9e) ensures all variables are integers. Eq. (2-9d) ensures that
cars only get injected at the first timestep.
The effects off different fleet-size configurations will be further discussed in Chapter 5

2-2-3 Multi period travel times

In this section, we introduce multi-period travel times to our model. We elaborate on the
changes in vehicle dynamics and extend the model to multi-period travel times. In reality,
factors such as congestion, weather and time of day influence the travel time between nodes.
While these disturbances can be account in problem formulation (see [43, 44]), deterministic
formulations are more conventional in MOD literature [8, 9, 42]. In our model, we assume
that the flow between two nodes i and j is deterministic and therefore has a fixed length:

τ s
ij = Travel time from location i ∈ I to j ∈ I in seconds

τij = Travel time from location i ∈ I to j ∈ I in update intervals ∆t

The travel time τ s
ij is derived from the shortest path between the nodes i and j in the street

level graph G(N , E) with the assumed average speed of 20 km/h. We round up the travel
time to the closest discrete time interval to get τij . In the conversion of the travel time from
seconds to time steps, we account for worst-case scenarios.
To define the system dynamics of the network, we extend the resource vector Rt to account
for vehicles inbound to node i:

Rit′t = Number of vehicles inbound to location i ∈ I at time period t ∈ T
and will arrive at location i ∈ I at time period t′ ∈ T

Master of Science Thesis M.G. Vinks

14 On-demand transportation

We define τmax as the maximum travel time within the model. We can consequently describe
the dynamics of the network as:

Rjt′,t+1 =
∑
i∈I

(
1τij

(
t′ − t

)
xr

ijt + 1τij

(
t′ − t

)
xp

ijt

)
+ Rjt′t j ∈ I , t′ > t (2-10)

where we use

1y(x) =
{

1 if x = y

0 otherwise
(2-11)

The decisions in ride-hailing are integers and can take multiple periods to complete. In
most repositioning problems, rebalancing operations are expected to only last a single period
of time, i.e., at each time interval all vehicles are either servicing a customer or idle [37,
36, 19]. The single period assumption imposes a strict constraint on the granularity of the
network. Furthermore, it is computationally expensive to find the optimal decision for all
idle vehicles at every time interval. The lower the resolution of the underlying map, the fewer
locations are available, and the more multi-period travel times can be expected between
location pairs. Multi-period travel times can reduce the computational complexity of the
problem by reducing the number of optimisation variables and states. We therefore set list a
set of specific assumptions and rules within the next section for executing decisions.

Decision execution

Once we have found all decisions for the aggregate network, we match each decision to a
vehicle on the street network. Since multiple vehicles and trips might be in the same region,
we use priority rules for matching decisions to vehicles. We first cover the trip decisions then
the repositioning and consider the idle decisions last.

To match vehicles and trip decisions, we use the following routine. For each virtual station
i, we first rank the trip requests in descending order based on the current delay w. We find
the vehicle closed to the first request and assign it to service this request. The vehicle drives
to the pick-up location and transports the customer to their destination. We remove the trip
request and vehicle from the available pool and repeat these steps until all trip decisions are
covered.

Next, we consider the repositioning tasks. While repositioning, vehicles are not available for
new decisions. Hence, we keep the repositioning tasks as short as possible.

Repositioning follows a similar logic to trip matching. We denote the positions of the remain-
ing vehicles in their regional centre i. Simultaneously, we consider all the street-level nodes
of the regional centre, j. We find the shortest path between the current vehicle locations and
a node within the regional centre j. We assign the repositioning task to the vehicle with the
shortest travel time from centre i to centre j. We repeat this routine until all repositioning
tasks are assigned to a vehicle.

The execution of decisions is prone to induce errors between the street-level network and the
regional centre network. First, the aggregate network does not account for the time between
assignment and pick-up. In the aggregate network, trips get picked up instantly and the

M.G. Vinks Master of Science Thesis

2-3 Summary 15

travel time between centre i and j is fixed. Secondly, the trip destination node within j can
be closer to or further than the regional centre node j. Lastly, repositioning tasks are kept
as short as possible by moving to the closed node within the centre j.

The above-mentioned points all contribute to cars approximately finishing a task in the travel
time between i and j. Since the travel time between nodes is deterministic on the street-level
network, we can compute the accurate arrival information. We correct for errors between the
street-level network and aggregate network. At the next time step, the aggregate problem is
solved with updated arrival times.

2-3 Summary

This thesis focuses on the repositioning of shared mobility systems. The goal is to minimise
the delay through combined matching and repositioning of a MOD fleet. In the near future,
AMOD shared mobility services will provide door-to-door service to their customers.

To simulate the effect of different algorithmic rebalancing strategies in terms of quality of
service, we present a deterministic AMOD model where all trips and actions have a static
price and length. For vehicle routing, we employ a street level network based on real-world
physical infrastructure. However, at street level, the demand matching and repositioning
problems will be too computationally expensive to solve. Furthermore, repositioning in single
increments on street level is tremendously inefficient. We therefore solve the combined demand
matching and repositioning problems on an aggregate level. The aggregate model reduces the
amount of optimisation variables of the problem. We account for errors between the aggregate
model and street-level network upon execution decisions.

Master of Science Thesis M.G. Vinks

16 On-demand transportation

M.G. Vinks Master of Science Thesis

Chapter 3

Approximate dynamic programming
for MOD

Over the past decades, ADP has become popular as methodology to solve challenging sequen-
tial decision-making problems. These methods can learn innovative strategies by iteratively
solving sequential decision-making problems. The potential of ADP spans many domains
such as robotics [45], self-driving cars [46], games [47] and many more. In this chapter, we
elaborate on the basics of ADP. We introduce the ADP strategy known as approximate value
iteration. Where after, we present two methods to approximate the value function, based on
linear and piecewise-linear value functions.

3-1 Introduction to ADP

One of the cornerstones of ADP is to store the merit of past experiences into a value function.
This value function is included in the decision-making process. For each state visited, we
store the objective, i.e., Eq. (2-8), as the value associated with that state. We can write the
decision making problem in terms of a recursion that relates the value of being in a particular
state at the current time to the value of the states that we can visit at the next point in time.
For a deterministic resource allocation problem, we can write this as:

Vt (St) = max
xt

{Ct (St, xt) + Vt+1 (St+1)} (3-1)

where St+1 is the state we transition to if we take decision xt from St and Ct denotes the
contribution, i.e., Eq. (2-7). Eq. (3-1) is known as the Bellman optimality equation [31], often
referred to as just Bellman’s equation.

Dynamic programming (DP) refers to a collection of algorithms that solve a sequential-
decision making problem using Bellman’s equation. Bellman’s equation is used to solve a
multi-step optimisation problem by recursively solving smaller sub-problems, given that the

Master of Science Thesis M.G. Vinks

18 Approximate dynamic programming for MOD

problem adheres to the Markov property [48]. This property asserts that future states only
depend on the present state. Thus, the next state only depends on the current state and
action. A finite Markov decision process (MDP) is a sequential decision making-process re-
stricted to a set of finite states, rewards and actions. At the current stage, DP methods are
restricted to finite MDPs.

In DP, we always follows a policy π, a rule for making decisions. The policy π specifies what
our decision x will be given state s. One of the key steps in DP is how we compute the value
function vπ of an arbitrary policy π:

vπ(s) =
∑

x

π(x | s)

C (s, x) + γ
∑
s′∈S

P
(
s′|(s, x

)
vπ(s′)

 ∀s ∈ S (3-2)

where π(x|s) is the probability of taking action x in state s under policy π, P (s′ | st, xt)
denotes the one-step transition probability matrix that st+1 = s′. s′ and γ denote the future
state and discount factor respectively. This step is known as policy evaluation. We can use
Eq. (3-2) to iteratively compute the values of states associated with a policy π. In DP, we
are interested in the optimal policy π∗, the policy that returns the optimal value function v∗.
To find this optimal policy, we use our knowledge of the system, the value function, to come
up with a better policy. This strategy, knows as policy improvement, computes an improved
policy given the value function of our current policy:

π′(s) = arg max
x

C (s, x) + γ
∑
s′∈S

P
(
s′|(s, x

)
vπ(s′)

 ∀s ∈ S (3-3)

Policy improvement provides a strictly better policy except when the original policy is already
optimal [49].

Classic DP methods operate in sweeps through the state set, the value of one state is based
on the values of all successor states and their probabilities of occurring. Two basic DP
algorithms, policy iteration and value iteration work by alternating the policy evaluation and
improvement steps. They obtain a sequence of monotonically improving policies and value
functions through policy evaluation and policy improvement.

Value iteration combines policy evaluation and iteration into update operation of the value
function:

vn(s) = max
x

C (s, x) + γ
∑
s′∈S

P
(
s′|(s, x

)
vn−1(s′)

 ∀s ∈ S (3-4)

We start with an initial guess of the value function for all states and iteratively update the
estimates of the value function by sampling the states. We iterate until the value function
converges within some tolerance. The optimal policy can then be extracted from the optimal
value function by a policy improvement step.

In policy iteration, the policy is fixed a number of policy evaluation steps. We then perform
policy improvement to find a new policy. After which the process is repeated. We alternate

M.G. Vinks Master of Science Thesis

3-2 Approximate value iteration 19

between policy evaluation and policy improvement until the optimal policy is found. Policy
iteration typically converges to the optimal policy in fewer iterations than value iteration
[49]. Policy iteration and value iteration can be used to compute the optimal policy for finite
MDPs given complete knowledge of the MDP.

One of the problems within DP, is the need for full knowledge of P. We hardly ever have
complete knowledge of the MDP. In order to find the optimal value function, we would need
to visit all states recursively and update their value functions. For some small problems, this
can be feasible but tedious computation. The number of computations grows exponentially
with regard to the number of states and decisions. This is the widely known “curse of
dimensionality” of dynamic programming and is the most often-cited reason why dynamic
programming cannot be used [21].

3-2 Approximate value iteration

Value iteration is a method for obtaining the optimal value function and consequently the
optimal policy. However, as with most classic DP algorithms, it suffers from the curse of
dimensionality. For large problems, it is not feasible to recursively visit all possible states and
compute their values. Rather than compute the exact value function, we can resort to value
function approximation strategies.

Approximate value iteration is a dynamic programming method that exploits the post-decision
and subsequent pre-decision state [31]. It breaks the transition from one state to the next
into two steps. The post-decision state is the state of the MDP after an action, but just
before we arrive at the next state. For a problem with state St, this works as follows. At the
deterministic post-decision state, no new information has arrived yet:

Sx
t = sS,x(St, xt) (3-5)

where sS,x is a transition function, e.g. Eq. (2-2), that describes how the system evolves from
state St to post-decision state Sx

t when taking action xt.

From the post decision resource state, we can compute the subsequent pre-decision state:

St+1 = sSx,W (Sx
t , Ŵt+1) (3-6)

where sM,W is a transition function describing how the system evolves from the arrival of new
information Ŵt+1 e.g., arrival of ride requests between timestep t and timestep t + 1.

Approximate value iteration splits the Bellman equation, Eq. (3-1), into two parts:

Vt (St) = max
xt

{Ct (St, xt) + Vt (Sx
t)} (3-7)

Vt (Sx
t) = E {Vt+1(St+1|Sx

t } (3-8)

Due to the curse of dimensionality, we can not compute the exact value function Vt(Sx
t), but

aim to find V̄t(Sx
t), an approximation of the value function around the post-decision state Sx

t .

In fleet management problems, the deterministic resource transition function is exploited to
compute a value function of the post-decision resource vector Vt(Sx

t) = Vt(Rx
t) [18, 19, 20].

Master of Science Thesis M.G. Vinks

20 Approximate dynamic programming for MOD

This strategy ignores post-decision demand state Dx
t , the backlogged trips. It assumes that

trips are not backlogged and Dx
t is empty. We elaborate on the potential use of a non-empty

post-decision demand state Dx
t in Section 3-2-4. In this work, we adhere to the common fleet

management strategy and replace V (Sx
t) with V (Rx

t). At each time period t of iteration n, we
compute the estimate value V̂ (Rt, D̂t) of the current resource state Rt and demand realisation
D̂t as:

V̂t(Rt, D̂t) = max
xt

C(xt) + V̄ n−1
t (Rx

t) (3-9)

where V̄ n−1
t denotes the current estimate of expected contribution of the value associated with

Rx after n − 1 iterations. The strategy is to iteratively produce sample demand scenarios D̂
that produces outcomes (D̂1, D̂2, D̂3, . . . , D̂T) and solve a subproblem for each time period t.

Given we found an estimate of the V̂t for iteration n, we update our approximation V̄t according
to the update rule:

V̄ n
t = (1 − α) V̄ n−1

t + αV̂t (3-10)

where α denotes the learning rate, a parameter that specifies the worth of the current sample
compared to our previous approximation. The learning rate takes a value between 0 and 1,
however, it does not have to be constant. In the first few iterations, we might want a high
learning rate while after hundreds of iterations the learning rate is preferably small.

The strategy works as follows, we initialise V 0 for every t ∈ T , generally a value of 0 works
well. Starting at an initial resource state R0, we sequentially solve each sub-problem Eq. (3-9)
for t ∈ T and update the value function according Eq. (3-10). We keep computing iterations
till the value function now longer changes.

Construction of an approximation of the value function is one of the challenges of ADP [31].
In general, we can use our knowledge of the problem structure to help construct appropriate
value functions. For example, in resource allocation, we have resource R (such as water
or oil) available and want to construct the value V (R) of this resource. Logically, water
is more valuable during a drought than during the rainy season. For most resources, the
general value goes up when the resource is sparse and demand is high while the value goes
down if the resource is available in abundance. The value of a resource thus depends on
the current demand and availability of this resource. We can exploit these characteristics of
resources to find a proper value function. In this work, we focus on linear and piece-wise
linear approximation and refer the reader to Powell et al. [31] for a comprehensive overview
of value function approximation methods.

3-2-1 Gradients and value functions

One key insight for resource allocation problems is to use the derivatives to estimate value
functions, rather than the value of being in a state [18, 19]. In principle, estimating the
derivative of a function is not harder then estimating a function itself [31]. For decision
making in resource allocation, the most important factor for allocation is the added marginal
value of the allocated resource.

Estimating slopes has some practical advantages. For example, if the function is approxi-
mately linear, we can replace the estimates of being in each state or set of states with a single

M.G. Vinks Master of Science Thesis

3-2 Approximate value iteration 21

parameter that estimates the slope of that function. Secondly, as common in ADP, you only
estimate the value of a resource when it is in a particular state. However, when you estimate
a gradient, you get an estimate of the derivative for each resource:

∇RtVt (Rt) =

v̂1t

v̂2t
...

v̂|I|t

 , (3-11)

where

v̂it = ∂Vt (Rt)
∂Rit

(3-12)

Where the partial derivative v̂it estimates the marginal value of additional resource at node i
for time t. In typical ADP, we would only compute the gradient for Rit > 0, the states where
we actually have resources available. To obtain each element of the gradient, additional work
might be required. For linear programs, partial derivatives are naturally returned as part
of the optimisation, also known as dual variables. For other problems, we might resort to
numerical derivatives. However, solving small perturbations to a previously solved problem
is relatively inexpensive, especially compared to constructing the value function itself [31].

3-2-2 Linear approximations

Linear functions are the simplest non-trivial value function approximation. Its ease of use is
one of the key strengths. Linear approximations work well in two settings. In the first, the
true value function is linear or approximately linear over the range of interest. Depending
on problem structure linear approximation may or may not be an appropriate choice. For
example, if we approximate the contribution of 5 additional ridesharing vehicles for a large
city and a village. In the large city, the contribution of 5 additional vehicles to a large fleet
will likely not influence demand for ridesharing and the contribution of each individual car
will be constant. We could then approximate the value of each additional vehicle with a
linear approximation. While in a small village, which may only operate 20 vehicles, each
addition can spark additional demand or influence the average profit per vehicle. In this case,
the contribution of each vehicle is not constant and would need to be approximated by a
non-linear value function.
Likewise, linear approximations are useful in the management of complex resources, i.e.,
resources with a lot of different attributes. For example, in a fleet management problem, a
car’s attribute vector a can constitute more than just the location. It might include capacity,
fuel load, fuel type or domicile and many more. Naturally, our attributes a is denoted by a
vector and let Rta be the number of resources with attribute a at time t. If a is complex,
let us say a vector with ten different attributes, we rarely get two resources with the same
attribute vector a. Thus the number of resources with attribute vector a is then typically 0
or 1.
In this case, a linear value function suffices. We simply need to construct an approximation of
the slope between 0 and 1. It is very convenient that linear approximations only need a single
parameter per attribute since complex settings already suffer from the curse of dimensionality.

Master of Science Thesis M.G. Vinks

22 Approximate dynamic programming for MOD

A linear function results in a constant dual or slope variable v. Since our resource vector
is limited by the conservation of resources, Eq. (2-1b), the dual variable vit represents the
marginal additional resource and is given by:

v̂it = ∂V̂t (Rt)
∂Rit

(3-13)

where V̂t (Rt, Dt) is our objective or value function given in Eq. (3-9). In our problem, we
employ v̂it as part of the gradient of our resource vector Rt and build a separable linear
approximation of the value function:

V (Rt) = V̂t(Rt) =
∑
i∈I

v̂itRit (3-14)

We build an estimate for each dual variable v̄it ∈ I. The update procedure is similar to that
of a regular value function approximation V (R), as Eq. (3-10). An estimated dual variable
v̂n

it, computed at iteration n, can be obtained from Eq. (3-13). We use v̄n−1
it to obtain the

new value function v̄n
it using the standard updating algorithm:

v̄n
it = (1 − αn−1) v̄n−1

it + αn−1v̂n
it (3-15)

where αn−1 is the step-size or learning rate after n − 1 iterations. v̄n
it is viewed as the best

estimate of the slope of node i at time t after iteration n. The slopes of all nodes are combined
to form an estimate of the value function V̄ n(Rt), as in Eq. (3-14)

3-2-3 Piecewise-linear approximations

In many applications, we estimate the value of having a quantity R of a certain resource
(where R is a scalar). We might want to know the value of R bananas in a warehouse or
R machines in a factory. Generally, R can be continuous or discrete. In ride-hailing, we
deal with integer resources, i.e., vehicles, and R is discrete. As common in fleet management
applications, we assume V̂t(Rt) is separable piecewise-linear concave in R [20, 50, 21]:

V̂t(Rt) =
∑
i∈I

v̂it(Rit) (3-16)

Unlike with linear functions, we use sequence of numbers to describe the slopes of the value
function, {v̂it(1), v̂it(2), . . . , v̂it (|R|)}, where v̂it(y) is the slope of V̂it over (y − 1, y) and |R|
denotes the total fleet size. As y grows, the slope might become constant. We can limit the
range of the piece-wise linear value function to Rmax and use v(Rmax) when s > Rmax, rather
than storing individual slopes for all possible quantities y. Since overcrowded regions are
undesirable in our reposition problem, the chances are slim we would sample large quantities
of y, i.e., y = 0.5 · |R|. We can thus remove the unnecessary slopes and reduce the complexity
of our value function.

The concavity of the value function dictates that the slopes should be monotonically de-
creasing in R [21], i.e., the marginal added value of an additional resource should decrease or
remain constant. The bigger the quantity of a resource available, the less value one additional
resource adds. We can denote this by:

M.G. Vinks Master of Science Thesis

3-2 Approximate value iteration 23

v̂(y) ≥ v̂(y + 1) ∀y = 1, . . . , Rmax (3-17)

Given v̂n(y), a sample realisation of the slope for a quantity of y resource at iteration n, we
use the standard update rule:

v̄n (y) = (1 − αn−1) v̄n−1 (y) + αn−1v̂n (y) (3-18)

After the update, our new estimate v̄(y) might violate the monotonicity property of Eq. (3-17).
We present two strategies to overcome this issue: SPAR and CAVE

SPAR

The separable projective approximation routine (SPAR) [31, 50] works by averaging the slopes
that violate the monoticity. We start with an initialised set of slopes:

v̄0
it(y) y = 0, . . . , Rmax ∀i ∈ I, ∀t ∈ T (3-19)

At iteration n, we obtain a temporary values z̄n(y) as follows:

z̄n(y) =
{

(1 − αn−1) v̄n−1(y) + αn−1v̂n, y = Rn
it

v̄n−1(y) otherwise
(3-20)

We then check the monoticity of the temporary values. If z̄n(y + 1) ≥ zn(y) for all y then no
additional measures are required. If not, either z̄n(Rit) < z̄n(Rit +1) or z̄n(Rit) < z̄n(Rit −1).
Either violation is fixed by solving following projection problem:

min
v

∥v − z̄n∥2 (3-21a)

subject to
v(z + 1) − v(z) ≤ 0 (3-21b)

This projection can be solved easily. We first check which side violates the monotonicity of
the value function. We have to update this cell and check whether we now have a concave
function. If not, we repeat the process until we reach the end or we get a concave function.
For a violation on the left side z̄n(Rit) < z̄n(Rit − 1), we want to find the largest 1 < s ≤ Rit

such that:

z̄n(s − 1) ≥ 1
Rit − s + 1

Rit∑
y=s

z̄n(y) (3-22)

If such s cannot be found, we set s = 1. Then, we calculate:

cj = 1
Rit − j + 1

Rit∑
y=j

z̄(y)n j = s, . . . , Rit (3-23)

Master of Science Thesis M.G. Vinks

24 Approximate dynamic programming for MOD

and set

vn
j = min(vmax, cj) (3-24)

where vmax is an optional parameter which is set as the upper bound of the slopes v.

For the right handside z̄n(Rit) < z̄n(Rit + 1), we flip Eq. (3-22) and want to find Rit < s ≤
Rmax such that:

z̄n(s + 1) ≤ 1
s − Rit + 1

s∑
y=Rit

z̄n(y) (3-25)

and set:

vn
j = max(vmin, dj), j = s, . . . , Rmax (3-26)

where dj denotes the equivalent of cj for (3-25). vmin poses as a lower bound for the slopes v.
Setting bounds on the slopes with vmax and vmin is optional. In some cases, it can attenuate
the effect of outliers on the value function.

CAVE

The CAVE algorithm is an alteration of SPAR meant to accelerate learning. Instead of
updating the slopes of just y = Rit, we update over a larger interval:

z̄n(y) =
{

(1 − αn−1) v̄n−1(y) + αn−1v̂n, Rn
it − δn ≤ y ≥ Rn

it + δn

v̄n−1(y) otherwise
(3-27)

where δn is a parameter that determines the width of the update interval. Before each
update, δn is rounded to the nearest integer. The strategy is to reduce δ as we improve our
approximation of the value function. Typically, δ0 takes a range between 0.2 and 0.5 of Rmax.

We sample slope v̂n and use the same logic to maintain the monotonicity as with SPAR,
solving the projection problem Eq. (3-21). We start with an interval Rn ± δ0, which we
progressively reduce. Since no general rule exists for reducing δ, Powell [31] suggests tracking
one of the performance indicators of the learning algorithm, i.e., the objective function:

δn =

δn−1 if F n ≥ (1 − ϵ)
∑K

1 F n−i

K ∧ k ≥ K

max
{
δmin, 0.75δn−1}

otherwise.
(3-28)

where

k =
{

k + 1 if δn = δn−1

0 otherwise.
(3-29)

F n denotes the objective function after n iterations, as described in Eq. (2-8), ϵ is used to
allow a small perturbation from the mean objective over the last K iterations. We limit the

M.G. Vinks Master of Science Thesis

3-2 Approximate value iteration 25

rapid decrease of δ with a count variable k. Furthermore, we can keep a minimal interval
δmin. If δmin < 0.5, CAVE is just SPAR after a set number of iterations.

These approximation methods work well in all kinds of resource allocation problems, as long
as the attribute vector is relatively simple. Both SPAR and CAVE can scale to pretty large
problems with hundreds or thousands of nodes. Furthermore, we do not have to solve the
exploration-exploitation dilemma [31]. The concavity of the value function approximations
pushes sub-optimal solutions towards the correct solution. So we can use a pure exploitation
strategy.

3-2-4 Artificial Duals

For piecewise-linear approximations, we need to perform additional work to obtain the slopes
v̂t of our approximation. While methods for obtaining marginal value in mixed integer pro-
grams exist [51, 52], these methods are not readily available. We, therefore, use our knowledge
of the ride-hailing process to obtain artificial slopes and avoid computing numerical slopes
through re-optimisation.

Backlogged trips

In the approximation of the value function V̂t, we utilize the post-decision deterministic re-
source vector and assumed the post-demand resource demand Dx

t to be empty. Generally,
we do not compute the full gradient, Eq. (3-11), but only consider the partial derivatives vit

where Rx
it > 0, i.e., the post-decision states where we have resources available.

We propose to exploit the post-decision demand vector Dx
t to accelerate learning. The strategy

is to additionally update the value function for the non-empty post-decision vector states Dx
ijt,

which is equal to the backlogged trips xd
ijt. We assume that an additional vehicle present at

the origin of a backlogged trip would serve this trip. In the case of multiple backlogged trips
in a single region i, we assume the additional car would serve the highest revenue customer.
We denote these slopes as v̂a

it and use the potential revenue of backlogged trips:

v̂a
it = max cp

ijt ∈ {j, xd
ijt > 0, w ≤ W} (3-30)

where max cp
ijt denotes the maximum revenue from all backlogged trips xd

ijt with origin i.
We introduce an additional parameter W , which limits the number of artificial duals from a
consecutively backlogged trip. We explore the effect of W on learning in Chapter 5.

Since the revenue of each trip is readily available, the artificial duals offer a computationally
efficient alternative to re-optimisation of the model. Furthermore, they will accelerate the
learning through additional slope updates of the nodes with backlogged trips. Rather than
wait for the fleet to explore missed trip nodes, we force value function updates in regions with
backlogged trips.

Value of staying

While AMOD and repositioning mean to improve the utilisation rate, i.e., the fraction of
time that vehicles are transporting customers, the time spent idle in MOD networks is still

Master of Science Thesis M.G. Vinks

26 Approximate dynamic programming for MOD

significant. Spieser et al. [38] show in four different potential AMOD deployments that
the utilisation rate never goes over 50% for their minimum fleet size. The utilisation rate
naturally drops further when considering larger fleet sizes. We exploit this idle behaviour to
obtain more updates of the value function.

As previously stated, in ride-hailing, the additional value of a vehicle diminishes greatly once
we reach a certain quantity, i.e., y. For example, if a region contains four idle vehicles after
optimisation, what would be the most likely action of an additional vehicle in this region?

Additionally to artificial duals from missed trips, we plan to decrease the computational
burden of the learning process by approximating the value of staying. We assume that an
additional vehicle in a region with a quantity of Y idle vehicles will also remain idle. For
each node i, we equate the number of staying decisions xr

iit and the threshold parameter Y ,
if xr

itt > Y , we assume that the slope v̂it = v̂s
it. We compute the value of staying v̂s

it as:

v̂s
it = cr

iit + v̄n−1
it (y + 1) (3-31)

cr
itt denotes the cost of staying idle as per Eq. (2-5) and v̄n−1

it (y + 1) denotes the value of
having one additional resource at this node at the post-decision resource vector Rx

t after n−1
iterations

We explore the effect of both artificial dual strategies in Section 5-2.

3-3 A multi-period value function

Multi-period travel times have a significant impact on the structure of our value function
approximation. We define τmax as the maximum travel time within our network. Since each
decision now produces a post-decision state up to t + τmax, far-sighted decisions become a
problem. We highlight the issue of far sight in the illustrated example of Fig. 3-1.

Fig. 3-1(a) presents the current status of a fleet spread over nodes 1 and 4 at time step t and
the current value of the slopes for the next four consecutive time steps. For this example
network, we attempt to solve Eq. (3-14). Both vehicles can either stay at the current node or
reposition to one of the other three nodes. Fig. 3-1(b) maps the decisions and their respective
post-decision values. Based on the value functions, the best decision would be let the cars
switch positions. This logic is what we call far sight. Since it takes 4 time steps for the car
at node 1 to reach node 4, we can sample the post-decision value of node 4 at time step t + 4
from node 1. While from node 4, we can only sample the value of time step t + 1. This
characteristic is undesirable since it promotes redundant repositioning. From an operational
perspective, it is more logical to command both vehicles to stay at their current node.

To avoid far-sight, the literature has proposed several solutions. In [20, 53], an additional
attribute is added to account for the arrival time. The value gets an additional dimension
t′ for each time within t and t + τmax similar to the resource state Rt′,t. We formulate this
value function as:

Vt(Rt) =
∑
i∈I

t+τmax−1∑
t′=t

V̄it′t(Rit′t) (3-32)

M.G. Vinks Master of Science Thesis

3-3 A multi-period value function 27

Figure 3-1: An illustrative example of the far-sight issue. a) Gives a sketch of the state at time t
and the value function between t = 1 and t+4. b) The conventional method to find the slopes for
the post-decision state, as Eq. (3-9). c) Updated multi-period value function with the additional
samples within the horizon, as in Eq. (3-34)

Due to the additional attribute of the value function updates will become more sparse and
thus learning rate will generally decrease. To avoid having to add an attribute in their value
function, Beirigo et al. [18] address far sight by damping the value of repositioning by the
opportunity cost of staying still. In the example of Fig. 3-1(b), for repositioning from node 1
to node 4, we get:

v̂4,t+4 = v̄4,t+4 −
t+3∑

t′′=t+1
v̄1,t′′ (3-33)

Inspired by the above methods, we propose to define a horizon parameter HV which limits
the length of the repositioning tasks. The motivation for the horizon HV is specific to reposi-
tioning problems. Our value function approximation is primarily a tool for repositioning, i.e.,
trip decisions should always be prioritized over repositioning decisions. Once all trip decisions
are fulfilled, we consider repositioning for the remainder of the fleet. We limit the maximum
length of repositioning trips to HV and sample the value functions of post-decision states
that fall within this horizon HV . Let define tx as the post-decision time of post-decision sate
Rx

t . We formulate a multi-period implementation of the value function as:

Vt(Rt) =
∑
i∈I

t+HV∑
t′′=tx

γ(t′′−t)v̄itx(Rx
t) (3-34)

where γ denotes the discount factor.

The approximation of Eq. (3-34) comes with one key assumption, to sample the slopes vitx

within the horizon, we assume that all vehicles remain idle after finishing their tasks.

Master of Science Thesis M.G. Vinks

28 Approximate dynamic programming for MOD

In Fig. 3-1(c), we set HV = 4 and sample all slopes from the post-decision state up to the
horizon HV . The example highlights a key characteristic of the multi-period value function.
Staying idle now samples a total of four slopes instead of just one, as in Fig. 3-1(b). While
the longest repositioning task still samples a single value in Fig. 3-1(b-c). If most slopes v are
positive, short decisions are favoured over long ones.

To further dampen the slopes at the end of the horizon, we introduce a discount factor γ. It
incrementally discounts the values of vehicles relative to their respective post-decision step
and steps hereafter within the horizon. For example, with γ = 0.9 the repositioning action
from node 1 to 4 in Fig. 3-1(c) is discounted 0.94 = 0.6561. While the decision to stay at
node 1 has a discount of 0.9 for the first slope and 0.92 = 0.81 for the second slope. The
discount factor is a lever for the value function to find the right balance between the emphasis
on the number of slopes versus the emphasis on the estimates of the slopes. We evaluate the
influence of the horizon HV and discount factor γ on repositioning in Chapter 5

3-4 Summary

In this chapter, we gave a brief introduction to ADP. We introduced the concept of value
functions and how they can be useful for decision-making. We presented two methods for
value function approximation based on linear and piecewise-linear functions. A key insight for
resource allocation was to estimate the derivate of the value function instead of the value func-
tion itself. We give a brief summary of two algorithms for solving sequential decision-making
problems in Algorithm 1 and Algorithm 2 based on linear and piecewise-linear approximation
respectively.

Lastly, we elaborated on the implication of multi-period travel times for the value function.
We switch from an approximation based on the post-decision state to an multi-period value
function with a value horizon. Within the horizon, cars are assumed to remain idle upon
finishing their respective task.

M.G. Vinks Master of Science Thesis

3-4 Summary 29

Algorithm 1: Linear approximate value iteration (LAVI)
Require: V̄ 0, α, N, T

1: Initialise: Value function V̄ 0
t , ∀t ∈ T = 0, 1, . . . , T

2: for n = 1, . . . , N do
3: Sample demand D̂n and initialize resources R0
4: for t = 0, 1, . . . , T do
5: Solve optimisation problem Eq. (3-9) and obtain xt

6: for Rn
it > 0 ∈ Rt do

7: Extract the dual variable v̂n
it corresponding to the resource conservation

constraint Eq. (2-1b).
8: Update the value function v̄n

t using Eq. (3-15)
9: end for

10: Execute xt into Eq. (2-2) and Eq. (2-3) to obtain Rt+1 and Dt+1
11: end for
12: end for
13: Return the value functions {v̄n

it|∀t ∈ T , ∀i ∈ I}

Master of Science Thesis M.G. Vinks

30 Approximate dynamic programming for MOD

Algorithm 2: Piecewise-linear approximate value iteration (PLAVI)
Require: V̄ 0, α, N, T, (W), (vmax), (vmin), (Y), (Rmax), (K), (δ0)

1: Initialise: Value function {V̄ (y)0
t , ∀t ∈ T = {0, 1, . . . , T}, y = {0, . . . , Rmax}

2: for n = 1, . . . , N do
3: Sample demand D̂n and initialise resources R0
4: for t = 0, 1, . . . , T do
5: Solve optimisation problem Eq. (3-9) and obtain xt

6: if using Y: then
7: for Rn

it > 0 ∈ Rt do
8: if Rn

it ≥ Y then
9: assume v̂n

it = v̂s
it using Eq. (3-31)

10: Update the value function v̄n
it using Eq. (3-18)

11: if Eq. (3-17) is violated then
12: SPAR or CAVE
13: end if
14: end if
15: end if
16: end for
17: if using W: then
18: for for trip b in Dx

t do
19: if w ≤ W then
20: get regional centre i of trip origin b1
21: get va

it from Eq. (3-30)
22: Update the value function v̄n

it using Eq. (3-18)
23: if Eq. (3-17) is violated then
24: SPAR or CAVE
25: end if
26: end if
27: end for
28: end if
29: Execute xt into Eq. (2-2) and Eq. (2-3) to obtain Rt+1 and Dt+1
30: end for
31: end for
32: Return the value functions {v̄n

it|∀t ∈ T , ∀i ∈ I}

M.G. Vinks Master of Science Thesis

Chapter 4

Learning-based MPC

MPC or receding horizon control is a state-of-the-art model-based control method. It com-
bines three main elements: a predictive model, optimisation over a receding horizon and
feedback correction. It has been studied extensively over the years and widely applied in
different industrial control applications [54]. We first give a brief introduction to MPC and
present an MPC algorithm for the MOD problem formulated in Chapter 2. Lastly, we present
a hybrid framework that incorporates a value function in the MPC framework to ease its com-
putational demand.

4-1 Model predictive control

The concept behind MPC is quite straightforward, given a sequential decision-making prob-
lem, i.e., the optimal rebalancing problem of Eq. (2-9), we solve an MPC problem over a
predetermined horizon. From a control perspective, we formulate an MPC problem as:

min
U,X

H∑
k

J(x(k), u(k)) (4-1)

s.t.
x(k + 1) = f(x(k), u(k)) (4-2)
U ∈ U (4-3)
X ∈ X (4-4)

(4-5)

where J denotes the cost function, x(k+1) = f(x, u) is the equivalent of a transition function,
which describes the system dynamics over time, i.e., Eqs. (2-2) and (2-3). H denotes the
horizon, U = {uk, . . . , uH} denotes the control sequence and X = {xk, . . . , xH} denotes the
evolution of states. We acknowledge the resemblance to the language of dynamic resource
management for the state xk and St, and input u∗

k and decision xt. For the rest of this section,
we use the notation of control theory to expand on the characteristics of the MPC framework.

Master of Science Thesis M.G. Vinks

32 Learning-based MPC

The control community focuses on steering the system dynamics to an equilibrium and have
it operate in steady state. MPC works in real-time. At time step k, the initial state xk is
observed. Using the discrete system model Eq. (4-3), we predict how the state evolves given
any set of inputs U . Optimisation of the cost function J results in an optimal control sequence
U∗ of which only the first control input uk will be applied to the system. After which, the
optimisation procedure is repeated at the next time step k + 1. The process can be repeated
indefinitely and is very flexible in design. Limitations on the system can be implemented by
the use of constraints.
Constraints are one of the main features that differentiates MPC from other optimal control
methods [55]. The control U and state X sequences should be contained within the admissible
in the feasible sets U and X . We can use additional input and state constraints to account for
other limitations of the system. For example, if the decision variable is the number of vehicles,
only non-negative integer inputs can be considered, i.e., u ∈ Z+. These input constraints have
to be considered for all steps within the horizon.
One of the features of MPC is the forecasting horizon. The real-time forecasting horizon is
dependent on the horizon parameter H and sampling time ∆t, the time between discrete
states k and k + 1. A good estimate for the sampling time is related to the bandwidth of the
dynamical system [56]. The horizon parameter H determines the range of the forecast. As
we select a longer horizon, the prediction is more prone to model errors. Each step we move
further along the horizon errors accumulate.
The goal of the controller is expressed as the objective function. It is directly dependent on
the input and state sequence and indirectly through the constraints. A regulation MPC uses
a cost function to keep the state around the desired equilibrium point. A classic example of
MPC uses a quadratic cost function J(X, U):

J(X, U) =
H∑

XT QX + UT RU (4-6)

with Q ⪰ 0 and R ≻ 0. The matrices Q and R are the tuning parameters of the controller.
The first term of the quadratic cost function emphasises deviations of the state from the
equilibrium and we can emphasise the cost of each state in the horizon using the weight
matrix Q. To clarify, using an identity matrix for Q gives the same cost for all states within
the horizon. Large values of Q in comparison to R drive the state to the equilibrium quickly
at the expense of large control action [55]. Choosing appropriate values for weight matrices
is not always obvious and it is one of the challenges in the design of MPC.
The MPC framework works in real-time and is repeated at every time step. This type of
online optimisation has limitations. Naturally, the solving time of the problem should be
much smaller than the sampling time ∆t. Otherwise, the controller is not realisable in real-
time. The complexity of the problem increases as we consider large-scale applications resulting
in more states, inputs and constraints. These challenges in online optimisation provide an
incentive to use aggregated models for large-scale applications.

4-1-1 MPC in MOD

Within MOD literature,MPC has been studied extensively in recent years [8, 9, 15, 16, 43,
57, 58, 59]. This section introduce an MPC for MOD.

M.G. Vinks Master of Science Thesis

4-1 Model predictive control 33

For an arbitrary state St = (Rt, Dt), we can formulate an MPC optimisation problem for a
single period travel MOD model as:

max
x

t+H∑
t

C(xt) =
t+H∑

t

∑
i,j∈I

(
cp

ijtx
p
ijt − cd

ijtx
d
ijt − cr

ijtx
r
ijt

)
(4-7a)

subject to∑
i∈I

(
xp

ijt + xr
ijt

)
= Rit , ∀i ∈ I (4-7b)

∑
j∈I

(
xp

ji,t−1 + xr
ji,t−1

)
+

∑
i∈I

(
xp

ijt + xr
ijt

)
= 0 ∀i ∈ I , t ∈ {t + 1, . . . , t + H} (4-7c)

∑
xp

ijt + xd
ijt = Dijt ∀i ∈ I , ∀j ∈ I , (4-7d)∑

xp
ijt + xd

ijt = D̂ij,t+1 + dij,t+1 ∀i ∈ I , ∀j ∈ I , t ∈ {t + 1, . . . , t + H} (4-7e)

xr
ijt , xp

ijt xd
ijt ∈ Z+ ∀i ∈ I , ∀j ∈ I , ∀t ∈ T , (4-7f)

where Eq. (4-7b) denotes the conservation of resources for the first step. Eq. (4-7c) is derived
from the transition function of Eq. (2-2) and denotes the dynamics of resources within the
horizon. Eq. (4-7d) ensures the current demand is serviced or backlogged. Eq. (4-7e) denotes
the dynamics of trip request within the horizon. Lastly, Eq. (4-7f) ensures that all decision
variables are integer.
The optimisation requires the demand realisation of all future time steps within the horizon,
i.e., {D̂t+1, . . . , D̂t+H}. In ride-haling, this demand is normally not readily available and has
to be forecasted. This is one of the severe limitations of deterministic MPC. A prediction is
never perfect and can induce model errors. Naturally, it is easier to accurately predict what
may happen in the near future. However, even small errors in the earlier states of the horizon
can have a significant impact on decision-making and performance.
Within MPC, it can be good practice to discount states within the horizon of MPC. Near-
term decisions are assigned with a higher value than decisions in the long term. However,
within ride-hailing, there is no consensus on using a explicit discount parameter γ, as it is
used in [43, 58] but not used in [8, 9]. One of the methods MOD implicitly incorporates
discounts is within the cost functions. In Eq. (2-4), the revenue of a trip is dependent on the
delay and thus to maximise profit should be serviced as soon as possible.
Literature has provided several methods on demand passenger prediction which range from
simple probabilistic methods to artificial neural networks. A time-invariant Poisson process
with a constant customer arrival rate is fairly common [44, 60, 57]. Oda and Joe-Wong [43]
rely on a convolutional neural network to forecast ride requests, while Miao et al. [59] used
probability functions based on historic and current demand to predict future ride-request. In
[8, 9], the authors predicted the customer arrival rate as a spatial and time variant Poisson
process with a long short-term memory (LSTM) neural network.
Within the literature, the common strategy to reduce computational complexity is to have
different matching and repositioning frequencies. MPC is then purely used as a vehicle repo-
sitioning strategy [9, 8, 58, 16]. The MPC issues repositioning tasks over a long horizon. The
repositioning tasks are assigned to vehicles that become idle within the repositioning interval.
At the new interval, the unused tasks are discarded and new repositioning tasks are computed
for the next interval.

Master of Science Thesis M.G. Vinks

34 Learning-based MPC

4-2 Combining ADP and MPC

MPC is a powerful tool for decision-making. It approximates the solution of an infinite-
horizon optimal control problem by solving a finite-horizon optimal control problem in a
receding horizon fashion [61]. The potential of combined learning and prediction is an active
field of research [62].

To facilitate the combination of ADP and MPC, we take the approach of most ADP litera-
ture and consider repositioning at every sampling interval. In most repositioning problems,
rebalancing operations are expected to only last a single period of time, i.e., at each time
interval all vehicles are either servicing a customer or idle [37, 36, 19]. The single period
assumption imposes a strict constraint on the granularity of the network. Furthermore, it
is computationally expensive to find the optimal decision for all idle vehicles at every time
interval. The lower the resolution of the underlying map, the fewer locations are available,
and the more multi-period travel times can be expected between location pairs. Multi-period
travel times can reduce the computational complexity of MPC by reducing the number of
optimisation variables and states.

Another downside of multi-period travel times comes from modelling and forecasting errors.
The decisions in ride-hailing are integers and take multiple periods to complete. A reposi-
tioning action can now prohibit a vehicle from servicing requests for multiple time steps. To
overcome this issue, repositioning vehicles should ideally still be available for trip decisions.
In this thesis, we have a perfect forecasting model and no model errors can occur. Therefore,
vehicles cannot be interrupted while repositioning, which helps to further reduce the number
of decision variables in the MPC.

A potential limitation of MPC, especially in high dimensional problems, is short-sightedness
due to a limited prediction horizon. In rebalancing problems, the repositioning tasks can
take multiple periods to complete. For MPC to have solid performance, all nodes should
be reachable within the prediction horizon. If a node cannot be reached by any other node,
the MPC is unable to reposition cars to and away from this node. Cars can consequently
get stuck at such nodes. Unable to escape from this node except through ride requests.
These nodes are undesirable and preemptive network analysis can help determine an adequate
horizon. However, if we could obtain information beyond the horizon we could overcome this
requirement. Adding information from beyond the horizon could help guide decision-making.
A final or terminal cost approximating the infinite-horizon cost, or cost-to-go can mitigate this
short-sightedness. If we draw a parallel between the Bellman equation and MPC framework
we can see that we can use a final cost of MPC to approximate the infinite-horizon cost.

We consider a predictive horizon H and cast the Bellman Eq. (3-7) into a multi-period MPC
framework:

M.G. Vinks Master of Science Thesis

4-3 Summary 35

max
x

t+H∑
s=t∈T

∑
i,j∈I

(
cp

ijsxp
ijs − cd

ijsxd
ijs − cr

ijsxr
ijs

)
+ V̄t+H

(
Rx

t+H

)
(4-8a)

subject to∑
i∈I

(
xp

ijs + xr
ijs

)
= Riss ∀i ∈ I , t ≤ s ≤ H (4-8b)

∑
i∈I

(
1τij

(
t′ − s

)
xr

ijs + 1τij

(
t′ − s

)
xp

ijs

)
+ Rjt′s = Rjt′,s+1 (4-8c)

∀i ∈ I , t ≤ s ≤ t + H , s + 1 ≤ t′ ≤ s + HV∑
xp

ijt + xd
ijt = Dijt ∀i ∈ I , ∀j ∈ I (4-8d)∑

xp
ijs + xd

ijs = D̂ij,s+1 + dij,s+1 ∀i ∈ I , ∀j ∈ I , t + 1 ≤ s ≤ t + H (4-8e)

xr
ijs , xp

ijs xd
ijs ∈ Z+ ∀i ∈ I , ∀j ∈ I , t ≤ s ≤ t + H (4-8f)

Where Eqs. (4-8b) and (4-8c) dictate the conservation of resources as per Eq. (2-10). Eqs. (4-
8d) and (4-8e) denote the conservation of passengers as per Eq. (2-3). Finally, Eq. (4-8f)
ensures all decision variables are integers.

The value function V̄t+H is derived from Eq. (3-34). We use either algorithm 1 or 2 to find an
approximation of the value function. In our hybrid algorithm, we use the the combined horizon
of H and HV as the upper bound of the length of repositioning tasks, i.e., τ r

max = H + HV .

The integration of the terminal cost can benefit the performance since the MPC now includes
information from beyond the predictive horizon in the optimisation. Furthermore, to reduce
the computational burden of the MPC by shortening the prediction horizon and incorporating
V̄ to compensate the possible performance reduction cause by shortened predictive horizon. A
reduction in complexity of the online optimisation would allow us to consider a more detailed
environment or system model. The value function will be used as a long-term planner while
the MPC captures the arrival of customers and the availability of drivers within the near
future. We present possible uses for this type of hybrid algorithm in Chapter 5

4-3 Summary

In this chapter, we introduced the general framework of MPC from a control perspective.
We shortly cover the use of MPC in MOD. Lastly, we introduced a hybrid MPC and ADP
algorithm. The goal of this hybrid algorithm is to reduce the predictive horizon of MPC and
use a value function as a long-term planner.

Master of Science Thesis M.G. Vinks

36 Learning-based MPC

M.G. Vinks Master of Science Thesis

Chapter 5

Case study

In this chapter, we present three case study to evaluate the potential of combined ADP
and MPC frameworks in MOD networks. Within the first two case studies, we validate our
algorithms on a small benchmark network. The first case study focuses on approximation of
the value function within our MOD model. In the second case study, we integrate a value
function in to the MPC framework. We test and compare ADP,MPC and combined ADP-
MPC strategies. In the last case study, we enlarge the network and explore how ADP-MPC
strategies can reduce the computational burden of matching and repositioning in a large scale
MOD network.

5-1 Set up

Before we showcase the algorithms, we provide some details on the network setup, the used
data sets, fleet configuration, cost parameters and performance indicators.
Network For case study A & B, we consider a subset of the taxi zones of Manhattan, labeled
in red in Fig. 5-1b. The street network consist of the graph G(N , E), with |N | = 515 nodes
and |E| = 891 edges. We computed the two minute, regional centres for this network, as
described in Section 2-2. Our aggregate network consists of 14 virtual nodes. We compute
the corresponding travel times with a sampling time of ∆t = 30s and summarised them into
Table B-1. From this origin-destination (OD) matrix, we observer that a minimal horizon
of 9 is required for the network to not have a repositioning sink, i.e., a node that cannot be
reached by any other nodes through repositioning.
For case study C, we enlarge the network. It now covers the entirety of Manhattan Island.
We include all taxi zones of Fig. 5-1b, excluding zones 153, 194, 202, 105, 104 and 103. The
street network consist of the graph Gc(Nc, Ec), with |Nc| = 6248 nodes and |Ec| = 11375
edges. We learn value functions for the two minute regional centres, consisting of 192 total
nodes. On average, each region centre covers about 32 nodes.
Data sets
For training, we sample trips from June 28th 2011 with a resize factor of 0.2. We simulate

Master of Science Thesis M.G. Vinks

38 Case study

(a) The number of trips of each Tuesday in June and
July 2011 for the benchmark network.

(b) TLC taxi zones of Manhattan.
The zones of the benchmark sim-
ulation are marked in red.

Figure 5-1: Left to right, demand graph and the taxi zones of Manhattan.

over the period from 8:30 till 9:30 in the morning rush hour. For the benchmark network,
we get approximately 110 to 160 trips per iteration, as seen in Fig. 5-1a. Individual trips
are played back from the closest node in the street network graph G. We have a 5 minute
repositioning period before trips start arriving and 10 minute termination period after the
hour has passed. With a sampling rate of 30 seconds, we get a total simulation length of 150
steps.

In case study C, we enlarge the repositioning and termination offset to 10 and 15 min respec-
tively. Resulting in a simulation length of 85 minutes and 170 steps. Furthermore, we reduce
the resize factor of the demand to 0.1.

To validate our algorithm, we use the demand of the other Tuesdays in June and July.
We evaluate the value function learned from a single day in other demand scenarios. We
deliberately chose the 28th of June for training since it serves as a middle ground for the
other demand scenarios, as seen in Fig. 5-1a.

Fleet configuration
To find an estimate of the appropriate fleet-size, we run the deterministic optimal rebalancing
program as presented in Eq. (2-9a), as in [8]. This algorithm utilises a deterministic demand
pattern to find the optimal fleet size given the given a network configuration. For our testing
data and a 60s regional centre network, we find a range of 15 to 39 for the optimal fleet. We
run additional tests on the two minute regional centre network to find an appropriate fleet
size. The results are summarised in Fig. A-1. To fine tune our learning algorithm, we first
consider a relatively small fleet size of 25, such that effect of the parameters tuning is more
apparent. After which, we increase the fleet size to 40 to validate our findings.

M.G. Vinks Master of Science Thesis

5-1 Set up 39

For case study C, we again use the deterministic optimal rebalancing program. For our test
data and the 120s regional centre network, we get a range from 280 to 409. To account for
network aggregation during the optimal rebalancing program, we set the fleet size near the
upper-bound, i.e., |R| = 400.

Cost parameters
We adapted the basic income for individual trips from the TLC data base [40] and adapted
the cost parameters of Bosch et al. [63], which were consisted with previous cost analysis
of autonomous shared mobility services. The parking cost are based on the annual cost of
ownership presented within [63]. We present all the relevant cost parameters in Table 5-1.

Table 5-1: Table of scenario parameters for the case studies.

Parameter Description Value

pbase Base fare $ 2.5
ptime Time depended fare $ 1.56 / km
ctime Operational cost of a vehicle $ 0.18 / km
cdelay Penalty due to delay in pick-up time $ 0.1 / minute
cstay Cost of staying at the current position $ 0.0035 /min
wmax Maximum Delay 5 minutes
creject Trip rejection cost $ 1
cdelay Backlog cost $ 0.1 / min

Performance indicators

During the case studies, we measure the quality of the ride-hailing service through three main
performance indicators

• The objective function F , as introduced in Section 2-2. This monetary indicator denotes
the summed revenue of trips, the cost of backlogging and the cost of repositioning, as
in Eq. (2-8).

• Service Rate, the percentage of total trips that receive service. After a delay of five
minutes customers get rejected.

• Waiting time, the time customers have to wait before receiving service, measured in
minutes.

Additionally, we are interested in the time spend on the different actions within the fleet:

• Servicing Passenger (S), the time spend transporting a passenger.

• Driving to pickup (D), the time spend in between trip request acceptance and pickup.

• Parked (P), the time spend idle.

• Repositioning (R), the time spend repositioning to a new regional centre.

Master of Science Thesis M.G. Vinks

40 Case study

Specifically, the correlation between the percentage of the total time spend on repositioning
and the quality of service indicators, mentioned above, is of interest.

Finally, The goal of this work is to find a computationally efficient repositioning strategy.
We, therefore take in account the time it takes to compute the iteration. This computation
time is measured in seconds in Sections 5-2 and 5-3 and in minutes in Section 5-4.

5-2 Case study A: Linear and piece-wise linear approximations

In this first case study, we evaluate the approximation methods for learning a value func-
tion in MOD networks. We set our baseline parameters according to Table 5-2 and learn a
value function for repositioning. We evaluate the problem in terms of the different learning
parameters and approximation structures.

Table 5-2: Table of baseline learning parameters for case study A.

Parameter Description Baseline value

HV Value Horizon 9
γ Discount factor 0.9
α Learning rate 0.1
V̄0 Intial value function 0
vmax Upperbound slope 5
vmin Lowerbound slope −10 · cstay

Rmax Maximum vehicles per node 5

5-2-1 Linear and piece-wise linear approximations

We first compare the different function approximation on the training set. While for LAVI, the
dual variables are readily available, we want a fair comparison between the two approximation
strategies. We use backlogged trip duals, with W = 0, in both approximations.

Additionally, we consider a strategy to avoid node congestion. Consider the domain of the
piece-wise approximation, as in Eq. (3-17). We reduce the domain of y from the total fleet size
|R| to Rmax. Since the slope of linear functions is constant, we have to introduce a method
to avoid node congestion and add the following constraint to our LAVI algorithm:

Rit ≤ Rmax ∀i ∈ I , ∀t ∈ T (5-1)

We showcase both linear (L) and piece-wise linear (P) approximation with and without con-
gestion avoidance strategy, by choosing Rmax = 5 and Rmax = 25 respectively. We thus get a
fourfold of strategies: L5, L25, P5 and P25, distinguishing the type of function approximator
(L or P) and the value of Rmax (5 or 25).

As per Fig. 5-2, linear approximations yield poor performance in this attribute space. The
attribute space is one-dimensional and the slope is constant for different quantities of vehicles.

M.G. Vinks Master of Science Thesis

5-2 Case study A: Linear and piece-wise linear approximations 41

0 50 100 150 200 250 300
Iteration

−150

−100

−50

0

50

100

150

200

250

Ob
je
ct
iv
e
fu
nc

tio
n
[$
]

L25
L5
P25
P5

(a) The objective function for different con-
figurations of Rmax.

0 50 100 150 200 250 300
Iteration

2

4

6

8

10

Re
po

sit
io
ni
ng

 ti
m
e
[%

]

L25
L5
P25
P5

(b) The percentage of total time spend repo-
sitioning for different configurations of Rmax

Figure 5-2: PLAVI and LAVI for different values of Rmax.

Due to constant slopes, vehicles move towards the highest value vit in their vicinity and start
to group up at nodes. Afterwards, they move in clusters through the network, as in Fig. A-2.

The clustering of vehicles results in a low service rate and overall poor service quality. The
difference in objective function between L5 and L25 can be attributed to the limitation on the
cluster size. For L5, the vehicles are widely available over the network and naturally service
more passengers.

For PLAVI in Table 5-3, we see a slight increase in service rate by increasing the congestion
strategies. Furthermore, from Fig. 5-2a, we note that the objective function is slightly higher
on average for P5, which is supported by Table 5-3. P5 does issue more repositioning tasks
on average compared to P25, see Fig. 5-2b and Table 5-3. However, the main difference
between the two strategies is the reduced complexity of the value function, as is clear from
the difference in computation time between P5 and P25 in Table 5-3.

As PLAVI shows the most potential as a repositioning strategy, we commit the rest of this
case study to finding a parameter configuration that provides the best overall service quality.

Objective
Function($)

Service
rate

Wait
time
(min)

Fleet status / total time Comp.
time
(s)S D P R

L5 -30.0 52.6% 2.81 14.6% 3.6% 74.4% 7.4% 2.21
L25 -101.2 44.1% 2.93 12.0% 3.0% 77.4% 7.5% 2.37

P5 188.5 79.1% 2.39 21.1% 5.7% 57.7% 15.6% 2.34
P25 185.7 78.8% 2.43 21.0% 5.7% 58.7% 14.6% 2.71

Table 5-3: Average of the last 50 iterations of the trainingset for the objective function, service
rate, computation time and different fleetstatus: Driving to pickup (D), Serving passenger (S),
Parked (P) and Repositioning (R).

Master of Science Thesis M.G. Vinks

42 Case study

5-2-2 Parameters of PLAVI

This section is dedicated to exploring different configurations of learning parameters of the
PLAVI algorithm. We first evaluate the effect of pure W and Y strategies, as explained
increfsec: arti. Furthermore, we evaluate different configurations of the value update routines,
SPAR and CAVE. Lastly, we consider the horizon and discount factor.
In general, we seek a parameter configuration that minimises repositioning and maximises the
objective function. We consider the time spent repositioning to evaluate the stability of the
learning. As initially seen in Fig. 5-2, the objective function reaches the optimal value within
the first few iterations, while the number of repositioning tasks is still growing after about
50 iterations. Slow convergence rates lead to longer training and are generally undesirable if
fast alternatives are available.

Learning rate

Learning rates can be regarded as a soft science of ADP [32]. In this work, we found a constant
learning rate to work well. In Fig. A-3, we show the effect on the convergence rate of different
constant learning rates. We keep the learning rate constant throughout all experiments and
use α = 0.1, as it is a common practice.

Backlogged Trips

First, we evaluate if backlogged trip duals can be used to generate an approximation of the
value function. We denote the different strategies by W0, W1, W2, where W1 sets backlogged
dual parameter W = 0. We maintain the monotonicity of the slopes using SPAR. The
respective learning curves are given in Fig. 5-3.

0 50 100 150 200 250 300
Iteration

120

140

160

180

200

220

240

Ob
je
ct
iv
e
fu
nc

tio
n
[$
]

W0
W1
W2

(a) The objective function for different con-
figurations of W .

0 50 100 150 200 250 300
Iteration

2

4

6

8

10

12

Re
po

sit
io
ni
ng

 ti
m
e
[%

]

W0
W1
W2

(b) The percentage of total time spend repo-
sitioning for different configurations of W .

Figure 5-3: Learning curves of W .

In this particular network, only the slope at quantity y = 0 gets updated, i.e., only at empty
nodes trips get backlogged. The value function is empty except for quantity y = 0. The

M.G. Vinks Master of Science Thesis

5-2 Case study A: Linear and piece-wise linear approximations 43

algorithm sends vehicles to empty nodes. In order to sample values, only previously empty
nodes can be visited during the entire horizon. The algorithm issues repositioning tasks to
avoid exceeding this quantity.

Of the three strategies depicted in Fig. 5-3, W0 is superior in both metrics. This is logical since
W1 and W2 generate duals for previously backlogged trips. All strategies incite rebalancing
to nodes, where we previously experienced sub-optimal trip coverage. However, except for
W0, the strategies also promote sub-optimal trip coverage with additional value updates. In
an optimal situation, we do not backlog trips. Therefore, we consider strategies based on
backlogged trips with no previous delay and hence W0, in the rest of the case studies.

Upper bound

We empirically set the upper bound of the slopes for the previous best strategy W0. Since
we work with duals based on missed trip revenue, the values of the slopes have a natural
upper bound of the highest revenue trip. We previously limited the slopes by vmax = 5 and
now consider different upper bounds on a logarithmic scale. From Fig. 5-4, we observe that
an upper-bound of vmax = 0.5 results in less repositioning and favourable performance. We
therefore set vmax = 0.5 as a new upper-bound.

0 50 100 150 200 250 300
Iteration

100

125

150

175

200

225

250

Ob
je
ct
iv
e
fu
nc

tio
n
[$
]

V0.05
V0.5
V5
V50

(a) The objective function for different con-
figurations of Vmax.

0 50 100 150 200 250 300
Iteration

0

2

4

6

8

10

Re
po

sit
io
ni
ng

 ti
m
e
[%

]

V0.05
V0.5
V5
V50

(b) The percentage of total time spend repo-
sitioning for different configurations of Vmax.

Figure 5-4: Learning curves for different Vmax.

Value of staying

Next, we consider a strategy based on the value of staying. Once the quantity exceeds our
threshold, i.e., y > Y , we assume that this vehicle will stay at this position and update the
value of staying for this node. For node i and Y 1, if xr

iit > 1, meaning that there are at
least two idle vehicles within region i at time t, we generate a value of staying dual vs(y) for
quantity y = Rit, as in Eq. (3-31) If xr

iit ≤ 1, which means one or no idle vehicles are present
within region i at time t, no duals are generated. We present four strategies, Y 1, Y 1∗, Y 2, Y 3

Master of Science Thesis M.G. Vinks

44 Case study

where Y 1∗ denotes a special variant of Y 1 where vmin has not been set and the value function
is negatively unbounded.

0 50 100 150 200 250 300
Iteration

100

125

150

175

200

225

250

275

Ob
je
ct
iv
e
fu
nc

tio
n
[$
]

Y1
Y1*
Y2
Y3

(a) The objective function for different con-
figurations of Y .

0 50 100 150 200 250 300
Iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Re
po

sit
io
ni
ng

 ti
m
e
[%

]

Y1
Y1*
Y2
Y3

(b) The percentage of total time spend repo-
sitioning for different configurations of Y .

Figure 5-5: Learning curves of Y .

The value of staying pushes cars away instead of attracting them. It creates negative duals
based on the cost of parking. Throughout the learning process, duals are generated at over-
crowded nodes and the value of staying at crowded nodes declines. For the strategy Y 1, all
nodes get the desired quantity of 1. For y > 1, duals are generated and these make a quantity
of y > 1 undesirable.
Strategy Y 1∗ highlights what happens if the value function can grow negatively unbounded.
The penalties of exceeding the desired quantity y = 1 grow unbounded. Therefore, the
algorithm does not let cars idle at nodes and executes additional repositioning tasks to avoid
value function sample of quantity y > 1, as highlighted in Fig. 5-5b. While it has the best
performance at later iterations, the number of repositioning tasks is still growing after 300
iterations. It indicates that the slopes are still changing and thus we do not have a stable
algorithm. More iterations could potentially lead to convergence, however the slopes could
also keep growing negatively and convergence will never occur.

CAVE

We have considered the separate dual strategies of W and Y . Both suffer from only being able
to update a part of the value function. We also use the alternative update routine CAVE, as
described in Section 3-2-3. To maintain monotonicity, we solve the same projection problem,
namely Eq. (3-21), with additional slope updates. CAVE updates the value function over a
wider interval, which over the course of iterations declines to δmin.
The main parameter of CAVE δ is linked to the maximum resource quantity, in this instance
Rmax = 5, we choose our starting interval to be 20, 40 and 60% of Rmax. Which results in δ0
equal to 1, 2,and 3 respectively.
To update δ, we track the objective function, as in Eq. (3-28). In this case study, we set
δmin = 1 and K = 5. Since δmin = 1, for C1 the update interval is always δ = 1. For C2

M.G. Vinks Master of Science Thesis

5-2 Case study A: Linear and piece-wise linear approximations 45

Table 5-4: Overview of the CAVE parameters.

Parameter Description Base line value

K Minimum witdh update interval 5
δmin Minimum interval width δ 1
ϵ Objective function tracker 0.02
Wi Backlogged trips parameter W = i
Yi Value of staying parameter Y = i
Ci Cave initial interval width δ0 = i

and C3, δ gradually declines from 2 and 3 to 1 respectively, according to Eq. (3-28). We
summarise the parameters of CAVE in Table 5-4.

First, we combine strategies from between CAVE and backlogged trips duals. We denote
the strategy using W0 and C1, as W0C1. We additional combine W0 with C2 and C3
and depict their respective learning curves in Fig. 5-6. From Fig. 5-6a, we observe that the
boost in performance is quite significant for any CAVE strategy. Since each value function
update now updates slopes at a wider interval. The value function gets updated at a range
of quantities instead of just y = 0. The algorithm issues fewer repositioning tasks as can be
observed Fig. 5-6b.

We can now exceed the quantity y = 0 and sample a non-zero slope at y = 1 or even y = 2.
For this particular setup, the difference between all cave strategies is minimal.

Secondly, we evaluate configurations of CAVE C in combination with Y . We denote the
configurations Y 2, Y 2C1, Y 2C2 and Y 2C3. In contrast to the W strategies, implementing
CAVE for Y does not yield better performance. Since these strategies are based on congestion
avoidance, settings a wider update interval does not increase the performance as it would with
W strategies. Moreover, setting a wider interval works counterproductive. If we update the
first quantity y = 0 by means of a very wide interval with Y 2C3 then all larger quantities
y > 0 additionally get updated due to monotonicity of the value function. Overall, pure
strategies based on idle vehicles do not give adequate results. However, we employ them to
provide additional slope updates, which we further explore in Section 5-2-3.

Value horizon

In our algorithms, the horizon parameter serves a dual purpose. First, it dictates the max-
imum length a repositioning task can take up. The horizon limits the number of reachable
nodes. From Table B-1, we note that with the choice of HV = 9, only a few nodes have
less than 4 neighbours. As we increase the horizon, the number of neighbours will naturally
increase. Hence, vehicle have more repositioning options and can more easily repositioning
away from nodes with low values. Secondly, the horizon dictates the number of slopes any
decision will sample. At long horizons, slopes could become dominant in decision-making. To
elaborate, we want to avoid the situation where vehicles would rather stay idle than service
trips. The value function should not keep cars from their primary objective of servicing trips.
It is essential to find a combination of the horizon, discount factor and upper bound on the
slopes that avoids the value function being dominant in decision-making.

Master of Science Thesis M.G. Vinks

46 Case study

0 50 100 150 200 250 300
Iteration

150

175

200

225

250

275

300

325

350

Ob
je
ct
iv
e
fu
nc

tio
n
[$
]

W0
W0C1
W0C2
W0C3

(a) The objective function for different hori-
zons.

0 50 100 150 200 250 300
Iteration

2

4

6

8

10

Re
po

sit
io
ni
ng

 ti
m
e
[%

]

W0
W0C1
W0C2
W0C3

(b) The total time spend repositioning for
different horizons.

Figure 5-6: Learning curves of SPAR and CAVE for W0.

0 50 100 150 200 250 300
Iteration

100

125

150

175

200

225

250

275

Ob
je
ct
iv
e
fu
nc

tio
n
[$
]

Y2
Y2C1
Y2C2
Y2C3

(a) The objective function for different con-
figurations CAVE.

0 50 100 150 200 250 300
Iteration

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Re
po

sit
io
ni
ng

 ti
m
e
[%

]

Y2
Y2C1
Y2C2
Y2C3

(b) The total time spend repositioning for
different horizons.

Figure 5-7: Learning curves of SPAR and CAVE for Y 2.

We have summarised our results for different horizon in Fig. 5-8 with learning configuration
C2W0Y 2. Starting with the objective function in Fig. 5-8a, we mark a small boost in perfor-
mance when we consider a horizon beyond 9. However, the differences in maximum objective
between horizons 12 to 21 are meagre. H12 does have more dips and peaks in the objective
function. The longer horizons produce more stable learning and retain less variance between
iterations. Furthermore, if we focus on H15,H18 and H21, we observe that the objective of
H21 is consequently lower than H15 or H18. For the objective function, H15 and H18 rank
the highest in terms of stability and maximum value. If we now additionally consider the time
spend repositioning of Fig. 5-8b, the difference between horizons is more apparent. First, the
difference between H9 and H12 and H12 and H15 is roughly equal, while the gap between
the longer horizons is much smaller. Longer horizons schedule more repositioning tasks, yet

M.G. Vinks Master of Science Thesis

5-2 Case study A: Linear and piece-wise linear approximations 47

the increase gets damped as we consider longer horizons.

Based on these two metrics, both H12 and H15 are valid options. H12 is more efficient with
repositioning though H15 is more stable at the cost of 4% more repositioning.

0 50 100 150 200 250 300
Iteration

240

260

280

300

320

340

360

Ob
je
ct
iv
e
fu
nc

tio
n
[$
]

HV09
HV12
HV15
HV18
HV21

(a) The objective function for different dis-
count factors.

0 50 100 150 200 250 300
Iteration

2

4

6

8

10

12

14

16

Re
po

sit
io
ni
ng

 ti
m
e
[%

]

HV09
HV12
HV15
HV18
HV21

(b) The total time spend repositioning for
different discount factors.

Figure 5-8: Learning curves of CAVE for different horizons Hv

Discount factor

The general ADP community puts the discount factor between 0.5 and 1, where the best
value should be found empirically. In our application, the effect of the discount factor is vital
in decision-making since it affects the value of every slope within the horizon.

We show the effect of different discount factors on the objective function and repositioning
in Fig. 5-9. For this experiment, we used a horizon of HV = 15 to have the most stable
performance.

From Fig. 5-9a, we see that γ = 0.6 and γ = 0.7 are insufficient to provide a proper reposi-
tioning strategy. Logically, increased discounting should decrease repositioning. The discount
of the value function at the end of the horizon is significant to incite long repositioning tasks.
The value of the slopes vit′t of large t′ is too small, i.e., at t′ = t + 9, the discounts of slope
vit′t with γ = 0.6 and γ = 0.9 are 0.017 and 0.39 respectively. The discount of 0.017 is not
enough to induce repositioning tasks, except for exceptionally large slopes. Since the slopes
have an upper-bound of vmax = 0.5, discounting with 0.6 results in myopic behaviour.

At the other end of the spectrum, we can consider no discounting with γ = 1. From Fig. 5-
9a, we observe no discounting offers about the same level of objective function compared to
γ = 0.8. Yet, as seen in Fig. 5-9b with γ = 1 cars spend about three times as much time
repositioning.

In general, we observe that a discount factor in the range of γ = 0.8 to γ = 0.9 offers the
best-combined results in terms of repositioning and objective function.

Master of Science Thesis M.G. Vinks

48 Case study

0 20 40 60 80 100 120 140
Iteration

150

200

250

300

350

Ob
je
ct
iv
e
fu
nc

tio
n
[$
]

0.6
0.7
0.8
0.9
1.0

(a) The objective function for different dis-
count factors.

0 20 40 60 80 100 120 140
Iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Re
po

sit
io
ni
ng

 ti
m
e
[%

]

0.6
0.7
0.8
0.9
1.0

(b) The total time spend repositioning for
different discount factors.

Figure 5-9: Learning curves of W0Y 2C2 with horizon HV = 15 for different discount factors γ

5-2-3 Verification

We verify the findings of the training iterations on the test data set. To increase applicability,
we modify the fleet size and demand factor. The goal is to provide more insight into networks
with fleet abundance, as repositioning is more sensible in these networks.

We increase the demand resize factor by 25%, to 0.25 and the fleet size to 40. Based on the
results of previous section, we set Hv = 15 and γ = 0.8. We verify with backlogged trips
W = 0 and vary Y and the update routine between SPAR and different CAVE configurations
denoted by C. The results are summarized in Table 5-5.

First, we note the difference between W0 with different update routines C. The routine with a
W0C2 works best with just backlogged trip slopes W0 for service rate, objective function and
waiting time. For pure W strategies, the difference between interval width of C is minimal,
which is consistent with our training iterations of Fig. 5-6a. Since W0C3 and W0C2 only
update from backlogged trips, slopes updated in early iterations are unreachable once the
update interval has declined back to δ = 1.

We now introduce the additional value update with Y . We focus on the SPAR update routine
results in Table 5-5, denoted with C0. If we consider the five different SPAR strategies.
W0Y 3 has the best waiting time and least time spent repositioning while W0Y 2 performs
best in terms of objective function and service rate. The drop in performance at W0Y 0
stands out and is due to repositioning to avoid vehicle idling. Updates for every idle vehicle
in combination with SPAR make idling undesirable. Hence, additional repositioning and
decreased performance.

Next, we introduce CAVE as an update routine. Through the wider update interval, slopes
at quantity y = 1 can be updated by both backlogged trips and idle vehicles. We obtain a
more rounded value function thanks to CAVE. Opposite to our previous findings with SPAR,
updating for every idle vehicle,Y 0 works well for CAVE strategies. C2W0Y 0 and C3W0Y 0
are the best strategies for all metrics, except for time spend repositioning.

M.G. Vinks Master of Science Thesis

5-2 Case study A: Linear and piece-wise linear approximations 49

Table 5-5: Results of learning configurations on the test data set. Performance indicators
consist of the average results over 35 testing instances. Fleet status: Driving to pickup (D),
Serving passenger (S), Parked (P) and Repositioning (R)

Duals CAVE Objective
Function

Service
rate

Wait
time
(min)

Fleet status / total time Comp.
time
(s)W Y C ($) S D P R

0 - 0 456.3 93.0% 2.12 23.5% 6.5% 55.4% 14.6% 4.78
0 0 0 409.5 90.3% 2.21 22.8% 6.1% 53.1% 18.0% 14.33
0 1 0 454.0 93.0% 2.09 23.5% 6.5% 55.1% 15.0% 8.65
0 2 0 464.7 93.8% 2.10 23.7% 6.5% 55.1% 14.7% 6.24
0 3 0 462.7 93.3% 2.06 23.6% 6.4% 55.4% 14.6% 4.81

0 - 1 497.0 95.2% 1.97 24.1% 6.6% 58.4% 10.9% 4.88
0 0 1 479.6 93.7% 2.02 23.7% 6.7% 59.9% 9.7% 18.95
0 1 1 479.9 94.5% 2.03 23.9% 6.6% 56.3% 13.1% 14.49
0 2 1 499.5 95.6% 1.98 24.2% 6.7% 57.6% 11.6% 7.15
0 3 1 497.8 95.4% 1.96 24.2% 6.6% 58.2% 11.0% 6.33

0 - 2 506.1 95.8% 1.95 24.3% 6.6% 58.3% 10.8% 5.32
0 0 2 522.6 96.8% 1.87 24.6% 6.6% 55.3% 13.5% 9.80
0 1 2 494.8 95.3% 2.01 24.2% 6.7% 55.9% 13.3% 15.34
0 2 2 497.3 95.3% 1.95 24.1% 6.7% 58.5% 10.8% 9.41
0 3 2 509.9 96.0% 1.91 24.3% 6.7% 57.9% 11.2% 6.38

0 - 3 502.5 95.4% 1.95 24.2% 6.7% 58.7% 10.4% 5.29
0 0 3 521.7 96.8% 1.85 24.5% 6.6% 55.4% 13.6% 7.83
0 1 3 520.6 96.7% 1.86 24.6% 6.6% 55.1% 13.7% 8.28
0 2 3 499.0 95.6% 1.99 24.2% 6.7% 57.8% 11.3% 11.42
0 3 3 506.9 95.8% 1.94 24.3% 6.7% 58.6% 10.5% 8.11

We look at all update routines and observe a general trend when we introduce Y , the total
time repositioning jumps up and goes down once we increase Y . However, this trend does
not hold for C1. At Y 0, the repositioning time goes down and spikes up again at Y 1. Due to
these kinds of inconsistencies in the results, we cannot find set a general rule for finding the
best Y and CAVE configuration.

5-2-4 Summary

In this first case study, we gradually improved the performance of our repositioning strategy.
Based on our results for piece-wise and linear value function approximation, we conclude that
linear function approximations result in poor quality of service in a simple attribute space,
which is in line with Section 3-2-2. Although, their faster run-time might make them attractive
to initialise piece-wise approximation where we switch to piece-wise linear approximation after
a set number of iterations, as previously observed in Topaloglu et al. [20].
We empirically evaluate several PLAVI strategies. We set ad-hoc upper and lower bounds
to the value function to limit the total repositioning time. The value function is updated

Master of Science Thesis M.G. Vinks

50 Case study

using backlogged trip duals. The results indicate that CAVE update routine offers the most
potential. Additional slope updates generated by idle vehicles, can offer a boost in perfor-
mance. We show that different configurations of CAVE and slope update provide adequate
repositioning strategies. To conclude, the optimal configuration of the learning parameters
depends on the demand and fleet configuration.

5-3 Case study B: Combining the horizon through value functions

In this case study, we explore combining ADP and MPC. From our findings in Case study
A, we keep the previous lower and upper bounds and set the discount factor γ = 0.9. We
explore different configurations of ADP, MPC and hybrid horizon on a fleet size of 25 and
demand resize factor of 0.2.

Prediction horizon

For our MPC algorithm, we evaluate two different forecasting configurations. We generate
trips from our data set with a resize factor of 0.2. For our standard MPC, we generate an
additional set of trips to use as forecasts. Additionally we provide the exact trip demand to
the MPC to serve as an upper bound, denoted by (.)∗ in Table 5-6.

Table 5-6 summarises the results of our experiments for six different horizon configurations.
First, let us focus on the performance of the realistic non-perfect forecasting algorithm. The
optimal performance is achieved by H12, closely followed by H15. With performance in
service rate, waiting time and time spend repositioning evenly matched between the two.
At longer horizons, general performance declines, whilst computation times rises. Hence, we
choose to not extend the horizon beyond 8.

If we now consider perfect demand forecasting, we observe the similar patterns. The perfor-
mance peaks at a horizon of 12 and then slowly declines as we increase the horizon. At H12∗

and H15∗, all performance indicators match closely, except for the computation time.

If we compare both MPC configurations across all horizons, we find that the objective func-
tion and service rate are consistently within a close margin of the perfectly known demand
performance. Logically, the average waiting time is significantly higher across all horizons.
The increased waiting time highlights the the main flaw of deterministic MPC: Errors within
the forecasting. These errors get disclosed once new trip requests arrive. Upon arrival, the
algorithm needs to fullfill previously unanticipated demand. It allocates nearby available ve-
hicles to serve the newly arrived trips at any time step within the horizon, which takes time
and additional repositioning. Hence, the average waiting time and time spend repositioning
rise.

Value horizon

In Section 5-2-2, we looked at the effect of the value horizon during the training phase.
We now consider the trained value function on the test data. We ran the best performing
configuration of W0Y 0C3 of our parameter validation study, see Section 5-2-2. We exclude

M.G. Vinks Master of Science Thesis

5-3 Case study B: Combining the horizon through value functions 51

the horizon of 3 from our experiments due to the minimum travel times between nodes in the
network, see Table B-1. Hence, with a horizon of 3, cars can not be rebalanced. For a horizon
of 6, we used the trained value function of HV 9.

The results of Table 5-6 are generally in line with the results from Fig. 5-8. The objective
function is pretty similar for all horizons considered in Fig. 5-8, except that HV 12 is slightly
higher then HV 15 and HV 18. For the time spend repositioning, both Fig. 5-8 and Table 5-6
follow the same trend: the longer the horizon the more time is spend repositioning.

A great attribute of the pure ADP strategies is the low average waiting time. Across all
horizons, it is comparable to perfect MPC. However, we observe that the waiting time
goes up as we increase the value horizon beyond HV 12. The value function incites additional
repositioning at HV 15 and HV 18, as the time spend repositioning is over 20%. This behaviour
is undesirable since it differs from the primary objective of servicing ride request. Especially,
since cars are unavailable for new decisions while repositioning.

Hybrid horizon

In our hybrid configuration, we like to look at a range of value horizon HV and prediction
horizon H. However, as in the previous section, training a multi-period value function with a
really short value horizon was infeasible. Therefore, in our hybrid configuration whenever we
use a value horizon of 3 or 6, it utilises the trained multi-period value function trained with
a different value horizon, i.e., HV 9.

First, we focus on the light blue rows of Table 5-7. We consider a short prediction horizon
of H3 and utilise the ADP algorithm as a long term planner. For each configuration, we
observe a boost in performance in both objective function and service rate while maintaining
a low average waiting time. Furthermore, the time spend repositioning drops significantly
about 4% to 5% depending on the configuration. These results indicate that the combined
MPC and ADP has great merit from the perspective of pure ADP. The short MPC is effective
at reducing over repositioning. The forecasted demand occupies part of the available fleet.
Therefore, the value function is now sampled by a smaller proportion of the fleet and issues
less repositioning tasks.

Secondly, we consider all configurations with a total horizon of 12 in Table 5-6. At first glance,
all configurations show merit. Depending on the performance indicator, we would choose pure
MPC for maximum service rate and objective function while opting for pure ADP for minimal
waiting and computation time. Our hybrid horizon algorithm acts a gold mean for all quality
indicators. The configuration of HV 3H9 offers an excellent alternative to conventional MPC.
At the cost of 0.01% of service rate, it decreases of the average waiting time by 6.2%. As we
then increase the value horizon, the hybrid algorithm starts to behave similar to ADP. At
the shortest MPC horizon, HV 9H3 offers a decrease of 19.1% in average waiting times at the
cost of 3% service rate compared to H12 Compared to ADP, H3V 9H3 increases the revenue
by 3% by less time repositioning.

For the configurations with a total horizon of 15 in Table 5-6, we observe that the best
performance is achieved with the hybrid configuration HV 3H12. It surpasses conventional
MPC and ADP in all three quality of service indicators. We again observe a trend, where as
we increase the value horizon the hybrid configuration starts to behave similar to ADP. At

Master of Science Thesis M.G. Vinks

52 Case study

HV 6H9, we observe at an inconstancy in this trend. The service rate and objective at this
configuration take a small dip.

Lastly, at configurations with a total horizon of 18 in Table 5-6. Three hybrid configurations
stand out, marked in grey in Table 5-6. All three offer a similar quality of service, however
HV 9H9 takes the crown in computational efficiency. For both ADP and MPC, performance
drops at this total horizon, while the hybrid configurations still offer competitive quality of
service.

5-3-1 Conclusions

In this second case study, we examined different configurations of horizon based on MPC,
ADP and MPC-ADP. In general, MPC configurations have relatively long average waiting
times and high computation times, while the objective and service rate are high. ADP
configurations have a general low average waiting time and computation time, at the cost of
the service rate and objective function. Our hybrid algorithm was competitive across a range
of horizons in a range of configurations.

The best performance was achieved for ADP and MPC at a horizon of 12. At this horizon, our
hybrid algorithms offer a significant decrease in waiting time for a small loss in service rate.
At the horizon of 15 and 18, our hybrid algorithm offered the most competitive solution for
all service quality indicators. Furthermore, the optimal hybrid strategies can be computed
within 70% of the time allocated for conventional MPC. To conclude, within the current
network a hybrid ADP and MPC repositioning strategy provides promising results in terms
of the general quality of service and computation time.

M.G. Vinks Master of Science Thesis

5-3 Case study B: Combining the horizon through value functions 53

Table 5-6: Results of ADP, MPC and hybrid configurations corresponding to Case Study B.
The first three columns denote the horizon configuration, where the first column denotes the
total horizon used, the second and third column the value and prediction horizon respectively.
Performance indicators consist of the average results over 35 testing instances. Fleet status:
Driving to pickup (D), Serving passenger (S), Parked (P) and Repositioning (R).

Horizon
configuration Objective

Function
Service
rate

Wait
time
(min)

Fleet status / total time Comp.
time
(s)TotalADP MPC ($) S D P R

- 3 144.4 70.9% 2.26 20.7% 6.3% 72.0% 1.0% 14.95
3 - 3∗ 142.8 70.4% 2.21 20.7% 6.3% 72.3% 0.7% 13.78

6 - 171.8 74.1% 2.29 22.2% 6.5% 66.0% 5.4% 1.75
- 6 297.9 90.4% 2.43 26.2% 7.2% 59.9% 6.9% 29.426
- 6∗ 328.1 91.4% 2.10 26.7% 7.5% 61.2% 4.7% 27.73

9 - 306.9 91.1% 2.11 26.2% 7.2% 54.5% 12.1% 3.35
- 9 342.3 95.5% 2.58 28.1% 8.0% 55.8% 8.2% 50.64
- 9∗ 378.9 97.4% 2.08 28.2% 8.2% 58.1% 5.5% 46.69
3 6 333.4 94.9% 2.29 27.3% 7.5% 52.8% 12.5% 17.70

9

6 3 316.8 92.4% 2.12 26.5% 7.2% 55.2% 11.2% 9.90

12 - 321.5 93.3% 2.07 26.8% 7.3% 48.2% 17.8% 4.62
- 12 354.1 96.8% 2.57 28.3% 8.1% 55.7% 8.0% 87.67
- 12∗ 386.2 98.1% 2.10 28.4% 8.3% 58.3% 5.1% 90.31
3 9 349.0 96.7% 2.41 27.8% 7.8% 53.8% 10.7% 43.05
6 6 343.9 96.0% 2.32 27.6% 7.6% 51.3% 13.5% 23.04

12

9 3 331.5 93.8% 2.08 26.9% 7.2% 52.1% 13.8% 13.70

15 - 308.4 92.4% 2.16 26.6% 7.2% 45.9% 20.3% 6.45
- 15 350.5 96.8% 2.57 28.0% 8.0% 56.1% 8.0% 98.26
- 15∗ 384.9 98.0% 2.13 28.4% 8.3% 58.2% 5.1% 118.17
3 12 357.2 97.3% 2.46 28.0% 8.0% 55.5% 8.6% 66.76
6 9 322.2 93.1% 2.35 26.8% 7.4% 56.0% 9.8% 25.52
9 6 339.3 95.6% 2.31 27.5% 7.4% 50.8% 14.3% 33.00

15

12 3 332.8 94.1% 2.13 27.1% 7.2% 51.1% 14.6% 15.94

18 - 307.5 91.6% 2.21 27.0% 7.4% 44.7% 20.9% 8.22
- 18 346.1 96.2% 2.63 28.2% 8.0% 55.3% 8.5% 119.35
- 18∗ 377.5 97.6% 2.16 28.2% 8.2% 58.1% 5.6% 192.16
3 15 351.9 97.1% 2.53 28.0% 8.0% 55.9% 8.2% 103.40
6 12 353.3 97.0% 2.46 27.9% 7.9% 55.2% 9.1% 73.54
9 9 350.0 96.7% 2.39 27.7% 7.8% 52.8% 11.7% 45.82
12 6 341.8 95.9% 2.32 27.6% 7.5% 50.3% 14.7% 33.74

18

15 3 327.0 93.4% 2.11 26.8% 7.2% 50.8% 15.3% 20.89

Master of Science Thesis M.G. Vinks

54 Case study

5-4 Case study C: Manhattan network

In this case study, we evaluate which type of repositioning strategy can provide the best
service for the Manhattan network. We first evaluate the two strategies along a set of horizons
separately and then consider the mixed results. To account for increased network size, we
increased the maximum vehicle per region from 5 to 10, thus Rmax = 10.

MPC

For our MPC algorithms, we once again look at the different horizons. In Table 5-7, we
summarised the results of our experiments.

For the first three horizons, namely 5, 10 and 15, we computed both types of forecasting
setups. (.)∗ again denotes the upper bound of MPC, obtained by using perfect knowlegde
of the demand over the prediction horizon. The forecast for realistic MPC is obtained from
a different sample of resized demand data. We note that in this network, the difference in
performance between the controllers is more substantial than in our previous case study. In
Table 5-6, the objective function for H15 was 91.1% of the upper bound, while in this network
it is 85.5%.

Within the network, the computational burden of MPC becomes evident, see the last column
of Table 5-7. For a prediction horizon of H = 15, the computation time exceeds the simulation
time, i.e., 85 minutes. When we further increase the horizon to 20 and 25, the computational
time explodes. Whereas H15 is nearly real-time realisable, H20 and H25 far exceed the
available computational time with about 3 and 6 times respectively.

Furthermore, if we compare the performance across all horizons, we observe that H15 provides
the best quality of service. At H20, the time repositioning and waiting time are slightly lower
then at H15, however they do not make up for the dip in objective function and service rate.
Performance wise H25 is evenly matched to H10, although H25 requires a factor of 15 in
computation time. To preserve time, we choose not to extend the horizon to H30.

In general, our results indicate that forecasting errors have a more significant impact on
performance in this bigger network. Furthermore, increasing the horizon increments the effect
of error forecasting further, resulting in degrading performance. Lastly, at longer horizons,
the MPC is not real-time realisable.

ADP

We compute the value function using artificial duals, as introduced in Section 3-2-4. The
two dual parameters are W and Y . In Section 5-2, we explored the effect on the learning
curves and for this case study, we compute the slopes using W = 0 and Y = 0. Next, we
choose the width of our update routine CAVE, as explained in Section 3-2-3. We maintain the
parameters of Table 5-4 and choose to δ0 = 0.6 ·Rmax, which we denote as C6. To summarise,
we denote the learning strategy as W0Y 0C6 and train Algorithm 2 for a 100 iterations.

Fig. 5-10 shows the respective learning curves for the objective function and repositioning time
for different value horizons. We include shorter horizons in Fig. 5-10 to showcase the leaps

M.G. Vinks Master of Science Thesis

5-4 Case study C: Manhattan network 55

0 20 40 60 80 100
Iteration

2000

3000

4000

5000

Ob
je
ct
iv
e
fu
nc

tio
n

HV12
HV15
HV20
HV25
HV30
HV9

(a) The objective function for different con-
figurations of HV .

0 20 40 60 80 100
Iteration

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Re
po

sit
io
ni
ng

 ti
m
e
[%

]

HV12
HV15
HV20
HV25
HV30
HV9

(b) The total time spend repositioning for
different configurations of HV .

Figure 5-10: Learning curves for different HV in the Manhattan network.

in performance and repositioning time between horizons. For the our testing simulations, we
exclude these short horizons from the results.

For ADP configurations in Table 5-7, we observe results that are in line with our previous case
studies. As we increase the horizon, the time spend repositioning grows. In this new network,
the performance seems to stagnate less at longer horizons. From Table 5-7, we observe that
HV 30 provides the best quality of services for all three metrics.

The main strength of the value based solutions is the average waiting time, as apparent from
sixth column of Table 5-7. For all horizons, ADP services at least 80% of the demand with
the shortest waiting times.

At the longest horizon HV 30, the computation time of a single iteration exceeds 20minutes.
Compared to MPC, 20 minutes is relatively fast, however for ADP we have to take into
account the training iterations. It is common to train a value function for at least a hundred
iterations. To compute horizons beyond 30, would require more then two days of training
time. We therefore choose not to extend the horizon beyond 30. Additionally, we note the
resemblance between Fig. 5-8 and Fig. 5-10. We sense that extending the horizon further
would not be worth the added computational burden. Extensive learning parameter tuning,
as in Section 5-2-2, is more reasonable for improvements in quality of service.

Hybrid

First, we consider the configurations of total horizon of 15 in Table 5-7. For conventional
MPC, this configuration H15 is optimal however it computes just outside the allocated time.
If we shorten of the MPC by 10, we can decrease the computational burden by a factor 3.9.
This configuration, HV 10H5, additionally reduces the waiting time by 18%. On the other
hand, it transports to 2% less customers. This trade off is reflected by the objective function,
which lie very close together. Both these strategies are dwarfed by HV 10H5, which provides
better quality of service for all metrics in about half the computational time. It services 4.5%

Master of Science Thesis M.G. Vinks

56 Case study

more customers at a reduced waiting time of 5.2%. Next, we consider the golden prediction
counter parts for horizon 15. The hybrid algorithms operate within the 90% of the optimal
performance, while conventional MPC only performance within 85% margin. Shortening the
horizon appears to reduce the effect of prediction errors on performance.

For next set of rows in Table 5-7, where the total horizon is 20, it is a similar story as the
previous section. We can sacrifice a loss in service rate for shorter waiting times. For the
best service rate, HV 10H10 is the best choice, while for the shortest waiting time and fast
solutions, HV 20 is the best option. For a middle ground between the previous two, H5H15
is a valid option. Both hybrid options, HV 10H10 and HV 15H5, are solid, especially since
they both operate with 97% margin of their perfect predictions counter part.

At the longer horizons of 25 and 30, we choose to only include short MPC horizons. At these
horizons, we observe a stagnation of performance in terms of objective function for our hybrid
algorithms. The difference between these horizons are marginal at best for both perfect and
non-perfect forecasting MPC. Of course, the shorter total horizon has an advantage in terms
of computational complexity.

The hybrid strategy HV 20H5 is best strategy that utilises the multi-period value function as
long term planner and has a short prediction horizon. Overall, if we disregard the total horizon
and look for the high quality repositioning algorithm in Table 5-7. The optimal realisable
configuration for service rate and objective function is HV 10H10. While for waiting time,
optimality is achieved by a pure value based strategy HV 30.

Fleet activity

To provide further insight into fleet activity over a single iteration, we plot the activity of
each vehicle in Fig. 5-11 over the course of a simulation for different configuration of total
horizon 15. Each configuration receives the exact same demand scenario from the 7th of June.
Furthermore, we initialise the vehicles at the same random positions within the street-level
network across all configurations. The simulation consist of a total of 170 steps and at step
20 the first trip requests arrive. Until at step 140, the last requests enter the network and the
terminations period starts.

From Fig. 5-11, Fig. 5-11a immediately stands outs compared to Figs. 5-11b to 5-11d. The
ADP order over 75% of the fleet to repositioning within the first 20 steps, while in Figs. 5-11b
to 5-11d begin reposition activity later and in smaller proportions. However, after the initial
peak in repositioning activity, the ADP repositioning activity is significantly smaller during
the rest of the simulation.

An added bonus of the ADP is the strategic repositioning at the end of the simulation. Once
demand has subsided after 140 steps, the ADP still orders new repositioning tasks, while a
purely MPC strategy, see Fig. 5-11b, keeps all vehicles idle. With MPC, the vehicles end the
simulation at their last trip destination, while ADP provides last minute congestion avoidance
tasks.

M.G. Vinks Master of Science Thesis

5-5 Conclusions 57

Table 5-7: Results of ADP, MPC and hybrid configurations corresponding to case study C.
The first three columns denote the horizon configuration, where the first column denotes the
total horizon used, the second and third column the value and prediction horizon respectively.
Performance indicators consist of the average results over 7 testing instances. Fleet status:
Driving to pickup (D), Serving passenger (S), Parked (P) and Repositioning (R).

Horizon
configuration Objective

function
Service
rate

Wait
time
(min)

Fleet status / total time Comp.
time
(min)TotalADP MPC S D P R

5 - 5 1233.1 53.6% 2.70 26.5% 3.4% 67.6% 2.6% 12.73
- 5* 1372.9 53.7% 2.44 26.8% 3.4% 67.9% 1.8% 12.79

10 - 10 4361.6 81.4% 3.40 37.4% 4.8% 48.1% 9.7% 38.07
- 10* 4931.1 84.0% 3.00 38.3% 5.1% 48.5% 8.0% 36.39

15

15 - 4615.6 81.4% 2.40 35.6% 4.9% 45.5% 14.0% 5.04
- 15 5033.7 87.9% 3.49 39.1% 5.2% 44.4% 11.3% 97.40
- 15* 5869.7 92.1% 3.00 40.6% 5.6% 44.5% 9.3% 95.79
5 10 5654.0 92.4% 3.31 40.6% 5.5% 40.7% 13.3% 46.78
5 10* 6280.7 95.0% 2.82 41.4% 5.7% 41.5% 11.4% 45.87
10 5 5071.0 85.9% 2.88 37.9% 5.0% 44.7% 12.4% 24.87
10 5* 5591.3 87.9% 2.42 38.7% 5.1% 45.6% 10.6% 25.33

20

20 - 4788.5 82.9% 2.40 36.3% 5.0% 42.1% 16.7% 8.10
- 20 4887.7 86.0% 3.41 38.9% 5.0% 45.2% 10.9% 271.96
10 10 5732.5 93.2% 3.30 40.7% 5.5% 39.7% 14.1% 77.06
10 10* 5904.8 92.2% 2.90 40.6% 5.5% 43.7% 10.2% 77.15
15 5 5200.9 87.2% 2.91 38.3% 5.0% 43.5% 13.1% 52.10
15 5* 5249.8 84.9% 2.40 37.7% 5.0% 48.3% 9.0% 39.95

25

25 - 4793.5 83.1% 2.42 36.6% 5.0% 39.8% 18.6% 14.02
- 25 4445.2 81.9% 3.40 37.7% 4.8% 47.7% 9.7% 542.60
20 5 5291.0 88.0% 2.91 38.6% 5.1% 42.7% 13.7% 49.41
20 5* 5819.7 89.9% 2.51 39.6% 5.2% 43.3% 11.8% 50.24

30
30 - 5081.6 86.2% 2.36 37.0% 5.1% 37.2% 20.7% 20.32
25 5 5315.5 88.1% 2.93 38.7% 5.1% 42.4% 13.8% 67.62
25 5* 5891.3 90.9% 2.50 39.7% 5.2% 42.7% 12.4% 70.19

5-5 Conclusions

In this chapter, we evaluated the merits of repositioning strategies based on value functions,
MPC and combinations of the aforementioned. We performed street-level ride-hailing simu-
lations across two realistic street-level networks, based in the city of New York. We evaluated
the quality of service through the objective function, service rate and waiting time. Further-
more, we examined the time spend repositioning and computation time to analyse the fleet
occupancy behaviour and computational burden of our algorithms respectively.

In the first study, we focused on learning a value function. We compared two approximation

Master of Science Thesis M.G. Vinks

58 Case study

(a) The fleet activity of HV 15H0. (b) The fleet activity of HV 0H15.

(c) The fleet activity of HV 5H10. (d) The fleet activity of HV 10H5.

Figure 5-11: Overview of fleet activity for demand scenario of Tuesday June 7th

techniques based on linear and piece-wise linear functions. Based on the initial results, we
continued with piece-wise linear approximation. We experimented with novel value update
strategies based on backlogged trips and the value of staying. To maintain the monotonicity
of the value function, we experimented with the update routines known as CAVE and SPAR.
Our validation and initial results showed that a value function can be learned by exploiting
the backlogged trips. To increase performance, we relaxed the update width of value function
through CAVE. The combination of CAVE and backlogged trips produced fast converging
and high-quality value functions.

One of the flaws of backlogged trips was addressed by additionally computing the value of
staying. Once a value function had converged and provided high-quality service, the number
of backlogged trips was greatly reduced. Hence, updates of the value function became sparse.
To provide additional value updates, the value of staying could be computed. The value
function was then updated more frequently and over a larger interval. These additional
updates provided slightly favourable performance in our test data simulations.

In our second case study, we started to compare ADP and MPC. In general, MPC offered

M.G. Vinks Master of Science Thesis

5-5 Conclusions 59

service to the largest groups of customers at relatively long waiting times. While value-
based strategies offered faster service to a smaller percentage of customers. At all horizons,
hybridisation of the horizon offered a middle ground between the two methodologies.

For optimal performance, we set the horizon to H12. At this horizon, hybrid horizons offered
two competitive alternatives to conventional MPC. The first option, decreased the waiting
time by 6.2% at the cost of servicing 0.01% fewer passengers. The second option, decreased
the waiting time by 19.1% at the cost of servicing 3% fewer passengers. Additionally, both
options can be computed 49.1% and 84.4% faster respectively.

While both ADP and the hybrid algorithm showed great initial results, the size of the net-
work was inadequate to provide widespread conclusions about our value function and hybrid
algorithm. Performance stagnated at longer horizons and the margins between horizon con-
figurations were insignificant.

In our last case study, we addressed the issues of network size. The street-level network
covered the entirety of Manhattan Island and the fleet size was increased to 400. The aggregate
network was scaled by over a factor of ten and now consisted of 192 regional centres. In this
Manhattan network, we performed large-scale ride-hailing simulations.

For conventional MPC, we encountered the two flaws of deterministic MPC. First, we ran
into the computational limit. The computation time required more time than available. For
horizons above 7.5 minutes, the conventional MPC solutions were not real-time realisable.
Second, performance dropped at horizons beyond 7.5 minutes due to forecasting errors. To
efficiently solve the combined matching and repositioning sequential decision-making problem,
MPC is not a valid option in large networks.

Piecewise-linear value functions showed promise in this larger network. First of all, the value
functions exhibited fast convergence rates. Second, they offered service with minimal waiting
time. Compared to MPC, customers had to wait 30% less time for transport. Contrarily,
the percentage of the total potential customers receiving this fast service was 6.5% smaller.
Lastly, the simulations took on average 94.8% less time to compute than MPC.

The hybrid strategies in our final case study again addressed both the computation time of
MPC and the subpar service rate of ADP. At peak performance, hybrid strategies offered
an increase of 4.5% in service rate and a decrease of 5.2% in the average waiting time over
conventional MPC, at roughly half the computational burden.

Master of Science Thesis M.G. Vinks

60 Case study

M.G. Vinks Master of Science Thesis

Chapter 6

Conclusion and discussion

ADP and MPC are state of the art fleet management strategies in shared mobility systems. In
this thesis, a hybrid ADP-MPC algorithm is proposed to decrease the computational burden
of MPC in MOD. We present two value function approximation algorithms based on linear
and piece-wise linear function. In the first case study, the two approximation algorithms
were compared and piece-wise linear approximation chosen for our hybrid algorithm. In the
second and third case study, MPC, ADP and our hybrid ADP-MPC algorithms were tested
across a range of horizon configurations on a realistic street-level network. In this chapter,
the research questions are answered, final conclusions are drawn and recommendations for
future work are given.

6-1 Conclusions

The main research question of this thesis was:

Can MPC and ADP be combined for computationally efficient rebalancing of
MOD ride-hailing services?

To answer the main research questions, we first cover the three sub-questions:

1. Can we capture the dynamics of ride-hailing into a MOD model? In this work, we first
analysed the ride-hailing process. The process consists of four core modules: pricing,
matching, routing and repositioning. We present a general shared mobility model that
incorporates all of these modules. We use a fixed pricing scheme for all trips request
and route vehicles over a realistic street-level network. We combine matching and
repositioning into a sequential-decision making problem. To reduce the computational
complexity, the problem is solved on an aggregated scale. The aggregated network
consists of a set of regional centres. Matching and repositioning decisions are determined
on an aggregate scale and subsequently assigned to individual trips and vehicles per

Master of Science Thesis M.G. Vinks

62 Conclusion and discussion

regional centre. While this aggregate model suffices for devising potential repositioning
and matching strategies, we acknowledge a few limitations of our model:

(a) Network Aggregation: Trips originating within a regional centre can only be pickup
by cars within the same regional centre.

(b) Repositioning: Cars cannot be interrupted while repositioning. Once a vehicle
enters its target region, it will instantly be available for a new task and remain idle
at the entrance node.

(c) Travel times: All travel times within the street and aggregate network are deter-
ministic and have a fixed length. In the aggregate network, all travel times are
determined from centre to centre while we simulate trips from door to door. When
we forecast trips and movements, the estimated travel time differs from the actual
travel time.

(d) Post-decision idling: To determine the number of vehicles at each node, we assume
that once a vehicle has finished its task it remains idle at its current position for
all time-step remaining in the horizon of the multi-period value function.

To summarise, our model captures the basic dynamics of ride-hailing under mild as-
sumptions.

2. Can we learn a value function for rebalancing operations in MOD networks? In short,
yes. While we cannot learn the exact value function due to the curse of dimensionality,
we learn a geographically separable approximation of the value function. We focused
on two approximation strategies based on linear and piecewise-linear functions. A key
insight for MOD was to use the slopes of the value function rather than the value
function itself. Section 5-2-1 showcased that piecewise-linear approximation works best
in simple attribute space. Therefore, we continued on piecewise-linear approximation.

When we introduced multi-period travel times, we included the arrival of cars into
the state set. Tracking vehicles is easy due to deterministic travel times. However, the
post-decision states created a problem for approximation of the value function. In short,
staying idle samples the slope of next time step while moving to a node samples slopes
further into the future. We titled this problem far-sight and addressed it with a novel
multi-period value function in Section 3-3.

The multi-period value functions adopts the idea to use the maximum repositioning
length as a horizon. The value of a decision is now the sum of all slopes within the
horizon starting from the post-decision state. The multi-period value function has two
defining properties. First, long trip requests can have a post-decision state beyond the
horizon and are thus not considered within the value function. Additionally, we assume
post-decision idling, i.d. vehicles stay idle for all time steps within the horizon after
their post-decision state. The value function works as a tool for measuring the optimal
fleet distribution, given the current state of available vehicles and vehicles finishing their
tasks within the horizon.

What can be learned from this type of constraint-value function? It is a computationally
cheap way to introduce non-myopic fleet repositioning. It could be generally applicable
in resource allocation problems or fleet management problems that need the value of

M.G. Vinks Master of Science Thesis

6-1 Conclusions 63

the current state of their resources within the near future. The type of value function
could easily be adapted to serve the broader type of inventory problems.
To obtain the slopes for piecewise-linear approximations, we presented two novel strate-
gies based on backlogged trips and idling cars. A key characteristic of piecewise-linear
value functions is that the slope is monotonically decreasing. To maintain monotonic-
ity, we used two different slope update routines, SPAR and CAVE. In Section 5-2, we
explored different configurations of update routines and slope updates.
We update the value function with the readily available information at each time step.
For linear approximation, dual variables are readily available as a product of optimi-
sation. However, for piecewise-linear approximation obtaining dual variables requires
additional computation. We proposed to exploit the post-decision demand vector and
idling vehicles.
The idea of exploiting the post-decision demand vector, i.e., unserviced trips, could be
more widely applicable to other algorithms using partial gradients. While we used it
to avoid computation of piecewise-linear duals, it might be applicable in settings that
need to obtain partial gradients where dual variables are not readily available. The
general notion of using the non-empty post-decision vector to help update the value
function has a wider appeal than just piecewise-linear slopes. It should work best in
settings where there is often a residual post-decision demand, i.d. excess demand or
tasks. Furthermore, the main benefit is in early iterations when the value function is
still developing and additional updates can accelerate learning.
Furthermore, we present a novel value update strategy based on idle behaviour. Once a
region contains a set quantity of idling vehicles, we assume that an extra vehicle would
also remain idle. We then compute the value of the additional vehicle and update the
value function. In practice, this strategy is complementary to the backlogged trips val-
ues. It mainly provides slope updates when there are no backlogged trips. It counteracts
the slope updates provided by backlogged trips and helps to balance the value function.

3. Can value function approximation be utilised as a terminal cost within the MPC frame-
work to provide real-time realisable rebalancing of MOD in networks? The motivation of
this work was to get insight into the possible merits of combined ADP and MPC in MOD
networks. We successfully reduced the computational burden of MPC by shortening the
horizon while utilising a value function as a long-term planner.
In case studies B and C, we evaluated the performance of our constraint horizon value
function within the MPC framework. Our hybrid algorithm included two horizon pa-
rameters and we experimented with different configurations. The combination of ADP
and MPC showed promise in both case studies. In study B, the size of the network
limited the insights into performance gains, which stalled at longer horizons for both
ADP and MPC. While in study C, we came across unrealisable MPC solutions.
In this work, we expressed quality of service with the following indicators: objective
function, service rate, and computation time. In our studies , ADP offers low average
wait and computation time while MPC offers decent objective function and service rate.
Our hybrid ADP-MPC algorithm performs as a golden mean of the strengths of both
methodologies. We make our final conclusions based on the merit of combined ADP
and MPC.

Master of Science Thesis M.G. Vinks

64 Conclusion and discussion

Our findings add to a growing corpus of research showing that combining ADP and MPC
has significant potential. With our hybrid configuration, we managed to significantly reduce
the computational complexity of repositioning in MOD services. However, all results were
generated under the previously mentioned assumptions, Items 1a to 1d, for our MOD model.
In spite of these assumptions, our results are notably positive. First, we developed a multi
period value function approximation that offers similar quality of service as conventional MPC
within 3% of the computation time across multiple horizons. Second, by shorting the horizon
of MPC our hybrid algorithm suffers less from forecasting errors and requires less computation
time. At long horizons, our hybrid algorithm performs favourably over MPC and ADP. In
case study C, compared to best conventional MPC, the hybrid algorithm serves 4.5% more
customers at a reduced wait time of 5.2%. To conclude, hybrid repositioning strategy has
shown great potential in MOD fleet management. In summary, the contributions of this
theses are as follows:

• In Section 3-2-4, we provide two novel methods to approximate the slopes of value
functions based on backlogged trips and the value of staying.

• As explained in Section 3-3, we adopt a multi-period value function that approximates
the value of all slopes within a rebalancing horizon.

• As shown in Section 4-2, we create a hybrid ADP-MPC algorithm by integrating the
multi-period value function into the framework of MPC as a terminal cost.

From an operational perspective, the choice of combined repositioning and matching might not
be suitable for every MOD system. Furthermore, most shared mobility services have more
complex operations than considered within this work. While our ADP or hybrid strategy
would work well as a repositioning module in the ride-hailing process, we recommend further
research to validate our findings on multi-period value functions and the use of value function
as terminal costs within MPC.

6-2 Future work

Looking forward, further research into the following topics could prove beneficial to the liter-
ature.

Piecewise-linear duals

In this work, we use artificial duals to update our approximation of the value function. It
would be interesting how real dual variables and artificial duals compare in terms of compu-
tational burden and performance. Since it requires additional computation to obtain the dual
variables of mixed-integer problems, artificial duals might turn out to be a computationally
cheap alternative.

M.G. Vinks Master of Science Thesis

6-2 Future work 65

Online learning

n this work, we ran offline training iterations and evaluated use a learned value function on test
data. Our learning algorithms all converged to high objective functions within the first few
iterations. In online learning, training and validation is combined and it would be interesting
to investigate how combined ADP-MPC performance would change when the value function
is updated online.

Data-driven network aggregation

In this work, we computed regional centres based on [39]. We hypothesise that the perfor-
mance of the multi-period value function will increase if the aggregate network is based on
the ride-hailing data used during training and validation. The number of nodes per regional
centre could vary based on the expected demand for each region, i.e., business district would
contain less nodes while residential districts would contain a larger amount of nodes. K-means
clustering is prime example of a data-driven method for network aggregation.

Separate matching and repositioning

In this work, we consider the combined demand matching and repositioning problem at ev-
ery sampling interval. While demand matching at high frequency is good practice, we could
consider a lower repositioning frequency to avoid over-rebalancing. In particular, with com-
putationally expensive algorithms such as MPC, the computational burden of the combined
problem can grow rapidly, as highlighted in Case Study C.

To combine ADP and MPC, we took the approach of most ADP literature and consider
repositioning at every sampling interval. While this is computationally expensive, we find the
optimal fleet distribution at every interval and thus repositioning tasks are always in line with
the current fleet status. To further reduce the computational burden of fleet management,
future work could consider a lower rebalancing frequency and evaluate the impact on the
service quality.

Model extensions

Within the MOD literature, common extensions to the basic ride-hailing structure include the
following: Ride pooling, heterogeneous fleet size and demand, electric vehicles and dynamic
pricing.

High level traffic simulation

The rebalancing problem is practice-oriented and simulation tools that can emulate the high-
level interactions in traffic are valuable. Our current model is limited to street-level network
simulations with fixed speeds. Traffic simulator SUMO can simulate coupled inter modal trips
and can model the influence of congestion (see Lopez et al.[64]). AModeus is a SUMO based
open-source simulation-based testbed designed for autonomous mobility-on-demand systems

Master of Science Thesis M.G. Vinks

66 Conclusion and discussion

(see Ruch et al. [65]). The integration in high-level simulators could allow for realistic
simulations and gives more insight into the merits of rebalancing for real-life systems (see
[14, 66, 58]).

Stochastic approximation

The approximation of the value function is based around deterministic post-decision state.
A further point of interest is to adapt our multi period value function approximation to
uncertainty in the travel time. It might be trivial due to margins inherited from the sampling
rate. Still, it could introduce unforeseen hindrances to the approximation routine.

M.G. Vinks Master of Science Thesis

Appendix A

Supportive Figures

A-1 Fleet Configuration

The effect on objective function and service rate, Fig. A-1, for different fleet sizes for 35
iterations of the test data of the MPC algorithm with a horizon of H∗9.

20 25 30 35 40
method

200

250

300

350

400

450

500

550

Ob
je
ct
iv
e
fu
nc

tio
n

(a) The objective function for different fleet
configurations.

20 25 30 35 40
method

0.75

0.80

0.85

0.90

0.95

1.00

(b) The service rate for different fleet config-
uration.

Figure A-1: Fleet size tests

Master of Science Thesis M.G. Vinks

68 Supportive Figures

A-2 Case study A

This section provides the supportive figures for case study A.

(a) L5 (b) L25

Figure A-2: Fleet status for iteration 150 for L5 and L25

In Fig. A-2, the activity of the fleet is shown for different fleet node congestion strategies L5
and L25. The red line marks the number of vehicles repositioning at any step within the
iteration. In both figures, we observe an initial spike in repositioning activity when vehicles
move to the most attractive nodes. Throughout the iteration, the peaks in repositioning
activity are larger within Fig. A-2b. At these peaks, vehicles move in clusters to new nodes.

0 20 40 60 80 100 120 140
Iteration

175

200

225

250

275

300

325

350

Ob
je
ct
iv
e
fu
nc

tio
n
[$
]

0.05
0.1
0.2
0.4
0.8

(a) The objective function for different learn-
ing rates.

0 20 40 60 80 100 120 140
Iteration

2

4

6

8

Re
po

sit
io
ni
ng

 ti
m
e
[%

]

0.05
0.1
0.2
0.4
0.8

(b) The repositioning time for different learn-
ing rates.

Figure A-3: Learning curves of different constant step sizes

M.G. Vinks Master of Science Thesis

Appendix B

Supportive Tables

B-1 OD matrix

In Table B-1, we present the origin destination matrix of our benchmark network used in
Section 5-2 and Section 5-3. The last column and row in Table B-1 denote the number of
neighbours that can be reached within 9 time steps, with a sampling time of 30 seconds.

Table B-1: OD matrix of travel times in steps between the 120s regional centres used in case
study A & B.

DestinationsNode ID 448 417 416 197 300 175 465 83 54 279 412 506 251 188 Min # ≤ 9
448 - 19 15 12 13 11 10 19 23 7 15 7 6 18 6 3
417 19 - 5 7 7 11 11 12 5 16 9 19 13 5 5 6
416 15 6 - 5 9 16 7 17 10 20 14 21 13 9 5 5
197 12 7 5 - 5 11 4 14 11 15 10 17 8 6 4 6
300 13 7 10 6 - 7 5 10 11 11 6 13 7 6 5 7
175 11 11 15 11 8 - 10 8 12 5 4 10 5 7 4 6
465 8 11 7 4 5 9 - 12 15 13 8 15 6 10 4 7
83 14 21 26 22 18 11 21 - 23 9 15 9 14 17 9 2
54 18 21 25 21 18 10 20 7 - 12 14 16 13 17 7 1
279 7 13 18 13 10 5 12 13 17 - 9 7 6 12 5 5
412 15 10 14 10 7 4 9 4 11 9 - 13 9 6 4 7
506 9 17 21 17 14 9 16 16 20 4 12 - 9 15 4 4
251 6 13 13 8 7 5 7 13 17 8 9 9 - 12 5 8
188 18 5 9 6 6 7 10 10 6 12 6 16 12 - 5 7
Min 6 5 5 4 5 4 4 4 5 4 4 7 5 5 - -

Origins

≤ 9 4 4 4 6 8 7 5 3 2 6 7 4 8 6 - -

Master of Science Thesis M.G. Vinks

70 Supportive Tables

M.G. Vinks Master of Science Thesis

Bibliography

[1] Mayor of London, “London Infrastructure plan 2050: Transport supporting paper,” tech.
rep., Greater London Authority, London, 2015.

[2] J. Beaudoin, Y. H. Farzin, and C. Y. Lin Lawell, “Public transit investment and sustain-
able transportation: A review of studies of transit’s impact on traffic congestion and air
quality,” Research in Transportation Economics, vol. 52, pp. 15–22, oct 2015.

[3] S. A. Shaheen, A. Cohen, and E. Farrar, “Mobility on Demand,” No. September, pp. 125–
155, 2020.

[4] W. J. Mitchell, C. E. Borroni-Bird, and L. D. Burns, “Reinventing the automobile:
personal urban mobility for the 21st century,” Choice Reviews Online, vol. 48, no. 03,
pp. 48–1430, 2010.

[5] M. Furuhata, M. Dessouky, F. Ordóñez, M. E. Brunet, X. Wang, and S. Koenig,
“Ridesharing: The state-of-the-art and future directions,” Transportation Research Part
B: Methodological, vol. 57, pp. 28–46, nov 2013.

[6] Z. Qin, H. Zhu, and J. Ye, “Reinforcement learning for ridesharing: An extended survey
[unpublished work],” 2021.

[7] A. Braverman, J. G. Dai, X. Liu, and L. Ying, “Empty-Car Routing in Ridesharing
Systems,” Operations Research, vol. 67, pp. 1437–1452, sep 2019.

[8] R. Iglesias, F. Rossi, K. Wang, D. Hallac, J. Leskovec, and M. Pavone, “Data-Driven
Model Predictive Control of Autonomous Mobility-on-Demand Systems,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1–7, IEEE, may 2018.

[9] M. Tsao, R. Iglesias, and M. Pavone, “Stochastic model predictive control for autonomous
mobility on demand,” in IEEE Conference on Intelligent Transportation Systems, Pro-
ceedings, ITSC, vol. 2018-Novem, pp. 3941–3948, dec 2018.

[10] MarketsAndMarkets, “Ride Sharing Market | Industry Key Players, Size, Forecast by
2025.”

Master of Science Thesis M.G. Vinks

72 Bibliography

[11] S. Banerjee and R. Johari, “Ride Sharing,” in Sharing Economy, pp. 73–97, 2019.

[12] N. Katoh and T. Ibaraki, “Resource Allocation Problems,” in Handbook of Combinatorial
Optimization, pp. 905–1006, Springer US, 1998.

[13] M. Morari and J. H. Lee, “Model predictive control: Past, present and future,” Comput-
ers and Chemical Engineering, vol. 23, no. 4-5, pp. 667–682, 1999.

[14] A. Carron, F. Seccamonte, C. Ruch, E. Frazzoli, and M. N. Zeilinger, “Scalable Model
Predictive Control for Autonomous Mobility-on-Demand Systems,” IEEE Transactions
on Control Systems Technology, pp. 1–10, 2019.

[15] R. Zhang, F. Rossi, and M. Pavone, “Model predictive control of autonomous mobility-
on-demand systems,” Proceedings - IEEE International Conference on Robotics and Au-
tomation, vol. 2016-June, pp. 1382–1389, 2016.

[16] C. Riley, P. van Hentenryck, and E. Yuan, “Real-time dispatching of large-scale ride-
sharing systems: Integrating optimization, machine learning, and model predictive con-
trol,” IJCAI International Joint Conference on Artificial Intelligence, vol. 2021-Janua,
pp. 4417–4423, 2020.

[17] B. A. Beirigo, R. R. Negenborn, J. Alonso-Mora, and F. Schulte, “A business class
for autonomous mobility-on-demand: Modeling service quality contracts in dynamic
ridesharing systems,” Transportation Research Part C: Emerging Technologies, vol. 136,
no. January, p. 103520, 2022.

[18] B. Beirigo, F. Schulte, and R. R. Negenborn, “Overcoming Mobility Poverty with Shared
Autonomous Vehicles: A Learning-Based Optimization Approach for Rotterdam Zuid,”
vol. 12433 LNCS, no. project 14894, pp. 492–506, 2020.

[19] L. Al-Kanj, J. Nascimento, and W. B. Powell, “Approximate dynamic programming for
planning a ride-hailing system using autonomous fleets of electric vehicles,” European
Journal of Operational Research, vol. 284, pp. 1088–1106, aug 2020.

[20] H. Topaloglu and W. B. Powell, “Dynamic-programming approximations for stochastic
time-staged integer multicommodity-flow problems,” INFORMS Journal on Computing,
vol. 18, pp. 31–42, feb 2006.

[21] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensional-
ity: Second Edition. Wiley, 2011.

[22] A. D. Little, “Rethinking on-demand mobility,” tech. rep., Future of mobility Lab, 2020.

[23] M. W. P. Savelsbergh and M. Sol, “The General Pickup and Delivery Problem,” Trans-
portation Science, vol. 29, pp. 17–29, feb 1995.

[24] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus, “On-demand high-
capacity ride-sharing via dynamic trip-vehicle assignment,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 114, pp. 462–467, jan 2017.

[25] BBC, “’Boris bikes’: The facts behind 10 years of London’s cycle hire scheme - BBC
News,” jul 2020.

M.G. Vinks Master of Science Thesis

73

[26] Go Sharing, “GO Sharing | How it works.” https://nl.go-sharing.com/en/
how-it-works/.

[27] C. Yan, H. Zhu, N. Korolko, and D. Woodard, “Dynamic pricing and matching in ride-
hailing platforms,” Naval Research Logistics, vol. 67, no. 8, pp. 705–724, 2020.

[28] E. Özkan and A. R. Ward, “Dynamic Matching for Real-Time Ride Sharing,” Stochastic
Systems, vol. 10, pp. 29–70, mar 2020.

[29] M. Hu and Y. Zhou, “Dynamic Matching in a Two-Sided Market,” SSRN Electronic
Journal, apr 2015.

[30] J. Holler, R. Vuorio, Z. Qin, X. Tang, Y. Jiao, T. Jin, S. Singh, C. Wang, and J. Ye,
“Deep Reinforcement Learning for Multi-Driver Vehicle Dispatching and Repositioning
Problem,” tech. rep.

[31] W. B. Powell, H. P. Simao, and B. Bouzaiene-Ayari, “Approximate dynamic program-
ming in transportation and logistics: a unified framework,” EURO Journal on Trans-
portation and Logistics, vol. 1, pp. 237–284, sep 2012.

[32] H. P. Simão, J. Day, A. P. George, T. Gifford, J. Nienow, and W. B. Powell, “An
approximate dynamic programming algorithm for large-scale fleet management: A case
application,” Transportation Science, vol. 43, no. 2, pp. 178–197, 2009.

[33] Contributors OpenStreetMap, “OpenStreetMap.” https://www.openstreetmap.org/
#map=14/40.7701/-73.9535, 2021.

[34] G. Boeing, “OSMnx: New methods for acquiring, constructing, analyzing, and visualizing
complex street networks,” Computers, Environment and Urban Systems, vol. 65, pp. 126–
139, sep 2017.

[35] J. Wen, J. Zhao, and P. Jaillet, “Rebalancing shared mobility-on-demand systems: A
reinforcement learning approach,” in IEEE Conference on Intelligent Transportation Sys-
tems, Proceedings, ITSC, vol. 2018-March, pp. 220–225, 2018.

[36] M. Gueriau and I. Dusparic, “SAMoD: Shared Autonomous Mobility-on-Demand using
Decentralized Reinforcement Learning,” in IEEE Conference on Intelligent Transporta-
tion Systems, Proceedings, ITSC, vol. 2018-Novem, pp. 1558–1563, Institute of Electrical
and Electronics Engineers Inc., dec 2018.

[37] K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet management via multi-
agent deep reinforcement learning,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, (New York, NY, USA), pp. 1774–
1783, ACM, jul 2018.

[38] K. Spieser, S. Samaranayake, W. Gruel, and E. Frazzoli, “Shared-Vehicle Mobility-on-
Demand Systems: a Fleet Operator’S Guide To Rebalancing Empty Vehicles,” TRB
2016 Annual Meeting, pp. 0–16, 2016.

[39] C. Toregas, R. Swain, C. ReVelle, and L. Bergman, “The Location of Emergency Service
Facilities,” https://doi.org/10.1287/opre.19.6.1363, vol. 19, pp. 1363–1373, oct 1971.

Master of Science Thesis M.G. Vinks

https://nl.go-sharing.com/en/how-it-works/
https://nl.go-sharing.com/en/how-it-works/
https://www.openstreetmap.org/#map=14/40.7701/-73.9535
https://www.openstreetmap.org/#map=14/40.7701/-73.9535

74 Bibliography

[40] The New York City Taxi and Limousine Commission, “TLC Trip Record Data,” 2020.

[41] S. Shaheen, Shared Mobility: The Potential of Ridehailing and Pooling, pp. 55–76. Wash-
ington, DC: Island Press/Center for Resource Economics, 2018.

[42] T. Vinks, “Literature Survey: Model and learning-based methods in Mobility-on-
demand,” 2021.

[43] T. Oda and C. Joe-Wong, “MOVI: A Model-Free Approach to Dynamic Fleet Manage-
ment,” Proceedings - IEEE INFOCOM, vol. 2018-April, pp. 2708–2716, apr 2018.

[44] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus, “Robotic load balancing for mobility-
on-demand systems,” International Journal of Robotics Research, vol. 31, pp. 839–854,
jun 2012.

[45] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch, “Plan Online, Learn
Offline: Efficient Learning and Exploration via Model-Based Control,” arXiv, pp. 1–15,
nov 2018.

[46] M. Han, P. Senellart, S. Bressan, and H. Wu, “Routing an autonomous taxi with rein-
forcement learning,” International Conference on Information and Knowledge Manage-
ment, Proceedings, vol. 24-28-Octo, pp. 2421–2424, 2016.

[47] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[48] M. Puterman, Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[49] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, vol. 3. MIT press,
2018., sep 1999.

[50] W. Powell, A. Ruszczyński, and H. Topaloglu, “Learning algorithms for separable ap-
proximations of discrete stochastic optimization problems,” Mathematics of Operations
Research, vol. 29, no. 4, pp. 814–836, 2004.

[51] W. B. Powell, “Review of sensitivity results for linear networks and a new approximation
to reduce the effects of degeneracy,” Transportation Science, vol. 23, no. 4, pp. 231–243,
1989.

[52] R. J. Willia, “Simple Statistical Gradient-Following Algorithms for Connectionist Rein-
forcement Learning,” Machine Learning, vol. 8, no. 3, pp. 229–256, 1992.

[53] G. A. Godfrey and W. B. Powell, “An adaptive dynamic programming algorithm for
dynamic fleet management, II: Multiperiod travel times,” Transportation Science, vol. 36,
no. 1, pp. 40–54, 2002.

[54] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control technol-
ogy,” Control Engineering Practice, vol. 11, pp. 733–764, jul 2003.

M.G. Vinks Master of Science Thesis

75

[55] J. B. Rawlings and D. Q. Mayne, Model predictive control: theory and design. Nob Hill
Publishing, 2009.

[56] M. Verhaegen and V. Verdult, Filtering and system identification: A least squares ap-
proach, vol. 9780521875. Cambridge University Press, jan 2007.

[57] J. Miller and J. P. How, “Predictive positioning and quality of service ridesharing for
campus mobility on demand systems,” Proceedings - IEEE International Conference on
Robotics and Automation, pp. 1402–1408, 2017.

[58] M. Wittmann, L. Neuner, and M. Lienkamp, “A Predictive Fleet Management Strategy
for On-Demand Mobility Services: A Case Study in Munich,” Electronics, vol. 9, p. 1021,
jun 2020.

[59] F. Miao, S. Han, S. Lin, J. A. Stankovic, D. Zhang, S. Munir, H. Huang, T. He, and
G. J. Pappas, “Taxi Dispatch with Real-Time Sensing Data in Metropolitan Areas: A
Receding Horizon Control Approach,” IEEE Transactions on Automation Science and
Engineering, vol. 13, pp. 463–478, apr 2016.

[60] R. Zhang and M. Pavone, “Control of robotic mobility-on-demand systems: A queueing-
theoretical perspective,” The International Journal of Robotics Research, vol. 35,
pp. 186–203, jan 2016.

[61] S. Liu and J. Liu, “A terminal cost for economic model predictive control with local
optimality,” Proceedings of the American Control Conference, pp. 1954–1959, 2017.

[62] L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious NMPC with Gaussian Process
Dynamics for Autonomous Miniature Race Cars,” in 2018 European Control Conference,
ECC 2018, pp. 1341–1348, IEEE, jun 2018.

[63] P. M. Bösch, F. Becker, H. Becker, and K. W. Axhausen, “Cost-based analysis of au-
tonomous mobility services,” Transport Policy, vol. 64, no. September 2017, pp. 76–91,
2018.

[64] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. P. Flotterod, R. Hilbrich,
L. Lucken, J. Rummel, P. Wagner, and E. Wiebner, “Microscopic Traffic Simulation
using SUMO,” in IEEE Conference on Intelligent Transportation Systems, Proceedings,
ITSC, vol. 2018-Novem, pp. 2575–2582, Institute of Electrical and Electronics Engineers
Inc., dec 2018.

[65] C. Ruch, S. Horl, and E. Frazzoli, “AMoDeus, a Simulation-Based Testbed for Au-
tonomous Mobility-on-Demand Systems,” in 2018 21st International Conference on In-
telligent Transportation Systems (ITSC), vol. 2018-Novem, pp. 3639–3644, IEEE, nov
2018.

[66] C. Fluri, C. Ruch, J. Zilly, J. Hakenberg, and E. Frazzoli, “Learning to Operate a Fleet of
Cars,” 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019, pp. 2292–
2298, 2019.

Master of Science Thesis M.G. Vinks

76 Bibliography

M.G. Vinks Master of Science Thesis

Glossary

List of Acronyms

MOD mobility-on-demand
SD supply-demand
LSTM long short-term memory
MPC model predictive control
ADP approximate dynamic programming
MDP Markov decision process
MILP mixed-integer linear program
DP dynamic programming
AMOD autonomous mobility-on-demand
VFA value function approximation
SPAR separable projective approximation routine
LAVI linear approximate value iteration
PLAVI piecewise-linear approximate value iteration
OD origin-destination

List of Symbols

Symbols related to the mobility-on-demand model
τ Maximum travel time [∆t]
∆t Sampling time [s]
A Set of vehicle attribute vectors
B Set of trip attribute vectors
I Set of regional centres
N Set of nodes

Master of Science Thesis M.G. Vinks

78 Glossary

T Set of time steps
τ s

ij Travel time from location i ∈ I to j ∈ I in seconds
τij Travel time from location i ∈ I to j ∈ I in update intervals ∆t

a Vehicle attribute vector
b Trip attribute vector
C Contribution [$]
cd

ijt The cost associated with backlogging a trip from location i ∈ I to j ∈ I at time
period t ∈ T

cp
ijt The cost associated with a loaded movement from location i ∈ I to j ∈ I at

time period t ∈ T
cr

ijt The cost associated with an empty movement from location i ∈ I to j ∈ I at
time period t ∈ T

cdelay Cost of backlogging a trip [$/min]
creject Cost of rejecting a trip [$]
ctime Operational cost of a vehicle [$/km]
Dt The demand state vector of the system at time t

Dit Number of trips from origin i ∈ I to destination j ∈ I at time period t ∈ T
F Objective function [$]
G Graph
nd Destination node
no Origin node
pbase Base fare [$]
ptime Time dependent fare [$/km]
Rt The resource state vector of the system at time t

Rit The number of resources with at location i ∈ I at time t ∈ T
Rmax Maximum vehicles per node
Rt′,t Number of vehicles inbound to location i ∈ I at time period t ∈ T and will

arrive at location i ∈ I at time period t′ ∈ T
St The current state of the system at time t

T Maximum time period [min]
w Delay [∆t]
wmax Maximum delay [min]
xd

ijt Number of backlogged trips with origin i ∈ I and destination to j ∈ I at time
period t ∈ T

xp
ijt Number of vehicles moving loaded from location i ∈ I to j ∈ I at time period

t ∈ T
xr

ijt Number of vehicles moving empty from location i ∈ I to j ∈ I at time period
t ∈ T

Symbols related to approximate dynamic programming
α Learning rate
v̄n

it Estimate of the partial gradient of node i at time t after n iterations

M.G. Vinks Master of Science Thesis

79

δ CAVE interval width
δmin Minimum CAVE interval width
ϵ perturbation parameter
D̂ Sample demand scenario for simulation with length T

v̂s
it Value of staying slope

v̂w
it Backlogged trip slope

v̂it Partial gradient or slope of node i at time t

Ŵ Arrival of new information
P One-step transition probability matrix
Dx

t Post-decision demand state at time t after taking decision xt

HV Value horizon
K Minimum iteration count
k Count variable
Rx

t Post-decision resource state at time t after taking decision xt

Sx
t Post-decision state at time t after taking decision xt

sS,x Transition function
vmax Upper bound slopes
vmin Lower bound slopes
W Threshold parameter for computing the value of staying
Y Threshold parameter for computing backlogged trips slopes
y Quantity of resources/vehicles
γ Discount factor
π Policy
s State
V Value function
x Decision
Symbols related to model predictive control
U Set of feasible states
X Set of admissible states
u Input
x State
f(x, u) Dynamical model
H Prediction horizon
J Cost function
Q Cost matrix for the state
R Cost matrix for the input
U Input sequence
X State sequence

Master of Science Thesis M.G. Vinks

80 Glossary

M.G. Vinks Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	Acknowledgements

	Main Matter
	Introduction
	Problem statement
	Research questions
	Thesis outline

	On-demand transportation
	Shared mobility
	Ride-hailing
	Micro-mobility
	Shared mobility problems

	Model description and problem formulation
	Routing network
	Optimal rebalancing
	Multi period travel times

	Summary

	Approximate dynamic programming for MOD
	Introduction to ADP
	Approximate value iteration
	Gradients and value functions
	Linear approximations
	Piecewise-linear approximations
	Artificial Duals

	A multi-period value function
	Summary

	Learning-based MPC
	Model predictive control
	MPC in MOD

	Combining ADP and MPC
	Summary

	Case study
	Set up
	Case study A: Linear and piece-wise linear approximations
	Linear and piece-wise linear approximations
	Parameters of PLAVI
	Verification
	Summary

	Case study B: Combining the horizon through value functions
	Conclusions

	Case study C: Manhattan network
	Conclusions

	Conclusion and discussion
	Conclusions
	Future work

	Appendices
	Supportive Figures
	Fleet Configuration
	Case study A

	Supportive Tables
	OD matrix

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

