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 A B S T R A C T

We show that the limiting variance of a sequence of estimators for a structured covariance 
matrix has a general form, that for linear covariance structures appears as the variance of a 
scaled projection of a random matrix that is of radial type, and a similar result is obtained 
for the corresponding sequence of estimators for the vector of variance components. These 
results are illustrated by the limiting behavior of estimators for a differentiable covariance 
structure in a variety of multivariate statistical models. We also derive a characterization for the 
influence function of corresponding functionals. Furthermore, we derive the limiting distribution 
and influence function of scale invariant mappings of such estimators and their corresponding 
functionals. As a consequence, the asymptotic relative efficiency of different estimators for the 
shape component of a structured covariance matrix can be compared by means of a single 
scalar and the gross error sensitivity of the corresponding influence functions can be compared 
by means of a single index. Similar results are obtained for estimators of the normalized vector 
of variance components. We apply our results to investigate how the efficiency, gross error 
sensitivity, and breakdown point of S-estimators for the normalized variance components are 
affected simultaneously by varying their cutoff value.

. Introduction

Covariance matrices describe the relationships and variability between different variables in a dataset. When there is a known 
tructure or pattern in these relationships, structured covariance matrices can be estimated to capture and represent that structure. 
he use of structured covariance matrices is a valuable tool for modeling the underlying patterns and dependencies in multivariate 
ata. It provides a more nuanced understanding of the relationships between variables, especially in scenarios where variables 
xhibit specific structures or patterns of correlation. Structured covariance matrices are commonly used in the analysis of repeated 
easures, longitudinal data, and multivariate data with a known underlying structure. They are particularly useful when there are 
ependencies or correlations among different measurements or variables and are widely used in various fields, including biology, 
edicine, psychology, and social sciences.
When a covariance matrix is unstructured and can be any positive definite symmetric matrix Σ, then the limiting behavior of 

ovariance estimators 𝐕𝑛 for Σ is well understood. For example, if 𝐕𝑛 is based on a sample 𝐲1,… , 𝐲𝑛 ∈ R𝑘 from a distribution with 
n elliptically contoured density |Σ|

−1∕2𝑔((𝐲 − 𝝁)⊤Σ−1(𝐲 − 𝝁)), then typically √𝑛(𝐕𝑛 − Σ) converges in distribution to a random 
atrix 𝐍 that has a multivariate normal distribution with mean zero and variance 

var{vec(𝐍)} = 𝜎1(𝐈𝑘2 +𝐊𝑘,𝑘)(Σ⊗Σ) + 𝜎2vec(Σ)vec(Σ)⊤, (1)

or some 𝜎1 ≥ 0 and 𝜎2 ≥ −2𝜎1∕𝑘, where ⊗ denotes the Kronecker product, 𝐊𝑘,𝑘 is the commutation matrix, and vec is the operator 
hat stacks the columns of a matrix. This form of limiting variance appears for many covariance estimators. Tyler [27] gives several 
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examples, including the sample covariance matrix, and nicely explains that this general form will always appear when 𝐍 is of radial 
type with respect to Σ.

The situation becomes different, when estimating a structured covariance matrix Σ = 𝐕(𝜽), where 𝐕(⋅) is a known covariance 
structure depending on a vector 𝜽 = (𝜃1,… , 𝜃𝓁)⊤ of unknown variance components. Asymptotic results for the maximum likelihood 
estimator of variance components in linear models with Gaussian errors having a structured covariance matrix 𝐕(𝜽), can be found in 
Hartley and Rao [8], Miller [23], and Mardia and Marshall [21]. When scaled appropriately, the maximum likelihood estimator 𝜽𝑛 is 
shown to be asymptotically normal with mean 𝜽 and variance 𝐉−1, where 𝐉𝑖𝑗 = tr(Σ−1𝐋𝑖Σ−1𝐋𝑗 )∕2, for 𝑖, 𝑗 ∈ {1,… ,𝓁}, with Σ = 𝐕(𝜽)
and 𝐋𝑖 = 𝜕𝐕(𝜽)∕𝜕𝜃𝑖. By employing the vec-notation, the limiting variance of 𝜽𝑛 can be expressed as

2
(

𝐋⊤(Σ−1 ⊗Σ−1)𝐋
)−1 ,

where 𝐋 is the matrix with columns vec(𝐋1),… , vec(𝐋𝓁). According to the delta method the limiting variance of vec(𝐕(𝜽𝑛)) is then 
given by

2𝐋
(

𝐋⊤(Σ−1 ⊗Σ−1)𝐋
)−1 𝐋⊤.

Similar results have been obtained in Lopuhaä et al. [17] for the class of S-estimators based on observations that follow a linear 
model with a structured covariance Σ = 𝐕(𝜽), where 𝐕 is a linear function of 𝜽. Under appropriate conditions, it holds that √𝑛(𝜽𝑛−𝜽)
is asymptotically normal with mean zero and variance 

2𝜎1
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

+ 𝜎2𝜽𝜽⊤, (2)

and √𝑛(𝐕(𝜽𝑛)−Σ) converges in distribution to a random matrix 𝐌, that has a multivariate normal distribution with mean zero and 
variance 

var{vec(𝐌)} = 2𝜎1𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤ + 𝜎2vec(Σ)vec(Σ)⊤. (3)

One of the objective of this paper is to show that this type of general form will always appear when 𝐌 is a scaled projection on the 
column space of 𝐋, of a random matrix that is of radial type with respect to Σ. Moreover, we provide several examples of covariance 
estimators that exhibit this kind of limiting behavior.

Another objective concerns the asymptotic behavior of estimators for scale invariant mappings 𝐻 of positive definite symmetric 
matrices. For affine equivariant covariance estimators 𝐕𝑛 with asymptotic variance (1), Tyler [28] shows that 𝐻(𝐕𝑛) has an 
asymptotic variance that only depends on the scalar 𝜎1. When dealing with a structured covariance matrix, the covariance estimators 
are typically not affine equivariant and have asymptotic variance (3). The second objective of this paper is to show that Tyler’s 
result for affine equivariant covariance estimators, remains true for estimators of a structured covariance matrix. Moreover, we will 
establish a similar result for scale invariant mappings 𝐻(𝜽𝑛) of estimators for the vector of variance components.

An example of a scale invariant mapping is the shape component 𝐕∕|𝐕|1∕𝑘. A consequence of our results is that the asymptotic 
relative efficiency of estimators of the shape of a structured covariance can be compared simply by comparing the corresponding 
values for 𝜎1. For affine equivariant covariance estimators, this was already observed by Kent and Tyler [12] and Salibián et al. [25]. 
Similar properties will be shown to hold for the direction component 𝜽∕‖𝜽‖ corresponding to the vector of variance components.

A final objective of this paper concerns the influence function of structured covariance functionals. For affine equivariant 
covariance functionals, Croux and Haesbroeck [5] show that the influence function at the multivariate normal is characterized 
by two real-valued functions. Structured covariance functionals, however, are not necessarily affine equivariant. We will show that 
such a characterization remains valid for structured covariance functionals at any elliptically contoured distribution, and similarly 
for the variance components functional. A nice consequence is that the influence function of scale invariant mappings 𝐻 of a 
structured covariance functional 𝐕(𝜽(⋅)) or of 𝜽(⋅) itself, is characterized by a single real-valued function. As such, the gross-error-
sensitivity (GES) is proportional to a single index, which can be used to compare the GES of different shape functionals or different 
direction functionals. Kent and Tyler [12] already observed such a property for the shape component of affine equivariant covariance 
functionals, see also Salibián et al. [25].

Except that our results have a merit of their own, they also enable the construction of MM-estimators with auxiliary scale in linear 
mixed effects models and other linear models with structured covariances. These estimators inherit the robustness of S-estimators 
considered in Lopuhaä et al. [17] and, in contrast to the simpler version considered in Lopuhaä [16], improve both the efficiency of 
the estimator of the fixed effects as well as the efficiency of the estimator of the covariance shape component and of the direction of 
the vector of variance components. Investigation of this version of MM-estimators will be postponed to a future manuscript, in which 
we will extend similar results that are already available for unstructured covariances in the multivariate location-scale model, see 
Tatsuoka and Tyler [26] or Salibián-Barrera et al. [25], and in the multivariate regression model, see Kudraszow and Maronna [13].

The paper is organized as follows. In Section 2 we show that the general forms of (2) and (3) can be derived solely using a scaled 
projection of a random matrix that is of radial type. In Section 3 we investigate the limiting behavior of estimators of a differentiable 
covariance structure in a variety of multivariate models. In the special case of a linear covariance structure, we establish that these 
estimators asymptotically behave the same as a scaled projection of a sequence of affine equivariant covariance estimators that 
are asymptotically of radial type. In Section 4 we derive the limiting distribution of scale invariant mappings of estimators of a 
linear covariance structure that are asymptotically normal, and similarly for scale invariant mappings of estimators of the vector of 
variance components. In Section 5 we derive a characterization for the influence function of structured covariance functionals and 
the corresponding functional of variance components, and of scale invariant mappings thereof. In Section 6 we apply our results to 
2
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investigate how the efficiency, GES, and breakdown point of S-estimators of the variance components are affected simultaneously, 
when we vary the cut-off value of the rho-function that defines the S-estimator. All proofs are postponed to an Appendix  A at the 
end of the paper.

2. Projection of a random matrix of radial type

A random matrix 𝐑 is said to be of radial type, if for any orthogonal matrix 𝐎, the distribution of 𝐎𝐑𝐎⊤ is the same as that of 𝐑. 
The covariance structure of random matrices with a radial distribution was first given by Mallows [20] in index form. Tyler [27] 
gave the covariance structure in matrix form and provided necessary conditions on its parameters. A random matrix 𝐍 is said to 
be of radial type with respect to the positive definite symmetric matrix Σ, if Σ−1∕2𝐍Σ−1∕2 has a radial distribution. If the first two 
moments of 𝐍 exist, then according to Corollary 1 in Tyler [27], the variance of 𝐍 is given by (1).

Consider a 𝑘 × 𝑘 structured covariance matrix Σ = 𝐕(𝜽), where 𝐕 is a known covariance structure that is a function of 
𝜽 = (𝜃1,… , 𝜃𝓁)⊤, a vector of unknown variance components, which is an element of the parameter space Θ ⊂ R𝓁 . Define the 
𝑘2 × 𝓁 matrix 

𝐋 =
[

vec(𝐋1) ⋯ vec(𝐋𝓁)
]

, 𝐋𝑗 = 𝜕𝐕∕𝜕𝜃𝑗 , 𝑗 ∈ {1,… ,𝓁}. (4)

A special case is when 𝐕 is linear, that is 
Σ = 𝜃1𝐋1 +⋯ + 𝜃𝓁𝐋𝓁 . (5)

In this case we can write vec(Σ) = 𝐋𝜽. Furthermore, let Π𝐿 be the projection of a vector 𝐱 ∈ R𝑘2  on the column space of 𝐋, re-scaled 
by Σ−1 ⊗Σ−1, that is 

Π𝐿𝐱 = argmin
𝜽∈Θ

(𝐱 − 𝐋𝜽)⊤(Σ−1 ⊗Σ−1)(𝐱 − 𝐋𝜽). (6)

We then have the following theorem. 

Theorem 1.  Let 𝐍 be a random matrix that is of radial type with respect to a positive definite symmetric matrix Σ. Suppose that Σ = 𝐕(𝜽), 
for some 𝜽 ∈ Θ ⊂ R𝓁 , and that 𝐕 is differentiable such that 𝐋, as defined in (4), is of full column rank. Let Π𝐿 be defined in (6) and 
define the random matrix 𝐌 by vec(𝐌) = Π𝐿vec(𝐍).

(i) If the first two moments of 𝐍 exist, then there exist constants 𝜂, 𝜎1 and 𝜎2 with 𝜎1 ≥ 0 and 𝜎2 ≥ −2𝜎1∕𝑘, such that E[vec(𝐌)] =
𝜂Π𝐿vec(Σ), and 

var(vec(𝐌)) = 2𝜎1𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤ + 𝜎2Π𝐿vec(Σ)vec(Σ)⊤Π⊤
𝐿. (7)

(ii) Let 𝜽𝐿 ∈ Θ ⊂ R𝓁 be such that Π𝐿vec(Σ) = 𝐋𝜽𝐿. If 𝐓 ∈ R𝓁 is the random vector, such that vec(𝐌) = 𝐋𝐓, then E[𝐓] = 𝜂𝜽𝐿 and 

var(𝐓) = 2𝜎1
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

+ 𝜎2𝜽𝐿𝜽⊤𝐿. (8)

Note that the constants 𝜂, 𝜎1 and 𝜎2 have nothing to do with the projection Π𝐿, but are inherited from the variance (1) of the 
radial random matrix 𝐍. Their existence is guaranteed by Corollary 1 in Tyler [27]. When 𝐕 is linear, the expressions in Theorem 
1 simplify to the ones in (2) and (3). 

Corollary 1.  Let 𝐍 and 𝐌 be defined in Theorem  1. Under the assumptions of Theorem  1, assume in addition that 𝐕 satisfies (5).
(i) If the first two moments of 𝐍 exist, then there exist constants 𝜂, 𝜎1 and 𝜎2 with 𝜎1 ≥ 0 and 𝜎2 ≥ −2𝜎1∕𝑘, such that E[vec(𝐌)] = 𝜂vec(Σ)

and var(vec(𝐌)) is given by (3).
(ii) If 𝐓 ∈ R𝓁 is the random vector, such that vec(𝐌) = 𝐋𝐓, then E[𝐓] = 𝜂𝜽 and var(𝐓) is given by (2).
Examples of multivariate statistical models with a structured covariance matrix are linear mixed effects models. But also linear 

models with errors generated by some autoregressive time series may correspond to a structured covariance matrix. When Σ is 
unstructured and can be any positive definite symmetric covariance matrix, it can also be seen as a linear covariance structure 𝐕(𝜽), 
where 𝜽 = vech(Σ), with 

vech(𝐀) = (𝑎11,… , 𝑎𝑘1, 𝑎22,… , 𝑎𝑘𝑘)⊤, (9)

is the unique 𝑘(𝑘 + 1)∕2-vector that stacks the columns of the lower triangle elements of a symmetric matrix 𝐀. The matrix 
𝐋 = 𝜕vec(𝐕)∕𝜕𝜽⊤ is then equal to the so-called duplication matrix 𝑘, which is the unique 𝑘2 ×𝑘(𝑘+1)∕2 matrix, with the properties 
𝑘vech(𝐀) = vec(𝐀) and (⊤

𝑘𝑘)−1⊤
𝑘 vec(𝐀) = vech(𝐀). Moreover, from the properties of 𝑘 (see, e.g., Magnus and Neudecker [19, 

Ch. 3, Sec. 8]), it follows that 

𝑘
(

⊤
𝑘
(

Σ−1 ⊗Σ−1)𝑘
)−1 ⊤

𝑘 = 1
2
(

𝐈𝑘2 +𝐊𝑘,𝑘
)

(Σ⊗Σ) . (10)

In this case, the expression (3) with 𝐋 =   coincides with the expression (1).
3
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3. Projections of estimators of radial type

A sequence {𝐍𝑛} of 𝑘 × 𝑘 symmetric estimators for Σ is said to be asymptotically of radial type if there exists a sequence of real 
numbers 𝑎𝑛 increasing to infinity, such that 𝑎𝑛(𝐍𝑛 − Σ) → 𝐍 in distribution with 𝐍 being of radial type with respect to Σ, see 
Tyler [27]. In a large class of multivariate statistical models for estimators 𝐕𝑛 of a linearly structured covariance matrix, it turns out 
that the limiting behavior of vec(𝐕𝑛) is the same as that of the projection Π𝐿vec(𝐍𝑛) of a random matrix 𝐍𝑛 that is asymptotically 
of radial type with respect to Σ, where Π𝐿 is defined in (6). When 𝐕 is nonlinear, the behavior is similar, but slightly different. 
We illustrate things in the following linear model with a structured covariance.

Consider independent observations 𝐬1,… , 𝐬𝑛 ∈ R𝑘 × R𝑘𝑞 with distribution 𝑃 , where 𝐬𝑖 = (𝐲𝑖,𝐗𝑖), 𝑖 ∈ {1,… , 𝑛}, for which we 
assume the following model 

𝐲𝑖 = 𝐗𝑖𝜷 + 𝐮𝑖, 𝑖 ∈ {1,… , 𝑛}, (11)

where 𝐲𝑖 ∈ R𝑘, 𝜷 ∈ R𝑞 is an unknown parameter vector, 𝐗𝑖 ∈ R𝑘×𝑞 is a known design matrix, and 𝐮𝑖 ∈ R𝑘 are unobservable 
independent mean zero random vectors with covariance matrix 𝐕 ∈ PDS(𝑘), the class of positive definite symmetric 𝑘 × 𝑘 matrices. 
Suppose that the distribution 𝑃  for random variable 𝐬 = (𝐲,𝐗) is such that 𝐲 ∣ 𝐗 has an elliptically contoured density 

𝑓𝝁,Σ(𝐲) = |Σ|

−1∕2𝑔
(

(𝐲 − 𝝁)⊤Σ−1(𝐲 − 𝝁)
)

, (12)

where 𝝁 = 𝐗𝜷0 and Σ = 𝐕(𝜽0), for some vector 𝜽0 ∈ Θ ⊂ R𝓁 of variance components. We assume that

A1: 𝐕 is identifiable in the sense that, if 𝐕(𝜽1) = 𝐕(𝜽2), then 𝜽1 = 𝜽2;
A2: 𝐕 is twice continuously differentiable.

This setup includes several multivariate statistical models of interest. An important case of interest is the (balanced) linear mixed 
effects model. An example of such a model is

𝐲𝑖 = 𝐗𝑖𝜷 +
𝑟
∑

𝑗=1
𝐙𝑗𝛾𝑖𝑗 + 𝝐𝑖, 𝑖 ∈ {1,… , 𝑛},

where the 𝐙𝑗 ’s are known 𝑘×𝑔𝑗 design matrices and the 𝛾𝑖𝑗 ∈ R𝑔𝑗  are independent mean zero random variables with covariance matrix 
𝜎2𝑗 𝐈𝑔𝑗 , for 𝑗 ∈ {1,… , 𝑟}, and 𝝐𝑖 has covariance matrix 𝜎20𝐈𝑘. This leads to a linear covariance structure 𝐕(𝜽) =

∑𝑟
𝑗=1 𝜎

2
𝑗𝐙𝑗𝐙

⊤
𝑗 + 𝜎20𝐈𝑘

and 𝜽 = (𝜎20 , 𝜎
2
1 ,… , 𝜎2𝑟 )

⊤.
Structured covariance matrices may also arise in linear models (11) with 𝐮1,… ,𝐮𝑛 generated from a time series. One example 

is an autoregressive process of order one, which leads to 𝐕 with elements
𝑣𝑠𝑡 = 𝜎2𝜌|𝑠−𝑡|, 𝑠, 𝑡 ∈ {1,… , 𝑘}.

Another basic example is the equicorrelated model, which corresponds to

𝑣𝑠𝑡 =

{

𝜎2, 𝑠 = 𝑡;
𝜎2𝜌, otherwise,

for 𝑠, 𝑡 ∈ {1,… , 𝑘}. Both models are an example of a nonlinear covariance structure, where the vector of unknown covariance 
parameters is 𝜽 = (𝜎2, 𝜌)⊤ ∈ (0,∞) × [−1, 1]. A general stationary process leads to

𝑣𝑠𝑡 = 𝜃
|𝑠−𝑡|+1, 𝑠, 𝑡 ∈ {1,… , 𝑘},

which is a linear covariance structure with 𝜽 = (𝜃1,… , 𝜃𝑘)⊤ ∈ R𝑘, where 𝜃
|𝑠−𝑡|+1 represents the autocovariance over lag |𝑠 − 𝑡|.

Note that current setup also allows models with an unstructured covariance matrix, such as the multivariate location-scale 
model or the multivariate regression model. See, e.g., Jennrich and Schluchter [11] or Fitzmaurice et al. [6], for different possible 
covariance structures, and Lopuhaä et al. [17], who provide a uniform treatment of S-estimators in these models.

Estimators 𝝃𝑛 = (𝜷𝑛,𝜽𝑛) for 𝝃0 = (𝜷0,𝜽0) are typically solutions of estimating equations of the following type 

∫ 𝛹 (𝐬, 𝝃)dP𝑛(𝐬) = 𝟎, (13)

where P𝑛 denotes the empirical measure corresponding to 𝐬1,… , 𝐬𝑛, and where 𝛹 = (𝛹𝜷 , 𝛹𝜽), with 
𝛹𝜷 (𝐬, 𝝃) = 𝑤1(𝑑)𝐗⊤𝐕−1(𝐲 − 𝐗𝜷)
𝛹𝜽(𝐬, 𝝃) = 𝐋⊤(𝐕−1 ⊗ 𝐕−1)vec

{

𝑤2(𝑑)(𝐲 − 𝐗𝜷)(𝐲 − 𝐗𝜷)⊤ −𝑤3(𝑑)𝐕
}

,
(14)

where 𝑑2 = (𝐲 −𝐗𝜷)⊤𝐕−1(𝐲 −𝐗𝜷), 𝐋 is defined in (4), and where we write 𝐕 for 𝐕(𝜽). We give some examples below. Furthermore, 
typically 𝝃𝑛 will then converge to a solution of the corresponding population equation 

∫ 𝛹 (𝐬, 𝝃)d𝑃 (𝐬) = 𝟎. (15)

Let 𝐕𝑛 = 𝐕(𝜽𝑛). From the estimating Eqs. (13) for 𝝃𝑛, we will establish that vec(𝐕𝑛) is asymptotically normal. To this end, we require 
the following conditions:
4
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C1: 𝑤𝑖(𝑠) is of bounded variation and continuously differentiable, for 𝑖 ∈ {1, 2, 3};
C2: 𝑤′

1(𝑠)𝑠
2, 𝑤′

2(𝑠)𝑠
3, and 𝑤′

3(𝑠)𝑠
2 are bounded.

Furthermore, the derivation of the limiting distribution uses a Taylor expansion of the left-hand side of (15) around 𝝃0. To guarantee 
the existence of the inverse of the derivative involved, we need conditions on the following constants 

𝛾1 =
E𝟎,𝐈𝑘

[

𝑤′
2(‖𝐳‖)‖𝐳‖

3 + 𝑘(𝑘 + 2)𝑤3(‖𝐳‖)
]

𝑘(𝑘 + 2)
, 𝛾2 =

E𝟎,𝐈𝑘
[

(𝑘 + 2)𝑤′
3(‖𝐳‖)‖𝐳‖ −𝑤

′
2(‖𝐳‖)‖𝐳‖

3]

2𝑘(𝑘 + 2)
𝜋𝐿 = vec(Σ−1)⊤Π𝐿vec(Σ),

(16)

where E𝟎,𝐈𝑘  denotes the expectation with respect to density (12) with parameters (𝝁,Σ) = (𝟎, 𝐈𝑘) and Π𝐿 is defined in (6). To ensure 
the existence of the scalars 𝜎1 and 𝜎2 in Theorem  2, we require

C3: 𝛾1 ≠ 0 and 𝛾1 − 𝛾2𝜋𝐿 ≠ 0.

Maronna [22] and Tyler [27] consider M-estimators for multivariate location and covariance. Estimating equations for these 
estimators would correspond to 𝛹𝜽 without the factor 𝐋⊤(𝐕−1 ⊗ 𝐕−1) (see Example  2 below) and 𝑤3 = 1. Moreover, they assume 
that 𝑤′

2 is non-negative, which obviously implies (C3).

Theorem 2.  Let 𝑃  be a distribution for random variable 𝐬 = (𝐲,𝐗), such that 𝐲 ∣ 𝐗 has an elliptically contoured density (12), with 
parameters 𝝁 = 𝐗𝜷0 and Σ = 𝐕(𝜽0), for a covariance structure 𝐕 that satisfies (A1)–(A2), such that 𝐋, as defined in (4), has full column 
rank. Let 𝝃𝑛 and 𝝃0 be solutions of (13) and (15), respectively, and suppose that 𝝃𝑛 → 𝝃0 in probability. Suppose that E‖𝐬‖4 < ∞ and 
that 𝐗 has full rank with probability one. If 𝑤1, 𝑤2, and 𝑤3 satisfy (C1)–(C3), then 

√

𝑛
{

vec(𝐕𝑛) − vec(Σ)
} is asymptotically normal with 

mean zero and variance (7), and √𝑛(𝜽𝑛 − 𝜽0) is asymptotically normal with mean zero and variance (8), where 

𝜎1 =
𝑘(𝑘 + 2)E𝟎,𝐈𝑘

[

𝑤2(‖𝐳‖)2‖𝐳‖4
]

(

E𝟎,𝐈𝑘

[

𝑤′
2(‖𝐳‖)‖𝐳‖

3 + 𝑘(𝑘 + 2)𝑤3(‖𝐳‖)
])2

, 𝜎2 = −2
𝑘
𝜎1 +

2𝛾3𝛾2(2𝛾1 − 𝛾2𝜋𝐿)
𝛾21 (𝛾1 − 𝛾2𝜋𝐿)

2

(

1 −
𝜋𝐿
𝑘

)

+
𝛾4

(𝛾1 − 𝛾2𝜋𝐿)2
, (17)

with 𝛾1, 𝛾2 and 𝜋𝐿 defined in (16) and 

𝛾3 =
E𝟎,𝐈𝑘

[

𝑤2(‖𝐳‖)2‖𝐳‖4
]

𝑘(𝑘 + 2)
, 𝛾4 =

1
𝑘2

E𝟎,𝐈𝑘

[

(

𝑤2(‖𝐳‖)‖𝐳‖2 − 𝑘𝑤3(‖𝐳‖)
)2

]

. (18)

Note that in general the constant 𝜎2 in Theorem  2 does depend on the projection Π𝐿 through the constant 𝜋𝐿 defined in (16). 
This is no longer the case for linear covariance structures. In that case, Π𝐿vec(Σ) = vec(Σ) so that 𝜋𝐿 = 𝑘. This means we can relax 
condition (C3) and have the following corollary. 

Corollary 2.  Under the assumptions of Theorem  2, where (C3) holds with 𝜋𝐿 = 𝑘, suppose that 𝐕 satisfies (5). Then √𝑛{vec(𝐕𝑛) − vec(Σ)
}

is asymptotically normal with mean zero and variance (3), and √𝑛(𝜽𝑛 − 𝜽0) is asymptotically normal with mean zero and variance (2), 
with 𝜎1 defined in (17) and

𝜎2 = −2
𝑘
𝜎1 +

4E𝟎,𝐈𝑘

[

(

𝑤2(‖𝐳‖)‖𝐳‖2 − 𝑘𝑤3(‖𝐳‖)
)2

]

(

E𝟎,𝐈𝑘

[

𝑤′
2(‖𝐳‖)‖𝐳‖

3 + 2𝑘𝑤3(‖𝐳‖) − 𝑘𝑤′
3(‖𝐳‖)‖𝐳‖

])2
.

Remark 1.  From the proof of Theorem  2 one can obtain that if 𝐕 is linear, then
√

𝑛
{

vec(𝐕𝑛) − vec(Σ)
}

= −Π𝐿vec
{

√

𝑛(𝐍𝑛 − E[𝐍𝑛])
}

+ 𝑜𝑃 (1),

where Π𝐿 is defined in (6) and

𝐍𝑛 =
1
𝑛

𝑛
∑

𝑖=1

{

𝑣1(𝑑𝑖)(𝐲𝑖 − 𝐗𝑖𝜷0)(𝐲𝑖 − 𝐗𝑖𝜷0)⊤ − 𝑣2(𝑑𝑖)Σ
}

,

where 𝑑2𝑖 = (𝐲𝑖 − 𝐗𝑖𝜷0)⊤Σ−1(𝐲𝑖 − 𝐗𝑖𝜷0), and

𝑣1(𝑠) =
𝑤2(𝑠)
𝛾1

, 𝑣2(𝑠) =
−𝛾2𝑤2(𝑠)𝑠2 + 𝛾1𝑤3(𝑠)

𝛾1(𝛾1 − 𝑘𝛾2)
,

where 𝛾1 and 𝛾2 are defined in (16). Moreover, 
√

𝑛(𝐍𝑛−E[𝐍𝑛]) → 𝐍 in distribution, where 𝐍 is a random matrix that has a multivariate 
distribution with mean zero and variance of the form (1).

The random matrix 𝐍 in Remark  1 is of radial type with respect to Σ. This follows from the fact that 𝐑 = Σ−1∕2𝐍Σ−1∕2 is 
multivariate normal with mean zero and variance

−1∕2 −1∕2 −1∕2 −1∕2 ⊤
5

var{vec(𝐑)} = (Σ ⊗Σ )var {vec(𝐍)} (Σ ⊗Σ ) = 𝜎1(𝐈𝑘2 +𝐊𝑘,𝑘) + 𝜎2vec(𝐈𝑘)vec(𝐈𝑘) .
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This immediately gives that for any orthogonal matrix 𝐎, the matrix 𝐎𝐑𝐎⊤ is multivariate normal with mean zero and the same 
variance. From Corollary  2 it follows that √𝑛{vec(𝐕𝑛) − vec(Σ)

} is asymptotically normal with mean zero and a variance that is 
the same as the variance of vec(𝐌) = Π𝐿vec(𝐍). According to Corollary  1 this variance is of the type given by (3). Furthermore, if 
we write vec(𝐌) = 𝐋𝐓, then

√

𝑛(𝜽𝑛 − 𝜽0) = (𝐋⊤𝐋)−1𝐋⊤
√

𝑛
{

vec(𝐕𝑛) − vec(Σ)
}

→ 𝐓,

in distribution, where 𝐓 is multivariate normal with mean zero and variance given by (2).

3.1. Examples

We discuss some examples of multivariate statistical models that are covered by the setup in (11), in which the estimators (𝜷𝑛,𝜽𝑛)
are solutions of estimating equation (13) for particular functions 𝑤1, 𝑤2, and 𝑤3. In the Appendix  A we provide a detailed derivation 
of 𝜎1 and 𝜎2 for specific special cases and show that their expressions coincide with the ones in Tyler [27] and Lopuhaä et al. [16].

Example 1 (Maximum Likelihood for Multivariate Normal).  Suppose (𝐲1,𝐗1),… , (𝐲𝑛,𝐗𝑛) are independent, such that 𝐲𝑖 ∣ 𝐗𝑖 ∼
𝑁𝑘(𝐗𝑖𝜷0,𝐕(𝜽0)). The loglikelihood is then given by

 = − 𝑛𝑘
2

log(2𝜋) − 𝑛
2
log |𝐕(𝜽)| − 1

2

𝑛
∑

𝑖=1
(𝐲𝑖 − 𝐗𝑖𝜷)⊤𝐕(𝜽)−1(𝐲𝑖 − 𝐗𝑖𝜷).

Setting the partial derivatives 𝜕∕𝜕𝜷 and 𝜕∕𝜕𝜃𝑗 equal to zero gives the following estimating equations 

1
𝑛

𝑛
∑

𝑖=1
𝐗⊤𝑖 𝐕

−1(𝐲𝑖 − 𝐗𝑖𝜷) = 𝟎, 1
𝑛

𝑛
∑

𝑖=1

{

(𝐲𝑖 − 𝐗𝑖𝜷)⊤𝐕−1𝐋𝑗𝐕−1(𝐲𝑖 − 𝐗𝑖𝜷) − tr(𝐕−1𝐋𝑗 )
}

= 0, (19)

for 𝑗 ∈ {1,… ,𝓁}, where we write 𝐕 for 𝐕(𝜽). By using the vec-notation and 𝐋 as defined in (4), we can combine the partial 
derivatives with respect to 𝜃𝑗 in the second line of (19) as follows 

𝐋⊤(𝐕−1 ⊗ 𝐕−1)vec

{

1
𝑛

𝑛
∑

𝑖=1
(𝐲𝑖 − 𝐗𝑖𝜷)(𝐲𝑖 − 𝐗𝑖𝜷)⊤ − 𝐕

}

= 𝟎. (20)

It follows that the maximum likelihood estimator (𝜷𝑛,𝜽𝑛) satisfies (13) and (𝜷0,𝜽0) satisfies (15), where 𝛹 is defined in (14) with 
𝑤1(𝑠) = 𝑤2(𝑠) = 𝑤3(𝑠) = 1. Theorem  2 applies and one finds 𝜎1 = 1 and 𝜎2 = 0.

When each 𝐗𝑖 = 𝐈𝑘, for 𝑖 ∈ {1,… , 𝑛}, then the model (11) reduces to the multivariate location-scale model. If Σ is unstructured, 
then Σ = 𝐕(𝜽0), with 𝜽0 = vech(Σ) and 𝐋 = 𝜕vec(𝐕(𝜽0))∕𝜕𝜽⊤ is equal to the duplication matrix 𝑘. In this case, we can remove the 
factor 𝐋⊤(𝐕−1 ⊗ 𝐕−1) from (20), and 𝐕𝑛 is simply the sample covariance of 𝐲1,… , 𝐲𝑛. This example then coincides with Example 1 
in Tyler [27].

Example 2 (M-estimators). As mentioned in Example  1, when each 𝐗𝑖 = 𝐈𝑘, for 𝑖 ∈ {1,… , 𝑛}, and Σ is unstructured, then the 
model (11) reduces to the multivariate location-scale model and we can remove the factor 𝐋⊤(𝐕−1 ⊗ 𝐕−1) from 𝛹𝜽 in (13). In that 
case, estimating Eqs. (13) are equivalent to equations (1.1)–(1.2) in Maronna [22] or equations (4.11)–(4.12) in Huber [10] for M-
estimators of multivariate location and covariance. In view of this, solutions (𝜷𝑛,𝜽𝑛) of estimating Eqs. (13) are called M-estimators 
for (𝜷0,𝜽0). The expression for 𝜎1 in Theorem  2 then coincides with the one in Example 3 in Tyler [27]. For linear covariance 
structures, the expression for 𝜎2 in Corollary  2 coincides with the one in Example 3 in Tyler [27].

As a special case, this includes the estimating equations that correspond to maximum likelihood estimators based on independent 
observations (𝐲1,𝐗1),… , (𝐲𝑛,𝐗𝑛) from an elliptical density (12). The maximum likelihood estimators (𝜷𝑛,𝜽𝑛) then satisfy estimating 
Eqs. (13), for 𝑤1(𝑠) = 𝑤2(𝑠) = −2𝑔′(𝑠2)∕𝑔(𝑠2) and 𝑤3(𝑠) = 1. The expression for 𝜎1 in Theorem  2 then coincides with the one in 
Example 2 in Tyler [27]. For linear covariance structures, the expression for 𝜎2 in Corollary  2 coincides with the one in Example 2 
in Tyler [27].

Example 3 (S-estimators). S-estimators for (𝜷0,𝜽0) are defined by means of a function 𝜌 ∶ R → [0,∞), as the solution to minimizing 
|𝐕(𝜽)|, subject to

1
𝑛

𝑛
∑

𝑖=1
𝜌
(
√

(𝐲𝑖 − 𝐗𝑖𝜷)⊤𝐕(𝜽)−1(𝐲𝑖 − 𝐗𝑖𝜷)
)

≤ 𝑏0,

where the minimum is taken over all 𝜷 ∈ R𝑞 and 𝜽 ∈ Θ ⊂ R𝓁 , such that 𝐕(𝜽) ∈ PDS(𝑘). These estimators have been studied for 
linear mixed effects models in Copt and Victoria-Feser [4], Chervoneva and Vishnyakov [1,2] and for general linear models with a 
structured covariance in Lopuhaä et al. [16]. When 𝐕 is linear, then according to Section 7.2 in [16], S-estimators (𝜷𝑛,𝜽𝑛) satisfy 
estimating Eqs. (13), with 𝑤1(𝑑) = 𝜌′(𝑑)∕𝑑, 𝑤2(𝑠) = 𝑘𝜌′(𝑠)∕𝑠 and 𝑤3(𝑠) = 𝜌′(𝑠)𝑠− 𝜌(𝑠) + 𝑏0. The expressions for 𝜎1 and 𝜎2 in Corollary 
2 coincide with the ones in Corollary 9.2 in Lopuhaä et al. [16].
6
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4. Homogeneous mappings of order zero

Let 𝐻(𝐯) be a mapping from R𝑙 to R𝑚 that is homogeneous of order zero, that is 
𝐻(𝐯) = 𝐻(𝛼𝐯), 𝛼 > 0. (21)

These mappings have several applications to affine equivariant covariance estimators that have limiting variance (1). Tyler [28] uses 
such a mapping to show that the likelihood ratio criterion is asymptotically robust over the class of elliptical distributions. Kent 
and Tyler [12] consider the shape component of covariance CM-estimators and show that the limiting variance of CM-estimators 
of shape depends on 𝜎1 only, which may then serve as an index for the asymptotic relative efficiency. Salibián-Barrera et al. [25] 
derive the influence function of the shape component of covariance MM-functionals and use this to obtain that the limiting variance 
of MM-estimators of shape only depends on a single scalar. This property of the shape component is a special case of a general result 
in Tyler [28] for multivariate functionals of affine equivariant covariance estimators that are asymptotically normal with limiting 
variance (1).

Estimators for a structured covariance matrix are typically not affine equivariant and have limiting variance (7) or (3) instead 
of (1), so that the previous results do not directly apply. The objective of this section is to extend Theorem 1 in Tyler [28] 
to estimators for a linearly structured covariance, and discuss its consequences for corresponding estimators of shape and scale. 
Moreover, we establish a similar result for estimators of the vector of variance components and apply this to its normalized version. 
We then have the following theorem. 

Theorem 3.  Consider Σ = 𝐕(𝜽0) ∈ PDS(𝑘), for some vector 𝜽0 ∈ Θ ⊂ R𝓁 , where 𝐕 satisfies (5), such that 𝐋, as defined in (4), is 
of full column rank. Let {𝐕𝑛 ∶ 𝑛 ≥ 1} be a sequence of estimators for Σ and let {𝜽𝑛 ∶ 𝑛 ≥ 1} be a sequence of estimators for the vector 
𝜽0 ∈ Θ ⊂ R𝓁 of variance components.
(i) For 𝐕 ∈ PDS(𝑘), let 𝐻(𝐕) be continuously differentiable satisfying (21). When √𝑛(𝐕𝑛 − Σ) converges in distribution to a random 

matrix 𝐌 that has a multivariate normal distribution with mean zero and variance given by (3), then √𝑛(𝐻(𝐕𝑛) − 𝐻(Σ)) is 
asymptotically normal with mean zero and variance

2𝜎1𝐻 ′(Σ)𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤𝐻 ′(Σ)⊤.

(i) For 𝜽 ∈ Θ ⊂ R𝓁 , let 𝐻(𝜽) be continuously differentiable satisfying (21). When √𝑛(𝜽𝑛 − 𝜽0) is asymptotically normal with mean zero 
and variance (2), then √𝑛(𝐻(𝜽𝑛) −𝐻(𝜽0)) is asymptotically normal with mean zero and variance

2𝜎1𝐻 ′(𝜽0)
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

𝐻 ′(𝜽0)⊤.

Remark 2.  The restriction to linear 𝐕 in Theorem  3 is essential. It can be seen from the proof that Theorem  3(i) is a direct 
consequence of the property 𝐻 ′(Σ)vec(Σ) = 𝟎. In view of (7), a similar result for nonlinear 𝐕 would require 𝐻 ′(Σ)Π𝐿vec(Σ) = 𝟎, 
which is not necessarily the case. Similarly, Theorem  3(ii) is a direct consequence of 𝐻 ′(𝜽0)𝜽0 = 𝟎. In view of (8), a similar result 
for nonlinear 𝐕 would require 𝐻 ′(𝜽0)𝜽𝐿 = 𝟎, where 𝜽𝐿 ∈ Θ ⊂ R𝓁 , such that Π𝐿vec(Σ) = 𝐋𝜽𝐿, which may also not be true.

When Σ = 𝐕(𝜽0) is unstructured, then vec(Σ) = 𝐋𝜽0, with 𝜽0 = vech(Σ), as defined in (9), and 𝐋 is the duplication matrix 𝑘. 
Because 𝐊𝑘,𝑘𝐻 ′(𝐕)⊤ = 𝐻 ′(𝐕)⊤, for symmetric 𝐕, from (10) it follows that Theorem  3(i) with 𝐋 = 𝑘 recovers Theorem 1 in 
Tyler [28].

From Theorem  3 it follows immediately that the asymptotic relative efficiency of different estimators 𝐻(𝐕𝑛) for 𝐻(Σ) can be 
compared by simply comparing the values of the corresponding scalar 𝜎1. Similarly, the scalar 𝜎1 can also be used as an index for 
the asymptotic relative efficiency of different estimators 𝐻(𝜽𝑛) for 𝐻(𝜽0). We discuss some examples below.

The results may also be relevant when studying the behavior of robust inference procedures. Robust tests are meant to have a 
stable level under small arbitrary departures from the null hypothesis, and to have good power under small arbitrary departures from 
specified alternatives. Tyler [27] considers a robust likelihood ratio test, which is a standardized version of 𝐻(𝐕𝑛), where 𝐕𝑛 is a 
covariance M-estimator and 𝐻 is the scale invariant mapping defined by 𝐻(Σ) = |Σ|

1∕2∕(tr(Σ))𝑘∕2. Under appropriate scaling 𝐻(𝐕𝑛)
has a limiting distribution that only depends on the scalar 𝜎1 from (1). Related robust inference procedures can be found in [9] for 
a general parametric setup, in [3] for linear mixed effects models, and in [30] for a one-way multivariate ANOVA, among others.

Example 4 (Shape and Scale of a Linearly Structured Covariance).  Suppose that √𝑛(𝐕𝑛−Σ) is asymptotically normal with mean zero 
and variance given by (3). Consider the shape component 𝐻(𝐂) = vec(𝐂)∕|𝐂|1∕𝑘, where 𝐂 ∈ PDS(𝑘). We have that 

𝐻 ′(𝐂) = 𝜕𝐻(𝐂)
𝜕vec(𝐂)⊤

= −1
𝑘
|𝐂|−1∕𝑘vec(𝐂)vec(𝐂−1)⊤ + |𝐂|−1∕𝑘𝐈𝑘2 . (22)

Then, according to Theorem  3(i), for the shape component it follows that √𝑛(𝐻(𝐕𝑛) −𝐻(Σ)) is asymptotically normal with mean 
zero and variance (see Appendix  A for details) 

2𝜎1
{

𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤ − 1 vec(Σ)vec(Σ)⊤
}

. (23)
7

|Σ|

2∕𝑘 𝑘
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When Σ is unstructured, then vec(Σ) = 𝐋𝜽0, with 𝜽0 = vech(Σ) and 𝐋 is the duplication matrix 𝑘. In that case, from (10) it follows 
that (23) with 𝐋 = 𝑘 reduces to

𝜎1
|Σ|

2∕𝑘

{

(

𝐈𝑘2 +𝐊𝑘,𝑘
)

(Σ⊗Σ) − 2
𝑘
vec(Σ)vec(Σ)⊤

}

.

This coincides with expression (9) found in [25]. For completeness, consider the scale component 𝜎(𝐂) = |𝐂|1∕(2𝑘). It can be seen 
that 

𝜎′(𝐂) = 1
2𝑘

|𝐂|1∕(2𝑘)vec(𝐂−1)⊤. (24)

Application of the delta method then yields that √𝑛(𝜎(𝐕𝑛) − 𝜎(Σ)) is asymptotically normal with mean zero and variance
1
4

(

2𝜎1
𝑘

+ 𝜎2

)

|Σ|

1∕𝑘.

Example 5 (Direction of the Vector of Variance Components of a Linear Covariance Structure).  Suppose that √𝑛(𝜽𝑛−𝜽0) is asymptotically 
normal with mean zero and variance given by (2). In order to create a single scalar as an index of the asymptotic efficiency for 
estimators 𝜽𝑛 for the vector 𝜽0 of variance components of a linear covariance structure, it is helpful to separate 𝜽0 into its direction 
and length. The direction component 𝐻(𝜽) = 𝜽∕‖𝜽‖ satisfies (21). Its derivative is given by 

𝐻 ′(𝜽) = 𝜕𝐻(𝜽)
𝜕𝜽⊤

= 1
‖𝜽‖

(

𝐈𝓁 − 𝜽𝜽⊤

‖𝜽‖2

)

. (25)

Then, according to Theorem  3(ii), for the direction estimator it follows that √𝑛(𝐻(𝜽𝑛) −𝐻(𝜽)) is asymptotically normal with mean 
zero and variance

2𝜎1
‖𝜽0‖2

(

𝐈𝓁 −
𝜽0𝜽⊤0
‖𝜽0‖2

)

(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

(

𝐈𝓁 −
𝜽0𝜽⊤0
‖𝜽0‖2

)

.

It does not seem possible to simplify this expression any further, but it illustrates that one can use the scalar 𝜎1 as an index for the 
asymptotic relative efficiency of estimators 𝐻(𝜽𝑛) for 𝐻(𝜽0).

An alternative is the mapping 𝐻(𝜽) = 𝜽∕|𝐕(𝜽)|1∕𝑘. When 𝐕 is linear, this 𝐻 also satisfies (21). For 𝐕𝑛 = 𝐕(𝜽𝑛), it holds that 
𝜽𝑛 = (𝐋⊤𝐋)−1𝐋⊤vec(𝐕𝑛), so that

𝐻(𝜽𝑛) = (𝐋⊤𝐋)−1𝐋⊤vec
(

𝐕𝑛∕|𝐕𝑛|1∕𝑘
)

.

From Example  4, it follows that √𝑛(𝐻(𝜽𝑛) −𝐻(𝜽)) is asymptotically normal with mean zero and variance
2𝜎1

|Σ|

2∕𝑘

{

(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

− 1
𝑘
𝜽0𝜽⊤0

}

.

This component 𝐻 leads to a simpler expression for the limiting variance and the scalar 𝜎1 can again be used as an index for the 
asymptotic relative efficiency of estimators 𝐻(𝜽𝑛) for 𝐻(𝜽0).

5. Influence function of structured covariance functionals

The influence function measures the local robustness of an estimator. It describes the effect of an infinitesimal contamination 
at a single point on the corresponding functional (see Hampel [7]). Good local robustness is therefore illustrated by a bounded 
influence function. It is defined as follows. Let 𝑃  be a distribution on R𝑘. For 0 < ℎ < 1 and 𝐲 ∈ R𝑘 fixed, define the perturbed 
probability measure 𝑃ℎ,𝐲 = (1−ℎ)𝑃 +ℎ𝛿𝐲, where 𝛿𝐲 denotes the Dirac measure at 𝐲 ∈ R𝑘. The influence function of a 𝑘×𝑘 covariance 
functional 𝐂(⋅) at probability measure 𝑃 , is defined as

IF(𝐲;𝐂, 𝑃 ) = lim
ℎ↓0

𝐂((1 − ℎ)𝑃 + ℎ𝛿𝐲) − 𝐂(𝑃 )
ℎ

,

if this limit exists.
Let 𝑃  be a distribution on R𝑘 with density |Σ|

−1∕2𝑔
(

(𝐲 − 𝝁)⊤Σ−1(𝐲 − 𝝁)
)

, where 𝝁 ∈ R𝑘 and Σ ∈ PDS(𝑘), and let 𝐂 be Fisher 
consistent for Σ, that is 𝐂(𝑃 ) = Σ, and affine equivariant, meaning 𝐂(𝑃𝐀𝐲+𝐛) = 𝐀𝐂(𝑃𝐲)𝐀⊤, for any nonsingular 𝑘 × 𝑘 matrix 𝐀 and 
𝐛 ∈ R𝑘, where 𝑃𝐲 denotes the distribution of a random vector 𝐲. Croux and Haesbroeck [5] show that the influence function of such 
covariance functionals at the 𝑁𝑘(𝝁,Σ) distribution is given by 

IF(𝐲;𝐂, 𝑃 ) = 𝛼𝐶 (𝑑(𝐲))(𝐲 − 𝝁)(𝐲 − 𝝁)⊤ − 𝛽𝐶 (𝑑(𝐲))Σ, (26)

for some real valued functions 𝛼𝐶 and 𝛽𝐶 and where 𝑑(𝐲)2 = (𝐲−𝝁)⊤Σ−1(𝐲−𝝁). For more details on 𝛼𝐶 and 𝛽𝐶 for different covariance 
functionals, see Croux and Haesbroeck [5].

Structured covariance functionals 𝐌(⋅) = 𝐕(𝜽(⋅)) are not necessarily affine equivariant, so that the above characterizations do not 
directly apply. However, Lopuhaä et al. [17] find similar expressions for the influence function of the covariance S-functionals 𝐌(⋅)
and 𝜽(⋅) in a linear model with a linearly structured covariance 𝐕, see Corollary 8.4 in [17]. The next lemma shows that these type 
of expressions will always appear at elliptical distributions for covariance functionals that are a projection of some affine equivariant 
covariance functional. 
8



Journal of Multivariate Analysis 208 (2025) 105443H.P. Lopuhaä
Lemma 1.  Let 𝑃  be a distribution on R𝑘 with density |Σ|

−1∕2𝑔
(

(𝐲 − 𝝁)⊤Σ−1(𝐲 − 𝝁)
)

, where 𝝁 ∈ R𝑘 and Σ ∈ PDS(𝑘). Let 𝐂 be an 
affine equivariant covariance functional which possesses an influence function. Suppose that Σ = 𝐕(𝜽0), for some 𝜽0 ∈ Θ ⊂ R𝓁 , such 
that 𝐋, as defined in (4), is of full column rank. Let Π𝐿 be the projection matrix defined in (6) and define the covariance functional 𝐌 by 
vec(𝐌) = Π𝐿vec(𝐂). Then the following holds.
(i) There exist functions 𝛼𝐶 , 𝛽𝐶 ∶ [0,∞) → R, such that IF(𝐲; vec(𝐌), 𝑃 ) is given by

𝛼𝐶 (𝑑(𝐲))𝐋
(

𝐋⊤(Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤vec
(

Σ−1(𝐲 − 𝝁)(𝐲 − 𝝁)⊤Σ−1) − 𝛽𝐶 (𝑑(𝐲))Π𝐿vec(Σ),

where 𝑑(𝐲)2 = (𝐲 − 𝝁)⊤Σ−1(𝐲 − 𝝁).
(i) If 𝜽(𝑃 ) ∈ Θ ⊂ R𝓁 is the functional, such that vec(𝐌(⋅)) = 𝐋𝜽(⋅), then IF(𝐲;𝜽, 𝑃 ) is given by

𝛼𝐶 (𝑑(𝐲))
(

𝐋⊤(Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤vec
(

Σ−1(𝐲 − 𝝁)(𝐲 − 𝝁)⊤Σ−1) − 𝛽𝐶 (𝑑(𝐲))𝜽𝐿,

where 𝜽𝐿 ∈ Θ ⊂ R𝓁 is such that Π𝐿vec(Σ) = 𝐋𝜽𝐿.

Note that the functions 𝛼𝐶 and 𝛽𝐶 have nothing to do with the projection Π𝐿, but are inherited from the influence function (26) 
of the affine equivariant covariance functional 𝐂. At a distribution 𝑃  that has an elliptical density (12) with a linearly structured 
covariance, one has vec(Σ) = 𝐋𝜽0, so that Π𝐿vec(Σ) = vec(Σ) in part (i) and 𝜽𝐿 = 𝜽0 in part (ii) of Lemma  1. For this case, Lopuhaä 
et al. [17] find expressions similar to the ones in Lemma  1 for the covariance S-functionals. If the S-functional is defined by some 
function 𝜌 and constant 𝑏0 (see Example  3), then 

𝛼𝐶 (𝑠) =
𝑘𝜌′(𝑠)
𝑠𝛿1

, 𝛽𝐶 (𝑠) =
𝜌′(𝑠)𝑠
𝛿1

−
2(𝜌(𝑠) − 𝑏0)

𝛿2
, (27)

where 

𝛿1 =
E𝟎,𝐈

[

𝜌′′(‖𝐳‖)‖𝐳‖2 + (𝑘 + 1)𝜌′(‖𝐳‖)‖𝐳‖
]

𝑘 + 2
, 𝛿2 = E𝟎,𝐈

[

𝜌′(‖𝐳‖)‖𝐳‖
]

. (28)

These 𝛼𝐶 and 𝛽𝐶 are the same as the ones that appear in the expression for the influence function of the affine equivariant 
covariance S-functional 𝐂 in the multivariate location-scale model, see Lopuhaä [14] or Salibián-Barrera et al. [25], or in the 
multivariate regression model, see Van Aelst and Willems [29]. Indeed, the influence function IF(𝐲, vec(𝐕(𝜽)), 𝑃 ) of the linearly 
structured covariance functional in Lopuhaä  et al. [17] is precisely the projection Π𝐿 of IF(𝐲, vec(𝐂), 𝑃 ) as obtained in [14,25,29].

When Σ = 𝐕(𝜽0) is unstructured, then vec(Σ) = 𝐋𝜽0 with 𝜽0 = vech(Σ) and 𝐋 is the duplication matrix 𝑘. In that case, from (10) 
it follows that the expression for IF(𝐲; vec(𝐌), 𝑃 ) in Lemma  1(i) with 𝐋 = 𝑘 reduces to

IF(𝐲; vec(𝐌), 𝑃 ) = vec
{

𝛼𝐶 (𝑑(𝐲))(𝐲 − 𝝁)(𝐲 − 𝝁)⊤ − 𝛽𝐶 (𝑑(𝐲))Σ
}

.

This coincides with the expression found in Lemma 1 in Croux and Haesbroeck [5].
Mappings 𝐻 that satisfy (21) also have useful applications to influence functions of affine equivariant covariance functionals 𝐂

and their the gross-error-sensitivity (GES). Kent and Tyler [12] consider functionals 𝐂∕|𝐂|1∕𝑘 and 𝐂∕tr(𝐂) to obtain that the GES 
of different CM-functionals is proportional to a single scalar. Salibián-Barrera et al. [25] derive the influence function of the shape 
component of covariance MM-functionals and show that it is proportional to a single function 𝛼𝐶 , which no longer depends on the 
scale-functional used in the first step. In fact, these properties hold more general for functionals 𝐻 satisfying (21) applied to affine 
equivariant covariance functionals. The next lemma establishes similar results for linearly structured covariance functionals. Similar 
to Remark  2, one can only obtain this result for linear covariance functionals. 

Lemma 2.  Let 𝑃  be a distribution on R𝑘 with an elliptical contoured density (12). Suppose that Σ = 𝐕(𝜽0) ∈ PDS(𝑘), for some vector 
𝜽0 ∈ Θ ⊂ R𝓁 , where 𝐕 satisfies (5), such that 𝐋, as defined in (4) is of full column rank.
(i) Let 𝐌 ∈ PDS(𝑘) be a covariance functional that is Fisher consistent for Σ and which possesses an influence function given by Lemma 

1(i). Let 𝐻(𝐌) be continuously differentiable in a neighborhood of 𝐌(𝑃 ) satisfying (21). Then IF(𝐲;𝐻(𝐌), 𝑃 ) is given by

𝛼𝐶 (𝑑(𝐲))𝐻 ′(Σ)𝐋
(

𝐋⊤(Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤
(

Σ−1 ⊗Σ−1)
(

(𝐲 − 𝝁)⊗ (𝐲 − 𝝁)
)

,

where 𝑑2(𝐲) = (𝐲 − 𝝁)⊤Σ−1(𝐲 − 𝝁).
(i) Let 𝜽 ∈ Θ ⊂ R𝓁 be a functional that is Fisher consistent for 𝜽0 and which possesses an influence function given by Lemma  1(ii). 

Let 𝐻(𝜽) be continuously differentiable in a neighborhood of 𝜽(𝑃 ) satisfying (21). Then IF(𝐲;𝐻(𝜽), 𝑃 ) is given by

𝛼𝐶 (𝑑(𝐲))𝐻 ′(𝜽0)
(

𝐋⊤(Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤
(

Σ−1 ⊗Σ−1)
(

(𝐲 − 𝝁)⊗ (𝐲 − 𝝁)
)

.

Consider the GES defined by sup𝐲∈R𝑘 ‖IF(𝐲; ⋅)‖, for some norm ‖ ⋅ ‖. From Lemma  2 it follows immediately that regardless of 
the choice of the norm, the value ‖IF(𝐲;𝐻(𝐌), 𝑃 )‖ for different functionals 𝐻(𝐌(𝑃 )) is proportional to |𝛼𝐶 (𝑑(𝐲))| and similarly for 
functionals 𝐻(𝜽(𝑃 )). We discuss some examples below.
9
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Example 6 (Shape and Scale of a Linearly Structured Covariance).  For the shape functional 𝐻(𝐌) = vec(𝐌)∕|𝐌|

1∕𝑘, from Lemma  2(i) 
together with (22) we find

IF(𝐲;𝐻(𝐌), 𝑃 ) = − 1
𝑘
|Σ|

−1∕𝑘tr
(

Σ−1IF(𝐲;𝐌, 𝑃 )
)

⋅ vec(Σ) + |Σ|

−1∕𝑘IF(𝐲; vec(𝐌), 𝑃 ).

See also Salibián et al. [25]. In particular, at a distribution 𝑃  with an elliptically contoured density with parameters 𝝁 and Σ = 𝐕(𝜽0)
one finds that IF(𝐲;𝐻(𝐌), 𝑃 ) is given by 

𝛼𝐶 (𝑑(𝐲))
|Σ|

1∕𝑘

{

𝐋
(

𝐋⊤(Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤vec
(

Σ−1(𝐲 − 𝝁)(𝐲 − 𝝁)⊤Σ−1) −
𝑑(𝐲)2

𝑘
vec(Σ)

}

, (29)

where 𝑑(𝐲)2 = (𝐲 − 𝝁)⊤Σ−1(𝐲 − 𝝁). It follows that ‖IF(𝐲;𝐻(𝜽), 𝑃 )‖ will be proportional to |𝛼𝐶 (𝑑(𝐲))𝑑(𝐲)2|. When Σ is unstructured, 
then vec(Σ) = 𝐋𝜽0, where 𝜽0 = vech(Σ), as defined in (9), and 𝐋 is the duplication matrix 𝑘. In that case, from (10) it follows 
that (29) with 𝐋 = 𝑘 reduces to

𝛼𝐶 (𝑑(𝐲))
|Σ|

1∕𝑘
vec

{

(𝐲 − 𝝁)(𝐲 − 𝝁)⊤ −
𝑑(𝐲)2

𝑘
Σ

}

,

which coincides with formula (3) in [25]. For completeness, consider the scale component 𝜎(𝐌) = |𝐌|

1∕(2𝑘). From (24), it follows 
that

IF(𝐲; 𝜎, 𝑃 ) = 1
2
|Σ|

−1∕(2𝑘)𝛾𝐶 (𝑑(𝐲)),

where 𝛾𝐶 (𝑠) = 𝛼𝐶 (𝑠)𝑠2∕𝑘 − 𝛽𝐶 (𝑠), which matches with equation (4) in [25].

Example 7 (Direction of the Vector of Variance Components of a Linear Covariance Structure).  For the direction functional 𝐻(𝜽) =
𝜽∕‖𝜽‖, from Lemma  2(ii) together with (25) we find that, at a distribution 𝑃  with an elliptically contoured distribution with 
parameters 𝝁 and Σ = 𝐕(𝜽0), IF(𝐲;𝐻(𝜽), 𝑃 ) is given by

𝛼𝐶 (𝑑(𝐲))
(

1
‖𝜽0‖

𝐈𝓁 −
𝜽0𝜽⊤0
‖𝜽0‖3

)

(

𝐋⊤(Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤vec
(

Σ−1(𝐲 − 𝝁)(𝐲 − 𝝁)⊤Σ−1) .

It follows that ‖IF(𝐲;𝐻(𝜽), 𝑃 )‖ will be proportional to |𝛼𝐶 (𝑑(𝐲))𝑑(𝐲)2|. An alternative is the mapping 𝐻(𝜽) = 𝜽∕|𝐕(𝜽)|1∕𝑘. Since 𝐕 is 
linear, 𝐻 satisfies (21). For 𝐌(𝑃 ) = 𝐕(𝜽(𝑃 )), it holds that 𝜽(𝑃 ) = (𝐋⊤𝐋)−1𝐋⊤vec(𝐌(𝑃 )), so that

𝐻(𝜽(𝑃 )) = (𝐋⊤𝐋)−1𝐋⊤vec(𝐌(𝑃 ))∕|𝐌(𝑃 )|1∕𝑘.

From Example  6 it follows that IF(𝐲;𝐻(𝜽), 𝑃 ) is given by
𝛼𝐶 (𝑑(𝐲))
|Σ|

1∕𝑘

{

(

𝐋⊤(Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤vec
(

Σ−1(𝐲 − 𝝁)(𝐲 − 𝝁)⊤Σ−1) −
𝑑(𝐲)2

𝑘
𝜽0

}

,

using that vec(Σ) = 𝐋𝜽0. Again we find that ‖IF(𝐲;𝐻(𝜽), 𝑃 )‖ is proportional to |𝛼𝐶 (𝑑(𝐲))𝑑(𝐲)2|.

6. Application

We apply our results to S-estimators and S-functionals in the linear model (11). Let 𝑃  be the distribution for the random 
variable 𝐬 = (𝐲,𝐗), which is such that 𝐲 ∣ 𝐗 has an elliptically contoured density (12) with parameters 𝝁 = 𝐗𝜷0 and Σ = 𝐕(𝜽0) =
𝜃01𝐋1 +⋯ + 𝜃0𝓁𝐋𝓁 . Consider the S-estimator for (𝜷0,𝜽0) defined as the solution to minimizing |𝐕(𝜽)|, subject to

1
𝑛

𝑛
∑

𝑖=1
𝜌
(
√

(𝐲𝑖 − 𝐗𝑖𝜷)⊤𝐕(𝜽)−1(𝐲𝑖 − 𝐗𝑖𝜷)
)

= 𝑏0,

where the minimum is taken over all 𝜷 ∈ R𝑞 and 𝜽 ∈ Θ ⊂ R𝓁 , such that 𝐕(𝜽) ∈ PDS(𝑘). For the function 𝜌 we take Tukey’s bi-weight

𝜌B(𝑠; 𝑐) =

{

𝑠2∕2 − 𝑠4∕(2𝑐2) + 𝑠6∕(6𝑐4), |𝑠| ≤ 𝑐;
𝑐2∕6 |𝑠| > 𝑐,

and 𝑏0 = E𝟎,𝐈𝑘 [𝜌𝐵(‖𝐳‖; 𝑐)]. From Theorem 6.1 in Lopuhaä  et al. [16] it is known that the breakdown point of the S-estimator depends 
on the cut-off constant 𝑐 and is at least ⌈𝑛𝑏0∕(𝑐2∕6)⌉∕𝑛, or asymptotically 𝜖∗ = 𝑏0∕(𝑐2∕6). Table  1 gives the cut-off values of 𝜌𝐵 for 
given asymptotic lower bounds 𝜖∗ ∈ {0.05, 0.10,… , 0.50} on the breakdown point in dimensions 𝑘 ∈ {1, 2, 5, 10}. This table partly 
overlaps with Table 3 in Rousseeuw and Yohai [24].

According to Corollary 9.2 in Lopuhaä  et al. [17], the scalar 𝜆 = E𝟎,𝐈𝑘
[

𝜌′𝐵(‖𝐳‖; 𝑐)
2] ∕(𝑘𝛼2) represents the asymptotic efficiency 

of the regression S-estimator 𝜷𝑛 relative to the least squares estimator (for which 𝜆 = 1), where 

𝛼 = E𝟎,𝐈𝑘

[

(

1 − 1) 𝜌
′
𝐵(‖𝐳‖; 𝑐) + 1 𝜌′′𝐵(‖𝐳‖; 𝑐)

]

. (30)
10
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Table 1
Cut-off values of 𝜌𝐵 for different breakdown points 𝜖∗ ∈ {0.05, 0.10,… , 0.50} and dimensions 𝑘 ∈ {1, 2, 5, 10}.
 Breakdown point
 𝑘 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
 1 7.545 5.182 4.096 3.421 2.937 2.561 2.252 1.988 1.756 1.548 
 2 10.767 7.474 5.981 5.069 4.427 3.938 3.542 3.209 2.920 2.661 
 5 17.114 11.950 9.628 8.220 7.242 6.505 5.918 5.432 5.017 4.652 
 10 24.246 16.961 13.694 11.719 10.351 9.324 8.510 7.840 7.271 6.776 

From Examples  4 and 5, together with Theorem  2 and Example  3, it follows that the scalar

𝜎1 =
𝑘E𝟎,𝐈𝑘

[

𝜌′𝐵(‖𝐳‖; 𝑐)
2
‖𝐳‖2

]

(𝑘 + 2)𝛿21
,

where 𝛿1 is defined in (28), serves as an index for the asymptotic efficiency of both the S-estimator of shape as well as the S-estimator 
for the direction of the vector of variance components, relative to the least squares estimators of shape and direction, respectively 
(for which 𝜎1 = 1). Finally, from Example  4, together with Example  3, it follows that

𝜎3 =
1
4

(

2𝜎1
𝑘

+ 𝜎2

)

=
E𝟎,𝐈𝑘

[

(

𝜌𝐵(‖𝐳‖; 𝑐) − 𝑏0
)2
]

𝛿22
,

where 𝛿2 is defined in (28), serves as an index for the asymptotic efficiency of the S-estimator of scale relative the least squares (for 
which 𝜎3 = 1∕(2𝑘)). As a consequence, the cutoff constant 𝑐 of 𝜌𝐵 can be tuned in such a way that the asymptotic efficiency 1∕𝜆
relative to the least squares estimator is high at the normal distribution and similarly for 1∕𝜎1 and 1∕(2𝑘𝜎3). Since 𝑐 also determines 
the breakdown point, this forces a trade-off between efficiency and breakdown point. Typically, large values of 𝑐 correspond to high 
efficiency and low breakdown point, and vice-versa for moderate values of 𝑐.

We further investigate how this trade-off relates to the gross error sensitivity (GES) of the corresponding S-functionals. For 
simplicity we only consider perturbations in 𝐲 and leave 𝐗 unchanged. From Corollary 8.4 in Lopuhaä  et al. [17], for the 
regression S-functional it then follows that ‖IF(𝐲; 𝜷, 𝑃 )‖ is proportional to 𝛼−1 ||

|

𝜌′𝐵(𝑑(𝐲); 𝑐)
|

|

|

, where 𝛼 is defined in (30) and 𝑑(𝐲)2 =
(𝐲 − 𝐗𝜷0)⊤Σ−1(𝐲 − 𝐗𝜷0). Therefore, we propose the scalar

𝐺1 =
1
𝛼
sup
𝑠>0

|

|

|

𝜌′𝐵(𝑠; 𝑐)
|

|

|

,

as an index for the GES of regression S-functionals. This coincides with the GES index for location CM-functionals in Kent and 
Tyler [12]. From Examples  6 and 7, together with Lemma  2 and (27), for both the shape and direction S-functional, it follows 
that ‖IF(𝐲)‖ is proportional to 𝛿−11 |𝜌′𝐵(𝑑(𝐲); 𝑐)𝑑(𝐲)|, where 𝛿1 is defined in (28). We propose the scalar

𝐺2 =
𝑘

(𝑘 + 2)𝛿1
sup
𝑠>0

|

|

|

𝜌′𝐵(𝑠; 𝑐)𝑠
|

|

|

,

as an index for the GES of shape and direction S-functionals. In this way, 𝐺2 coincides with the GES index for CM-functionals of 
shape in Kent and Tyler [12]. Finally, from Example  6 and (27), if follows that for the scale functional ‖IF(𝐲)‖ is proportional to 
𝛿−12 |𝜌𝐵(𝑑(𝐲); 𝑐) − 𝑏0|, where 𝛿2 is defined in (28). We propose

𝐺3 =
1
𝛿2

sup
𝑠>0

|

|

𝜌𝐵(𝑠; 𝑐) − 𝑏0|| ,

as an index for the GES of the S-functional of scale.
We investigate how the asymptotic efficiency at the normal distribution of the S-estimators, and the GES of the corresponding 

S-functionals behave as we vary the breakdown point of the S-estimator between 0 and 0.5. Given a value 𝜖∗ of the breakdown 
point, we determine the corresponding cut-off constant 𝑐 by solving 𝜖∗ = E𝟎,𝐈𝑘 [𝜌𝐵(‖𝐳‖; 𝑐)]∕(𝑐

2∕6). With this value of 𝑐, we compute 
the values of 𝜆, 𝜎1 and 𝜎3 and the GES indices 𝐺1, 𝐺2 and 𝐺3. In Fig.  1, on the top row we have plotted the asymptotic relative 
efficiencies 1∕𝜆, 1∕𝜎1 and 1∕(2𝑘𝜎3) as a function of the breakdown point for dimensions 𝑘 ∈ {2, 5, 10}, and the bottom row contains 
plots of the GES indices 𝐺1, 𝐺2 and 𝐺3 for the same dimensions. The efficiency of high-breakdown S-estimators quickly increases 
with dimension 𝑘, especially for the regression and shape/direction estimators. At the same time the effect on the GES is much 
smaller for high breakdown S-estimators. Furthermore, as expected, the efficiency decreases with increasing breakdown point, but 
the loss of efficiency is less severe for the S-estimator of scale compared to the S-estimator for regression and the S-estimators for 
shape and direction.

In dimension 𝑘 = 2 (solid lines), the 50% breakdown S-estimators have asymptotic efficiencies 1∕𝜆 = 0.580, 1∕𝜎1 = 0.376, and 
1∕(4𝜎3) = 0.755. However, one can gain both efficiency and lower the GES at the cost of a lower breakdown point. For example, 
the GES index of the regression functional attains its minimal value 𝐺1 = 1.927 at breakdown point 28%, which corresponds to 
cut-off value 𝑐 = 4.115. For this cut-off value the GES index of the shape and direction functional is 𝐺2 = 1.368, which is not far 
off from its minimal value 1.344, and the GES index for scale is 𝐺3 = 3.323. Furthermore, the asymptotic efficiencies then become 
1∕𝜆 = 0.884, 1∕𝜎 = 0.803, and 1∕(4𝜎 ) = 0.939, for the regression estimator, the estimators of shape and direction, and the scale 
11
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Fig. 1. Asymptotic efficiencies relative to the least squares estimator (ARE) and the gross error sensitivities (GES) for the S-estimators of the regression 
parameter 𝜷0 (left), shape Σ∕|Σ|

1∕𝑘 and direction 𝜽0∕‖𝜽0‖ (middle), and scale |Σ|

1∕(2𝑘) (right) as functions of the breakdown point 𝜖∗ ∈ (0, 0.5) at the multivariate 
normal in dimensions 𝑘 = 2 (solid), 𝑘 = 5 (dashed) and 𝑘 = 10 (dotted).

estimator, respectively. Similarly, the GES index of the shape and direction functionals attains its minimal value 𝐺2 = 1.344 for 
𝑐 = 3.722. This would yield 𝐺1 = 1.947, 𝐺3 = 2.844, 1∕𝜆 = 0.835, 1∕𝜎1 = 0.723, 1∕(4𝜎3) = 0.912 and breakdown point 33%. The GES 
index of the scale functional attains its minimum value 𝐺3 = 1.852 at 50% breakdown point, so no simultaneous gain in efficiency 
and smaller GES values 𝐺1 and 𝐺2 can be achieved at the cost of a smaller breakdown point.

In dimension 𝑘 = 5 (dashed lines), the 50% breakdown S-estimators have asymptotic efficiencies 1∕𝜆 = 0.864, 1∕𝜎1 = 0.778, and 
1∕(10𝜎3) = 0.918. The GES index of the regression functional attains its minimal value 𝐺1 = 2.595 at breakdown point 37%. The 
corresponding GES index for shape and direction functionals is 𝐺2 = 1.271 and 𝐺3 = 1.480 for the scale functionals. Corresponding to 
this smaller regression GES index we observe a gain in the asymptotic efficiencies: 1∕𝜆 = 0.932, 1∕𝜎1 = 0.903, and 1∕(10𝜎3) = 0.965, 
for the regression estimator, the estimators of shape and direction, and the scale estimator, respectively. The GES index of the shape 
and direction functionals attains its minimal value at breakdown point 47%, so the gain in both efficiency and a smaller 𝐺2 value 
is negligible. The situation for the GES index for scale is the same as in dimension 𝑘 = 2, where no simultaneous gain in efficiency 
and smaller GES values 𝐺1 and 𝐺2 can be achieved at the cost of a smaller breakdown point.

Finally, in dimension 𝑘 = 10 (dotted lines), the 50% breakdown S-estimators have asymptotic efficiencies 1∕𝜆 = 0.933, 
1∕𝜎1 = 0.915, and 1∕(20𝜎3) = 0.965. The GES index of the regression functional attains its minimal value 𝐺1 = 3.426 at breakdown 
point 42%. The corresponding GES index for shape and direction functionals is 𝐺2 = 1.221 and 𝐺3 = 1.744 for the scale functionals. 
Corresponding to this smaller regression GES index we observe a gain in the asymptotic efficiencies: 1∕𝜆 = 0.960, 1∕𝜎1 = 0.949, and 
1∕(20𝜎3) = 0.979, for the regression estimator, the estimators of shape and direction, and the scale estimator, respectively. Both GES 
indices 𝐺2 and 𝐺3 attain their minimal values at 50% breakdown, so no simultaneous gain in efficiency and smaller GES value 𝐺1
can be achieved at the cost of a smaller breakdown point.

We conclude that at a moderate loss of breakdown point, from 50% to about 30%–40%, one can gain efficiency of the S-estimators 
and at the same time reduce the GES of the regression S-estimator. The improvements becomes less as the dimension increases.

In the top row of Fig.  1 we see that the efficiency becomes close to one when the dimension is large. This is a well know 
phenomenon observed when the efficiency is being computed under a multivariate normal setting. One of the referees raised the 
12
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Fig. 2. Asymptotic efficiencies relative to the maximum likelihood estimator (ARE) for the S-estimators of the regression parameter 𝜷0 (left), shape Σ∕|Σ|

1∕𝑘

and direction 𝜽0∕‖𝜽0‖ (middle), and scale |Σ|

1∕(2𝑘) (right) as functions of the breakdown point 𝜖∗ ∈ (0, 0.5) at the multivariate Student with 𝜈 ∈ {1, 15} degrees 
of freedom in dimensions 𝑘 = 2 (solid), 𝑘 = 5 (dashed) and 𝑘 = 10 (dotted).

question whether this behavior would also be observed in a neighborhood of the normal distribution. We have addressed this 
question by computing asymptotic relative efficiencies with respect to the maximum likelihood estimator at the 𝑘-variate Student 
distribution with degrees of freedom 𝜈 = 1 and 𝜈 = 15. In these settings, the functions 𝑤𝑖, for 𝑖 ∈ {1, 2, 3} in (14) are given by 
𝑤1(𝑠) = 𝑤2(𝑠) = (𝜈 + 𝑘)∕(𝜈 + 𝑠2) and 𝑤3(𝑠) = 1, see also Example  2. From Maronna [22] one may obtain that the limiting variance of 
the regression ML estimator can be represented by the scalar

𝜆ML =
(1∕𝑘)E

[

𝑤1(‖𝐳‖)2‖𝐳‖2
]

(

E
[

𝑤1(‖𝐳‖) +
1
𝑘
𝑤′

1(‖𝐳‖)‖𝐳‖
])2

.

The limiting variances of the ML estimators of shape and scale are represented by the scalars 𝜎1 and 𝜎3 = (2𝜎1∕𝑘+𝜎2)∕4, respectively, 
where 𝜎1 and 𝜎2 are defined in (17).

The asymptotic efficiencies relative to the maximum likelihood estimator at the 𝑘-variate Student distribution with 𝜈 ∈ {1, 15}
degrees of freedom are visible in Fig.  2. The graphs in the top row correspond to 𝜈 = 1 and differ quite a lot from the ones the 
top row in Fig.  1. As expected the S-estimators with small breakdown points have poor efficiencies, because they behave similar 
to the least squares estimators. For higher breakdown points the efficiencies become higher, but in general remain far below one 
and do not necessarily reach their maximum value at 50% breakdown point, especially for the S-estimator of shape. The maximum 
efficiency 0.613 is obtained by the S-estimator of shape with breakdown point 9.5%. For the high breakdown S-estimator of shape the 
efficiency increases with larger dimension, but does not improve on the maximum value. For the regression and scale S-estimators 
the maximum efficiencies 0.890 and 0.967, respectively, are obtained by the S-estimators with breakdown points 34% and 5%, 
respectively. In contrast with the behavior at the normal distribution, in general the efficiencies of the regression and scale estimators 
decrease with larger dimension. This behavior can also be observed for some of the robust location M-estimators considered in 
Maronna [22].

For the Student distribution with 𝜈 = 15 degrees of freedom, the behavior of the efficiency is somewhat in between the one at the 
normal and the one at the Student distribution with 𝜈 = 1 degree of freedom. The graphs in the bottom row of Fig.  2 are more similar 
13
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to the ones in the top row of Fig.  1, although the maximum efficiencies are not attained at 0% breakdown point. For the regression, 
shape and scale S-estimators the maximal efficiencies 0.998, 0.996, and 0.998, respectively, are obtained by the S-estimators with 
breakdown points 10.5%, 9%, and 18%, respectively. Furthermore, only for higher breakdown points the efficiency increases with 
larger dimension. For the low breakdown point S-estimators the efficiency decreases with larger dimension. This behavior can also 
be observed for the 25% regression S-estimator in Van Aelst and Willems [29] at the Student distribution with 3 degrees of freedom.
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Appendix A. Proofs

Proof of Theorem  1.  It can be seen that the projection matrix, as defined in (6), is given by 

Π𝐿 = 𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1 𝐋⊤

(

Σ−1 ⊗Σ−1) . (A.1)

Since 𝐍 is of radial type with respect to Σ, it follows from Corollary 1 in Tyler [27] that there exist constants 𝜂, 𝜎1 and 𝜎2 with 
𝜎1 ≥ 0 and 𝜎2 ≥ −2𝜎1∕𝑘, such that E[𝐍] = 𝜂Σ and

var{vec(𝐍)} = 𝜎1(𝐈𝑘2 +𝐊𝑘,𝑘)(Σ⊗Σ) + 𝜎2vec(Σ)vec(Σ)⊤.

It follows that 𝐌 has expectation E[vec(𝐌)] = Π𝐿vec(E[𝐍]) = 𝜂Π𝐿vec(Σ), and variance

var(vec(𝐌)) = Π𝐿var(vec(𝐍))Π⊤
𝐿 = 𝜎1Π𝐿(𝐈𝑘2 +𝐊𝑘,𝑘)(Σ⊗Σ)Π⊤

𝐿 + 𝜎2Π𝐿vec(Σ)vec(Σ)⊤Π⊤
𝐿.

Note that

𝐊𝑘,𝑘(𝐀⊗ 𝐁) = (𝐁⊗ 𝐀)𝐊𝑘,𝑘, 𝐊𝑘,𝑘vec(𝐀) = vec(𝐀⊤),

see, e.g., [19, Chapter 3, Section 7]. Since Σ = 𝐕(𝜽) is symmetric, also 𝐋𝑗 = 𝜕𝐕∕𝜕𝜃𝑗 is symmetric, for 𝑗 ∈ {1,… ,𝓁}. This means that 
𝐊𝑘,𝑘𝐋 = 𝐋 and it follows that 

Π𝐿(𝐈𝑘2 +𝐊𝑘,𝑘)(Σ⊗Σ)Π⊤
𝐿 = 𝐋

(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1 𝐋⊤(𝐈𝑘2 +𝐊𝑘,𝑘)Π⊤

𝐿

= 2𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1 𝐋⊤Π⊤

𝐿 = 2𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1 𝐋⊤.

(A.2)

This finishes the proof of part (i). Since 𝐋 has full rank, it holds that (𝐋⊤𝐋)−1𝐋⊤vec(𝐌) = 𝐓. This immediately gives

E[𝐓] = (𝐋⊤𝐋)−1𝐋⊤E[vec(𝐌)] = 𝜂(𝐋⊤𝐋)−1𝐋⊤Π𝐿vec(Σ) = 𝜂𝜽𝐿,

and

var(𝐓) = (𝐋⊤𝐋)−1𝐋⊤var{vec(𝐌)}𝐋(𝐋⊤𝐋)−1.

When we insert the expression for var{vec(𝐌)} from part (i), the theorem follows. □

Proof of Corollary  1.  When 𝐕 is linear, then vec(Σ) = 𝐋𝜽. This means that Π𝐿vec(Σ) = vec(Σ) and 𝜽𝐿 = 𝜽. The corollary then 
follows directly from Theorem  1. □

Proof of Theorem  2.  The proof follows the line of reasoning used in the proofs of Theorem 9.1 and Corollary 9.2 in Lopuhaä 
et al. [17] for S-estimators. These proofs are based on estimating Eqs. (13) with 𝑤1(𝑑) = 𝜌′(𝑑)∕𝑑, 𝑤2(𝑑) = 𝑘𝜌′(𝑑)∕𝑑 and 𝑤3(𝑑) =
𝜌′(𝑑)𝑑 − 𝜌(𝑑) + 𝑏0, and require conditions (R1)–(R5) in [17] on the function 𝜌. For the proof of Theorem  2 these conditions have 
been reformulated into similar conditions (C1)–(C3) for general 𝑤1, 𝑤2, and 𝑤3. Furthermore, in order to incorporate the case 
𝑤1 = 𝑤2 = 𝑤3 = 1 of Example  1, we have slightly adapted some of the boundedness conditions and use that

𝑑2 = (𝐲 − 𝐗𝜷)⊤𝐕−1(𝐲 − 𝐗𝜷) ≤ ‖𝐲 − 𝐗𝜷‖2

𝜆𝑘(𝐕)
≤

(‖𝐲‖ + ‖𝐗‖ ⋅ ‖𝜷‖)2

𝜆𝑘(𝐕)
≤

‖𝐬‖2(1 + ‖𝜷‖)2

𝜆𝑘(𝐕)
.

This will ensure that 𝑑2 is bounded by a multiple of ‖𝐬‖2 on a neighborhood of 𝝃0. In order to apply dominated convergence, we 
then require E‖𝐬‖4 <∞ in Theorem  2 instead of E‖𝐗‖2 <∞, which was sufficient for Corollary 9.2 in [17].

Define

𝛬(𝝃) = 𝛹 (𝐬, 𝝃) d𝑃 (𝐬).
14
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Since 𝝃0 is a solution of (15), we have that 𝛬(𝝃0) = 𝟎. Conditions (C1)–(C3) and (A2) yield that 𝛬 is continuously differentiable in a 
neighborhood of 𝝃0 and by application of empirical process theory (see, e.g., Lemma 11.8 in [18] for the special case of S-estimators) 
one finds 

𝟎 = ∫ 𝛹 (𝐬, 𝝃𝑛) d𝑃 (𝐬) + ∫ 𝛹 (𝐬, 𝝃0) d(P𝑛 − 𝑃 )(𝐬) + 𝑜𝑃 (𝑛−1∕2)

= 𝛬′(𝝃0)(𝝃𝑛 − 𝝃0) +
1
𝑛

𝑛
∑

𝑖=1

{

𝛹 (𝐬𝑖, 𝝃0) − E[𝛹 (𝐬𝑖, 𝝃0)]
}

+ 𝑜𝑃 (𝑛−1∕2).
(A.3)

Similar to Lemma 8.3 in Lopuhaä et al. [17], we find that 𝛬′(𝝃0) is a block matrix, with blocks 𝛬′
𝜷 (𝝃0) and 𝛬′

𝜽(𝝃0) on the main 
diagonal, where

𝛬′
𝜽(𝝃0) = ∫

𝜕𝛹𝜽(𝐬, 𝝃0)
𝜕𝜽

d𝑃 (𝐬) = 𝛾1𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋 − 𝛾2𝐋⊤vec(Σ−1)vec(Σ−1)⊤𝐋,

where 𝛹𝜽 is defined in (14), and 𝛾1, 𝛾2 defined in (16). This implies that 
√

𝑛(𝜷𝑛−𝜷0) and 
√

𝑛(𝜽𝑛−𝜽0) are asymptotically independent 
and from (A.3) we obtain

𝟎 = 𝛬′
𝜽(𝝃0)(𝜽𝑛 − 𝜽0) +

1
𝑛

𝑛
∑

𝑖=1

{

𝛹𝜽(𝐬𝑖, 𝝃0) − E[𝛹𝜽(𝐬𝑖, 𝝃0)]
}

+ 𝑜𝑃 (𝑛−1∕2),

where 𝛹𝜽 is defined in (14). Due to condition (C1) and E‖𝐬‖4 < ∞, the second term on the right hand side behaves according to 
the central limit theorem. This yields that 𝜽𝑛 − 𝜽0 = 𝑂𝑃 (𝑛−1∕2) and it follows that 

√

𝑛(vec(𝐕𝑛) − vec(Σ)) =
√

𝑛𝐋(𝜽𝑛 − 𝜽0) + 𝑂𝑃 (𝑛−1∕2) = −𝐋𝛬′
𝜽(𝝃0)

−1 1
√

𝑛

𝑛
∑

𝑖=1
𝛹𝜽(𝐬𝑖, 𝝃0) + 𝑜𝑃 (1), (A.4)

where we also use that E[𝛹𝜽(𝐬𝑖, 𝝃0)] = 𝛬(𝝃0) = 𝟎. Furthermore, we can write 
𝛹𝜽(𝐬, 𝝃0) = 𝐋⊤(Σ−1 ⊗Σ−1)vec

{

𝛹𝐂(𝐬, 𝝃0)
}

, (A.5)

where 
𝛹𝐂(𝐬, 𝝃0) = 𝑤2(𝑑0)(𝐲 − 𝐗𝜷0)(𝐲 − 𝐗𝜷0)⊤ −𝑤3(𝑑0)Σ, (A.6)

with 𝑑20 = (𝐲−𝐗𝜷0)⊤Σ−1(𝐲−𝐗𝜷0). To determine an expression for the inverse of 𝛬′
𝜽(𝝃0), note that we can write 𝛬′

𝜽(𝝃0) = 𝛾1𝐁−𝛾2𝐯𝐯⊤, 
where

𝐁 = 𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋, 𝐯 = 𝐋⊤vec(Σ−1) = 𝐋⊤(Σ−1 ⊗Σ−1)vec(Σ),

where we also use 
vec(𝐀𝐁𝐂) = (𝐂⊤ ⊗ 𝐀)vec(𝐁), (A.7)

see, e.g., [19, Chapter 2, Section 4]. According to the Sherman–Morisson formula, this means that

𝛬′
𝜽(𝝃0)

−1 = 1
𝛾1

𝐁−1 −
𝛾2
𝛾21

𝐁−1𝐯𝐯⊤𝐁−1

1 − (𝛾2∕𝛾1)𝐯⊤𝐁−1𝐯
= 1
𝛾1

𝐁−1 −
𝛾2
𝛾1

𝐁−1𝐯𝐯⊤𝐁−1

𝛾1 − 𝛾2𝐯⊤𝐁−1𝐯
.

Note that 𝐯⊤𝐁−1𝐯 = 𝜋𝐿, where 𝜋𝐿 is defined in (16). We find that 𝐋𝛬′
𝜽(𝝃0)

−1𝛹𝜽(𝐬, 𝝃0) = 𝐋𝛬′
𝜽(𝝃0)

−1𝐋⊤(Σ−1 ⊗ Σ−1)vec
{

𝛹𝐂(𝐬, 𝝃0)
}

, 
where

𝐋𝛬′
𝜽(𝝃0)

−1𝐋⊤(Σ−1 ⊗Σ−1) = 1
𝛾1

Π𝐿 +
𝛾2

𝛾1(𝛾1 − 𝛾2𝜋𝐿)
Π𝐿vec(Σ)(Π𝐿vec(Σ))⊤(Σ−1 ⊗Σ−1)

= Π𝐿

{

1
𝛾1

𝐈𝑘2 +
𝛾2

𝛾1(𝛾1 − 𝛾2𝜋𝐿)
vec(Σ)(Π𝐿vec(Σ))⊤(Σ−1 ⊗Σ−1)

}

.

It follows that 
√

𝑛(vec(𝐕𝑛) − vec(Σ)) = −Π𝐿(𝑎𝐈𝑘2 + 𝑏𝐌𝐿)
1
√

𝑛

𝑛
∑

𝑖=1
vec

{

𝛹𝐂(𝐬𝑖, 𝝃0)
}

+ 𝑜𝑃 (1), (A.8)

where 
𝑎 = 1

𝛾1
, 𝑏 =

𝛾2
𝛾1(𝛾1 − 𝛾2𝜋𝐿)

, (A.9)

with 𝜋𝐿 defined in (16), and where 
𝐌𝐿 = vec(Σ)(Π𝐿vec(Σ))⊤(Σ−1 ⊗Σ−1), (A.10)

with 𝑑2𝑖,0 = (𝐲𝑖 − 𝐗𝑖𝜷0)⊤Σ−1(𝐲𝑖 − 𝐗𝑖𝜷0), 𝑖 ∈ {1,… , 𝑛}.
Next, note that 𝛬(𝝃0) = 𝟎, together with (A.5) and the fact that 𝐋 has full rank, yields that E [

vec
{

𝛹𝐂(𝐬𝑖, 𝝃0)
}]

= 𝟎. This means 
that √𝑛(vec(𝐕𝑛) − vec(Σ)) is asymptotically normal with mean zero and variance

E
[

vec(𝛹 (𝐬, 𝝃 ))vec(𝛹 (𝐬, 𝝃 ))⊤
]

= E
[

E
[

vec(𝛹 (𝐬, 𝝃 ))vec(𝛹 (𝐬, 𝝃 ))⊤||𝐗
]]

.

15

𝐂 0 𝐂 0 𝐂 0 𝐂 0
|
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The inner expectation on the right hand side is the conditional expectation of 𝐲 ∣ 𝐗, which has the same distribution as Σ1∕2𝐳 + 𝝁, 
where 𝐳 has a spherical density 𝑓𝟎,𝐈𝑘 (𝐳) = 𝑔(‖𝐳‖2). This implies that 

E
[

vec
(

Σ−1∕2𝛹𝐂(𝐬, 𝝃0)Σ−1∕2) vec
(

Σ−1∕2𝛹𝐂(𝐬, 𝝃0)Σ−1∕2)⊤
]

= E𝟎,𝐈𝑘
[

𝑤2(‖𝐳‖)2‖𝐳‖4
]

E𝟎,𝐈𝑘

[

vec
(

𝐮𝐮⊤
)

vec
(

𝐮𝐮⊤
)⊤

]

− E𝟎,𝐈𝑘
[

𝑤2(‖𝐳‖)𝑤3(‖𝐳‖)‖𝐳‖2
]

E𝟎,𝐈𝑘

[

vec
(

𝐮𝐮⊤
)

vec
(

𝐈𝑘
)⊤

]

− E𝟎,𝐈𝑘
[

𝑤2(‖𝐳‖)𝑤3(‖𝐳‖)‖𝐳‖2
]

E𝟎,𝐈𝑘

[

vec
(

𝐈𝑘
)

vec
(

𝐮𝐮⊤
)⊤

]

+ E𝟎,𝐈𝑘
[

𝑤3(‖𝐳‖)2
]

E𝟎,𝐈𝑘

[

vec
(

𝐈𝑘
)

vec
(

𝐈𝑘
)⊤

]

,

(A.11)

where 𝐮 = 𝐳∕‖𝐳‖. From Lemma 5.1 in [14], we have
E𝟎,𝐈𝑘vec(𝐮𝐮

⊤)vec(𝐮𝐮⊤)⊤ = 𝜎1(𝐈𝑘2 +𝐊𝑘,𝑘) + 𝜎2vec(𝐈𝑘)vec(𝐈𝑘)⊤,

where 𝜎1 = 𝜎2 = (𝑘(𝑘 + 2))−1. Hence, the first term on the right hand side of (A.11) is equal to
E𝟎,𝐈𝑘

[

𝑤2(‖𝐳‖)2‖𝐳‖4
]

𝑘(𝑘 + 2)
(

𝐈𝑘2 +𝐊𝑘,𝑘 + vec(𝐈𝑘)vec(𝐈𝑘)⊤
)

.

For the left hand side of (A.11), this leads to a term 𝐈𝑘2 +𝐊𝑘,𝑘 with coefficient
E𝟎,𝐈𝑘

[

𝑤2(‖𝐳‖)2‖𝐳‖4
]

𝑘(𝑘 + 2)
,

and using that, according to Lemma 11.4 in [18], E𝟎,𝐈𝑘
[

𝐮𝐮⊤
]

= (1∕𝑘)𝐈𝑘, for the left hand side of (A.11), we find a second term 
vec(𝐈𝑘)vec(𝐈𝑘)⊤ with coefficient

E𝟎,𝐈𝑘
[

𝑤2(‖𝐳‖)2‖𝐳‖4
]

𝑘(𝑘 + 2)
−

2E𝟎,𝐈𝑘
[

𝑤2(‖𝐳‖)𝑤3(‖𝐳‖)‖𝐳‖2
]

𝑘
+ E𝟎,𝐈𝑘

[

𝑤3(‖𝐳‖)2
]

.

This means that
E
[

vec
(

Σ−1∕2𝛹𝐂(𝐬, 𝝃0)Σ−1∕2) vec
(

Σ−1∕2𝛹𝐂(𝐬, 𝝃0)Σ−1∕2)⊤
]

= 𝛿1
(

𝐈𝑘2 +𝐊𝑘,𝑘
)

+ 𝛿2vec(𝐈𝑘)vec(𝐈𝑘)⊤,

or equivalently 

E
[

vec(𝛹𝐂(𝐬, 𝝃0))vec(𝛹𝐂(𝐬, 𝝃0))⊤
]

= 𝛿1
(

𝐈𝑘2 +𝐊𝑘,𝑘
)

(Σ⊗Σ) + 𝛿2vec(Σ)vec(Σ)⊤. (A.12)

where 

𝛿1 =
E𝟎,𝐈𝑘

[

𝑤2(‖𝐳‖)2‖𝐳‖4
]

𝑘(𝑘 + 2)
, 𝛿2 = 𝛿1 −

2E𝟎,𝐈𝑘
[

𝑤2(‖𝐳‖)𝑤3(‖𝐳‖)‖𝐳‖2
]

𝑘
+ E𝟎,𝐈𝑘

[

𝑤3(‖𝐳‖)2
]

. (A.13)

The limiting variance of √𝑛(vec(𝐕𝑛) − vec(Σ)) then becomes 
Π𝐿

(

𝑎𝐈𝑘2 + 𝑏𝐌𝐿
)

E
[

vec(𝛹𝐂(𝐬, 𝝃0))vec(𝛹𝐂(𝐬, 𝝃0))⊤
] (

𝑎𝐈𝑘2 + 𝑏𝐌⊤
𝐿
)

Π⊤
𝐿

= 𝛿1Π𝐿
(

𝑎𝐈𝑘2 + 𝑏𝐌𝐿
) (

𝐈𝑘2 +𝐊𝑘,𝑘
)

(Σ⊗Σ)
(

𝑎𝐈𝑘2 + 𝑏𝐌⊤
𝐿
)

Π⊤
𝐿

+ 𝛿2Π𝐿
(

𝑎𝐈𝑘2 + 𝑏𝐌𝐿
)

vec(Σ)vec(Σ)⊤
(

𝑎𝐈𝑘2 + 𝑏𝐌⊤
𝐿
)

Π⊤
𝐿,

(A.14)

where 𝑎 and 𝑏 are defined in (A.9). First consider the second term on the right hand side of (A.14). Because 𝐌𝐿vec(Σ) = 𝜋𝐿vec(Σ), 
where 𝐌𝐿 and 𝜋𝐿 are defined in (16) and (A.10), the second term in (A.14) is equal to

𝛿2(𝑎 + 𝑏𝜋𝐿)2Π𝐿vec(Σ)vec(Σ)⊤Π⊤
𝐿.

Next consider the first term on the right hand side of (A.14). The matrix product after the factor 𝛿1 is equal to

𝑎2
(

𝐈𝑘2 +𝐊𝑘,𝑘

)

(Σ⊗Σ) + 𝑎𝑏
(

𝐈𝑘2 +𝐊𝑘,𝑘
)

(Σ⊗Σ)𝐌⊤
𝐿

+ 𝑏𝑎𝐌𝐿
(

𝐈𝑘2 +𝐊𝑘,𝑘
)

(Σ⊗Σ) + 𝑏2𝐌𝐿
(

𝐈𝑘2 +𝐊𝑘,𝑘
)

(Σ⊗Σ)𝐌⊤
𝐿.

We have that 𝐌𝐿(Σ⊗Σ) = vec(Σ)(Π𝐿vec(Σ))⊤, and since Π⊤
𝐿(Σ

−1⊗Σ−1)Π𝐿 = (Σ−1⊗Σ−1)Π𝐿, we also find that 𝐌𝐿(Σ⊗Σ)𝐌⊤
𝐿 =

𝜋𝐿vec(Σ)vec(Σ)⊤, where 𝐌𝐿 and 𝜋𝐿 are defined in (16) and (A.10). Since Σ = 𝐕(𝜽) is symmetric, also 𝐋𝑗 = 𝜕𝐕∕𝜕𝜃𝑗 is symmetric, 
for 𝑗 ∈ {1,… ,𝓁}. This means that 𝐊𝑘,𝑘𝐋 = 𝐋 and 𝐊𝑘,𝑘Π𝐿 = Π𝐿. Furthermore, 𝐊𝑘,𝑘(Σ⊗Σ) = (Σ⊗Σ)𝐊𝑘,𝑘. Hence, it follows that 
the first term on the right hand side of (A.14) is equal to

𝑎2𝛿1Π𝐿
(

𝐈𝑘2 +𝐊𝑘,𝑘
)

(Σ⊗Σ)Π⊤
𝐿 + 2𝑎𝑏𝛿1Π𝐿

{

Π𝐿vec(Σ)vec(Σ)⊤ + vec(Σ)vec(Σ)⊤Π⊤
𝐿

}

Π⊤
𝐿

+ 2𝜋𝐿𝑏2𝛿1Π𝐿vec(Σ)vec(Σ)⊤Π⊤
𝐿,

where 𝑎, 𝑏, 𝛿1, and 𝛿2 are defined in (A.9) and (A.13). Therefore, together with (A.2), the limiting variance of 
√

𝑛(vec(𝐕𝑛) − vec(Σ))
becomes

2𝜎 𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1 𝐋⊤ + 𝜎 Π vec(Σ)vec(Σ)⊤Π⊤ ,
16

1 2 𝐿 𝐿
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where

𝜎1 = 𝑎2𝛿1 =
𝛿1
𝛾21

=
𝑘(𝑘 + 2)E𝟎,𝐈𝑘

[

𝑤2(‖𝐳‖)2‖𝐳‖4
]

(

E𝟎,𝐈𝑘

[

𝑤′
2(‖𝐳‖)‖𝐳‖

3 + 𝑘(𝑘 + 2)𝑤3(‖𝐳‖)
])2

and

𝜎2 = 4𝑎𝑏𝛿1 + 2𝜋𝐿𝑏2𝛿1 + 𝛿2(𝑎 + 𝑏𝜋𝐿)2.

For convenience, we first write 𝛿2 = −2𝛿1∕𝑘 + 𝛿3, where 𝛿1, 𝛿2 are defined in (A.13) and

𝛿3 =
1
𝑘2

E𝟎,𝐈𝑘

[

(

𝑤2(‖𝐳‖)‖𝐳‖2 − 𝑘𝑤3(‖𝐳‖)
)2

]

,

and 𝜎2 = −2𝜎1∕𝑘 + 𝜎3, where

𝜎3 = 2𝑏𝛿1(2𝑎 + 𝑏𝜋𝐿)
(

1 −
𝜋𝐿
𝑘

)

+ 𝛿3(𝑎 + 𝑏𝜋𝐿)2.

Furthermore, 𝑎 + 𝑏𝜋𝐿 = 1∕(𝛾1 − 𝛾2𝜋𝐿) and

2𝑎 + 𝑏𝜋𝐿 = 2
𝛾1

+
𝛾2𝜋𝐿

𝛾1(𝛾1 − 𝛾2𝜋𝐿)
=

2𝛾1 − 𝛾2𝜋𝐿
𝛾1(𝛾1 − 𝛾2𝜋𝐿)

,

so that

𝜎3 =
2𝛿1𝛾2(2𝛾1 − 𝛾2𝜋𝐿)
𝛾21 (𝛾1 − 𝛾2𝜋𝐿)

2

(

1 −
𝜋𝐿
𝑘

)

+
𝛿3

(𝛾1 − 𝛾2𝜋𝐿)2
.

Writing 𝛾3 and 𝛾4 instead of 𝛿1 and 𝛿3, respectively, proves part (i) of the theorem.
From expansion (A.4) it follows immediately that √𝑛(𝜽𝑛 − 𝜽0) is asymptotically normal with mean zero and variance

(𝐋⊤𝐋)−1𝐋⊤
{

2𝜎1𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1 𝐋⊤ + 𝜎2Π𝐿vec(Σ)vec(Σ)⊤Π⊤

𝐿

}

𝐋(𝐋⊤𝐋)−1.

Let 𝜽𝐿 be such that Π𝐿vec(Σ) = 𝐋𝜽𝐿, i.e., 𝜽𝐿 = (𝐋⊤𝐋)−1𝐋⊤Π𝐿vec(Σ). Then the limiting variance of √𝑛(𝜽𝑛 − 𝜽0) can be written as

2𝜎1
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1 + 𝜎2𝜽𝐿𝜽⊤𝐿.

This finishes the proof. □

Proof of Corollary  2.  When 𝐕 is linear, then Π𝐿vec(Σ) = vec(Σ) and 𝜋𝐿 = 𝑘, where 𝜋𝐿 is defined in (16). It follows from Theorem  2 
that √𝑛(vec(𝐕𝑛)−vec(Σ)) is asymptotically normal with mean zero and variance (3). Furthermore, because Π𝐿vec(Σ) = vec(Σ) = 𝐋𝜽0, 
it follows that 𝜽𝐿 in Theorem  2 is equal to 𝜽0. It follows from Theorem  2 that √𝑛(𝜽𝑛 −𝜽0) is asymptotically normal with mean zero 
and variance (2). Finally, since 𝜋𝐿 = 𝑘, from the expression in (17), it follows that 𝜎2 = −2𝜎1∕𝑘 + 𝜎3, where 𝜎3 = 𝛾4∕(𝛾1 − 𝑘𝛾2)2, 
where 𝛾1, 𝛾2, and 𝛾4 are defined in (16) and (18). We find

𝛾1 − 𝑘𝛾2 =
1
2𝑘

E𝟎,𝐈𝑘

[

𝑤′
2(‖𝐳‖)‖𝐳‖

3 + 2𝑘𝑤3(‖𝐳‖) − 𝑘𝑤′
3(‖𝐳‖)‖𝐳‖

]

.

so that

𝜎3 =
4E𝟎,𝐈𝑘

[

(

𝑤2(‖𝐳‖)‖𝐳‖2 − 𝑘𝑤3(‖𝐳‖)
)2

]

(

E𝟎,𝐈𝑘

[

𝑤′
2(‖𝐳‖)‖𝐳‖

3 + 2𝑘𝑤3(‖𝐳‖) − 𝑘𝑤′
3(‖𝐳‖)‖𝐳‖

])2
. □

Proof of Remark  1.  Consider the expansion (A.8). When 𝐕 is linear, we find
Π𝐿(𝑎𝐈𝑘2 + 𝑏𝐌𝐿)vec

{

𝛹𝐂(𝐬, 𝝃0)
}

= 𝑎Π𝐿vec
{

𝛹𝐂(𝐬, 𝝃0)
}

+ 𝑏vec(Σ)vec(Σ−1)⊤vec
{

𝛹𝐂(𝐬, 𝝃0)
}

= 𝑎Π𝐿vec
{

𝛹𝐂(𝐬, 𝝃0)
}

+ 𝑏vec(Σ)tr
{

Σ−1𝛹𝐂(𝐬, 𝝃0)
}

= 𝑎Π𝐿vec
{

𝛹𝐂(𝐬, 𝝃0)
}

+ 𝑏vec(Σ)
(

𝑤2(𝑑0)𝑑20 − 𝑘𝑤3(𝑑0)
)

.

Using once more that Π𝐿vec(Σ) = vec(Σ), we conclude that the right hand side can be written as Π𝐿vec
{

𝛹𝐍(𝐬, 𝝃0)
}

, where 

𝛹𝐍(𝐬, 𝝃) = 𝑣1(𝑑)(𝐲 − 𝐗𝜷)(𝐲 − 𝐗𝜷)⊤ − 𝑣2(𝑑)Σ, (A.15)

with 𝑑2 = (𝐲 − 𝐗𝜷)⊤𝐕−1(𝐲 − 𝐗𝜷) and 

𝑣1(𝑠) = 𝑎𝑤2(𝑠), 𝑣2(𝑠) = −𝑏𝑤2(𝑠)𝑠2 + (𝑎 + 𝑏𝑘)𝑤3(𝑠), (A.16)

where 𝑎 and 𝑏 are defined in (A.9). Hence, if we define

𝐍𝑛 =
1

𝑛
∑

𝛹𝐍(𝐬𝑖, 𝝃0),
17

𝑛 𝑖=1
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with 𝛹𝐍 defined in (A.15), then it follows that
√

𝑛(vec(𝐕𝑛) − vec(Σ)) = −Π𝐿vec
{

√

𝑛(𝐍𝑛 − E[𝐍𝑛])
}

+ 𝑜𝑃 (1).

This proves the first claim in Remark  1.
To prove the second claim, note that from 𝛬(𝝃0) = 𝟎, together with (A.5) and (A.7), it follows that

0 = 𝜽⊤0 E
[

𝛹𝜽(𝐬, 𝝃0)
]

= E
[

vec(Σ−1)⊤vec
{

𝛹𝐂(𝐬, 𝝃0)
}]

= E
[

tr
(

Σ−1𝛹𝐂(𝐬, 𝝃0)
)]

= E
[

𝑤2(𝑑0)𝑑20 − 𝑘𝑤3(𝑑0)
]

,

where 𝛹𝐂 is defined in (A.6). Then, from the properties of elliptically contoured densities, together with (A.16), one finds 
E[𝛹𝐍(𝐬, 𝝃0)] = 𝟎. This means that √

𝑛(𝐍𝑛 − E[𝐍𝑛]) is asymptotically normal with mean zero and variance
E
[

vec(𝛹𝐍(𝐬, 𝝃0))vec(𝛹𝐍(𝐬, 𝝃0))⊤
]

. Similar to (A.12) one finds that this variance is of the form (1). □

Proof of Theorem  3.  Let 𝐻 ∶ R𝑘×𝑘 → R𝑚 and let 

𝐻 ′(𝐕) = 𝜕𝐻(𝐕)
𝜕vec(𝐕)⊤

=
(

𝜕𝐻𝑖(𝐕)
𝜕𝑣𝑠𝑡

)

𝑖∈{1,…,𝑚}; 𝑠,𝑡∈{1,…,𝑘}
(A.17)

be the 𝑚 × 𝑘2 matrix of partial derivatives. According to the delta method √𝑛(𝐻(𝐕𝑛) −𝐻(Σ)) is asymptotically normal with mean 
zero and variance 𝐻 ′(Σ)var{vec(𝐌)}𝐻 ′(Σ)⊤. Because 𝐻 is continuously differentiable and satisfies (21), it follows that 

𝑙
∑

𝑗=1
𝑣𝑗
𝜕𝐻(𝐯)
𝜕𝑣𝑗

= 𝟎. (A.18)

This means that 𝐻 ′(Σ)vec(Σ) = 𝟎. Then, after inserting (3) for var{vec(𝐌)} (see Corollary  2), this finishes the proof of part (i).
For part (ii), let 𝐻 ∶ R𝓁 → R𝑚, and let 

𝐻 ′(𝜽) = 𝜕𝐻(𝜽)
𝜕𝜽⊤

=
(

𝜕𝐻𝑖(𝜽)
𝜕𝜃𝑗

)

𝑖∈{1,…,𝑚}; 𝑗∈{1,…,𝓁}
(A.19)

be the 𝑚×𝓁 matrix of partial derivatives. According to Corollary  2 and the delta method √𝑛(𝐻(𝜽𝑛)−𝐻(𝜽0)) is asymptotically normal 
with mean zero and variance

𝐻 ′(𝜽0)
{

2𝜎1
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

+ 𝜎2𝜽0𝜽⊤0

}

𝐻 ′(𝜽0)⊤.

Because 𝐻 satisfies (21) and (A.18), it follows immediately that 𝐻 ′(𝜽0)𝜽0 = 𝟎. This finishes the proof of part (ii). □

Proof of Lemma  1.  We apply Lemma 1 in [5]. Although the lemma is established for the 𝑁𝑘(𝝁,Σ) distribution, the proof holds for 
any distribution with an elliptically contoured density. According to [5], there exist two functions 𝛼𝐶 , 𝛽𝐶 ∶ [0,∞) → R, such that 

IF(𝐲;𝐂, 𝑃𝝁,Σ) = 𝛼𝐶 (𝑑(𝐲))(𝐲 − 𝝁)(𝐲 − 𝝁)⊤ − 𝛽𝐶 (𝑑(𝐲))Σ. (A.20)

We have that

IF(𝐲; vec(𝐌), 𝑃𝝁,Σ) = lim
ℎ↓0

vec(𝐌((1 − ℎ)𝑃𝝁,Σ + ℎ𝛿𝐲)) − vec(𝐌)(𝑃𝝁,Σ)
ℎ

= Π𝐿 lim
ℎ↓0

vec(𝐂((1 − ℎ)𝑃𝝁,Σ + ℎ𝛿𝐲)) − vec(𝐂)(𝑃𝝁,Σ)
ℎ

= Π𝐿vec
(

IF(𝐲;𝐂, 𝑃𝝁,Σ)
)

.

When we insert the expression (A.1) for Π𝐿, together with (A.20) and the fact that (𝐁⊤⊗𝐀)vec(𝐯𝐯⊤) = vec(𝐀𝐯𝐯⊤𝐁) according to (A.7), 
this finishes the proof of part (i). Since 𝐋 has full column rank, (𝐋⊤𝐋)−1𝐋⊤vec(𝐌(𝑃 )) = 𝜽(𝑃 ), which yields

IF(𝐲;𝜽, 𝑃𝝁,Σ) = (𝐋⊤𝐋)−1𝐋⊤IF(𝐲; vec(𝐌), 𝑃𝝁,Σ).

Part (i), together with (A.1) finishes the proof of part (ii). □

Proof of Lemma  2.  Let 𝐻 ∶ R𝑘×𝑘 → R𝑚 with derivative 𝐻 ′ defined in (A.17). From the definition of the influence function, it 
follows that 

IF(𝐲;𝐻(𝐌), 𝑃 ) =
𝜕𝐻(𝐌(𝑃ℎ,𝐲))

𝜕ℎ
|

|

|

|ℎ=0
=

𝜕𝐻(𝐂)
𝜕vec(𝐂)⊤

|

|

|

|𝐂=𝐌(𝑃 )

𝜕vec(𝐌(𝑃ℎ,𝐲))
𝜕ℎ

|

|

|

|ℎ=0
= 𝐻 ′(𝐌(𝑃 )) ⋅ IF(𝐲; vec(𝐌), 𝑃 ). (A.21)

By Fisher consistency we have 𝐌(𝑃 ) = Σ, and since 𝐕 is linear, the expression in Lemma  1(i) holds with Π𝐿vec(Σ) = vec(Σ). After 
inserting this in the right hand side of (A.21), together with vec(𝐯𝐯⊤) = 𝐯⊗𝐯 and (A.18), this proves part (i). Next, let 𝐻 ∶ R𝓁 → R𝑚
with derivative 𝐻 ′ defined by (A.19). It follows that 

IF(𝐲;𝐻(𝜽), 𝑃 ) = 𝐻 ′(𝜽(𝑃 )) ⋅ IF(𝐲;𝜽, 𝑃 ). (A.22)

By Fisher consistency we have 𝜽(𝑃 ) = 𝜽0, and since 𝐕 is linear, the expression in Lemma  1(ii) holds with 𝜽𝐿 = 𝜽0. After inserting 
this on the right hand side of (A.22), together with (A.18), this proves part (ii). □
18
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Appendix B. Derivation of 𝝈𝟏 and 𝝈𝟐

We compare the expressions for 𝜎1 and 𝜎2 derived in Theorem  2 with the ones obtained for specific cases in Tyler [27] and 
Lopuhaä et al. [17].

Proof of Example  1.  Inserting 𝑤1 = 𝑤2 = 𝑤3 = 1 in the expressions for 𝜎1 and 𝜎2 in Theorem  2 gives

𝜎1 =
E𝟎,𝐈𝑘

[

‖𝐳‖4
]

𝑘(𝑘 + 2)
,

which equals 1 for the multivariate normal. Furthermore, since 𝛾1 = 1 and 𝛾2 = 0 in (16), we find

𝜎2 = −2
𝑘
+

E𝟎,𝐈𝑘
[

(‖𝐳‖2 − 𝑘)2
]

𝑘2
= −2

𝑘
+

E𝟎,𝐈𝑘
[

‖𝐳‖4
]

− 2𝑘E𝟎,𝐈𝑘
[

‖𝐳‖2
]

+ 𝑘2

𝑘2
= −2

𝑘
+
𝑘(𝑘 + 2) − 2𝑘2 + 𝑘2

𝑘2
= 0. □

Proof of Example  2.  First consider the special case of maximum likelihood, with 𝑤1(𝑠) = 𝑤2(𝑠) = −2𝑔′(𝑠2)∕𝑔(𝑠2) and 𝑤3(𝑠) = 1. 
Note that

E𝟎,𝐈𝑘 [𝑧(‖𝐳‖)] =
2𝜋𝑘∕2
𝛤 (𝑘∕2) ∫

∞

0
𝑧(𝑟)𝑔(𝑟2)𝑟𝑘−1 d𝑟,

see, e.g., Lemma 1 in Lopuhaä [15]. When E𝟎,𝐈𝑘 [‖𝐳
2
‖] <∞, then by means of integration by parts we get

E𝟎,𝐈𝑘

[

𝑤′
2(‖𝐳‖)‖𝐳‖

3
]

= 2𝜋𝑘∕2
𝛤 (𝑘∕2) ∫

∞

0

4𝑔′(𝑟2)2

𝑔(𝑟2)2
𝑔(𝑟2)𝑟𝑘+3d𝑟 − 2𝜋𝑘∕2

𝛤 (𝑘∕2) ∫

∞

0

4𝑔′′(𝑟2)
𝑔(𝑟2)

𝑔(𝑟2)𝑟𝑘+3d𝑟

= 4E𝟎,𝐈𝑘

[

𝑤2(‖𝐳‖)2‖𝐳‖4
]

− 𝑘(𝑘 + 2).

It follows that 

𝜎1 =
𝑘(𝑘 + 2)E𝟎,𝐈𝑘

[

𝑤2(‖𝐳‖)2‖𝐳‖4
]

(

E𝟎,𝐈𝑘 [𝑤
′
2(‖𝐳‖)‖𝐳‖

3] + 𝑘(𝑘 + 2)
)2

=
𝑘(𝑘 + 2)

E𝟎,𝐈𝑘
[

𝑤2(‖𝐳‖)2‖𝐳‖4
] , (B.1)

which coincides with the expression found in Example 2 in Tyler [27], who expresses expectations in terms of the random variable 
𝑇 = ‖𝐳‖2. To compute 𝜎2 in Corollary  2, first note that by means of integration by parts it follows that E𝟎,𝐈𝑘 [𝑤2(‖𝐳‖)‖𝐳‖2] = 𝑘. When 
we insert this in the expression for 𝜎2, this gives

𝜎2 = −2
𝑘
𝜎1 +

4
(

E𝟎,𝐈𝑘
[

𝑤2(‖𝐳‖)2‖𝐳‖4
]

− 𝑘2
)

(

E𝟎,𝐈𝑘 [𝑤2(‖𝐳‖)2‖𝐳‖4] − 𝑘(𝑘 + 2) + 2𝑘
)2

= −2
𝑘
𝜎1 +

4
E𝟎,𝐈𝑘 [𝑤2(‖𝐳‖)2‖𝐳‖4] − 𝑘2

.

After inserting E𝟎,𝐈𝑘 [𝑤2(‖𝐳‖)2‖𝐳‖4] = 𝑘(𝑘 + 2)∕𝜎1, as follows from (B.1), we find

𝜎2 = −2
𝑘
𝜎1 +

4
𝑘(𝑘 + 2)∕𝜎1 − 𝑘2

=
2𝜎1(1 − 𝜎1)
𝑘 + 2 − 𝑘𝜎1

,

which coincides with the expression found in Example 2 in Tyler [27].
Next, consider the general case of M-estimators, with 𝑤3 = 1. First note that Tyler [27] uses a function 𝑢2, which relates to our 

function 𝑤2 as 𝑤2(𝑠) = 𝑢2(𝑠2). Then, since 𝝃0 = (𝜷0,𝜽0) satisfies (15), we find that
0 = 𝜽⊤0 E

[

𝛹𝜽(𝐬, 𝝃0)
]

= E
[

vec(Σ−1)⊤vec
{

𝑤2(𝑑0)(𝐲 − 𝐗𝜷0)(𝐲 − 𝐗𝜷0)⊤ −Σ
}]

= E
[

tr
{

𝑤2(𝑑0)(𝐲 − 𝐗𝜷0)(𝐲 − 𝐗𝜷0)⊤Σ−1 − 𝐈𝑘
}]

= E𝟎,𝐈𝑘
[

𝑤2(‖𝐳‖)‖𝐳‖2 − 𝑘
]

,

where 𝑑20 = (𝐲 − 𝐗𝜷0)⊤Σ−1(𝐲 − 𝐗𝜷0), so that 𝑘 = E𝟎,𝐈𝑘 [𝑤2(‖𝐳‖)‖𝐳‖2] = E[𝑢2(𝑇 )𝑇 ]. It then follows that

E𝟎,𝐈𝑘
[

𝑤2(‖𝐳‖)2‖𝐳‖4
]

= E
[

𝑢2(𝑇 )2𝑇 2] = 𝑘(𝑘 + 2)𝜓1, E𝟎,𝐈𝑘

[

𝑤′
2(‖𝐳‖)‖𝐳‖

3
]

= 2E
[

𝑢′2(𝑇 )𝑇
2] = 2𝑘(𝜓2 − 1),

where 𝜓1 and 𝜓2 are defined in Example 3 in Tyler [27]. Then from the expression for 𝜎1 provided in Theorem  2 we find

𝜎1 =
𝑘2(𝑘 + 2)2𝜓1

(

2𝑘(𝜓2 − 1) + 𝑘(𝑘 + 2)
)2

=
(𝑘 + 2)2𝜓1

(2𝜓2 + 𝑘)2
,

which coincides with the one in Example 3 in Tyler [27]. For 𝜎2 in Corollary  2 we obtain

𝜎2 = −
2𝜎1
𝑘

+
4
{

𝑘(𝑘 + 2)𝜓1 − 𝑘2
}

(2𝑘𝜓2)2
.

After inserting the expression for 𝜎1 in 𝜎2, one can verify that also the expression for 𝜎2 coincides with one in Example 3 in 
Tyler [27]. □

Proof of Example  3.  With 𝑤1(𝑠) = 𝜌′(𝑠)∕𝑠, 𝑤2(𝑠) = 𝑘𝜌′(𝑠)∕𝑠 and 𝑤3(𝑠) = 𝜌′(𝑠)𝑠− 𝜌(𝑠) + 𝑏0, one can easily verify that the expressions 
for 𝜎  and 𝜎  in Corollary  2 coincide with the ones in Corollary 9.2 in Lopuhaä et al. [17]. □
19
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Appendix C. Details for Examples  4 and 5

Proof of Example  4.  From (22) we find 

𝐻 ′(Σ)𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤𝐻 ′(Σ)⊤ = 1
𝑘2

|Σ|

−2∕𝑘vec(Σ)vec(Σ−1)⊤𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤vec(Σ−1)vec(Σ)⊤

− 1
𝑘
|Σ|

−2∕𝑘vec(Σ)vec(Σ−1)⊤𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤ − 1
𝑘
|Σ|

−2∕𝑘𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤vec(Σ−1)vec(Σ)⊤

+ |Σ|

−2∕𝑘𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤.

(C.1)

Using that vec(Σ) = 𝐋𝜽0 and
vec(Σ−1) = vec(Σ−1ΣΣ−1) =

(

Σ−1 ⊗Σ−1) vec(Σ) =
(

Σ−1 ⊗Σ−1)𝐋𝜽0,

the first term on the right hand side of (C.1) reduces to (1∕𝑘)|Σ|

−2∕𝑘vec(Σ)vec(Σ)⊤. Similarly, the second and third term on the 
right hand side of (C.1) are equal to −(1∕𝑘)|Σ|

−2∕𝑘vec(Σ)vec(Σ)⊤. Putting everything together, we find that the limiting variance of 
√

𝑛(𝐻(𝐕𝑛) −𝐻(Σ)) is given by (23). □

Proof of Example  5.  From Example  4 and the delta method, it follows that the limiting variance of √𝑛(𝐻(𝜽𝑛) −𝐻(𝜽)) is given by

(𝐋⊤𝐋)−1𝐋⊤
[

2𝜎1|Σ|

−2∕𝑘
{

𝐋
(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

𝐋⊤ − 1
𝑘
vec(Σ)vec(Σ)⊤

}]

𝐋(𝐋⊤𝐋)−1

= 2𝜎1|Σ|

−2∕𝑘
{

(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

− 1
𝑘
(𝐋⊤𝐋)−1𝐋⊤vec(Σ)vec(Σ)⊤𝐋(𝐋⊤𝐋)−1

}

=
2𝜎1

|Σ|

2∕𝑘

{

(

𝐋⊤
(

Σ−1 ⊗Σ−1)𝐋
)−1

− 1
𝑘
𝜽0𝜽⊤0

}

,

using that vec(Σ) = 𝐋𝜽0. □
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