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ABSTRACT Network utility maximization (NUM) addresses the problem of allocating resources fairly
within a network and explores the ways to achieve optimal allocation in real-world networks. Although
extensively studied in classical networks, NUM is an emerging area of research in the context of quantum
networks. In this work, we consider the quantum network utility maximization (QNUM) problem in a static
setting, where a user’s utility takes into account the assigned quantum quality (fidelity) via a generic entangle-
ment measure, as well as the corresponding rate of entanglement generation. Under certain assumptions, we
demonstrate that the QNUM problem can be formulated as an optimization problem with the rate allocation
vector as the only decision variable. Using a change-of-variable technique known in the field of geometric
programming, we then establish sufficient conditions under which this formulation can be reduced to a
convex problem: a class of optimization problems that can be solved efficiently and with certainty even in
high dimensions. We further show that this technique preserves convexity, enabling us to formulate convex
QNUM problems in networks where some routes have certain entanglement measures that do not readily
admit convex formulation while others do. This allows us to compute the optimal resource allocation in
networks where heterogeneous applications run over different routes.

INDEX TERMS Convex optimization, network utility maximization (NUM), quantum networks.

NOTATION
[n] {1, 2, . . . , n} for n ∈ N

l Number of links in the network.
r Number of routes in the network.
d j Positive constant characterizing the physical at-

tributes of the jth link; see (3)
w j Werner parameter of the generated pairs in the jth

link.
μ j Corresponding entanglement generation capacity of

the jth link, μ j := d j(1 − w j )
xi Rate allocated to the ith route.
yi ln(xi)
a ji Binary variable taking value 1 iff the ith route passes

through the jth link.
A Link–route incidence matrix, i.e., ((A)) ji = a ji
A j jth row of A, i.e., (a j1, a j2, . . . , a jr )
ui End-to-end Werner parameter of the ith route, i.e.,

ui =∏ j∈[l] w
a ji
j

ui(�y )
∏

j∈[l](1 − 〈Aj, e�y〉/d j )a ji , �y∈R
r

fi Entanglement measure for the ith route,
fi : [0, 1]→ [0, bi], nondecreasing and twice
differentiable on {z : fi(z)>0}\{1}, and fi(0) = 0

c(i) sup{z : fi(z) = 0}
T {�y∈R

r: 〈Aj, e�y〉<d j ∀ j}
Si {�y∈T : ui(�y )>c(i)}
Fi ln fi, Fi : (c(i), 1] → R

c(i)1 Unique inflection point of Fi; Fi is concave in

(c(i), c(i)1 ] and convex in (c(i)1 , 1)

The Link Index j∈ [l] and the Route Index i∈ [r]

I. INTRODUCTION
Quantum networks are envisaged to facilitate a variety of
applications, including quantum key distribution (QKD) [1],
[2], enhanced sensing [3], [4], and blind quantum compu-
tation [5], [6]. Unlike classical networks, where an appli-
cation’s quality of service (QoS) typically depends on the
available transmission rate, the QoS of a quantum network
application relies on the quality of entanglement and the rate
at which it is distributed between the sender and the receiver.
Furthermore, the QoS metric varies according to the under-
lying application, and the dependence of the QoS metric on
the quality of entanglement can sometimes be captured via a
suitable entanglement measure [7].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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To support diverse applications and multiple users, a net-
work must plan and distribute the resources for communica-
tion accordingly. Two central concepts of resource distribu-
tion in networks are efficiency and fairness [8], which have
been the focus of network utility maximization (NUM) [9],
[10] in classical networks. Since NUM is essentially a re-
source distribution problem, it borrows the mathematical
framework of fairness from welfare economics [11], which
explores the notion of equitable resource allocation among
contenders. The core idea is to formulate a social welfare
metric that takes into account the well-being of individuals.
Mathematically, this entails encoding individual well-being
via suitable utility functions and aggregating them into a
single social metric. Subsequently, the social metric is max-
imized over possible resource allocations to find the optimal
resource distribution. Interestingly, there are social welfare
metrics for which the optimal allocation is not necessarily
Pareto-efficient, i.e., starting from the optimal allocation, it
is possible to increase an individual’s utility without affecting
others [12].
In classical NUM, the transmission rate is usually the

(communication) resource allocated across routes, defined
as paths on the network graph. To do so, the utility func-
tion of a route is formulated according to the QoS met-
ric of the underlying application, such as delay, jitter, or
throughput. Individual utilities are then aggregated into the
(social) network utility function, which is optimized with
respect to rate allocation. Often, the individual utilities are
concave functions of the rate allocation, enabling a central
entity with the knowledge of individual utilities to compute
the optimal rate allocation by solving a convex optimization
problem. Since the global optimum can already be found
efficiently and with certainty for convex problems, classi-
cal NUM literature explores other aspects such as decen-
tralized implementations and their stability, i.e., the con-
vergence of such implementations to the optimal allocation
vector [9], [10], [13].

In contrast to classical NUM, the quantum network utility
maximization (QNUM) problem [7] aims to maximize the
aggregate utility of the network over achievable entangle-
ment quality and generation rate. This is because the utility
of a route in this case involves both the generation rate and
the quality, where the latter is encoded via an entanglement
measure [14] (including the secret key rate) that depends on
the underlying application. Moreover, the rate and quality
of entanglement generation are related—the relation being
governed by the entanglement generation scheme and the
physical attributes of the quantum communication links. It
was shown in [7] that the aggregate utility function is not
necessarily convex in the rate and quality of entanglement
generation, meaning that there is no known theoretical guar-
antee for finding a globally optimal allocation for the QNUM
problem.
In light of the above, this article aims to find conditions

under which the QNUM problem leads to a convex for-
mulation. Our first observation is that the QNUM problem

can be reformulated as an optimization problem with the
entanglement generation rate as the sole decision variable
in certain networks, specifically when entangled links are
generated using the single-click protocol [15], which was
experimentally demonstrated in [16]. Borrowing a change-
of-variable technique from geometric programming [17], we
then provide sufficient conditions for the QNUM problem
to allow for convex reformulation.1 Using the fact that the
reformulation preserves convexity, we show that the QNUM
problem can be transformed into a convex problem in the
presence of certain route entanglement measures, some of
which do not immediately lead to convex formulations while
the rest do. Our result has the implication that the optimal re-
source allocation for suchQNUMproblems can be computed
efficiently and with certainty, even in large networks.
The rest of this article is organized as follows. We first

discuss the related work in Section II and subsequently pro-
vide the relevant background on the state description of the
quantum communication links and convex optimization in
Section III. We then formally describe the assumptions made
and state our main results in Section IV. In Section V, we
show that certain entanglement measures satisfy the condi-
tions laid out in Section IV, while the results are applied to
an example network in Section VI. We present the proofs of
the results in SectionVII. Finally, SectionVIII concludes this
article.

II. RELATED WORK
QNUM is an emerging area of research introduced in [7].
In this work, the authors define the QNUM problem by
characterizing the utility of individual routes based on the
rate and fidelity of the entanglement allocated to these routes,
with fidelity encoded through specific measures of entangle-
ment. The study demonstrates that, depending on the choice
of entanglement measure, the QNUM problem may not be a
convex optimization problem. Lee et al. [18] adopt a different
approach, where the utility of a route is primarily determined
by the execution rate of the corresponding task and its associ-
ated computational requirements. The network utility is then
defined as the maximum sum of the route utilities, subject
to feasible rate allocations. The article further explores the
achievable network utility for various example networks in
the context of distributed quantum computing. In this work,
we primarily adopt the framework of [7]. We slightly gen-
eralize this setup by allowing the routes to have different
entanglement measures to describe respective utilities. Our
focus is to show that the QNUM problem can be transformed
into a convex problem, at least for the measures of entan-
glement considered in [7] when link-level entanglements
are generated using the single-click protocol [16]. Notably,
Vardoyan and Wehner [7] also consider this generation
scheme to define the rate–fidelity tradeoff in their analysis.

1A solution of the reformulation has a (known) one-to-one correspon-
dence with a solution of the original problem.

4100314 VOLUME 6, 2025



Kar and Wehner: CONVEXIFICATION OF THE QNUM PROBLEM Engineeringuantum
Transactions onIEEE

A related but different problem where quantum network
utility is considered in the context of network planning is
given in [19]. Here, the authors optimize the repeater place-
ments in a network to maximize the network utility. In con-
trast, our work assumes a fixed topology and predefined
routes, focusing solely on distributing link-level resources to
these routes. In addition to QNUM, other forms of network
resource sharing have also been explored in the quantum
network literature. For example, Gauthier et al. [20], [21]
focus on sharing the resources of an entanglement genera-
tion switch at the center of a network. A crucial difference
between these studies and our work is that we are concerned
with sharing link-level resources in a general topology.

III. PRELIMINARIES
In this work, we consider an entanglement distribution net-
work with a setup identical to [7]. The end nodes on this
network represent users, and they are connected via the re-
peater nodes. Two nodes are adjacent if and only if there is a
direct (or elementary) quantum communication link between
them. Furthermore, a route is a path between two users, i.e.,
a sequence of adjacent nodes linking the corresponding end
nodes.
Before delving into the details of the QNUM problem, we

first introduce two key concepts central to our analysis. First,
we describe the link-level entanglement generation scheme,
which defines the rate–fidelity tradeoff in the QNUM prob-
lem, i.e., determines the feasible region of the underlying
optimization. Next, we present the state description of the
links. Given that QNUM is an optimization problem—and
optimization problems are generally challenging to solve2—
we provide a brief overview of convex optimization, a class
of problems that can be efficiently solved, even in large
dimensions.

A. LINK GENERATION AND STATE DESCRIPTION
We assume that entanglements in the elementary links are
generated using the single-click protocol [15], experimen-
tally demonstrated in [16]. In this scheme, the generated state
has the following form:

ρ = (1 − α)|�+〉〈�+| + α|↑↑〉〈↑↑| (1)

where α is the bright-state population and |�+〉 is a Bell-state
orthogonal to the bright state |↑↑〉. Each generation attempt
succeeds with probability

pelem = 2κηα

where κ ∈ (0, 1) is a constant that accounts for the ineffi-
ciencies other than photon loss in the fiber. Furthermore, η

denotes the transmissivity between one end of the link and its
midpoint, where the heralding station is located. For a link of
length L km, its transmissivity is given by η = 10−0.02L.
In addition, we assume that the elementary links generated

as (1) are further converted to Werner states of same fidelity.

2Here, solving refers to finding a global optimum.

This can be done by applying transformations uniformly at
random from a set of operations that involve identical rota-
tions on each qubit [22], [23]. This leads to the following
state description for these links:

ρw = w|�+〉〈�+| + (1 − w)I4/4. (2)

Equating fidelities from (1) and (2) gives

1 − α = 1 + 3w

4
⇒ α = 3(1 − w)

4
.

The fidelity of a link can range between 0.25 and 1. That is,
we allow w to take values in its theoretically possible range
[0,1]. However, we will see later that the QNUM problem
may impose more stringent requirements on the link fideli-
ties. The state description (2) also leads to a convenient de-
scription for end-to-end entanglements on the routes, which
are created by swapping the elementary links on a given route
(see Assumption A1 in Section IV-A).
Observe that if a link attempts entanglement generation

every T units of time, the resulting entanglement generation
rate is given by

pelem
T

= 3κη

2T︸︷︷︸
=:d

(1 − w). (3)

Equation (3) describes the effective rate–fidelity tradeoff in
elementary link generation.

B. CONVEX OPTIMIZATION
Optimization problems are ubiquitous in quantitative scien-
tific disciplines. While general optimization problems are
hard to solve, convex optimization problems can be solved
efficiently and the corresponding tools are part of any stan-
dard numerical software [24]. Here, we briefly provide their
definitions, which are part of standard textbooks; readers in-
terested in a more comprehensive introduction to the subject
may refer to [25] and [26].
Definition III.1 (General Optimization Problems): An op-

timization problem in general has the following form:

min
�z∈U

g(�z) (4)

where g : dom(g) → R is called the objective function and
U ⊂ dom(g) ⊂ R

m is called the feasible set of the problem.
If there exists a �z∗ ∈ U such that

g(�z∗) = min
�z∈U

g(�z)

�z∗ is called a global minimum of (4).
Unless the objective function g and the feasible set U have

special structures, there is no guaranteed way of finding a
global minimum. However, for convex optimization prob-
lems, one can efficiently find a global minimum. We now
describe the notion of convex sets and convex functions,
which are essential for defining such problems.

VOLUME 6, 2025 4100314
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Definition III.2 (Convex Sets): A set U ⊂ R
m is convex if

for any �z1,�z2 ∈ U and θ ∈ (0, 1)

θ�z1 + (1 − θ )�z2 ∈ U.

That is, the line segment connecting any two pints in U lies
completely in U.
Definition III.3 (Convex Functions): A function

g : dom(g) → R is convex if dom(g) is a convex set and for
any �z1,�z2 ∈ dom(g) and θ ∈ (0, 1)

g(θ�z1 + (1 − θ )�z2) ≤ θg(�z1) + (1 − θ )g(�z2)

i.e., the line segment connecting any two points on the graph
of g lies pointwise above the graph.

For differentiable and twice-differentiable functions on
open convex sets, there are convenient characterizations of
convexity. We use the latter in this article.
Definition III.4 (First-Order Characterization of Convex

Functions): A differentiable function g : dom(g) → R on
the open convex set dom(g) is convex if and only if

g(�z2) ≥ g(�z1) + g′(�z1)T (�z2 −�z1)

for all �z1,�z2 ∈ dom(g), where

g′(�z1) :=
(

∂g

∂z1
(�z1),

∂g

∂z2
(�z1), . . . ,

∂g

∂zm
(�z1)

)
.

That is, the tangent hyperplane at any point lies below the
graph.
Definition III.5 (Second-Order Characterization of

Convex Functions): A twice-differentiable function
g : dom(g) → R on the open convex set dom(g) is convex if
and only if the Hessian D2g of g is positive semidefinite at
every �z ∈ dom(g), where

D2g(�z) :=

⎡
⎢⎢⎢⎢⎢⎣

∂2g
∂z21

(�z) ∂2g
∂z1∂z2

(�z) . . .
∂2g

∂z1∂zm
(�z)

∂2g
∂z2∂z1

(�z) ∂2g
∂z22

(�z) . . .
∂2g

∂z2∂zm
(�z)

. . . . . . . . . . . .
∂2g

∂zm∂z1
(�z) ∂2g

∂zm∂z2
(�z) . . .

∂2g
∂z2m

(�z)

⎤
⎥⎥⎥⎥⎥⎦ .

We can now define a convex optimization problem.
Definition III.6 (Convex Optimization Problems): An op-

timization problem of the form (4) is called a convex opti-
mization (or minimization) problem if the feasible set U is a
convex set and the objective function g is convex.
So far we have described optimization problems in the so-

called abstract form. The feasible region may also be defined
in terms of inequalities and equalities involving functions
called constraints. If the constraints are expressed as follows,
a convex optimization problem is said to be in standard form

min g(�z)

s.t. gk(�z) ≤ 0, k ∈ [n1]

hk(�z) = 0, k ∈ [n2] (5)

where gk’s are convex and hk’s are affine. Furthermore,
[n] :={1, 2, . . . , n}.

FIGURE 1. Entanglement distribution network with numbered links. Link
j’s Werner parameter is w j , j ∈ [6]. The end-to-end (e2e) Werner
parameters of the routes are products of corresponding link-level w js.
For example, routes 1 and 2 have e2e Werner parameters w1w2 and
w1w4w6, respectively. The positive rate allocations (x1, x2, x3, x4) must
satisfy six constraints, one for each link (6). For example, x4 ≤d5(1 − w5)
(link 5) and x2 + x4 ≤d6(1 − w6) (link 6). The utility of a route is the
product of the allocated rate and a measure of e2e entanglement, e.g.,
route 2 has utility x2f2(w1w4w6).

A remarkable feature of convex functions is that any local
minimum is also a global minimum. This helps us compute a
global minimum of a (twice) differentiable convex function
via efficient algorithms such as variants of gradient descent
or Newton’s method, among others. These algorithms are
implemented in most modern numerical software.

IV. ASSUMPTIONS AND MAIN RESULTS
A. SETUP AND ASSUMPTIONS
As mentioned in Section III, we consider an entanglement
distribution network similar to [7]; see Fig. 1 for an exam-
ple. Our main objective is to determine a globally optimal
allocation among the routes, with a mathematical guarantee,
before the network begins its operation. This is because we
assume that the routes are served concurrently for the entire
duration of network operation. To achieve this main goal, we
alsomake a few simplifications in the setup that are described
in the individual assumptions.

A1 Entanglement swapping: Entanglements between the
end nodes are generated in two steps: first at the
link level, i.e., between two adjacent nodes. Next,
entanglement swaps are performed at the repeater
nodes along the route, producing end-to-end entan-
glement [27]. Similar to [7], we make the simplify-
ing assumption that the route fidelities take the best
possible value given the corresponding link fidelities.
This is equivalent to considering that link-level entan-
glements are generated simultaneously and swapped
immediately, such that they do not decohere in mem-
ory during storage. Since swapping twoWerner states
results in a Werner state with a Werner parameter
equal to the product of the parameters of the input
states [28], this leads to a straightforward expression
for the resulting end-to-end entanglement.

A2 Static network: Analogous to classical NUM, our
goal is to distribute communication resources, i.e.,
entanglement generation rate and quality, between
routes connecting end users. As is the case with
classical NUM in its basic form, the routes and the
applications are fixed. This implies that the utility

4100314 VOLUME 6, 2025
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of a route changes only when its share of resources
is modified. For our analysis, we focus only on the
subnetwork G consisting of relevant routes and the
corresponding links. We assume that G has r routes
and l links.

A3 Rate and fidelity of entanglement generation: Recall
that the rate–fidelity tradeoff of the elementary link
generation is governed by (3), which is inspired by
the single-click protocol. Accordingly, if we fix the
fidelity of link j ∈ [l] by setting its Werner param-
eter to w j, the corresponding maximum entangle-
ment generation rate will beμ j := d j(1 − w j ), where
d j := 3κ jη j/2Tj. Here, μ j can be interpreted as the
capacity of link j when it producesWerner states with
parameter w j.

A4 Arbitrary but fixed quality of entanglement: The
Werner parameter of a link-level entanglement
w j, j ∈ [l] can be chosen arbitrarily for optimiz-
ing the network utility but remains fixed once cho-
sen. In other words, we perform a one-shot anal-
ysis, where the values of w j’s are set in advance
and cannot be adjusted dynamically during the op-
eration of the network, as the routes are served
concurrently. This also implies that the contribu-
tions of the jth link toward the end-to-end Werner
parameters are the same across the routes passing
through that link. Observe from (3) that increas-
ing the value of the Werner parameter reduces the
entanglement generation rate.

A5 Utility of a route: We denote the allocated rate of
route i by xi and the end-to-end Werner parameter
by ui. To simplify the formulation, we also introduce
the (binary) link–route incidence matrix A, where
a ji := ((A)) ji = 1 iff the ith route passes through the
jth link. Note that we must have 1)

∑
i∈[r] a jixi ≤ μ j,

i.e., the total rate allocated to the incident routes can-
not exceed a link’s maximum entanglement genera-
tion rate and 2) ui =∏ j∈[l] w

a ji
j , i.e., the end-to-end

Werner parameter is the product of link-level Werner
parameters [28]. To reflect the suitability of a Werner
state for executing the underlying application for the
ith route, we use an entanglement measure (including
secret key rate) fi, where

fi : [0, 1] → [0, bi]

ui �→ fi(ui).

We assume that fi is nondecreasing and twice differ-
entiable on {z : fi(z)>0}\{1}, and fi(0)=0 for i ∈ [r].
The utility of a route is assumed to have the form
xi fi(ui). Finally, the network utility is formulated as
the product of the route utilities. The product form
of individual and network utilities ensures that a
specified level of network utility is achieved only
when each route is allocated both rate and fidelity ade-
quately. Note that it is possible to have different forms
for route and network utility functions than ours.

Equipped with the assumptions, we are ready to describe
the QNUM problem introduced in [7]. The formulation is
from the perspective of a central entity with global knowl-
edge of the network topology, routes, and individual utilities.
The entity then calculates the optimal allocation for the con-
current execution of applications prior to the network becom-
ing operational. A complete list of parameters describing the
network and the auxiliary variables is given inNomenclature.

B. QNUM PROBLEM
We denote the rate allocation vector for the routes by
�x = (x1, x2, . . . , xr ) and the Werner parameter vector for the
links by �w = (w1,w2, . . . ,wl ). The QNUM problem in its
canonical form can then be written as

max
�x,�w

r∏
i=1

xi fi

( l∏
j=1

w
a ji
j

)

s.t. �0 ≺ �x,

�0 ≺ �w � �1 (fidelity bounds)

〈Aj,�x〉≤μ j = d j(1−w j ) ∀ j∈ [l] (rate constraints).
(6)

Here, � (respectively, ≺) denotes elementwise (respectively,
strict) inequality and 〈Aj,�x〉 denotes the dot product of Aj
and �x. Furthermore, the inequalities in �0≺�x and �0≺ �w are
strict as the objective function is nonnegative and equals
zero if any element of �x or �w is zero. Note that for any
feasible (�x,w j ), if the last inequality in (6) is strict, i.e.,
〈Aj,�x〉<d j(1−w j ), it is possible to increase w j further to
make it an equality. This is because, with all other variables
held constant, an increase in w j results in a higher or equal
value of the objective function, as fis are nondecreasing by
assumption. Thus, if there exists a solution to (6), there will
be another solution satisfying

〈Aj,�x〉 = d j(1−w j ) ⇒ w j = 1− 〈Aj,�x〉
d j

∀ j∈ [l] (7)

for which the objective function attains a higher or equal
value. Therefore, it is sufficient to focus only on solutions
satisfying (7), which allows us to eliminate �w from the set of
optimization variables. Also, instead of maximizing (6), we
minimize the negative logarithm of the objective function,
which leads to the following formulation:

min
�x

−
r∑
i=1

(
ln xi+ln

(
fi

( l∏
j=1

(
1− 〈Aj,�x〉

d j

)a ji))

s.t. �0 ≺ �x

0 <
〈Aj,�x〉
d j

< 1, j ∈ [l]

c(i) <

l∏
j=1

(
1 − 〈Aj,�x〉

d j

)a ji
, i ∈ [r]. (8)

Here, c(i) :=sup{z : fi(z) = 0}.

VOLUME 6, 2025 4100314
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We now comment on the constraints of formulation (8).
The constraint 0≺�x, together with (7), modifies the con-
straint �0≺ �w��1 in (6) to 0<w j<1 ∀ j ∈ [l], as reflected in
the second constraint. The last constraint guarantees that the
logarithms in the objective function have positive arguments.
In [7, Appendix B], it was shown that the objective func-

tion of the QNUM problem is not necessarily convex in rate
and quality allocations. To convert (8) into a convex problem,
we perform the following change of variable well known in
the field of geometric programming [17]:

�x = e�y := (ey1, ey2 , . . . , eyr ). (9)

We will show that this leads to a convex formulation under
certain conditions. Substituting (9) into (8) yields

min
�y∈Rr

−
r∑
i=1

(
yi + ln

(
fi

( l∏
j=1

(
1− 〈Aj, e�y〉

d j

)a ji))

s.t.
〈Aj, e�y〉
d j

< 1, j ∈ [l]

c(i) <

l∏
j=1

(
1 − 〈Aj, e�y〉

d j

)a ji
, i ∈ [r]. (10)

Here, the implicit constraint �y ∈ R
r is imposed to ensure

− �∞≺�y, i.e., 0≺�x as required in (8). Note that this also
ensures 〈Aj, e�y〉>0, allowing us to drop this condition from
the first constraint. For brevity, we conveniently reuse the
notations for w j and ui

w j(�y ) := 1− 〈Aj, e�y〉
d j

, ui(�y ) :=
l∏
j=1

(
w j(�y )

)a ji . (11)

In order for (10) to be a convex optimization problem, we
need its objective function and the feasible region to be con-
vex. To describe the feasible region, we define

Tj := {�y∈R
r: 〈Aj, e�y〉<d j}, j ∈ [l], T :=

⋂
j∈[l]

Tj

Si := {�y∈T: ui(�y )>c(i)}, i ∈ [r], S :=
⋂
i∈[r]

Si. (12)

Observe that S is the feasible region for problem (10). In the
next section, we show that S is a convex set. We also provide
sufficient conditions for the objective function to be convex.

C. RESULTS
While the feasible region of the transformed problem (10) is
always convex, the objective function is not in general. We
take the following approach to derive the conditions for it
to be convex: we consider the contributions from each route
to the objective function (i.e., −yi−ln fi(ui(�y )), i∈ [r]) and
look for conditions for them to be convex individually. Since
a sum of convex functions is convex, the objective function
is convex if all individual conditions are satisfied. The indi-
vidual conditions are provided as (Cond. 1) and (Cond. 2)

in (13) and (14), respectively. We also show that the change
of variable (9) preserves convexity, i.e., if the contribution of
a route to the objective function in (8) is convex, so is the
corresponding contribution in the reformulation (10). This
allows us to apply technique (9) to convexify the contribution
from a route without affecting the behavior of already convex
contributions from other routes.
Theorem 1: The transformed QNUM problem (10) is

feasible, and the set of feasible vectors S is a convex set.
Proof idea: The problem is feasible since it is possible

to satisfy constraints in (10) by allocating sufficiently small
rates to each route, i.e., by taking �y � −M�1 for sufficiently
large M>0. Convexity of S follows from convexity of each
Si and Tj. See Section VII for a complete proof. �

To establish the convexity of the objective function on
S, we first note that −yi is a convex function of �y. Since
a sum of convex functions is convex, we only look for a
sufficient condition for − ln( fi(ui(�y ))) to be convex, i.e.,
for ln( fi(ui(�y ))) to be concave on Si, defined in (12). The
following proposition, which provides a sufficient condition
for ui(�y ) to be concave on Si, is a stepping stone toward that
goal.
Proposition 1: For i ∈ [r], let H (i)(�y ) denote the Hessian

of ui(�y ). If

(Cond. 1) c(i) := sup{z : fi(z) = 0} ≥ 1/2 (13)

H (i)(�y ) is negative semidefinite on Si.
Proof idea: We compute the Hessian and show that

its eigenvalues are nonpositive on Si if c(i)≥1/2. See
Section VII for details. �
Our main result is the following:
Theorem 2: Let Cond. 1 (13) hold and fi be twice differen-

tiable on (c(i), 1). Assume that Fi(u) := ln fi(u), u ∈ (c(i), 1],
has a unique inflection point c(i)1 ≥c(i) satisfying

F ′′
i (u)≤0 ∀u∈ (c(i), c(i)1 ] and F ′′

i (u)>0 ∀u∈ (c(i)1 , 1).
Furthermore, let

(Cond. 2) vi(u) :=
uF ′′

i (u)

uF ′′
i (u)+F ′

i (u)
+ 1

u
≤2 ∀u∈ (c(i)1 , 1).

(14)

Then, Fi(ui(�y )) is concave on Si.
Proof idea: Since ui is concave on Si and Fi

is concave and increasing on (c(i), c(i)1 ], Fi(ui(�y ))

is also concave on {�y∈T:c(i)<ui(�y )≤c(i)1 }. On

{�y∈T:c(i)1 <ui(�y )<1}, we show that the eigenval-
ues of its Hessian are nonpositive if Cond. 1 (13)
and Cond. 2 (14) are satisfied. See Section VII for
details. �
We now show that the change of variable (9) preserves

convexity. To that end, we note that the contribution from
the ith route to the objective function in formulation (8) is

hx(�x) := − ln xi−G(x)
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where

G(x) := Fi

⎛
⎝ l∏
j=1

(
1− 〈Aj,�x〉

d j

)a ji⎞⎠ . (15)

The corresponding contribution in formulation (10) is

h(�y ) := −yi − Fi(ui(�y )).

The following proposition formalizes our argument.
Proposition 2: If hx(�x) is convex, so is h(�y ), i.e., the

change of variable in (9) preserves convexity.
Proof: Since −ln xi is a convex function of �x, we essen-

tially show that if G(�x) is concave, so is Fi(ui(�y )). Note that
Fi(ui(�y )) = G(e�y). Let us denote the Hessian of G(�y ) and
Fi(ui(�y )) by D2G(�y ) and D2F (�y ), respectively. Then

D2F (�y ) = E(�y )D2G(e�y)E(�y ) + E(�y )∇G(e�y)

where

E(�y ) := diag(ey1, ey2 , . . . , eyr )

∇G(�y ) := diag

(
∂G

∂y1
(�y ),

∂G

∂y2
(�y ), . . . ,

∂G

∂yr
(�y )

)
.

Since Fi is nondecreasing and 0<1−〈Aj,�x〉/d j<1 on our
domain of interest, observe from (15) that each ∂G/∂yk
is nonpositive for k ∈ [r]. Thus, E(�y )∇G(e�y) is negative
semidefinite. Also, by assumption, hx(�x) is convex, i.e.,G(�x)
is concave, which implies that D2G is negative semidefinite.
Hence, E(�y )D2G(e�y)E(�y ) is negative semidefinite as well.
This proves that D2F is negative semidefinite, i.e., Fi(ui(�y ))
is concave, as required. �

We have thus established that if each utility function fi
either satisfies Cond. 1 and Cond. 2 or its contribution (15)
to the objective function in formulation (8) is already convex,
formulation (10) is a convex optimization problem. We now
test these criteria on certain entanglement measures.

V. EXAMPLE ENTANGLEMENT MEASURES
We first show that the entanglement measures considered
in [7] that did not readily admit convex formulations satisfy
Cond. 1 (13) and Cond. 2 (14) and thus can be transformed
into a convex problem via formulation (10). We then provide
an example where the entanglement measure does not satisfy
Cond. 1 (13) but satisfies the hypothesis of Proposition 2, i.e.,
convexity of the contribution toward the objective function is
preserved by the change of variable (9) for routes using this
measure of entanglement. We end with an example where the
entanglement measure satisfies none of the aforementioned
conditions but admits a convex formulation once we impose
a cutoff on the end-to-end Werner parameters. The findings
of this section are summarized in Table 1.

TABLE 1. Convex Reformulation Approaches for Different Measures of
Entanglement

A. SECRET KEY FRACTION
We first consider the secret key fraction [29], which has the
following form for Werner states with Werner parameter w:

fsk(w)=max

(
0, 1+(1+w) log2

1+w

2
+(1−w) log2

1−w

2

)
.

(16)

Since, fsk(1/2) = 0, Cond. 1 (13) is satisfied. In particular

csk := sup{w : fsk(w) = 0} ≈ 0.779944.

For w > csk, we define Fsk := ln( fsk). Also

f ′sk(w) = log2

(
1+w

1−w

)
f ′′sk(w) = 2 log2 e

1 − w2

F ′
sk(w) = f ′sk(w)

fsk(w)
F ′′
sk(w) = f ′′sk(w) fsk(w)−( f ′sk(w))2

( fsk(w))2
.

In Fig. 2(b), we see that Fsk has a unique inflection
point csk1 ≈0.968418. Furthermore, Cond. 2 (14)
is seen to be true in Fig. 2(c), where we plot
gsk(u)=2−uF ′′

sk(u)/(uF
′′
sk(u)+F ′

sk(u))−1/u. Thus, by
Theorem 2, the contribution of a route to the objective
function in formulation (10) is convex if fsk is used as its
measure of entanglement.

B. DISTILLABLE ENTANGLEMENT
Following [7], we consider a lower bound to distillable en-
tanglement. For aWerner state withWerner parameterw, the
lower bound can be expressed as

fde(w)= max

(
0, 1+ 1 + 3w

4
log2

(
1 + 3w

4

)

+3(1 − w)

4
log2

(
1 − w

4

))
. (17)

Since fde(1/2) = 0, Cond. 1 (13) is met. Indeed

cde := sup{w : fde(w) = 0} ≈ 0.747613.

For w > cde, we define Fde := ln( fde). Furthermore

f ′de(w)= 3

4
log2

(
1 + 3w

1 − w

)
f ′′de(w)= 3 log2 e

−3w2 + 2w + 1

F ′
de(w) = f ′de(w)

fde(w)
F ′′
de(w) = f ′′de(w) fde(w)−( f ′de(w))2

( fde(w))2
.
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FIGURE 2. (a) Secret key fraction satisfies sup{w : fsk(w) = 0} ≈ 0.779944 ≥ 1/2. (b) Unique inflection point of its logarithm Fsk is approximately
0.968418. (c) For w>0.968418, we plot gsk(u)=2−uF ′′

sk(u)/(uF ′′
sk(u)+F ′

sk(u))−1/u showing that Cond. 2 (14) is satisfied. .

FIGURE 3. (a) Lower bound to distillable entanglement (17) satisfies sup{w : fde(w) = 0} ≈ 0.747613 ≥ 1/2. (b) The unique inflection point of
Fde := ln(fde) is approximately 0.966984, beyond which Cond. 2 (14) is shown to be satisfied by plotting gde(u)=2−uF ′′

de(u)/(uF ′′
de(u)+F ′

de(u))−1/u in (c).

In Fig. 3(b), we see that Fde has a unique inflec-
tion point cde1 ≈0.966984. In Fig. 3(c), we plot
gde(u)=2−uF ′′

de(u)/(uF
′′
de(u)+F ′

de(u))−1/u, to show that
Cond. 2 (14) is met. Thus, by Theorem 2, the contribution
of a route to the objective function in formulation (10) is
convex if fde is used as its measure of entanglement.

C. NEGATIVITY
In [7], it was already shown that negativity allows for convex
formulation via (6). However, this example is relevant to
QNUM problems in networks where one route’s entangle-
ment measure is defined by negativity, and another route’s
entanglement measure requires the variable transformation
in (9) to achieve a convex formulation.
For a Werner state with Werner parameter w, negativity

can be expressed as

fneg(w)=max

(
0,

3w − 1

4

)
. (18)

In [7, Appendix A], it was shown that the function

J(�x, �w) := −ln xi−ln

⎛
⎝ fneg

⎛
⎝ l∏
j=1

w
a ji
j

⎞
⎠
⎞
⎠

is convex on S′ :={(�x, �w) : �0≺�x,�0≺ �w,
∏

j w j>1/3}.
This implies that J(�x, �w) is also convex on the convex
subdomain S′′ :={(�x, �w)∈S′ : w j≤1−〈Aj,�x〉/d j ∀ j}. Since
extended-value extensions of convex functions are convex

J̃(�x, �w) :=
{
J(�x, �w), (�x, �w) ∈ S′′

∞, otherwise

is convex as well. Therefore

J(�x) = inf
�w∈Rl

J̃(�x, �w)

= −ln xi−ln

⎛
⎝ fneg

⎛
⎝ l∏
j=1

(
1 − 〈Aj,�x〉

d j

)a ji⎞⎠
⎞
⎠

is convex by [25, Sect. 3.2.5]. Note that we have used the
fact that − ln( fneg) is a decreasing function in the last step.
Thus, fneg satisfies the hypothesis of Proposition 2 and J(e�y)
is convex in �y. That is, a route with fi = fneg allows for a
convex formulation via (10) even after performing the change
of variable (9).
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FIGURE 4. A subgraph of the SURFnet topology from [30], figure not to scale. Users run QKD on routes 1 and 2 and teleport via routes 3 and 4 (see
Table 2), which involves 18 links annotated here. The length of a link determines its transmissivity (see Table 3). Consistent with current hardware
capabilities, entanglement generation is assumed to be attempted every Tj = 10−3 s and the nonfiber induced inefficiencies coefficient is κ j = 0.1 for
each link j ∈ [18]. Optimal allocation is provided in Table IV.

D. FIDELITY OF TELEPORTATION
The fidelity of teleportation with a Werner state with Werner
parameter w as a shared entanglement resource is given by

fF(w) = 1 + w

2
, 0 ≤ w ≤ 1. (19)

Observe that fF(0) = 1/2, i.e., it does not satisfy assump-
tion A5, which requires fi(0) = 0. However, the correspond-
ing QNUM formulation (10) is similar and the contribution
from the ith route is

− yi − ln

⎛
⎝ fF

⎛
⎝ l∏
j=1

(
1− 〈Aj, e�y〉

d j

)a ji⎞⎠

s.t. 0 ≤ 〈Aj, e�y〉
d j

< 1, j ∈ [l]. (20)

The objective function in (20) is not convex in general, but
if we restrict the end-to-end Werner parameter to (1/2, 1], it
becomes convex. That is, we require

0 <
〈Aj, e�y〉
d j

< 1, j ∈ [l]

1/2 <

l∏
j=1

(
1 − 〈Aj, e�y〉

d j

)a ji
. (21)

The region corresponding to (21) is convex by Theorem 1
and the objective function in (20) is convex on this do-
main due to the following: 1) we can write the objective
function as −yi−ln((1+ui(�y ))/2); 2) ui(�y ) is concave on
{�y : ui(�y )>1/2} by Proposition 1 (see the proof in Sec-
tion VII) and hence (1+ui(�y ))/2 is concave; 3) logarithm
is concave and increasing implying that ln(1+ui(�y ))/2 is
concave; and 4) −yi is convex in �y.

VI. NUMERICAL EXAMPLE
In this section, we work out an example on a subgraph [30]
derived from the network topology of SURFnet, the national

TABLE 2. Routes With Corresponding Links and Applications. See Also
Fig. 4

research network of the Netherlands. We assume that each
node in the network is also equipped to serve as a repeater and
can support multiple routes. We then consider the scenario if
certain pairs of nodes were to perform QKD or teleportation
between themselves on this real-world fiber network. The
corresponding routes and the relevant link IDs are shown
in Fig. 4. We also describe the routes with corresponding
applications in Table 2.

For routes performing QKD (respectively, teleportation),
we assume that the relevant measure of entanglement is
the secret key fraction (respectively, fidelity of teleporta-
tion), i.e., fi = fsk, i ∈ [2] and fi = fF, i ∈ {3, 4}; see (16)
and (19). As explained in Section V-D, we also impose ad-
ditional constraints that the end-to-end Werner parameters
of routes 3 and 4 are more than 1/2 so that the resulting
QNUM problem is convex. To cast the QNUM problem in
this network to formulation (10), we now need the constants
d js for the relevant links.
Recall from assumption A3 that d j = 3κ jη j/2Tj, where

κ j, η j, and Tj denote the constant reflecting inefficiencies
other than photon loss in the fiber, the transmissivity, and
the frequency of the entanglement generation attempt for
the jth link, respectively. Similar to an example in [7], we
assume that κ j = 0.1 and Tj = 10−3 s for all 18 links. The
transmissivities can be calculated as η j = 10−0.02L j , where
Lj is the length of the jth link in kilometers. The final values
of the constants d js are provided in Table 3.

We now solve the QNUM problem via formulation (10)
usingMATLAB’s fmincon. The convex nature of the prob-
lem ensures that the output yi’s are indeed globally optimal.
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TABLE 3. Relevant Links From Fig. 4 and Derived dj

TABLE 4. Optimal Rate and Fidelity Allocations

The optimal rate allocations and link-level Werner param-
eters are then computed as xi = eyi and using (11), respec-
tively. This prescribes the optimal setting for the link-level
generation rates and the fidelities. The resulting end-to-end
Werner parameters and fidelities for the optimal allocation
are provided in Table 4.
Observe that the secret key fraction ensures that the cor-

responding routes receive significantly higher fidelity com-
pared to the fidelity of teleportation. In fact, the third route is
assigned the minimum fidelity required by the constraint that
the end-to-end Werner parameter must be more than 1/2. In
contrast, the fourth route is allocated a slightly higher fidelity
as it shares a link with the second route, which runs QKD.

VII. PROOFS OF RESULTS
Proof of Theorem 1: We make use of the fact that sub-

level (respectively, superlevel) sets of convex (respectively,
concave) functions are convex and the feasible set S can be
expressed as an intersection of convex sets. Recall from (12)
that

Tj := {�y∈R
r: 〈Aj, e�y〉<d j}, j ∈ [l], T := ∩ j∈[l]Tj

Si := {�y∈T: ui(�y )>c(i)}, i ∈ [r], S := ∩i∈[r]Si.

By convexity of the exponential function and the fact that
a ji ≥ 0, 〈Aj, e�y〉 is a convex function of �y. Thus, Tj’s, being
sublevel sets of convex functions, are convex. Furthermore,
T being the intersection of Tjs is also convex.
Since c(i) > 0, we now consider the following set:

S̃i := {�y∈R
r : ln(ui(�y ))> ln c(i)}.

We will show that S̃i is convex. Observe that

ln(ui(�y )) =
l∑
j=1

a ji ln

(
1 − 〈Aj, e�y〉

d j

)

where a ji ≥ 0. Thus, to prove that S̃i is convex, it suffices to
show that each ln(1 − 〈Aj, e�y〉/d j ) is concave. To this end,
we consider �y1,�y2 ∈ S̃i and �yt = t�y1 + (1 − t )�y2, t ∈ (0, 1).
By convexity of 〈Aj, e�y〉

〈Aj, e�yt 〉 ≤ t〈Aj, e�y1〉 + (1 − t )〈Aj, e�y2〉 (22)

d j>0⇒ 1 − 〈Aj, e�yt 〉
d j

≥ t

(
1 − 〈Aj, e�y1〉

d j

)

+ (1 − t )

(
1 − 〈Aj, e�y2〉

d j

)
(23)

⇒ ln

(
1 − 〈Aj, e�yt 〉

d j

)
≥ ln

(
t

(
1 − 〈Aj, e�y1〉

d j

)

+(1 − t )

(
1 − 〈Aj, e�y2〉

d j

))
(24)

⇒ ln

(
1 − 〈Aj, e�yt 〉

d j

)
≥ t ln

(
1 − 〈Aj, e�y1〉

d j

)

+ (1 − t ) ln

(
1 − 〈Aj, e�y2〉

d j

)
(25)

wherewe have usedmonotonicity and concavity of logarithm
in (24) and (25), respectively.
Since S can be rewritten as an intersection of convex sets:

S = (∩i∈[r]S̃i) ∩ T , it must be convex. �
The following lemma is crucial for showing that ui(�y ) is

concave on Si.
Lemma 1: Let 0 < bι < 1, n ≥ 2, and 0 < t < 1. Then

sup∏n
ι=1 bι≥t

(
n−1∑
ι=1

1/bι

)
= n− 2 + 1/t. (26)

Proof: We again use the change-of-variable tech-
nique [17]: epι = bι, pι < 0, ι ∈ [n]. Then

sup∏n
ι=1 bι≥t, 0<bι<1∀ι

(
n−1∑
ι=1

1/bι

)
= sup∑n

ι=1 pι≥ln t, pι<0∀ι

(
n−1∑
ι=1

e−pι

)
.

We prove by induction that

sup∑n
ι=1 pι≥ln t, pι<0∀ι

(
n−1∑
ι=1

e−pι

)
= n− 2 + 1/t. (27)

To show (27) for n = 2, we observe that maximizing the
function on the left-hand side reduces to minimizing p1 in
the feasible set {(p1, p2) : p1 + p2 ≥ ln t, p1, p2 < 0} as the
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function e−p1 is decreasing in p1. Direct substitution gives

sup∑2
ι=1 pι≥ln t, pι<0∀ι

e−p1 = 1/t

proving the assertion for n = 2. Assuming that the
hypothesis holds for n = k − 1

sup∑k
ι=1 pι≥ln t, pι<0∀ι

(
k−1∑
ι=1

e−pι

)

= sup
ln t≤p<0

sup
p1=p,

∑k
ι=2 pι≥ln t−p, pι<0∀ι

(
e−p +

k−1∑
ι=2

e−pι

)

(28)

= sup
ln t≤p<0

⎛
⎝e−p + sup∑k

ι=2 pι≥ln t−p, pι<0∀ι

k−1∑
ι=2

e−pι

⎞
⎠ (29)

= sup
ln t≤p<0

(
e−p + k − 3 + ep−ln t

)
(30)

= k − 3 + sup
ln t≤p<0

(
e−p + ep−ln t

)
(31)

= k − 2 + 1/t (32)

where (32) follows from considering the convex function
e−x+ex+λ over x∈ [−λ, 0) and observing that its supremum
is attained at −λ. Thus, the assertion is true for n ≥ 2. �
To prove Theorem 2, we need a similar result.
Lemma 2: Let 0<bι <1, 0<β <1, n≥2, and 0< t<1.

Then

sup∏n
ι=1 bι=t

(
β/b1 +

n∑
ι=2

1/bι

)
= n− 2 + β + 1/t. (33)

Proof: For n = 2, β <1 gives

sup
b1b2=t, 0<bι<1

(β/b1+1/b2)= sup
t<b1<1

(β/b1+b1/t)=β+1/t

where the last step follows from the fact that β/x+ x/t is
convex on the set t < x < 1, and consequently, its supremum
on this rangemust correspond to its value at one of the bound-
ary points. By inspection, we can see that this corresponds to
the boundary point x = 1.

The induction step now follows similarly to Lemma 1,
where we let

epι = bι, pι < 0, ι ∈ [n].

Assuming that (33) holds for n = k − 1, we have

sup∏k
ι=1 bι=t

(
β/b1 +

k∑
ι=2

1/bι

)

= sup∑k
ι=1 pι=ln t, pι<0∀ι

(
βe−p1 +

k∑
ι=2

e−pι

)
(34)

= sup
ln t≤p<0

sup
pk=p,

∑k−1
ι=1 pι=ln t−p, pι<0∀ι

(
βe−p1

+
k−1∑
ι=2

e−pι + e−p

)
(35)

= sup
ln t≤p<0

⎛
⎝e−p + sup∑k−1

ι=1 pι=ln t−p, pι<0∀ι

(
βe−p1

+
k−1∑
ι=2

e−pι

))
(36)

= k − 3 + β + sup
ln t≤p<0

(
e−p + ep−ln t

)
(37)

= k − 2 + β + 1/t (38)

where the last step involves computing the maxima of
the function e−x + ex+λ over x ∈ [−λ, 0) as in Lemma 1.
Thus, (34) holds for n ≥ 2. �
Proof of Proposition 1: Our proof is based on two facts:

(i) since ui(�y ) is twice differentiable, its HessianH (i) is sym-
metric by [31, eq. (8.12.3)] and has real eigenvalues and (ii)
each diagonal element of H (i) dominates the absolute sum
of the nondiagonal entries of the corresponding row on Si.
We can thus apply Gershgorin’s circle theorem [32], which
says that the eigenvalues of a matrix are contained in the
circles with centers as diagonal elements and the respective
absolute sum of off-diagonal elements as radii. In this case,
this would imply that the eigenvalues of H (i) are nonpositive
on Si, which is equivalent to concavity of ui(�y ).
To establish fact (ii), we observe that the sign of the

row-sums of H (i) is the opposite of the sign of sums of the
form n−∑ j �= j′, j∈[n] 1/w j(�y ) for some n∈ N and j′ ∈ [n].
If 0<w j(�y )<1 and

∏
j∈[n] w j(�y ) > 1/2, such sums are

nonnegative as
∑

j �= j′, j∈[n] 1/w j(�y ) cannot exceed n (see
Lemma 1). The details are as follows:

We suppose that the ith route passes through n links where
n ≤ l. Without loss of generality, we can number these links
as 1, 2, . . . , n. Then, for k ∈ [r]

∂ui(�y )

∂yk
= ∂

∂yk
(
n∏
j=1

w j(�y ))=
n∑
j=1

∂w j(�y )

∂yk

∏
j′∈[n]\{ j}

w j′ (�y )

︸ ︷︷ ︸
v
(i)
jk (�y )

.

(39)

From now on, we frequently drop the argument �y when it is
clear from context. Note that v(i)jk = 0 iff a jk = 0, i.e., the kth
route does not pass through the jth link. Specifically

v
(i)
jk = −a jkeyk

d j

∏
j′∈[n]\{ j}

w j′ . (40)

Also
r∑

m=1

∂w j′

∂ym
=

r∑
m=1

−a j′meym
d j′

= w j′ − 1 (41)

∂

∂ym

(
−eyk

d j

)
= − eyk

d j
1m=k (42)

where 1A denotes the indicator function, which takes value
1 on the set A and 0 otherwise. This leads to the following

VOLUME 6, 2025 4100314



Engineeringuantum
Transactions onIEEE

Kar and Wehner: CONVEXIFICATION OF THE QNUM PROBLEM

expression for the Hessian:

H (i)
kk (�y )=

n∑
j=1

∂v
(i)
jk

∂yk
=−

n∑
j=1

a jkeyk

d j

∏
j′∈[n]\{ j}

w j′

⎛
⎝1+

∑
j′′∈[n]\{ j}

∂w j′′

∂yk

1

w j′′

⎞
⎠

H (i)
km(�y ) = H (i)

mk(�y ) = −
n∑
j=1

a jkeyk

d j

∏
j′∈[n]\{ j}

w j′

⎛
⎝ ∑

j′′∈[n]\{ j}

∂w j′′

∂ym

1

w j′′

⎞
⎠ ,

m ∈ [r] \ k.

Since ∂w j/∂ys ≤ 0 ∀ j, s, H (i)
km(�y )≥0 for k �= m. Therefore

H (i)
kk (�y ) +

∑
m∈[r]\k

∣∣H (i)
km(�y )

∣∣
= H (i)

kk (�y ) +
∑

m∈[r]\k
H (i)
km(�y ) (43)

(42)=
n∑
j=1

v
(i)
jk

⎛
⎝1 +

∑
j′′∈[n]\{ j}

1

w j′′

⎛
⎝∂w j′′

∂yk
+
∑

m∈[r]\k

∂w j′′

∂ym

⎞
⎠
⎞
⎠

(44)

=
n∑
j=1

v
(i)
jk

⎛
⎝1 +

∑
j′′∈[n]\{ j}

1

w j′′

r∑
m=1

∂w j′′

∂ym

⎞
⎠ (45)

(43)=
n∑
j=1

v
(i)
jk

⎛
⎝1 +

∑
j′′∈[n]\{ j}

w j′′ − 1

w j′′

⎞
⎠ (46)

=
n∑
j=1

v
(i)
jk

⎛
⎝n−

∑
j′′∈[n]\{ j}

1/w j′′

⎞
⎠ . (47)

Recall that on Si, 0<w j′′ <1 for all j′′ ∈ [n] and
{∏ j′′∈[n] w j′′ >c(i)}. We can thus apply Lemma 1 to see
that

n−
∑

j′′∈[n]\{ j}
1/w j′′ ≥ n− sup∏

j′′∈[n]
w j′′≥c(i)

⎛
⎝ ∑
j′′∈[n]\{ j}

1/w j′′

⎞
⎠

= 2 − 1/c(i)

which is nonnegative for c(i) ≥ 1/2. Also, observe from (41)
that v(i)jk ≤ 0, implying that the right-hand side of (45) is non-

positive. Therefore, all eigenvalues ofH (i) are nonpositive on
Si due to Gershgorin’s circle theorem [32]. �
Proof of Theorem 2: Let us denote by D2F the Hessian of

Fi(ui(�y )) = ln fi(ui(�y )). We will again exploit the symmetry
of the Hessian and use Gershgorin’s circle theorem [32] to
show that the eigenvalues of D2F are nonpositive on Si.

To prove symmetry, we observe that since ui(�y ) is twice
differentiable and fi is twice differentiable by assumption, so
is fi(ui(�y )). Furthermore, fi(ui(�y ))>0 on Si. Thus, Fi(ui(�y ))
is twice differentiable on Si and D2F is symmetric by
[31, eq. (8.12.3)].

Also, D2F can be explicitly written as

D2F (�y )=F ′′
i (ui(�y ))(u

′
i(�y ))

T u′
i(�y )+F ′

i (ui(�y ))H
(i)(�y )

(48)

where

u′
i(�y ) :=

(
∂ui(�y )

∂y1
,
∂ui(�y )

∂y2
, . . . ,

∂ui(�y )

∂yr

)
.

We consider D2F separately on the following subsets of
Si: {�y∈T :c(i)<ui(�y )≤c(i)1 }, {�y∈T :c(i)1 <ui(�y )<1}. This
is because F ′′

i (u)≤0 for u∈ (c(i), c(i)1 ] and F ′′
i (u)>0 for

u∈ (c(i)1 , 1) by assumption. Since (u′
i)
T u′

i is positive semidef-
inite, F ′

i ≥0 (as fi is increasing and Fi = ln( fi)), H (i) is neg-
ative semidefinite on Si (due to the assumption that Cond. 1
(13) holds), and F ′′

i ≤0 on the first subset, D2F is negative
semidefinite on this subset as well.
We now consider D2F on {�y∈T :c(i)1 <ui(�y )<1} (the

second subset of Si), where F ′′
i (ui(�y )>0. Expanding (48)

D2Fkk(�y )=F ′′
i

(
ui(�y )

)( ∂

∂yk
ui(�y )

)2

+F ′
i

(
ui(�y )

)
H (i)
kk (�y )

D2Fkm(�y )=D2Fmk(�y )

=F ′′
i (ui(�y )

∂ui(�y )

∂ym

∂ui(�y )

∂yk
+F ′

i

(
ui(�y )

)
H (i)
mk(�y )

where m ∈ [r] \ k.
Since ∂ui/∂ys ≤ 0 ∀s [see (40) and (42)], H (i)

mk(�y ) ≥ 0,
F ′
i ≥ 0, and F ′′

i >0 on the second subset, D2Fkm(�y ) ≥ 0 for
m ∈ [r] \ k. Furthermore

r∑
m=1

∂ui(�y )

∂ym
=

n∑
j=1

r∑
m=1

−a jmeym
d j

∏
j′∈[n]\{ j}

w j′ (49)

=
n∑
j=1

(
w j−1

) ∏
j′∈[n]\{ j}

w j′ (50)

= ui

⎛
⎝n− n∑

j=1

1/w j

⎞
⎠ . (51)

Therefore

D2Fkk(�y ) +
∑

m∈[r]\k

∣∣D2Fkm(�y )
∣∣ (52)

= D2Fkk(�y ) +
∑

m∈[r]\k
D2Fkm(�y ) (53)

= F ′′
i (ui(�y ))

∂ui(�y )

∂yk

r∑
m=1

∂ui(�y )

∂ym
+ F ′

i (ui(�y ))
r∑

m=1

H (i)
km

(54)

(54)= F ′′
i (ui(�y ))

∂ui(�y )

∂yk
ui(�y )

⎛
⎝n− n∑

j′=1

1/w j′

⎞
⎠

+ F ′
i (ui(�y ))

r∑
m=1

H (i)
km (55)
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(41),(45)= F ′′
i (ui(�y ))

⎛
⎝ n∑

j=1

v
(i)
jk

⎞
⎠ ui(�y )

⎛
⎝n− n∑

j′=1

1/w j′

⎞
⎠

+ F ′
i

(
ui(�y )

) n∑
j=1

v
(i)
jk

⎛
⎝n−

∑
j′′∈[n]\{ j}

1/w j′′

⎞
⎠ (56)

=
n∑
j=1

v
(i)
jk (

⎛
⎝uiF ′′

i (ui) + F ′
i (ui)

⎛
⎝n−

∑
j′∈[n]\{ j}

1/w j′

⎞
⎠

−uiF ′′
i (ui)1/w j

)
(57)

= (uiF ′′
i (ui) + F ′

i (ui)
)︸ ︷︷ ︸

>0

n∑
j=1

v
(i)
jk︸︷︷︸

≤0

⎛
⎜⎜⎜⎜⎝n−

∑
j′∈[n]\{ j}

1/w j′

− uiF ′′
i (ui)

uiF ′′
i (ui) + F ′

i (ui)︸ ︷︷ ︸
=β(ui )

1

w j

⎞
⎟⎟⎟⎟⎠ . (58)

Recall that
∏n

j′=1 w j′ =ui. Also, on the present subset

c(i)1 <ui(�y )<1 and F ′′
i (ui(�y ))>0 by definition, meaning that

we have 0<β(ui)<1. Thus, by Lemma 2

n−
∑

j′∈[n]\{ j}
1/w j′ − β(ui )/w j

≥ n− sup∏n
j′=1 w j′=ui

⎛
⎝β(ui )/w j +

∑
j′∈[n]\{ j}

1/w j′

⎞
⎠ (59)

(34)= 2−β(ui)−1/ui. (60)

Cond. 2 (14) simply says that (60) is nonnegative on
{�y∈T : ui(�y )>c(i)1 }, which via (58) implies that

D2Fkk(�y ) +
∑

m∈[r]\k
|D2Fkm(�y )| ≤ 0.

Applying Gershgorin’s circle theorem [32], we see that all
eigenvalues of D2F are nonpositive if Cond. 2 (14) is met.
We have thus shown that Cond. 2 (14) is sufficient forD2F

to be negative semidefinite on entire Si, or equivalently, for
Fi(ui(�y )) to be concave. �

VIII. CONCLUSION
The QNUM problem addresses the issue of efficient and
fair distribution of link-level entanglement rate and fidelity
among competing routes. In this work, we considered this
problem with the objective of finding a globally optimal al-
location in a mathematically guaranteed way. To that end,
we derived conditions under which the QNUM problem can
be formulated as a convex problem. We assumed a static

model where links are generated using the single-click pro-
tocol, and a central entity, having global knowledge of the
network, determines the allocations before the network goes
into operation. As a first analysis, our model abstracts away
detailed intricacies of the networks and primarily focuses on
allocating the link-level resources optimally.

We first showed that, in our setup, the QNUM problem
can be formulated as an optimization problem solely in terms
of rate allocations. We then provided a reformulation and
sufficient conditions in terms of the relevant entanglement
measures for it to be convex. These conditions were shown
to hold for previously considered entanglement measures
that did not directly admit a convex QNUM formulation.
Furthermore, the reformulation was shown to preserve con-
vexity, i.e., while attempting to convexify the contribution
of a route to the objective function, the reformulation did
not render convex contributions from other routes noncon-
vex. We also worked out an example where we derived the
optimal rate–fidelity allocations if we were to run QKD and
teleportation concurrently on a real-world fiber network. Our
findings allow for efficient computation of globally optimal
rate and fidelity allocations in an entanglement distribution
network supporting diverse applications.
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