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1
Introduction

The design and analysis of intelligent decision making systems is a major area in
computer science and arti�cial intelligence. These systems perceive their envi-
ronment and decide autonomously how to act in order to perform a task as well
as possible. Intelligent decision making is not only an active topic of academic
research. It is also used in several applications and systems that a�ect our society.

Existing applications based on decision making include control of tra�c lights
at road intersections, which involves deciding whether certain lanes get priority in
order to prevent long queues and congestion (Yousef, Al-Karaki, and Shatnawi,
2010). Another application can be found in elevators in buildings, which decide
autonomously how to operate in order to move people to the right �oor (Koehler
and Ottiger, 2002). Both examples illustrate how algorithms have been applied to
solve control and decision making problems. In the near future new applications
arise which require more sophisticated intelligent decision making algorithms.
A �rst example is autonomous driving, where a vehicle needs to reason about
signs in order to participate in tra�c (Levinson et al., 2011). Another example
is the development of smart distribution grids in the residential area (Ramchurn
et al., 2012), in which decisions need to be made for a large number of consumers,
while reasoning about the distribution grid conditions as well as uncertain behavior
of, e.g., electric vehicles that require charging. Both applications create algorithmic
challenges related to the scalability of algorithms, as well as challenges regarding
the ability to reason about uncertain events that occur in the environment.

Driven by the future applications of intelligent decision making, this disserta-
tion focuses on a speci�c type of intelligent decision making problems in which
uncertainty and constraints on resource consumption need to be considered while
making decisions. These characteristics are conceptually easy to understand, but

1



2 1. Introduction

from a technical point of view they can make it surprisingly di�cult to solve de-
cision making problems. In this introductory chapter we provide an overview of
decisionmaking under uncertainty subject to constraints on resource consumption,
and we describe the contributions and structure of the dissertation.

1.1. Planning and decision making
We consider decision making problems in which it is required to decide how to act
in order to get the best possible performance when performing a certain task. The
system that perceives its environment and acts in this environment is known as a
software agent, or simply agent, and it performs its task autonomously without
human intervention. An agent executes a plan, which tells the agent what to do
depending on the things it has perceived in the environment. We are interested in
computing such a plan for the agent, which we refer to as planning. Execution of
plans has a sequential nature, because typically it is required to execute a sequence
of actions in multiple subsequent time steps in order to reach a particular goal.
For example, heating systems in smart distribution grids decide sequentially how
the heating system should be controlled over time in order to maintain a given
temperature. It is important to emphasize that planning typically involves deciding
what an agent does, whereas the �eld of scheduling focuses on the question when
an agent needs to do something. In practice planning and scheduling can be seen
as complementary and sometimes even mixed problems. This is especially the
case when it is necessary to decide what needs to happen during a sequence of
multiple time steps, such as the sequential navigation decisions made by a vehicle
in the aforementioned autonomous driving application.

Multiple types of planning problems and plans can be distinguished in the
planning �eld. The plans considered in this dissertation can be used to decide
during plan execution what an agent should do, depending on things perceived
in the environment of the agent. Another type of planning involves classical
planning, which focuses on computing a static sequence of actions which ensures
that the agent reaches its goal when executing the action sequence (McDermott
et al., 1998). Planning problems in general do not only a�ect individual agents in
isolation. In several settings there are multiple agents which potentially in�uence
each other, which needs to be considered when computing plans for the agents. In
this dissertation we consider planning problems with multiple cooperative agents,
in which the agents aim to achieve a common goal by executing a sequence of
actions. Although multiple agents may execute an action at the same time, plan
execution can still be seen as a sequential process.

Computing plans for agents may become computationally di�cult due to vari-
ous characteristics of the planning task and the environment. In this dissertation
we focus on two characteristics that are often present in real-world decisionmaking
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Figure 1.1: Multiple electric vehicles connected to a power line

problems. First, we focus on planning tasks in which the agent faces uncertainty
while executing the plan. For example, one can think about uncertainty regarding
the travel time to reach a destination. Second, we consider planning tasks which
naturally include resource constraints, such as capacity limitations of road net-
works. Throughout this dissertation we refer to such planning tasks as constrained
planning tasks. In the next section we provide a practical motivation which shows
how uncertainty and resource constraints arise in a real-world planning problem,
based on the smart grid application domain that we brie�y introduced before.

1.2. Planning in smart distribution grids
In order to illustrate the application of intelligent decision making in the real
world, we consider the development of smart distribution grids in our society. This
section provides an introduction to the application domain, which also illustrates
the practical relevance of research on planning algorithms. Additionally, the appli-
cation domain that we describe aligns with the research goals of this dissertation,
which we discuss in Section 1.4.

We consider the power distribution grid that provides power to neighborhoods
and cities. The power distribution grid serves as a backbone of our society and it
is the crucial infrastructure for daily needs such as communication, health care,
and transportation. The current grid has been designed decades ago and it faces
major changes in the upcoming years due to new developments. In particular,
renewable generators such as solar panels become increasingly popular, and there
is an increase in the number of electric vehicles. These developments introduce two
major problems. First, there is increased uncertainty in the power grid due to the
uncertain availability of renewable power and uncertainty in the charging behavior
of electric vehicle owners. Second, electric vehicles require a signi�cant amount
of power for charging, which creates problems because grids have limited capacity
and they have not been designed for large-scale charging. If loads connected to
the grid require more power than the grid can accomodate, then the grid becomes
congested. In this example the power grid can be seen as a resource that is used
by the vehicles while they are charging. Grid congestion can be prevented by
increasing the capacity of the grid, but this requires signi�cant infrastructural work
and it is considered expensive. An alternative approach relies on planning and
scheduling of power consumption using algorithms that consider both uncertainty
and resource constraints, in such a way that congestion does not arise.
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Figure 1.2: Charging without planning and charging with a planner that exploits �exibility

We illustrate how planning algorithms can be used for prevention of congestion
using a high-level example. We consider electric vehicles (EVs) and renewable
generators (RGs) connected to a line in a distribution grid, as visualized in Fig-
ure 1.1. Due to the limited capacity of the line it is typically impossible to charge
all the vehicles at the same time, because this would lead to power consumption
that exceeds the capacity of the line. This is illustrated in Figure 1.2a, in which
the height of each block represents the power consumption of the vehicle and the
width represents the charging duration. As can be seen, 3 vehicles start to charge
immediately upon arrival, leading to a violation of the capacity limit.

Rather than increasing the grid capacity represented by the dashed line, it is
possible to plan when vehicles charge their batteries by exploiting their temporal
�exibility. The notion of �exibility is illustrated in Figure 1.3, which shows a hori-
zontal timeline representing the arrival and departure time of an individual vehicle.
The width of the block indicates the duration of charging, and this charging period
can be temporally shifted in case the time required for charging is less than the
total time available. The di�erence between the charging duration and the amount
of time available corresponds to the �exibility of an electric vehicle. Shifting the
charging periods of electric vehicles by exploiting �exibility can contribute to a
decrease of the peak power consumption of the vehicles, such that line capacities
are not violated, as illustrated in Figure 1.2b. In the example there is one vehicle
that starts charging later in time, which resolves the violation of the capacity limit.

In practice automated planning for shifting of charging periods is di�cult due
to uncertainties in arrival time, uncertainties in the intended departure time and
uncertainty regarding the amount of time required for charging the battery. In
addition, there can be many vehicles connected to the same line in a distribution
grid, which means that many di�erent vehicles need to be considered when decid-
ing which vehicle needs to shift its charging period. Finally, when shifting loads it
is required to consider the capacity limits of multiple lines in the distribution grid.

Based on the application in this section we have seen that uncertainties and
resource constraints can naturally arise in real-world planning problems. The next
section provides a more general characterization of both concepts, which gives us
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better understanding about the requirements for planning algorithms that solve
these problems.

1.3. Modeling of uncertainty and constraints
In the previous sections we observed that uncertainty may arise in planning prob-
lems, and we observed that uncertainty potentially a�ects the decisions that can
be made. However, so far we did not specify what types of uncertainty can be
distinguished. Below we discuss these uncertainty types in more detail, and we
explain why they can make decision making more complicated. Furthermore, we
provide a more elaborate introduction to resource constraints, and we explain how
characterizations of uncertainty can be combined with constrained planning.

State uncertainty From a planning point of view it is important to know the
current state of the environment before decisions can bemade. However, in several
settings it is di�cult for the agent to actually determine this state prior to making a
decision regarding the action to take. In such planning problems the environment
is called partially observable, and the agent has to infer information about the
current state based on observations it gets. These observations are related to the
state of the environment, but they do not always reveal the actual state of the
environment completely. For example, autonomous vehicles have to reason about
the current distance to other vehicles (i.e., the current state) when controlling their
behavior, but the embedded sensors and cameras may not provide a completely
accurate measure of the actual distance. Another example is smart metering in a
distribution grid. If a utility company communicates once a week with the smart
meter, then the current meter readings are partially observable during the week.

Transition uncertainty A second source of uncertainty comes from the fact
that it is not always known how actions taken by an agent in�uence the environ-
ment. For example, an environment may behave stochastically and in that case
its state transitions stochastically in response to an action executed by the agent.
We can illustrate this using a dishwasher connected to a smart distribution grid,
which �nishes its program within an hour in 90 percent of the cases, while it runs
a bit longer in 10 percent of the cases. When turning on the washing machine,
then the total duration of the program is not deterministic, and there is transition
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uncertainty regarding the state of the washing machine after an hour. Another
example is an agent which controls the room temperature, for which the state
description only contains the current room temperature. When turning on the
heating system, the resulting temperature increase is not deterministic due to, e.g.,
doors and windows that may be open.

Model uncertainty Decisionmaking systems use a model that is an abstraction
of the real world, and unfortunately there is an inherent mismatch between the
model and the real environment of the agent. In other words, formalizing the
environment using a model brings uncertainty, because the real environment may
have characteristics that have not been incorporated in the model. As a result,
an intelligent decision making system that operates in an environment that does
not correspond the model that was used to construct the system can potentially
exhibit undesired behavior. For example, an autonomous device connected to
a power grid may introduce violations of grid capacities in case it is unaware
of the presence of other agents that require power at the same time. Another
example is an autonomous vacuum cleaner that was built for a speci�c type of
environment, which may behave completely di�erent if the actual environment
is slightly di�erent during deployment of the system. In this dissertation we do
not consider model uncertainty, and we only focus on computing plans based on a
given model of the environment. However, it is important to mention that model
uncertainty starts to receive increased attention because it becomes more relevant
when building robust AI-based systems in the real world (Amodei et al., 2016;
Grau-Moya et al., 2016).

Exogenous and endogenous uncertainty The �nal types of uncertainty that
we discuss are exogenous uncertainty and endogenous uncertainty, which repre-
sent two classes within transition uncertainty that require some special attention.
Exogenous uncertainty can be seen as transition uncertainty that is not in�uenced
by the actions taken by the agent. For example, the decisions made for electric
vehicles do not in�uence the uncertain weather in the next few days. Endogenous
uncertainty, on the other hand, is transition uncertainty that is in�uenced by the
actions executed by the agent. For example, charging decisions for electric vehicles
may have in�uence on the uncertain charging demand in the next days. The
distinction between both types is important to mention, because some planning
algorithms only support exogenous uncertainty and they cannot be used for the
other (Defourny, Ernst, and Wehenkel, 2012). The algorithms considered in this
dissertation support both types.

In this dissertation we consider problems with state uncertainty and transition
uncertainty. We focus on solving planning problems based on a given model, and
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we do not consider model uncertainty because this type of uncertainty does not
directly a�ect the behavior of agents. Instead, it can be seen as amodeling challenge
for control systems in general. Besides sources of uncertainty it may be necessary to
consider constraints on consumption of resources while computing and executing
a plan. For instance, execution of an action by an agent may require a money
investment or usage of equipment. Limited availability of money and equipment
imposes constraints on the actions that can be executed by the agent. Throughout
this dissertation a constrained planning problem refers to a planning problem
which includes resource constraints. Two types of these resource constraints can
be distinguished: budget constraints and instantaneous constraints, which we
discuss below in more detail.

Budget constraints Constraints on budget can be used to model situations in
which there is a �nite amount of resources available during the execution of a plan.
An intuitive example is a setting in which each decision made by the decision
making system requires investing a certain amount of money. If there is a �nite
amount of money available, then the money budget imposes restrictions on the
actions that can be executed during the entire plan execution. If the agent uses
the available budget by executing an action, then it decreases the budget that is
available to the agent in subsequent steps. This means that the budget cannot be
used anymore once it becomes depleted.

Instantaneous constraints The second type of constraint that we consider is
the instantaneous constraint, which can be used to model resource constraints
that need to be respected during a speci�c time step. This is di�erent compared to
the budget constraint, which models a situation where a constraint holds across
multiple time steps. As an example we consider line capacity constraints in a
distribution grid, which should be respected at all times. The usage of line capacity
at 2 PM does not reduce the capacity of the line at 3 PM, and therefore the capacity
constraint should be modeled using multiple instantaneous constraints that are
dependent on time. Instantaneous constraints can be used for resources that are
renewable, which means that current usage of the resource does not a�ect its
availability later in time.

Planning problems which include uncertainty can be modeled using Markov
Decision Processes (Puterman, 1994), which provide a mathematical model for
encoding environment states, actions of agents and stochastic state transitions. The
model supports both exogenous transition uncertainty and endogenous transition
uncertainty. A Partially Observable Markov Decision Process extends a Markov
Decision Process with state uncertainty, in which an agent needs to infer infor-
mation about the environment state based on the observations it receives. Both
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models have been studied extensively in arti�cial intelligence literature, and the
models have been applied in several domains for solving planning problems which
include uncertainty. Furthermore, the models have been extended with additional
constraints in order to account for limited availability of resources during plan-
ning (Altman, 1999; Isom, Meyn, and Braatz, 2008). In some sense planning with
constraints can be seen as planning with multiple objectives, in which the �rst
objective is related to the task performance, and the second objective is related to a
constraint that needs to be respected. However, in this dissertation we do not view
this problem as a multi-objective optimization problem, and we only focus on the
integration of constraints in planning algorithms.

1.4. Contributions of the dissertation
Based on the practical and theoretical motivations in the previous sections, we can
formulate the main research goal of the dissertation as follows:

Advancing the state of the art in constrained multi-agent planning under uncertainty,
and thereby improving the applicability of AI-based planning in domains such as
smart distribution grids with resource constraints.

The current state of the art in planning can be used for constrained planning
in uncertain environments, but there are several practical aspects which currently
prevent the application of planning in applications such as smart distribution grids.
This dissertation aims to present speci�c advancements which bring us closer to
constrained planning under uncertainty in these real-world applications. To be
more speci�c, we achieve the main research goal by focusing on the following
open research challenges:

1. Exact planning algorithms for problems with state uncertainty are compu-
tationally demanding. Computing optimal solutions is intractable in many
domains, which means that it represents an open challenge that requires
additional research.

2. Planning problems in smart distribution grids typically involve a �nite time
horizon. The state of the art in approximate planning under uncertainty
typically considers an in�nite horizon. Existing methods cannot be applied
to solve �nite-horizon problems, because they assume that there is an in�nite
horizonwith discounting of reward. Thismeans that �nite-horizon problems
require new tailored algorithms.

3. Planning algorithms for problems with state uncertainty have been extended
with constraints, but the resulting algorithms have limited scalability. Fur-
thermore, the algorithms do not support multiple agents, which is required
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in domains such as smart distribution grids. Solving multi-agent planning
problems with constraints and state uncertainty e�ciently is an open re-
search challenge.

4. Algorithms for constrained planning under uncertainty consider multiple
constraints, but adapting them to a speci�c application requires additional
work. In smart distribution grids this is an open problem, since it is unclear
how power grid constraints translate to resource constraints supported by
the planning algorithms. Furthermore, the type of constraints considered
by planning algorithms does not match the constraints that are required in
smart distribution grids.

We advance the state of the art in constrained multi-agent planning under
uncertainty by presenting algorithmic techniques which address the research chal-
lenges that we have identi�ed. These techniques also make the applicability in
domains such as smart distribution grids closer to reality. As a result, we obtain a
collection of algorithmic techniques which achieve the main research goal of the
dissertation. Below we provide a more detailed overview of our individual contri-
butions, which describes how this dissertation addresses the research challenges.

Accelerated exact value iteration for POMDPs For research challenge 1 we
focus on exact value iteration, which is an algorithm that can be used to compute an
optimal POMDP solution. The existing state of the art is the incremental pruning
algorithm (Cassandra, Littman, and Zhang, 1997). This algorithm computes a large
number of so-called alpha vectors that represent a value function, and subsequently
it executes a pruning subroutine which discards the vectors that are dominated by
others. The traditional pruning subroutine relies on solving many linear programs,
and we show that the running time of solving these linear programs can be reduced
by applying a constraint generation scheme. As a result, we obtain the fastest exact
pruning-based value iteration algorithm for POMDPs.

Approximate algorithm for �nite-horizon POMDP planning For research
challenge 2 we consider approximate algorithms for �nite-horizon POMDPs. We
�rst argue why existing POMDP algorithms are not suitable for solving these
problems e�ectively. The main contribution of the chapter is FiVI, a point-based
value iteration algorithm for solving �nite-horizon POMDPs. FiVI uni�es multiple
ideas from existing point-based value iteration algorithms for in�nite-horizon
POMDPs. Furthermore, it contains two strategies to enhance the e�ciency of
point-based backups and the e�ciency of value upper bound updates. A series
of experiments shows that FiVI is an e�ective method for solving �nite-horizon
POMDPs. FiVI is also used in our new algorithm for Constrained POMDPs, which
we discuss next.
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Unconstrained Constrained

MDP Congestion management (Ch. 6)

POMDP Exact VI (Ch. 3), FiVI (Ch. 4) Column generation (Ch. 5)

Table 1.1: Overview of the contributions in the research �eld

Approximate algorithm for Constrained POMDP planning To address the
third research challenge we present a novel approximate algorithm for solving
Constrained POMDPs, which is fundamentally di�erent compared to existing algo-
rithms in the literature. Until now, research on Constrained POMDPs has focused
on two types of methods. The �rst type of methods adds additional constraints
to traditional unconstrained POMDP algorithms. The second type augments al-
gorithms for Constrained MDPs with partial observability. We propose a new
type of solution algorithms, which enables us to solve a Constrained POMDP as a
sequence of unconstrained POMDPs. Our algorithm is based on column genera-
tion for linear programming and it has shown to outperform the current state of
the art. Furthermore, it is the �rst algorithm that supports multi-agent variants
of this problem, in which multiple independent agents in a partially observable
environment share global constraints.

Planning algorithm for congestion management in smart grids For re-
search challenge 4 we consider a practical application of constrained planning
under uncertainty which is directly relevant for the development of smart dis-
tribution grids in our society. Distribution grids face signi�cant changes in the
upcoming years due to increased demand (e.g., electric vehicles) and uncertain
production from renewables. These developments increase the risk of grid conges-
tion, and it makes it more di�cult to control demand and supply. We show that
Constrained MDPs can be used to build a congestion management scheme which
takes sources of uncertainty into account. To this end, we show how realistic power
grid constraints can be integrated in Constrained MDPs, and we present methods
to ensure that these constraints are respected during policy execution. Experiments
based on a realistic IEEE distribution grid demonstrate the e�ectiveness of our
approach. From a more general point of view, our results show that constrained
planning under uncertainty can be potentially used to address problems our society
is facing in the near future.

Our individual contributions address the research challenges and contribute to
achieving themain research goal. From amore general point of view, the individual
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contributions of this dissertation improve the state of the art in multiple areas of
the sequential decision making under uncertainty research �eld. In Table 1.1 this
�eld is visualized based on two criteria: presence of state uncertainty and presence
of additional constraints. For each individual contribution we indicate where it
can be positioned within the �eld, which shows that we cover constrained decision
making problems for both Markov Decision Processes and Partially Observable
Markov Decision Processes. For unconstrained planning problems we present two
methods for planning problems with partial observability. It is important to note
that one of these methods is exact while the other method is approximate.

1.5. Dissertation overview
The structure of this dissertation is based on the individual contributions listed in
the previous section. In Chapter 2 we start with an overview of background mate-
rial. In Chapter 3 we describe techniques for accelerating exact value iteration. In
Chapter 4 we present the FiVI algorithm for �nite-horizon planning. In Chapter 5
we describe our approximate algorithm for Constrained POMDPs. In Chapter 6
we focus on constrained planning under uncertainty in smart distribution grids.
We summarize our contributions in Chapter 7, which also provides an overview of
research directions that can be expanded in the future.





2
Planning under uncertainty

The �eld of planning under uncertainty provides well-grounded models and algo-
rithms for making sequential decisions in uncertain environments. In particular,
Markov Decision Processes (MDPs) enable modeling of agents which fully observe
their surroundings, and PartiallyObservableMarkovDecision Processes (POMDPs)
enhance this model with the ability to reason about imperfect information. In this
chapter we formally introduce both models, as well as commonly used solution
algorithms and model extensions.

2.1. Markov Decision Processes
Markov Decision Processes (Puterman, 1994) provide a mathematical framework
for modeling sequential decision making problems which involve uncertainty. It
models an agent that interacts with an uncertain environment by executing actions
sequentially, in such a way that it performs well on a given task. For example, in
the context of robotics one can model a robot which needs to reach a designated
goal while reasoning about uncertain outcomes of the actions. The planning
problem consists of �nding a conditional action sequence which performs as well
as possible.

2.1.1. States, actions, rewards and policies
In this dissertation we mostly focus on problems with a �nite planning horizon, in
which an agent executes a prede�ned number of actions. Finite-horizon problems
di�er slightly from the traditional in�nite-horizon MDP model that is typically
introduced in academic literature. In order to facilitate a general introduction, we
�rst describe the basic components of the model. In the next two sections we dis-

13
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cuss speci�c concepts for in�nite-horizon problems and �nite-horizon problems.
Formally, an MDP M is de�ned using a tuple M = ⟨S,A,T,R,s1⟩. The set S

contains all possible environment states, and the setA contains all possible actions
that can be executed by the agent. Our description focuses on problemswith a �nite
number of states and actions. State descriptions can be factored such that a state is
de�ned bymultiple separate state variables (Guestrin et al., 2003), but unless stated
otherwise it is assumed that we are dealing with �at representations. The state s1 ∈
S denotes the initial state of the system. The state transitions of the environment
are represented by the transition function T ∶ S×A×S→ [0,1]. When executing
action a ∈A in state s ∈ S, then the environment state changes stochastically to
state s′ with probability T(s,a, s′) = P(s′|s,a). The Markov property entails that
the stochastic transition to a successor state only depends on the current state, and
not on states encountered in the past. In the context of a robot navigation problem
states can represent the current location of the robot in a grid, and actions would
correspond to the directions in which the robot can move. If there is uncertainty
associated with these moves, then the transition function de�nes the uncertain
nature of the action outcomes.

The reward function R ∶ S×A→ R implicitly de�nes the goal to be reached or
the task to be ful�lled. To be more speci�c, when the agent executes action a ∈
A in state s ∈ S, it receives a reward R(s,a). The reward function can also be
de�ned as R ∶ S×A×S→ R, where rewards are also dependent on the successor
state. Both representations can be used interchangeably since they can be easily
converted in the other form1, but in the remainder of this dissertation we refer to
the former. Typically we are interested in maximizing the reward collected over
time. For example, in the context of the robot navigation problem one can think
about a positive reward for moving in the direction of the goal state. It should be
noted, however, that the reward function also allows for modeling of the cost to be
minimized, by treating them as negative rewards.

Figure 2.1 visualizes the agent that interactswith the environment. The environ-
ment state s transitions to state s′ after executing action a, and the agent perceives
both the new state s′ and the reward R(s,a). This can be repeated multiple times.

For in�nite-horizon MDPs a solution is typically expressed as a deterministic
stationary policy � ∶ S→A, which de�nes the action �(s) to be executed in each
state s. For �nite-horizon problems the policy becomes non-stationary and hence
it can be dependent on time. In some cases we use a stochastic policy � ∶ S×A→
[0,1], which de�nes the probability �(s,a) to execute action a in state s. Policies
are de�ned in such a way that the agent maximizes the reward it collects over
time. More details about optimality criteria and the computation of policies are
1Under the expected reward optimality criterion, as considered in this dissertation, we can take a
weighted average over successor states s′ to compute the expected immediate reward R(s,a) after
executing a.
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environment

state sagent

action a

state s′
reward R(s, a)

Figure 2.1: MDP agent interacting with the environment

presented in the next two sections for both in�nite-horizon problems and �nite-
horizon problems.

2.1.2. In�nite-horizon problems
MDPs with an in�nite horizon assume that the agent maximizes the reward col-
lected in an in�nite number of steps, where reward collected in the future is
discounted according to a discount factor 0 ≤  < 1. Formally, this optimality
criterion can be stated as follows:

E [
∞∑

t=1
t−1rt] , (2.1)

where rt represents the reward collected at time t. Note that the discount factor 
ensures that the sum becomes �nite, and it ensures that rewards early reward
contributes more than reward received much later in time.

Given the expected reward optimality criterion, the quality of a policy � can
be quanti�ed using a value function V� ∶ S→ R. The value V�(s) is de�ned as
the expected reward collected by the agent when executing policy � starting from
state s:

V�(s) = E [
∞∑

k=1
k−1rt+k

|||||||||
st = s] . (2.2)

It can be shown that we can recursively de�ne the equation in terms of a Bellman
equation (Bellman, 1957):

V�(s) =
∑

s′∈S
P(s′|s,�(s)) (R(s,�(s))+V�(s′)) , (2.3)

which de�nes the value as the sum of the immediate reward and the discounted
future reward collected in all successor states, weighted by their probability.

Solving anMDPcorresponds to �nding the optimal policy�∗, such thatV�∗(s)≥
V�(s) for each s ∈ S and for all policies �. The value function of the optimal pol-
icy �∗ satis�es the Bellman optimality equation:

V�∗(s) =max
a∈A

∑

s′∈S
P(s′|s,a)

(
R(s,a)+V�∗(s′)

)
. (2.4)
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The optimal policy �∗ can be expressed as a function of this value function:

�∗(s) = argmax
a∈A

∑

s′∈S
P(s′|s,a)

(
R(s,a)+V�∗(s′)

)
, (2.5)

which takes the action which provides the maximum expected reward.
Numerous algorithms exist to compute an optimal value function. The value

iteration algorithm (Bellman, 1957) initializes an initial value function V0 and
iteratively generates new value functions Vk+1 from value function Vk until con-
vergence. It initializes V0(s) to zero for each state s, and subsequently it uses the
following equation to generate a sequence of value functions:

Vk+1(s) =maxa∈A

∑

s′∈S
P(s′|s,a) (R(s,a)+Vk(s′)) . (2.6)

This process is known to converge in the limit to the optimal value function V�∗
de�ned in Equation 2.4, which also de�nes the optimal policy �∗. It is common to
terminate value iteration if the Bellman error magnitudemaxs∈S |Vk+1(s)−Vk(s)|
drops below a given tolerance ".

An alternative to value iteration is the policy iteration algorithm (Howard,
1960), which operates in the space of policies rather than the space of value func-
tions. Policy iteration repeatedly executes a policy evaluation step, followed by a
policy improvement step. It initializes an arbitrary policy �, which it evaluates
by computing its value function V� as de�ned in Equation 2.3 (e.g., by solving
a linear constraint system). Subsequently, it updates the current policy � based
on V�, using an update rule almost identical to Equation 2.5. This repeats until
convergence.

A third methodology for solving MDPs is based on linear programming. Since
linear programs are widely used throughout this dissertation, we provide a separate
description in Section 2.1.4.

2.1.3. Finite-horizon problems
Finite-horizon MDPs are used for problems in which an agent collects reward in a
�nite number of steps. The solution concepts for �nite-horizon MDPs are similar
to the in�nite-horizon case, and therefore we only present the most important
equations. The optimality criterion for �nite-horizon problems is be de�ned as:

E [
ℎ∑

t=1
rt] , (2.7)

where ℎ is a parameter de�ning the planning horizon. Optimal policies should
maximize the total expected reward received during execution, and hence a dis-
count factor is not required. On purpose we start counting time steps at 1, because
this means that �nite-horizon formulations consider ℎ steps in total.
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In �nite-horizon problems the current time step t has in�uence on the decisions
made by the agent. For example, if there are 10 steps left until the end of the horizon
then the action to be executed may be di�erent compared to the action that would
be chosen in case there are only 3 steps left. In the �rst situation it may choose a
risky action because there is su�cient time to recover, whereas amore conservative
action would be appropriate near the end of the horizon. More formally, policies
for �nite-horizon problems are called non-stationary and they depend on time.

The optimal value functionsV∗ for �nite-horizon problems are almost identical
to the in�nite horizon case, and they can be de�ned as follows:

V∗(t, s) = {
maxa∈A

∑
s′∈S P(s

′|s,a) (R(s,a)+V∗(t+1, s′)) t < ℎ
maxa∈AR(s,a) t = ℎ

. (2.8)

For each time step t the corresponding non-stationary policy�∗t is de�ned similarly:

�∗(t, s) = {
argmaxa∈A

∑
s′∈S P(s

′|s,a) (R(s,a)+V∗(t+1, s′)) t < ℎ
argmaxa∈AR(s,a) t = ℎ

. (2.9)

Note that optimal value functions V∗ and policies �∗ in the �nite-horizon case
can be computed using one single dynamic programming pass from the end of the
horizon until the �rst step.

Besides the aforementioned in�nite-horizon optimality criterion and the �nite-
horizon optimality criterion, there are other characterizationswhich de�newhether
a policy is optimal or not. For example, the average reward criterion de�nes that
the expected average reward collected during execution should be maximized,
rather than the expected sum. This can be de�ned as:

limsup
ℎ→∞

E [(1∕ℎ) ⋅
ℎ∑

t=1
rt] , (2.10)

in which the superior assures that the limit exists. Similar to the �nite-horizon
criterion, for a speci�c policy it cannot be distinguished whether an agent receives
high reward during early stages of execution, because all rewards collected over
time are treated similarly without having a notion of discounting. We do not further
consider the average reward criterion in this dissertation.

2.1.4. Linear programming formulations
The notion of value functions and policies, as described in the previous sections,
can be used to obtain MDP policies using value iteration or policy iteration. A third
methodology for solving MDPs is based on linear programming, which captures
the underlying ideas of value functions in one LP formulation that can be solved
using standard optimization algorithms for LPs. An additional advantage of such
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formulations is that it allows for addition of constraints on the optimal policy,
which becomes relevant in subsequent chapters. In the remainder of this section
we provide a basic introduction to commonly used LP formulations.

The �rst formulation applies to in�nite-horizon problems and treats the optimal
values V�∗(s) as LP decision variables:

min
∑

s∈S
V�∗(s)

s.t. V�∗(s)≥
∑

s′∈S
P(s′|s,a)

(
R(s,a)+V�∗(s′)

)
∀s ∈ S,a ∈A.

(2.11)

Solving the LP gives the optimal value for each state, fromwhich the optimal policy
can be easily derived. Another interesting observation is that LPs can be solved
in polynomial time (Khachiyan, 1980), and therefore we know that MDPs can be
solved to optimality in polynomial time.

In some cases it is convenient to dualize the LP shown in (2.11), because the
resulting (equivalent) formulation provides a di�erent characterization of the
optimal policy and allows for adding constraints. The formulation is as follows:

max
∑

s∈S

∑

a∈A
R(s,a) ⋅xs,a

s.t.
∑

a′∈A
xs′,a′ −

∑

s∈S

∑

a∈A
xs,a ×P(s′|s,a) = P(s1 = s′) ∀s′ ∈ S

xs,a ≥ 0 ∀s ∈ S,a ∈A

(2.12)

where the decision variable xs,a denotes the (discounted) occupancy frequency
for the state-action pair (s,a), and the term P(s1 = s) denotes the probability that
the initial state is s. This term is equal to 1 if s = s1, and equals 0 otherwise. The
resulting optimal policy �∗ is de�ned as:

�∗(s,a) =
xs,a

∑
a′∈A xs,a′

, (2.13)

which de�nes a probability distribution over actions for each state. Even though
the formulation in (2.12) de�nes potentially stochastic policies, the optimal policy
is fully deterministic. This can be explained by observing that the linear program
has |S| constraints, and hence at most |S| variables xs,a will become positive in an
optimal solution (Papadimitriou and Steiglitz, 1982).

The LP formulation for �nite-horizon problems follows a similar line of rea-
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soning, for which we only provide the dual formulation below.

max
ℎ∑

t=1

∑

s∈S

∑

a∈A
R(s,a) ⋅xt,s,a

s.t.
∑

a′∈A
xt+1,s′,a′ =

∑

s∈S

∑

a∈A
xt,s,a ⋅P(s′|s,a) ∀s′ ∈ S, t ∈ {1,… ,ℎ}

∑

a∈A
x0,s,a = P(s1 = s) ∀s ∈ S

0≤ xt,s,a ≤ 1 ∀s ∈ S,a ∈A,t ∈ {1,… ,ℎ}

(2.14)

In this formulation the variable xt,s,a denotes the probability that the agent encoun-
ters state s at time t and subsequently executes action a. The resulting optimal
stochastic non-stationary policy �∗ is de�ned as:

�∗(t, s,a) =
xt,s,a

∑
a′∈A xt,s,a′

, (2.15)

which de�nes the probability to execute a in state s at time t. Although not
mentioned explicitly in this section, in �nite-horizon formulations the rewards
and transition probabilities can be made time-dependent as well.

2.1.5. Constrained problems
As discussed in the introductory chapter of this dissertation, in some application
domains it is required that solutions to planning problems consider constraints.
Constrained Markov Decision Processes (CMDPs) augment the standard MDP
model with additional constraints (Altman, 1999). Besides the reward function it
de�nes one or more cost functions C ∶ S×A→ R which specify the cost C(s,a) for
executing action a in state s. For example, the cost can be de�ned as the usage of a
resource when executing an action in a certain state. A cost function can be used
to create problems where an optimal policy should maximize the expected reward
while the expected cost incurred during policy execution is upper-bounded by L.

For in�nite-horizon problems the following constraint can be easily added to
the dual LP formulation shown in (2.12):

∑

s∈S

∑

a∈A
C(s,a) ⋅xs,a ≤ L, (2.16)

which states that the expected discounted cost should be upper-bounded by L.
However, it should be noted that this is only useful in domains where bounding
expected discounted cost is meaningful. Unfortunately, in several domains this
is not the case, which we will illustrate with an example inspired by the domain
sketched in the introduction chapter. If multiple agents are connected to a power
grid then it can be useful to optimize for short-term reward by using discounting.
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However, if the agents have to respect power grid constraints, then constraints on
discounted power �ows are notmeaningful because the constraints at all time steps
are equally important. In such domains it is more intuitive to bound the expected
(undiscounted) cost, which can be integrated in the LP formulation shown in (2.14)
for �nite-horizon problems:

ℎ∑

t=1

∑

s∈S

∑

a∈A
C(s,a) ⋅xt,s,a ≤ L. (2.17)

ConstrainedMDPs resemble problemswithmultiple objectives (Roijers et al., 2013),
because the reward and cost function can be interpreted as multiple objectives
which are taken into account when computing an optimal policy. However, it is
important to note that in CMDPs it is only required to bound expected cost, rather
than optimizing for this additional cost.

2.1.6. Planning for multiple agents
The standard MDP model can be used to model interactions between an agent and
its environment. However, in many domains it is relevant to model n agents which
sequentially execute actions to achieve an individual or collaborative goal. The
Multi-agent MDP (MMDP) model (Boutilier, 1996) assumes that each agent i has
an individual state space Si and action space Ai , which are subsequently merged
into a joint state space S = S1×…×Sn and joint action space A=A1×…×An. The
transition functionT ∶ S×A×S→ [0,1] is de�ned over joint states and actions. The
reward function R ∶ S×A→ Rmakes it possible to de�ne rewards over the joint
state and action space, and therefore this model is appropriate for settings where
multiple agents collaborate to reach a common goal. Since the MMDP formulation
reduces a multi-agent problem to a single-agent MDP, the standard algorithms
still apply. However, the resulting state and action space grow exponentially in the
number of agents, and therefore it is not tractable to use for larger problems.

Multi-agent problems involving global constraints on all policies can be de�ned
by combining the concepts of MMDPs and CMDPs, but such an approach would
still be a�ected by the aforementioned scalability problems. If there are no depen-
dencies between the individual MDP models of the agents, and if the joint reward
function is just the sum of individual reward functions Ri ∶ Si×Ai → R rather than
a reward function de�ned over the joint state space S, then more e�cient solu-
tions approaches exist. In such situations there is no need to merge the individual
models into a joint model, and hence policies can be optimized individually while
accounting for the global constraints. Such models and algorithms will be further
described in Chapters 5 and 6.

An additional formalism for multi-agent planning is the Decentralized POMDP
model, inwhichmultiple agents collaborate in the same environmentwhilemaking
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decisions in a decentralized fashion without direct communiction (Oliehoek and
Amato, 2016). The model is fundamentally di�erent compared to the MMDP
formalism, in which decisions are made centrally based on the joint state of the
agents. Decentralized POMDPs are not considered in this dissertation. However,
we want to emphasize that our algorithms for constrained multi-agent planning in
Chapters 5 and 6 provide solutions that can be executed in a decentralized fashion
without communication.

2.2. Partial observability
The Markov Decision Process framework described in the previous section can be
used to model decision making problems which include uncertainty. It is assumed
that the agent interacts with the environment by executing actions, and from
the viewpoint of the agent the current environment state is always known. In
several domains, however, it cannot be assumed that the state of the environment
is known with full certainty. For example, a robot may have sensors which do
not provide perfect information about the surrounding area in which the robot
navigates. Another example occurs in maintenance problems where a decision
maker needs to decide when to performmaintenance on paved roads. The decision
maker knows that the condition of the roads deteriorates over time, but without
performing inspections and initial maintenance there is no full certainty about the
actual condition. In both examples the current state is partially observable and the
agent needs to reason about the true state. In this section we introduce Partially
Observable Markov Decision Processes (Kaelbling, Littman, and Cassandra, 1998;
Spaan, 2012), which naturally model such sequential decision making problems.

2.2.1. Augmenting MDPs with observations
Partially Observable Markov Decision Processes (POMDPs) extend fully observable
MDPs with an observation model describing a probabilistic relationship between
the environment state and the observationsmade by the agent. Instead of observing
the state directly, the agent perceives an observation according to this observation
model. Based on observations made it can infer information about the actual state.

Formally, a POMDP is de�ned as a tupleM = ⟨S,A,O,T,Ω,R,b1⟩, in which S,A
and T are the set of states, the set of actions and the transition function, identical to
the MDP de�nition. O represents a set containing a �nite number of observations.
The observation function Ω ∶A×S×O→ [0,1] de�nes the probability to make an
observation, depending on the executed action and the environment state after
executing that action. If the agent executes action a ∈A and the environment state
transitions to s′ ∈ S, then the agent observes o ∈ O with probability Ω(a,s′, o) =
P(o|a,s′). The probability to observe o is dependent on the successor state s′, but
it should be emphasized that the agent never receives explicit information about s′
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Figure 2.2: POMDP agent interacting with the environment

while interacting with the environment.
Similar to MDPs, we can visualize the interaction between the agent and its

environment. Figure 2.2 shows an agent that executes action a, after which it
receives observation o and it gets the reward R(s,a). Here it is important to note
that it does not receive information about state s itself. More details about speci�c
horizons and discounting will be discussed in Section 2.2.3 and Section 2.2.4.

2.2.2. Belief states and belief updates
In fully observable MDPs the environment state provides a Markovian signal
based on which the agent can make optimal decisions. However, in POMDPs the
sequence of observations does not provide su�cient information to make optimal
decisions. All executed actions and observations encountered in the past can a�ect
the knowledge the agent has about the current state, and hence a notion of memory
is necessary to de�ne an optimal decision making policy.

For POMDPs a Markovian planning signal can be de�ned using belief states b
rather than actual states s. A belief state b is a vector of length |S| de�ning the
probability b(s) that the current environment state is s. In other words, the vector
characterizes the current belief of the agent regarding the actual environment state.
A belief state is a su�cient statistic for the full history of actions and observations,
and therefore there are no other representations which provide the agent with
more information about the history. In a POMDP it is assumed that the agent has
an initial belief b1. If the agent has no initial knowledge about the state, this belief
would correspond to a uniform distribution over states.

While interacting with the environment the agent updates its belief b. After
executing action a and receiving observation o, the resulting belief boa is de�ned
using Bayes’ rule:

boa(s′) =
P(o|a,s′)
P(o|b,a)

∑

s∈S
P(s′|s,a)b(s), (2.18)

where P(o|b,a) corresponds to the probability to observe o after executing action a
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in belief b. This probability is calculated as follows:

P(o|b,a) =
∑

s′∈S
P(o|a,s′)

∑

s∈S
P(s′|s,a)b(s), (2.19)

and in the belief update equation this term serves as a normalizing constant.

2.2.3. In�nite-horizon problems
Similar to MDPs, we can distinguish POMDPs with an in�nite horizon and a
�nite horizon. In this section we �rst describe in�nite-horizon POMDPs based
on a discount factor 0≤  < 1. Conceptually it is almost identical to the solution
concepts for MDPs, and therefore we only provide a brief introduction.

The solution of an in�nite-horizon POMDP is a policy � ∶ ∆(S)→ A map-
ping beliefs to actions, in which ∆(S) denotes the continuous set of probability
distributions over S. Similar to in�nite-horizon MDPs, the aim is to maximize the
expected sum of discounted rewards. For a given policy � the expected discounted
reward V�(b) collected when executing � starting from b is de�ned as:

V�(b) = E� [
∞∑

k=1
k−1R(bk,�(bk))

|||||||||
b1 = b] , (2.20)

where R(bt,�(bt)) =
∑

s∈S R(s,�(bt))bt(s) denotes the expected reward when exe-
cuting �(bt) in belief bt.

For the optimal policy �∗ it holds that V�∗(b)≥V�(b) for each b ∈∆(S) and
for all policies �. Similar to MDPs it satis�es the Bellman optimality equation:

V�∗(b) =max
a∈A

[
∑

s∈S
R(s,a)b(s)+

∑

o∈O
P(o|b,a)V�∗(boa)] . (2.21)

The optimal policy �∗ corresponding to this value function is de�ned as:

�∗(b) = argmax
a∈A

[
∑

s∈S
R(s,a)b(s)+

∑

o∈O
P(o|b,a)V�∗(boa)] . (2.22)

The value functions introduced in this section provide a conceptual character-
ization of an optimal value function and the corresponding optimal policy. In
Section 2.2.5 we discuss a convenient technique to represent these value functions
in memory. Moreover, we discuss techniques to compute such value functions in
Section 2.2.6 and Section 2.2.8.

2.2.4. Finite-horizon problems
Finite-horizon POMDPs include a parameter ℎ which represents the time horizon,
such that the agent executes actions in time steps 1,… ,ℎ, and execution ends at
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time step ℎ+1. The solution to a �nite-horizon POMDP is a time-dependent
policy � ∶ {1,… ,ℎ}×∆(S)→A, which maps beliefs and time steps to actions, and
it maximizes the expected sum of rewards received by the agent. A policy can be
seen as a plan which enables the agent to perform its task in the best possible way,
and its quality can be evaluated using a value function V� ∶ {1,… ,ℎ}×∆(S)→ R.
The value V�(t,b) denotes the expected sum of rewards that the agent receives
when following policy � starting from belief b at time t, and it is de�ned as:

V�(t,b) = E� [
ℎ∑

t′=t
R(bt′ ,�(t′,bt′))

||||||||||
bt = b ] , (2.23)

where bt′ is the belief at time t′ andR(bt′ ,�(t′,bt′)) =
∑

s∈S R(s,�(t
′,bt′))bt′(s). For

an optimal policy �∗ it holds that it always achieves the highest possible expected
reward during execution. Formally, it holds that V�∗(1,b) ≥ V�(1,b) for each
belief b and for each possible policy �. The optimal value function V�∗(t,b) =
max�V�(t,b) is de�ned by the following recurrence:

V�∗(t,b)={
maxa∈A

[∑
s∈S R(s,a)b(s)+

∑
o∈OP(o|b,a)V

�∗(t+1,boa)
]

t ≤ ℎ
0 otherwise

(2.24)

The optimal policy �∗ corresponding to the optimal value function is de�ned as:

�∗(t,b) = argmax
a∈A

[
∑

s∈S
R(s,a)b(s)+

∑

o∈O
P(o|b,a)V�∗(t+1,boa) ] , (2.25)

for 1≤ t ≤ ℎ. It returns the value-maximizing action for a time step and belief.
Similar to MDPs, both �nite-horizon and in�nite-horizon POMDPs can be

generalized to multiple agents, and the models can be used to solve planning
problems which involve constraints. For the purpose of readability we discuss
this separately in Chapter 5, in which we present algorithms for Constrained
Multi-agent POMDPs.

2.2.5. Vector-based value functions and backups
The value functions in the previous sections have been de�ned over the continuous
belief space. When computing value functions this can be inconvenient, because it
requires function representations as well as function manipulations de�ned over a
continuous space. Fortunately, it has been shown that POMDP value functions
have a special shape which allows for more e�cient representations.

It turns out that value functions for �nite-horizon POMDPs are piecewise linear
and convex (Sondik, 1971). This means that the value function can be represented
using a �nite set of |S|-dimensional vectors. This also applies to in�nite-horizon
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problems with discounting, because the discount factor  implicitly de�nes an
upper bound on the number of time steps that is relevant to consider. A value
function V can be represented as a set of vectors � ∈V, such that

V(b) =max
�∈V

b ⋅�, (2.26)

where ⋅ denotes the inner product. In this representationV refers to a set of vectors,
and V(b) denotes the function value computed using b and the set of vectors.

Value iteration for POMDPs executes dynamic programming stages based on
Equation 2.21, in which each stage accounts for one additional time step. If the
agent executes only one action, then we can de�ne the initial value function V0(b)
as follows:

V0(b) =maxa∈A
[
∑

s
R(s,a)b(s)]= max

{�a0 }a∈A
�a0 ⋅b, (2.27)

where �a0 (s) = R(s,a) denotes a vector containing the immediate rewards. Hence,
we can de�ne this value function in terms of vectors as V0 = {�a0 | a ∈A}.

Given a value function Vn, value iteration algorithms aim to compute the value
function Vn+1 using the Bellman equation. We can abbreviate this as Vn+1 =HVn,
in which H denotes the Bellman backup operator. For convenience we let �bn =
argmax�∈Vn b ⋅� denote the value-maximizing vector from the set Vn in belief b.
Computing all vectors belonging to Vn+1 seems computationally di�cult, but
given Vn and a belief b we can easily compute the vector �bn+1 such that �bn+1 =
argmax�∈Vn+1 b ⋅�, where Vn+1 is the unknown set of vectors representingHVn.
We refer to this operation as executing a backup on belief b:

�bn+1 = backup(b), (2.28)

such that Vn+1(b) = b ⋅ backup(b). It is important to observe that this vector
represents the gradient of the value function Vn+1 in belief b.

We can derive the computation of backup(b) directly from the Bellman opti-
mality equation. For convenience we �rst de�ne

g�nao (s) =
∑

s′∈S
P(o|a,s′)P(s′|s,a)�n(s′) (2.29)

as the backprojection of a vector �n ∈Vn based on action a and observation o. The
full derivation for the in�nite-horizon case now proceeds as follows:

Vn+1(b) =maxa∈A
[b ⋅�a0 +

∑

o∈O
P(o|b,a)Vn(boa)] (2.30)

=max
a∈A

[b ⋅�a0 +
∑

o∈O
P(o|b,a) max

�n∈Vn
(
∑

s′∈S
boa(s′)�n(s′))] (2.31)
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=max
a∈A

[b ⋅�a0 +
∑

o∈O
max
�n∈Vn

∑

s′∈S
P(o|a,s′)

∑

s∈S
P(s′|s,a)b(s)�n(s′)] (2.32)

=max
a∈A

[b ⋅�a0 +
∑

o∈O
max
�n∈Vn

∑

s∈S
b(s)

∑

s′∈S
P(o|a,s′)P(s′|s,a)�n(s′)] (2.33)

=max
a∈A

[b ⋅�a0 +
∑

o∈O
max

{g�nao }�n∈Vn
b ⋅g�nao] (2.34)

=max
a∈A

⎡
⎢
⎣
b ⋅�a0 +

∑

o∈O
b ⋅ argmax

{g�nao }�n∈Vn

b ⋅g�nao
⎤
⎥
⎦

(2.35)

=max
a∈A

⎡
⎢
⎣
b ⋅�a0 +b ⋅

∑

o∈O
argmax
{g�nao }�n∈Vn

b ⋅g�nao
⎤
⎥
⎦

(2.36)

=max
a∈A

⎡
⎢
⎣
b ⋅

⎛
⎜
⎝
�a0 +

∑

o∈O
argmax
{g�nao }�n∈Vn

b ⋅g�nao
⎞
⎟
⎠

⎤
⎥
⎦

(2.37)

=max
a∈A

[
b ⋅gba

]
(2.38)

= b ⋅argmax
a∈A

[
b ⋅gba

]
(2.39)

with
gba = �a0 +

∑

o∈O
argmax
{g�nao }�n∈Vn

b ⋅g�nao . (2.40)

Note thatwe have applied the de�nition of the belief update, the identity b⋅x+b⋅y =
b ⋅ (x+y) and the identitymax� b ⋅� = b ⋅argmax� b ⋅� in the derivation. Now we
can de�ne the backup operator as follows:

backup(b) = argmax
a∈A

[
b ⋅gba

]
. (2.41)

This operator is easy to implement and provides the value-maximizing vector�bn+1 ∈
Vn+1 in belief b based on the value function Vn and b itself. It is also common
to associate the maximizing action a with a vector �, which is denoted by a(�).
The derivation for �nite-horizon POMDPs is almost identical, which we discuss in
Chapter 4. Unless stated otherwise, we only treat the in�nite-horizon case in the
remaining parts of this chapter.

The backup operator can be used to compute a vector that is optimal in one
speci�c belief. However, this is not su�cient to compute all vectors belonging
to Vn+1. Next we explain how to �nd the set of vectors that is optimal for all beliefs.

2.2.6. Exact value iteration
Value iteration for POMDPs repeatedly computes a value function Vn+1 using
the vectors representing the value function Vn from the previous stage. Based
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Figure 2.3: Value function with a dominated vector

on the backup operator we can de�ne this computation as
⋃

b backup(b), but
unfortunately this requires knowledge about the beliefs b which are required to
compute all vectors belonging to this set. Since there is an in�nite number of
beliefs, enumeration of beliefs is clearly not possible.

Two types of strategies for computing the vectors of Vn+1 can be distinguished.
The �rst type iteratively identi�es belief points b for which the corresponding vec-
tor �bn+1 is value-maximizing in a region of the belief space. Such a belief is typically
referred to as witness point, which provides evidence that the corresponding vector
is value-maximizing in a non-empty region of the belief space. The second type
simply enumerates all possible vectors and runs a pruning procedure that removes
vectors for which there is no belief in which it is a value-maximizing vector. In this
dissertation we focus on enumeration algorithms because they generally provide
better performance and they are more popular in academic literature.

The enumeration algorithm byMonahan (1982) simply enumerates all possible
vectors that can be generated by the backup operator:

Vn+1 =
⋃

a∈A
Ga with Ga =⊕o∈O Goa and Goa = { 1

|O|
�a0 +g

�n
ao

||||||
�n ∈Vn} ,

(2.42)
which produces |A||Vn||O| vectors in total. The operator ⊕ denotes the cross
sum operator. For two sets P and Q the operator can be de�ned as P ⊕ Q =
{p+q | p ∈ P,q ∈Q}. Many of the computed vectors do not contribute to the value
function, which means that there are no belief points for which the vectors are
value-maximizing. An example is shown in Figure 2.3 for a POMDP with two
states. The vector labeled with the asterix is never a value-maximizing vector,
and such vectors can be discarded without changing the value function and its
corresponding policy. Moreover, discarding such vectors is important because they
in�uence the computation time required in subsequent dynamic programming
stages. Pruning of vectors can be done using a special procedure prune:

Vn+1 = prune(
⋃

a∈A
Ga ) , (2.43)
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Figure 2.4: Value function U with vector w and the feasible region of the corresponding LP

which only keeps vectors if they are value-maximizing in a region of the belief
space. More details about pruning of vectors will be provided in the next section.

Additional computation time can be saved by pruning vectors incrementally,
rather than pruning vectors after enumeration. This insight led to the Incremental
Pruning algorithm (Cassandra, Littman, and Zhang, 1997), which computes Vn+1
as follows:

Vn+1 = prune(
⋃

a∈A
Ga ) with Ga = prune

(
prune

(
Ḡ1a⊕ Ḡ2a

)
…⊕ Ḡ|O|

a

)
,

(2.44)
in which Ḡoa = prune(Goa). The latter ensures that the operands of the cross sum
are pruned before computing the cross sum. Pruning is a crucial component of
Incremental Pruning and our algorithms in Chapter 3.

2.2.7. Vector pruning
As discussed in the previous section, dominated vectors can be pruned using a
subroutine prune. This subroutine takes a vector set as input, and it returns the
vector set obtained after pruning dominated vectors from the input set. In the
literature this procedure is also known as �ltering, and the resulting vector set
after pruning is also known as the parsimonious value function. We �rst explain
how it can be checked whether a speci�c vector is dominated by a set of vectors,
after which we describe how this check is integrated in a vector pruning algorithm.

Pruning algorithms repeatedly verify whether there is a region of the belief
space in which a given vector w ∉U dominates vectors in a set U. As an example
we consider Figure 2.4a, which shows a value function U consisting of 4 vectors,
each of which is visualized as a solid line. As can be seen, for each of these
vectors there is a region of the belief space in which it is the value-maximizing
vector, and the dashed vector w dominates the vectors in U in a small region.
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The corner highlighted with the dot corresponds to the belief b′ in which the
vector w dominates the vectors in the set U the most. In other words, in the
belief b′ the value function induced by U improves the most when adding the
vector w to the set U. Sometimes the belief b′ is referred to as a witness point
in the literature (Kaelbling, Littman, and Cassandra, 1998), because it can act as
a witness which proves that w has the potential to improve the value function
induced by U.

In the visual example it is easy to recognize the belief point b′ in which w
improves the vector setU the most, but in general it requires solving the following
optimization problem:

b′ = argmax
b∈∆(S)

[w ⋅b−(max
u∈U

u ⋅b)] (2.45)

= argmax
b∈∆(S)

[min
u∈U

(w ⋅b−u ⋅b)] (2.46)

= argmax
b∈∆(S)

[min
u∈U

((w−u) ⋅b)] . (2.47)

The �rst term in the maximization problem in Equation 2.45 corresponds to the
value de�ned by the vector w in belief b, and the second term corresponds to the
value in belief b de�ned by the value function induced by the vectors in U. The
value function induced by U improves when adding the vector w ∉U if:

max
b∈∆(S)

[min
u∈U

((w−u) ⋅b)]> 0, (2.48)

which states that the resulting value improvement should be strictly positive.
The optimization problem introduced above �nds a belief in the continuous

belief simplex ∆(S), which we can conveniently formulate as a linear program:

max d
s.t. d ≤ (w−u) ⋅b ∀u ∈U

∑

s∈S
bs = 1

bs ≥ 0 ∀s ∈ S
d ∈ R,

(2.49)

in which bs denotes the belief corresponding to state s. For each vector u ∈U it
de�nes a constraint of the form d ≤ (w−u) ⋅b, which means that the objective d is
upper-bounded by (w−u) ⋅b, identical to Equation 2.47. For the example problem
the constraints are visualized in Figure 2.4b, where each line corresponds to a
constraint d ≤ (w−u) ⋅b, and the gray area de�nes the feasible region of the linear
program. The arrow indicates the direction for optimization, which is maximizing
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Algorithm 1: FindBelief – computes the belief in which the vector w
improves the value function induced by U the most
input :vector set U, vector w
output :belief state b or symbol �

1 if U = ∅ then
2 return arbitrary belief b
3 end
4 max d
5 s.t. d ≤ (w−u) ⋅b ∀u ∈U
6

∑
s∈S bs = 1

7 bs ≥ 0 ∀s ∈ S
8 d ∈ R
9 return b if d > 0 and Φ otherwise

in this case, and the dot shows where the optimal solution is located. In this case
it can be seen that the optimal objective of the linear program is strictly positive,
which means that there is a region of the belief space in which the vector w
dominates the vectors in U. Moreover, in the example it can be seen that there is a
direct correspondence between the dots highlighted in Figure 2.4a and Figure 2.4b.

The linear program can be integrated in a procedure FindBelief which �nds
the belief in which a vector w ∉U improves the vectors in U the most, as shown
in Algorithm 1. If adding w to U leads to an improvement then it returns the
corresponding belief based on the solution of the linear program, and otherwise it
returns the symbol Φ. If the set U is empty then the corresponding value function
will always improve when adding w, and therefore the algorithm can return an
arbitrary belief without solving the linear program.

The procedure FindBelief is a crucial component of many vector pruning
algorithms. These algorithms incrementally build a parsimonious value function
by iterating over vectorsw, and for each of them it is checked whether it dominates
previously added vectors in a region of the belief space. The vector is added to the
parsimonious value function if it dominates, and the vector is discarded otherwise.
This concept was �rst employed by Lark’s vector pruning algorithm, which is
described in a survey by White (1991) based on personal communication with
Lark. Throughout this thesis we will refer to the algorithm as White & Lark.

The algorithmic description of the vector pruning algorithm by White & Lark
is shown in Algorithm 2. As input it takes the vector setW, and it incrementally
builds the parsimonious representation D. In each iteration of the algorithm a
vector w ∈W is considered. On lines 4-5 the vector w is discarded if it is fully
dominated by an existing vector in D, which means that there is a vector u ∈ D
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Algorithm 2: Vector pruning algorithm (White & Lark)
input :vector setW
output :pruned set D

1 D← ∅
2 whileW ≠ ∅ do
3 w← arbitrary element inW
4 if w(s)≤ u(s),∃u ∈D,∀s ∈ S then
5 W←W ⧵ {w}
6 else
7 b←FindBelief(D,w)
8 if b =Φ then
9 W←W ⧵ {w}

10 else
11 w← BestVector(b,W)
12 D←D ∪ {w}
13 W←W ⧵ {w}
14 end
15 end
16 end
17 return D

whose entries are all larger than the corresponding entries in w. On line 7 the
algorithm uses the linear program to �nd a belief b in which the vectorw improves
the value function induced by D the most. If there is no belief for which the value
function would improve, which is indicated by the symbol Φ, then the vector w
is discarded. In all other cases the algorithm �nds the value-maximizing vector
in belief b from the setW on line 11 and adds this vector to D. The description
of the corresponding BestVector procedure is shown in Algorithm 3, in which
the operator <lex denotes the lexicographic ordering. If multiple vectors have an
equal value in belief b, then this ordering turns out to be crucial to break ties when
selecting the best vector (Littman, 1996).

The pruning algorithm by White & Lark is the most commonly-used vector
pruning algorithm for POMDP value functions. However, additional methods
have appeared in the literature. Most notably, a collection of region-based pruning
methods has been proposed by Feng and Zilberstein (2004). These methods exploit
the structure of the cross sum in incremental pruning to decide whether a vector
should be part of the value function that is obtained when computing the cross sum
of two value functions. This involves alternative LP formulations which typically
contain fewer constraints than the LP found in the FindBelief procedure. Amore
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Algorithm 3: BestVector – returns the best vector from U in belief b
input :vector set U, belief b
output :best vector from U in belief b

1 m←−∞
2 for u ∈U do
3 if (b ⋅u >m)∨ (b ⋅u=m∧u <lex w) then
4 w← u
5 m← b ⋅u
6 end
7 end
8 return w

recent vector pruning algorithm is known as the Skyline algorithm (Raphael and
Shani, 2012), which traverses the upper-surface of a value function and marks the
vectors it visits. The algorithm only keeps the vectors that have beenmarked during
execution. Furthermore, a more elaborate discussion on pruning is provided in
the related work section at the end of Chapter 3.

2.2.8. Point-based value iteration
Exact value iteration becomes signi�cantly faster due to pruning of dominated vec-
tors, but unfortunately the scalability remains limited to relatively small problems.
The reason is that the number of vectors can grow exponentially in the planning
horizon, and if many of them dominate in a small region of the belief space then
many of these vectors will be kept. In order to be able to compute policies for larger
POMDPs, research has focused on the development of approximate algorithms.
Point-based value iteration algorithms (Pineau, Gordon, and Thrun, 2003) form
an important class of approximate algorithms which execute backups on a �nite
number of belief points b ∈ B, rather than optimizing over the entire belief sim-
plex ∆(S). This can be advantageous, because within each dynamic programming
stage the backup operator is only applied to beliefs b ∈ B, which means that the
resulting number of vectors is bounded by the size of B.

Executing backups on a �nite number of belief points only leads to improved
tractability, but the question becomes how the set B should be constructed, which
eventually in�uences the quality of the computed solution. Intuitively, the set B
should provide coverage for the beliefs b that are reachable under the execution of
an optimal policy. The vector �bn+1 obtained by computing backup(b) de�nes the
gradient of the value function in belief b, and therefore it can be expected that the
value function also generalizes to belief points that are not part of B.

Various strategies have been proposed to initialize and update the set B. The
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original PBVI algorithm (Pineau, Gordon, and Thrun, 2003) executes an approxi-
mate backup operator H̃ as follows:

Vn+1 = H̃Vn =
⋃

b∈B
backup(b). (2.50)

The algorithm iteratively expands the set B by looking at the beliefs that are reach-
able from beliefs b ∈ B in one step, and it adds the belief with the largest distance
(e.g., based on the L1 norm). This strategy aims to reduce the density of the belief
points in B, which is de�ned as the maximum distance between two beliefs.

The Perseus algorithm (Spaan and Vlassis, 2005) is an improvement over PBVI.
It starts with random sampling of belief trajectories by interacting with the POMDP
model, based onwhich it constructs the belief setB. In each dynamic programming
stage it executes backups on a randomly sampled belief subset B̃ ⊆ B, rather than
executing a backup for each b ∈ B. This is motivated by the observation that the
vector �bn+1 may also improve the expected value for beliefs other than b. The
algorithm executes backups only on beliefs b ∈ B̃, but it ensures that Vn+1(b) ≥
Vn(b) holds for each b ∈ B. In contrast to PBVI, the set B remains �xed during the
execution of the algorithm.

PBVI and Perseus only keep track of a lower bound on the optimal value
function of the POMDP, represented by a set of vectors. More recent algorithms
such as HSVI (Smith and Simmons, 2005), SARSOP (Kurniawati, Hsu, and Lee,
2008) andGapMin (Poupart, Kim, andKim, 2011) are based on the sameunderlying
idea as PBVI and Perseus, but they also keep track of an upper bound on the optimal
value function. This is bene�cial for two reasons. First, it allows for assessing
whether a value function is far from optimal or not. Second, and most importantly,
it allows the algorithms to iteratively expand the belief setB using a heuristic search
procedure guided by the gap between the lower and upper bound. This search
procedure ensures that the algorithms converge to an optimal value function in
the limit, which means that they eventually deliver an optimal value function
and hence an optimal policy. The main di�erences between HSVI, SARSOP and
GapMin can be found in the heuristic search procedure, the computation of value
upper bounds and the propagation of changes in these bounds.

2.2.9. Representing policies as policy graphs
Executing a POMDP policy induced by a set of vectors Vn is conceptually simple,
but it requires additional computation time. First, it is required to keep track of a
belief state, which is updated after executing an action and getting an observation.
Second, when making a decision it is required to compute the dot product of the
current belief and each vector in Vn. If an agent has limited time or resources to
perform these calculations, then policy execution may become di�cult.

Some POMDP policies have a special property which makes it possible to trans-
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form the vector representation in a graph representation, which does not require
belief tracking during execution. This property is called �nite transience (Sondik,
1971), and it can be explained as follows. Each vector �j ∈Vn has a belief region Bj
in which it is the value-maximizing vector. If there is another vector �k ∈Vn with
region Bk such that for each b ∈ Bj it holds that boa ∈ Bk for each action a and
observation o, then the policy induced by Vn is �nite transient. In words this
means that each belief in the region Bj is transformed into a belief in exactly the
same region Bk when executing an action and making an observation.

A �nite transcient policy can be converted into an equivalent policy graph,
which can be interpreted as a �nite-state controller used during execution. For
each �bn ∈Vn there is a node qb with an associated action qab , which is the action
to be executed if qb is the current node. For each observation o there is a node
transition, formalized by qob , which points to the node corresponding to the value-
maximizing vector in belief boa. Policy execution starts in the node q0 corresponding
to the value-maximizing vector of the initial belief b1.

There is an elegant correspondence between the policy induced by the vectors
in Vn and the nodes of the policy graph. We can compute the expected discounted
reward of the policy induced by a policy graph by solving the following linear
constraint system:

V(qb, s) = R(s,qab )+
∑

o∈O

∑

s′∈S
P(s′|s,qab )P(o|q

a
b , s

′)V(qob, s
′) ∀qb, s ∈ S, (2.51)

in which V(q,s) denotes the expected discounted reward obtained when starting
policy execution in node q while the current state is s. The expected discounted
reward of the policy graph is computed as:

∑

s∈S
V(q0, s) ⋅b1(s). (2.52)

It is interesting to observe that the expectationsV(qb, s) together can be interpreted
as a vector V(qb, ⋅) with an entry for each state. This means that for a policy graph
derived from a vector set, we can again obtain |S|-dimensional vectors V(q, ⋅)
corresponding to nodes q in the policy graph.

For �nite-horizon problems policy graphs can be formulated and evaluated
identically, except that there is a separate collection of nodes for each time step.
This means that nodes at time t only transition to nodes of the next time step t+1.
A full description of policy graphs and policy graph construction is provided in
Chapter 5, in which we present an algorithm that generates a sequence of policy
graphs during execution.



3
Accelerating optimal
planning for POMDPs

In the previous chapter we introduced exact value iteration algorithms for POMDPs
which require a subroutine for pruning of vectors. This pruning operation is crucial
as it reduces the number of vectors that is considered in subsequent iterations,
but it turns out that the pruning operation itself is computationally expensive to
execute. In this chapter we speci�cally focus on the vector pruning subroutine,
and in particular the role of solving linear programs, which represents a signi�cant
fraction of the total computation time. The main contribution of this chapter is a
POMDP vector pruning algorithm which uses a constraint generation procedure
for accelerating the underlying linear programs. In addition, we also present an
algorithm which improves the constraint generation procedure by bootstrapping
from linear programs solved previously. An empirical evaluation shows that the
resulting algorithm is the fastest pruning-based value iteration algorithm for solving
POMDPs optimally.

3.1. Constraint generation for vector pruning
The vector pruning algorithm by White & Lark, as described in Algorithm 2 in the
previous chapter, is a key element of the Incremental Pruning algorithm for solving
POMDPs (Cassandra, Littman, and Zhang, 1997). It is used to incrementally prune
the vectors produced by the exact Bellman backup, as shown in Equation 2.44.
Within each call to prune, it potentially invokes the method FindBelief for each
vector in the original set (on line 7 in Algorithm 2). This requires a linear program,
and it turns out that solving these linear programs represents a major part of the

35
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Figure 3.1: Value function U with vector w and the feasible region of the corresponding LP

total running time of incremental pruning (Cassandra, Littman, and Zhang, 1997).
In this section we present a constraint generation procedure to accelerate solv-

ing of linear programs within the vector pruning algorithm1. In Section 3.1.1 we
analyze the structure of the original linear program, and we explain why this struc-
ture allows for derivingmore e�cient algorithms. In Section 3.1.2 and Section 3.1.3
we use the Benders decomposition method (Benders, 1962) for linear programs
as a principled framework to derive a constraint generation procedure. Finally,
in Section 3.1.4 we analyze the theoretical properties of the constraint generation
procedure, which explains us why the resulting method is potentially faster than
solving the original linear program.

3.1.1. Analysis of the LP formulation
In Section 2.2.7 we described the linear program that is required to check whether
a vector w is dominated by a set of vectors U. For the speci�c example instance
in Figure 2.4a we have illustrated how the constraints of the linear program in
Equation 2.49 de�ne a feasible region, as well as an optimal solution. As a �rst
step in understanding the structure of the linear program, this section provides an
initial analysis of the correspondence between the value function induced by U,
the vector w and the resulting linear program. This analysis forms an important
motivation for the methods introduced in the next section, because it intuitively
explains why it is not always required to consider all constraints of the linear
program explicitly.

Before analyzing the structure of the linear program, we �rst mathematically
formalize a few key concepts, which makes further analysis and descriptions
signi�cantly easier. The linear program shown in Equation 2.49 is de�ned by the
vector set U and the vector w. Therefore, we refer to this linear program as the

1The section is an extended version of a paper presented at AAAI-17 (Walraven and Spaan, 2017).
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standard linear program, parameterized by the tuple (U,w). It maximizes the
value improvement d, and returns the belief point b′ where the vector w improves
the value function induced by U the most. In Figure 3.1 we visualize the same
example as before, augmented with additional symbols which we use throughout
this section.

A corner belief is de�ned as a belief point in which the value function changes
slope. In Figure 3.1a the corner beliefs are indicated by the dots shown on the
upper surface of the value function. Each extremum of the belief simplex is also
de�ned as an extreme corner belief. In the example in the �gure we can see 5 corner
beliefs, out of which 2 corner beliefs are also an extreme corner belief. Cheng (1988)
has shown that the belief point where the vector w improves U the most is also
one of the corner beliefs. We will refer to this belief as the witness corner belief. In
Figure 3.1a and 3.1b this belief is represented by the belief b′ at (0.18,0.82).

As discussed before, each line in Figure 3.1b corresponds to a constraint of the
form d ≤ (w−u) ⋅b, with u ∈U. The objective of the linear program is represented
by the vertical axis, and the set of feasible solutions of the linear program is repre-
sented by the shaded area under the concave surface. Based on the de�nitions of
corners we are able to establish a relationship between the corner beliefs and the
corners of the feasible region of the linear program, as shown below.

Lemma 1. Each corner of the feasible region of the LP (U,w) corresponds to a corner
belief of value functionU.

Proof. Based on Equation 2.45 we can formalize the concave surface de�ning
the linear program as w ⋅ b−maxu∈U u ⋅ b, where b is a belief. The expression
maxu∈U u ⋅b corresponds to the convex surface of value function U. By de�nition,
the slope of the value function U changes at the corner beliefs. Since w is a single
vector that acts as a constant, it follows that the concave surfacew ⋅b−maxu∈U u ⋅b
also changes slope at the corner beliefs.

As can be seen in Figure 3.1b, only constraints that are intersecting at the
witness corner belief are necessary to de�ne the optimal solution of the linear
program. Other constraints, such as the constraints labeled with the asterix, can
be removed without changing this optimal solution. If there are multiple witness
corner beliefs with the same optimal objective value, then it is important to keep
the intersecting constraints for at least one witness corner belief. In the theorem
belowwe formalize our intuition that only a few constraints are necessary to de�ne
the optimal solution.

Theorem 1. Constraints that do not intersect at the witness corner belief are irrele-
vant and can be removed without a�ecting the optimal objective value d.

Proof. We assume that the value function U has m corner beliefs b1,… ,bm and
without loss of generality we assume that bm is the witness corner belief. We
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de�ne d(b) as the optimal objective value in belief b. From Lemma 1 we know
that each corner belief bl corresponds to a corner of the feasible region with ob-
jective value d(bl). It holds that d(bl)≤ d(bm) for l = 1,… ,m−1 because bm is the
witness corner belief and the objective is maximized. The LP returns the value
max(d(b1),… ,d(bm)) = d(bm). Only the constraints intersecting at witness corner
belief bm are required to impose constraints on this value.

The lemma and theorem tell us that it is possible to �nd the optimal solution
of the linear program without adding all constraints, because it is only required to
add the constraints intersecting at the witness corner belief. This is an important
observation, because if the vector setU is large then there can be many constraints
while only a few of them intersect at the witness corner belief. However, deciding
which constraints are necessary to add is di�cult as it requires knowledge about
the (initially unknown) optimal linear program solution. This means that we
are unable to decide which constraints are necessary without actually solving the
linear program to optimality. Fortunately, we are able to use a constraint generation
procedure which we can terminate in case we �nd the optimal solution before all
constraints have been added. Details about this procedure are provided in the next
two sections.

3.1.2. Benders decomposition method for linear programs
In order to derive a constraint generation scheme we use the Benders decomposi-
tion technique for decomposing linear programs (Benders, 1962). This decompo-
sition technique can be used to decompose linear programs that are intractably
large, and it provides a principled way to split a linear program into a so-called
master problem and a slave problem. The linear program in the pruning algorithm
is not necessarily large, but we can still use the decomposition method to create
a constraint generation scheme while providing guarantees on convergence and
optimality.

The Benders decomposition technique can be applied to linear programs having
the following form:

max px+ℎy
s.t. Cx+My ≤ q

x,y ∈ R,

(3.1)

where p and ℎ are row vectors containing coe�cients and the column vectors x
and y represent decision variables of the linear program. The matrices C andM
and the column vector q de�ne the constraints, and they contain only constants.
If the vector x is replaced by a �xed vector x̄ containing only constants, then the
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linear program reduces to:

�(x̄) =max ℎy
s.t.My ≤ q−Cx̄

y ∈ R,

(3.2)

in which we move the constant Cx̄ to the right-hand side of the constraint, and we
use �(x̄) to denote the the optimal objective value for a �xed x̄. Now we can state
the optimization problem in (3.1) as follows:

max
x

px+�(x), (3.3)

in which themax-operator shouldmaximize over x in such a way that �(x) de�ned
in (3.2) has a feasible solution2. The dual of (3.2) can be written as:

�(x̄) =min (q−Cx̄)⊤z
s.t.M⊤z= ℎ⊤

z ≥ 0,

(3.4)

where z is a column vector containing the dual decision variables and the symbol⊤
denotes the transpose operator. Any vector z satisfying the dual constraints remains
feasible if x̄ in the objective function is replaced by another vector because the
constraints of the dual problem do not depend on x̄. When solving the dual in (3.4)
for a given x̄ to obtain the dual solution z̄, then it holds that:

�(x)≤ (q−Cx)⊤z̄ (3.5)

for all possible vectors x. This holds because z̄ is dual feasible and for each x
it represents a solution with objective value (q−Cx)⊤z̄. The optimal objective
value �(x) cannot be larger than this quantity because (3.4) is a minimization
problem.

A Benders decomposition algorithm initializes the following master problem:

max px+�, (3.6)

in which � is a real-valued variable. First it solves the master problem to obtain x̄.
Then it solves the dual (3.4) to obtain the optimal dual solution z̄. Based on this
solution the constraint � ≤ (q−Cx)⊤z̄ is added to the master problem, which is
called a Benders cut. This process is repeated until convergence, and it is important
to note that this process is guaranteed to converge to an optimal solution to the
original problem de�ned in (3.1). In the next section we use the same line of
reasoning to derive a constraint generation scheme for solving the linear program
used by the pruning algorithm.
2In this section we can always ensure that we maximize over x such that �(x) is feasible. For Benders
decompositions in general it may occur that the choice of x leads to an infeasible subproblem. In that
case additional cuts can be added which enforce feasibility, but they are not described in this thesis.



40 3. Accelerating optimal planning for POMDPs

3.1.3. Derivation of a constraint generation procedure
In this section we derive a constraint generation procedure for solving the linear
program used for vector pruning:

max d
s.t. d ≤ (w−u) ⋅b ∀u ∈U

∑

s∈S
bs = 1

bs ≥ 0 ∀s ∈ S
d ∈ R,

(3.7)

which is the same linear program as the LP introduced earlier in Equation 2.49.
The main idea of the derivation is that we can apply the steps outlined in (3.1)-(3.6)
to the linear program in (3.7). For convenience we formalize this using matrix and
vector notation. In particular, we de�ne vectorw and the vectors inU = {u1,… ,uk}
as row vectors and b = [b1,… ,b|S|]⊤ is a column vector. Based on these notational
conventions we can rewrite the linear program as follows:

d∗ =max [1][d]

s.t. −
⎡
⎢
⎢
⎣

w−u1
⋮

w−uk

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

b1
⋮
b|S|

⎤
⎥
⎥
⎦

+
⎡
⎢
⎢
⎣

1
⋮
1

⎤
⎥
⎥
⎦

[d]≤
⎡
⎢
⎢
⎣

0
⋮
0

⎤
⎥
⎥
⎦

[1…1]
[
b1…b|S|

]⊤
= 1,

bi ≥ 0 ∀i ∈ {1,… , |S|},
d ∈ R,

. (3.8)

Note that there is a correspondence with the linear program shown in (3.1). For
example, b corresponds to x and d corresponds to y. If the vector b is replaced
by a �xed belief b̄ for which

∑
i=1,…,|S| b̄i = 1 and b̄i ≥ 0 (i = 1,… , |S|), then (3.8)

reduces to the LP below.
d∗(b̄) =max [1][d]

s.t.
⎡
⎢
⎢
⎣

1
⋮
1

⎤
⎥
⎥
⎦

[d]≤ Cb̄ with C =
⎡
⎢
⎢
⎣

w−u1
⋮

w−uk

⎤
⎥
⎥
⎦

d ∈ R

(3.9)

The dual of (3.9) can be written as:

d∗(b̄) =min (Cb̄)⊤z
s.t. [1…1]z= 1,

zj ≥ 0 ∀j ∈ {1,… ,k},

(3.10)
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where z is a column vector representing the dual solution. As before, any vector z
satisfying the dual constraints remains feasible if the belief b̄ is replaced by another
belief, because the dual constraints are not dependent on b̄. After solving (3.10)
for a �xed belief b̄ to obtain dual solution z̄, we can obtain the following upper
bound on the optimal LP solution d∗:

d∗ ≤ (Cb)⊤z̄, (3.11)

which is a valid upper bound for each belief b. The Benders decomposition algo-
rithm initializes the following LP:

max d∗

s.t. [1…1]b = 1
bi ≥ 0 ∀i ∈ {1,… , |S|}
d∗ ∈ R

(3.12)

and solves this master LP to obtain b̄. Then it solves (3.10) using b̄ to obtain z̄, after
which constraint d∗ ≤ (Cb)⊤z̄ is added to the master LP. This process repeats until
the solution of the master LP converges to a �xed point, which is guaranteed to
happen due to the construction based on the Benders decomposition principle.

We observe that the solution of (3.10) for a given b̄ can be obtained without
solving a linear program. It holds that z̄= (z̄1,… , z̄k)⊤, with

z̄j = {
1 j = argminr∈{1,…,k}

{
(w−ur)b̄

}

0 otherwise
. (3.13)

Since z̄ contains only one entry z̄j that equals 1, the constraint in (3.11) can be writ-
ten as d∗ ≤ (w−uj)b using row j of matrix C, where j = argminr=1,…,k

{
(w−ur)b̄

}
.

The insight that the dual corresponds to �nding the the vector u ∈U which mini-
mizes (w−u)b is convenient, because it prevents us from solving a linear program
for the subproblem.

Based on the Benders decomposition method we have identi�ed a master
problem and a subproblem, which we can use to create a constraint generation
procedure. We present an algorithm which replaces the procedure FindBelief
shown in Algorithm 1. Our new algorithm is based on the principle of Incremental
Constraint Generation (ICG), and therefore we call it FindBeliefICG, as shown
in Algorithm 4. The algorithm is identical to Algorithm 1, except that it generates
the constraints of the linear program incrementally. It �rst initializes a master LP
which initially only imposes constraints on the belief b. This ensures that solving
the master problem always gives a valid belief, which can be used to solve the
subproblem. On lines 11-17 the algorithm iteratively selects vectors û and adds
the corresponding constraints d∗ ≤ (w− û)b to the master LP. In each iteration
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Algorithm4: FindBeliefICG – computes the belief inwhichw improves
U the most, based on Incremental Constraint Generation (ICG)
input :vector set U, vector w
output :belief b or symbol �

1 if U = ∅ then
2 return arbitrary belief b
3 end
4 de�ne the following master LP:
5 max d∗

6 s.t.
∑

s∈S bs = 1
7 bs ≥ 0 ∀s ∈ S
8 d∗ ∈ R
9 choose an arbitrary belief b′
10 U′← ∅
11 do
12 b̄← b′

13 û← argminu∈U
{
(w−u) ⋅ b̄

}

14 add d∗ ≤ (w− û) ⋅b to master LP
15 U′←U′∪{û}
16 solve master LP to obtain belief b′

17 while b′ ≠ b̄;
18 d̄← last objective d∗ found
19 return b̄ if d̄ > 0 and Φ otherwise

the master LP is solved to optimality, and it �nds a new constraint which reduces
the objective value for belief point b the most. If the belief points found in two
successive iterations are identical, then the objective cannot be further reduced and
the algorithm terminates. Since the algorithmonly returns a belief on line 19 in case
the optimal objective value is strictly greater than zero, constraint generation can be
terminated if the optimal objective of themaster LP drops below zero. This prevents
running unnecessary iterations in which additional constraints are added without
a�ecting the solution returned by the algorithm. The algorithmic description in
this section does not include this minor detail because in our theoretical analysis
it is important that the algorithm always �nds an optimal solution. Additional
implementation details are discussed separately in the shaded box at the end of
the section.

From a general point of view, our constraint generation technique in Algo-
rithm 4 can be interpreted as a cutting-plane method which iteratively re�nes the
set of feasible solutions until an optimal solution is found. We can also interpret our
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(a) Master LP without constraints
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(b) Add �rst constraint
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(c) Add second constraint
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(d) Add third constraint

Figure 3.2: Example illustrating execution of FindBeliefICG (Algorithm 4)

method as a decomposition of the original LP shown in Equation 3.7, because we
have divided the original problem into a smaller master problem and a subproblem.

The execution of Algorithm 4 can be illustrated using an example, as shown in
Figure 3.2. Execution starts with a master linear program in which the constraints
corresponding to the vectors have not been added yet. In Figure 3.2a the shaded
area represents the (unbounded) feasible region, and the four gray constraints
represent constraints that have not been added. The algorithm starts in belief
point (1,0) and selects the constraint which reduces the objective value the most.
This constraint is added in Figure 3.2b, in which the new optimal solution is
indicated by the dot. Now the algorithm selects the constraint which reduces the
objective value the most for belief point (0,1), which is added in Figure 3.2c. In
the �nal step the algorithm selects the constraint which reduces the objective the
most in belief point (0.47,0.53), and this constraint is added in Figure 3.2d. At
this point the optimal solution of the linear program corresponds to the belief
point (0.18,0.82). For this point no constraint can be found which further reduces
the objective value, and hence the algorithm terminates. In this example there
is one constraint, corresponding to the gray line in Figure 3.2d, which was not
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added. This constraint was considered while �nding constraints which reduce
the objective value, but it was never considered while solving the master linear
program. This illustrates how FindBeliefICG is able to �nd an optimal solution
without adding all possible constraints.

As a �nal remark, it should be noted that FindBeliefICG can be easily inte-
grated in incremental pruning for POMDPs, because it only replaces theFindBelief
procedure in the vector pruning subroutine. This also means that the optimal
POMDP solution computed by incremental pruning remains una�ected.

Implementation detail: early termination of constraint generation
The constraint generation procedure outlined in Algorithm 4 only returns the be-
lief b̄ in case d̄ > 0. In all other cases it returns the symbolΦ, which indicates that
there is no belief in which the vector w improves the value function U. Based on
this insight we can conclude that it is possible to terminate constraint generation
before reaching the optimal solution to the original LP in Equation 2.49. To be
more speci�c, constraint generation can be terminated if the optimal solution
to the master LP becomes strictly negative, because in the remaining iterations
the optimal objective value never becomes positive and Algorithm 4 will always
return Φ. Unless stated otherwise our implementation always terminates con-
straint generation if the optimal master LP objective drops below zero. In a few
experiments we disable this feature because the experimental setup requires us
to do so, which will be mentioned explicitly in the corresponding sections.

3.1.4. Theoretical analysis
Our constraint generation procedure is easy to integrate in the incremental pruning
algorithm for POMDPs, but it is not immediately clear why this procedure would
accelerate solving. In this section we provide a theoretical analysis which aims to
provide insight into the behavior of Algorithm 4. Moreover, the analysis makes
clear why the algorithm does not always add irrelevant constraints, and why this
can eventually lead to a reduction of the time required for solving linear programs.

First we characterize the optimality of the constraint generation procedure.
The theorem below indicates that Algorithm 4 returns a belief point for which
the corresponding optimal objective value is identical to the optimal objective
value found by Algorithm 1. The belief point returned may be di�erent if there
are multiple belief points with the same optimal objective value. Since both belief
points correspond to the same value improvement, they both represent a witness
corner belief.
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Theorem2. Algorithm4 computes a solutionwith the same optimal objective valued
as the linear program in Algorithm 1, and constraint generation terminates after a
�nite number of iterations.

Proof. The constraint generation procedure has been derived using a Benders
decomposition (Benders, 1962). Hence, the optimal objective value of the solution
returned is identical and it is found in a �nite number of iterations.

Before we proceed with our analysis we introduce the notation corresponding
to important concepts which we use throughout the analysis. Algorithm 4 incre-
mentally adds constraints, and each constraint corresponds to a vector u ∈U. At
any point in time during the execution of the Algorithm 4, the constraints added to
the master LP are de�ned using a set U′ ⊆U. This set is also de�ned on line 10 of
Algorithm 4. For each u ∈U′ there is a constraint d ≤ (w−u) ⋅b. The constraints
in U′ ⊆U de�ne an optimal solution b′ and the corresponding objective value d′.
If the algorithm adds a constraint u on line 14 for a given b̄, then we say that the
algorithm uses belief b̄ to add u. The region Zu in which u restricts the LP solution
space is:

Zu = {b ||| (w−u) ⋅b ≤ (w−u′) ⋅b ∀u′ ∈U′} . (3.14)

The belief b′ has neighbors b1,… ,bl which are also corners of the feasible region,
with corresponding objective values d(b1),… ,d(bl). In Figure 3.1b each corner of
the feasible region has two neighbors, except the corners at the extrema of belief
space. For state spaces with more than two states corner beliefs may have more
than two neighbors. We de�ne the neighbors of b′ using a set NB(b′):

NB(b′) = {b ||| b is corner belief and ∃c ∈U′

such that b′ ∈ Zc and b ∈ Zc,b ≠ b′} .
(3.15)

This set contains the corners b of the feasible region that can be reached from b′

in one step, because there is at least one constraint c ∈U′ such that b′ ∈ Zc and
b ∈ Zc. The lowest objective value of the neighbors is dmin(b′) =minb∈NB(b′)d(b).
Due to the convexity of feasible regions of LPs3, it holds that dmin(b′) ≤ d′. The
region Z(b′) in which the objective value is at least dmin(b′) is de�ned as:

Z(b′) = {b |||minu∈U′ {(w−u) ⋅b}≥ dmin(b′)} . (3.16)

In the example in Figure 3.3 the lines (except the bold vertical line) correspond
to constraints in U. The black constraints have been added so far and belong
to the set U′ ⊆ U. The belief b′ is the current optimal solution of the master
LP, and its two neighbors are represented by dots. In the example it holds that
3In the visualization in Figure 3.1b the feasible region of the maximization problem is concave, but in
general linear programming solvers use the equivalent convex minimization problem.



46 3. Accelerating optimal planning for POMDPs

dmin(b′) equals 0.05, and therefore the region Z(b′) contains the beliefs in which
the objective is at least 0.05, which is represented by the horizontal double arrow.

We �rst show that the current optimal solution b′ of the master LP is always
a belief point in Z(b′) while executing iterations in which constraints are added.
The original linear program in Algorithm 1, as shown in Equation 3.7, will be
referred to as the standard LP. The theorem below shows that the optimal objective
value of the standard LP, which corresponds to the objective value d̄ on line 18 of
Algorithm 4, is at least dmin(b′) throughout the execution of Algorithm 4. This
immediately implies that the �nal solution b̄ returned by Algorithm 4 is a belief
point in Z(b′).

Theorem 3. Given the current optimal solution b′ and the corresponding objective
value d′ of the master LP, it holds that d∗ ≥ dmin(b′), where d∗ is the optimal objective
value of the original LP.

Proof. By contradiction. We assume that d∗ < dmin(b′). For each b ∈ Z(b′) there
must be a constraint u ∉ U′ such that (w−u) ⋅ b ≤ d∗ < dmin(b′). We consider
an arbitrary neighbor bl ∈NB(b′) of b′ and a constraint c ∈U′ such that b′ ∈ Zc
and bl ∈ Zc. All corner beliefs b ∈ Zc except b′ are also neighbor of b′ according
to de�nition of NB, which implies that d(b) ≥ dmin(b′) for each b ∈ Zc. Now
we can conclude that Zc ⊆ Z(b′). Consider the belief bc that was used to add c.
We know that bc ∈ Zc because bc is a belief in which c restricts the current LP
solution space. It is impossible that bc ∉ Zc because outside the region Zc there
is already another constraint which is more restrictive than c in point bc, which
would have been selected in point bc instead of c. It holds that d(bc) ≥ dmin(b′)
because bc ∈ Zc ⊆ Z(b′). For bc there must be a constraint u ∉ U′ for which
(w−u) ⋅b ≤ d∗ < dmin(b′). Constraint umust have been added before c on line 11,
which leads to a contradiction.

Corollary 1. Given the current optimal solution b′ and the corresponding objective
value d′ of the master LP, it holds that b̄ ∈ Z(b′), which means that the optimal
solution b̄ of the standard LP is a belief point in Z(b′).

Proof. Follows immediately from Theorem 3 the de�nition of Z(b′).

Corollary 2. Consider the current optimal solution b′. Algorithm 4 only �nds belief
points b ∈ Z(b′) during subsequent iterations.

Proof. By contradiction. Suppose that a belief b ∉ Z(b′) is found during a subse-
quent iteration, then it holds that d(b)< dmin(b′). For each b ∈ Z(b′) theremust be
a constraint u ∉U′ such that (w−u)⋅b < dmin(b′). There exists a constraint c ∈U′

for which Zc ⊆Z(b′), and we consider the belief bc that was used to add c. It holds
that bc ∈ Zc because bc is a belief point in which c restricts the current LP solu-
tion space. Moreover, it holds that d(bc) ≥ dmin(b′) because bc ∈ Zc ⊆ Z(b′). In
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Figure 3.3: Region Z(b′) example

belief bc there must be a constraint u ∉U′ for which (w−u) ⋅b < dmin(b′). Hence,
constraint umust have been added before c, which leads to a contradiction.

We can use the theorem and corollaries to de�ne when a constraint u ∉U′ is
never added during subsequent iterations of Algorithm 4. This is relevant, because
it shows us why the algorithm does not always add a constraint for each u ∈U.

Theorem 4. Consider the current optimal solution b′ and a constraint c ∉U′. If
Zc ∩Z(b′) = ∅, then constraint c will never be added to the master LP in subsequent
iterations.

Proof. For each b ∈ Zc it holds that (w− c) ⋅b < dmin(b′) because Zc ∩Z(b′) = ∅.
During subsequent iterations Algorithm 4 will never �nd a belief b in which
d(b) < dmin(b′), because it terminates after �nding the optimal solution, which
is at least dmin(b′) according to Theorem 3 and Corollary 1. This implies that
Algorithm 4 never �nds a belief b ∈ Zc during subsequent iterations. Hence,
constraint c is never added to the master LP during subsequent iterations.

Figure 3.3 visualizes the ideas behind Theorems 3 and 4. The optimal solu-
tion of the original LP belongs to the region Z(b′) and is at least dmin(b′). The
dashed constraint restricts the solution space in a region that is not part of Z(b),
and therefore it is never added in remaining iterations. The condition stated in
Theorem 4 is a su�cient condition and tells us whether it is guaranteed that a
constraint is not going to be added in remaining iterations. If the size of Z(b′)
shrinks quickly during the execution of Algorithm 4, then this can reduce the
number of added constraints signi�cantly. If there is a large number of constraints
restricting the solution space in regions outside Z(b′), then these constraints will
never be considered explicitly by the linear programming solver, which potentially
leads to a running time reduction.
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3.2. Bootstrapping for constraint generation
In the previous section our attention has focused on constraint generation for
individual linear programs in vector pruning algorithms for POMDPs. These linear
programs are used to verify whether there exists a region of the belief space in
which a given vector dominates a value function. A key property of exact value
iteration for POMDPs is that the Bellman backup operator is applied until the
computed value function has converged to a �xed point (Bellman, 1957). During
the execution of value iteration the value functions become increasingly similar,
as well as the linear programs that are executed while pruning value functions.
However, so far this property remains unexploited as the linear programs within an
iteration of value iteration are solved without looking at the linear programs that
have been solved in previous iterations of value iteration. In this section we present
a bootstrapping procedure which uses linear programs from the previous iteration
to initialize a subset of constraints for a new linear program before constraint
generation actually starts4. If the constraints added based on bootstrapping would
have been added by the original constraint generation procedure as well, then this
reduces the number of constraint generation iterations and also running time.

3.2.1. Convergence of value iteration
Exact value iteration repeatedly executes Bellman backups based on the Bellman
optimality equation shown in Equation 2.22. As discussed before, it �rst initializes
a value function V0 and then it generates a sequence of new value functions Vn+1
based on the previous value function Vn. For in�nite-horizon POMDPs with
discounting this is known to converge to a �xed-point solution (Bellman, 1957),
such that:

Vn+1 =HVn =Vn, (3.17)

where H denotes the Bellman backup operator. This occurs when the Bellman
error magnitude has become zero, which is de�ned as:

max
b ∈ ∆(S)

|Vn+1(b)−Vn(b)|. (3.18)

In other words, while executing exact value iteration the vectors constituting the
computed value functions Vn get increasingly similar and eventually they remain
constant. In that case it is not required to execute additional iterations of value
iteration, because this produces identical value functions.

3.2.2. Bootstrapping of linear program constraints
In this section we consider two successive value functions Vn−1 and Vn. As ex-
plained in the previous section, we expect the set of vectors Vn in incremental
4The section is based on a paper presented at ICAPS-18 (Roijers, Walraven, and Spaan, 2018).
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pruning to contain increasingly similar vectors to Vn−1. To identify which vectors
need to be retained in Vn, the vector pruning algorithm of White & Lark (Algo-
rithm 2) incrementally builds up the parsimonious vector set. Starting from an
empty set, this algorithm identi�es a belief b for which a candidate vector w is
possibly optimal. The best vector for that b is added to Vn. To identify b, Algo-
rithm 4 solves a series of LPs with an increasing number of constraints based on our
constraint generation procedure. Based on the characteristics of Algorithm 4 and
the convergence characteristics of value iteration we can make two observations,
as described next.

First, we observe that the beliefs identi�ed by Algorithm 4 become increasingly
similar during the execution of value iteration. To illustrate this, we consider a call
to prune in Equation 2.44 in iteration n−1 and the corresponding call to prune in
the iteration n. These calls have the form

prune
(
…⊕ Ḡoa

)
(3.19)

in Equation 2.44, parameterized by action a and o. Two calls in successive itera-
tions correspond to each other if a and o are identical. Without loss of generality we
assume that the pruning algorithm always considers the vectors in a speci�c (e.g.,
lexicographic) order5. For both method calls we consider a vector wn−1 and a
vector wn, respectively. These vectors are used as input to the ICG linear pro-
gram (Algorithm 4) as the candidate vector and if the vectors are similar then
the identi�ed point returned by Algorithm 4 will be similar too6. In other words,
similar vectors in two successive iterations will be optimal for similar beliefs. This
is because value iteration converges to a �xed point of the value function, which is
a convex set of vectors. As an example we can consider the linear programs shown
in Figure 3.4. In Figure 3.4b each line corresponds to a constraint and, as can be
seen, the optimal solution is similar to the optimal solution of the linear program
in Figure 3.4a.

Second, we observe that there are only a handful of constraints, Cprev, that
ultimately constitute the solution of the linear program. In Figure 3.4a these
constraints are the constraints intersecting in the dot corresponding to the optimal
solution. These constraints can be identi�ed easily (following the notation of
Algorithm 4) as:

Cprev = argmin
u∈U

(w−u) ⋅ b̄, (3.20)

where b̄ is the ultimately returned point. Note that Cprev is a set containing vectors
corresponding to the constraints intersecting in b̄. For the example this would be
5More details about this assumption will be provided in Section 3.2.3.
6The vector pruning algorithm by White & Lark may visit one vector multiple times during pruning,
which means that it identi�es multiple points for one given vector. In that case the identi�ed points
will also get increasingly similar. We discuss this detail in the shaded box at the end of the section.
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Figure 3.4: Bootstrapping example with LPs in iteration n−1 and iteration n

the vectors intersecting in the dot in Figure 3.4a. Since there is a direct correspon-
dence between vectors and constraints, we will use both terms interchangeably if
the meaning is clear from context.

By combining the two observations we hypothesize that we can reuse the
constraint set induced byCprev for other vectors similar to vectorwn−1. We consider
iteration n−1, in which FindPoint(ICG) was called with a vector set Un−1 and a
vector wn−1. If the same function is called in iteration n with vector set Un and a
similar vectorwn, then we select the closest vectors from the new setUn (according
to Euclidean distance) to initialize the linear program in iteration n:

Cinit =
⋃

un−1∈Cprev

argmin
un∈Un

|un−un−1|. (3.21)

This set contains vectors from Un similar to the vectors from Un−1 which corre-
spond to the constraints de�ning the optimal solution for wn−1.

As an example we consider the linear program shown in Figure 3.4a. Suppose
that ICG solves this linear program and �nds the solution indicated by the dot.
Now suppose that we encounter a similar linear program in a subsequent iteration
of incremental pruning, as shown in Figure 3.4b. In this case we would like to
initialize constraints which are likely to be intersecting in the optimal solution.
Therefore our bootstrapping technique initializes the linear program with the con-
straints shown as a bold solid line, as these constraints are similar to the constraints
intersecting in the optimal solution in the previous iteration (see Figure 3.1b). In
the new linear program the optimal solution (indicated by opt) is slightly di�erent
compared to the previous linear program, and constraint generation needs to add
only one more constraint (labeled ∗). This is bene�cial, as the original ICG would
start from an empty linear program, and iterates multiple times before reaching
the same solution.

It is important to note that the initialization of constraints based on Cinit never
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shrinks the feasible region of the linear program too much. The reason is that the
constraints de�ned by Cinit correspond to vectors from the current vector set Un,
rather than vectors from a linear program solved previously. In other words: the
algorithm always initializes constraints that are valid constraints in the linear
program that is currently being solved.

3.2.3. Integrating bootstrapping in vector pruning
In order to use the concept of bootstrapping constraints we need to modify the
vector pruning algorithm, as well as the algorithm for �nding beliefs. In this
section we discuss the modi�cations in both algorithms.

To perform bootstrapping, we need to store and retrieve the sets Cprev. As
discussed in the previous section, within a call to prune we want to retrieve such
sets based on the corresponding call to prune from the previous iteration. In other
words, the constraints and solutions that can be reused are context-dependent,
where the context refers to the location in Equation 2.44 where prune is invoked.
To integrate context-dependent bootstrapping we make the following two changes
to the original pruning algorithm.

First, we ensure that the vectors that need to be pruned are lexicographically
ordered. That is, each time Algorithm 2 is called on a set of vectors U, we sort
the set in this order. Consistency in this order is crucial for our �rst observation
in the previous section, as the order in which Algorithm 2 considers the vectors
in�uences the sequence of arguments FindBeliefICG (U and w) is called with,
as well as the belief points returned by FindBeliefICG.

Second, the prune subroutine is implemented as an adapted version of Algo-
rithm 2, with the following modi�cations: it is now parameterized by iteration n,
and context element �, which represents the action-observation pair (a,o). On
the top level (i.e., the prune call after the union over all sets in Equation 2.44)
we use null as the context element. The iteration number and context are used
to identify the LPs based on which bootstrapping can be performed. Hence, the
pruning subroutine passes these arguments to a new subroutine to identify beliefs
while reusing LP information, FindBeliefBLP, as implemented in Algorithm 5.
This subroutine replaces FindBelief and FindBeliefICG.

The algorithm FindBeliefBLP retrieves the relevant constraints from the pre-
vious iteration n−1. It does this by matching the closest vector w′ from a cache
with the same context from the previous iteration on line 4. Aside fromw′, the con-
straints Cn−1 in the form of vectors from the previous iteration and the belief that
was optimal for the corresponding LP are also retrieved. If this is the �rst iteration,
i.e., the cache is empty, we use a vector of zeroes, an empty set of constraints and
an arbitrary belief as default. Because Cn−1 is in the form of vectors we can match
the closest vectors from U in the current iteration, n, on line 5. These vectors are
stored in a set Cinit, and it is used to the initialize the constraints of the LP on
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Algorithm5: FindBeliefBLP – computes the belief inwhichw improves
U the most
input :vector set U, vector w, and a context iteration number n, and

context element �
output :belief b or symbol �

1 if U = ∅ then
2 return arbitrary belief b
3 end

4 wn−1,Cn−1,b′← argmin
(w′,C,b′)∈cache(n−1,�)

|w−w′|

5 Cinit←
⋃

c∈Cn−1

argmin
u∈U

|c−u|

6 de�ne the following LP:
7 max d∗

8 s.t.
∑

s∈S bs = 1
9 bs ≥ 0 ∀s ∈ S
10 d∗ ≤ (w− û) ⋅b ∀û ∈ Cinit
11 d∗ ∈ R

12 do
13 b̄← b′

14 û← argminu∈U
{
(w−u) ⋅ b̄

}

15 add d∗ ≤ (w− û) ⋅b to the LP
16 solve the LP to obtain belief b′

17 while b′ ≠ b̄;

18 Cprev← argminu∈U(w−u) ⋅ b̄
19 add (w,Cprev, b̄) to the cache(n,�)
20 d̄← last objective d∗ found

21 return b̄ if d̄ > 0 and Φ otherwise

line 10. The initial constraints are of the form: d∗ ≤ (w−û)⋅b, wherew is the input
vector, and û is a vector in Cinit. After constructing the initial LP, BLP generates
the constraints incrementally until an optimal solution has been found (similar to
FindPointICG in Algorithm 4) on lines 12–17. This leads to the �nal solution b̄ of
the LP. Given the LP solution b̄, the method FindBeliefBLP retrieves and stores
constraints and b̄ itself for reuse in subsequent iterations. The constraints Cprev
are those u ∈U that are optimal for b̄ (line 18). This is stored in the cache (line 19)
before returning b̄ if there is a belief for which w is an improvement over U, or Φ
if there is not.



3.3. Experiments 53

Compared to the original FindBeliefICG subroutine, the bootstrapping proce-
dure introduces additional overhead in the form of bookkeeping which is necessary
to match the contexts and the similar constraints. Furthermore, sorting induces
extra work, which is O(|S||U| log |U|) for sorting vectors in U lexicographically.
Finally, it should be noted that FindBeliefBLP does not change the solutions,
because the calls to the belief �nding subroutine and the corresponding output
remain identical. Moreover, constraints added due to bootstrapping are always
valid constraints in the linear program that is currently being solved.

Implementation detail: integrating bootstrapping in vector pruning
The vector pruning algorithm shown in Algorithm 2 may visit one vector w
multiple times. This occurs if the vector identi�ed by BestVector is not identical
tow. As a result, the algorithm calls FindBeliefBLP multiple times for the same
vector w, but the returned belief is not the same because the input vector setU is
di�erent. This leads to multiple entries in the cache for the same vector w. It is
important to note that these entries also get increasingly similar during execution
of incremental pruning. If there are multiple cache entries for the same vector w,
then our implementation constructs the set Cinit based on multiple cache entries,
rather than just one. This ensures that the cache entry corresponding to the
current w is always considered. Another implementation detail arises when
considering the generalized incremental pruning algorithm for POMDPs. In
this version the pruning algorithm invokes FindBelief for a subset of D in
Algorithm 2, depending on the size of D. If the subset choice in iteration n−1 is
not the same as in iteration n, then the identi�ed belief may become di�erent
too, which means that information from the previous iteration in the cache is
not always useful. It should be noted, however, that the choice of the subset also
converges when the value function converges. In experiments which test speci�c
bootstrapping characteristics we only consider the standard incremental pruning
algorithm, such that the uncontrollable subset choice does not introduce noise.

3.3. Experiments
In this section we present the results of our experimental evaluation. We start
with the experiments that test the constraint generation procedure. After that, we
present the results of experiments which evaluate our bootstrapping procedure
combined with constraint generation.

3.3.1. Constraint generation experiments
In this section we provide an experimental evaluation of the constraint generation
procedure. We perform our evaluation at three di�erent levels. First, we study
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LPs

Vector pruning

Exact value iteration

Figure 3.5: Three-level hierarchy of the experiments

individual LPs which check whether there is a belief point in which a vector
dominates a set of vectors. Second, we study the performance of the vector pruning
algorithm by White & Lark, which solves its LPs using constraint generation.
Third, we study whether the vector pruning algorithm combined with constraint
generation accelerates exact value iteration. The three abstraction levels are shown
in Figure 3.5, which illustrates that exact value iteration relies on pruning. Pruning
requires solving LPs for which constraint generation can be used.

We execute our experiments on all POMDPdomains used byCassandra, Littman,
and Zhang (1997), Feng and Zilberstein (2004) and Raphael and Shani (2012).
These papers represent the previous state of the art in optimal POMDP solving
using pruning-based algorithms. More information about the size of the POMDP
domains considered is provided in Table 3.1. Note that the domain 4x3CO is not
included in the experiments because it represents a POMDP with full observability.

Performance of constraint generation
In the �rst experiment we compare FindBelief and FindBeliefICG. The main
objective of this experiment is investigating whether solving LPs with constraint
generation requires less time than solving the LPs immediately based on all con-
straints. For each domain we consider the �rst 30000 LPs that are solved during
the execution of incremental pruning. Some domains could be solved with fewer
than 30000 LPs, and for RockSmp4x4 we only consider the �rst 1000 LPs due to
memory limits. The actual number of LPs considered is also listed in Table 3.1. For
each LP we execute FindBelief and FindBeliefICG, during which we measure
the running times and the number of constraints added by FindBeliefICG.

The results of our runtime evaluation are shown in Table 3.2, which shows
the total runtime of the LPs in FindBelief (column Std) and the total runtime
required to solve the same LPs in FindBeliefICG (column Constr Gen). For each
domain the column Speedup shows the corresponding speedup. From the results
we conclude that constraint generation reduces the running time that is required
to obtain LP solutions. In order to explain why constraint generation leads to a
speedup, we alsomeasure the number of constraints that was actually added during
the execution of FindBeliefICG, as shown in the column Constr. As can be seen,
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Name |S| |A| |O|

1D 4 2 2
4x3 11 4 6
4x4 16 4 2
4x5x2 39 4 4
AircraftID 12 6 5
Cheese 11 4 7
Hallway 60 5 21
Hallway2 92 5 17
Network 7 4 2
Partpaint 4 4 2
RockS4x4 257 9 2
Shuttle 8 3 5
Tiger-grid 36 5 17

Table 3.1: Parameters of the POMDP domains

in many cases the constraint generation procedure only adds a small fraction of
the constraints. For example, in the Hallway2 domain it adds 17.87 percent of the
constraints on average. The relatively large standard deviation can be explained by
observing that in small LPs a relatively large fraction of the constraints is needed,
which subsequently a�ects the standard deviation. We further analyze this in
Figure 3.6, which visualizes percentage of constraints used as a function of the
total number of constraints in the LP. As expected, in LPs with a few constraints
the algorithm adds a relatively large number of constraints, and in LPs with many
constraints it adds only a small fraction of the constraints. The domain 1D is not
included because there are a few LPs with only a few constraints, which does not
allow us to study the relationship between the total number of constraints and the
number of constraints added.

The relationship between the total number of constraints and number of con-
straints used, as shown in Figure 3.6, also enables us to explain when constraint
generation potentially introduces overhead. If the number of constraints is small,
then a relatively large number of constraints is added iteratively. Under these
circumstances it may be better to initialize the constraints all at once, rather than
applying our iterative constraint generation procedure. We further discuss this
implementation detail in the shaded box at the end of this section.

We conclude that constraint generation is able to reduce the time required
to solve the LPs. Moreover, the experiment con�rms our initial motivation from
Section 3.1.4, which hypothesizes that constraint generation may lead to a speedup
due to the fact that only a few constraints eventually de�ne an optimal LP solution.
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Domain #LPs Std (s) Constr Gen (s) Speedup Constr (%)

4x5x2 30000 67.01 23.70 2.83 11.75±15.45
AircraftID 30000 45.09 16.19 2.79 8.79±14.69
Hallway2 30000 64.89 27.05 2.40 17.87±27.07
Tiger-grid 30000 58.67 26.63 2.20 12.64±18.48
RockS4x4 1000 0.84 0.47 1.80 37.80±23.51
4x3 30000 35.40 21.97 1.61 17.72±19.39
Shuttle 30000 29.04 21.14 1.37 18.67±20.16
Hallway 30000 23.16 19.74 1.17 26.80±27.73
1D 50 0.01 0.01 1.00 84.0±21.85
Cheese 1514 0.19 0.20 0.99 87.78±22.18
Network 30000 10.96 13.41 0.82 26.32±19.62
4x4 2836 0.43 0.56 0.78 75.98±22.52
Partpaint 7571 1.67 2.27 0.74 38.66±31.81

Table 3.2: Comparison of LPs solved in FindBelief and FindBeliefICG

Performance of vector pruning
Now we study the performance of the vector pruning algorithm by White & Lark,
which invokes FindBeliefICG rather than FindBelief. This enables us to study
whether constraint generation for LPs improves the performance of the vector
pruning procedure. In the previous experimentwe found that constraint generation
leads to a running time reduction at the level of individual LPs. The vector pruning
algorithm solves many LPs, and therefore we expect that it also reduces the total
running time required for pruning.

Implementation detail: no constraint generation for small LPs
The results in Figure 3.6 show that the constraint generation procedure iteratively
adds almost all constraints if the size of U is small. This suggests that constraint
generation potentially introduces overhead if the LP is small, and in such cases
it may be better to initialize all constraints immediately rather than iterating
multiple times. Our implementation invokes the regular FindBelief procedure
rather than FindBeliefICG or FindBeliefBLP in case U contains fewer than
50 vectors. This parameter was selected because we found empirically that it
provides good performance, and it aligns with the results observed in Figure 3.6
because typically the percentage decays quickly when the number of constraints
exceeds 50. We only apply the threshold 50 in the experiments in which we study
the performance of incremental pruning and bootstrapping. It is not applied in
the vector pruning experiment because there we also discuss potential overhead.
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Figure 3.6: Constraints used, as a function of the total number of constraints

For each domain we take the largest value function V encountered during
the execution of value iteration. Since we are not able to solve all domains to
optimality, we take the largest value function encountered during the �rst 60
minutes of execution. We use this parsimonious value function Vto create value
functions V1,V2,… ,V� for which |Vq|= q and prune(Vq) =Vq. Each value func-
tionVq contains the �rst q vectors fromV. Since prune(Vq) =Vq holds for eachVq,
we know that Vq does not contain dominated vectors. This property is important
because it means that a pruning algorithm needs to solve q LPs to prune Vq.

In order to study the potential speedupwe compare the standard vector pruning
algorithm of White & Lark (Algorithm 2) and the vector pruning algorithm of
White & Lark combined with constraint generation (Algorithm 2+4). For each Vq
we measure the speedup that is obtained when using constraint generation for
the LPs solved during vector pruning. The results are shown in Figure 3.7, which
visualizes the speedup as a function of the size of the value function. On small
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Figure 3.7: Vector pruning speedup as a function of value function size

value functions constraint generation makes vector pruning slightly slower. This
supports our explanation from the previous section, in which we hypothesized
that constraint generation introduces overhead if there are only a few constraints
in the LPs. On larger instances the speedup is always positive, which con�rms
our expectation that constraint generation improves the performance of the vector
pruning algorithm by White & Lark. Figure 3.8 shows the actual running times
for the same experiment. Consistent with the results in Figure 3.7 we can see that
incremental constraint generation improves the performance of White & Lark’s
vector pruning algorithm.

There are a few other alternative algorithms which we can involve in our
comparison: Cheng’s pruning algorithm (Cheng, 1988) and Skyline (Raphael and
Shani, 2012). We do not consider Cheng’s pruning algorithm because it enumerates
corners of the belief space, which scales exponentially in the number of states.
Skylinemakes transitions in the so-called Skyline graphusing an algorithm inspired
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by simplex for LPs. For Skyline we compare with the iterative variant, which is
the fastest variant available, and the implementation is based on the source code
provided by the original authors. The running times of this algorithm have been
added to Figure 3.8.

We found that Skyline is outperformed by White & Lark’s pruning algorithm
and the variant based on constraint generation when pruning large value func-
tions. In the original paper Skyline runs faster than White & Lark’s algorithm
for some instances. This result can be explained as follows. The original authors
compared Skyline with a version of White & Lark’s algorithm which is based on a
manual implementation of simplex, rather than a state-of-the-art LP solver. This
means that the version of White & Lark’s algorithm used for their experiments is
signi�cantly slower than regular implementations that are used in practice. In our
experiments we use a regular implementation of White & Lark’s algorithm based
on an external LP solver, because we think this gives the best comparison from a
practical viewpoint.

To conclude, we found that incremental constraint generation improves the
performance of the vector pruning algorithm by White & Lark. Moreover, we con-
clude that the resulting algorithm is currently the best-performing vector pruning
algorithm for POMDPs.

Performance of incremental pruning
In our �nal experiment we show that integrating constraint generation in incre-
mental pruning creates the fastest variant of incremental pruning for POMDPs.
We do not consider other value iteration algorithms, because incremental pruning
delivers superior performance compared to other exact POMDP algorithms (Cas-
sandra, Littman, and Zhang, 1997). We implemented incremental pruning (IP)
and its generalized variant (GIP), which we enhanced with incremental constraint
generation (IP+ICG and GIP+ICG, respectively). We also compare with region-
based incremental pruning algorithms (Feng and Zilberstein, 2004), abbreviated
IBIP and RBIP, which exploit information about regions of the belief space when
pruning vectors after computing the cross sum.

Solving the domains to optimality is typically not tractable due to the required
running time and the required system memory. Therefore, we run the algorithms
for one hour, after which their execution is terminated. We also terminate the
algorithm if it reaches a solution with Bellman error 0.01 or lower. For each
algorithmwemeasure the number of stages of value iteration, the Bellman residual
error and the running time. In order to ensure a fair comparison, we compare
the algorithms based on the stage they could all complete within the time limit.
In Table 3.3 we report the stage number and the corresponding Bellman residual
error. Furthermore, for each domain we provide the running time in seconds,
which is the running time until the completion of the aforementioned stage. In
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Figure 3.8: Runtime comparison for multiple pruning methods

some cases the reported running time is higher than 3600 seconds. This occurs
if the time limit is reached while calculating the Bellman residual error. During
this calculation we do not interrupt the algorithm. The domains Tiger-grid and
Hallway2 are not included because the algorithms ran out of memory. The results
computed before reaching the memory limit are not suitable for a fair comparison.
IBIP encountered numerical instability when computing the �rst three stages of
Hallway, but it ran longer than RBIP did, which means that the algorithm is slower
in this particular case. For 4x3 we encountered minor numerical instabilities, and
therefore we let FindBelief return the belief b̄ if d̄ > 0.0001 in this domain.

Based on the results we conclude that vector pruning enhanced with incremen-
tal constraint generation signi�cantly improves the performance of both standard
incremental pruning, as well as the generalized incremental pruning algorithm.
Incremental pruning is currently the standard pruning-based algorithm to solve
POMDPs to optimality, and our results show that combining this algorithm with
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Stages Error IP IP+ICG GIP GIP+ICG IBIP RBIP

4x5x2 16 0.13 3335.85 1925.10 3237.75 1898.75 3204.81 3597.36
AircraftID 6 77.38 22.52 10.62 15.84 9.70 37.33 16.09
RockS4x4 4 8.57 172.06 24.29 73.78 22.92 139.48 90.17
4x3 49 0.01 864.54 663.23 610.61 503.10 629.14 613.87
Shuttle 103 0.01 474.80 414.80 332.34 314.90 382.32 430.69
Hallway 3 0.38 180.54 104.57 75.14 54.51 >283.39 283.39
Cheese 58 0.01 0.83 0.82 0.83 0.80 0.87 1.48
Network 143 0.01 936.31 707.45 637.68 551.50 651.82 702.28
4x4 59 0.01 2.04 1.86 1.67 1.66 1.69 2.16
Partpaint 57 0.01 3.60 3.40 3.54 3.45 7.14 11.91

Table 3.3: Incremental pruning performance in seconds for a �xed number of stages

incremental constraint generation creates the fastest variant that is now available.

3.3.2. Bootstrapping experiments
In this section we study how bootstrapping of constraints in�uences the behav-
ior and performance of the incremental pruning algorithm. Bootstrapping uses
information from the previous iteration of value iteration, which means that we
only execute experiments based on incremental pruning. In this section we do
not consider experiments at the level of constraint generation and vector pruning.
The structure of this section is as follows. First we present a collection of metrics
which we can use to study the bootstrapping performance. After that, we describe
multiple experiments in which we evaluate the bootstrapping technique based on
these metrics.

Metrics for evaluation of bootstrapping
We evaluate our bootstrapping technique based on four metrics, which we infor-
mally introduce and motivate below. In the sections describing our experiments
we provide further details and, if applicable, a formal de�nition of the metric.

1. NumIter – The bootstrapping procedure has been designed based on the
insight that LP solutions get increasingly similar during the execution of
value iteration, and a subset of LP constraints can be initialized based on the
constraints that de�ned an optimal LP solution in a previous iteration. As a
result, this would potentially decrease the number of additional iterations in
which constraints are added before reaching an optimal LP solution again.
Moreover, this would imply that the LP solver needs to (re)solve fewermaster
LPs. In general we hypothesize that bootstrapping reduces the number of
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iterations in which a new constraint is added to the master LP. We measure
this by counting the total number of iterations inwhich constraints are added,
andwe compare this with the version of the algorithmwithout bootstrapping.

2. LPSuccess – Bootstrapping of constraints can be considered successful if
the FindBeliefBLP procedure runs fewer iterations than FindBeliefICG
on the same LP. Ideally this is the case for all LPs solved during the execution
of incremental pruning. In order to assess this, we measure the number
of LPs in which FindBeliefBLP makes fewer iterations, which we express
as a percentage of the total number of LPs solved. This also allows us to
study how this e�ect changes over time as the solution converges towards
optimality and LPs become increasingly similar.

3. ConstraintsBinding(�) – Ideally the bootstrapping procedure only initial-
izes LP constraints which are actually binding constraints in the optimal
solution of the LP. We can count the number of binding constraints, which
we express as a percentage of the total number of constraints initialized based
on bootstrapping. Due to minor di�erences in the LPs solved in successive
iterations of value iteration we use a threshold � to decide if a constraint
counts as a binding constraint, and this becomes a parameter of our metric.

4. Overhead – Bootstrapping introduces overhead due to the bookkeeping it
performs during the execution of value iteration. Ideally, this overhead is
only a small fraction of the total running time of incremental pruning. We
can measure this by keeping track of the running time of the bootstrapping
operations, which we express as a percentage of the total running time of the
dynamic programming stages performed during the execution of incremental
pruning.

In the next sections we proceed withmore detailed descriptions of our experiments,
in which we evaluate the bootstrapping performance based on the metrics 1–4. In
all the experiments we execute incremental pruning with incremental constraint
generation and bootstrapping for at most 60 minutes. In these experiments we did
not include Hallway, Hallway2 and Tiger-grid because we could only execute a
few iterations due to memory and storage limitations, and these iterations do not
allow us to analyze the behavior of the bootstrapping procedure.

The experiments in which we evaluate metrics are based on the standard vari-
ant of incremental pruning, rather than the generalized variant. The reason is that
the generalized variant invokes FindBelief based on a subset ofU, and this subset
choice is dependent on properties we cannot control, which would introduce noise
in our experiments. The subset choice also converges during the execution of incre-
mental pruning, and therefore it can be expected that bootstrapping also becomes
e�ective in the generalized incremental pruning variant. This is con�rmed by the
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experiments at the end of this section, where we evaluate both the standard and
generalized variant of incremental pruning.

Constraint generation iterations
In our �rst experiment we study the bootstrapping performance by measuring the
number of iterations of the constraint generation procedure. In order to estimate
the potential reduction of the number of iterations, we run both FindBeliefICG
and FindBeliefBLP and compare the number of iterations they execute. We let
#iterations_ICG denote the number of iterations performed by the incremental
constraint generation algorithm, and #iterations_BLP denotes the number of it-
erations performed by incremental constraint generation after constraints have
been initialized by the bootstrapping procedure. The reduction of the number of
iterations is calculated as follows:

−100×(#iterations_BLP−#iterations_ICG
#iterations_ICG ) . (3.22)

With this metric a reduction of 20 percent means that the number of iterations
decreased by 20 percent due to bootstrapping of constraints. We use the metric
to measure the reduction for each iteration of value iteration, which allows us
to visualize the reduction as a function of the Bellman error magnitude during
algorithm execution.

The results are shown in Figure 3.9. As we can see, bootstrapping consistently
leads to a reduction of the number of iterations performed by the incremental
constraint generation procedure. Furthermore, in several domains the reduction
increases when the Bellman error approaches zero, which is natural since solutions
and hence LPs get increasingly similar during the execution of value iteration.
For several domains (e.g., AircraftID and RockSample4x4) it was not possible to
approach a low Bellman error within an hour, and value iteration only executed
a few iterations, but we can still see that there is a reduction of the number of
iterations in which constraints are added. Note that a reduction of 100 percent
is not possible, because when solving a linear program it is always required to
perform at least one iteration of FindBeliefBLP in which the LP is solved. We
conclude that, as we expected, bootstrapping reduces the number of iterations in
which the incremental constraint generation procedure adds constraints.

LPs with fewer iterations
In our second experimentwe count the number of LPs forwhich theFindBeliefBLP
procedure runs fewer iterations than FindBeliefICG. We let #linear_program
denote the number LPs solved, which corresponds to the number of calls to
FindBelief (either ICG or BLP). We let #linear_program_reduced denote the
number of LPs in which the version with bootstrapping runs fewer iterations,
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Figure 3.9: Reduction of the number of iterations as a function of the Bellman error

which can be computed by running both versions of FindBelief. The fraction of
LPs with fewer iterations of constraint generation is expressed as follows:

100×(
#linear_program_reduced

#linear_program ) (3.23)

Similar to the previous experiment, we can compute the fraction for each iteration
of value iteration individually. If the fraction is equal to 80 percent, for example,
then it means that bootstrapping leads to a reduction of the number of iterations
in 80 percent of the calls to FindBelief.

The results are shown in Figure 3.10, which visualizes the percentage LPs
with fewer iterations as a function of the Bellman error. The experimental results
con�rmour initial expectation that bootstrapping of constraints leads to a reduction
of the number of additional iterations performed by FindBeliefBLP. As can be
seen in several domains (e.g., Network, Shuttle and 4x5x2), the number of LPs
with fewer iterations increases when the Bellman error goes down. This is what
we initially expected, because if the Bellman error approaches zero, then LPs
become increasingly similar and our algorithm identi�es such similar constraints
from a previously-solved LP. This reduces the number of additional iterations
in which constraints are added. During early stages of value iterations the LPs
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Figure 3.10: Number of LPs in which bootstrapping leads to fewer iterations, as a function of
the Bellman error

are not necessarily similar, which means that FindBeliefBLP may execute more
iterations than FindBeliefICG. This can also be recognized in the graphs in the
�gure, which show that the percentage is typically lower during early stages of
value iteration. This result also aligns with our initial expectations regarding the
performance of the bootstrapping procedure.

Binding constraints
In the third experiment we investigate whether the bootstrapping technique ini-
tializes constraints that are actually binding constraints for the optimal LP so-
lution. Recall that the method FindBeliefBLP in Algorithm 5 initializes a con-
straint d∗ ≤ (w− û) ⋅b for each û ∈ Cinit. The optimal solution is denoted by the
belief b̄ together with the optimal objective value d̄. The constraint d∗ ≤ (w− û) ⋅b
is called binding if it holds that

||||(w− û) ⋅ b̄− d̄
||||≤ �, (3.24)

in which the parameter � serves as a small threshold. The latter is necessary be-
cause minor changes in value functions make it highly unlikely that the di�erence
between (w− û) ⋅ b̄ and d̄ becomes exactly zero. We let #constraints_total denote
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Figure 3.11: Number of constraints initialized based on bootstrapping which are also
binding constraints for the optimal LP solution, as a function of the Bellman error

the total number of constraints initialized during bootstrapping (i.e., the total
number of vectors in the Cinit sets) and #constraints_binding denotes the number
of constraints that is actually binding, based on the aforementioned criterion. The
percentage of binding constraints now corresponds to:

100×(
#constraints_binding
#constraints_total ) . (3.25)

As an example, we consider an LP for which bootstrapping initializes 10 constraints
(i.e., |Cinit|= 10), then 60 percent means that 6 out of 10 constraints are binding
constraints in the optimal LP solution. Besides individual LPs we can also apply
this metric to iterations of value iteration, in which we count across multiple LPs.

The results of our experiment are shown in Figure 3.11 for � = 0.001, which
visualizes the fraction of binding constraints for each iteration of value iteration.
As can be seen, the results con�rm that the bootstrapping procedure initializes
constraints which turn out to be binding constraints in the optimal solution. This is
an important result, because it indicates that our bootstrapping procedure correctly
identi�es binding constraints from the previous iteration of value iteration. In the
graphs it can be seen that the percentage does not approach 100 percent in several
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domains, which can be explained as follows. If there are multiple cache entries
for the same vector w, then we initialize all the corresponding constraints (see im-
plementation detail Section 1.3). This means that it initializes binding constraints
from the previous iteration for the same vector, but also a few more constraints,
which are not necessarily binding. Finally, the experiment also con�rms that
the fraction of binding constraints increases when the Bellman error approaches
zero, similar to previous experiments. This indicates that our bootstrapping proce-
dure starts to perform better when the Bellman error starts to decrease and value
functions become increasingly similar.

Overhead due to bookkeeping
The bootstrapping procedure executes additional operations to store, identify and
retrieve vector sets, which requires additional running time. In our �nal exper-
iment we study the additional running time required for bookkeeping. We can
measure this overhead as a fraction of the total running time of exact value itera-
tion. We let DP_time denote the total elapsed time of exact value iteration, and
bootstrap_time denotes the total running time of the bootstrapping operations
executed so far. The bookkeeping time can now be expressed as a fraction of the
total running time:

100×(
bootstrap_time

DP_time ) , (3.26)

such that 5 percent means that 5 percent of the total running time is spent on
additional operations required for bootstrapping. In contrast to the previous ex-
periments, we do not compute the overhead for individual iterations. Instead, we
report the total overhead incurred until the current iteration of value iteration.
This is necessary because measurements based on individual iterations of value
iteration have a runtime close to 0.

Our results are shown in Figure 3.12, in which each dot indicates the total
bookkeeping from the start of the algorithm execution. As can be seen, the to-
tal overhead introduced due to bookkeeping is negligible compared to the total
running time of value iteration. This result is important, because it means that
our bootstrapping techniques are relatively cheap to execute. Furthermore, if the
runtime gains are larger than the additional bookkeeping time, then it means that
our bootstrapping techniques potentially accelerate value iteration. We study this
in the experiment in the next section, in which we compare multiple variants of
incremental pruning.

Performance of incremental pruning
In the �nal experiment we test whether bootstrapping improves the performance
of incremental pruning for POMDPs. The setup of the experiment is identical to
the incremental pruning experiment that we executed for constraint generation.
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Figure 3.12: Total bootstrapping time as a percentage of the total elapsed time during
execution of value iteration

Intuitively, we expect that bootstrapping improves the performance of incremental
pruning and incremental constraint generation if incremental pruning runs many
iterations in which bootstrapping can be formed, because small gains in individual
iterations accumulate into a larger overall gain. Additionally, we also expect that it
performs well in case the algorithm approaches a low Bellman error, because that
means that LP solutions become increasingly similar and in that case bootstrapping
becomes more e�ective.

The results of our experiment are shown in Table 3.4. The table shows the run-
times of incremental pruning combined with incremental constraint generation
for solving LPs, which we copied from Table 3.3. In addition, the columns IP+BLP
and GIP+BLP show the runtimes of the algorithms which include our bootstrap-
ping procedure. We conclude that bootstrapping improves the performance of the
standard incremental pruning algorithm (IP) and the generalized variant (GIP) for
almost all the domains. In domains with a signi�cant number of iterations and a
low Bellman error we can see that bootstrapping e�ectively reduces the running
time. If there are many iterations, then small gains in single iterations accumulate
into a larger gain, which is the case in, e.g., the domains Network and Shuttle.
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Stages Error IP+ICG IP+BLP GIP+ICG GIP+BLP Speedup

4x5x2 16 0.13 1925.10 1861.61 1898.75 1828.72 1.75
AircraftID 6 77.38 10.62 10.16 9.70 9.48 1.67
RockS4x4 4 8.57 24.29 24.82 22.92 24.72 3.22
4x3 49 0.01 663.23 547.33 503.10 438.23 1.40
Shuttle 103 0.01 414.80 377.53 314.90 288.75 1.15
Hallway 3 0.38 104.57 107.85 54.51 54.96 1.38
Cheese 58 0.01 0.82 0.82 0.80 0.84 1.04
Network 143 0.01 707.45 514.51 551.50 479.03 1.15
4x4 59 0.01 1.86 1.78 1.66 1.62 1.03
Partpaint 57 0.01 3.40 3.46 3.45 3.31 1.07

Table 3.4: Comparison incremental pruning with bootstrapping and without bootstrapping,
with runtimes in seconds, and total speedup compared to former state of the art

In a few domains the bootstrapping techniques did not improve the perfor-
mance. For example, in the domains RockS4x4 and Hallway there is no improve-
ment, which can be explained by observing that the algorithm did not converge to
a solution with a low Bellman error, and under these circumstances bootstrapping
is not very e�ective yet. In the Cheese domain GIP+BLP is slightly slower than
GIP+ICG, but it should be noted that the value functions in this domain have at
most 14 vectors, and when pruning small value functions it is not bene�cial to
use incremental constraint generation because this creates additional overhead, as
discussed in the constraint generation experiments.

Finally, combined with the results from Section 3.3 we can conclude that
incremental constraint generation combined with bootstrapping creates the fastest
variant of incremental pruning for POMDPs. The column Speedup in the table
indicates the speedup obtained by our methods compared to the existing state of
the art (either GIP, IBIP or RBIP). We calculated this speedup by comparing the
fastest existing algorithm and the fastest variant which includes our techniques.
As can be seen, the speedup is consistently higher than 1, which means that our
techniques consistently outperform the current state of the art.

3.4. Related work
Region-based pruning methods have been developed (Feng and Zilberstein, 2004),
which exploit the structure of the cross sum when checking whether a vector
should be part of the parsimonious representation of the cross sum. Rather than
enumerating all vectors and pruning afterwards, as in our work, region-based
pruning methods use several LPs to detect which vectors of the cross sum should
be computed. Such an approach does not necessarily reduce the total number of
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LPs solved, but the LPs it solves typically have fewer constraints. From a more
general point of view, region-based pruning methods aim to improve the perfor-
mance of incremental pruning by introducing alternative LP formulations which
check vector dominance, while our line of work aims to improve the algorithm
by introducing techniques to solve the existing LPs more e�ciently. A key advan-
tage of our techniques is that they improve vector pruning in general, while the
techniques by Feng and Zilberstein (2004) assume that vector pruning is executed
on a cross sum. Another recent pruning technique is Skyline (Raphael and Shani,
2012), which traces the upper-surface of the value function. Compared to our work
and compared to the work by Feng and Zilberstein (2004) the algorithm is entirely
di�erent, because it does not build upon the initial concepts introduced by White
& Lark. Similar to our techniques, Skyline does not assume that the value function
considered is the result of the cross sum operation. Our experimental evaluation
has shown that vector pruning based on incremental constraint generation and
bootstrapping outperforms both region-based pruning methods and Skyline.

The approximate POMDP algorithm �-min (Dujardin, Dietterich, and Chadès,
2015) also uses a notion of incremental construction of constraint sets. The al-
gorithm uses a mixed-integer problem in which so-called facets are generated
incrementally, which resembles constraint generation. Our incremental constraint
generation and bootstrapping procedure selects constraints from a known set of
constraints, whereas the facets in �-min are used to approximate a set of constraints
that is initially unknown. The latter is computationally more di�cult, and both
ICG and BLP do not need to rely on such a method since the constraint set is �nite
and already known.

Our work is related to decomposition approaches for linear programs, such as
row and column generation (Benders, 1962; Gilmore and Gomory, 1961). Rather
than solving an LP directly, such approaches decompose an LP into smaller parts
to improve tractability of solving. Algorithm 4 has been derived using such a
decomposition technique. Row and column generation also found applications
in Factored MDPs (Guestrin and Gordon, 2002) and security games (Jain et al.,
2010), as well as heuristic search for stochastic shortest path problems (Trevizan
et al., 2016). The latter uses heuristics to guide how one individual LP should be
expanded with new variables and new constraints. An important di�erence in our
work is that we bootstrap from a previous LP when initializing constraints in a new
LP, rather than just studying one individual LP. Detecting dominated vectors also
resembles detecting irrelevant constraints in linear programs (Mattheiss, 1973). It
is important to note that such constraints never exist in our LPs, because they only
contain constraints corresponding to vectors which dominate in a region of the
belief space. This means that there is always a region of the belief space in which a
constraints is binding.
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3.5. Conclusions
In this chapter we studied the linear programming formulation that plays a crucial
role in exact POMDP value iteration algorithms which require pruning of value
functions, such as the incremental pruning algorithm (Cassandra, Littman, and
Zhang, 1997). In particular, this linear program is used to check whether a vector
improves a given value function, and typically it is solved many times during the
execution of exact value iteration. It turns out that solving the linear programs
represents a signi�cant part of the running time of exact value iteration, which
means that a running time reduction for an individual linear program potentially
leads to a major running time reduction for exact value iteration in general. Based
on this intuition we designed and analyzed two techniques which can be used to
solve the linear programsmore e�ciently, without a�ecting the solution computed
by exact value iteration.

Our �rst contribution is a constraint generation procedure which generates
constraints incrementally, rather than solving the linear program immediately
with all constraints included. This is bene�cial because typically there are only a
few constraints which are actually binding constraints in the optimal solution, and
our constraint generation algorithm only uses a small fraction of the constraints
from the original linear program, which leads to a signi�cant speedup.

Our second contribution is a bootstrapping procedure which further improves
the constraint generation procedure. We observed that the solutions to linear
programs become increasingly similar during the execution of value iteration due
to the convergence of the value functions towards a �xed point. Our bootstrapping
procedure exploits this property and initializes a subset of constraints based on
similar linear programs solved in the previous iteration of exact value iteration. If
this subset is close or identical to the set of constraints which binds the optimal
solution of the new LP, then it leads to a reduction of the number of iterations
performed by the constraint generation procedure.

A series of experiments has shown that constraint generation e�ectively reduces
the running time required for solving linear programs. Moreover, our experiments
con�rm that this also leads to a reduction of the running time required for vector
pruning, which in turn leads to a reduction of the running time of the incremental
pruning algorithm. Our bootstrapping procedure reduces the running time of
incremental pruning even more, and the resulting algorithm is the fastest pruning-
based value iteration algorithm to solve POMDPs optimally.

Future applications and research directions
There are several research directions that can be pursued in the future, which we
describe below in more detail. We also describe other applications in which the
improved pruning approach can be applied.
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Several other decision making algorithms rely on the same linear program
as the one we studied extensively in this chapter, which means that our line
of work can be used to accelerate other algorithms in the future. For example,
Convex Hull Value Iteration for Multi-Objective MDPs also prunes vector sets after
computing a cross sum (Barrett and Narayanan, 2008), and similar to POMDPs
the linear programs that are solved become increasingly similar. In our paper
describing the bootstrapping method we already show that incremental constraint
generation and bootstrapping also improves the performance of this value iteration
algorithm (Roijers, Walraven, and Spaan, 2018). This means that our work can also
be used to obtain faster algorithms for multi-objective decision making. Moreover,
we expect that the bootstrapping ideas from our work can also be used in the
context of reinforcement learning for Multi-Objective MDPs (Hiraoka, Yoshida,
and Mishima, 2009; Wiering, Withagen, and Drugan, 2014), which also relies
on policy computation. Our techniques can also be applied in the context of
exact dynamic programming for Decentralized POMDPs (Oliehoek and Amato,
2016), which relies on the same LP when pruning dominated sub-tree policies.
However, due to the computational complexity of this problem we expect that
solving Decentralized POMDPs to optimality remains prohibitive in practice.

Reinforcement learning algorithms for zero-sum Markov games iteratively up-
date a value function and policy based on interactionwith the environment (Littman,
1994). During each iteration of the learning algorithm the value function and the
associated policy are updated, which requires linear programming. This linear
program is solved many times and it also becomes increasingly similar during
execution. This raises the question whether the solutions to previously-solved
linear programs can be used to accelerate learning. Our incremental constraint
generation procedure does not immediately apply since the linear program is not
the same, but it may be possible to derive a similar technique to accelerate solving
linear programs.

Our incremental constraint generation procedure and bootstrapping techniques
exploit the property that solutions become increasingly similar. This is a general
property of the POMDP formalism and the solution algorithm, but we do not
exploit any additional information about the actual problem that is solved. As a
long-term research direction we envision exploiting characteristics of the POMDP
domain, in such a way that we can reason about areas of the belief space in which
vectors are potentially dominating. Based on such an approach it may be possible
to reduce the number of terms in the LP constraints, because intuitively we expect
that several parts of the belief space do not need to be considered. Additionally,
within this research line it may be possible to exploit the factored structure of the
POMDP model to create smaller LPs.

This chapter entirely focuses on exact solution methods, which are computa-
tionally demanding to execute. It should be noted that the speedup achieved by
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incremental constraint generation and bootstrappingmay not be su�cient to make
exact policy computation tractable in large domains. However, the techniques
from this chapter can also be used to improve existing approximate POMDP algo-
rithms. For example, the approximate algorithm EVA computes solutions within a
prede�ned error bound and operates based on a subset of vectors (Varakantham
et al., 2007). EVA relies on almost the same linear program as exact value itera-
tion for POMDPs, which means that our techniques are potentially useful in the
approximate setting as well.





4
Approximate planning for

�nite-horizon POMDPs

The POMDP model and the corresponding solution algorithms have been studied
extensively in academic literature. Most existing work focuses on the in�nite-
horizon variant of the model which includes discounting of reward. However,
there are multiple domains in which a �nite time horizon without discounting is
required, and this raises the question how such �nite-horizon problems should
be treated. In this chapter we start with a discussion of �nite-horizon problems
and in�nite-horizon problems. After that, we provide an overview of several
approaches which may be used to solve �nite-horizon problems, and we explain
why it is not desirable to use them. In the second part of the chapter we describe
FiVI1, an anytime approximate algorithm for �nite-horizon POMDPswhich uni�es
ideas from state-of-the-art algorithms developed for in�nite-horizon POMDPs.

4.1. Planning horizons and discounting
Finite-horizon POMDPs are used in domains where a policy is executed during a
�nite number of time steps. As an example we consider an EV charging provider
which optimizes day-to-day operations based on �nite-horizon forecasts of, e.g.,
electricity price and charging demand. In such domains it can be the objective to
charge a �eet of EVs as cheap as possible while accounting for the uncertainty in
arrival time and demand. It is natural to compute a policy which maximizes the

1This chapter is based on an article that appeared in the Journal of Arti�cial Intelligence Research (Wal-
raven and Spaan, 2019).
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Figure 4.1: POMDP in which discounting causes suboptimality

expected sum of reward:

E [
ℎ∑

t=1
rt] , (4.1)

in which we intentionally count from t = 1 rather than t = 0, such that there are ℎ
steps in total. The term rt denotes the reward collected at time t.

In�nite-horizon POMDPs, on the other hand, are used in problem domains
where control policies have to be executed in�nitely long. As an example, we
consider an elevator control problem (Crites, 1996), in which the control policy
needs to ensure that people get moved to the right �oor in a short amount of time.
From a decision making point of view this problem is partially observable, because
pressing the button to request an elevator does not provide information about the
destination �oor. Short-term performance is important because passengers do not
want to wait too long, and the notion of a �nite horizon is not suitable because
new passengers can arrive at any point in time in the future. For in�nite-horizon
problems with discounting the following optimality criterion is used:

E [
∞∑

t=1
t−1 rt] , (4.2)

in which the discount factor  is used as a weight for the collected reward. The
discount factor ensures that short-term reward is considered more important than
reward received much later in time.

Although discounting can be justi�ed from an application point of view in sev-
eral domains, in many cases it is only used for mathematical convenience (Hansen,
2007). Discounting can be convenient because it ensures that the sum of an in�nite
number of rewards, as shown in Equation 4.2, becomes equivalent to the sum of a
�nite number of rewards. This means that the expectation becomes a well-de�ned
and �nite sum, and it means that it becomes possible to solve in�nite-horizon
problems by considering only a �nite number of time steps in the future.

4.2. Strategies for solving �nite-horizon problems
We start with an overview of approaches for solving �nite-horizon POMDPs. For
each approach we explain how existing techniques for MDPs and in�nite-horizon
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POMDPs can be potentially applied, and we argue why these techniques have
several limitations when solving �nite-horizon problems.

The �rst approach we discuss treats the POMDP as a fully-observable MDP.
Since the number of reachable beliefs in a �nite-horizon POMDP is �nite, it is
possible to enumerate these beliefs prior to planning. Recall from Chapter 2 that
POMDP belief states provide a Markovian signal for a POMDP planning task.
Therefore, after belief enumeration it is possible to solve a regular MDP de�ned in
terms of belief states rather than actual states. This approach is well-de�ned and
it provides an optimal �nite-horizon POMDP policy, but unfortunately it is often
intractable due to the large number of beliefs that needs to be enumerated, which
is at most (|A||O|)ℎ.

A second approach based on in�nite-horizon algorithmswould simply compute
an in�nite-horizon policy to take decisions in a �nite-horizon problem. This is
straightforward, because one can assume a discount factor, after which an in�nite-
horizon algorithm is invoked to obtain a policy. There are two disadvantages
associated with this approach. First, invoking an in�nite-horizon algorithm leads
to undesirable e�ects if the algorithm thinks that reward can be collected late in
time, whereas execution ends early due to the �nite time horizon. For example, if a
policy has been optimized under the assumption that high reward can be collected
after 20 steps, then the policy is unlikely to be optimal if execution ends after 5
steps. The second disadvantage of the approach are the undesirable e�ects due
to the discount factor that is assumed, which we illustrate using an example. We
consider a POMDP with fully-observable states and deterministic state transitions,
as shown in Figure 4.1. In the initial state, the agent chooses either action a1
or a2, leading to either the top or bottom trajectory. The numbers below the
transitions correspond to reward, and transitions without a number have zero
reward. When casting the problem to an in�nite-horizon problem with  = 0.95,
then a1 is optimal since it gives expected reward 0.950 ⋅200 = 200, while a2 gives
expected reward 0.95⋅(100+0.952⋅105) = 185.02. However, a2 is optimal for a �nite-
horizon problem where all rewards are equally important, because the bottom
trajectory gives reward 205 while the top trajectory gives 200. This shows that
casting a �nite-horizon problem to an in�nite-horizon problem with discounting
can lead to suboptimal policies.

A third strategy augments the POMDP with a time state variable as part of the
state description. This means that states become time-indexed, and a trap state is
entered at the end of the horizon, resulting in a model with |S|×ℎ+1 states. More
e�cient encodings are possible if not all states are reachable during all steps, but
in general we can conclude that this strategy does not scale well if a large number
of time steps needs to be considered. Although the increase of the model size is
linear in the number of time steps, the augmented POMDP model and solution
representations (e.g., alpha vectors) quickly become too large, which signi�cantly
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increases the running time and memory requirements of POMDP algorithms.
Augmenting states with a time state variable is not su�cient to obtain a �nite-
horizon policy. In addition, it is required to assume  = 1, but this assumption
leads to implementation issues and undesirable e�ects in several state-of-the-art
algorithms. This is further discussed in the next section.

A fourth approach would interpret the aforementioned augmented POMDP
with a trap state as a stochastic shortest path problem for Goal POMDPs. The Goal
POMDP formulation assumes that the POMDP has a fully-observable goal state
that cannot be left, which is the case when de�ning the POMDP with a trap state
at the end of the time horizon. Real-Time Dynamic Programming (RTDP) can be
used to �nd solutions to such problems and it has been generalized to POMDPs
as well (Bonet and Ge�ner, 2009). The resulting RTDP-Bel algorithm does not
include discounting and it can potentially be adapted to support time-dependent
value functions. However, due to discretization of belief states it does not provide
performance guarantees and it does not keep track of an upper bound on the
optimal value function. Existing RTDP extensions for MDPs do account for upper
bounds (Smith and Simmons, 2006), but to the best of our knowledge these upper
bounds have not been applied in RTDP for problems with partial observability.

A �fth approach for solving �nite-horizon problems consists of an adaptation
of the algorithm �-min (Dujardin, Dietterich, and Chadès, 2015). This algorithm
keeps track of separate value functions for each time step, and it imposes the
additional restriction that there should be a maximum of N vectors for each time
step. The algorithm may be applied without this restriction and with a low gap
tolerance, but in that case it starts to invoke a large number of mixed-integer linear
programs in order to expand the belief sets, which are expensive to solve and this
leads to scalability problems. Other adaptations of �-min provide more scalability
but they do not provide any performance guarantees (Dujardin, Dietterich, and
Chadès, 2017).

Based on our discussion we can conclude that there are several straightforward
approaches for solving �nite-horizon POMDPs without discounting, but all these
approaches are a�ected by either scalability problems or undesirable e�ects. In
the next section we describe why state-of-the-art POMDP algorithms cannot be
used for �nite-horizon models with a discount factor that is equal to 1.

4.3. Discarding the discount factor
As noted in the previous section, the application of in�nite-horizon algorithms to
�nite-horizon formulations with time-indexed states requires a discount factor 
that is equal to 1. Unfortunately, many state-of-the-art algorithms for in�nite-
horizon problems do not support such a discount factor, and they cannot be modi-
�ed easilywithout changing the characteristics. Next, we discuss for each algorithm
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why it cannot be used for �nite-horizon planning with the discount factor  = 1.
We also discuss whether the algorithms converge to optimality, and whether they
compute an upper bound on an optimal solution.

GapMin (Poupart, Kim, and Kim, 2011) is a point-based value iteration al-
gorithm which computes both lower bounds and upper bounds on the optimal
value function, and it converges in the limit to an optimal POMDP solution. The
algorithm contains several subroutines which require  < 1, and the algorithm
is not well-de�ned in case we set  = 1. Assuming a discount factor  < 1 that is
arbitrarily close to 1 leads to a situation in which many subroutines have slow con-
vergence, which is undesirable. Without signi�cant adaptations GapMin cannot
be used with  = 1.

The point-based value iteration algorithms SARSOP (Kurniawati, Hsu, and Lee,
2008) and HSVI (Smith and Simmons, 2005) follow a similar approach as GapMin,
in the sense that they also incrementally expand a set of belief points based on
heuristic search. They also produce an upper bound on the optimal value function,
and the algorithms converge to optimality in the limit. The backups and upper
bound updates performed by the algorithms are well-de�ned for  = 1. However,
the initialization of lower bounds and upper bounds require  < 1 and therefore it
is necessary to initialize them di�erently. Similar to GapMin, without adaptations
both algorithms cannot be used with  = 1.

Perseus (Spaan and Vlassis, 2005) is a randomized point-based value iteration
algorithm which iteratively performs backups on a set of randomly-sampled belief
points. The initialization of the lower bound requires  < 1, and therefore this also
requires modi�cation. The algorithm does not keep track of an upper bound on
the optimal value function, and it provides no guarantees on performance, which
means that it is not guaranteed to converge to optimality.

The original PBVI algorithm (Pineau, Gordon, and Thrun, 2003) executes
backups on a belief set that is expanded incrementally. The algorithm can be
interpreted as an anytime algorithm, and for reaching an optimal solution this
boils down to full enumeration of the reachable belief space. The bounds on the
worst-case error assume a discount factor  < 1, but the algorithm itself can be
used without discounting. In general this is still not desirable because the number
of belief points is potentially large, and it has been shown empirically that the
algorithms GapMin, SARSOP, HSVI and Perseus typically outperform the original
PBVI algorithm.

Exact value iteration supports the discount factor  = 1 and it always computes
an optimal policy by de�nition. However, due to its limited scalability it is not
desirable to use the algorithm for problems with large state spaces, which would
be the case if we use a formulation with time-indexed states and a trap state.

An overview of the algorithm characteristics is presented in Table 4.1, which
compares the algorithms in term of their ability to compute an upper bound, conver-
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Algorithm Upper bound Convergence to optimality Supports  = 1
GapMin ✓ ✓
SARSOP ✓ ✓
HSVI ✓ ✓
Perseus
PBVI ✓ ✓
Exact VI ✓ ✓
RTDP-Bel ✓
FiVI ✓ ✓ ✓

Table 4.1: Comparison of in�nite-horizon algorithms and FiVI

gence to optimality, and immediate support for discount factors  = 1. RTDP-Bel
has also been included in the table, which we brie�y discussed in Section 4.2. As
can be seen, there is no existing algorithm which has all three properties simulta-
neously. In contrast, the algorithm FiVI presented in the next section does have
all these properties, as shown in the table. The algorithm uni�es the desirable
characteristics of GapMin, SARSOP and HSVI in such a way that we obtain a
�nite-horizon point-based value iteration algorithm which converges to optimality
and it also computes both lower bounds and upper bounds.

4.4. Finite-horizon point-based value iteration
In this section we describe FiVI, a point-based value iteration algorithm for solving
�nite-horizon POMDPs. The algorithm uni�es techniques and concepts from exist-
ing state-of-the-art point-based value iteration algorithms and it provides attractive
convergence characteristics and optimality guarantees. This section describes
the solution representations used by FiVI, the actual algorithm, its theoretical
properties and relations to existing algorithms.

We start with an overview of the high-level structure of the solution computed
by the FiVI algorithm in Section 4.4.1, based on time-dependent value functions
and time-dependent backups. In Section 4.4.2 we explain how time-dependent
value upper bounds can be obtained in a �nite-horizon setting using the sawtooth
approximation. A full description of the FiVI algorithm is provided in Section 4.4.3,
which includes the aforementioned value functions and upper bounds. The con-
vergence and optimality characteristics of the FiVI algorithm depend on the belief
points used for computing the value functions and upper bounds. This is the topic
of the �nal section, in which we provide an heuristic search procedure for �nding
beliefs, as well as a theoretical motivation which explains that FiVI converges to
an optimal solution.
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4.4.1. Time-dependent value functions and backups
Point-based value iteration algorithms compute value functions represented by
a �nite set of vectors, as introduced in Chapter 2. For in�nite-horizon problems
it su�ces to keep track of one individual value function V, which represents the
stationary policy that can be used to choose actions. In the �nite-horizon case
the policy is non-stationary, and in general it is no longer possible to encode the
policy using just one value function. In our FiVI algorithm we use time-dependent
value functions Vt, in which t refers to a time step ranging from 1 to ℎ. Note that
we use Vt rather than Vt to avoid notation con�icts with in�nite-horizon value
iteration. The value function Vt is represented by a �nite set of vectors Γt and it
can be de�ned as follows:

Vt(b) =max�∈Γt
b ⋅�, (4.3)

such that Vt(b) corresponds to the expected reward collected when executing the
policy induced by the value functions Vt,… ,Vℎ starting from belief b.

The vectors that constitute a value function can be computed using a point-
based backup operator, as de�ned by Equation 2.41. In the in�nite-horizon case the
backups are executed on beliefs in a set B, as shown in Equation 2.50. Similar to the
value functions, the belief sets can be made time dependent for the �nite-horizon
case, such that Γt is computed using the beliefs in the set Bt. In our algorithm we
need to keep track of upper bounds v̄ associated with beliefs b, and therefore the
elements of the set Bt consist of pairs (b, v̄) ∈ Bt . The role of the upper bounds will
be described in the next section. The vector set Γt can be obtained as follows:

Γt =
⋃

(b,v̄)∈Bt

backup(b, t), (4.4)

where backup(b, t) denotes a time-dependent backup operator that uses the vectors
in Γt+1 to compute a vector belonging to Γt. The time-dependent backup operator
corresponds to the original backup operator for in�nite-horizon POMDPs, but it
has been formulated based on multiple time-dependent vector sets rather than one
individual vector set. The time-dependent backup operator backup(b, t) is de�ned
as follows:

backup(b, t) = argmax
{zb,a,t}a∈A

b ⋅zb,a,t, (4.5)

where

zb,a,t = {
ra+

∑
o∈O argmax{zk,t+1a,o }k

b ⋅zk,t+1a,o t < ℎ

ra t = ℎ
, (4.6)

and zk,ta,o denotes the backprojection of vector �k,t ∈ Γt:

zk,ta,o(s) =
∑

s′∈S
P(o|a,s′)P(s′|s,a)�k,t(s′) ∀s. (4.7)
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The vector ra contains the immediate reward for action a. In the remainder of
the chapter we assume that the backup operator has access to all vector sets and
the reward vectors ra, such that additional arguments can be discarded from the
equations and pseudocode.

Our �nite-horizon point-based value iteration algorithm FiVI computes mul-
tiple time-dependent value functions Vt represented by vector sets Γt using the
time-dependent backup operator that we introduced. The actual integration in
the algorithm will be explained in Section 4.4.3, which discusses the algorithm in
more detail.

4.4.2. Time-dependent valueupperboundsandboundupdates
Point-based value iteration algorithms typically keep track of upper bounds on
the optimal expected value, which enables assessment of the quality of the com-
puted solution. Our FiVI algorithm also includes such computations of upper
bounds, for which we provide the required notation and algorithms in this section.
The algorithms closely follow the upper bound computations for in�nite-horizon
POMDPs, but in order to improve understandability we provide a full description
in this section.

We consider a time step t and the corresponding belief set Bt. Recall from
the previous section that the pairs (b, v̄) ∈ Bt also contain a value upper bounds v̄
corresponding to belief b. These upper bounds v̄ can be used to obtain an upper
bound for another belief b′ that is not represented in the set Bt, based on an
upper bound interpolation using the existing beliefs in Bt (Hauskrecht, 2000). The
interpolation can be obtained using the following linear program:

min
∑

(b,v̄)∈Bt

cb ⋅ v̄

s.t.
∑

(b,v̄)∈Bt

cb ⋅b(s) = b′(s) ∀s

cb ≥ 0 ∀(b, v̄) ∈ Bt.

(4.8)

which assigns weights to the pairs in Bt and returns a linear combination of the
upper bounds v̄ represented by Bt.

Solving a linear program for every upper bound interpolation can be computa-
tionally expensive, and therefore it is more common to use a so-called sawtooth ap-
proximation (Hauskrecht, 2000). This approximation is based on the idea that the
optimization problem can be simpli�ed by imposing the constraint that weights cb
are assigned to corners of the belief simplex, and at most one belief that is not a
corner of the belief simplex. A corner of the belief simplex is a belief in which
the belief associated with one state equals 1, and we also refer to such a belief
as a corner belief. Under the additional assumptions that we made the upper
bound interpolation can be computed using a simple procedure that we call UB,
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Algorithm 6: Sawtooth approximation (UB)
input :belief b′, set B containing belief-bound pairs
output :upper bound corresponding to belief b′

1 for (b, v̄) ∈ B ⧵ {(es, ⋅) | s ∈ S} do
2 f(b)← v̄−

∑
s∈S b(s)B(es)

3 c(b)←mins∈S b′(s) ∕ b(s)
4 end
5 b∗← argmin{b|(b,v̄)∈B⧵{es | s∈S}} c(b)f(b)
6 return c(b∗)f(b∗)+

∑
s∈S b

′(s)B(es)

as shown in Algorithm 6, rather than solving a linear program. The algorithm
takes an arbitrary belief set B and a belief b′ as input, and it returns an upper
bound interpolation for b′ based on the belief-bound pairs in B. In the algorithm es
denotes the corner belief corresponding to state s, and the for loop iterates over
all pairs (b, v̄) ∈ B for which b is not a corner of the belief simplex. Furthermore,
B(es) denotes the upper bound that is currently associated with es in the set B. Our
notation closely follows the notation used by Poupart, Kim, and Kim (2011), and a
justi�cation of the procedure has been provided by Smith (2007). An additional
description of upper bound computations has been provided by Shani, Pineau, and
Kaplow (2013).

In the �nite-horizon setting the upper bounds associated with beliefs can be
updated in a point-based fashion, similar to executing regular backups on beliefs.
We consider a time step t < ℎ and a belief b that belongs to Bt . The upper bound v̄
in (b, v̄) ∈ Bt can be updated as follows:

max
a∈A

∑

s∈S
R(s,a)b(s)+

∑

o∈O
P(o|b,a) ⋅UB(boa,Bt+1), (4.9)

in which the upper bound interpolation is based on the set Bt+1 corresponding to
the next time step. For the �nal time step t = ℎ it su�ces to consider the immediate
rewards, and the upper bound is de�ned bymaxa∈A ra ⋅b. In the next section we
combine the upper bound update scheme and the time-dependent value functions
to create our FiVI algorithm.

4.4.3. Algorithm description of FiVI
The FiVI algorithm takes a POMDP model as input and computes a solution by ex-
ecuting a series of iterations. Within an iteration three phases can be distinguished.
First the algorithm executes a procedure to �nd new belief points. After that, the
algorithm computes a new vector set Γt for each time step t. Finally, the algorithm
updates the upper bounds represented by the belief sets Bt. The full description of
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the algorithm is provided in Algorithm 7, which we discuss below in more detail.

On lines 1-4 the algorithm starts with initializing vector sets Γt, belief sets Bt
and the immediate reward vectors ra. Furthermore, the auxiliary variable �′ is
used to keep track of the elapsed time, and � represents an iteration counter. The
latter is used in one of our heuristics in the next chapter.

An iteration of FiVI starts with a call to a procedure expand, which is used to
�nd additional beliefs on line 7. The quality of the solution returned by FiVI and the
convergence of the algorithm completely depends on these beliefs, because these
beliefs are used for computing the value functions. A more detailed description of
the procedure is deferred to the next section, which provides a detailed motivation
and algorithmic description.

On lines 8-28 the algorithm computes alpha vectors and value upper bounds
by iterating backwards over all time steps. The algorithm starts at the end of the
horizon ℎ, and it proceeds with the time steps ℎ−1,ℎ−2,… until the initial step is
reached. On lines 10-13 the algorithm computes a new vector set Γt by executing
backups based on a belief b and based on the value function Γt+1 computed in
the previous iteration. In this part of the algorithm we use the value functions
and backup operator that we have introduced in Section 4.4.1. After computing
the new vectors for Γt, the algorithm updates all upper bounds de�ned by Bt on
lines 14-27. For this purpose it uses Equation 4.9 and the sawtooth approximation
from Section 4.4.2.

An iteration of FiVI ends with the computation of the current value lower
bound vl and upper bound vu for the initial belief b1. The di�erence between these
two bounds de�nes the current gap. Value iteration stops in case a time limit �
has been exceeded, or in case the gap is at most one unit at the �-th signi�cant
digit. The latter can be checked by computing the maximum allowed gap ga under
this criterion, as shown on line 31, and the algorithm terminates if the current
gap is smaller than ga. As an example we consider upper bound vu = 1400 and
lower bound vl = 1350 with � = 2. At the second signi�cant digit the di�erence
is at most one since 14− 13 = 1. It can be veri�ed that the maximum allowed
gap ga equals 100, and since the current gap vu−vl = 1400−1350 = 50 is smaller
than 100 the algorithm will terminate. This termination condition is also used by
the algorithm GapMin, and it is more generic than imposing an absolute threshold
on the gap.

The solution returned by FiVI consists of alpha vectors in sets Γ1,… ,Γℎ, repre-
senting the lower bound. In addition, the algorithm returns the upper bound vu
that corresponds to the initial belief b1. The gap de�ned by the lower bound and
upper bound implicitly de�nes a guarantee on the quality of the computed solution.
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Algorithm 7: Finite-horizon point-based Value Iteration (FiVI)
input :POMDPM, precision �, time limit �
output :sets Γt for each time step t, upper bound vu

1 Γt← ∅ ∀t, Bt← ∅ ∀t
2 ra← (R(s1,a),R(s2,a),… ,R(s|S|,a)) ∀a
3 add corner beliefs to Bt with upper bound∞ (∀t)
4 �′← 0, �← 0
5 do
6 �← �+1
7 expand(M, {Γ1,… ,Γℎ}, {B1,… ,Bℎ}, r)
8 for t = ℎ,ℎ−1,… ,1 do
9 Γt← ∅
10 for (b, v̄) ∈ Bt do
11 �← backup(b, t)
12 Γt← Γt ∪{�}
13 end
14 for (b, v̄) ∈ Bt do
15 v̄←−∞
16 for a ∈A do
17 v← ra ⋅b
18 if t < ℎ then
19 for o ∈O do
20 if P(o|b,a)> 0 then
21 v← v+P(o|b,a) ⋅UB(boa,Bt+1)
22 end
23 end
24 end
25 v̄←max(v̄,v)
26 end
27 end
28 end
29 vl←max�∈Γ1 � ⋅b1
30 vu← upper bound v̄ associated with (b1, v̄) ∈ B1
31 ga← 10⌈log10(max(|vl|,|vu|))⌉−�

32 �′← elapsed time after the start of the algorithm
33 while �′ < � ∧ vu−vl > ga;
34 return ({Γ1,… ,Γℎ},vu)
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4.4.4. Belief points and convergence of the algorithm
The computation of vectors and upper bounds assumes that we have a set of
beliefs Bt for each time step. However, the performance of the algorithm and the
quality of computed solution are highly dependent on the actual belief points for
which backups are executed. Computing high-quality policies requires coverage of
the region of the belief space that is reachable under the execution of an optimal
policy. Unfortunately, the optimal policy and the corresponding reachable belief
region are initially unknown, which means that these reachable belief points need
to be found while computing a policy.

The algorithm FiVI incrementally expands the belief sets using heuristic search,
which is guided by the current gap between the value lower bound and upper
bound. Our heuristic search procedure is similar to the procedures found in HSVI,
SARSOP and GapMin. Belowwe describe why the action and observation selection
strategies in our belief search steer the algorithm towards an optimal solution.

The gap between the lower and upper bound of belief b1 at time 1 implicitly
de�nes the amount of uncertainty regarding the optimality of the solution. It is
important to note that regret of the returned solution is bounded by the gap of the
initial belief b1. This means that the heuristic search procedure should choose
actions and observations in such a way that backups and upper bound updates
e�ectively reduce the overall gap.

In order to decide which action needs to be chosen, we �rst look at the e�ect
of backups and upper bound updates on the gap associated with a belief. For
the lower bound the backup is de�ned by Equation 2.24, and it maximizes over
actions a. We de�ne V(t,b,a) as the new expected value when choosing action a
in belief b at time t:

V(t,b,a) =
∑

s∈S
R(s,a)b(s)+

∑

o∈O
P(o|b,a)V(t+1,boa). (4.10)

In a similar way we can de�ne the potential upper bound U(t,b,a) that is consid-
ered for action a and belief b at time t in the update de�ned in Equation 4.9:

U(t,b,a) =
∑

s∈S
R(s,a)b(s)+

∑

o∈O
P(o|b,a) ⋅UB(boa,Bt+1), (4.11)

Since both Equation 2.24 and Equation 4.9 maximize over actions, the new gap
associated with belief b at time t is de�ned by:

max
a∈A

U(t,b,a)−max
a∈A

V(t,b,a). (4.12)

It can be seen that the newgap is determined by the actionsa thatmaximizeU(t,b,a)
and V(t,b,a). This suggests that the heuristic search procedure should choose one
of these two maximizing actions in order to a�ect the gap associated with b. It is
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required to choose the action a that maximizesU(t,b,a), because if a is suboptimal
then its upper boundwill eventually be lower than the upper bound associatedwith
another action, which will change the action choice later. This behavior cannot be
achieved using the action a that maximizes V(t,b,a) because the lower bound can
only increase and therefore it is not possible to detect the potential suboptimality
of this action choice. The action selection strategy that we use is also known as
the IE-MAX heuristic (Kaelbling, 1993) and it ensures the convergence of the
algorithm. A theoretical analysis of the action selection rule has been provided by
Ross, Pineau, and Chaib-Draa (2008) for general online heuristic search algorithms
for POMDPs. It has been shown that the action selection rule ensures that the
computed policy de�nes an "-optimal action within �nite time, which implies that
the algorithm converges to optimality in the limit2. The action selection strategy
that we use is identical to the strategy used in HSVI, SARSOP and GapMin for
in�nite-horizon problems.

After selecting an action it is required to choose an observation. It is important
to note that the lower bounds and upper bounds associated with all reachable
beliefs in time steps t > 1 contribute to the gap associated with the initial belief b1.
The reason is that both the lower bound computation and the upper bound update
follow the structure of the Bellman equation, as shown in Equations 2.24 and 4.9.
If one of the bounds associated with a reachable belief is not tight, it means that
it also contributes to the gap associated with the initial belief b1, and therefore
it is important to execute backups and updates on such reachable beliefs. Our
algorithm chooses an observation leading to a belief with maximum gap in the
next time step t+1:

argmax
{o∈O | P(o|b,a)>0}

{ UB(boa,Bt+1)− max
�∈Γt+1

� ⋅boa }. (4.13)

This criterion is also used by in�nite-horizon algorithms, but they typically weight
the gap using the discount factor, which is not required in the �nite-horizon case.

The full description of the search procedure expand is shown in Algorithm 8.
The algorithm performs a forward search starting from the initial belief, based on
the action and observation selection rules that we described in this section. The
belief points that are found during the search are added to the belief sets used
by FiVI. The belief-bound pairs are added to the set Bt+1 rather than Bt because
the beliefs always correspond to the next time step. This also means that it is not
required to consider the �nal time step t = ℎ in the for loop. The search procedure
is invoked in each iteration of FiVI in order to add new beliefs, which ensures that
the FiVI algorithm iteratively reduces the gap of the solution.
2From a theoretical perspective it is required to use the exact upper bound computation in order to
ensure that convergence results are una�ected. If the sawtooth approximation is used, then it is
important that exact bounds are computed periodically, rather than using the approximation in every
iteration of the algorithm.
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Algorithm 8: Belief expansion (expand)
input :M, {Γ1,… ,Γℎ}, {B1,… ,Bℎ}, r

1 b← b1
2 for t = 1,… ,ℎ−1 do
3 a← argmaxa∈A{ ra ⋅b+

∑
{o∈O | P(o|b,a)>0}P(o|b,a) ⋅UB(boa,Bt+1) }

4 o← argmax{o∈O | P(o|b,a)>0}{ UB(boa,Bt+1)−max�∈Γt+1 � ⋅b
o
a }

5 Bt+1← Bt+1∪{(boa,∞)}
6 b← boa
7 end

Based on the construction of the procedure expand, we can analyze the number
of iterations performed by FiVI. The expand procedure �nds at most (|A||O|)ℎ new
beliefs, and there are no iterations in which it does not �nd a new belief before
convergence. This means that the total number of iterations of FiVI isO((|A||O|)ℎ).
The same bound applies to the space requirements of the algorithm, because the
algorithm stores the beliefs and the corresponding vectors in memory. In practice
it can be expected that the number of iterations is much lower than this worst case
bound, since the expand procedure steers the search in the direction of beliefs
reachable under the execution of an optimal policy. However, without making
assumptions about the planning domain the bound cannot be tightened.

4.5. Backup and update heuristics
The point-based algorithm FiVI executes backups to compute new vector sets Γt in
each iteration. This approach is clean and simple, but it can be relatively ine�cient.
For example, the algorithm constructs the new value functions from scratch by
executing backups on all beliefs. Furthermore, the size of the Bt sets grows during
the execution of the algorithm, and therefore an increasing amount of time is
required to execute all backups.

The upper bound updates executed by the algorithm (lines 14-27) can also be
considered ine�cient, because in each iteration the algorithm computes a new
upper bound for each belief. The upper bound interpolation function UB computes
the upper bounds based on all beliefs, while only a few of these beliefs eventually
a�ect the returned upper bound.

In the remainder of this section we address the aforementioned issues by
discussing a strategy to enhance the e�ciency of backups, and we identify a de-
pendency structure which allows for more e�cient upper bound updates.
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Algorithm 9: Perseus Belief Selection (PBS)
input :vector set Γt, belief set Bt
output :new vector set Γt after executing backups

1 Γ← Γt, Γt← ∅, B← Bt
2 while B ≠ ∅ do
3 (b, v̄)← randomly selected pair from B
4 �← Backup(b, t)
5 �′← argmax�′∈Γ�

′ ⋅b
6 if � ⋅b ≥ �′ ⋅b then
7 Γt← Γt ∪{�}
8 else
9 Γt← Γt ∪{�′}

10 end
11 B← {b ∈ B | max�∈Γt � ⋅b <max�∈Γ� ⋅b}
12 end
13 return Γt

4.5.1. Perseus Belief Selection (PBS)
In this section we present a strategy to improve the e�ciency of backups, which
employs a randomized belief selection method similar to the randomized backup
stage found in Perseus (Spaan and Vlassis, 2005). The improve-only principle of
this backup stage allows us to perform backups on randomly-selected points only,
while ensuring that the newly computed Γt set is at least as good as in the previous
iteration. A description is shown in Algorithm 9, which replaces lines 9-13 of our
algorithm. The algorithm keeps track of a set B containing non-improved beliefs.
The key improvement follows from the fact that one backup may improve the
value for multiple beliefs. As a result, the set B shrinks quickly and it may not be
required to execute backups for all beliefs.

4.5.2. Dependency-Based Bound Updates (DBBU)
In this section we improve the e�ciency of upper bound updates performed during
the execution of FiVI. Our preliminary observation is that we do not need to
compute new upper bounds for beliefs with zero gap, because for such beliefs the
upper bound is already the tightest possible bound. This means that we can mark
beliefs with zero gap, and such beliefs will not be taken into account in remaining
iterations of FiVI while computing new upper bounds. Unless stated otherwise,
the implementations of our algorithms will always ignore beliefs with zero gap
when computing new upper bounds.

Our main observation is that Algorithm 7 executes many upper bound inter-
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(b, v̄) ∈ Bt
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, Bt+1)
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, Bt+1)
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Figure 4.2: Dependencies between a belief (b, v̄) ∈ Bt and beliefs (b∗, v̄) ∈ Bt+1 used for
upper bound interpolation

polations when updating the bounds on lines 14-27. For several beliefs boa there
is a call to the function UB, which computes an upper bound interpolation based
on the corner beliefs and just one additional belief (b∗, v̄) ∈ Bt+1 (see line 5 of
Algorithm 6). This structure is visually depicted in Figure 4.2. It shows a belief
pair (b, v̄) ∈ Bt for which an upper bound is updated in the loop starting on line 14
of Algorithm 7. In order to compute the new upper bound, the algorithm needs
several upper bound interpolations for di�erent successor beliefs boa. For clarity we
denote these beliefs by bo1a1 ,b

o2
a1 ,… ,b

ok
al in the �gure, indicating that the successor

beliefs used for interpolation are di�erent.
Each interpolation computed by the function UB in Algorithm 6 is based on

one belief (b∗, v̄) ∈ Bt+1. The arrows induce a dependency graph between the
beliefs of subsequent steps, and this graph implicity indicates how upper bounds
have been propagated from t = ℎ back to t = 1. It turns out that the dependency
graph remains relatively constant during the execution3. In other words: when
computing a new upper bound for a belief (b, v̄) ∈ Bt, it is often selecting the same
beliefs (b∗, v̄) ∈ Bt+1 in the calls to the function UB. We propose to exploit this
dependency structure to reduce the number of beliefs considered by UB.

An overview of our Dependency-Based Bound Update (DBBU) method is
shown in Algorithm 10. Once in � iterations of point-based value iteration we
keep track of the dependencies between beliefs, as visualized in Figure 4.2. When
updating the upper bound v̄ for a pair (b, v̄) ∈ Bt, these dependencies can be deter-
mined by looking at the beliefs b∗ used in the calls to UB on line 21 of Algorithm 7.
We store all beliefs b∗ that were used in the set Bb. We periodically determine the
dependencies, because in general we cannot assume that the dependency graph
remains constant. The reason is that the algorithm iteratively adds new beliefs,
and such beliefs may be used for interpolation as well.

In all other iterations we still compute a new bound for each belief pair (b, v̄) ∈
Bt, but we replace the calls to UB(boa,Bt+1). Rather than computing the interpola-
3A similar observation has been made for the calls to the exact upper bound interpolation in Gap-
Min (Poupart, Kim, and Kim, 2011), in which the convex combination remains fairly constant. The
presented alternative uses a so-called augmented POMDP, but it is important to note that it still
requires |S||A||O|+1 calls to UB, and it requires the fast-informed bound, which does not directly
apply to �nite-horizon settings. GapMin does not focus on the dependency structure of the upper
bound update.
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Algorithm 10: Dependency-Based Bound Updates (DBBU)
input :belief sets Bt and Bt+1, iteration �, interval �

1 if � mod � = 0 then
2 for (b, v̄) ∈ Bt do
3 Lines 15-26 from Algorithm 7
4 Bb← set containing beliefs b∗ used in UB calls
5 end
6 B′t+1← Bt+1
7 else
8 for (b, v̄) ∈ Bt do
9 B∗t+1← {(b, v̄) ∈ Bt+1 | b ∈ Bb ∨((b, v̄) ∈ Bt+1∧(b, v̄) ∉ B′t+1)}
10 Lines 15-26 from Algorithm 7, where UB uses B∗t+1 rather than Bt+1
11 end
12 end

tion based on all beliefs in Bt+1, we use a subset B∗t+1 ⊆Bt+1, where B
∗
t+1 contains

all beliefs b∗ de�ned by the dependency graph (e.g., when updating for (b, v̄) ∈ Bt
this would be the set Bb). Typically this set is much smaller than Bt+1, and if the
dependency graph is constant then it also contains the beliefs that would be used
by an interpolation based on Bt+1. As a result, the function UB iterates over much
fewer beliefs.

Beliefs that were found after the last construction of the dependency graph
are always included in B∗t+1. For this purpose the algorithm de�nes the auxiliary
variable B′t+1 when constructing the graph, which contains all beliefs that were
part of Bt+1 when constructing the graph. This variable is used in the de�nition
of B∗t+1 on line 9, such that it includes new beliefs that are part of Bt+1 which were
not part of B′t+1 yet.

It is important to note that DBBU can be easily combined with PBS, because
DBBU a�ects the upper bound updates of FiVI, while PBS only changes the proce-
dure to execute backups on beliefs. The in�uence of the interval parameter � on
the performance of DBBU will be studied in the next section.

4.6. Experiments
In this section we present our experimental evaluation. We start with a comparison
ofmultiple variants of FiVI, in whichwe test the in�uence of our strategies PBS and
DBBU on runtime, convergence and solution quality. After that, we provide amore
in-depth study of the behavior of PBS and DBBU, and we provide a comparison
with 3 alternative approaches which may be used for �nite-horizon problems.
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4x5x2 AircraftID Hallway Network
|S| 39 12 60 7
|A| 4 6 5 4
|O| 4 5 21 2

Table 4.2: Properties of the domains involved in the experiments

4.6.1. Performance of FiVI with PBS and DBBU
In the �rst set of experiments we compare standard FiVI, FiVI augmented with
PBS, and FiVI augmented with PBS and DBBU. For these variants of the algorithm
we use the names VI, PBS and DBBU, respectively. We let the algorithms run for
at most 15 minutes, after which execution is terminated. Furthermore, we stop
algorithm execution if the gap between the lower bound and upper bound drops
below 0.01. Since FiVI is an anytime algorithm, we can assess which variant of the
algorithm provides the best solution given the �xed amount of computation time
that is available.

We test our algorithms with multiple planning horizons ℎ, which means that
we discard the default discount factors de�ned by the domains. We use multiple
domains from pomdp.org, which we solve with horizons ℎ = 5,10,15,20. The
domains have been chosen such that the algorithm is able to reduce the gap to a
value close to 0 within the time limit of 900 seconds. This is important for testing
whether the dependency graph during algorithm execution becomes constant, and
it enables us to test the e�ects of our heuristics until convergence of the algorithm.
An overview of the domain properties is provided in Table 4.2. For DBBU we
consider the parameters � = 10,20,30,40, which we append to the names of the
algorithms. We compare the algorithms by measuring the total runtime, the lower
bound on the expected reward of the computed policy, as well as the gap associated
with the computed policy. Each algorithm is executed 10 times, such that we can
report the mean and standard deviation for these measures. Prior to running the
algorithms, we intuitively expect that PBS improves the performance of VI since
it is likely that it executes fewer backups. Furthermore, we expect that DBBU
improves the performance even more, because in that case it iterates over fewer
beliefs when computing upper bounds.

The results of our experiment are shown in Tables 4.3 and 4.4, in which each
entry represents the mean based on 10 runs of the algorithm, and the small entries
denote the standard deviation. Based on the runs in which the time out of 900
seconds was not reached, we can conclude that PBS consistently improves the
performance of plain FiVI, meaning that it needs less time to reach a solution with
a gap below 0.01. The variants of the algorithm which include DBBU become even
faster, and they typically need even less time. This is especially noticable when
increasing the horizon to, e.g., ℎ= 15 and ℎ= 20. In these cases the running time of
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VI PBS DBBU10 DBBU20 DBBU30 DBBU40
4x5x2 Time (s) 0.915 0.307 0.202 0.197 0.196 0.203

0.049 0.011 0.025 0.006 0.003 0.007
ℎ= 5 LB 0.429 0.429 0.429 0.429 0.429 0.429

0.000 0.000 0.000 0.000 0.000 0.000
Gap 0.003 0.003 0.003 0.003 0.003 0.003

0.000 0.000 0.000 0.000 0.000 0.000

4x5x2 Time (s) 13.541 5.234 2.741 2.808 2.818 2.905
0.253 0.171 0.152 0.146 0.066 0.065

ℎ= 10 LB 1.119 1.119 1.119 1.119 1.119 1.119
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.010 0.010 0.010 0.010 0.010 0.009
0.000 0.001 0.000 0.000 0.000 0.000

4x5x2 Time (s) 112.401 39.147 17.756 17.64 17.726 18.746
0.495 1.021 0.576 0.452 0.401 0.679

ℎ= 15 LB 1.619 1.619 1.619 1.619 1.619 1.619
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.007 0.009 0.009 0.009 0.009 0.009
0.000 0.001 0.001 0.001 0.001 0.001

4x5x2 Time (s) 346.417 141.535 70.575 68.119 67.922 70.798
2.245 7.571 3.046 3.730 4.138 3.732

ℎ= 20 LB 2.256 2.256 2.256 2.256 2.256 2.256
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.009 0.009 0.009 0.009 0.009 0.009
0.000 0.001 0.000 0.01 0.001 0.001

VI PBS DBBU10 DBBU20 DBBU30 DBBU40
AircraftID Time (s) 0.031 0.014 0.019 0.013 0.013 0.013

0.029 0.004 0.014 0.001 0.002 0.002
ℎ= 5 LB -45.393 -45.393 -45.393 -45.393 -45.393 -45.393

0.000 0.000 0.000 0.000 0.000 0.000
Gap 0.002 0.002 0.004 0.003 0.004 0.003

0.000 0.001 0.001 0.001 0.001 0.001

AircraftID Time (s) 1.068 0.450 0.456 0.432 0.460 0.450
0.059 0.047 0.060 0.024 0.052 0.034

ℎ= 10 LB -95.240 -95.241 -95.240 -95.240 -95.240 -95.241
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.010 0.010 0.009 0.009 0.009 0.009
0.000 0.001 0.000 0.001 0.000 0.001

AircraftID Time (s) 18.837 8.582 4.958 5.141 5.436 5.877
0.168 1.033 0.413 0.236 0.451 0.623

ℎ= 15 LB -149.467 -149.467 -149.467 -149.467 -149.467 -149.467
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.010 0.010 0.010 0.010 0.010 0.010
0.000 0.000 0.001 0.000 0.000 0.000

AircraftID Time (s) 163.189 78.369 29.956 29.895 31.219 33.127
2.356 4.647 1.658 2.247 1.746 2.192

ℎ= 20 LB -208.013 -208.013 -208.013 -208.013 -208.013 -208.013
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.010 0.010 0.010 0.010 0.010 0.010
0.000 0.000 0.000 0.000 0.000 0.000

Table 4.3: Algorithm comparison for domains 4x5x2 and AircraftID

DBBU becomes signi�cantly lower than the running time of PBS, which con�rms
our initial expectations. The variants of the algorithm with PBS and DBBU include
randomization, but the low standard deviations of the lower bounds and gaps
indicate that it has limited in�uence on the quality of the solution returned.

As can be seen in the table, the choice of the interval � in�uences the perfor-
mance of DBBU, but the results do not allow us to identify a generic choice for
this parameter which provides the best performance throughout all domains. It
should be noted, however, that DBBU becomes signi�cantly faster than FiVI with
only PBS, regardless of the choice of �. As a general rule we can say that setting �
too high (e.g., much higher than 40) is unlikely to give good performance because
then potential changes in upper bounds are not taken into account quickly during
the execution of the algorithm. In the Hallway domain with horizon ℎ = 5 we
can also see that our heuristics improve the performance of plain FiVI. For the
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VI PBS DBBU10 DBBU20 DBBU30 DBBU40
Hallway Time (s) 9.843 5.045 6.358 6.370 6.523 6.498

0.466 0.219 0.276 0.213 0.286 0.296
ℎ= 5 LB 0.098 0.098 0.098 0.098 0.098 0.098

0.000 0.001 0.001 0.000 0.000 0.000
Gap 0.009 0.009 0.009 0.009 0.009 0.009

0.000 0.000 0.00 0.000 0.000 0.000

Hallway Time (s) 909.567 903.979 904.373 904.200 903.358 902.969
4.671 3.390 3.380 2.492 2.502 2.185

ℎ= 10 LB 0.327 0.334 0.335 0.335 0.334 0.334
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.104 0.087 0.083 0.082 0.083 0.083
0.000 0.003 0.002 0.002 0.002 0.002

Hallway Time (s) 911.973 908.061 904.740 904.405 904.415 905.049
5.962 3.659 3.136 2.191 2.638 2.830

ℎ= 15 LB 0.628 0.632 0.635 0.635 0.634 0.635
0.001 0.001 0.002 0.002 0.001 0.001

Gap 0.272 0.260 0.255 0.256 0.257 0.256
0.001 0.003 0.002 0.003 0.002 0.003

Hallway Time (s) 916.264 906.485 905.811 905.738 908.350 906.481
5.809 4.881 2.717 2.744 5.132 3.907

ℎ= 20 LB 0.902 0.918 0.921 0.920 0.920 0.919
0.000 0.003 0.002 0.003 0.003 0.002

Gap 0.430 0.403 0.398 0.399 0.399 0.400
0.000 0.004 0.003 0.004 0.004 0.003

VI PBS DBBU10 DBBU20 DBBU30 DBBU40
Network Time (s) 0.014 0.004 0.006 0.004 0.003 0.003

0.012 0.001 0.002 0.002 0.001 0.001
ℎ= 5 LB 81.137 81.137 81.137 81.137 81.137 81.137

0.000 0.000 0.000 0.000 0.000 0.000
Gap 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

Network Time (s) 0.341 0.149 0.095 0.097 0.107 0.110
0.066 0.006 0.004 0.006 0.004 0.004

ℎ= 10 LB 151.18 151.18 151.18 151.18 151.18 151.18
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.010 0.009 0.009 0.009 0.008 0.009
0.000 0.001 0.001 0.001 0.001 0.001

Network Time (s) 32.000 22.141 5.612 5.041 5.375 5.863
0.194 1.790 0.275 0.381 0.362 0.337

ℎ= 15 LB 224.616 224.616 224.616 224.616 224.616 224.616
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.010 0.010 0.010 0.010 0.010 0.010
0.000 0.000 0.000 0.000 0.000 0.000

Network Time (s) 901.721 901.124 267.056 204.782 114.482 142.049
0.682 0.544 62.270 66.242 12.793 23.324

ℎ= 20 LB 298.149 298.149 298.149 298.149 298.149 298.149
0.000 0.000 0.000 0.000 0.000 0.000

Gap 0.018 0.014 0.010 0.010 0.010 0.010
0.000 0.001 0.000 0.000 0.000 0.000

Table 4.4: Algorithm comparison for domains Hallway and Network

horizons ℎ = 10,15,20 we observe that the lower bounds and gaps of PBS and
DBBU are slightly better when the algorithm reaches the timeout. However, it
should be noted that the domain is di�cult to solve, which means that it takes
a long time to reach a solution with a gap that is lower than the tolerance. This
makes it hard to derive conclusions regarding algorithm performance based on
those results.

In Figure 4.3 we visualize how the gap decreases over time during one execution
of the algorithm. From these graphs we can derive two conclusions about the
performance of our two strategies PBS and DBBU. First, in the variants of FiVI
which include either PBS or DBBU the gap tends to decrease faster, meaning that
it approaches an optimal solution faster. Second, our bound update strategy DBBU
almost always improves the performance of FiVI withDBBU. The tables and graphs
together con�rm our initial expectation that PBS improves the performance of
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Algorithm VI PBS DBBU10
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Figure 4.3: Gap during the execution of FiVI

plain FiVI, and our expectation that DBBU improves the performance even more.
Furthermore, our experiment shows that FiVI is an e�ective method to compute
�nite-horizon solutions while providing guarantees on the quality of the resulting
solution.

4.6.2. Number of backups executed by PBS
In our second experiment we study the hypothesis that PBS executes fewer backups
due to the potential to skip beliefs for which the value function has improved. We
measure the reduction of the number of backups due to PBS as follows. We let
#beliefs_total denote the total number of beliefs that has been added so far, counted
across all time steps involved. Furthermore, we let #num_backups denote the
total number of backups executed by PBS. Now the reduction of the number of
backups can be expressed as follows:

−100×(
#num_backups−#beliefs_total

#beliefs_total ) . (4.14)
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Figure 4.4: Reduction of the number of backups

In Figure 4.4 we use this metric to visualize the reduction of the number of backups
for each iteration of FiVI. These results con�rm that PBS executes much fewer
backups than plain FiVI, which also explains why PBS can run faster than FiVI.

Although PBS accelerates the iterations of FiVI, it is important to note that
FiVI with PBS may need more iterations to reach a solution of the same quality.
The explanation for this is that executing backups on all beliefs may result in a
better value function than the value function obtained when executing backups on
only a few beliefs. As we have concluded from Figure 4.4, an iteration with PBS
generally runs faster, but as a consequence of the behavior of PBS the total number
of iterations may increase. This can be seen in Table 4.5, which shows the number
of iterations of FiVI performed until termination. However, based on the initial
results in Table 4.3 and Table 4.4 we can conclude that the gain introduced by PBS
dominates the additional runtime introduced by running additional iterations.
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Domain ℎ Iterations VI Iterations PBS

4x5x2 5 21 21
10 92 94
15 225 225
20 332 345

AircraftID 5 4 5
10 50 55
15 138 134
20 267 267

Hallway 5 9 10
10 124 186
15 96 138
20 81 114

Network 5 5 5
10 70 68
15 381 421
20 997 1229

Table 4.5: Number of iterations of FiVI until termination

4.6.3. Dependency graph construction in DBBU
Our bound update strategy DBBU is based on the intuition that the dependency
structure of the beliefs does not change much during the execution of value itera-
tion. In order to test whether this is indeed the case in our domains, we execute
an experiment in which we keep track of the number of times that all the depen-
dencies remain constant when constructing a new dependency graph. To be more
speci�c, we let DBBU compute new dependency graphs in each iteration and we
measure the number of graph constructions in which the dependencies remain the
same compared to the previous iteration. We let#graph denote the total number of
graph constructions in an iteration and#graph_unchanged denotes the number of
times that the dependency graph associated with a belief does not change. The total
number of unchanged dependency graphs within an iteration now corresponds to:

100×(
#graph_unchanged

#graph ) . (4.15)

Figure 4.5 visualizes this percentage as a function of the iterations of FiVI,
which con�rms that the dependency graphs remain almost always constant dur-
ing the execution of FiVI. This result implies that the upper bounds returned by
UpperBound based on B∗t+1 are almost always the same as the upper bounds re-
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Figure 4.5: Unchanged dependency graphs as a function of the number of iterations

turned by UpperBound based on Bt+1 (see Algorithm 10), while iterating over only
a small subset of beliefs during the computation of upper bound interpolations in
UpperBound. From this experiment we can conclude that the upper bound updates
in FiVI take less time due to DBBU, and in many cases our strategy does not a�ect
the computed upper bounds.

4.6.4. Comparison with alternative methods
In our �nal experiment we present a comparison with three alternative meth-
ods which may be used to compute solutions to �nite-horizon problems. These
methods do not provide performance guarantees and they have several limitations.
From a practical point of view it can be suitable to use them (e.g., if strict per-
formance guarantees are not required). Therefore, we want to show how such
methods perform when solving the instances used in our previous experiments.
We want to emphasize that the methods have not been designed for �nite-horizon
problems, and they have not been presented as such in the literature.

The �rst methodwe consider starts with sampling reachable beliefs in the belief
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VI PBS DBBU S1000 RTDP-Bel GapMin

4x5x2 LB 2.256 2.256 2.256 2.256 2.256 2.118
ℎ= 20 Gap 0.009 0.009 0.009 0.237 N/A N/A
AircraftID LB -208.013 -208.013 -208.013 -208.013 -208.765 -208.708
ℎ= 20 Gap 0.010 0.010 0.010 1.096 N/A N/A
Hallway LB 0.902 0.918 0.921 0.972 0.078 0.974
ℎ= 20 Gap 0.430 0.403 0.398 0.293 N/A N/A
Network LB 298.149 298.149 298.149 298.128 292.934 291.305
ℎ= 20 Gap 0.018 0.014 0.010 13.679 N/A N/A

Table 4.6: Comparison with random belief sampling, RTDP and in�nite-horizon GapMin

space by exploring the environment randomly during a �xed number of episodes.
After that, it performs only one iteration of FiVI to compute value functions and
upper bounds. It never executes heuristic search to �nd additional beliefs. This
method is simple to execute, but it does not provide any performance guarantees
because exploring the environment randomly does not necessarily provide the
belief points that are needed to compute a potentially optimal value function. We
let the algorithm sample beliefs during 1000 episodes, and the algorithm is denoted
by S1000.

The second method we consider is a �nite-horizon version of RTDP-Bel (Bonet
and Ge�ner, 2009). The only di�erence with the in�nite-horizon version is that
we use separate value functions for each time step. RTDP-Bel discretizes beliefs
in order to represent value functions in memory, and due to this discretization
it does not necessarily converge to optimality. During our experiments we use
discretization parameter D = 10 because this parameter setting gives us good
results, and we execute the algorithm for 900 seconds, similar to the previous
experiments. For more details about RTDP-Bel we refer to our discussion in
Section 4.3.

The third method we consider is the in�nite-horizon algorithm GapMin which
computes an in�nite-horizon policy with  = 0.99, whichwe subsequently evaluate
during simulation runs. In Section 4.2 we already concluded that this approach is
not suitable for �nite-horizon problems, and in this section we validate empirically
whether this is indeed the case. Similar to RTDP-Bel and the previous experiments,
we use a time limit of 900 seconds.

We present the results of our experiment in Table 4.6, which shows the lower
bound and the associated gap. The results for VI, PBS and DBBU have been copied
from the previous experiments, where we selected the best-performing version of
DBBU. For RTDP-Bel and GapMin we do not obtain a lower bound, and therefore
the reported number is the mean reward measured during 1 million simulation
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S1000 VI PBS DBBU10
4x5x2 Time (s) 26.661 26.661 26.661 26.661
ℎ= 20 LB 2.256 2.249 2.256 2.256

Gap 0.237 0.358 0.181 0.114
AircraftID Time (s) 25.520 25.520 25.520 25.520
ℎ= 20 LB -208.013 -208.013 -208.013 -208.013

Gap 1.096 0.035 0.020 0.011
Hallway Time (s) 830.610 830.610 830.610 830.610
ℎ= 20 LB 0.972 0.903 0.916 0.912

Gap 0.293 0.429 0.407 0.408
Network Time (s) 5.412 5.412 5.412 5.412
ℎ= 20 LB 298.128 298.148 298.149 298.149

Gap 13.679 0.702 0.596 0.247

Table 4.7: Solution quality for VI, PBS and DBBU10 with time limit equal to S1000 runtime

runs. Below we discuss our most important observations and conclusions for each
alternative method.

The mean reward of the solutions computed by RTDP-Bel is close to the lower
bounds computed by FiVI, which shows that RTDP-Bel can be an e�ective and
simple method to compute �nite-horizon solutions. However, in general the
algorithm does not keep track of upper bounds, which means that it is impossible
to assess whether a solution computed by RTDL-Bel is close to optimal or not.

The mean reward of the solutions computed by GapMin is slightly lower than
the lower bounds computed by FiVI in the domains 4x5x2, AircraftID and Network.
This con�rms that a policy computed for an in�nite-horizon problem does not
always perform well if the actual problem has a �nite time horizon. In the Hallway
domain the in�nite-horizon policy performs very well. This seems surprising,
but there is a very intuitive explanation which shows why this is the case. Upon
reaching the goal the agent restarts from the initial belief, and an in�nite-horizon
policy tries to reach the goal as many times as possible in order to maximize its
expected reward. In practice this means that the in�nite-horizon policy tries to
reach the goal as fast as possible, which is also the best strategy in case there is
only a �nite number of steps available. Similar to RTDP-Bel, it is important to note
that the algorithm does not compute an upper bound for the �nite-horizon case,
which prevents assessment of policy quality in general.

For the belief sampling approach S1000 we observe that the lower bounds
are very close or identical to the lower bounds found by the variants of FiVI
in the domains 4x5x2, AircraftID and Network. However, the associated gap is
signi�cantly larger than the gaps returned by FiVI, which means that S1000 did
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not �nd beliefs that are needed to reduce the gap e�ectively. In order to provide
a better comparison we execute another experiment in which we give VI, PBS
and DBBU a time limit that equals the total runtime of S1000. This allows us to
investigate whether the FiVI variants compute a better solution than S1000 within
the same amount of time. The results of this comparison are shown in Table 4.7.
In the Hallway domain S1000 provides a better solution than the FiVI variants
without belief sampling, which means that it has found reachable beliefs leading
to a better solution, which were not found yet by the FiVI algorithm within its
time limit. In the domains 4x5x2, AircraftID and Network our algorithm computes
solutions with a smaller gap than the solution returned by S1000, which means
that our algorithm performs better than the belief sampling approach. For S1000
in general we can conclude that it may work well in some domains, but it samples
an excessively large number of reachable beliefs, which becomes intractable if the
POMDP model is large.

To conclude, our experiment has shown that the belief sampling approach,
RTDP-Bel and GapMin may be suitable for planning in �nite-horizon settings.
However, the algorithms do not provide performance guarantees and sampling
a large number of beliefs can be computationally expensive (both the sampling
itself and executing backups on those beliefs). FiVI, on the other hand, provides
performance guarantees and typically it uses much fewer beliefs to compute the
solution. Finally, the experiment con�rms our observation that the algorithms are
not suitable for solving �nite-horizon problems in general.

4.7. Conclusions
Finite-horizon POMDPs naturally arise in application domains in which policies
need to be executed during a �nite number of time steps. For example, aggregators
which control the charging process of electric vehicles typically optimize their
decisions for the next 24 hours such that undiscounted charging cost is minimized.
Another example can be found in the area of maintenance, in which equipment
such as machines should be maintained well during their lifespan. Unfortunately,
computing �nite-horizon POMDP solutions turns out to be more complicated than
intuitively expected. In the literature several approximate POMDP algorithms
have been presented which form the current state of the art, such as the class
of point-based value iteration algorithms. These algorithms have been designed
based on the assumption that an in�nite horizon with discounting is considered,
but due to this assumption the algorithms do not easily generalize to �nite-horizon
settings. In other words, state-of-the-art approximate POMDP algorithms cannot
be used to solve �nite-horizon problems e�ciently.

In this chapter we presented FiVI, which is a generic point-based value iteration
algorithm for �nite-horizon problems. FiVI uni�es several insights from existing
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point-based algorithms SARSOP (Kurniawati, Hsu, and Lee, 2008), HSVI (Smith
and Simmons, 2005) and GapMin (Poupart, Kim, and Kim, 2011). FiVI is a point-
based value iteration algorithm which computes time-dependent value functions,
and it leverages a heuristic search procedure to �nd new belief points incrementally.
It is an anytime algorithm which converges to an optimal �nite-horizon POMDP
solution. In addition to the algorithm itself we also presented two strategies which
further improve the algorithm performance. First, we observed that we can employ
randomized backup stages similar to the in�nite-horizon algorithm Perseus (Spaan
and Vlassis, 2005). Second, we made the updates of value upper bounds more
e�cient by exploiting the insight that these updates typically depend on only a few
beliefs that remain constant during execution. Both strategies are complementary,
in the sense that they focus on two di�erent steps in FiVI that are computationally
di�cult, and therefore the strategies can be used simultaneously.

In a series of experiments we tested the performance and characteristics of FiVI,
which shows that the algorithm is an e�ective method for solving �nite-horizon
problems. This e�cacy is also demonstrated by the next chapter of this dissertation,
in which the presented algorithms invoke FiVI many times to obtain subproblem
solutions while computing solutions to Constrained POMDPs. This shows that
FiVI is not only useful for solving standard �nite-horizon POMDPs, but also for
other variants of the POMDP model which require a �nite planning horizon.

Multiple directions of future work can be pursued to improve our algorithm.
The main computational bottleneck of FiVI arises in case the POMDPmodels have
a large number of states, and in case there is a large number of beliefs required to
reach a solution within the solution quality tolerance. The �rst problem can be ad-
dressed by implementing the algorithm based on sparse representations for alpha
vectors. The second problem is more di�cult since the convergence of the algo-
rithm is dependent on the ability to sample belief points that are required to reach
an optimal solution. It may be possible to derive a more e�cient belief sampling
scheme which replaces Algorithm 8. For example, domain-speci�c knowledge
may be used to bias the heuristic search, or multiple promising outcomes can be
selected during the forward search, similar to work by Zhang et al. (2015). In
in�nite-horizon algorithms such as GapMin this is addressed by implementing
a breadth-�rst search which prioritizes beliefs that are encountered early, but in
the �nite-horizon setting it can be expected that this is less e�ective since rewards
are not discounted. This leaves a gap for additional research. Another interesting
avenue of future research is the application to POMDPs with a factored problem
representation, which may provide additional computational bene�ts.



5
Approximate planning for

Constrained POMDPs

In several real-world domains it is required to plan ahead while there are �nite
resources available for executing the plan. The limited availability of resources
imposes constraints on the plans that can be executed, which need to be taken into
account while computing a plan. A Constrained Partially Observable Markov De-
cision Process (Constrained POMDP) can be used to model resource-constrained
planning problems which include uncertainty and partial observability. Con-
strained POMDPs provide a framework for computing policies which maximize
expected reward, while respecting constraints on a secondary objective such as
cost or resource consumption. Column generation for linear programming can be
used to obtain Constrained POMDP solutions. This method incrementally adds
columns to a linear program, in which each column corresponds to a POMDP
policy obtained by solving an unconstrained subproblem. Column generation
requires solving a potentially large number of POMDPs, as well as exact evaluation
of the resulting policies, which is computationally di�cult. We propose a method
to solve subproblems in a two-stage fashion using approximation algorithms1.
First, we the �nite-horizon algorithm FiVI from the previous chapter to obtain
an approximate subproblem solution. Next, we convert this approximate solution
into a policy graph, which we can evaluate e�ciently. The resulting algorithm is a
new approximate method for Constrained POMDPs in single-agent settings, but
also in settings in which multiple independent agents share a global constraint.

1This chapter is based on an article that appeared in the Journal of Arti�cial Intelligence Research (Wal-
raven and Spaan, 2018).
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Experiments based on several domains show that our method outperforms the
current state of the art.

5.1. Introduction
Decision making under uncertainty subject to constraints on cost or resource con-
sumption occurs in several multi-agent systems in the real world. For example, in
condition-based maintenance problems it is required to optimize maintenance on
multiple assets while taking into account a global constraint on the total mainte-
nance cost (Jardine, Lin, and Banjevic, 2006). This can be a collection of bridges
whose partially observable condition deteriorates stochastically over time. Another
constrained planning problem occurs in online advertising (Boutilier and Lu, 2016),
in which it is required to assign a �nite advertisement budget to online users in
order to maximize return on investment. A third example exists in demand-side
management for smart energy grids, where independent devices want to achieve a
certain goal, while taking into account global capacity constraints imposed by the
grid (De Nijs, Spaan, and de Weerdt, 2015). For electric vehicles in a smart grid
such a goal can be reaching a fully-charged battery as cheaply as possible, which
requires power from the grid. In all these application domains it is required that
planning algorithms account for potentially many agents, uncertainty and partial
observability.

Markov Decision Processes (Puterman, 1994) and Partially Observable Markov
Decision Processes (Kaelbling, Littman, and Cassandra, 1998) have emerged as
powerful models for planning under uncertainty and planning under partial ob-
servability. However, it is not always possible to integrate additional constraints
directly into such models de�ned for a speci�c domain. For example, Markov
Decision Processes (MDPs) and Partially Observable Markov Decision Processes
(POMDPs) can be used to maximize an individual reward signal, but unfortunately
additional constraints cannot be included in this signal such that the optimal policy
respects the constraints during execution. Optimizing policies in which the cost
or resource consumption is simply subtracted from the reward does not produce
policies which guarantee that constraints are respected. In the context of multi-
objective decision making it is possible to assign weights to the reward objective
and cost objective (Roijers et al., 2013), after which single-objective algorithms can
be used. However, often there is no a priori assignment of weights to objectives
available which ensures that constraints on cost are respected while maximizing
the total expected reward. Furthermore, optimizing and evaluating policies for all
possible assignments of weights to objectives is only tractable for small instances.
Based on the aforementioned considerations we conclude that decision making un-
der uncertainty subject to constraints requires specialized algorithms that account
for these constraints during optimization.
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In order to deal with additional constraints, MDPs and POMDPs have been
extended to Constrained MDPs (Altman, 1999) and Constrained POMDPs (Isom,
Meyn, and Braatz, 2008). The main idea is that additional cost functions are added
to the models, together with an associated cost limit that should be respected
in expectation. Constrained MDP solutions are usually computed using a linear
programming formulation for MDPs, in which additional constraints can be easily
added to the dual formulation. This insight provided the foundation for several
constrained optimization algorithms (Dolgov and Durfee, 2003; Wu and Durfee,
2010; Agrawal, Varakantham, and Yeoh, 2016). Constrained POMDPs, on the
other hand, are signi�cantly more di�cult to solve and received far less attention
than the MDP counterpart. There are only a few algorithms, which typically aim
to integrate constraints into a traditional unconstrained POMDP algorithm. Point-
based value iteration (Pineau, Gordon, and Thrun, 2003) has been generalized to
Constrained POMDPs (Kim et al., 2011). In addition, a method has been proposed
to optimize �nite-state controllers using approximate linear programming (Poupart
et al., 2015), which is also based on the linear program used for Constrained MDPs.
The aforementioned approaches have two drawbacks. First, they assume an in�nite
horizon with discounting, which is typically not desirable in application domains.
For example, in maintenance problems it can be required to bound the expected
resource usage, but the notion of discounted resource usage is not well-de�ned.
The second drawback is the scalability, because typically they can only be applied
to relatively small instances and they do not provide su�cient scalability to solve
larger (e.g., multi-agent) problems.

Another promising method for Constrained POMDPs, which is not a modi-
�cation of traditional unconstrained algorithms, is based on column generation
for linear programming (Yost and Washburn, 2000). The method is based on a
master linear program (LP) in which columns correspond to POMDP policies.
These columns are incrementally generated by solving a series of unconstrained
subproblems, for which traditional POMDP algorithms can be used. Unfortunately,
the method has several shortcomings, preventing us from applying it to larger
Constrained POMDPs. Most importantly, its scalability is limited since it relies
on exact POMDP algorithms for solving the subproblems, such as incremental
pruning (Cassandra, Littman, and Zhang, 1997). Replacing the exact algorithms
by approximation algorithms is not trivial because it potentially a�ects the conver-
gence and it requires exact policy evaluation, which can be an expensive operation.

The shortcomings of constrained point-based value iteration, constrained ap-
proximate linear programming and exact column generation leave a gap for the
development ofmore sophisticatedConstrained POMDPalgorithms for both single-
agent and multi-agent problems. We use exact column generation as a starting
point, and we improve this algorithm by eliminating the need to solve the series of
subproblems to optimality.



106 5. Approximate planning for Constrained POMDPs

5.1.1. Contributions
We present and evaluate a novel algorithm for Constrained POMDPs. In particular,
we cast the optimization problem for Constrained POMDPs into a linear program
in which columns correspond to POMDP policies, and this enables us to use a
variety of techniques for linear programs. Our approach is based on the column
generation technique introduced by Yost andWashburn (2000), which we enhance
by embedding POMDP approximation algorithms, and we apply this approach in
a multi-agent setting where multiple agents share a global constraint.

Compared to constrained point-based value iteration and constrained approxi-
mate linear programming, we approach optimization for Constrained POMDPs
from a rather di�erent angle. Instead of modifying POMDP algorithms to let them
take into account constraints, ourmethods naturally split the optimization problem
into a sequence of regular POMDPs that can be solved using traditional uncon-
strained POMDP algorithms. This gives us several computational advantages and
it opens the door to a new class of novel approximation algorithms for solving
Constrained POMDPs. To be more speci�c, the contributions are the following.

First, we de�ne an extension of the standard single-agent Constrained POMDP
model, which supports multi-agent planning problems in which multiple agents
act independently while taking a global constraint into account. This makes it
possible to model constrained planning problems with loosely-coupled agents.
Yost and Washburn (2000) described this multi-agent problem as planning for
multiple objects. Other Constrained POMDP literature does not refer to such
model extensions, and therefore we provide a formal introduction. In contrast
to existing Constrained POMDP literature, our model assumes a �nite planning
horizon, which aligns with many Constrained POMDP application domains.

Second, we revisit a column generation algorithm which can be used to �nd
optimal Constrained POMDP solutions. It does so by generating policies incremen-
tally, for which new columns can be added to a linear program which takes care of
the constraints. We provide a new theoretical analysis to further understand the
characteristics of the algorithm, which also proves its correctness.

Third, we improve the column generation algorithm by integrating our �nite-
horizon algorithm FiVI for solving subproblems. This algorithm �rst computes
a vector-based value function, after which we translate the solution into a policy
graph. Furthermore, we show how an upper bound on the expected value can
be calculated while running the adapted algorithm, which enables us to assess
solution quality.

Fourth, we provide an experimental evaluationwhich shows that our algorithm
signi�cantly outperforms the current state of the art. In particular, we describe
several problem domains and we present the results of a series of experiments for
both single-agent as well as multi-agent problems.
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5.1.2. Chapter outline
In Section 5.2 we introduce Constrained POMDPs and an extension suitable for
multi-agent planning. In Section 5.3 we introduce an exact algorithm for solving
Constrained POMDPs based on column generation for LPs, and we further analyze
this algorithm in order to understand its characteristics. In Section 5.4 we describe
techniques to solve column generation subproblems using approximate POMDP
algorithms, which signi�cantly improves the performance of column generation.
In Section 5.5 we provide the results of our experimental evaluation. In Section 5.6
and Section 5.7 we describe related work, our conclusions and future work.

5.2. Constrained POMDPs
In this section we provide a formal introduction to Constrained POMDPs. In a
fully observable setting the Constrained MDP framework can be used to model
constrained stochastic decision making problems (Altman, 1999). This framework
augments a default MDP with an additional cost function and an upper bound on
the expected cost incurred during execution. The Constrained POMDP formalism
is based on a similar idea and it models constrained stochastic decision making
problems which include partial observability (Isom, Meyn, and Braatz, 2008). In
this chapter we consider �nite-horizon planning problems, because this naturally
aligns with Constrained POMDP applications domains, which typically have a
�nite horizon.

We de�ne a Constrained POMDP using a tupleM = ⟨S,A,O,T,Ω,R,C,L,b1,ℎ⟩.
This tuple is identical to the tuple M used for POMDPs, except that it contains
an additional cost function C ∶ S×A→ R and a cost limit L. When executing an
action a ∈ A in state s ∈ S, the agent incurs cost C(s,a). Similar to the reward
function, the expected sum of costs C�(t,b) incurred by the agent when following
policy � from starting from belief b at time t is de�ned as:

C�(t,b) = E� [
ℎ∑

t′=t
C(bt′ ,�(t′,bt′))

||||||||||
bt = b ] , (5.1)

where bt′ is the belief at time t′ and C(bt′ ,�(t′,bt′)) =
∑

s∈SC(s,�(t
′,bt′))bt′(s).

The cost function C and the limit L re�ect the constrained nature of the problem,
because the agent aims to maximize the expected sum of rewards while ensuring
that the expected sum of costs is upper bounded by L. This optimization problem
can be formally stated as follows:

max
�

V�(1,b1)

s.t. C�(1,b1)≤ L.
(5.2)

Similar to Constrained MDPs, an optimal policy for a Constrained POMDP may
need to randomize over di�erent actions in order to �nd an appropriate balance
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between reward and cost (Altman, 1999). It can be shown that the best possible
deterministic policy for a Constrained POMDP may be suboptimal (Kim et al.,
2011).

In contrast to the fully observable counterpart, Constrained POMDPs received
limited attention in the literature. Isom, Meyn, and Braatz (2008) presented an
exact dynamic programming update for the constrained setting, which keeps track
of both reward and cost. Moreover, it is shown that the pruning operator that is
typically found in exact algorithms requires a mixed-integer linear program, rather
than the linear program from the non-constrained solution algorithm. In order to
address the intractability of exact methods, a constrained variant of point-based
value iteration, also known as CPBVI, has been proposed which keeps track of
admissible cost while executing backups (Kim et al., 2011). The algorithm CALP
aims to approximate the Constrained POMDP using a Constrained MDP de�ned
over belief states, and eventually it produces a �nite-state controller respecting the
imposed constraint (Poupart et al., 2015). More details about the algorithms and
their characteristics are provided in Section 5.3.

5.2.1. Multi-agent Constrained POMDPs
So far we discussed Constrained POMDPs from the perspective of one individual
agent which needs to respect a constraint on expected cost. However, we address
a larger class of decision making problems which involves multiple independent
agents with a shared constraint on cost. These agents are only coupled through
their shared constraint, which allows for scalable optimization techniques.

We considern independent agents that share a common constraint on cost, each
of which is modeled using a POMDPwhich includes cost. For agent i we de�ne the
decision making process using a tupleMi =

⟨
Si ,Ai ,Oi ,Ti ,Ωi ,Ri ,Ci ,b1,i ,ℎ

⟩
, similar

to the tupleM used for Constrained POMDPs. It should be noted that the models
of the individual agents are completely separated, and the existing de�nitions from
the previous sections can be applied directly to each individual agent. Therefore,
the additional subscript i will be used to refer to a speci�c agent throughout the
chapter. The main idea is to �nd policies �1,… ,�n for the agents, such that the
total expected reward is maximized while the expected sum of costs is bounded:

max
{�1,…,�n}

n∑

i=1
V�i
i (1,b1,i)

s.t.
n∑

i=1
C�ii (1,b1,i)≤ L.

(5.3)

We want to emphasize that the multi-agent formulation above is equivalent to the
standard Constrained POMDP model if there is only 1 agent. This means that all
presented techniques also apply to Constrained POMDPs with only 1 agent.
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5.3. Column Generation for Constrained POMDPs
Approximation algorithms for POMDPs have been widely studied, but the con-
strained counterpart received only limited attention. Typically, algorithms for
Constrained POMDPs have been created by adapting traditional POMDP algo-
rithms for unconstrained problems, and by generalizing algorithms for Constrained
MDPs to Constrained POMDPs. An example of the former is CPBVI (Kim et al.,
2011), which generalizes point-based value iteration to constrained problems. An
example of the latter is CALP (Poupart et al., 2015), which uses solution concepts
for Constrained MDPs to create an algorithm which supports partial observability.
Unfortunately, both algorithms are potentially a�ected by scalability problems.
CPBVI keeps track of admissible cost while executing point-based backups. This
requires solving many linear programs, which slows down the algorithm. CALP
de�nes a linear program over a potentially large number of beliefs, which poten-
tially introduces scalability problems due to the size of this linear program. In both
cases the scalability of the algorithms potentially limits the application of existing
approximate algorithms for Constrained POMDPs.

Besides the aforementioned scalability problems there is another signi�cant
drawback. The algorithms assume that the expected sum of discounted costs of the
solution should be bounded, but unfortunately this type of constraint is often not
useful from a practical point of view. For example, in problems with a constraint on
the amount of resources, it would be intuitive to de�ne a constraint on the expected
resource consumption. However, the notion of discounted resource consumption is
typically not well-de�ned, which means that algorithms for Constrained POMDPs
with discounting cannot be applied. Another example consists in domains where
it is suitable to use constraints to impose a bound on the probability of an event
occurrence. Such constraints can be expressed in the Constrained POMDP formal-
ism, but algorithms which assume discounting in the constraints cannot be used
for such problems.

To address both the scalability problems and the problems due to discounting,
we build upon a collection of techniques proposed by Yost and Washburn (2000),
which approach optimization for Constrained POMDPs from a di�erent angle.
They show how the optimization problem can be seen as a linear program de�ned
over the entire policy space, which can be subsequently solved using a column
generation algorithm for linear programs. Based on this linear program it is possi-
ble to formulate a solution algorithm which does not assume discounting in the
constraint. The application of column generation is attractive because it makes
it possible to solve a constrained problem as a sequence of unconstrained prob-
lems. In the remainder of this section we provide an introduction to the algorithm,
and we present an additional mathematical analysis to further understand the
characteristics of the algorithm. In Section 5.4 we describe how the scalability
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of the column generation algorithm can be improved by integrating approximate
POMDP algorithms.

5.3.1. Exact column generation for Constrained POMDPs
Optimization problems formulated as an LP can be solved using a conventional
LP solver based on, e.g., simplex (Dantzig, 1963) and interior-point methods (Kar-
markar, 1984). However, due to the large size of problem formulations it is not
always tractable to solve an LP as one individual problem. The main idea of col-
umn generation is that large LPs contain only a few variables (i.e., columns) that
become non-zero in an optimal solution. Theoretically, only these variables are
necessary to characterize an optimal solution. A column generation algorithm
incrementally computes columns having the potential to improve the objective
function, rather than initializing all the columns immediately. Typically, a column
generation algorithm is based on a master LP, which contains only a subset of
columns from the original LP. A subproblem is used to identify columns which
improve the objective value of the master problem. Column generation can be par-
ticularly useful in case the total number of columns is exponential, while searching
for new columns can be executed without full enumeration of the exponential
column space. The column generation technique was �rst described by Gilmore
and Gomory (1961). For more details about column generation in general we refer
to a book by Desrosiers and Lübbecke (2005).

A column generation approach for Constrained POMDPs has been proposed
by Yost andWashburn (2000). It uses an LP formulationwhich de�nes a probability
distribution over policies for each agent, rather than one individual policy for each
agent. The LP can be stated as follows:

�=max
n∑

i=1

∑

�i∈Ki

V�i
i ⋅xi,�i

s.t.
n∑

i=1

∑

�i∈Ki

C�ii ⋅xi,�i ≤ L (dual variable: �)

∑

�i∈Ki

xi,�i = 1 ∀i (dual variables: �i)

xi,�i ≥ 0 ∀i,�i .

(5.4)

For each agent i the set Ki represents the �nite policy space of its �nite-horizon
POMDP model. The variables xi,�i represent decision variables corresponding to
the probability that agent i uses policy �i ∈ Ki during execution. The objective
function represents the total expected sum of rewards collected by the agents, in
which we use V�i

i as a shortcut for V�i
i (1,b1,i). Note that this term is a coe�cient

associated with a variable, and not a variable of the LP. In a similar way the �rst
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constraint ensures that the total expected sum of costs is upper bounded by L.
Here we use C�ii as a shortcut for C�ii (1,b1,i). The remaining constraints ensure
that the variables constitute valid probability distributions for each agent. For
convenience we let � denote the optimal objective value. For each constraint there
is a corresponding dual variable, which represent the solution to the dual of the
problem. The value assigned to such variables can be obtained from the LP solver
after solving the linear program.

The linear program cannot be solved directly because it is intractable to enu-
merate all possible policies �i ∈Ki for each agent. However, a column generation
algorithm can be used to generate the policies incrementally, and typically such
algorithms require enumerating only a relatively small number of columns. The
algorithm maintains a lower bound �l and an upper bound �u on the optimal
objective value �. A lower bound �l can be obtained by solving the LP in (5.4) with
only a subset of columns. An upper bound �u can be derived using the following
Lagrangian relaxation:

�u =max
n∑

i=1

∑

�i∈Ki

V�i
i ⋅xi,�i +�(L−

n∑

i=1

∑

�i∈Ki

C�ii ⋅xi,�i)

s.t.
∑

�i∈Ki

xi,�i = 1 ∀i

xi,�i ≥ 0 ∀i,�i ,

(5.5)

in which � is the Lagrangianmultiplier corresponding to the �rst constraint in (5.4).
Since the constraints only a�ect individual agents, the upper bound can also be
written as:

�u = � ⋅L+
n∑

i=1
[max
�i∈Ki

(
V�i
i −� ⋅C�ii

)
] . (5.6)

It turns out that the upper bound is easy to compute if we observe that the compu-
tation decouples into n separate subproblems. For each agent i the maximization
over its policy space can be executed by running a regular POMDP solver, which
uses the reward function:

Gi(s,a) = Ri(s,a)−� ⋅Ci(s,a). (5.7)

After solving these subproblems separately for each agent, we can compute the
upper bound �u. Note that the subproblems of the agents can be solved in parallel.

The full column generation algorithm is shown in Algorithm 11. On lines 2-7
the algorithm startswith initializing the LP shown in (5.4)with only one column for
each agent, which we refer to as the master LP. In order to ensure initial feasibility
of the master LP, it is assumed that we can always obtain a policy for each agent
with minimum expected cost (e.g., always executing the action with lowest cost).
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For example, in practice this can be a policy which always executes the action
that does not consume any resources. Within the algorithm the sets Ki are used
to keep track of the policies for which columns have been added. On lines 8-20
the algorithm repeatedly solves the master LP to obtain dual price �, after which
new policies can be generated for each agent. This procedure repeats until the
dual price � converges, because in that case the new policies generated by the
algorithm do not change anymore. Finally, the algorithm returns a set Yi for each
agent, which represents a probability distribution over policies. The description
in Algorithm 11 also illustrates how column generation keeps track of the upper
bound �u during execution.

The application of column generation in this context is convenient because
it enables us to approach a constrained optimization problem as a sequence of
unconstrained optimization problems. Additionally, we want to emphasize that
the column generation algorithm produces optimal solutions for Constrained
POMDPs. The formulation in Equation 5.4 de�nes that expected sum of rewards
is maximum while the expected sum of costs remains bounded. As we will show
in the next section, column generation converges to an optimal solution to the LP
in Equation 5.4. Prior to execution each agent i should sample a policy based on
the probability distribution de�ned by Yi to ensure that the expected cost during
execution is bounded while maximizing the reward that is collected in expectation.
Agents do not need to communicate with each other during the execution of the
selected policies. Moreover, there will be at most 1 agent which needs to randomize
its policy choice, as we will show in the analysis in the next section.

5.3.2. Analysis of exact column generation
In this section we study the characteristics of column generation for the setting
where exact POMDP solvers are used for solving the subproblems. Our analysis
gives additional insight into the behavior of the algorithm, and it was not pro-
vided by Yost and Washburn (2000). Moreover, the additional understanding is
required in the next sections where solutions to subproblems are computed using
approximate algorithms, because such approximate solutions may in�uence the
characteristics of column generation.

Our analysis is based on the concept of reduced cost (Dantzig, 1963; Bradley,
Hax, and Magnanti, 1977), which we explain using the following LP formulation
in standard form:

max c⊤x
s.t. Ax ≤ b

x ≥ 0,

(5.8)

in which the symbol ⊤ denotes the transpose operator. Note that we use con-
ventional LP notation, which is con�icting with the notation in the de�nition of
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Algorithm 11: Column generation
input :POMDPMi for each agent i, limit L
output :probability distribution Yi over policies for eachMi

1 �l←−∞, �u←∞, �′←∞, �←∞
2 initialize empty master LP: Ki ← ∅ ∀i
3 foreach i = 1,… ,n do
4 �i ← policy forMi with lowest expected cost
5 compute V�i

i and C�ii using �i
6 add column: Ki ←Ki ∪{�i}
7 end
8 do
9 �′← �
10 solve the master LP to obtain new �
11 �l← current objective value of the master LP
12 �u← � ⋅L
13 foreach i = 1,… ,n do
14 Gi(s,a)← Ri(s,a)−� ⋅Ci(s,a) ∀s ∈ Si , a ∈Ai
15 solveMi using Gi to obtain �i
16 compute V�i

i and C�ii using �i
17 add column: Ki ←Ki ∪{�i}
18 �u← �u+(V

�i
i −� ⋅C�ii )

19 end

20 while � ≠ �′;
21 Yi ← {(�i ,xi,�i ) | �i ∈Ki and xi,�i > 0} ∀i
22 return {Y1,… ,Yn}

POMDPs, but its meaning in this section will be clear from context. We can de�ne
a reduced cost vector c̄:

c̄ = c−A⊤y, (5.9)

in which y is a vector containing the dual prices of the constraints. The reduced
cost vector contains a reduced cost value for each column of the LP. The reduced
cost of a column j, which is denoted by c̄j , can be interpreted as the rate of change
in the objective function when increasing the value assigned to the corresponding
variable xj (Bradley, Hax, and Magnanti, 1977). If the reduced cost of column j is
greater than zero (i.e., c̄j > 0), then it holds that the variable xj has the potential to
increase the objective value.

We observe that the LP de�ned in (5.4) is in standard form if we transform the
constraint

∑
�i∈Ki

xi,�i = 1 into two constraints
∑

�i∈Ki
xi,�i ≤ 1 and

∑
�i∈Ki

−1 ⋅
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xi,�i ≤ −1 for each agent i. The corresponding dual prices are denoted by �i,0
and �i,1, respectively. However, we do not need to treat the dual prices of these
constraints separately, since the original dual price �i of the equality constraint of
agent i is de�ned by �i = �i,0−�i,1. The reason is that increasing the right hand
side of the �rst constraint by 1 corresponds to decreasing the right hand side of the
second constraint by 1. Since the dual price corresponds to the rate of change in
the objective function, the rate of change when increasing the right hand side of
the original equality constraint equals �i,0−�i,1.

By applying the de�nitions of reduced cost to the columns in (5.4), we derive
that the reduced cost of a policy �i is equal to:

c̄�i =V
�i
i −� ⋅C�ii −�i,0 ⋅1−�i,1 ⋅ (−1) (5.10)

=V�i
i −� ⋅C�ii −�i,0+�i,1 (5.11)

=V�i
i −� ⋅C�ii −(�i,0−�i,1) (5.12)

=V�i
i −� ⋅C�ii −�i . (5.13)

This enables us to establish a relationship between the concept of reduced cost
and the computed policies. Below we show that the subproblems solved by Al-
gorithm 11 can be interpreted as computing columns which maximize reduced
cost.

Lemma 2. In each iteration, Algorithm 11 computes a policy �i for each agent i
which maximizes reduced cost.

Proof. Without loss of generality we consider an arbitrary agent i. In each iteration
the algorithm computes a policy �i for this agent which maximizes:

G�ii = E�i [
ℎ∑

t=1
Gi(bt,�i(t,bt))

||||||||||
b1 = b1,i] (5.14)

= E�i [
ℎ∑

t=1
Ri(bt,�i(t,bt))

||||||||||
b1 = b1,i]−� ⋅E�i [

ℎ∑

t=1
Ci(bt,�i(t,bt))

||||||||||
b1 = b1,i]

(5.15)
= V�i

i −� ⋅C�ii , (5.16)

where Gi(bt,�i(t,bt)) =
∑

s∈Si
Gi(s,�i(t,bt))bt(s). From Equation 5.13 we know

that the reduced cost of the newly generated policy �i is equal to V
�i
i −� ⋅C�ii −�i .

Since the last term is a constant regardless of the computed policy �i, we can
conclude that the algorithm computes a policy for agent iwhichmaximizes reduced
cost.

By maximizing reduced cost the algorithm tries to �nd policies with positive
reduced cost, which have the potential to improve the objective of the master LP. It
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should be noted that �nding such columns is equivalent to Dantzig’s pivot rule for
selecting entering variables in the simplex algorithm (Papadimitriou and Steiglitz,
1982). Before we can show that the column generation algorithm progresses
towards an optimal solution, it is important to know whether policies can be
generated twice, and how many policies we can potentially generate. This is
characterized in Lemma 3 and Lemma 4.

Lemma 3. If Algorithm 11 generates a policy �i for which the reduced cost c̄�i is
strictly positive, then the policy has not been generated before.

Proof. Without loss of generality we consider an arbitrary agent i. We assume that
Algorithm 11 solves the master LP to optimality and subsequently it generates
a policy �i with strictly positive reduced cost (i.e., c̄�i > 0). The reduced cost of
policies that have been generated before is zero or negative, which follows from
the de�nition of reduced cost. This is the case because the optimal objective value
cannot increase further, and therefore the reduced cost of existing columns cannot
be positive. Since the reduced cost of �i is positive, it follows that �i has not been
generated before.

Lemma 4. The master LP in Equation 5.4 has a �nite number of distinct columns.

Proof. A column is de�ned by the expectations V�i
i and C�ii , which are calculated

using Equation 2.23 and Equation 5.1. We consider the computation of the expecta-
tion V�i

i , which enumerates all reachable beliefs under the execution of �i starting
from the initial belief. We can interpretV�i

i as a function of the beliefs reachable in
the POMDP model and the policy �i used in evaluation. The number of reachable
beliefs is �nite because we consider a �nite-horizon POMDP. During evaluation
the policy �i ∶ {1,… ,ℎ}×∆(S)→A is invoked based on a �nite number of beliefs,
and the horizon and the number of actions are �nite as well. Both observations
together imply that there is a �nite number of distinct expectations V�i

i that can
be constructed by varying the policy �i . The same line of reasoning applies to C�ii .
Since there is only a �nite number of distinct expectations V�i

i and C�ii , it follows
that there is a �nite number of distinct columns.

Algorithm 11 terminates if the dual price � has converged. Before we can
prove that the algorithm computes an optimal Constrained POMDP solution, we
present two lemmas which we can use to characterize the correct termination of
the algorithm.

Lemma 5. If the master LP solution does not correspond to the optimal Constrained
POMDP solution after adding new columns, then the dual price � changes due to
adding the new columns.
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Proof. We consider a setting in which the algorithm retrieves the dual price �′
from the master LP, generates new columns using �′, after which the dual price
becomes �. We assume that the master LP solution does not correspond to the
optimal Constrained POMDP solution after generating the new columns, which
implies that at least one new column with positive reduced cost exists. We show
by contradiction that �′ ≠ �. We assume that �′ = �. From this it follows that
the columns found in the next iteration are identical to the columns found in the
previous iteration. The reduced cost of such existing columns is zero or negative.
The subproblems in column generation maximize reduced cost (Lemma 2), which
implies that new columns with positive reduced cost do not exist. This is a contra-
diction, because we concluded that there is at least one such column if the master
LP solution does not correspond to the optimal Constrained POMDP solution. We
can conclude that �′ ≠ �, which means that the dual price changes due to adding
new columns.

Lemma 6. If themaster LP solution corresponds to the optimal Constrained POMDP
solution, then the dual price � becomes constant during the execution of Algorithm 11.

Proof. The dual price � follows from the dual solution of the master LP. Since
the master LP solution is optimal and its primal solution remains constant in
subsequent iterations, it follows that the dual price � also remains constant in
subsequent iterations.

Based on the lemmas we can prove the correct termination and optimality of
Algorithm 11, as shown in Theorems 5 and 6 below.

Theorem 5. Algorithm 11 terminates if and only if it has found an optimal Con-
strained POMDP solution.

Proof. This follows immediately from Lemma 5 and Lemma 6. If the solution to
the master LP does not correspond to the optimal Constrained POMDP solution
after generating columns, then the dual price � changes (Lemma 5), which means
that the algorithm does not terminate and proceeds with generating columns. If
the solution to the master LP corresponds to the optimal Constrained POMDP
solution, then the dual price � will become constant (Lemma 6), which leads to
termination.

Theorem 6. Algorithm 11 computes an optimal Constrained POMDP solution.

Proof. Based on Theorem 5 we know that Algorithm 11 keeps generating new
columns until reaching an optimal solution, and it never terminates before reach-
ing an optimal solution. Therefore, we only need to show that the algorithm is
guaranteed to converge to lower bound �l = � in a �nite number of iterations.
Suppose that it does not, which means that it reaches a lower bound �l < � which
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never further increases in subsequent iterations. The master LP solution does not
correspond to the optimal Constrained POMDP solution, which implies that there
is at least one new column to be added with positive reduced cost. The algorithm
is guaranteed to generate all columns with positive reduced cost in a �nite number
of iterations because subproblems maximize reduced cost (Lemma 2), columns
with positive reduced cost are always new (Lemma 3) and the number of columns
with positive reduced cost is �nite (Lemma 4). Now it follows that it is guaranteed
that �l eventually increases further. This is a contradiction, because earlier we
concluded that the lower bound �l never increases further in remaining iterations.
Now we can conclude that Algorithm 11 is guaranteed to converge to a lower
bound �l = � in a �nite number of iterations, which means that it computes an
optimal Constrained POMDP solution.

As noted earlier, in an optimal solution computed by exact column generation
there is a probability distribution over policies for each agent. This means that
agents may need to randomize their policy choice prior to execution. In practice
it turns out that randomization is limited because we can derive an upper bound
on the total number of policies which get a non-zero probability assigned. This
is formalized in the theorem below, which shows that there is at most one agent
which needs to randomize its policy choice in the �nal solution.

Theorem 7. Algorithm 11 computes a solution in which at most one agent needs to
randomize its policy choice.

Proof. For each agent the probability distribution over policies is determined based
on a solution satisfying the constraints in the LP de�ned in (5.4). There are n+1
constraints in total, which implies that only n+1 variables in the master LP can
become non-zero. The reason is that only basic variables of a linear program can
take non-zero values, and the number of basic variables is upper-bounded by the
number of constraints (Papadimitriou and Steiglitz, 1982). Now it follows that
there is at most one agent which has two policies with non-zero probability.

To summarize, in our analysis in this section we have shown that Algorithm 11
�nds optimal Constrained POMDP solutions in which at most one agent ran-
domizes its policy choice. Solving subproblems to optimality quickly becomes
intractable, however, due to the limited scalability of exact POMDP algorithms. In
the next section we show how a tailored approximate algorithm can be used, in
order to mitigate potential scalability problems, and we discuss how this a�ects
the convergence characteristics of the algorithm.

5.4. Approximate algorithms for subproblems
There are several limitations which prevent us from using exact column generation
to solve Constrained POMDPs. Exact column generation uses an exact POMDP
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Figure 5.1: Overview of exact column generation and column generation with point-based
methods and policy graph generation.

algorithm to solve the subproblems, whichmay require a signi�cant amount of time
and therefore this quickly becomes intractable. Besides the scalability problems,
the column generation algorithm assumes that the LP coe�cients V�i

i and C�ii
can be computed for a given policy �i that maximizes G�ii , which we de�ned in
Equation 5.14. These coe�cients are required in the LP objective function and
the cost constraint, respectively. However, policy evaluation is typically expensive
and it may be intractable in practice. Intuitively, the scalability problems can be
addressed by solving the subproblems using an approximate POMDP algorithm.
However, it still requires policy evaluation, and even in the approximate case this
is not always trivial to execute. Additionally, the upper bound �u computed in
Equation 5.6 becomes too tight if the approximate algorithm does not �nd an
optimal solution to the subproblem. This would lead to a situation in which the
upper bound computed by the column generation algorithm becomes invalid.

We address the limitations of exact column generation by presenting a two-stage
approach to compute solutions to subproblems, based on approximate POMDP
algorithms. In particular, we use our �nite-horizon algorithm FiVI to obtain
an approximate solution to the subproblems. This algorithm provides improved
scalability, but obtaining the expected reward and cost of the resulting policies (i.e.,
the coe�cients that we need to insert in the LP) remains expensive. Therefore,
we describe a method which converts the solution computed by FiVI into a policy
graph, which allows for exact policy evaluation. Finally, we discuss how the
techniques can be integrated in the column generation algorithm, and how it keeps
track of valid upper bounds �u while optimizing. A high-level overview of the
resulting approach is shown in Figure 5.1, which indicates the di�erences between
exact column generation and column generation based on point-based algorithms
and policy graphs. In Figure 5.1a an exact subproblem solution is computed, which
immediately gives the coe�cients required in the LP. In Figure 5.1b FiVI produces
an intermediate policy �, which is converted to a policy graph and subsequently
evaluated. The �nal policy �i and the LP coe�cients are returned to the column
generation procedure.
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The remainder of this section is structured as follows. In Sections 5.4.1 and 5.4.2
we introduce policy graphs and we describe how they can be created and evaluated.
In Section 5.4.3 we discuss our modi�ed column generation algorithm, which
is called CGCP. An additional analysis of the graph construction is provided in
Section 5.4.4.

5.4.1. Policy graphs as policy representation
Computing value functions using FiVI is relatively e�cient compared to exact
value iteration. However, given a policy �i induced by vector sets Γ1,… ,Γℎ, it
is computationally di�cult to obtain the expectations V�i

i and C�ii . It requires
evaluation of a tree consisting of all reachable beliefs, and even in the �nite-horizon
case the construction of this tree can be intractable in terms of both memory and
time. Performing such an evaluation many times during the execution of column
generation is clearly not possible. It should also be noted that it is not possible to
keep track of cost as part of the vectors while executing backups, because this does
not provide us with an exact expectation of cost. Such expectations only become
exact if the backups are executed on all reachable beliefs, but point-based value
iteration algorithms do not guarantee that all these beliefs are enumerated.

We use policy graphs as an alternative to vector-based policies (Kaelbling,
Littman, and Cassandra, 1998; Hansen, 1998; Poupart and Boutilier, 2003). Such
graphs provide a general formalism for representing POMDP solutions. They
consist of a set of nodes, each of which has associated actions and node transitions,
which together represent a �nite-state controller. After executing the action corre-
sponding to the current node and receiving an observation from the environment,
the controller transitions to another node, after which the process repeats. Both
the action selection and the node transitions can be stochastic, but we exclusively
use deterministic policy graphs. The main motivation for using policy graphs is
that policy evaluation is relatively cheap to perform, which enables us to obtainV�i

i
and C�ii without enumerating all reachable beliefs.

Formally, we represent the policy �i of an agent i using a set of nodes G. Typi-
cally we represent a node using the label qt,j ∈ G, where t refers to a time step and j
is the index of the node. The action to be executed in node qt,j is qat,j ∈Ai , and after
receiving observation o ∈Oi the controller node transitions deterministically to
node qot,j ∈ G. This means that qot,j refers to another node of the controller, whose
time step is t+1. Prior to execution the controller starts in node qs ∈ G.

An example policy graph is shown in Figure 5.2 for a POMDP with observation
set Oi = {o1, o2, o3, o4}. Execution starts in node q1,1, which is also known as the
start node qs. In this node the agent always executes the action qa1,1 ∈Ai . For each
observation the graph de�nes a transition to a node in the next layer, corresponding
to the next time step. For the example graph it holds that qo11,1 = q2,1, q

o2
1,1 = q2,3,
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Figure 5.2: Policy graph example

qo31,1 = q2,2 and q
o4
1,1 = q2,3. If the agent executes action q

a
1,1 and observes o3, then it

transitions to node q2,2. The �gure shows the graph for just one transition, but the
remaining transitions for subsequent steps are de�ned in a similar manner.

5.4.2. Creating and evaluating a policy graph
A policy graph G can be constructed in several di�erent ways. There are algorithms
which optimize �nite-state controllers directly (Poupart and Boutilier, 2003; Grześ,
Poupart, and Hoey, 2013; Amato, Bernstein, and Zilberstein, 2010), and they iter-
atively update a controller in order to improve its quality. They resemble policy
iteration techniques, which iteratively evaluate and update a policy. Unfortu-
nately, several of these algorithms can get trapped in a local optimum (Poupart and
Boutilier, 2003), they tend to be computationally expensive, and most algorithms
have been developed for in�nite-horizon problems. Since we need to solve a po-
tentially large number of subproblems during the execution of column generation,
we do not want to rely on such expensive algorithms for solving subproblems.
Another issue is that our adapted column generation algorithm requires an upper
bound on the value of a computed policy, which cannot be easily obtained using
algorithms which optimize policy graphs directly. Instead of computing a policy
graph directly, we use a method which converts a vector-based policy into a policy
graph. By doing so, we maintain the convenient characteristics of point-based
value iteration and the value upper bound it produces, while being able to perform
policy evaluation e�ciently using the policy graph.

We convert the value function induced by Γ1,… ,Γℎ into an approximately
equivalent policy graph G, in which each node qt,j ∈ G corresponds to a vector �j ∈
Γt from the original solution (Grześ et al., 2015). Algorithm 12 shows how the
alpha vectors Γ1,… ,Γℎ can be translated into a policy graph G. The action to be
executed in the node qt,j is identical to the action associated with the vector �j ∈ Γt .
Each node has an outgoing transition for each observation o ∈Oi . For each action-
observation pair, the outgoing transition leads to the node corresponding to the
vector providing the highest value for the resulting belief. The policy graph is
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Algorithm 12: Generate policy graph (GeneratePolicyGraph)
input :POMDP modelMi , alpha vectors in a sets Γ1,… ,Γℎ
output :policy graph G, start node qs

1 G← ∅
2 for t = ℎ,ℎ−1,… ,1 do
3 for j = 1,… , |Γt| do
4 create node qt,j
5 G← G∪{qt,j}
6 a← action associated with �j ∈ Γt
7 qaj,t← a
8 b← belief using which �j ∈ Γt was generated
9 if t < ℎ then
10 foreach o ∈Oi do
11 if P(o | b,a)> 0 then
12 k← argmax{�k∈Γt+1}k �

k ⋅boa
13 qoj,t← qt+1,k
14 else
15 qoj,t← qt+1,1
16 end
17 end
18 end
19 end
20 end
21 k← argmax{�k∈Γi}k �

k ⋅b1,i
22 qs← q1,k
23 return (G,qs)

equivalent to the original value function in case the policy induced by the vectors is
�nitely transient (Sondik, 1971; Cassandra, 1998), but in general it is not guaranteed
that the policy quality remains the same. An additional discussion regarding policy
quality will be provided in Section 5.4.4.

A convenient property is that we can evaluate the quality of the policy graph
using a recurrence. We let VR(qt,j , s) denote the expected sum of rewards received
by the agent when the current node is qt,j ∈ G, the current state is s ∈ Si , and the
agent follows the policy induced by the policy graph afterwards. We can compute
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this expectation as follows:

VR(qt,j , s) = {
Ri(s,qat,j)+

∑
o∈oi ,s′∈Si

P(s′ | s,qat,j)P(o | qat,j , s
′)VR(qot,j , s

′) t < ℎ
Ri(s,qat,j) t = ℎ

.

(5.17)
Now we can obtain the exact expected sum of rewards of the policy �i represented
by the policy graph:

V�i
i =

∑

s∈Si

VR(qs, s) ⋅b1,i(s), (5.18)

where b1,i(s) corresponds to the probability that s is the initial state of agent i. In
a similar fashion we can obtain the expected sum of costs using the following
recurrence:

VC(qt,j , s) = {
Ci(s,qat,j)+

∑
o∈oi ,s′∈Si

P(s′ | s,qat,j)P(o | qat,j , s
′)VC(qot,j , s

′) t < ℎ
Ci(s,qat,j) t = ℎ

.

(5.19)
The exact expected sum of costs of the policy �i represented by the policy graph
equals:

C�ii =
∑

s∈Si

VC(qs, s) ⋅b1,i(s). (5.20)

To summarize, for a given policy �i represented by a policy graph we can use a
recurrence to obtain the LP coe�cients V�i

i and C�ii , which we can use to generate
a new column during the execution of column generation. This evaluation is exact,
and it does not require full enumeration of reachable beliefs. The fact that policy
evaluation is exact ensures that the newly added column is a valid column of the
original master LP in the column generation algorithm. A theoretical analysis
of the policy graph construction is provided in Section 5.4.4. In the next section
we �rst describe how FiVI and the policy graphs are integrated in the column
generation algorithm.

5.4.3. Adapted column generation algorithm
Exact column generation in Algorithm 11 iteratively generates new columns until
the optimal solution has been found. When generating columns using approxi-
mate methods, it is no longer guaranteed that the algorithm reaches an optimal
solution. Generating policies with approximate methods implies that Lemma 2 is
no longer valid because computed policies do not necessarily maximize reduced
cost. Lemma 3 is still valid because we are always able to determine the reduced
cost c̄�i of a new policy. Lemma 4 is still valid because it does not depend on the
solution algorithm used. When using approximate methods the dual price may
become constant, even if the algorithm did not reach an optimal solution, which
means that Lemma 5 is no longer valid. Lemma 6 is still valid and the dual price
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will remain constant after reaching optimality, but it is not guaranteed that the
algorithm actually reaches such a solution. We conclude that introducing approx-
imate methods for solving subproblems a�ects the correctness and termination
of Algorithm 11, which means that several modi�cations need to be made. In
the remainder of this section we discuss how we modify the traditional column
generation algorithm, in such a way that the algorithm is guaranteed to terminate
while keeping track of valid lower bounds and upper bounds.

Our �rst observation is that FiVI may need a signi�cant amount of time to
compute a solution to a subproblem. Since we need to solve potentially many
subproblems, we want to be able to control the time spent on solving subproblems.
Especially during early iterations we do not want to invest a signi�cant amount of
time in computing nearly-optimal solutions, because typically the policies gener-
ated during early stages (i.e., when � is not stable yet) do not always occur in the
�nal solution. In general there is a tradeo� between the quality of the subproblem
solutions and the running time required to obtain such solutions. In our case
we prefer quick computation and evaluation of subproblem solutions over solu-
tion quality. Therefore, we introduce a time limit � for the point-based algorithm
FiVI, which we gradually increase during the execution of column generation by
adding �+ once the objective of the master LP does not improve anymore. In prac-
tice this means that the algorithm runs FiVI only for a short period of time during
early iterations, such that it is able to compute several initial columns quickly. If
the lower bound �l does not change anymore (i.e., when � remains constant), we
increase the time limit. After increasing the time limit it may be able to compute
better policies which it could not generate before. This eventually leads to policies
which improve the objective of the master LP. Besides the FiVI time limit � we also
introduce a global time limitT which ensures that the entire algorithm terminates.

Our second observation is that the upper bound de�ned in Equation 5.6 is no
longer valid since it is not guaranteed that FiVI �nds themaximizing policy�i ∈Ki .
However, given the upper bound Ĝ�ii computed by FiVI we derive:

�u = � ⋅L+
n∑

i=1
[max
�i∈Ki

(
V�i
i −� ⋅C�ii

)
]≤ � ⋅L+

n∑

i=1
Ĝ�ii . (5.21)

Note that the upper bound Ĝ�ii is denoted by the variable vu in the description of
FiVI Based on the new upper bound we can modify the computation of �u in the
column generation algorithm, such that we obtain a valid upper bound. These
bounds are not always tight, especially when the point-based algorithm runs for
a short period of time. However, it can be expected that the quality of the upper
bound becomes better once FiVI runs longer during later stages of the column
generation algorithm.

In Algorithm 13 we present the modi�ed Column Generation algorithm for
Constrained POMDPs, which we call CGCP. On line 19 the algorithm invokes FiVI
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Algorithm 13: Adapted column generation (CGCP)
input :POMDPMi ∀i, time limit T, FiVI time limit �, increment

time �+, precision �, limit L
output :probability distribution Yi over policies for eachMi

1 �l←−∞, �u←∞
2 initialize empty master LP: Ki ← ∅ ∀i
3 foreach i = 1,… ,n do
4 �i ← policy forMi with lowest expected cost
5 compute V�i

i and C�ii using �i
6 add column: Ki ←Ki ∪{�i}
7 end
8 T′← 0
9 �′←∞
10 do
11 solve the master LP to obtain �
12 �l← current objective value of the master LP
13 �u← � ⋅L
14 if �= �′ then
15 �← �+�+

16 end
17 foreach i = 1,… ,n do
18 Gi(s,a)← Ri(s,a)−� ⋅Ci(s,a) ∀s ∈ Si , a ∈Ai
19 (Γ1,… ,Γℎ, Ĝ

�i
i )← FiVI(Mi ,�,�,Gi)

20 �i ← GeneratePolicyGraph(Mi ,Γ1,… ,Γℎ)
21 compute V�i

i and C�ii using �i and Equations 5.17-5.20
22 add column: Ki ←Ki ∪{�i}
23 �u← �u+ Ĝ

�i
i

24 end
25 T′← elapsed time since the start of the algorithm
26 �′← �
27 �a← 10⌈log10(max(|�l|,|�u|))⌉−�

28 while T′ <T ∧ �u−�l > �a;

29 Yi ← {(�i ,xi,�i ) | �i ∈Ki and xi,�i > 0} ∀i
30 return {Y1,… ,Yn}

based on the modi�ed reward function Gi and time limit �, which gives vector
sets Γ1,… ,Γℎ and an upper bound Ĝ�ii . The policy graph is generated on line 20,
which invokes Algorithm 12. After policy evaluation using a recurrence, the policy
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can be added and the upper bound �u is updated according to Equation 5.21. If the
dual price � remains identical, then the algorithm does not generate new policies
anymore, and therefore the time limit of the point-based algorithm is increased
on line 15 in those cases. Since it is not guaranteed that the bounds eventually
coincide, we use the same termination condition as the gap-based condition in FiVI.
The algorithm also terminates if the time limit T has passed. It can be convenient
to use this time limit in case a �nite computation time is available and in case
optimality is not required.

5.4.4. Analysis of the policy graph construction
In this section we provide an analysis of the translation of vectors Γ1,… ,Γℎ into
a policy graph G. This translation is not exact, which means that the solution
quality of the policy induced by Γ1,… ,Γℎ is not necessarily the same as the solution
quality of G. This can be explained as follows. Algorithm 12 creates a node qt,j
corresponding to the vector �j ∈ Γt, based on the belief point b′ usingwhich �j was
generated. However, if the agent reaches the node qt,j during execution then it may
be the case that its current belief b is not identical to b′, as visualized in Figure 5.3.
For the next time step the policy graph de�nes a value-maximizing action that
was selected for b′ rather than b, which can be a di�erent action compared to
the action de�ned by the vector-based policy. This may lead to di�erent behavior
in subsequent time steps. This e�ect becomes less noticeable if FiVI adds more
belief points reachable under policy execution to the sets Bt. Then each such
reachable belief will have a value-maximizing vector, and the algorithm de�nes
the appropriate node transitions accordingly. Below we o�er two approaches to
quantify the potential quality di�erence, as well as a formal theorem to characterize
the equivalence of vectors and policy graphs.

Our �rst approach allows us to quantify the quality di�erence caused by the
translation from vectors to policy graph. FiVI solves a subproblem based on the
modi�ed reward function Gi , and in Lemma 2 we concluded that this is equivalent
to maximizing reduced cost (i.e., maximizing the potential to improve the LP
objective value). For a vector-based policy �i the expression Ḡ

�i
i −�i gives us a

lower bound on the reduced cost of �i (see Lemma 2). For the corresponding policy
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graph G we can de�ne the actual reduced cost as:

(
∑

s∈Si

VG(qs, s) ⋅b1,i(s))−�i , (5.22)

where

VG(qt,j , s) = {
Gi(s,qat,j)+

∑
o∈oi ,s′∈Si

P(s′ | s,qat,j)P(o | qat,j , s
′)VG(qot,j , s

′) t < ℎ
Gi(s,qat,j) t = ℎ

.

(5.23)
The latter computes the expected value of G based on the function Gi . Now we can
express the change in the lower bound on reduced cost as follows:

(
∑

s∈Si

VG(qs, s) ⋅b1,i(s))−�i−
(
Ḡ�ii −�i

)
(5.24)

= (
∑

s∈Si

VG(qs, s) ⋅b1,i(s))− Ḡ
�i
i , (5.25)

which can be positive as well as negative. The expression in Equation 5.25 enables
us tomeasure the change in policy quality after translating the vectors Γ1,… ,Γℎ into
a policy graph G. Ideally, we want this quantity to be close to zero, and in practice
this turns out to be the case, as we will show empirically in our experimental
evaluation. Moreover, we want to emphasize that a minor quality loss is acceptable,
because the resulting policy always represents a valid column of the master LP.

Our second approach measures the probability that the policy graph G de-
�nes an action which would not be de�ned by the policy induced by Γ1,… ,Γℎ.
More formally stated, it measures the probability P that a graph node qt,j is
encountered where the current belief b deviates from b′ (see Figure 5.3), and
where the prescribed action qat,j is not identical to the action de�ned by the vec-
tor argmax�∈Γt � ⋅ b. An algorithmic procedure to compute the probability is
de�ned in Algorithm 14. The algorithm traverses the beliefs that are reachable
during execution of G, and on line 9 it checks whether the belief and action deviate.
In those cases it updates the probabilityP and no subsequent beliefs are considered
(i.e., the execution trajectory terminates). The algorithm shows a breadth-�rst
search, but a depth-�rst variant can also be implemented if only limited memory
is available.

Finally, we formally show that the translation to a policy graph G, de�ned by
Algorithm 12, does not introduce a quality loss if all beliefs reachable during the
execution of G have been sampled. For a policy graph node qt,j it can be observed
that the termVG(qt,j , ⋅), de�ned in Equation 5.23, represents a vector with an entry
for each state. Based on this insight, we can show that b ⋅VG(qt,j , ⋅) = b ⋅�qt,j for
each node qt,j , where �qt,j ∈ Γt is the vector corresponding to qt,j and b is the belief
using which both �qt,j and q were generated.
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Algorithm 14: Get the probability that the action de�ned by G and
Γ1,… ,Γℎ is not identical
input :POMDP modelMi , alpha vectors in a sets Γ1,… ,Γℎ, graph G
output :probability P

1 Xt← ∅ ∀t, P← 0
2 X1←X1∪{(qs,b1,i ,1)}
3 for t = 1,… ,ℎ do
4 for (qt,j ,b,p) ∈Xt do
5 �j ← vector � ∈ Γt corresponding to qt,j
6 b′← belief using which �j was generated
7 a′← action associated with argmax�∈Γt � ⋅b
8 a← qat,j
9 if b ≠ b′∧a ≠ a′ then
10 P←P+p
11 else if t < ℎ then
12 for o ∈Oi do
13 if P(o | b,a)> 0 then
14 Xt+1←Xt+1∪{(qat,j ,b

o
a,p ⋅P(o | b,a))}

15 end
16 end
17 end
18 end
19 end
20 return P

Lemma 7. Given belief sets B1,… ,Bℎ, vector sets Γ1,… ,Γℎ and the corresponding
policy graph G. If it holds for each t = 1,… ,ℎ−1 that all beliefs reachable from Bt are
present in Bt+1, then it holds for each node qt,j ∈ G that b ⋅VG(qt,j , ⋅) = b ⋅�qt,j In
this equation the vector �qt,j ∈ Γt denotes the vector corresponding to node qt,j and b
is the belief using which the node and vector were generated.

Proof. Weprove this bymathematical induction over time steps t = ℎ,ℎ−1,… ,1. As
a base case we consider t = ℎ. For each bj ∈ Bℎ the point-based algorithm produces
a vector �j using Equation 4.6, which yields the immediate reward vector for a
value-maximizing action. We denote this action by a∗, and the node corresponding
to bj is denoted by qℎ,j . Based on the construction of the graph we know that it
holds that qaℎ,j = a

∗. When computing the vector VG(qt,j , ⋅) using Equation 5.23
we derive the same immediate reward vector. It follows that bj ⋅VG(qt,j , ⋅) = bj ⋅�j ,
which means that the theorem holds for t = ℎ.
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In our induction hypothesis (IH) we assume that the theorem holds for nodes
qt+1,j ∈ G (i.e., for step t+1). Assuming that the hypothesis holds for step t+1,
we show that the theorem also holds for step t. For each node qt,j ∈ G at time t
we can derive b ⋅VG(qt,j , ⋅) = b ⋅�qt,j , where b is the belief using which both qt,j
and �qt,j were generated. Without loss of generality we use q as a shortcut for qt,j
in the derivation for readability reasons.

b ⋅VG(q, ⋅)

=
∑

s
b(s)VG(q,s)

=
∑

s
b(s)

⎛
⎜
⎝
G(s,qa)+

∑

o,s′
P(s′|s,qa)P(o|qa , s′)VG(qo , s′)

⎞
⎟
⎠

def. VG

=
∑

s
b(s)G(s,qa)+

∑

s
b(s)

∑

o,s′
P(s′|s,qa)P(o|qa , s′)VG(qo , s′)

= b ⋅G(qa)+
∑

s

∑

o

∑

s′
P(s′|s,qa)P(o|qa , s′)b(s)VG(qo , s′)

= b ⋅G(qa)+
∑

o

∑

s′
P(o|qa , s′)

∑

s
P(s′|s,qa)b(s)VG(qo , s′)

= b ⋅G(qa)+
∑

o

∑

s′
VG(qo , s′)P(o|qa , s′)

∑

s
P(s′|s,qa)b(s)

= b ⋅G(qa)+
∑

o

∑

s′
VG(qo , s′)P(o|b,qa)boqa (s

′) def. belief update

= b ⋅G(qa)+
∑

o

∑

s′
P(o|b,qa)boqa (s

′)VG(qo , s′)

= b ⋅G(qa)+
∑

o
P(o|b,qa)

∑

s′
boqa (s

′)VG(qo , s′)

= b ⋅G(qa)+
∑

o
P(o|b,qa)(boqa ⋅VG(q

o , ⋅))

= b ⋅G(qa)+
∑

o
P(o|b,qa)(boqa ⋅�qo ) IH, graph construction

= b ⋅G(qa)+
∑

o

∑

s′
P(o|b,qa)boqa (s

′)�qo (s′)

= b ⋅G(qa)+
∑

o
P(o|b,qa)

∑

s′
boqa (s

′)�qo (s′)

= b ⋅G(qa)+
∑

o
P(o|b,qa) max

�∈Γt+1

∑

s′
boqa (s

′)�(s′) graph construction

= b ⋅G(qa)+
∑

o
P(o|b,qa)Vt+1(boqa ) def. value function

=max
a

[b ⋅G(a)+
∑

o
P(o|b,a)Vt+1(boa)] qa is maximizing

= b ⋅backup(b) backup using G(s,a)
= b ⋅�q �q generated with b

Non-trivial steps have been justi�ed in the right column. Below we further elebo-
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rate on the step where the induction hypothesis (IH) is invoked.
We assume that Algorithm 12 breaks ties on line 12 by selecting the vector for

which the corresponding belief is the closest to boa (e.g., using the absolute di�er-
ence). This may occur if there are multiple value-maximizing vectors providing
exactly the same value in boa. We can invoke the induction hypothesis (IH) based
on the following line of reasoning:

1. We know that node qo is a node at time step t+1, because q is a node at
time t and qo is a shortcut for a node in the next layer of the policy graph.

2. We know that node qo has a corresponding vector �qo ∈ Γt+1. This follows
immediately from the policy graph construction procedure.

3. We know that node q was generated with b. Therefore, we also know
that node qo corresponds to the node at time t+1 for which �qo is value-
maximizing in belief boqa . This follows from the description of Algorithm 12
and the fact that action qa is associated with q.

4. The theorem assumes that all beliefs reachable from Bt are present in Bt+1.
Under this assumption, and under the assumption that the algorithm breaks
ties as described above, we know that �qo was generated using boqa .

5. There is a direct correspondence between nodes and vectors, and therefore
we know that qo was generated with boqa as well.

6. Both qo and �qo belong to time t+1 and were generated using boqa , and hence
we can write boqa ⋅VG(q

o, ⋅) = boqa ⋅�qo , following our induction hypothesis.

All other derivation steps follow from de�nitions, the description in Algo-
rithm 12, and the fact that actions associated with nodes and vectors are value-
maximizing. In the call to backup in the derivation we discarded additional ar-
guments because it is only relevant that the backup is executed on b for time t.
Based on the induction principle we conclude that the theorem holds for all time
steps t = 1,2,… ,ℎ.

Theorem 8. Given belief sets B1,… ,Bℎ, vector sets Γ1,… ,Γℎ and the corresponding
policy graph G. If it holds for each t = 1,… ,ℎ−1 that all beliefs reachable from Bt are
present in Bt+1, then the reduced cost of the policy induced by Γ1,… ,Γℎ is the same as
the reduced cost of G.

Proof. From Lemma 2we know that the point-based algorithmmaximizes reduced
cost, and Ḡ�ii −�i provides a lower bound on the exact reduced cost of the vector-
based policy. It is assumed that all beliefs reachable from the initial belief are
present in the belief sets B1,… ,Bℎ, and therefore the lower bound becomes tight,
which means that Ḡ�ii −�i represents the actual reduced cost of the vector-based
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policy. Nowwe derive Ḡ�ii −�i =max�∈Γ1 b1,i ⋅�−�i = b1,i ⋅�qs−�i = b1,i ⋅VG(q
s, ⋅)−

�i , in which we use b1,i ⋅VG(qs, ⋅) = b1,i ⋅�qs based on Lemma 7. The �nal term in
the derivation is identical to the exact reduced cost of the graph-based policy, as
de�ned in Equation 5.22, and therefore we can conclude that the reduced cost of
both representations is identical.

To summarize, we have analyzed the potential di�erence in policy quality
introduced by the translation from vectors to graph. For a given set of vectors and
the corresponding graph we can compute the di�erence in reduced cost, which
directly relates to the potential to improve the objective of the master LP. Moreover,
our lemma and theorem state under which conditions Algorithm 12 provides an
exact translation to a policy graph.

5.5. Experiments
In this section we present our experimental evaluation based on single-agent
and multi-agent planning problems which include constraints. For single-agent
problems we evaluate CGCP by comparing it with a �nite-horizon version of
CALP (Poupart et al., 2015). Originally CALP has been designed for in�nite-
horizon problems, but the algorithm can be easily generalized to �nite-horizon
settings. Additional details about this generalization can be found at the end of
this section. The algorithm CPBVI (Kim et al., 2011) has been designed for in�nite
horizons and it does not guarantee that constraints are respected. Therefore, it
is not considered in our evaluation. It should be noted, however, that CALP
outperforms existing solution algorithms for Constrained POMDPs and thus we
compare with the current state of the art. We implemented the algorithms using
Java version 8, and the experiments were executed on an Intel Xeon 3.70 GHz
CPU with a 5 GB memory limit. For solving LPs we use Gurobi version 6.5.2. For
multi-agent problems we only consider CGCP, because CALP has been designed
for single-agent problems. Solving multi-agent problems using CALP would lead
to underlying MDP models which scale exponentially in the number of agents.
More details about the problem domains and the experimental setup are provided
in subsequent sections.

5.5.1. Single-agent planning: robot navigation domains
We�rst consider single-agent robot navigation problems from pomdp.org. In these
domains a robot is tasked to reach the goal state, which gives reward 1000. The
robot is unable to execute an in�nite number of actions (e.g., due to a limited
battery capacity), and therefore we aim to bound the expected number of actions
executed. The domains have been modi�ed, such that the goal state leads to a trap
state that cannot be left. Otherwise the robot would restart from the initial belief,
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CGCP CALP

Domain ℎ L R Gap Time (s) R Gap Time (s)

MiniHall 10 1 283.33 0.00 0.47 283.33 0.00 0.33
10 2 472.22 0.00 0.21 472.22 0.00 0.22
10 3 630.95 0.00 0.19 630.95 0.00 0.15
10 4 773.81 0.00 0.17 773.81 0.00 0.16

Cheese 10 1 325.00 0.00 0.34 325.00 0.00 0.37
10 2 575.00 0.00 0.15 575.00 0.00 0.14
10 3 780.00 0.00 0.08 780.00 0.00 0.12
10 4 950.00 0.00 0.07 950.00 0.00 0.18

4x3 10 1 258.88 0.05 1.33 255.85 3.05 22.64
10 2 462.90 0.27 1.36 458.26 4.66 26.68
10 3 645.46 0.12 1.18 639.38 6.09 31.67
10 4 815.56 0.14 0.96 811.17 4.53 28.40

Maze20 10 1 60.22 0.01 398.07 46.73 44.62 774.64
10 2 118.66 0.04 301.31 64.58 104.62 623.88
10 3 159.70 7.70 1107.91 67.94 163.99 1821.55
10 4 182.49 14.48 1106.59 62.01 199.29 2306.13

Hallway 10 1 110.88 77.37 1025.98 42.82 165.00 1924.76
10 2 166.65 94.44 1026.10 68.93 236.63 2026.85
10 3 206.54 101.54 1122.61 84.03 278.66 2420.72
10 4 240.16 102.25 1024.78 88.71 313.80 2096.91

Table 5.1: Comparison of CGCP and CALP on navigation domains

which is not desirable in our experiments. A full description of the modi�cations
to the benchmark domains is discussed in Section 5.5.5.

We compare CGCP and the �nite-horizon version of CALP. We run CGCP with
a time limit of 1000 seconds (i.e.,T = 1000). We solve the subproblems initially for
at most 100 seconds, and upon convergence this is incremented by 100 seconds (i.e.,
� = �+ = 100). We use a time limit because otherwise CALP runs much longer
on several domains, and in that case the algorithm typically runs out of memory,
which would not give a fair comparison between the two algorithms. We use
precision �= 3, and the time limit of CALP is set to the actual runtime of CGCP
on the same instance, with a minimum of 20 seconds. This ensures that CALP has
at least as much time available as CGCP. The reported running times of CALP in
the table may be higher, since it ends execution with a binary search to create the
�nal solution, and the running time of this search is also included in the reported
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running time. The reported running times of CGCP may be higher, because we
only terminate after completion of an iteration of CGCP. We assume that the robot
is able to execute at most ℎ actions, which can be IDLE or a MOVE action. We also
impose the upper bound L on the expected number of MOVE actions.

Table 5.1 shows the results, where the column R refers to the exact expected re-
ward collected by the robot. Note that this is a lower bound on the optimal expected
reward that can be collected. Gap refers to the di�erence between the expected
reward and the upper bound on the expected reward of an optimal solution. A
gap of 0 implies that the computed solution is optimal since the lower bound and
upper bound coincide, and in general a smaller gap represents a better solution. It
should be noted that in some domains, such as Hallway, the worst-case path in the
maze is longer than 4 steps. However, it is still possible to have a positive expected
reward because the initial position is de�ned by the initial belief over states, and
from some of these positions in the maze the goal can be reached within L steps.
For all instances the constraint on expected cost is tight, which means that there is
no gap between L and the expected cost of the solution. The column Time shows
the measured running times in seconds. In each row the bold entries indicate the
best-performing algorithm.

We observe that both CGCP and CALP are able to compute optimal solutions
in the small domains MiniHall and Cheese. In larger domains the CGCP method
starts to perform signi�cantly better than CALP. As can be seen in the table, the
expected reward (i.e., the column R) of the solutions is much higher, the gap is
signi�cantly smaller, and CGCP required less time to compute the solution. In
these domains CGCP clearly outperforms CALP on all fronts.

5.5.2. Multi-agent planning: condition-based maintenance
Condition-based maintenance is an emerging practice to reduce the operational
cost andmaintenance cost for systems whose condition and operating performance
deteriorates over time (Jardine, Lin, and Banjevic, 2006). Rather than performing
scheduled maintenance on a regular basis, inspections and sensor diagnostics can
provide information based on which maintenance can be scheduled before critical
components fail. Maintenance cost can be reduced and utilization of personnel
and resources can be improved by executing maintenance at the right time and
only when necessary. Examples of condition-based maintenance include the main-
tenance of wind turbines (Byon and Ding, 2010), railway equipment (Fararooy and
Allan, 1995), bridges (Neves and Frangopol, 2005) and aircraft components (Har-
man, 2002).

Our Multi-Agent Constrained POMDP model naturally applies to condition-
based maintenance tasks in which multiple objects should be kept in a good
condition while bounding the expected maintenance cost. From a planning point
of view the current condition of these objects is partially observable (Kim, Choi,
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n Lm L R Gap Std reward C Std cost Time (s)

2 0.8 667.23 17001.14 6.95 797.21 667.23 118.89 484
0.6 500.42 16861.91 13.81 810.76 500.42 68.41 362
0.4 333.61 16437.60 39.26 870.69 333.65 67.16 485
0.2 166.81 14920.06 77.21 1066.55 166.83 37.29 484

3 0.8 1074.75 25533.55 80.56 965.99 1074.75 146.78 535
0.6 806.06 25335.12 61.88 994.61 806.06 99.43 540
0.4 537.37 24862.29 41.44 1076.49 537.37 79.09 716
0.2 268.69 23072.89 24.41 1243.07 268.67 56.64 717

4 0.8 1337.98 34043.17 14.34 1125.47 1337.98 150.34 968
0.6 1003.48 33793.92 37.41 1130.76 1003.48 117.64 726
0.4 668.99 33000.47 24.10 1233.51 668.99 92.52 968
0.2 334.49 29821.64 8.54 1515.81 334.49 58.76 1210

5 0.8 1664.06 42747.63 92.30 1175.27 1664.06 120.28 908
0.6 1248.04 42207.48 69.68 1223.84 1248.04 125.92 906
0.4 832.03 41151.80 35.46 1311.70 832.03 96.16 1207
0.2 416.01 36899.35 9.23 1501.08 416.01 68.37 1508

6 0.8 2289.34 51619.98 5.23 1256.40 2289.34 142.98 1452
0.6 1717.00 51065.92 56.83 1327.70 1717.00 158.44 1090
0.4 1144.67 49830.45 37.40 1427.64 1144.67 110.78 1453
0.2 572.34 45704.99 69.22 1635.37 572.34 82.43 1451

Table 5.2: Performance of CGCP on maintenance instances

and Lee, 2018), because noisy sensor readings do not provide perfect information
regarding the actual condition. If there are no sensor readings at all, then the
actual condition is also unknown. The actual condition only becomes available
when performing a manual inspection. Moreover, the multi-agent aspect is highly
relevant if organizations perform maintenance on multiple di�erent objects which
deteriorate independently. A concrete example is a road authority which performs
maintenance on several bridges that are part of the road infrastructure. If only
a �nite maintenance budget is available, then the question becomes how this
budget should be distributed over the bridges in order to perform the required
maintenance.

In order to demonstrate the e�cacy of our CGCP algorithm, we consider the
aforementioned maintenance problem in which a road authority is tasked to per-
form maintenance on several bridges, such that they remain in a good condition.
The authority aims to execute the maintenance in the best possible way, given a
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constraint on the expected amount of money it spends on all maintenance oper-
ations during, e.g., one year. In particular, we consider the partially observable
bridge repair problem introduced by Ellis, Jiang, and Corotis (1995), for which
a description can be found on pomdp.org. We use this description to model n
bridges requiring maintenance, in which the reward is proportional to the current
condition. In other words, the road authority has an incentive to perform main-
tenance on the collection of bridges. Three repair actions are available, each of
which has a cost associated with it, and the road authority aims to upper bound
the total expected cost by L. There is no cost associated with the action that does
not perform maintenance at all. We added noise to the transition model of the
bridges to ensure that they have slightly di�erent state transition characteristics
de�ning the deterioration process. More details regarding the domain can be found
in Section 5.5.5.

We create instances with an increasing number of agents n. For each instance,
we �rst compute the expected cost Cu of the unconstrained problem, which we
can use to de�ne several constrained instances. To be more speci�c, we can de�ne
the cost limit L= Cu ⋅Lm, where Lm is a scalar in the range between 0 and 1. This
way, we can naturally parameterize the constraint of the instance using a number
in a �xed range. We run CGCP with a time limit of 3600 seconds (i.e., T = 3600),
and for FiVI we initially solve during 60 seconds, which can be incremented by 60
seconds after converging (i.e., � = �+ = 60). We use precision �= 3.

The results of our evaluation are shown in Table 5.2 for ℎ= 24, n ∈ {2,3,… ,6}
and Lm ∈ {0.2,0.4,0.6,0.8}. The column R denotes the exact expected reward,
which is a lower bound on the optimal expected reward, and Gap indicates the gap
between the computed lower bound and upper bound. The column C indicates
the exact expected cost of the computed solution, and the column Time shows the
required running time in seconds. Note that the expectations in the columns R
and C are exact. We measured the standard deviation for both reward and cost
using 106 simulation runs, and these statistics have also been added to the table.
We conclude that CGCP is able to compute high-quality solutions while bounding
the expected cost. Considering the relatively small gap compared to the expected
reward, we can conclude that the algorithm computes solutions which are close to
optimal. The running time increases when increasing the number of agents, but
it should be noted that we solved all subproblems sequentially in our evaluation.
Since all subproblems are independent, they can be parallelized given su�cient
cores, which alleviates this increase in runtime. From a practical point of view, we
conclude that our algorithm is able to compute near-optimal maintenance policies
while bounding the total expected cost spent on maintenance.

Our previous experiment determines policy quality in terms of the expected
reward collected by the agents during execution. This enables us to assess the
optimality of the policies, but it does not provide much insight into the actual
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Figure 5.4: Behavior of policies during simulation

policy behavior when making the constraint more tight. We execute an additional
experiment for one bridge with horizon 24 (i.e., ℎ= 24), and during simulation of
the resulting policy we measure the number of times the fail state is reached. Intu-
itively, we expect that this occurs more often if we decrease the budget available for
maintenance. The results are shown in Figure 5.4a, which visualizes the number
of failures for several cost constraints de�ned using the constraint scalar Lm. Since
we consider only one bridge, we also include policies computed by CALP in our
evaluation. We can conclude that a decrease in maintenance budget leads to more
failures of the bridge, which is natural since less maintenance can be performed.
For this single-agent instance we observe that CGCP and CALP provide similar per-
formance. However, if it is required to perform maintenance on multiple bridges,
then it is no longer convenient to use CALP due to the exponential scalability, as
discussed before.

5.5.3. Multi-agent planning: online advertising
Online advertising involves deciding which advertisements need to be presented
to multiple target customers in order to maximize pro�t (Boutilier and Lu, 2016).
As an example we can consider a company which sells several types of products.
Each user can be interested in a subset of these products, or it has no interest at
all, and therefore we want to present relevant advertisements to the user with an
appropriate intensity. E�ects of these advertisements on the user behavior are
stochastic, and the type of interest of the user is partially observable since it needs
to be inferred from, e.g., browsing behavior. Typically there is a �nite budget for
advertising, which makes the problem constrained. A similar recommendation
problem occurs in systems which recommend points of interest to tourists. In
such systems points of interest have limited capacity and the user type needs to be
learned from observed user behavior (De Nijs et al., 2018).

We can use ourMulti-Agent Constrained POMDPmodel to formalize an online
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n Lm L R Gap Std reward C Std cost Time (s)

2 0.8 16.34 1.94 0.00 0.04 16.34 5.70 485
0.6 12.25 1.93 0.00 0.03 12.25 5.34 399
0.4 8.17 1.92 0.00 0.03 8.17 5.34 353
0.2 4.08 1.90 0.00 0.04 4.08 3.60 343

3 0.8 35.47 2.92 0.00 0.05 35.47 7.72 606
0.6 26.60 2.91 0.00 0.04 26.60 8.58 879
0.4 17.73 2.90 0.00 0.04 17.73 6.86 691
0.2 8.87 2.87 0.00 0.04 8.87 5.38 545

4 0.8 37.24 3.89 0.00 0.05 37.24 8.12 814
0.6 27.93 3.87 0.01 0.05 27.93 7.98 645
0.4 18.62 3.85 0.01 0.05 18.62 7.09 659
0.2 9.31 3.82 0.01 0.05 9.30 5.33 506

5 0.8 55.15 4.87 0.00 0.06 55.15 9.72 960
0.6 41.36 4.86 0.00 0.06 41.36 8.77 1461
0.4 27.57 4.83 0.00 0.05 27.57 8.89 1150
0.2 13.79 4.79 0.00 0.05 13.79 6.55 1047

6 0.8 90.42 5.85 0.01 0.07 90.42 9.85 1388
0.6 67.82 5.83 0.01 0.06 67.82 8.90 1992
0.4 45.21 5.81 0.01 0.06 45.21 10.40 2577
0.2 22.61 5.78 0.01 0.05 22.61 8.37 1640

Table 5.3: Performance of CGCP on advertising instances

advertising problem involving multiple users. Each user is modeled as a POMDP,
in which the state represents the user type re�ecting the level of interest in a certain
product. Actions correspond to several di�erent advertising campaigns, which
a�ect the level of interest of the user and its willingness to buy a product. The
observations of the model represent the observable user behavior, such as the page
it selects or the search query it executes. The advertising campaigns have cost
associated with them, and we would like to incentivize users to buy the products
while bounding the expected amount of money spent on advertising.

In our experiment we demonstrate that our CGCP algorithm can be used to
solve online advertising instances involving several partially observable users.
We use the web-ad domain description from pomdp.org to model an individual
user. In particular, we create n users which independently browse on a website,
and we impose an upper bound L on the total expected advertising cost. Actions
corresponding to advertising for speci�c products have cost associated with it, and
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it is assumed that neutral advertising has cost zero. This way, the cost associated
with advertisements for speci�c products can be interpreted as the additional
cost compared to displaying neutral advertisements all the time. Similar to the
condition-based maintenance experiment we added noise to the state transitions
to ensure that users have slightly di�erent transition dynamics. More details about
the domain can be found in Section 5.5.5.

Similar to the previous experiment, we create instances with an increasing
number of agentsn. We runCGCPwith a time limit of 3600 seconds (i.e.,T = 3600),
and for the FiVI we initially solve during 60 seconds, which can be incremented
by 60 seconds after converging (i.e., � = �+ = 60). We use planning horizon ℎ= 24
and precision �= 3. The results are shown in Table 5.3 for n ∈ {2,3,… ,6} and Lm ∈
{0.2,0.4,0.6,0.8}. Similar to the condition-basedmaintenance experiment, we want
to emphasize that subproblems can be solved in parallel if there are more target
customers involved. The table shows that our algorithm e�ectively bounds the
expected cost, and the gap close to zero shows that the computed solutions are
nearly optimal.

Similar to the condition-based maintenance experiment, we also study the
behavior of policies when making the constraint on expected cost more tight.
Figure 5.4b shows the number of neutral ads shown to a user as a function of the
constraint scalar Lm, for both CGCP and CALP. As expected, we can see that a
decrease in available budget leads to an increase in neutral (i.e., cheap) advertising.
When almost no budget is available (i.e., Lm = 0.2), the policy gets extremely
conservative and it displays neutral ads almost always. As can be seen in the �gure,
in this domain the policies computed by both CGCP and CALP behave similarly.
However, again it should be noted that CALP does not provide immediate support
for instances involving multiple users, which is always the case in realistic online
advertising problems.

5.5.4. Translation of vectors into policy graph
In Section 5.4.4 we explained why the translation from vectors into a policy graph
may lead to a decrease in solution quality. Moreover, we described a method to
quantify the quality di�erence for a given vector set and its corresponding policy
graph. In particular, Equation 5.25 describes how the change in the value lower
bound can be computed. This allows us to assess the quality di�erences introduced
by the policy graph translation. For the domains Hallway, Hallway2, Maze20, 4x3,
condition-based maintenance and advertising we took an unconstrained instance,
which we solved using FiVI. In some domains convergence to optimality takes a
long time, and therefore we terminate the algorithm after 200 iterations. In each
iteration of the algorithm we store the current vector set, and we translate this set
of vectors into a policy graph. Subsequently, we compute the change in the value
lower bound as a percentage, which is visualized in Figure 5.5. Each dot in the
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Figure 5.5: Lower bound di�erence as a function of the number of iterations

�gure represents the quality di�erence encountered in a particular iteration, and
ideally these points are all close to zero. As can be seen, the quality di�erences
introduced by the policy graph translation are negligible. For example, in Hallway,
Hallway2 and 4x3 di�erences in solution quality can be observed, but these dots
correspond to a quality change that is less than 1 percent. In the other domains
the quality di�erence is even lower.

The results indicate that there are some di�erences in solution quality, as we
expected, but the solution quality of the policy graph is approximately the same.
This is an important observation, because it means that we can expect that the
translation to policy graphs only introduces aminor solution quality change during
the execution of CGCP. It is important to note that the coe�cients that we insert
in the master LP always remain exact, because for policy graphs we execute exact
policy evaluation.

The second approach for assessing the quality di�erence, as described in Al-
gorithm 14, de�nes the probability that the policy graph speci�es an action to be
executed, which would not be proposed by the vector-based policy. However, if the
translation to a policy graph is near-exact (e.g., as in our case), then it boils down
to enumeration of all beliefs reachable under policy execution. For the domains
we tested we found that it is intractable to compute this metric in each iteration
of value iteration. However, if our quality di�erence metric does not su�ce (e.g.,
when the quality of the policy graph deviates a lot), then Algorithm 14 may be
used in small domains for additional assessment of the policy quality change.
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Domain |S| |A| |O|

MiniHall 13 3 9
Cheese 11 4 7
4x3 11 4 6
Maze20 20 6 8
Hallway 60 5 21
Maintenance 5 12 5
Online advertising 4 3 5

Table 5.4: Size of the benchmark domains used in experiments

5.5.5. Additional details benchmark domains
For the robot navigation domains we took the corresponding POMDP domain
description from pomdp.org. Note that the Maze20 domain corresponds to milos-
aaai97. We made the following changes to the domains. We added a trap state
which ensures that the robot transitions to the trap state after reaching the goal.
We also added an action which enables the robot to be idle for one time step, and
we created a cost function in which all non-idle actions have cost 1. Table 5.4
shows the size of the domains considered.

For the condition-based maintenance domain we use the bridge-repair domain
provided on pomdp.org. In this domain the actions correspond to speci�c types of
maintenance, followed by inspection. It is assumed that clean-paint actions have
cost 10, and that paint-strengthen actions have cost 20. A structural-repair
is even more expensive and has cost 30. The original domain is described in terms
of cost rather than reward, and therefore we converted the reward structure. To be
more speci�c, we want to ensure that high-cost actions in the original domain have
low reward in our experiments, and hence we inverted the reward structure. For
each (s,a)-pair we de�ne the new reward as (1+Rmax−R(s,a))×0.1, where Rmax is
the maximum cost in the original instance, and the �nal 0.1 serves as a scalar. This
way, the rewards in the modi�ed instance are always strictly positive numbers.

For the online advertising problemsweuse theweb-ad domain frompomdp.org.
In this domain the actions correspond to advertising for speci�c types of products,
or neutral advertising. We associated cost 1 with each action that advertises for a
speci�c product type. It is assumed that neutral advertising has no cost.

In the multi-agent experiments we want to have agents with slightly di�erent
transition dynamics. In these experiments we �rst initialize all the agents based
on the same POMDP model, after which we add noise to probabilities de�ning
the state transition function. In particular, for each transition probability that is
non-zero in the original problem, we add a number between 0 and 0.5, sampled
uniformly at random. After that, we normalize the distributions such that the
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probabilities sum to 1. Note that this procedure ensures that the reachability of
states is not a�ected.

Implementation detail: �nite-horizon CALP
CALP (Poupart et al., 2015) computes an approximate Constrained POMDP
solution using a constrained belief-state MDP, in which each state corresponds to
a belief point of the original POMDP. The MDP is solved using an LP formulation
for Constrained MDPs (Altman, 1999). The description of the algorithm assumes
an in�nite horizon with discounting, but the algorithm can also be used for
�nite-horizon problems if the following LP is used:

max
ℎ∑

t=1

∑

s∈S

∑

a∈A
xt,s,a ⋅R(s,a)

s.t.
∑

a′∈A
xt+1,s′,a′ =

∑

s∈S

∑

a∈A
xt,s,a ⋅P(s′|s,a) ∀s′ ∈ S, ∀t ∈ {1,… ,ℎ}

∑

a∈A
x1,s,a = P(s0 = s) ∀s ∈ S

ℎ∑

t=1

∑

s∈S

∑

a∈A
xt,s,a ⋅C(s,a)≤ L.

(5.26)

The variable xt,s,a represents the probability that state s is reached at time t
and action a is executed. In the second constraint s0 refers to the initial state.
Note that the LP is de�ned in terms of MDP states, whereas CALP uses the LPs
for states representing a belief state of the POMDP. The LP solution represents
a stochastic �nite-state controller, which can be evaluated using a recurrence
similar to the recurrence used in our work, and similar to the linear constraint
system used by the original version of CALP.

5.6. Related work
Several algorithms have been proposed for solving Constrained POMDPs in the
single-agent setting. It has been shown that the exact dynamic programming
update for POMDPs can be generalized to Constrained POMDPs (Isom, Meyn,
and Braatz, 2008). The vector pruning operation that is typically used in optimal
POMDP algorithms can be executed by solving mixed-integer linear programs,
whereas the traditional algorithms for POMDPs rely on a linear program (Cas-
sandra, Littman, and Zhang, 1997; Walraven and Spaan, 2017). The method is
computationally hard to execute on larger instances due to its exact nature. In
order to address the computational di�culties, Constrained Point-Based Value
Iteration (CPBVI) has been proposed (Kim et al., 2011). This algorithm executes
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point-based backups based on pairs consisting of a belief and the admissible cost
that can be incurred when executing starting from that belief. Constrained Approx-
imate Linear Programming (Poupart et al., 2015) has shown to outperform both the
exact algorithm and CPBVI. It solves a belief-state MDP for an incrementally grow-
ing subset of belief points, based on the LP that is typically used in Constrained
MDPs (Altman, 1999). Besides the actual solution and its expected value, it also
computes an upper bound on the expected value, similar to our CGCP algorithm.
None of the existing methods have discussed potential applications to multi-agent
planning problems. Although it was not explicitly stated, this observation was
made for the �rst time by Yost andWashburn (2000), which refer tomultiple objects
modeled as a POMDP. We generalized their approach and enhanced its scalability
by using approximate algorithms. At the same time, our work also bridges the
gap between CPBVI, CALP and the branch of work on column generation for
Constrained POMDPs.

Planning for Constrained POMDPs is related to more general methods for
resource allocation in stochastic environments. The aforementioned Constrained
MDPs (Altman, 1999) provide the foundation for this work, which use the dual of
an LP to bound the expected cost of the resulting solution. Even though themodel is
de�ned based on one individual agent, it can be generalized to multi-agent settings
by concatenating the models of multiple agents into one LP. In domains where a
limited amount of resources is available to the agents it is not always su�cient
to bound the expected resource consumption, because this may lead to resource
violations during execution time. Instead, mixed-integer linear programming can
be used to compute static allocations of resources to agents prior to execution (Wu
and Durfee, 2010), and its tractability can be increased by using a Lagrangian
relaxation (Agrawal, Varakantham, and Yeoh, 2016). A drawback is that resources
are allocated before execution, which leads to conservative resource consumption
in uncertain domains because the allocation cannot be changed during execution.
To address the limitations of preallocating resources, a conditional preallocation
strategy has been proposed for Multi-Agent MDPs, which also employs column
generation techniques (De Nijs et al., 2017). Our work extends this branch of work
by considering partial observability, and we study how approximate solvers can be
used for subproblems. In contrast, we do not consider strict resource limits, and
our master LP only bounds the total expected cost.

In our work we use policy graphs as a representation for subproblem solu-
tions. This is related to a larger branch of work on policy iteration techniques
for optimizing �nite-state controllers. Hansen (1998) discussed an approach to
repeatedly evaluate and improve a �nite-state controller. Later this approach was
adopted by Poupart and Boutilier (2003) to create BPI, which aims to improve a
�nite-state controller using policy iteration while keeping its size �xed. Unfortu-
nately, the algorithm can get trapped in a locally-optimal solution, and therefore



142 5. Approximate planning for Constrained POMDPs

a so-called escape technique has been proposed which gradually increases the
size of the controller in order to improve it. More recent techniques employ lo-
cal search (Braziunas and Boutilier, 2004), mixed-integer programming (Kumar
and Zilberstein, 2015) and branch-and-bound techniques (Grześ, Poupart, and
Hoey, 2013) to optimize controllers. Besides POMDPs, optimization of �nite-state
controllers has also been studied in the context of Decentralized POMDPs using
non-linear programs (Amato, Bernstein, and Zilberstein, 2010). In our work we
do not want to rely on such speci�c methods for optimizing �nite-state controllers
because some of these methods do not compute an upper bound on the expected
value, which we need to use in the column generation algorithm. Additionally,
some of these methods are computationally demanding, which is not practical if
we want to compute subproblem solutions quickly in early iterations of the column
generation algorithm.

There are relations between Decentralized POMDPs (Oliehoek and Amato,
2016) and the multi-agent model considered in this chapter. Our algorithm com-
putes a solution for each agent which respects the constraint on cost, even if the
agents do not communicate with each other during execution. This means that
policy execution is fully decentralized. In our work the agents have an individual
state space and their own set of actions, which means that the state transitions and
the reward signal remain individual. In contrast, the Decentralized POMDP for-
malism de�nes the transitions and rewards based on joint states and joint actions,
which allows one to model a larger class of decision making problems.

5.7. Conclusions
The Constrained POMDP framework provides a general formalism for sequential
decision making under uncertainty subject to additional constraints. It extends the
traditional ConstrainedMDP framework with partial observability, which becomes
relevant in domains where an agent is unable to fully observe its environment.
Existing research on Constrained POMDPs mainly focuses on adapting approxi-
mate algorithms for unconstrained POMDPs to constrained settings, or it aims to
generalize existing work on Constrained MDPs to a partially observable setting. In
this work we chose a rather di�erent angle, in which optimization for Constrained
POMDPs is seen as a global linear optimization problem de�ned over the entire
policy space. A convenient property is that it enabled us to compute solutions by
solving a series of unconstrained POMDPs using approximate algorithms.

We described a column generation technique for Constrained POMDPs, in
which new policies are incrementally generated by solving subproblems. Since
exact optimization can only be applied to tiny instances, we proposed a two-stage
approach to solve subproblems using approximate methods. In particular, we use
FiVI to compute an approximate subproblem solution, and we described a tech-
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nique to translate the resulting solution into a policy graph. This representation is
convenient because its quality can be evaluated using a simple recurrence. In a
series of experiments we have demonstrated that the resulting CGCP algorithm
outperforms the current state of the art in the �eld of Constrained POMDPs. More-
over, it is the only algorithm that provides immediate support for problems in
which a global constraint is shared by multiple independent agents in a partially
observable environment.

In future work it can be investigated whether and how the master LP of the
column generation algorithm can be eliminated inmulti-agent domains. Currently
this central optimization problem does not form a bottleneck during the execution
of the algorithm, but in larger multi-agent systems it can be convenient to replace
this optimization problem by a distributed optimization scheme. We also observe
that the current upper limit L only bounds cost in expectation. However, in several
domains it can be desirable to have guarantees on the actual probability of a
constraint violation. Existing techniques to achieve this in Constrained MDPs rely
on solving many subproblems (De Nijs et al., 2017). In the partially observable
setting it would be necessary to enhance these techniques because solving a large
number of POMDPs can be computationally demanding. Furthermore, enforcing
constraints on the actual cost incurred during policy execution, rather than the
expected cost, remains an open challenge.





6
Constrained planning under
uncertainty in smart grids

The power distribution grid serves as a backbone of our society. The current grid
has been designed decades ago, and it faces major changes in the upcoming years
due to new developments. For example, conventional power plants are being
replaced by renewable alternatives, and there is an increasing number of electric
vehicles (EVs). These developments introduce two major problems. First, power
production of renewables brings more uncertainty in the distribution grid, which
makes it more di�cult to balance demand and supply. Second, distribution grids
do not have su�cient capacity to accommodate the increase in the number of
EVs, which leads to congestion. Both problems raise the question how uncertain
demand and uncertain supply can be balanced in such a way that congestion is
prevented. We propose an AI-based solution to congestion management problems,
based on Constrained Multi-agent Markov Decision Processes (CMMDPs)1. In
particular, we provide a novel mapping from power grid constraints to CMMDP
constraints, which allows us to take realistic power grid constraints into account.
Unfortunately CMMDPs only impose constraints on expectations, and therefore we
present techniques to prevent violations of power grid constraints during execution.
In a series of experiments we demonstrate the e�ectiveness of our approach in
an IEEE distribution grid with uncertain production from renewables, uncertain
consumption of EVs and a large number of households. Our results show that
AI-based planning algorithms are able to manage congestion in smart distribution
1The research described in this chapter was performed in collaboration with Nils van der Blij, who was
responsible for the electrical aspects of the proposed solutions and the simulations. The author of this
dissertation was responsible for the algorithmic aspects and had the lead in writing the paper.
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grids, and at the same time this shows that AI techniques are able to support the
changes that distribution grids in our society are facing in the upcoming years.

6.1. Introduction
The power grid is the infrastructure that transports electric energy from producers
to consumers in cities, neighborhoods and streets (Schavemaker and Van der Sluis,
2008). It currently consists of conventional generators which produce electric
power, and lines that carry this power to consumers. The power grid can be seen as
a hierarchical infrastructure, in which the transmission grid transports power over
large distances, and the distribution grid delivers power to individual buildings
and consumers. The grid serves as a main backbone of our society and economy,
and it is a crucial infrastructure for daily needs such as communication, health
care, transportation and our food supply chain.

There are two major developments which a�ect the operation of the grid in
the upcoming years. First, conventional power generators are gradually being
replaced by renewable generators at the distribution level (Weitemeyer et al., 2015).
For example, solar panels and wind turbines provide power immediately to the
distribution grid, whereas conventional generators only supply power through
the transmission grid. Second, there is a signi�cant increase in the number of
electric vehicles expected, which requires charging using charging stations at the
distribution level (Veldman and Verzijlbergh, 2015). Both developments contribute
to the global energy transition, which aims to reduce the total emissions of the
energy system (Breyer et al., 2017). As a result, it reduces the dependence of our
society on energy sources such as oil, natural gas and coal.

Although renewable generators and electri�cation of transportation contribute
to the transition to sustainable energy, it also introduces major problems related to
the operation of the current grid. Renewable generators such as wind turbines and
solar panels are uncontrollable and create more uncertainty regarding the amount
of power produced, which makes it more di�cult for optimization methods to rea-
son about renewable production. This can be relevant when solving optimization
problems for balancing demand and supply (Morales-España et al., 2016). Another
problem arises due to the large number of electric vehicles in neighborhoods and
streets. If a large number of vehicles in neighborhoods becomes electric then it
is no longer feasible to charge them simultaneously due to the limited capacity
of lines. It can be concluded that the transition to sustainable energy makes it
more di�cult to match demand and supply, and it introduces the risk that the grid
becomes congested due to increased demand.

Both issues associated with the energy transition raise the question how the
distribution grid, consumers and producers should change in the future. Reinforc-
ing the current grid by increasing its capacity would be a straightforward solution
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to congestion problems, but this represents major maintenance work and it is con-
sidered expensive (Lunde, Røpke, and Heiskanen, 2016). Moreover, it should be
noted that grid reinforcements do not address problems related to the uncertainty
in renewable generation. An alternative solution to congestion problems uses the
�exibility provided by consumers, and it aims to lower the total instantaneous
demand by shifting demand to other periods of the day with renewable generation
and excess grid capacity (Sundstrom and Binding, 2012; Walraven and Spaan,
2016). Rather than reinforcing the grid, it requires active and smart control of
power consumption, and it can be seen as the transformation of the grid into a
so-called smart grid which integrates intelligence in generators and appliances.
The development of congestion management methods for smart grids is an area
where arti�cial intelligence becomes important due to the ability to perform au-
tomated control and reasoning under uncertainty (Ramchurn et al., 2012). We
take a major step in this direction by presenting the �rst AI-based framework for
congestion management in distribution grids while considering uncertainty in,
e.g., renewables and electric vehicle demand.

6.1.1. Contributions
In this chapter we present a novel approach to congestion management in distri-
bution grids based on multi-agent planning under uncertainty. We introduce a
framework based on Constrained Multi-agent Markov Decision Processes (CM-
MDPs) which can be used to control individual agents in a distribution grid while
taking grid constraints and potential congestion into account. To be more speci�c,
the contributions of the chapter are the following.

First, we provide a general overview of arti�cial intelligence literature focusing
on applications in smart grids. The purpose of this overview is twofold. It allows
us to identify general categories of smart grid applications in which arti�cial intel-
ligence can play a key role. This includes congestion management in distribution
grids, but also topics such as energymarkets and the technical operation of the grid.
Furthermore, our overview enables us to study whether realistic grid constraints
have been considered in existing arti�cial intelligence methods for congestion
management.

Second, we present a multi-agent planning framework suitable for congestion
management, which is based on the Constrained Multi-agent Markov Decision
Processes (Altman, 1999). The framework itself naturally supports constraints,
and therefore we present a novel mapping of grid constraints to CMMDP con-
straints. This enables us to perform multi-agent planning under uncertainty while
considering the characteristics of a distribution grid.

Third, we present techniques to ensure that solutions to CMMDPs respect grid
constraints during execution. Traditional algorithms for CMMDPs ensure that the
resulting policies respect the constraints only in expectation, which may lead to
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undesirable grid constraint violations during policy execution. In order to address
this, we describe multiple methods to reduce or prevent such violations. These
techniques turn out to be crucial, because they make it possible to use CMMDPs
for congestion management.

Fourth, we present the results of a series of simulation experiments in which
we demonstrate how our framework can be used for congestion management in a
realistic IEEE distribution grid. In this study we consider uncertain power produc-
tion provided by renewables, as well as control of �exible electric vehicles which
require charging. Besides the computational results, the experiments con�rm that
arti�cial intelligence techniques can be used for congestion management and for
building future power grids that serve our society.

6.1.2. Chapter outline
The structure of our chapter is as follows. In Section 6.2 we start with an overview
of applications of arti�cial intelligence in the context of smart grids, which shows
us that existingmethods cannot be used for congestionmanagement. In Section 6.3
we provide technical background information about power �ows in distribution
grids. These power �ows are used in Section 6.4, where we present the CMMDP
framework and the mapping of grid constraints to CMMDP constraints. Fur-
thermore, we describe techniques to prevent constraint violations during policy
execution. Section 6.5 presents the results of our simulation experiments. In
Section 6.6 we discuss our conclusions and future work.

6.2. Applications of AI in smart grids
Arti�cial intelligence techniques can potentially contribute to the transformation
of the passive energy grid into a smart energy grid. In this section we investigate
to what extent arti�cial intelligence has been used for smart grids already, and we
study whether existing algorithms are suitable for congestion management while
dealing with uncertainty.

To be more speci�c, our literature study aims to identify whether existing work
in the arti�cial intelligence community considers the capacity constraints imposed
by the distribution grid. We consider all smart grid literature that appeared in
major arti�cial intelligence conferences and journals. This speci�c focus narrows
the scope of our literature study to a feasible size, but at the same time it enables us
to see whether new techniques developed in the arti�cial intelligence community
are suitable for congestion management. In this section we provide a high-level
overview which highlights the main applications of arti�cial intelligence in smart
grids. A full overview of the relevant papers is provided in Appendix 6A.

The structure of this section is based on four main categories of smart grid
applications that we identi�ed. In Section 6.2.1 we start with AI-based algorithms
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for control of �exible loads that are connected to the grid. In Section 6.2.2 we
discuss applications in the context of energy markets, energy tari�s and trading.
Grid control and integration of renewable generators using arti�cial intelligence
is discussed in Section 6.2.3. We discuss AI-based methods for smart meters and
forecasting in Section 6.2.4. Finally, in Section 6.2.5 we provide a discussion
about grid constraints in optimization algorithms from a more general perspective,
and we explain why arti�cial intelligence can be essential for solving constrained
problems.

6.2.1. Control of �exible loads
The �rst category of applications involves loads that are connected to the grid,
which naturally have power consumption that is temporally �exible. This means
that the load needs to consume power in order to run, but the actual consumption
can be shifted in time within a certain time window. The total power consumption
and the size of the time window determine how much �exibility the load o�ers to
the grid. As a concrete example we can consider charging of electric vehicles (De
Weerdt et al., 2018). Such a vehicle consumes power in order to charge its battery,
but when the vehicle actually charges is not relevant as long as the desired battery
level is reached before departure. This means that the desired battery level and
the intended departure time de�ne the total �exibility that is available. Other
examples of �exible loads include home appliances such as heating systems and
refrigerators (Van Den Briel, Scott, and Thiébaux, 2013; De Nijs, Spaan, and de
Weerdt, 2015).

Exploiting the �exible nature of loads in a distribution grid is relevant for mul-
tiple reasons. Most importantly, �exibility of loads can be used to prevent grid
congestion. For example, if multiple electric vehicles charge simultaneously then
the total consumption may exceed the capacity of the lines in the grid. The peak
power consumption of the vehicles can be reduced by shifting the consumption
from periods with high demand to periods with lower demand. Exploiting �exi-
bility also becomes relevant when matching demand and renewable supply. For
example, renewable generators are typically weather-dependent and do not provide
power at all times. Flexible demand of loads can be controlled in such a way that
power is consumed when renewable generators produce power, which means that
power produced by renewables can be used locally in the distribution grid. This
local usage of renewable power prevents disuptive power �ows through the entire
grid, and it reduces the usage of power produced by conventional generators.

Arti�cial intelligence methods have a huge potential for application in the
context of controlling �exible loads because of the following key characteristics.
Demand and supply in the grid is inherently uncertain due to the uncertain na-
ture of the behavior of households as well as the uncertain power production of
renewable generators. Furthermore, the grid can be seen as a large multi-agent
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system with multiple cooperative or self-interested households. The combination
of uncertainty and multiple agents gives rise to the application of AI-based algo-
rithms for multi-agent sequential decision making under uncertainty, which are a
natural �t for control of �exible loads. Moreover, AI-based methods can model
decision making problems with uncertainty that cannot be modeled by alternative
methods such as multi-stage stochastic programming, because AI-based methods
can be used to model settings where decisions in�uence the process representing
the uncertainty (e.g., charging decisions which a�ect the uncertain demand the
next day).

Based on the literature we found it can be concluded that AI-based algorithms
for control of �exible loads received signi�cant attention. A full overview of this
literature is given in Appendix 6A. Unfortunately, it turns out that none of the
existing work considers realistic grid constraints, which means that there is no
suitable AI-based method that can be used to perform congestion management
by controlling �exible loads. As a �nal remark we want to mention that new
developments in the area of safe reinforcement learning are potentially relevant to
prevent constraint violations during exploration, but to the best of our knowledge
such methods have not been combined with realistic grids yet.

6.2.2. Energy markets, tari�s and trading
The second category of applications considers control of loads from a market per-
spective, in which markets and prices steer the behavior of appliances of users. To
some extent this line of work can be seen as indirect control, because the combina-
tion of market mechanisms, pricing and user response achieves a certain behavior
(e.g., shifting of loads). This is di�erent compared to the methods discussed in the
previous section, which control the loads directly.

Real-time pricing mechanisms have been proposed to provide incentives to
consumers to shift their consumption from peak hours to o�-peak hours (Bandy-
opadhyay et al., 2015). These incentives are provided by making the electricity
price dependent on time. Most work considers ex-ante pricing mechanisms, which
means that the prices are determined and announced before the relevant time
window starts. This allows consumers to shift their �exible consumption to cheap
periods of the day. The main challenge in this line of work is setting the actual
prices, in such a way that they realize the desired e�ects. It should be noted
that there can be an interplay with direct control of �exible loads as discussed in
the previous section, because pricing mechanisms typically assume that �exible
consumption is shifted when consumers respond to prices.

Due to the integration of renewables, households also start to produce energy
besides the traditional consumption of energy. This gives rise to the participation
in markets and trading of energy with other market participants (Ramchurn et al.,
2012). Furthermore, multiple loads can be aggregated into groups, forwhich energy
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can be purchased in themarket simultaneously. This coordinated purchasing based
on larger groups can give additional advantages due to increased competition,
prices that are more responsive to market conditions, and the ability to predict
demand more reliably (Perrault and Boutilier, 2015).

Arti�cial intelligence can play a key role in this type of applications because
setting suitable prices requires reasoning about uncertain behavior of consumers
and producers. Moreover, algorithms for autonomous trading and market partici-
pation can be created by formulating planning problems in which actions de�ne
the properties of the bids performed by agents (Urieli and Stone, 2016). In Table 6.6
in Appendix 6A we provide a full overview of arti�cial intelligence literature re-
lated to markets, trading and pricing mechanisms. In this table we also indicate
whether the work considers realistic grid constraints. For example, the market-
place proposed by Cerquides, Picard, and Rodríguez-Aguilar (2015) does refer to
such grid constraints, but the actual modeling of the �ows through the lines is
not based on the actual characteristics of the lines. There is only one mechanism
that considers realistic grid constraints (Burgess, Chapman, and Scott, 2018), but
this mechanism cannot be used to perform congestion management using �exible
loads in a distribution grid. From these observations we can conclude that arti�cial
intelligence found a large number of applications in the context of markets, tari�s
and trading, but none of these methods is suitable for congestion management
while considering realisitc grid constraints.

6.2.3. Grid control and integration of renewables
The third category of applications focuses on the operation of the grid. In contrast
to the �exible loads and markets discussed in Section 6.2.1 and 6.2.2, this category
includes power generators and the actual components of the grid itself, rather than
loads at the level of individual households. As a �rst example we consider power
supply restoration problems in which it is required to recon�gure the grid after
failures of lines. This means that one or more line switches need to be opened
or closed in order to restore the power supply to the nodes in the grid (Agrawal,
Kumar, and Varakantham, 2015). Another example is the dispatch of generators
which supply the power that is required to make sure that the power demand
always perfectly matches the power supply (Miller, Ramchurn, and Rogers, 2012).
This requires solving a complex decision making problem in which it is decided
when generators are running, and how much power they provide to the grid. For
renewable generators such as solar panels and wind turbines the power production
cannot be controlled explicitly, and therefore it is sometimes required to shut down
(i.e., curtail) the generators to prevent excess power supply (Bandyopadhyay, Ku-
mar, and Arya, 2016). The latter typically involves solving planning and scheduling
problems.

The aforementioned problems all involve decision making under uncertainty,
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which makes it a natural application domain for techniques developed in the arti�-
cial intelligence community, for similar reasons as those discussed in Section 6.2.1.
Table 6.4 in Appendix 6A provides an overview of the algorithms that appeared in
the arti�cial intelligence literature. This table also shows us that a few algorithms
consider realistic grid constraints during execution, which requires some additional
explanations to indicate the di�erences with the work presented in this chapter.
Coninx and Holvoet (2016) mention the technical constraints that need to be re-
spectedwhenwind power generation increases, but thework does not describe how
such constraints are respected. Agrawal, Kumar, and Varakantham (2015) describe
power �ow conservation constraints in the context of power supply restoration,
but the computed �ows are not based on the actual characteristics of the lines.
Piacentini et al. (2013) combine PDDL-based planning with an external power
�ow solver, which calculates the power �ows given the line characteristics and
the power demand and supply. Our work is fundamentally di�erent because we
provide an integrated solution which considers grid constraints while optimizing,
whereas the PDDL-based planning method only performs multiple �ow feasibility
checks. Furthermore, it is important to mention that the PDDL-based planning
method does not consider uncertainty, which is important in distribution grids.

6.2.4. Load forecasting and smart meter data

The �nal category of applications focuses on forecasting and measuring of power
demand and supply. Forecasting becomes relevant if demand and supply of power
need to be actively matched (Chen et al., 2013). In order to do this, algorithms
need to reason about the uncertain demand and supply in the future, and therefore
more accurate forecasts enable the algorithms to match demand and supply more
e�ectively. Techniques such as Gaussian processes, neural networks and condi-
tional random �elds have been used to facilitate forecasting. Arti�cial intelligence
techniques have also been used to measure power by means of data collection
and analysis using smart meters. Most notably, energy disaggregation techniques
extract load pro�les of individual appliances from the aggregate load pro�le of a
household (Parson et al., 2012), which can be useful to provide insight into con-
sumption behavior and load shifting opportunities. A full overview of the relevant
methods is provided in Table 6.5 in Appendix 6A. Typically, the presented methods
only provide or analyze data, which means that there is no need for the algorithms
to account for grid characteristics. It can be expected that new machine learning
and data analysis methods developed in the arti�cial intelligence community can
also be applied to this speci�c set of applications in the future.
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6.2.5. Grid constraints in optimization algorithms
Integration of grid constraints in optimization methods has been studied in several
di�erent contexts, such as optimization in the operations research and power
systems �elds. In this section we describe these lines of work, and we highlight the
bene�ts of AI-based algorithms. We only describe key techniques and applications
that have been considered, and we do not aim to give a complete overview of all
the work because it is beyond the scope of this dissertation.

From an operations research point of view there has beenwork on integration of
grid constraints and enhancing the e�ciency when solving optimization problems
in power systems that include such constraints. For example, Co�rin and Van
Hentenryck (2014) present techniques to linearize and approximate power grid
constraints in such a way that the models also capture reactive power and voltage
magnitudes. These properties can also be potentially integrated in our work,
but since we are interested in congestion management it is su�cient to consider
constraints on �ows. Furthermore, there has been work on SDP relaxations (Hijazi,
Co�rin, and Van Hentenryck, 2016) and QC relaxations (Co�rin, Hijazi, and Van
Hentenryck, 2016) in the context of optimal power �ow problems, in which it is
determined how conventional power generation units should be operated in order
to meet the total demand while minimizing the total operating cost. There are
three key properties which motivate why arti�cial intelligence based methods can
be bene�cial compared to the aforementioned techniques. First, AI techniques
have shown to be able to model hard constraints, as well as constraints for which
minor violations are allowed. The latter can be bene�cial in distribution grids
because typically minor violations are allowed. We further elaborate on this in
Section 6.4.6. Second, AI-based algorithms have been used to create systems
in which agents operate in a decentralized way, which is relevant to reduce the
amount of communication that is required in a smart grid. Third, multiple types of
uncertainty can be integrated in AI-based planning algorithms, whereas traditional
optimization algorithms typically support only one type of uncertainty, which we
further explain below.

Optimization algorithms which include both grid constraints and uncertainty
have been considered in the context of the unit commitment, which is a critical
task in the operation of power systems. Unit commitment involves scheduling the
dispatch of power generation units in order to satisfy the demand (Padhy, 2004). If
the unit commitment problem includes the full characteristics of the grid, then
it actually contains the aforementioned optimal power �ow problem. Typically,
uncertainty is included by formulating the problem as a stochastic or robust opti-
mization problem, in which multiple scenarios characterize the uncertainty that
can be encountered over time (Morales-España, Lorca, and de Weerdt, 2018). This
type of uncertainty characterization is suitable for exogenous sources of uncertainty
such as wind and solar power, but it is important to note that it does not allow for
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modeling of problems in which decisions in�uence uncertainty encountered later
in time. For example, one can think about electric vehicle charging problems in
which charging decisions in�uence the demand uncertainty encountered during
the next day. AI planning algorithms based on Markov Decision Processes, on
the other hand, can be used to model such problems, which means that these
algorithms can be applied to a broader class of decision making problems with
uncertainty in smart grids (Defourny, Ernst, and Wehenkel, 2012).

6.2.6. Summary
We identi�ed four categories of smart grid applications and we discussed how
arti�cial intelligence can play an essential role in these applications. We found
that intelligent decision making algorithms developed in the AI community can
be used for control of �exible loads, market participation, pricing, grid control and
analyzing user demand and supply. In these applications it is crucial to perform
automated reasoning for a large number of consumers and producers, while taking
several sources of uncertainty into account. These characteristics make smart
grids an attractive application domain for arti�cial intelligence methods. This
is a promising conclusion, but unfortunately we found that none of the existing
AI-based methods is currently suitable to perform congestion management in
these applications because realistic power �ows in lines are typically not con-
sidered. In this chapter we close this knowledge gap by presenting algorithms
for decision making under uncertainty which consider realistic grid constraints.
Furthermore, our algorithms naturally support decentralized decision making, ex-
ogenous uncertainty and endogenous uncertainty, which is typically not supported
simultaneously by traditional optimization techniques.

6.3. Power �ows in distribution grids
In this section we present background information about modeling of smart grids
and we introduce a mathematical model to calculate power �ows. The model is
widely used in industry and academic literature, mainly because of the linearity,
acceptable accuracy and the low computational burden compared to an exact non-
linear model (Stott, Jardim, and Alsac, 2009). The model approximates the power
�ow by assuming that the resistance in the network is negligible, and the voltage
and voltage angle di�erences between nodes are small, which is valid for distribu-
tion systems. This model is suitable for analyzing power �ows, which makes it a
suitable model for congestion management methods. In this section we provide
a description of the computation of the power �ows for an Alternating Current
(AC) distribution grid. It turns out that Direct Current (DC) distribution grids can
be modeled in a similar fashion, and this eventually leads to the same equations,
which means that our congestion management algorithms are su�ciently generic



6.3. Power �ows in distribution grids 155

to be used in both types of grids. More details about modeling of DC distribution
grids are provided in the manuscript corresponding to this chapter.

We model a distribution grid, to which we simply refer as grid, which is the
infrastructure to which power-consuming and power-producing entities such as
households are connected. In such a grid the consumption of power leads to �ow
of power through the lines. The �ow through a line should not exceed the total
capacity of the line (Schavemaker and Van der Sluis, 2008). More formally, the grid
can be modeled as an undirected graph consisting ofm nodes, indexed from 1 tom.
A line (�,�) ∈ℒ connects node � to node �, and the capacity limit, resistance and
reactance of this line are denoted by l�,�, r�,� and x�,�, respectively. The capacity
limit, resistance and reactance are given properties of the line. The amount of
power injected in node � is denoted by P(�), which becomes a negative number in
case power is consumed from the grid. Without loss of generality it is assumed
that the grid is connected to a transmission grid through node 1, which supplies
power to the distribution grid. At all times it is required that

−1 ⋅P(1) =
m∑

�=2
P(�), (6.1)

which means that power supply and demand are always balanced.
It is not su�cient to ensure that power demand and supply are equal. It is also

important that the power �ow in each line does not exceed the capacity limit of the
line. Power injected in node 1 and consumed in node � �ows through one or more
paths through the grid, but this is not necessarily the shortest path. The actual
path depends on the grid topology and the properties of the lines.

In Section 6.6 it is derived that the power �owP�,� through the line from node �
to node � is equal to:

P�,� =
U
2

x�,�
(��−��), (6.2)

where �� and �� denote the voltage angles in node � and �, respectively, and U
denotes the nominal voltage. The voltage angle is a property of the nodes relating
voltage to current. Based on the equationwe can see that the problem of computing
�ows reduces to computing voltage angles. For each node � it should hold that
injected power in node � equals the amount of power �owing to other nodes:

P(�) =
m∑

j=1, j≠�, (�,j)∈ℒ
P�,j =

m∑

j=1, j≠�, (�,j)∈ℒ

U
2

x�,j
(��−�j), (6.3)

where the condition under the summation ensures that pairs of nodes without a
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line are excluded. This set of equations can be written in matrix form as follows:

⎡
⎢
⎢
⎢
⎣

P(1)
⋮

P(m)

⎤
⎥
⎥
⎥
⎦

=U
2
M

⎡
⎢
⎢
⎢
⎣

�1
⋮
�m

⎤
⎥
⎥
⎥
⎦

, (6.4)

whereM is anm×mmatrix. The elementMk,l at row k and column l is de�ned
by:

Mk,l = {
−1∕xk,l if k ≠ l
∑m

j=1, j≠k, (k,j)∈ℒ 1∕xk,j otherwise
. (6.5)

We can obtain the voltage angles by computing

⎡
⎢
⎢
⎢
⎣

�1
⋮
�m

⎤
⎥
⎥
⎥
⎦

= 1

U
2M

′

⎡
⎢
⎢
⎢
⎣

P(1)
⋮

P(m)

⎤
⎥
⎥
⎥
⎦

, (6.6)

whereM′ is the inverse ofM. Since the matrixM is singular, the inverse does not
exist. Therefore, we set �1 equal to 0 and solve the following set of linear equations:

⎡
⎢
⎢
⎢
⎣

�2
⋮
�m

⎤
⎥
⎥
⎥
⎦

= 1

U
2Z

⎡
⎢
⎢
⎢
⎣

P(2)
⋮

P(m)

⎤
⎥
⎥
⎥
⎦

, (6.7)

where Z is an (m−1)×(m−1)matrix obtained by removing the �rst row and the
�rst column ofM, and then the inverse of the resulting matrix is computed. The
power �ow in each line can be computed using the voltage angles and Equation 6.2.

Computations can be further simpli�ed by observing that the voltage angles
can be written as follows:

�k =
1

U
2

m∑

j=2
Zk−1,j−1 ⋅P(j) ∀k ∈ {2,… ,m}. (6.8)

Note that we subtract 1 in the indices of Z because the voltage angle for node k is
computed using row k−1 of Z due to the matrix size reduction. Substituting this
expression in Equation 6.2 yields the following if � > 1 and � > 1:

P�,� =
U
2

x�,�
(��−��) (6.9)

=

∑m
j=2Z�−1,j−1P(j)−

∑m
j=2Z�−1,j−1P(j)

x�,�
(6.10)

=
m∑

j=2
P(j) ⋅ 1

x�,�
⋅ (Z�−1,j−1−Z�−1,j−1). (6.11)
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Figure 6.1: Example distribution grid with computed power �ows

Aswe can see, it turns out that the�owbetweennode� andnode � can be calculated
as a linear function of the power P(j) injected in the nodes, weighted by a term
that is not dependent on the injected power. These terms can be precomputed,
and thus we can compute the �ow P�,� as follows:

P�,� =
m∑

j=2
P(j) ⋅S�,�,j , (6.12)

with

S�,�,j =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

Z�−1,j−1−Z�−1,j−1
x�,�

�,� > 1,�≠ �

−Z�−1,j−1 ∕ x�,� �= 1, � > 1
Z�−1,j−1 ∕ x�,� � > 1, � = 1
0 otherwise

. (6.13)

The �rst case follows immediately from the derivation, and the second and the
third case follow from a similar derivation, where 0 is substituted for either �� or ��.
The number S�,�,j is a Power Transfer Distribution Factor (PTDF), representing
the fraction of power from node 1 to node j that �ows through the line from node �
to node �. The PTDFs are convenient because they can be precomputed, and �ows
can be easily computed using the injected power P(2),… ,P(m). Congestion arises
if the �ow in the line from node � to node � exceeds the line capacity l�,�.

As a numerical example we consider a grid consisting of 3 nodes, as shown
in Figure 6.1, in which the arrows indicate the direction of �ow. The power
consumption in node 2 is 100 W, and the power consumption in node 3 is 200 W.
This means that P(1) = 300, P(2) = −100 and P(3) = −200. For the reactance
we assume that x1,2 = 0.1, x1,3 = 0.2 and x2,3 = 0.1. Intuitively, one may think
that P1,2 = 100, P1,3 = 200 and P2,3 = 0, but this is not the case. The matrixM and
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the corresponding matrix Z are as follows:

M=
⎡
⎢
⎢
⎢
⎣

15 −10 −5
−10 20 −10
−5 −10 15

⎤
⎥
⎥
⎥
⎦

Z= [
0.075 0.05
0.05 0.1

] .

We show how P2,3 is computed. It requires S2,3,2 = (Z1,1−Z2,1) ∕ x2,3 = (0.075−
0.05) ∕ 0.1 = 0.25 and S2,3,3 = (Z1,2−Z2,2) ∕ x2,3 = (0.05−0.1) ∕ 0.1 = −0.5. Now
we derive P2,3 = (P(2) ⋅S2,3,2)+ (P(3) ⋅S2,3,3) = (−100 ⋅ 0.25)+ (−200 ⋅−0.5) = 75.
The �ows P1,2 and P1,3 can be computed similarly.

6.4. Congestion management using CMMDPs
In this section we present a framework for congestion management using con-
strained multi-agent planning under uncertainty. We start with a general moti-
vation that explains why planning under uncertainty is a suitable approach for
congestion management in distribution grids. After that, we provide a general
description of ConstrainedMulti-agentMarkov Decision Processes (CMMDPs) and
the corresponding solution methods. In order to make sure that CMMDP solutions
take grid constraints into account, we present a mapping of grid constraints to
CMMDP constraints. Finally, we describe additional techniques to ensure that
these grid constraints are respected during the execution of the computed policies.

6.4.1. Algorithm requirements for congestion management
Congestion management in distribution grids can be seen as control of power
consumption and generation, in such a way that the capacities of the lines are not
violated. In Section 6.2 we have seen that �exibility of loads provides an attractive
concept to prevent congestion, because such loads can be used to shift consumption
to other periods of the day inwhich su�cient grid capacity is still available. In other
words, power consumption can be spread out over the day, rather than consuming
power simultaneously.

Deciding how power consumption can be shifted requires decision making
algorithms that are able to deal with multiple agents. Besides decision making
it is important that algorithms are able to deal with uncertainty. For example,
uncontrollable consumption of households and uncontrollable production of re-
newables is inherently uncertain and this needs to be considered when making
decisions about shifting load. Another important characteristic of �exible loads
in a distribution grid is that they naturally want to achieve a certain goal. For
example, heating systems in buildings aim to keep the temperature close to a given
setpoint, whereas electric vehicles want to eventually reach a fully-charged battery.
This gives rise to the application of decision making algorithms that maximize a
notion of reward. In heating systems this reward can be related to the deviation
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from the setpoint, and electric vehicles get rewarded when they reach their desired
battery level.

The line of reasoning above shows us that congestion management in distribu-
tion grids requires algorithms for multi-agent planning under uncertainty which
maximize the notion of reward while respecting the constraints imposed by the
lines of the grid. Constrained Multi-agent Markov Decision Processes include all
basic requirements that we need, and therefore we select this model to formalize
congestionmanagement problems. Furthermore, it turns out that themodel can be
used for decentralized decision making, which is convenient in smart distribution
grids because it reduces communication requirements.

6.4.2. Constrained Multi-agent Markov Decision Processes
We consider a Constrained Multi-agent Markov Decision Process that consists of n
agents. We introduced Constrained Markov Decision Processes in Section 2.1, but
in this section we provide an additional introduction because we use a slightly
di�erent model that includes both constraints and multiple agents. Each agent i
is modeled as a �nite-horizon Markov Decision Process (Puterman, 1994) and
there are resource constraints which force the agents to coordinate. For agent i
the MDP is de�ned by the tuple Mi = (Si ,Ai ,Ti ,Ri , si,1,ℎ), where Si denotes a
�nite set of states, and the �nite set Ai contains actions. The planning horizon
is denoted by ℎ, which is identical for each agent, and decisions are made at
the timesteps 1,… ,ℎ. The function Ti ∶ Si ×Ai × Si × {1,… ,ℎ} → [0,1] de�nes
stochastic state transitions, where Ti(s,a, s′, t) represents the probability that the
state changes from s ∈ Si to s′ ∈ Si after executing action a ∈ Ai at time t. The
function Ri ∶ Si ×Ai ×{1,… ,ℎ}→ R encodes the reward Ri(s,a, t) that is received
when executing action a ∈Ai in state s ∈ Si at time t. The initial state is denoted
by si,1. A solution is represented by a policy �i ∶ {1,… ,ℎ}×Si →Ai for each agent i,
such that �i(t, s) de�nes the action a ∈ Ai to be executed at time t if the state
is s ∈ Si . The objective is to maximize the total expected reward received by the
agents:

n∑

i=1
(E�i [

ℎ∑

t=1
Ri(si,t,�i(t, si,t), t)

||||||||||
si,1]) , (6.14)

in which si,t denotes the state of agent i at time t.
Constraints on resources, indexed by z, require coordination of the decisions

made by the agents. For each agent i the consumption of resource z is de�ned
by Ci,z ∶ Si ×Ai → R, such that Ci,z(s,a) denotes the instantaneous consumption
of resource z when executing action a ∈ Ai in state s ∈ Si . The resource limit
is de�ned by Lz, which is violated at time t if

∑n
i=1Ci,z(si,t,ai,t) > Lz, where si,t

and ai,t denote the state and executed action of agent i at time t, respectively.
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The multi-agent planning problem outlined above can be solved using linear
programming in case it is su�cient to satisfy the constraints in expectation. For
this purpose the Constrained MDP framework (Altman, 1999) de�nes a linear
program, which imposes constraints on the policies of the agents, as shown below.

max
n∑

i=1

ℎ∑

t=1

∑

s∈Si

∑

a∈Ai

xit,s,a ⋅Ri(s,a, t)

s.t.
∑

a′∈Ai

xit+1,s′,a′=
∑

s∈Si

∑

a∈Ai

xit,s,a ⋅Ti(s,a, s
′, t) ∀i, t, s′∈Si

∑

a∈Ai

xi1,s,a = P(si,1 = s) ∀i, s ∈Si

n∑

i=1

∑

s∈Si

∑

a∈Ai

xit,s,a ⋅Ci,z(s,a)≤ Lz ∀z, t

0≤ xit,s,a ≤ 1 ∀i, t, s,a

(6.15)

The decision variable xit,s,a denotes the probability that agent i reaches state s
at time t, and subsequently executes action a. Agent i selects action a in state s
at time t with probability xit,s,a ∕

∑
a′∈Ai

xit,s,a′ . The policies of the agents may be
stochastic, and they have a very attractive property in the multi-agent setting. The
policy of agent i does not depend on the policies of other agents and therefore it
can be executed in a decentralized way. This means that the agents can execute
the policies without any communication while making sure that the constraints
are not violated in expectation.

6.4.3. Agent goals and guarantees
As discussed in Section 6.4.1, �exible loads in a distribution grid aim to reach a
certain goal, such as a fully-charged battery. The Constrained Multi-agent Markov
Decision Process framework allows us to formalize this notion of goals using the
reward functions of the agents. For each agent i with a speci�c goal, we de�ne a
reward function Ri which gives reward 1 when reaching the goal of the agent, and
it de�nes reward 0 otherwise. This type of reward function is convenient, because
the expected reward

ℰi =
ℎ∑

t=1

∑

s∈Si

∑

a∈Ai

xit,s,a ⋅Ri(s,a, t) (6.16)

becomes equivalent to the probability that agent i reaches its goal. Furthermore,
maximizing expected reward based on such a reward function corresponds to
maximizing the probability that the agent reaches its goal. Based on the expected
reward of the agents we can de�ne the total expected reward of the agents with a
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goal as follows:

ℰ=
∑

{i=1,…,n | agent i has a goal}
ℰi . (6.17)

Given a set of policies computed using the linear program in Equation 6.15, it is
important to know whether the agents will reach their goal during the execution
of their policy. The expectation ℰ allows us to check whether it is guaranteed that
all agents reach their goal, as formalized in the theorem below.

Theorem 9. If ℰ is equal to the total number of agents with a goal, then it is guar-
anteed that all the agents reach their goal during policy execution.

Proof. We assume that ℰ equals the number of agents with a goal, and we prove
by contradiction that it implies that all the agents reach their goal. Suppose the
contrary, namely that it is not guaranteed that all the agents reach their goal. In
that case there is at least one agent i for which the probability to reach the goal
is less than 1, which means that ℰi < 1. Since there is at least one ℰi in the sum
in Equation 6.17 which is less than 1, it follows that ℰ is less than the number
of agents with a goal. This leads to a contradiction, because we assumed that ℰ
equals the number of agents with a goal. We conclude that all the agents reach
their goal if ℰ equals the number of agents with a goal.

Our de�nitions and analysis regarding agent goals become relevant when
integrating grid constraints because of two reasons. Most importantly, we can use
it to assess whether the agents are guaranteed to reach their goal while respecting
grid constraints. Furthermore, our techniques to enforce grid constraints make
use of the expectation ℰ to decide whether optimization can be terminated or not.

6.4.4. Integrating grid constraints in Constrained MMDPs
The CMMDP model provides a general framework for planning under uncertainty
subject to constraints. In this section we establish a connection between this model
and constraints on power �ows in distribution grids. This enables us to solve
CMMDPs in such a way that the resulting policies ensure that the agents can reach
their goals while respecting the constraints imposed by the lines of the power grid.

The resource consumption functions discussed in Section 6.4.2 can be used
to model constraints. To make sure that CMMDP constraints correspond to grid
constraints, we derive a relationship between the �ows and the resource consump-
tion functions. It turns out that the linearity of the �ows in Section 6.3 gives us a
convenient mapping from a grid constraint to a collection of CMMDP constraints.

The agents are connected to nodes in the grid, and the lines of the grid impose
constraints on the behavior of the agents. Agent i is connected to node 2≤ g(i)≤m,
in which it can either inject or subtract power. We let ci(s,a) denote the power
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consumption of agent i when executing action a in state s, which corresponds
to the amount of power subtracted from the grid. Note that agents cannot be
connected to node 1 because it represents the connection to the transmission grid,
as discussed in Section 6.3.

Considering a line (�,�) ∈ ℒ, we can see in Equation 6.12 that each agent
contributes a certain amount of �ow to the line, regardless of the location of
the agent in the grid. For agent i the �ow contributed to line (�,�) ∈ℒ is equal
to S�,�,g(i) ⋅P(g(i)), in which the last term represents the amount of power agent i
injects in the node g(i) to which it is connected. For example, when executing
action a in state s, then agent i would contribute �ow −1 ⋅ ci(s,a) ⋅S�,�,g(i) to the
total �ow through the line. Note that we multiply by−1 because ci(s,a) represents
the power subtracted from the grid while P(g(i)) represents the power injected
into the grid.

The grid constraints can be integrated in the MDP formulation of the agents by
adding resource consumption functions and corresponding constraints. For each
line (�,�) ∈ℒ we create two resources z�,� and z�,�. Both resources correspond to
the same line, but they represent two directions of �ow. We need two resources
to model a constraint de�ning that the �ow in the line is upper bounded by l�,�,
because we do not know beforehand whether the power �ows from node � to �, or
from � to �. For resource z�,� the consumption function associated with agent i is
de�ned as follows:

Ci,z�,� (s,a) = −1 ⋅ ci(s,a) ⋅S�,�,g(i) ∀s,a. (6.18)

The �nal constraints can be imposed by adding the following constraints to the
linear program shown in Equation 6.15:

n∑

i=1

∑

s∈Si

∑

a∈Ai

xit,s,a ⋅Ci,z�,� (s,a)≤ l�,� ∀(�,�) ∈ℒ, t. (6.19)

The consumption function and constraints for resource z�,� are identical, except
that � and � are reversed. The constraints merge the individual consumption
functions of the agents, and they ensure that the expected power �ow is upper
bounded by l�,�. The current formulation ensures that the constraints of either z�,�
or z�,� are violated in case the expected power �ow in the line (�,�) ∈ℒ exceeds
l�,�. The actual constraint that is violated depends on the direction of the power
�ow. Constraints cannot be simpli�ed into one constraint by taking the absolute
value of the consumption (e.g., to eliminate direction), because it leads to incorrect
expectations if positive and negative terms cancel out.

The mapping presented in this section can be used to solve CMMDPs in such a
way that the resulting stochastic policies satisfy the grid constraints in expectation.
However, in one single execution run constraints may be violated, which is not
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desirable in a realistic distribution grid. In the next two sectionswe presentmultiple
strategies to reduce or prevent constraint violations during policy execution.

6.4.5. Preventing violations of constraints: preallocation
The resource consumption functions and the LP constraints de�ned in the previous
section ensure that the expected power �ow of the lines does not exceed the total
capacity of the lines. However, given a computed solution it is unclear to what
extent constraints are violated during execution, even if the expected power �ows
are bounded. In this section we present a preallocation technique to prevent
constraint violations completely. Since enforcing hard constraints is not always
necessary, we present additional techniques in the next section which can be used
in case minor violations are allowed.

The LP solution de�nes variables xit,s,a for agent i, which correspond to the
probability that agent i reaches state s at time t and subsequently chooses action a.
Intuitively, agent i may execute action a in state s at time t if xit,s,a > 0, but because
of this uncertainty we cannot use variables xit,s,a directly to create constraints
related to worst-case scenarios. We propose to use a strategy which preallocates
grid capacity to the agents while solving the planning problem, similar to Wu and
Durfee (2010) and De Nijs, Spaan, and de Weerdt (2018). We �rst introduce binary
variables x̄it,s,a ∈ {0,1}, which indicate that agent i is allowed to execute action a in
state s at time t. These variables can be used in additional constraints:

xit,s,a ≤ x̄
i
t,s,a ∀i, t, s,a, (6.20)

which enforce that agents are only able to execute actions in case this is explicitly
allowed.

The binary variables can be used in new grid constraints which replace the
constraints shown in Equation 6.19. Considering a speci�c line (�,�) ∈ℒ and its
resource z�,�, the worst-case �ow increase when x̄it,s,a turns from 0 to 1 is equal to:

C̄i,z�,� (s,a) =max{Ci,z�,� (s,a),0}. (6.21)

Taking the maximum is necessary because Ci,z�,� (s,a) may be negative, which
would be a �ow decrease rather than an increase. For resource z�,�, corresponding
to the reverse direction, the worst-case �ow increase can be de�ned similarly by
swapping � and �. The hard grid constraints now become:

n∑

i=1

∑

s∈Si

∑

a∈Ai

x̄it,s,a ⋅ C̄i,z�,� (s,a)≤ l�,� ∀(�,�) ∈ℒ, t. (6.22)

As before, the constraints for z�,� are identical with � and � reversed. When using
the constraints together with the constraints de�ned by Equation 6.20, the linear
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program becomes a mixed-integer linear program (MILP) which preallocates grid
capacity to the agents. The agents use the resulting stochastic policy induced by
the variables xit,s,a during execution without communicating with each other. Most
importantly, constraints are never violated during execution, which we formally
prove below.

Theorem 10. The constraints de�ned by Equations 6.20-6.22 enforce that the agents
do not violate grid constraints while executing the stochastic policy induced by the
variables xit,s,a .

Proof. Without loss of generality we consider timestep t and a line (�,�) ∈ ℒ
with its resource z�,� and limit l�,�. Assuming that constraints de�ned by the
Equations 6.20-6.22 hold, we show that P�,� ≤ l�,�:

P�,� =
m∑

j=2
P(j) ⋅S�,�,j (6.23)

=
n∑

i=1
P(g(i)) ⋅S�,�,g(i) (6.24)

≤
n∑

i=1

∑

{(s,a) | xit,s,a > 0}

−ci(s,a) ⋅S�,�,g(i) (6.25)

≤
n∑

i=1

∑

{(s,a) | xit,s,a>0}

max{−ci(s,a) ⋅S�,�,g(i),0} (6.26)

≤
n∑

i=1

∑

s∈Si

∑

a∈Ai

x̄it,s,a ⋅max{−ci(s,a) ⋅S�,�,g(i),0} (6.27)

=
n∑

i=1

∑

s∈Si

∑

a∈Ai

x̄it,s,a ⋅ C̄i,z�,� (s,a) (6.28)

≤ l�,�. (6.29)

In the derivation step 6.24 holds because we can take the sum over the agents
rather than nodes. Step 6.25 holds because we take the sum over all realizations of
pairs (s,a) that may arise, even though only one of themwill occur. In step 6.26 the
max operator only discards negative numbers from the sum, and hence this sum
cannot decrease. Step 6.27 follows from the constraints de�ned by Equation 6.20.
Step 6.28 and step 6.29 follow from Equation 6.21 and Equation 6.22, respectively.
Proving that P�,� ≤ l�,� works similarly.

6.4.6. Reducing violations using empirical bounding
The techniques introduced in the previous section ensure that power grid con-
straints are respected at all times, considering all possible realizations of the stochas-
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Figure 6.2: Reducing the number of violations by reducing the limits used for planning.

tic behavior of the agents. Imposing such a hard constraint on the violation of
a line limit means that always the absolute worst case is considered. However,
due to the large uncertainty and the large number of contributors in the grid, it
is unlikely that the worst case scenario occurs. Nowadays, the unlikely coinci-
dence of (household) load peaks is taken into account using a diversity factor for
sizing components of the distribution grid2. For example, according to the French
NFC14-100 standard the diversity factor is between 1 and 0.4 depending on the
number of households considered. Consequently, there is a small chance that
the peak load of all households coincide and the distribution line constraints are
violated. Therefore, instead of hard constraints, it is more realistic to compute
solutions for which the chance that a constraint is violated is very low. Based
on these considerations we present an approach to compute policies for which
the number of constraint violations is lower than a given threshold, rather than
preventing violations completely. Intuitively, we expect that it makes policies less
conservative and that the policies give higher expected reward.

Our approach is based on the idea that we can plan with capacity limits l′�,�
that are lower than the actual capacity limits l�,� used in the original constraints3.
Intuitively, this gives solutions in which the expected power �ows are lower, and
this also reduces the likelihood that the actual capacity limits l�,� are violated
during policy execution. Figure 6.2 provides an informal illustration of reducing
the limits. In Figure 6.2a planning is performed using a constraint which de�nes
that the expected �ow should be at most l�,�. Therefore, the actual realization
of the �ow centers around this expectation, as illustrated using the distribution
represented by the gray bars. As can be seen, violations of the limit l�,� may still
2See the following IEEE standard: IEEE Std 141-1993 – IEEE Recommended Practice for Electric
Power Distribution for Industrial Plants, 1994.

3A similar concept was introduced for planning with resource limits using column generation for
Constrained MDPs (De Nijs et al., 2017). However, the method cannot be applied because it assumes
that the resource limits can be set arbitrarily low, which is not the case in this work. Instead, we derive
a lower bound on the limits that can be set, and we present an alternative approach to relax the limits.
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occur. In Figure 6.2b the reduced limit l′�,� is used during planning, which leads
to a lower mean and fewer violations. In the remainder of this section we �rst
formalize reduced limits, after which we introduce an approach to decide how far
the limits should be reduced in order to reduce the number of violations.

Without loss of generality we consider a line (�,�) ∈ℒ at a timestep t, together
with its capacity limit l�,�. Recall that the constraints for this line ensure that
the expected power �ow does not exceed l�,� at time t. In order to understand to
what extent we can reduce the capacity limit used during planning, we consider
the visualization in Figure 6.3, which shows the expected �ow ℱ�,�,t in line (�,�)
created by uncontrollable loads as a function of time t. The dashed line represents
the true capacity limit l�,�. We only consider the power �ow in the line due to loads
that we cannot control using planning, because this provides us with information
about the lowest possible resource limit l′�,� that we can set in Equation 6.19. The
resource limits l′�,� that we use for planning cannot be lower than the expectations
visualized in the �gure, because then the planning problem immediately becomes
infeasible. In other words, the expected �ow created by uncontrollable loads can
be interpreted as a lower bound on l′�,�.

The expected �ow ℱ�,�,t can be easily obtained by solving the linear program
in Equation 6.15 without grid constraints, after which the expectation can be
computed as follows:

ℱ�,�,t =
||||||||||

∑

{i=1,…,n | agent i is uncontrollable}

∑

s∈Si

∑

a∈Ai

xit,s,a ⋅Ci,z�,� (s,a)
||||||||||
. (6.30)

We take the absolute value to eliminate the �ow direction, because when de�ning
the reduced limit l′�,� the direction is not relevant. The gap between l�,� andℱ�,�,t
indicates to what extent we can reduce the limit, as depicted in Figure 6.3. We
compute the reduced resource limit l′�,� as follows:

l′�,� = (max
t

ℱ�,�,t)+� ⋅(l�,�−(max
t

ℱ�,�,t)) , (6.31)

in which the parameter 0≤ � ≤ 1 de�nes the actual reduction of the limit l�,�. We
usemaxtℱ�,�,t rather than ℱ�,�,t when de�ning the reduced limit, because other-
wise the limit reductions become unnecessarily conservative. It is only important
that the reduced limits do not become lower than the expected �ows, and therefore
the maximum over these expectations su�ces. With the current formulation the
limit l′�,� cannot become lower than maxtℱ�,�,t, and therefore it is guaranteed
that the linear program in Equation 6.15 has a feasible solution for all possible �.

Our new parameter � can be used to control whether the agents are allowed to
use the capacity of the lines or not, but without a priori information it is unclear
how to set this parameter prior to solving the planning problem. We propose an
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Figure 6.3: Expected uncontrollable �ow ℱ�,�,t in line (�,�) ∈ℒ as a function of time t

algorithm which gradually increases � as much as possible based on two criteria.
First, the algorithm increases � until it reaches a solution with expected reward ℰ,
as de�ned in Section 6.4.3, because in that case the expected reward is optimal.
Second, the algorithmdetermines empiricallywhether constraints are violated, and
it increases � until it encounters more violations than tolerated. Grid constraints
are more strict than the reachability of the agent goals, and therefore the second
case is always considered more important than the �rst when deciding whether
the algorithm should proceed.

A more detailed description of our approach is provided in Algorithm 15. The
algorithm �rst determines the expected uncontrollable �ows ℱ�,�,t, after which
it starts executing iterations with an increasing � from line 7 to 23. Within an
iteration, it solves the linear program in Equation 6.15 with the reduced limits l′�,�,
and the resulting solution induced by the variables xit,s,a is denoted by x′ (line 9).
We simulate this solution on line 10 to measure the probability p that at least
one grid constraint is violated during execution. If this estimate p exceeds the
given tolerance p̄, then the algorithm stops and it returns the solution x it has
found before. If the estimate is lower than the tolerance, then the algorithm uses ℰ
to check whether all the agents are guaranteed to reach their goal. If this is the
case, then the algorithm stops and it returns the current solution. Otherwise, it
increments � and it proceeds with the next iteration.

Our algorithmuses simulation to obtain an empiricalmeasure of the probability
that a grid constraint is violated. This means that the actual violation probability
may be lower or higher than the measure p on line 10. However, it is important to
note that an exact computation of the violation probability becomes intractable in
the multi-agent setting since it requires enumeration of all possible combinations
of agent states. Computing an empirical estimate of the violation probability is
relatively cheap, and it has shown to perform well in the context of planning for
Constrained MDPs (De Nijs et al., 2017).

Finally, we want to highlight a few important properties which demonstrate
the bene�ts of our constraint reduction technique. The planning problems within
an iteration are relatively easy to solve because the optimization problem is a linear
program and it does not include binary variables. In contrast, the preallocation
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Algorithm 15: Solve planning problem with constraint violation toler-
ance p̄
input :violation tolerance 0< p̄ ≤ 1, increment factor 0< �′ ≤ 1
output :solution x

1 solve planning problem without constraints using Equation 6.15
2 determine expected uncontrollable �ows ℱ�,�,t using Equation 6.30
3 �← 0
4 x← NULL
5 !← number of agents with goals
6 �← 1
7 while �= 1 ∧ � ≤ 1 do
8 de�ne reduced limits l′�,� based on Equation 6.31
9 solve planning problem using l′�,� to obtain x′

10 simulate solution x′ to measure constraint violation probability p
11 if p > p̄ then
12 �← 0
13 else
14 compute ℰ using Equation 6.17
15 if ℰ=! then
16 �← 0
17 x← x′

18 else
19 x← x′

20 end
21 end
22 �← �+�′

23 end
24 return x

technique requires a large number of binary variables, and solving the problem is
intractable for larger instances. Furthermore, since we are not enforcing hard con-
straints, it can be expected that the algorithm computes solutions with signi�cantly
higher expected reward than the solutions computed based on preallocation of grid
capacity. We will test this observation empirically in our experimental evaluation
in the next section.
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Figure 6.4: IEEE low voltage test feeder represented by 112 nodes and 155 lines, to which 55
households (marked in black) are connected

6.5. Experiments
In this section we present the results of our experimental evaluation, in which
we demonstrate how our proposed techniques can be applied for congestion man-
agement in distribution grids. We consider a distribution grid with conventional
households whose uncontrollable power consumption behaves stochastically over
time. In addition, we consider renewable generators at the distribution level and
electric vehicles which require power from the grid to charge their batteries. Since
these vehicles may introduce congestion, our algorithms are used to decide when
the vehicles should charge while preventing congestion.

6.5.1. Experimental setup
Our experiments are executed in a simulation environment in which we simulate
households and renewable generators that are connected to the distribution grid.
Furthermore, electric vehicles use an MDP policy to decide online when they
charge their batteries. In the remainder of this subsection we provide descriptions
of the models that we use for planning and simulation.

Distribution grid
We use the IEEE European low voltage test feeder4 for our experiments (Schneider
et al., 2018). This test feeder depicts a low voltage distribution system that is radial,
but can be meshed. In Figure 6.4 the test feeder is represented by 112 nodes and
155 lines, to which 55 households are connected in total. The parameters and line
capacities of the lines are provided by IEEE. Additionally, 100 representative load
pro�les, spanning a full day, are provided for the households.

4The test feeder data and additional information can be found at the power and energy society of
IEEE: http://sites.ieee.org/pes-testfeeders/resources/
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The test feeder is connected to a transmission grid which ensures that the power
demand and supply in the test feeder are always balanced. We use the details
of the grid to model the grid according to the models presented in Section 6.3.
Additionally, we use the resources and constraints described in Section 6.4.4 to
integrate the grid constraints in our planning algorithm. The constraints have
been set in such a way that the connection to the transmission grid has a capacity
of 75 kW.

It is expected that the connection to the transmission grid is the heaviest loaded
line, because the IEEE grid is radial, the contribution of distributed energy re-
sources (e.g., batteries and solar panels) is marginal, and there is only a single
connection to the transmission grid. To improve readability, we will only display
the power �ow of the line connecting the feeder to the transmission grid in our
experiments, however congestion is examined for all the lines in the system during
planning and evaluation. An additional experiment with multiple congested lines
is described in Section 6.5.8.

Conventional uncontrollable load
Each household connected to the grid requires power throughout the day to sup-
ply loads such as the washing machine, dishwasher, fridge and television. This
consumption behavior is stochastic and it is assumed that households keep full
control over this consumption, which means that it cannot be controlled by exter-
nal entities such as aggregators. Typically, households have a consumption peak
late in the afternoon when people arrive at home, and a consumption peak early
in the morning when people wake up. We model each household as an individual
Markov Decision Process in which the power consumption behaves stochastically
over time, and the single action does not in�uence the state transitions. Our model
has been constructed in such a way that the total consumption of the households
follows the typical power consumption pattern with two peaks. This is further
studied in Section 6.5.2. More details about the modeling of households can be
found in Appendix 6B.

Electric vehicles
Wemodel electric vehicles which include two sources of uncertainty. First, there is
uncertainty about the arrival time of the vehicle, because typically it is not known
precisely when someone arrives at home after, e.g., a day at work. Second, there is
uncertainty about the amount of time required to charge the battery, because the
state of charge of the battery only becomes known upon arrival. Once connected
to the charging station at home, it is assumed that the vehicle remains connected
until the next morning, which means that the electric vehicles naturally provide
�exibility if the amount of time required for charging is less than the total time
connected.
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Figure 6.5: Distributions used for modeling the uncertainty of electric vehicles

In the literature various studies have been conducted to analyze charging be-
havior based on the data collected from a large number of charging stations. In
particular, Khoo et al. (2014) present distributions for the duration of charging ses-
sions, the energy usage during charging and starting times of charging sessions in
a corporate and household setting. Since these distributions have been constructed
and validated based on data collected in the real world, we decided to use these
distributions to model the uncertainty of our electric vehicles. It turns out that the
total duration of charging sessions follows a Weibull distribution for small fully
electric vehicles charged at households. The corresponding probability density
function is de�ned as:

k
�
×
(x
�

)k−1
× e−(x∕�)k , (6.32)

with k = 2.022 and � = 2.837, in which x represents the charging duration in
hours. The distribution we derived is visualized in Figure 6.5a, and the MDPs of
our electric vehicles are constructed in such a way that the total amount of time
required for charging is sampled from this distribution. Due to the discrete number
of timesteps considered in our planning model, we discretize the distribution
accordingly when constructing the MDP models. For the arrival time of vehicles
we de�ne a distribution whose mean is centered around 18:00, which is consistent
with the statistics for household charging presented inmultiple studies (Khoo et al.,
2014; Sadeghianpourhamami et al., 2018). In particular, we assume a Gaussian
distribution with the mean at 18:00 and a standard deviation of 1.2 hours. The
distribution we use for the vehicle arrival time is visualized in Figure 6.5b. It
should be noted that our model supports any continuous distribution over arrival
times, and therefore our work can also be used with other distributions besides the
Gaussian distribution. Finally, it is assumed that the charging rate of the vehicles
is equal to 3 kW, which corresponds to a typical slow charging rate at home, and
this charging rate is consistent with the statistics found by Khoo et al. (2014) for
small fully electric vehicles.
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Figure 6.6: Mean uncontrollable �ow (black), maximum uncontrollable �ow (gray), and the
capacity limit of the power line (dashed)

Renewable power generation using solar panels
Similar to the power consumption of households, the power generation of renew-
ables can be considered uncontrollable. The generated power is only dependent
on exogenous weather conditions and it cannot be in�uenced by the households.
Therefore, renewables can be be treated similarly to an uncontrollable load from a
modeling point of view, but with power generation instead of consumption.

Fortunately, the generated power of solar panels can be forecasted with high
accuracy (Bizzarri and Mucci, 2018). Therefore, we model solar panels as MDPs
which only include limited uncertainty (±10%). A description of theseMDPmodels
is provided in Appendix 6B. In our experiments we include 10 households with
solar panels.

6.5.2. Uncontrollable �ows
In our �rst experiment we consider the stochastic behavior of the households
connected to the grid. The power consumption of these households cannot be con-
trolled explicitly, but it needs to be taken into account while performing planning
for congestion management. We consider all the households and their solar panels,
for which we run 10000 simulation runs representing a full day starting at 14:00.
This time window was selected because it allows us to study overnight charging
of electric vehicles in subsequent experiments. During the simulation runs we
measure the power �ows created due to the power consumption of the households.
In Figure 6.6 we consider the power �ows through the line that connects the
distribution grid to the transmission grid, which is the line in which congestion
typically arises �rst since it serves all loads, as we discussed in Section 6.5.1. The
black line represents the mean power �ow as a function of time, which shows us a
pattern with two demand peaks. There is a demand peak during the late afternoon
and early evening, which is a time window during which people typically arrive
at home. There is another demand peak during the early morning when people
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Figure 6.7: Mean and maximum �ow with multiple EVs without coordination

wake up and go to work. The gray line represents the maximum �ow measured
during the simulation runs, which is not allowed to exceed the capacity limit that
is represented by the dashed line at 75 kW. As can be seen, the maximum �ows
observed during simulation are always below the capacity limit, and during several
parts of the day a signi�cant part of the line capacity remains unused. This unused
capacity can be used by electric vehicles for which the �exible consumption can
be shifted in time.

6.5.3. Uncoordinated electric vehicle charging
In this experiment we study whether electric vehicles introduce grid congestion
in case they charge their batteries in an uncoordinated manner. This means that
the vehicles have uncertain arrival time and demand, but upon arrival they start
charging immediately without any coordination or planning. This potentially
creates a signi�cant peak in power demand if a large number of vehicles starts
charging at the same time. This is con�rmed by the graphs in Figure 6.7, which
shows the mean and maximum �ows for an increasing number of EVs. For these
graphs it is important to note that we consider total �ows due to households, solar
panels and electric vehicles. If the number of EVs is relatively low then there is
no congestion. However, when increasing the number of EVs further then the
demand peak grows, which con�rms our expectations.

We also measure congestion by counting the number of simulation runs during
which grid congestion was encountered in at least one of the lines. In Figure 6.8
we depict this as a function of the number of electric vehicles. As expected, when
increasing the number of electric vehicles we gradually encounter congestion
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Figure 6.8: Number of runs with grid congestion, as a function of the number of EVs
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Figure 6.9: Mean and maximum �ow with multiple EVs and constraints on expectations

due to signi�cant power demand. The results of this experiment show us that
grid congestion becomes more severe if there is a large number of EVs. From
the experiment we can conclude that uncoordinated charging potentially leads to
grid congestion, and therefore it becomes infeasible to charge a large number of
vehicles simultaneously.

6.5.4. Constraints on expected power �ows
The standard Constrained MMDP model, as de�ned in Equation 6.15, imposes
constraints on expectations. This means that the resulting solution only prevents
violations of grid constraints in expectation, and constraints may still be violated
during execution. In this experiment we empirically test whether this is indeed
the case. Compared to the experiment with uncoordinated charging we make two
changes. First, we include grid constraints in the model, based on Equation 6.19.
Second, we add �exibility to the electric vehicles, such that charging load can be
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Number of EVs 5 10 15 20 25 30

Time (s) 2.31 3.15 4.67 7.52 9.02 31.88

Table 6.1: Runtime of solving the linear program with constraints on expectations

Number of EVs 5 10 15 20 25 30

Time (s) 72.81 76.83 85.14 96.07 116.88 128.81

Table 6.2: Runtime of solving the planning problem with empirical bounding

temporally shifted while solving the planning problem if the constraints require
this. The vehicles are allowed to charge their batteries until 8AM, which represents
the charging deadline of the electric vehicles.

Similar to the previous experiment, we visualize the �ows in Figure 6.9. The
black line representing the mean �ow is below the limit, which is what we intu-
itively expected because the computed solution ensures that the �ows are below
the limit in expectation. Unfortunately, the maximum �ows can still exceed the
capacity limit in some cases, which is con�rmed by the gray line that exceeds the
dashed limit in most of the graphs. The spike around 8:00 is caused by the fact
that vehicles are allowed to charge until 8:00, and in some cases the planner has
decided that vehicles still require charging in that hour in order to collect reward.
The running times required for solving the individual linear program are reported
in Table 6.1, which shows that the running time gradually increases when the size
of the linear program increases. To summarize, our experiment has shown that the
planning problem can be solved quickly due to the linearity of the optimization
problem, but at the same time it con�rms that constraints on expectations are
indeed not su�cient to ensure that power �ows do not exceed the capacity limits.

6.5.5. Reducing violations using empirical bounding
Now we evaluate the planning algorithm which reduces the number of constraint
violations by testing empirically whether violations may occur, as presented in
Algorithm 15. We execute this algorithm with tolerance p̄ = 0.001 and increment
factor �′ = 0.02. Similar to the previous experiments, we run the algorithm on
instances with an increasing number of electric vehicles ranging from 5 to 30 vehi-
cles. We study algorithm performance based on two criteria. Most importantly, we
study whether the algorithm provides solutions which respect the grid constraints.
Furthermore, we study whether the solutions ensure that the vehicles reach a
fully-charged battery before departure.

In Figure 6.10a we show the number of simulation runs with violations. As
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Figure 6.10: Results for Constrained MMDP solutions computed with empirical bounding
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Figure 6.11: Mean and maximum �ow for multiple EVs with empirical bounding

can be seen, the solutions computed by our algorithm ensure that no violations of
grid constraints occur during execution of the policies. This is an important result,
because it con�rms that our algorithm is able to take realistic grid constraints into
account while solving the planning problems. As discussed in Section 6.4.3 and
Theorem 9, it is guaranteed that the electric vehicles reach a fully-charged battery
in case the total expected reward equals the number of electric vehicles. Therefore,
we expect that the expected reward of the solutions increases linearly when increas-
ing the number of electric vehicles. Figure 6.10b con�rms this observation, and
together with the results in Figure 6.10a it implies that our algorithm ensures that
vehicles reach a fully-charged battery while respecting the constraints imposed by
the grid.

The �ows during policy execution are visualized in Figure 6.11. The maximum
�ows are always below the capacity limit indicated by the dashed line, which
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means that no constraint violations were encountered. It is interesting to compare
the results with Figure 6.7 and Figure 6.9. In the �rst �gure the constraints were
violated due to the lack of coordination, while constraints were violated in the
second �gure due to the type of constraints added to the linear program. Our
algorithm based on empirical bounding, on the other hand, computes solutions
for which both the mean and maximum �ows are below the limits.

The runtimes are reported in Table 6.2. Compared to the previous experiment
it takes more time to solve the problem, mainly because the algorithm solves the
linear program multiple times and it executes simulation runs to estimate the
violation probability. However, from a practical point of view the runtimes are still
very low and in practice it does not need to be faster. As a �nal remark, we want to
emphasize that the vehicles execute their charging policies in a decentralized way.
This means that grid constraints are respected without any form of communication
during execution.

6.5.6. Flexibility of electric vehicles

In our next experiment we study to what extent the amount of �exibility in�uences
the ability to reach a fully-charged battery. Intuitively, if there is limited �exibility
available, then it becomes more di�cult to shift consumption to other periods of
the day, which potentially means that not all the vehicles can be charged. We test
this hypothesis by increasing the amount of �exibility available, and we keep track
of the mean reward of the solution. It can be expected that this increases when we
increase the amount of �exibility available. Throughout the experiment we only
consider the scenario with 10 electric vehicles, which means that we only vary the
�exibility.

In Figure 6.12 we report the expected reward as a function of �exibility, in
which �exibility is characterized by the deadline after which charging cannot be
performed anymore. For example, the deadline 0:00 means that vehicles are not
able to charge after midnight. As expected, we can see that increasing the �exibility
leads to an increase of the expected reward. If a su�cient amount of �exibility is
available then all vehicles are guaranteed to reach a fully charged battery. Under
these circumstances increasing the �exibility evenmore does not lead to an increase
in expected reward, because then there is more �exibility available than necessary.
In our scenario with 10 electric vehicles we can see that all vehicles can be fully
charged if charging can be performed until midnight, and additional �exibility
does not increase expected reward. With limited �exibility it is not guaranteed that
all vehicles get fully charged. For example, if charging can be performed until 22:00
then approximately 9 vehicles reach their maximum battery level in expectation.



178 6. Constrained planning under uncertainty in smart grids

2.5

5.0

7.5

10.0

18:00 20:00 22:00 0:00
Deadline

E
x
p
ec

te
d
 r

ew
ar

d

Figure 6.12: In�uence of deadline on expected reward

6.5.7. Preallocation of grid capacity
An alternative to empirical bounding of constraint violation probabilities is preal-
location of grid capacity, as discussed in Section 6.4.5. This approach ensures that
the probability of constraint violations is always 0, but due to this strict guarantee
the solutions may become extremely conservative. This means that the solutions
do not fully utilize the grid capacity that is available, which subsequently gives
lower expected reward. In this section we empirically test whether this is indeed
the case, and we show that our empirical bounding technique provides solutions
with higher expected reward.

We perform our experiment using a syntheticMDPwhich has been constructed
in such a way that it is easy to understand why the preallocation technique gives
low reward. The MDP consists of 3 states and 2 actions, and it is visualized in
Figure 6.13a. The main idea is that it is required to execute action a1 in the
�rst step in order to maximize the reward, but at the same time there is a small
probability � > 0 that this leads to constraint violations in all subsequent steps. The
preallocation technique enforces that the probability of constraint violations is 0,
and therefore it never executes a1 in the �rst step, which means that the expected
reward of the solutions is always 0.

To be more speci�c, action a0 always transitions to state s1, while action a1
may also transition to state s2 with low probability � > 0. The states s1 and s2
are absorbing and hence they cannot be left. The capacity of all lines of the grid
is set to 3, such that consumption 4 immediately leads to a constraint violation.
The preallocation technique should execute a0 in the �rst step, such that the
power consumption is guaranteed to be zero in the remaining steps. The empirical
bounding technique may choose action a1 in the �rst step, which gives immediate
reward, but there is a negligible risk that this leads to power consumption 4 in all
remaining steps.

The comparison of preallocation and empirical bounding is shown in Fig-
ure 6.13b. The expected reward of the solutions computed using preallocation
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Figure 6.13: Comparison preallocation and empirical bounding

is indeed always 0, as indicated by the dashed line, which means that it never
executes action a0 in the �rst step. For our empirical bounding technique we set
the tolerance p̄ in such a way that the probability to reach constraint violations is
lower. Note that we can de�ne the probability � > 0 of this state transition arbi-
trarily close to 0. The solutions computed by our empirical bounding technique do
actually execute action a1 in the �rst step and the solutions give positive expected
reward, as indicated by the solid line. This synthetic example con�rms our initial
expectation that solutions computed using preallocation may be unnecessarily
conservative. Under these circumstances our empirical bounding technique can
be used to obtain solutions with higher expected reward while the probability of
constraint violations remains empirically bounded.

6.5.8. Multiple binding grid constraints
In a distribution grid with a radial topology congestion typically arises in the
lines close to the point where the grid is connected to the transmission grid. This
happens because the grid has a tree structure, and for all the loads the power is
supplied through one of these lines, which become congested �rst. There are
multiple scenarios, however, in which multiple constraints at di�erent locations
in the grid become congested, and under these circumstances it is important that
planning algorithms consider all constraints. For example, if the grid has a mesh
structure in which there are cycles in the grid topology, then all the �ows and the
directions of these �ows can change dramatically due to a change in demand in
one individual node. Another scenario is a distribution grid with storage devices
which discharge at speci�c times (e.g., vehicle to grid), which means that there are
multiple nodes in which a signi�cant amount of power is injected, in addition to
the supply from the transmission grid. In this section we describe an experiment in
which we show that our planning techniques support such settings. Furthermore,
the experiment con�rms that congestion management methods for distribution
grids have to consider the constraints imposed by all the lines.
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We consider the distribution grid shown in Figure 6.14, which consists of 9
nodes. The speci�c setting has been constructed in such a way that it enables
us to test empirically whether our algorithms can deal with multiple congestion
points. It is assumed that there are 7 households with a constant consumption of 1
kW, represented by the small boxes. There is a storage device connected to node
8, which provides a constant power output that is equal to 7 kW, which means
that all the consumption of the households is supplied using the battery, and there
is no additional power from the transmission grid in node 0. The line (0,1) has
capacity 12, and the line (4,8) has capacity 4.9. The capacities of the other lines
are irrelevant because they have been set much higher such that no congestion
arises there. The grid is a direct current distribution grid in which the lines have
resistance 0.0097511.

The households marked with a dot have an electric vehicle with a charging rate
that is equal to 3 kW. During charging this additional power needs to be supplied
through node 0 because the battery only provides 7 kW. At most 4 vehicles can be
charged simultaneously due to the capacity of line (0,1). In case there are fewer
than 5 charging vehicles then the limit of line (0,1) is not violated, but the capacity
limit of line (4,8) may be exceeded, depending on the speci�c combination of
vehicles that charges at the same time. In other words, besides the number of
charging vehicles it is also relevant to consider speci�c vehicle combinations that
charge simultaneously.

We illustrate the interplay of electric vehicles and constraints using a few
numerical examples in a DC distribution grid. For convenience we use the term
vehicle j to refer to the vehicle connected to node j. Charging vehicle 2 and 3 at the
same time creates a 4.63 kW �ow from node 8 to 4, which is feasible. However, if
vehicle 2 and 4 charge at the same time then this �ow becomes equal to 5 kW,which
is infeasible. In both cases there are only 2 vehicles that charge simultaneously,
but depending on their location they can create congestion. It is interesting to
observe that we can actually charge vehicle 2 and 4 simultaneously if vehicle 6 also
charges, because in that case the �ow decreases to 4.25 kW. In other words, the
feasibility of simultaneous charging of vehicle 2 and 4 depends on other vehicles
that charge at the same time.

The example grid is used to test whether our algorithms compute solutions
which respect the constraints in this di�cult scenario. Figure 6.15 visualizes
the �ows in the lines (0,1) and (4,8) without planning (unconstrained) and with
our congestion management techniques (constrained). As can be seen, without
any planning both constraints get violated, while the solutions computed by our
algorithms ensure that multiple constraints are respected. This con�rms that
our congestion management algorithms are able to deal with multiple congestion
points and di�cult interactions between nodes.
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Figure 6.14: Distribution grid with storage and multiple congestion points
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Figure 6.15: Power �ows for the experiment involving multiple binding constraints

6.6. Conclusions
The power grid that serves our society faces major changes due to the increased
number of electric vehicles and the integration of renewables. Distribution grids
in neighborhoods and cities may become congested, which means that the grid
is unable to accommodate the total power demand due to the limited capacities
of power lines. Increasing the capacity of the grid is a straightforward solution to
prevent congestion, but it is needless to say that it represents signi�cant infras-
tructural work and it can be very expensive. In this chapter we investigated how
arti�cial intelligence techniques can provide an alternative solution to congestion
management problems, such that grid reinforcements are not required.

We provided an overview of ongoing work in the arti�cial intelligence commu-
nity related to the development of smart grids. This literature study has shown
that arti�cial intelligence is used for control of �exible loads, the participation in
markets, grid control, load forecasting and smart metering. Furthermore, we found
that existing arti�cial intelligence techniques are currently not suitable for conges-
tion management because power grid constraints are typically not considered. We
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close this knowledge gap by presenting a planning framework for congestion man-
agement based onConstrainedMulti-agentMarkovDecision Processes (CMMDPs).
We described a novel mapping of power grid constraints to CMMDP constraints,
and we introduced two techniques which ensure that loads in a distribution grid
respect these grid constraints while executing their decision making policy. In a
series of experiments based on a realistic IEEE distribution grid we have shown
that our techniques e�ectively prevent congestion in a setting where charging of
multiple electric vehicles can be shifted in time. This demonstrates that our plan-
ning framework e�ectively deals with constraints. It also shows that techniques
developed in the arti�cial intelligence community can play a key role in solutions
to problems with signi�cant societal impact in the context of smart grids.

We envision two main directions of future work which are directly relevant for
further development of smart grids in our society. First, rather than performing
online control of �exible loads, our framework can be used to build decision support
systems which allow organizations to study where congestion may occur in the
future. For example, it can be studied how the share of electric vehicles in certain
neighborhoods a�ects congestion, which is relevant to know when deciding about
deployment of public charging stations in the residential area. Second, there is
increased interest in deployment of large-scale batteries in distribution grids, which
contribute to congestionmanagement by charging and discharging at the right time.
Such batteries can be integrated in our current model, and the resulting model can
also be used to decide where such batteries should be located in order to be e�ective.
Finally, from a mathematical point of view it is interesting to investigate whether
the probability distributions of the individual MDPs can be used to reason about
changes in the constraint violation probabilities due to changes in the limits used
in the constraints. This information can be used to make our empirical bounding
technique more e�cient.
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Appendix 6A. AI literature on smart grids
In this appendix we provide a full overview of the AI literature that we have identi-
�ed in the literature study in Chapter 6. Table 6.3 gives a complete overview of AI
literature on �exible loads. Literature on grid control, integration of renewables,
load forecasting and smart metering is presented in Table 6.4 and Table 6.5. Ta-
ble 6.6 presents literature focusing on markets, tari�s and energy trading. In all
tables the column F indicates whether the work considers realistic grid constraints.

Authors Year Venue Description F

De Nijs et al. 2018 AAAI Planning for constraints that change stochastically
De Weerdt et al. 2018 IJCAI Complexity analysis of EV charging problems
Fioretto et al. 2017 AAMAS Scheduling method for loads based on DCOP
Walraven et al. 2016 ECAI MDP-based approach for scheduling EV charging
Kuppannagari et al. 2016 IJCAI System demo of a demand response system on campus
Styler et al. 2015 AAAI Control algorithm for an EV based on forecasts
De Nijs et al. 2015 AAAI Best-response strategy for resource-constrained agents
Valogianni et al. 2015 AAMAS Pricing mechanism for control of �exible EVs
Marinescu et al. 2015 AAMAS Multi-agent reinforcement learning method for smart grids
Angelidakis et al. 2015 AAMAS MDP formulation for prosumer decision making
Valogianni et al. 2014 AAMAS Decentralized charging strategy for multiple EVs
Shann et al. 2014 AAMAS Computes a policy for a heating system using MDPs
Van Den Briel et al. 2013 IJCAI Distributed load control method for smart appliances
Shann et al. 2013 IJCAI Learning strategy for heating homes
Reddy et al. 2012 AAAI Factored representation for a smart grid decision problem
Ramchurn et al. 2011 AAMAS Multi-agent system for demand-side management
Vandael et al. 2011 AAMAS Scheduling method to prevent imbalance

Table 6.3: AI literature focusing on control of �exible loads

Authors Year Venue Description F

Coninx et al. 2016 AAMAS Coordination of wind turbines to prevent violations ✓
Andoni et al. 2016 AAMAS Studies curtailment and line reinforcements
Bandyopadhyay et al. 2016 ICAPS Studies a curtailment problem and a bandit approach
Agrawal et al. 2015 AAMAS Studies a power grid restoration after line failures ✓
Chau et al. 2014 AAMAS Power allocation strategy based on a knapsack problem
Piacentini et al. 2013 ICAPS Connects classical planner with power �ow software ✓
Yu et al. 2013 AAMAS Presents a knapsack problem for power allocation
Miller et al. 2012 AAMAS Applies DCOP to a generator dispatch problem
Fox et al. 2011 ICAPS Planning approach for usage of multiple batteries

Table 6.4: AI literature focusing on grid control and integration of renewables
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Authors Year Venue Description F

Valovage et al. 2018 AAAI Identify appliances from aggregated metering data
Chen et al. 2018 IJCAI Load forecasting method based on time series
Pang et al. 2018 IJCAI Load forecasting method based on time series
Wang et al. 2018 AAMAS Load forecasting method based on random �elds
Hao et al. 2015 IJCAI Studies meter accuracy and meter deployment
Chen at al. 2013 IJCAI Wind forecasting method based on Gaussian processes
Parson et al. 2012 AAAI Identify appliances from aggregated metering data

Table 6.5: AI literature focusing on forecasting and smart meters

Appendix 6B. Details on experimental setup
In this appendix we provide additional information about the MDP models that
we use for modeling households, electric vehicles and renewable generators in the
experiments in Chapter 6. When describing an MDP model we always refer to an
individual agent i, and therefore we omit the index i in the description.

MDP for households
We use an MDP model in which the state represents the total consumption of a
household. The transition model of the households was constructed based on
IEEE load pro�les which de�ne the time-dependent consumption for a period of
24 hours5.

We consider a time horizon of 24 hours, discretized into 15 minute intervals,
and we use 10 discrete states that characterize the power consumption of the
household. For each household we assign an initial state by using the �rst state
of an IEEE load pro�le that we select uniformly at random. We construct a state
transition model by iterating over all observed state transitions (s,a, s′) in the
IEEE data set at time t. Based on these transitions we construct the transition
function T(s,a, s′, t).

The power consumption for a given state is formalized using the power con-
sumption function c ∶ S×A→ R. Assuming that we have 10 states s ∈ {0,1,… ,9},
we de�ne the power consumption as c(s,a) = 535× s. The constant 535 has been
set in such a way that the states span the full range of consumptions observed in
the IEEE data.

There is only one dummy action in the model, which does not in�uence the
state transitions. The number of states in ourMDPmodel has shown to be su�cient
to get the aggregate load pattern with two demand peaks for 55 households. If
necessary the accuracy can be adjusted by modifying the number of states.
5See http://sites.ieee.org/pes-testfeeders/resources/ for more details.
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Authors Year Venue Description F

Perez-Diaz et al. 2018 AAMAS Model of multiple self-interested EV aggregators
Mrkos et al. 2018 AAMAS Dynamic pricing method based on MDPs
Burgess et al. 2018 AAMAS Trading for multiple agents subject to grid constraints ✓
Yang et al. 2018 IJCAI Broker strategy based on reinforcement learning
Methenitis et al. 2017 AAMAS Mechanisms for electricity trading
Ma et al. 2017 AAMAS Mechanisms for bidding in a demand response setting
Stein et al. 2016 AAMAS User interface for EVs participating in a market
Gerding et al. 2016 IJCAI Market mechanisms for EV parking lots
Bandyopadhyay et al. 2016 AAAI Mechanisms for dynamic pricing
Chowdhury 2016 AAAI Describes automated agents in wholesale markets
Urieli et al. 2016 AAMAS Description of an MDP-based agent in Power TAC
Methenitis et al. 2016 IJCAI Tari� scheme to incentivize intelligent agent behavior
Ma et al. 2016 IJCAI Mechanisms for incentivizing truthfulness
Kahlen et al. 2015 AAAI Algorithms for EVs participating in a reserve market
Cerquides et al. 2015 AAMAS Market for trading subject to constraints ✓
Hernandez-Leal et al. 2015 AAMAS Algorithm to learn a model of an opponent in trading
Strawser et al. 2015 AAMAS Proposal for a reliability market in smart grid settings
Hayakawa et al. 2015 IJCAI Mechanisms for charging of electric vehicles
Berlink et al. 2015 IJCAI Reinforcement learning for buying and selling energy
Perrault et al. 2015 IJCAI Market for matching producers and consumers
Bandyopadhyay et al. 2015 IJCAI Game theoretic perspective on real-time pricing
Kahlen et al. 2014 AAMAS Study of a trading strategy for multiple EVs
Urieli et al. 2014 AAMAS Agent for the Power Trading Agent Competition
Alan et al. 2014 AAMAS Considers a tari� switching problem
Jain et al. 2014 AAAI Presents a demand response mechanism
Ketter et al. 2013 AAAI Description of the Power Trading Agent Competition
Reddy et al. 2013 AAAI Learning method to select tari�s
Rose et al. 2012 AAMAS Mechanism for aggregate demand prediction in smart

grids
Reddy et al. 2011 IJCAI Q-learning approach for developing pricing strategies
Voice et al. 2011 AAAI Presents pricing scheme for decentralized control of stor-

age
Reddy et al. 2011 AAAI Presents strategies and simulation models for trading

agents
Vasirani et al. 2011 AAMAS Considers coalitions of generators to participate in mar-

kets
Gerding et al. 2011 AAMAS Mechanisms for charging of electric vehicles
Kamboj et al. 2011 AAMAS Multi-agent systems of EVs participating in a market
Chalkiadakis et al. 2011 AAMAS Mechanism to incentivize creation of energy cooperatives
Vytelingum et al. 2010 AAMAS A market strategy for control of storage in smart grids
Vytelingum et al. 2010 AAMAS A proposal for an electricity market

Table 6.6: AI literature focusing on energy markets, tari�s and trading

MDP for electric vehicles
Weuse anMDPmodel in which the states represent whether a vehicle is connected,
and whether the vehicle requires charging. The action a0 corresponds to being idle,
and the action a1 corresponds to charging during the next time step. We provide a
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high-level description of the state transitions, the reward function and the power
consumption function.

The state s0 represents that the vehicle is not connected. In state s1 the vehicle
is connected, but it has no demand and it does not require charging. Regardless
of the executed action, at time t there can be a state transition from state s0 to a
state sd with d > 1, representing the event that the vehicle arrives. The probability
of such a state transition is determined based on the distribution in Figure 6.5b. In
particular, the vehicle arrives at time t with probability PA(t) de�ned by:

PA(T) = {
P(X = t) t = 0
P(X = t) ∕

∏t−1
t′=1(1−PA(t

′)) otherwise
, (6.33)

in which X is the underlying random variable of the Gaussian distribution. In that
case the state transitions to a state sd with d > 1. The probability distribution over
these states sd is determined by the Weibull distribution shown in Figure 6.5a and
Equation 6.32. In other words, the transition to a state sd representing charging
demand is determined by both the arrival time distribution and the charging
duration distribution. The state remains s0 with probability 1−P(X ≤ t). State s1
always transitions to state s1 with probability 1. The state sd transitions to sd−1
when executing a1, and it transitions to sd when executing action a0.

The reward function has been designed in such a way that the agent gets
reward 1 when reaching a fully-charged battery, consistent with Section 6.4.3. This
can be achieved by de�ning R(s2,a1) = 1, and the reward of all other state-action
pairs is equal to 0.

The agent requires power in case it charges the battery, and it is assumed that
the charging rate is 3 kW, as discussed in Section 6.5.1. We formalize this using
the power consumption function c ∶ S×A→ R. We de�ne c(sd,a1) = 3 for d > 1,
and 0 otherwise. It is important that the unit in the power consumption function
corresponds to the unit that is used in the constraints (i.e., when de�ning the
consumption in kW then the constraints should also be de�ned in kW).

MDP for solar panels
As discussed in Section 6.5.1, renewables bring limited uncertainty in the system.
Therefore, we model a time-dependent power production pro�le as shown in
Table 6.7. It represents the production of a small solar panel that injects at most
100 W into the grid. We use a discrete state space that characterizes the power
production within this range, discretized into 10 W intervals. The time-dependent
state transitions are de�ned in such a way that the state transitions to the power
production listed in Table 6.7 with probability 0.9. With probability 0.05 the state
transitions to a state one production interval higher or lower, which represents the
limited uncertainty. Finally, we want to note that there is just one action which
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Hour of day 7 8 9 10 11 12 13 14 15 16 17 18

Production (W) 10 20 30 50 80 90 70 60 50 40 20 10

Table 6.7: Time-dependent power production of a small renewable generator

P(0) P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P4,8
6000 -1000 -4000 -4000 -1000 -1000 -1000 -1000 7000 -4625
6000 -1000 -4000 -1000 -4000 -1000 -1000 -1000 7000 -5000
9000 -1000 -4000 -1000 -4000 -1000 -4000 -1000 7000 -4250

Table 6.8: Numbers used in �ow calculations in Section 6.5.8

does not in�uence the state transitions, and the rewards are always zero. The
resulting MDP models an exogenous process that is not in�uenced by the decision
maker.

Meshed grid in experiments
In Section 6.5.8 we consider a meshed distribution grid, and for speci�c combi-
nations of power injections we provide the power �ows in the line (4,8). These
numbers can be reproduced by modeling a DC distribution grid using the infor-
mation in the manuscript corresponding to the chapter. It is assumed that each
line in the power grid has resistance 0.0097511. The power �ow in the line (4,8) is
computed based on the power injections P(j) in nodes j. These injections as well
as the resulting �ows are provided in Table 6.8.

Appendix 6C. Distribution grid model for AC grids
This appendix provides the derivation of the power �ow approximation for AC
distribution grids. The power �ow equation for the real power of bus i is as follows:

Pi =
n−1∑

j=0
|Vi||Vj|(Gi,j cos(�i−�j)+Bi,j sin(�i−�j)) (6.34)

where Pi is the power injected at bus i, Gi,j is the real part of the Y-bus admittance
matrix element in row i and column j, and Bi,j is the imaginary part of the Y-bus
admittance matrix element in row i and column j. The Y-bus admittance matrix
is de�ned as:

Yi,j = {
yi,i+

∑
k≠i yi,k if j = i

−yi,j if j ≠ i
(6.35)
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where yi,k = gi,k+j bi,k is the admittance of the line from i to j and j is the imaginary
unit.

We will simplify Equation 6.34 by approximating the values of Gi,j and Bi,j . In
order to do this, we �rst compute the admittance yi,j of an arbitrary line using the
impedance ri,j+ j xi,j , which is denoted zi,j:

yi,j =
1
zi,j

= 1
ri,j+ j xi,j

= 1
ri,j+ j xi,j

ri,j− j xi,j
ri,j− j xi,j

=
ri,j− j xi,j
r2i,j+x

2
i,j

=
ri,j

r2i,j+x
2
i,j

+ j
−xi,j

r2i,j+x
2
i,j

(6.36)

Based on this derivation we observe that gi,j =
ri,j

r2i,j+x
2
i,j
and bi,j =

−xi,j
r2i,j+x

2
i,j
. For

AC distribution grids it is assumed that the resistance ri,j is very small compared to
the reactance xi,j , we can then approximate them as gi,j ≈ 0 and bi,j ≈

−1
xi,j

. Since
the real part Gi,j of the Y-bus matrix is zero, and the imaginary part Bi,j equals
−1 ⋅bi,j =−1 ⋅

−1
xi,j

= 1
xi,j

, we derive the following approximation of the power �ow
equation:

Pi =
n−1∑

j=0
|Vi||Vj|(

1
xi,j

sin(�i−�j)) (6.37)

The equation can be further simpli�ed by observing that sin(�i−�j) ≈ �i−�j if
the angle di�erences are small, which is the case under stable conditions. Moreover,
the voltage magnitudes are close to the nominal voltage U. Now we obtain the
simpli�ed power �ow equation:

Pi =
n−1∑

j=0

U
2

xi,j
(�i−�j) (6.38)

This equation is the same as Equation 6.2. If j equals i, then angle di�erence is
zero and therefore this term can be discarded from the summation.



7
Conclusions

Developing algorithms for intelligent decision making systems is a key research
area in the �eld of arti�cial intelligence. In this dissertation we focused on a
speci�c class of decision making problems which include partial observability and
constraints. For such problems we have presented a collection of techniques to
enhance the scalability of solution algorithms, and we have applied our algorithms
to address a real-world planning problem in the context of smart distribution grids.
In this �nal chapter we summarize our contributions, and we explain how these
contributions a�ect current research in the �eld. Finally, we identify multiple
directions for additional research which show how our work can be extended or
applied in the future.

7.1. Contributions and implications
In this section we summarize our contributions and we explain how these contri-
butions potentially a�ect research on planning under uncertainty.

7.1.1. Exact value iteration for POMDPs
In Chapter 3 we presented two algorithmic improvements which create the fastest
pruning-based exact value iteration algorithm for solving Partially Observable
Markov Decision Processes. We speci�cally focused on reducing the running time
that is required to solve the linear programs in the vector pruning subroutine,
which represent a major part of the running time of exact value iteration. We �rst
presented a constraint generation procedure which adds constraints incrementally,
in such a way that only a few constraints need to be considered explicitly by the
linear programming solver. We further improved this procedure by bootstrapping
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binding constraints from similar linear programs that were solved in previous iter-
ations of value iteration. Both algorithmic improvements signi�cantly reduce the
running time required to solve linear programs, and the resulting variant of exact
value iteration outperforms the existing state of the art. Our techniques enhance
the e�ciency of exact value iteration, but computing optimal solutions remains
problematic in practice due to the exponential growth of the number of vectors,
and in general computing optimal POMDP solutions does not become feasible.
We want to emphasize, however, that our contributions a�ect the research �eld in
several di�erent ways. For example, our research has shown that linear programs
should not be treated as black-box optimization problems. For other researchers
it can be bene�cial to investigate how existing linear programs in planning al-
gorithms are solved given the structure of the formulation, rather than focusing
on new formulations. Furthermore, it may incentivize others to accelerate other
exact or approximate algorithms which rely on linear programming. Finally, our
algorithm is currently the fastest variant of exact value iteration, which means that
we have introduced a new baseline algorithm to compare against when developing
new exact POMDP algorithms in the future.

7.1.2. Finite-horizon planning for POMDPs
In Chapter 4 we focused on approximate solution methods for solving �nite-
horizon POMDPs. A signi�cant body of research in the arti�cial intelligence
community has focused on approximate algorithms for solving in�nite-horizon
problems, but we provided an extensive discussion which has shown that these
algorithms are not suitable for solving �nite-horizon problems while providing
guarantees on solution quality. We addressed this by introducing FiVI, which is a
�nite-horizon POMDP algorithm which uni�es multiple ideas from existing algo-
rithms for in�nite-horizon problems. We also presented two additional strategies
which enhance the e�ciency of the resulting algorithm. FiVI is the �rst approxi-
mate algorithm that converges to an optimal �nite-horizon POMDP solution in
the limit while providing value upper bounds during execution. FiVI does not
include discounting and it does not require casting �nite-horizon problems as
in�nite-horizon problems, which makes FiVI an attractive algorithm for solving
�nite-horizon problems. From a more general point of view, we hope that the
planning community starts to focusmore on tailored algorithms such as FiVI when
solving �nite-horizon problems.

7.1.3. Approximate algorithm for Constrained POMDPs
In Chapter 5 we presented a new class of solution algorithms for solving Con-
strained POMDPs. In contrast to existing Constrained POMDP literature, we have
shown how Constrained POMDPs can be solved as a sequence of unconstrained
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POMDPs. For this purpose we have introduced a column generation procedure,
which incrementally generates new columns by solving a series of unconstrained
POMDPs using approximate methods. The resulting algorithm can be seen as a
new approximate Constrained POMDP algorithm for single-agent problems, but
also for multi-agent problems in which multiple independent agents share a global
constraint. The algorithm has shown to outperform the existing state of the art,
which means that it is currently the most attractive approach for solving Con-
strained POMDPs. From amore general perspective we believe that the underlying
principles of our algorithm can be useful for other constrained planning problems
in the research �eld. For example, we derived the algorithm from an initial linear
program that provides a high-level formalization of the optimization problem, and
it may be possible to apply the same line of reasoning in other settings as well.
Finally, our column generation approach can be seen as the start of a new research
line in the general area of Constrained MDPs and Constrained POMDPs, in which
various algorithm and model extensions can be developed.

7.1.4. Constrained planning in smart distribution grids

In Chapter 6 we focused on an application in which constrained multi-agent plan-
ning under uncertainty can be used to solve planning problems with signi�cant
societal impact. In particular, we established a connection between constrained
planning under uncertainty and the development of smart distribution grids. In
such distribution grids power consumption of �exible loads can be shifted tempo-
rally in order to prevent grid congestion. We presented a planning-based approach
for congestion management, in which we formalized the congestion management
problem as a Constrained Multi-agent Markov Decision Process. Furthermore,
we described additional techniques to ensure that the agents respect power grid
constraints during policy execution. From an arti�cial intelligence perspective
these techniques can be seen as a new approach to compute conditional prealloca-
tions of �nite resources to multiple agents, in which the actual usage of resources
depends on the realization of the uncertainty. This is an attractive alternative to
existing deterministic preallocation methods, which tend to be more conservative
since the uncertainty is not explicitly considered during allocation. Besides the
implications for the �eld of arti�cial intelligence, our techniques also a�ect future
research and development in the area of smart distribution grids. The connection
between smart distribution grids and constrained planning for Markov Decision
Processes has not been made before, and therefore our work may accelerate the
integration of arti�cial intelligence methods in smart congestion management
methods for distribution grids in the real world.
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7.2. Directions for future work
There are multiple directions of future research that can be pursued in the future,
building upon the algorithms presented in this dissertation. Furthermore, there
are several opportunities to apply our ideas while developing intelligent decision
making systems in the real world. In the remainder of this section we describe
these directions and ideas in more detail.

Incremental constraint generation and bootstrapping has shown to be an ef-
fective technique to improve the performance of exact value iteration algorithms
for POMDPs. Our techniques are general in the sense that no assumptions are
made about the actual vectors that are part of the value function, which means that
domain-speci�c characteristics are ignored. In the future it can be investigated
whether information about the POMDP domain under consideration can be used
to further improve pruning methods. This does not only apply to our pruning
techniques, because other pruning methods may also bene�t from such domain-
speci�c details. Although our techniques have shown to be e�ective for exact
POMDP planning, we believe that the most promising future work directions can
be found in the area of approximate planning and other types of decision making
algorithms based on vectors. For example, our ideas may be used to accelerate
approximate POMDP algorithms (Varakantham et al., 2007), and our preliminary
results forMulti-ObjectiveMDPs (Roijers,Walraven, and Spaan, 2018) indicate that
our techniques are applicable beyond POMDP planning as well. Both directions
can be further investigated and expanded in the future.

In this dissertation we considered two types of constrained planning problems
which involve multiple agents. The �rst type focuses on planning with partial
observability of states, and the second type has amore applied nature and focuses on
enforcing strict resource constraints in the context of Constrained MDP planning.
Since both types have several interesting connections, we provide a combined
discussion which indicates how research in this area can proceed and how both
areas can be connected.

Our approximate algorithm for Constrained POMDPs relies on a master linear
program which imposes constraints directly in the policy space. The size of this
linear program does not introduce a bottleneck at the moment, but it may be
interesting to investigate whether alternatives exist to replace this linear program.
For example, the master linear program is currently the only part which requires a
centralized optimization step. Since all agents operate in a distributed fashion, it
may be worth investigating whether a distributed optimization scheme can be used
to create a fully-distributed algorithm that enables coordination between the agents
while computing a series of policies. Although not reported in this dissertation, we
did preliminary experiments with a distributed version of the simplex algorithm,
which splits the simplex tableau intomultiple parts and the agents store and update
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these parts of the tableau separately. This creates a fully-distributed algorithm,
but currently it has limited practical value because it is still more e�cient if there
is just one agent that solves the entire master linear program and broadcasts the
solution to the agents. In future work it can be studied whether more e�cient
solutions exist which exploit the speci�c structure of the master linear program.

A second research direction focusing on the linear programming step involves
kernelization of the constrained optimization problem based on heuristic informa-
tion about the domain and potential congestion. Such an approach would reduce
the size of the optimization problem in a preprocessing stage, such that the solution
to the smaller problem can be used for the larger problem. For example, the linear
program used for Constrained MDPs may grow large due to grid constraints and
the number of states and actions of the agents, while it may only be relevant to
consider congestion for a few lines and speci�c time steps. Smart reduction of the
model size prior to solving would improve the scalability of our approach.

Our constrained planning algorithms have been presented and evaluated in
isolation, but it is interesting to investigate whether the ideas from Chapter 5 and
Chapter 6 can be combined, such that our planning algorithm for congestion man-
agement also considers partial observability. Grid constraints can be integrated
directly in the master linear program used for Constrained POMDPs, but since
POMDPs are more computationally more demanding we expect that the existing
approach combined with a large number of constraints does not provide su�-
cient scalability for real-world instances. Addressing these scalability problems
would be an open problem for future work. It also needs to be investigated under
which circumstancesmodeling of partial observability is necessary whilemanaging
congestion in distribution grids.

Another important next step is additional evaluation of our congestion man-
agement methods in a more realistic setting. Our current evaluation is based on a
realistic mathematical model describing power �ows in grids, which is su�cient to
study power �ows and congestion. However, additional evaluation in simulators
such as GridLAB-D would provide more insight into the potential bene�ts and
impact of our algorithm in the context of development of smart grid technology.

The research directions that we have described can be seen as direct extensions
of the work presented in this dissertation. We think that these directions are
important for extending and improving our algorithms, but from a more general
point of view there are more signi�cant obstacles which need to be addressed in
order to bring algorithms for sequential decision making under uncertainty to the
real world. As an example we consider our algorithms for congestion management
in smart grids. The current state of a�airs is that theoretical algorithms have
shown to be able to solve congestion management problems based on a given
model in synthetic simulations. However, as discussed in Chapter 1, there is
an inherent mismatch between mathematical models used for planning and the
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characteristics of the real world, which subsequently leads to model uncertainty.
Theoretical guarantees and computational results obtained in planning research do
not necessarily apply in the real world due to this additional source of uncertainty,
which raises the question whether and how new planning techniques can be used
in the real world.

We think that there are two key visionary research directions which would
�nally lead to large-scale application of planning under uncertainty. First, it
is necessary to establish signi�cant understanding of model uncertainty in the
context ofMDPs and POMDPs, such that it becomes knownhow it a�ects algorithm
characteristics. This knowledge is required for plain MDP and POMDP algorithms,
but also for more sophisticated techniques such as the algorithms presented in
this dissertation. This is particularly relevant when grid constraints need to be
respected at all times, because model uncertainty may cause situations in which
constraints are still violated. Besides studying model uncertainty it is required to
use this understanding to develop robust planning systems that are aware of this
type of uncertainty while computing plans and during execution of plans. Future
work may build upon initial results for POMDPs with imprecise parameters (Itoh
and Nakamura, 2007), as well as reinforcement learning techniques which respect
constraints while learning in an unknown environment (García and Fernández,
2015). As a result, in the context of smart distribution grids it would lead to truly AI-
based congestion management in the real world. From a more general perspective
it makes it easier to build real-world applications based on MDPs and POMDPs.
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Summary

Developing intelligent decisionmaking systems in the real world requires planning
algorithms which are able to deal with sources of uncertainty and constraints. An
example can be found in smart distribution grids, in which planning can be used
to decide when electric vehicles charge their batteries, such that capacity limits of
lines are respected at all times. In this particular example there can be uncertainty
in the arrival time and charging demand of vehicles, and constraints follow directly
from the capacity limits of the distribution grid to which vehicles are connected.
Existing algorithms for planning under uncertainty subject to constraints are
currently not suitable for these types of applications, and therefore this dissertation
aims improve the applicability of these algorithms by advancing the state of the
art in constrained multi-agent planning under uncertainty. To be more speci�c,
the dissertation focuses on 4 open research challenges, which we describe next.

In Chapter 3 we start with exact value iteration algorithms for solving POMDPs.
These algorithms are computationally demanding to execute and computing op-
timal POMDP solutions in a tractable way can be seen as an open problem. In
order to improve the performance of exact value iteration algorithms we present a
constraint generation procedure which accelerates solving linear programs within
iterations of value iteration. Additionally, we describe a bootstrapping procedure
which further improves the performance of solving linear programs by identifying
similar linear programs solved previously. The resulting algorithm improves the
state of the art in exact POMDP planning and it is currently the fastest pruning-
based value iteration algorithm that is available.

In Chapter 4 we change the focus to approximate POMDP algorithms for
�nite-horizon problems. Existing approximate algorithms are typically suitable
for solving in�nite-horizon POMDPs, and we discuss why these algorithms do not
generalize easily to �nite-horizon settings. We present the algorithm FiVI, which
is a tailored approximate POMDP algorithm for solving �nite-horizon problems.
This algorithm uni�es several ideas from recent in�nite-horizon algorithms and it
is the �rst point-based POMDP algorithm for problems with a �nite horizon that
converges to an optimal solution in the limit. We also present two heuristics which
further improve the e�ciency of the algorithm.

In the second part of the dissertation we focus on multi-agent planning prob-
lems which include both uncertainty and constraints. Planning with constraints
for problems with partial observability received only limited attention in the past,
and existing algorithms provide limited scalability. In Chapter 5 we present a
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novel approximate algorithm which is based on the insight that we can solve a
constrained planning problem as a sequence of unconstrained planning problems.
This principle allows us to derive a scalable algorithm for solving Constrained
POMDPs in both single-agent as well as multi-agent settings. Our algorithm out-
performs the state of the art and it represents a new class of algorithms for planning
under uncertainty in domains with partial observability and constraints.

The �nal research challenge addressed in Chapter 6 focuses on constrained
planning under uncertainty in smart distribution grids and therefore it has a more
applied nature. It connects our theoretical contributions to an application domain
with signi�cant societal relevance. In particular, we explain that distribution grids
become congested in the future, and we show how contrained planning under
uncertainty can be used for congestion management. To this end we discuss how
realistic power grid constraints can be combined with planning, and we present
multiple techniques which ensure that constraints imposed by a distribution grid
are respected during plan execution.

The technical contributions presented in this dissertation advance the state
of the art in multiple areas of the planning under uncertainty research �eld. Ad-
ditionally, our work improves the applicability of these algorithms in real-world
problems in our society. As a result, we obtained improved algorithms which bring
us closer to truly constrained planning under uncertainty in the real world.



Samenvatting

Het ontwikkelen van intelligente beslissingssystemen in de echte wereld vereist
planningsalgoritmen die rekening kunnen houden met bronnen van onzekerheid
en beperkingen. Een voorbeeld is de ontwikkeling van slimme energienetwer-
ken, waarin planning kan worden gebruikt om te beslissen wanneer elektrische
voertuigen hun batterij opladen, zodanig dat capaciteitslimieten van kabels in het
netwerk nooit overschreden worden. In dit speci�eke voorbeeld kan er onzeker-
heid zijn over de aankomsttijd en energievraag van voertuigen, en de beperkingen
volgen uit de capaciteitslimieten van het distributienetwerkwaar de voertuigen aan
verbonden zijn. Bestaande algoritmen voor planning met onzekerheid en beper-
kingen zijn momenteel niet geschikt voor dergelijke toepassingen. Daarom heeft
dit proefschrift als doel om de toepasbaarheid van deze algoritmen te verbeteren
door het ontwikkelen van geavanceerde methodes voor planning met onzekerheid
en beperkingen in situaties met meerdere agenten. Dit proefschrift richt zich op 4
open uitdagingen, die we hieronder nader zullen beschrijven.

In Hoofdstuk 3 wordt gekeken naar een exacte versie van het value iteration
algoritme voor het oplossen van POMDP modellen. Dergelijke algoritmen zijn
rekenintensief en het optimaal oplossen van POMDP modellen op een schaalbare
manier kan daarom worden gezien als een open probleem. Om de prestaties
van exacte value iteration te verbeteren presenteert dit proefschrift een procedure
die beperkingen genereert, zodanig dat het oplossen van lineaire programma’s
binnen value iteration wordt versneld. Daarnaast presenteert dit proefschrift een
‘bootstrapping’ procedure die de prestaties verder verbetert door soortgelijke lineare
programma’s te identi�ceren die in een eerder stadium tijdens de uitvoering van
het algoritme reeds zijn opgelost. Het resulterende algoritme verbetert de huidige
stand van de techniek op het gebied van POMDP modellen, en momenteel is het
de snelste variant van het exacte value iteration algoritme.

In Hoofdstuk 4 bekijken we benaderingsalgoritmen voor POMDP modellen
met een eindige horizon. Bestaande benaderingsalgoritmen zijn doorgaans ge-
schikt voor het oplossen van POMDP modellen met een oneindige horizon, en we
besprekenwaarom deze algoritmen niet makkelijk generaliseren naar situaties met
een eindige horizon. We presenteren een algoritme genaamd FiVI, welke gezien
kan worden als een op maat gemaakt benaderingsalgoritme voor POMDP model-
len met een eindige horizon. Dit algoritme verenigt meerdere ideeën uit recente
algoritmen voor problemen met een oneindige horizon, en het kan worden gezien
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als het eerste punt-gebaseerde benaderingsalgoritme voor problemen met een ein-
dige horizon dat in de limiet convergeert naar optimaliteit. Daarnaast presenteren
we twee heuristieken die de e�ciëntie van het algoritme verder verbeteren.

In het tweede deel van het proefschrift wordt er gekeken naar planningsproble-
men met meerdere agenten, onzekerheid en beperkingen. Planning met beperkin-
gen voor problemenmet gedeeltelijkewaarneembaarheid heeft tot op hedenweinig
aandacht gekregen in de literatuur, en bestaande algoritmen bieden momenteel
beperkte schaalbaarheid. In Hoofdstuk 5 presenteren we een nieuw benaderingsal-
goritme, gebaseerd op het inzicht dat een planningsprobleem met beperkingen
kan worden gezien als een reeks van meerdere planningsproblemen zonder beper-
kingen. Dit principe stelt ons in staat om een schaalbaar algoritme af te leiden voor
POMDP modellen met beperkingen in situaties met een of meerdere agenten. Het
algoritme presteert beter dan bestaande algoritmen, en daarnaast representeert
het een geheel nieuwe klasse van algoritmen voor planning met onzekerheid in
domeinen met gedeeltelijke waarneembaarheid en beperkingen.

Hoofdstuk 6 van dit proefschrift richt zich op planning met beperkingen en
onzekerheid in slimme energienetwerken. Het hoofdstuk heeft een meer prakti-
sche invalshoek, en daarnaast verbindt het de theoretische contributies met een
maatschappelijk relevant toepassingsdomein. Het hoofdstuk legt uit hoe er in de
toekomst congestie kan ontstaan in distributienetwerken, en hoe planning met
onzekerheid en beperkingen kanworden gebruikt om congestie te voorkomen. Om
dit te realiseren wordt er beschreven hoe informatie over netwerkbeperkingen kan
worden geïntegreerd in planningsalgoritmen, en daarnaast presenteren we meer-
dere technieken die ervoor zorgen dat netwerkbeperkingen worden gerespecteerd
tijdens het uitvoeren van een plan.

De technische bijdragen van dit proefschrift verbeteren de stand van de tech-
niek in meerdere gebieden van het onderzoeksveld dat zich richt op planning met
onzekerheid en beperkingen. Daarnaast verbetert het werk in dit proefschrift de
toepasbaarheid van deze algoritmen voor planningsproblemen met maatschappe-
lijke relevantie die optreden in de hedendaagse samenleving. Het resultaat is dat er
een stap wordt gezet in de richting van planning met onzekerheid en beperkingen
voor beslissingssystemen in de echte wereld.
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