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Abstract 
In order to perform a reassessment of existing structures or design new structures in a more efficient 

and economical way non-linear finite element (NLFE) models are used to take into account all non-

linear behavior in reinforced concrete structures. The Model Code 2010 (fib, 2012) suggest several 

safety formats to perform non-linear finite element analyses with an intended reliability index 𝛽𝑅 =

3.04. The safety formats seems to be safe for statically determinate structures with a predictable 

failure mode. For instance a bending failure in a simply supported reinforced concrete beam. 

However it is unclear if the intended safety level is met for statically indeterminate structures. Since 

the redundancy of the structural system and the several possibilities to redistribute the internal 

forces could lead to unpredictable failure modes.  

In this thesis three reinforced concrete portal frame designs are used to evaluate the probability of 

failure of the structural resistance determined with the safety formats i.e. the safety of the safety 

formats will be assessed. The ductility of the portal frame designs determines the degree of 

redistribution of the internal forces. Therefore this case study will focus on three portal frame 

designs with all a different ductile behavior. The global design resistance is determined according to 

the following safety formats: the global resistance factor method (GRFm), the estimation of a 

coefficient of variation (ECOV) method and the partial factor method (PFm). A comparison is made 

with the local design resistance of the portal frame designs according to the Eurocode 2 using partial 

safety factors.  

The reliability level of the structural design resistance according to the least conservative safety 

formats is determined for each portal frame design. Several response surfaces were constructed and 

the first order reliability method (FORM) was used to determine the reliability level. In case of 

relatively low material and geometrical uncertainties the safety formats lead to a structural 

resistance that can safely be used i.e. the intended reliability level is met. However when the 

detailing uncertainties in concrete frame corners are relatively large these uncertainties should be 

implemented in the safety formats. Further research and more experimental results are needed to 

make a better estimation of the (model) uncertainties possible. 

Finally, the used methods are evaluated and several comments are given on the difficulties of using 

those methods. Constructing a response surface in combination with the FORM in order to find the 

design point is definitely not an automated process as the mathematical procedures seems to 

indicate.  
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1 Introduction 
The infrastructure is growing old and the traffic load will increase in the coming years. According to 

the classic design procedure old concrete bridges are not safe anymore and have to be replaced. The 

classic design procedure, which is mainly used in the past for structural concrete elements, is based 

on local safety evaluation. This means that the safety condition is evaluated for each element at each 

critical cross-section individually. This is a quite conservative approach due to simplified models and 

less redistribution of the internal forces, which lead to a conservative load carrying capacity of the 

structure.  

More sophisticated models, namely non-linear finite element (NLFE) models, can be used to take into 

account the redundancy of the structural system and the capacity to redistribute the internal forces. 

The failure of one element does not automatically mean that the whole structural system fails. 

Therefore a global safety evaluation is needed to evaluate the structural system. In order to extent 

the lifespan of the existing concrete bridges, a reassessment using non-linear finite element analyses 

can be used to reveal any additional ‘hidden’ load carrying capacity.  Therefore existing concrete 

structures can still be safe enough to resists the increasing traffic load.  

This thesis will focus on a case study of a portal frame, which can for instance be used to support a 

bridge. The reinforced concrete portal frame is loaded with a vertical load 𝐹𝑣 and a horizontal 

load 𝐹ℎ. The vertical load 𝐹𝑣 can be seen as the sum of the self-weight of the bridge and the traffic 

load. The horizontal load 𝐹ℎ represent the wind load on the bridge. The loading model is a huge 

simplification from reality but it is only meant to place the portal frame in a context. The portal frame 

discussed in this thesis is a small scale design in order to compare the NLFE model with experimental 

results. The portal frame is designed using a local safety approach to resist the vertical and horizontal 

load 𝐹𝑣 and 𝐹ℎ. Any additional capacity of the portal frame can be found using the safety formats for 

NLFE analysis, which are described in the Model Code 2010 (fib, 2012). In this case additional 

capacity means additional vertical loading on top of the already present vertical and horizontal 

load 𝐹𝑣 and 𝐹ℎ. In order to verify the safety level of the maximum structural resistance according to 

the safety formats a safety assessment will be performed in this thesis. The safety level will be 

verified using a global safety approach.  

 

 

Figure 1. Reinforced concrete portal frame with loads determined by a local safety evaluation. 
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This thesis will deepen the work of Blomfors (2014) and Blomfors et al. (2016) where a large scale 

NLFE model of a reinforced concrete frame was analyzed. The safety of two loading histories was 

assessed. In one of the cases the safety level of the ECOV method was lower than the intended safety 

level, which lead to an unsafe situation. This thesis will focus on the safety of three reinforced 

concrete portal frame designs. Each design has a different influence on the ductility of the structure 

and therefore the capacity to redistribute the internal forces. In this case the ductility means the 

ability of a frame to form a plastic mechanism. A ductile frame can form a plastic mechanism and is 

more able to redistribute the internal forces compared to a brittle frame, where a brittle failure 

almost immediately lead to the total collapse of the frame.  

 

1.1 Background 
 

1.1.1 Local safety evaluation 
The classic design approach for reinforced concrete structures is based on a linear elastic model to 

determine the internal forces 𝐸 resulting from an external load 𝐹. The critical section of each 

component is designed to resist (resistance: 𝑅) the internal forces using a local non-linear model or 

empirical model. Subsequently the safety of each element is evaluated using a local safety 

evaluation. A local safety evaluation leads often to conservative and uneconomic reinforced concrete 

structures. According to the Eurocode 0 (NEN-EN 1990, 2011) the reliability level is met when the 

following local safety check is fulfilled: 

 𝐸𝑑 ≤ 𝑅𝑑,            (1.1) 

where 𝐸𝑑 is the design value of the load effects e.g. internal forces, stresses, etc. resulting from the 

external load 𝐹𝑑 and 𝑅𝑑 is the corresponding design resistance at the critical section of an element. 

The design value of the load effects is defined as (NEN-EN 1990, 2011): 

𝐸𝑑 = 𝐸(𝛾𝐹,𝑖 𝐹𝑟𝑒𝑝, 𝑿𝒅, 𝒂𝒅)  𝑖 ≥ 1,        (1.1a) 

where: 

𝛾𝑆𝑑   is the partial factor that accounts for model uncertainties; 

𝛾𝐹,𝑖 = 𝛾𝑓,𝑖 𝛾𝑆𝑑  is the partial factor for the load, with 𝛾𝑓,𝑖  the partial factor for   

   unfavorable fluctuations of 𝐹 compared to 𝐹𝑟𝑒𝑝; 

𝐹𝑑,𝑖 = 𝛾𝐹,𝑖 𝐹𝑟𝑒𝑝,𝑖 is the design value of the external load; 

𝐹𝑟𝑒𝑝 = 𝜓 𝐹𝑘  is the representative load with 𝜓 is the combination factor and 𝐹𝑘 the  

   characteristic load; 

𝑿𝒅   is the vector with the design material values; 

𝒂𝒅   is the vector with the design values of the geometrical variables, mostly equal

   to the nominal  value and in case of significant influence on the structural 

   safety ± ∆𝑎. 
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The design value of resistance is defined as (NEN-EN 1990, 2011): 

𝑅𝑑 = 𝑅 (
𝑋𝑘,𝑖

𝛾𝑀,𝑖
; 𝒂𝒅)  𝑖 ≥ 1,        (1.1b) 

 

where:    

𝛾𝑅𝑑   is the partial factor that accounts for model uncertainties and also includes 𝜂𝑖  

   the conversion factor considering volume and scale effects and influences of

   temperature and humidity; 

𝛾𝑀,𝑖 = 𝛾𝑅𝑑  𝛾𝑚,𝑖  is the partial factor for the resistance, with 𝛾𝑚 the local resistance factor for 

   unfavorable fluctuations of 𝑋 compared to 𝑋𝑘 and the stochastic nature of 𝜂; 

𝑋𝑑,𝑖 =
𝑋𝑘,𝑖

𝛾𝑀,𝑖
  is the design material value with 𝑋𝑘 is the characteristic material value; 

𝒂𝒅 = 𝑎𝑛𝑜𝑚 (± ∆𝑎) is the vector with the design values of the geometrical variables (see  

   equation (1.1a)). 

The partial safety factors for the resistance in a local safety evaluation are related to the 

characteristic material values.  

1.1.2 Global safety evaluation 
The classical linear elastic approach (local safety evaluation) leads to internal forces that can differ 

significantly from reality. The stiffness of the structure changes due to the cracking of concrete and 

yielding of the reinforcement steel. The redundancy of the structural system and the capacity to 

redistribute the internal forces is especially high for statically indeterminate structures. In order to 

assess this non-linear material behavior NLFE analyses can be performed, which can account for non-

linear material behavior. A NLFE model is the most accurate model to determine the response of a 

structural reinforced concrete system. Especially for a statically indeterminate structure where the 

failure of one element does not necessarily lead to the failure of the structural system. Statically 

indeterminate structures provides several ways to redistribute the internal forces and can find new 

equilibrium paths. Therefore global safety evaluation is needed to assess the safety of the structural 

system. The global safety check according to the Model Code 2010 (fib, 2012) is defined as: 

𝐹𝑑 ≤ 𝑅𝑑,           (1.2) 

where: 𝐹𝑑 is design value of the external load and 𝑅𝑑 is the design resistance of the structural 

system. The design value of the external load 𝐹𝑑 can be found in the same manner as in equation 

(1.1a). The design resistance 𝑅𝑑 is defined as (fib, 2012):  

𝑅𝑑 =
𝑅𝑚

𝛾𝑅  𝛾𝑅𝑑
,           (1.2a) 

where: 

 

𝑅𝑚   is the mean value of resistance (determined with a NLFE analysis with mean material 

  values); 

𝛾𝑅   is the global resistance factor; 

𝛾𝑅𝑑   is the model uncertainty factor. 

The partial safety factors for the resistance in a global safety evaluation are related to the mean 

material values. The value of the model uncertainty is related to the uncertainty of the non-linear 

finite element model. In the Model Code 2010 (fib, 2012) the recommended values are: 
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𝛾𝑅𝑑 = 1.0 for no uncertainties; 

𝛾𝑅𝑑 = 1.06 for models with low uncertainties; 

𝛾𝑅𝑑 = 1.1 for models with high uncertainties.  

1.2 Problem description 
The safety formats as presented in the Model Code 2010 (fib, 2012) will be used to determine the 

design resistance 𝑅𝑑 of the reinforced concrete portal frame. The design resistance of the structure 

according to the corresponding safety format (SF) will be denoted as: 𝑅𝑆𝐹 and is determined using a 

global safety approach.  

A global safety evaluation of equation (1.2) should result in an overall target reliability of at 

least: 𝛽𝑡 = 3.8. However, in this thesis only the resistance side of equation (1.2) will be evaluated 

since the main interest is to determine the safety of the design resistance 𝑅𝑆𝐹. Therefore the design 

resistance 𝑅𝑆𝐹 obtained according to a corresponding safety format should lead to a reliability index 

of at least: 𝛽𝑅 = 𝛼𝑅 𝛽𝑡 = 0.8 ∙ 3.8 =  3.04, which corresponds to a probability of failure of 𝑝𝑓 =

Φ(−𝛽𝑅) = 10−3.  The safety formats seems to be safe for statically determinate structures with a 

predictable failure mode and will lead to the intended reliability index 𝛽𝑅 (Blomfors, Engen, & Plos, 

Evaluation of safety formats for non-linear finite element analyses of statically indeterminate 

concrete structures subjected to different load paths, 2016). However it is unclear whether the 

safety formats lead to a safe design resistances for statically indeterminate structures. Redistribution 

of the internal forces leads to unpredictable failure modes which could influence the safety of the 

structure.  

In this thesis a safety assessment will be performed for a statically indeterminate reinforced concrete 

frame (figure 1). The goal is to find out whether the target reliability 𝛽𝑅 of the safety formats is met 

in order to safely use the safety formats. Furthermore a comparison between a local and a global 

safety approach will be made in order to find out if a global safety approach could lead to any 

additional capacity.  

1.2.1 Global safety evaluation of a portal frame using implicit limit state functions 
The reliability level 𝛽𝑅 and the probability of failure of the safety formats can be determined with the 

following implicit limit state function (Blomfors, Engen, & Plos, Evaluation of safety formats for non-

linear finite element analyses of statically indeterminate concrete structures subjected to different 

load paths, 2016): 

𝐺(𝑿) = 𝜃𝑚 𝑅(𝑿) − 𝑅𝑆𝐹,         (1.3) 

where 𝜃𝑚 is the model uncertainty of the NLFE model, 𝑅(𝑿) is the total resistance of a NLFE analysis 

using stochastic variables 𝑿 and 𝑅𝑆𝐹 is the total resistance of the NLFE model according to the 

corresponding safety format 𝑅𝑆𝐹. The measure of the total structural resistance is chosen to be the 

sum of the vertical and horizontal load (Blomfors, Engen, & Plos, Evaluation of safety formats for 

non-linear finite element analyses of statically indeterminate concrete structures subjected to 

different load paths, 2016). The measure of the structural resistance is not a real physical quantity. 

However, this is not needed since this quantity is only used to determine a possible failure of the 

portal frame. The limit state function is implicit since there is no analytical model available to assess 

the failure modes. Therefore a NLFE model will be used. This implicit limit state function will be used 

to perform a global safety evaluation of the design resistance according to the safety formats. 
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1.3 Aim 
The aim of this thesis is to evaluate safety assessment methods for a reinforced concrete frame. A 

distinction will be made between local and global safety assessment methods. The classical design 

approach to obtain the structural design resistance of  reinforced concrete structures using a local 

safety assessment method is described in the Eurocode 2 (NEN-EN 1992 -1-1, 2011). A global safety 

assessment method to obtain the structural design resistance of reinforced concrete structures is 

proposed in the Model Code 2010 (fib, 2012). A global safety evaluation should be performed using 

the safety formats (Model Code 2010) in combination with non-linear finite element analyses.  

The degree of redistribution can have an influence on the safety level, especially for statically 

indeterminate structures. The ductility of the portal frame determines the degree of redistribution of 

the internal forces. Therefore this case study will focus on three portal frame designs with all a 

different ductile behavior: 

 Design 1: basic design 

 Design 2: higher longitudinal reinforcement ratio (compared to design 1) 

 Design 3: higher concrete strength class (compared to design 1) 

The case study of three designs of a reinforced concrete portal frame will be used to determine the  

structural resistance using a local and a global safety approach. A level II reliability method will be 

used to determine if the intended reliability level 𝛽𝑅 = 3.04 of the safety formats is met in order to 

safely use the safety formats. A schematic representation of the safety assessment methods that will 

be evaluated is given in figure 2. The dotted line stands for the comparison between the local and the 

global safety approach using a level I reliability method. The arrow represents the verification of the 

intended reliability level used for the safety formats by means of a level II reliability method.  

 

Figure 2. Schematic representation of the safety assessment methods 

1.4 Limitations 
 Only the reliability of the structural resistance will be assessed in this thesis 

 Only the total load carrying capacity in ULS will be assessed in this thesis.  

 Just three portal frame designs are used to evaluate the safety formats. 

 Just one loading path will be assed. 

 Just two experimental results where available which lead to less information about the 

model uncertainty. 

 Only the first order reliability method (FORM) in combination with a response surface is used 

to determine the reliability index. 

1.5 Outline of contents 
An introduction to the subject of this thesis is made in chapter 1. The problem is introduced and the 

aim of this thesis is given. Furthermore the limitations of this thesis are shortly discussed. 

Chapter 2 contains a review of reliability theory that is used to calculate the probability of failure of a 

structural system. A general introduction is made and after that the used reliability methods are 

described to perform a safety assessment.  
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In chapter 3 the safety formats are discussed. The safety formats are used to determine the global 

design resistance of a structural system by means of a NLFE model. Only the safety formats which are 

presented in the Model code 2010 (fib, 2012) will be discussed in this thesis.  

Three different reinforced concrete portal frame designs are presented in chapter 4. The ductility 

and therefore the ability to redistribute the internal forces is different for each frame. The main 

uncertainty is the rotational capacity of the corner of a reinforced concrete portal frame. Several 

detailing possibilities will be elaborated. The three introduced portal frame design have a different 

structural resistance. The resistance of each frame is evaluated using a local and a global safety 

approach. The resistance obtained from a local design approach is believed to be conservative. 

Therefore a global safety approach by means of NLFE analyses in combination with the safety 

formats is used to determine if there is any additional capacity. Eventually, the main goal of this 

thesis is to determine the safety of the structural resistance obtained by the safety formats (global 

safety evaluation). This will be verified in chapter 7.  

Chapter 5 contains the structural analysis of an experiment (Seraj, Kotsovos, & Pavlovic, 1995) 

performed on two different portal frame designs. The portal frame designs used in this experiment 

are similar to design 1 given in chapter 4. The experiment is used to determine the real structural 

resistance and to analyze the failure modes of the reinforced concrete portal frames. A local safety 

approach according to the Eurocode 2 (NEN-EN 1992 -1-1, 2011) will be used to predict the failure 

modes. This failure modes will be compared to the failure modes obtained from the experiment. 

Finally, a NLFE model will be created based on the experiment. The structural resistance of the NLFE 

model and the experiment will be compared to determine the model uncertainty.  

In chapter 6 the uncertainties are explained that have an influence on the structural resistance of a 

portal frame. The dominating uncertainties are taken into account based on the influence on the 

failure mode. 

Chapter 7 contains the global safety assessment of the reinforced concrete portal frame. A level II 

reliability method is used to determine if the intended reliability of the safety formats is met i.e. the 

validity of the safety formats will be determined. Three cases are introduced based on the 

uncertainties defined in chapter 6 and each case has a different influence on the rotational capacity 

of the corner and therefore the structural resistance of the portal frame. 

Chapter 8 contains the conclusions of this thesis. Also suggestions for further work will be given.   
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2 Review of reliability analysis 
 

2.1 Principles of limit state design 
In general a structure is safe when the structural resistance 𝑅 is larger than the loads 𝑆 (solicitation). 

The limit state function (LSF) is is defined as: 

𝐺(𝑿) = 𝑅 − 𝑆.           (2.1) 

Where the vector 𝑿 contains 𝑛 basic variables. The probability of failure equals: 𝑝𝑓 = 𝑃[𝐺 < 0]. 

Figure 3 shows the variables 𝑆, 𝑅 and 𝐺. If 𝑆 and 𝑅 are normally distributed than 𝐺 = 𝑅 − 𝑆 is also 

normally distributed with the following mean and standard deviation: 

𝜇𝐺 = 𝜇𝑅 − 𝜇𝑆,           (2.2) 

𝜎𝐺 = √𝜎𝑅
2 + 𝜎𝑆

2.          (2.3)

    

 

 

 

 

 

The reliability index is determined as follows: 

𝛽 =
𝜇𝐺

𝜎𝐺
.            (2.4) 

Assuming normally distributed variables 𝑅 and 𝑆 and a linear LSF the failure probability can be 

calculated according to: 

𝑝𝑓 = Φ(−𝛽).           (2.5) 

2.1.1 Joint probability density function 
The problem 𝐺 = 𝑅 − 𝑆 can also represented with a joint probability density function of the 

variables 𝑅 and 𝑆 (figure 4). The limit state function 𝐺 = 0 separates the safe domain 𝐺 > 0  from 

the failure domain 𝐺 < 0. The probability of failure is equal to volume under the joint probability 

density function corresponding to the failure domain.  

The distribution for the resistance and the load are 𝑓𝑅(𝑟) and 𝑓𝑆(𝑠), respectively. If 𝑅 and 𝑆 are 

independent the joint probability density function is: 

𝑓𝑅𝑆(𝑟, 𝑠) = 𝑓𝑅(𝑟) 𝑓𝑆(𝑠).         (2.6) 

The failure probability can be calculated with the following integral: 

𝑝𝑓 = ∬ 𝑓𝑅(𝑟) 𝑓𝑆(𝑠)𝑑𝑟𝑑𝑠
0

𝐺<0
.         (2.7) 

 

Figure 3. Probability of failure for normally distributed variables R and S (Schneider, 2006). 
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Figure 4. The limit state function and the joint probability density function (Schneider, 2006). 

2.1.2 The reliability index in the normalized space 
The linear limit state function 𝐺(𝑿) for two independent random variables 𝑋1 and 𝑋2 can be 

represented in the following general form: 

𝐺(𝑿) = 𝑎0 + 𝑎1𝑋1 + 𝑎2𝑋2.         (2.8) 

The normalized variables can be determined according to: 

𝑈𝑖 =
𝑋𝑖−𝜇𝑋𝑖

𝜎𝑋𝑖
.           (2.9) 

This leads to following LSF with the standard normal variables: 

𝐺(𝑼) = 𝑎0 + 𝑎1 𝜇𝑋1 + 𝑎2 𝜇𝑋2 + 𝑎1 𝜎𝑋1 𝑈1 + 𝑎2 𝜎𝑋2 𝑈2,     (2.10) 

with equations (2.2), (2.3) and (2.4) this can be rewritten to: 

𝐺(𝑼) = 𝛽 − 𝛼1𝑈1 − 𝛼2𝑈2,         (2.11) 

where: 

𝛽 =
𝑎0+𝑎1 𝜇𝑋1+𝑎2 𝜇𝑋2

√(𝑎1 𝜎𝑋1)2+(𝑎2 𝜎𝑋2)2
   is the shortest distance from the origin to the LSF in standard 

     normal space (figure 5); 

𝜶 = 𝛼𝑖 =
−𝑎𝑖 𝜎𝑋𝑖 

√(𝑎1 𝜎𝑋1)2+(𝑎2 𝜎𝑋2)2
  is a unit vector normal to the LSF (figure 5).  

  

 

 

 

 

 

 

 

Figure 5. Linear LSF in real (left) and standard normal (right) space (Sørensen, 2004). 
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2.2 Reliability methods 
The reliability methods can be divided into groups based on the complexity and the time needed to 

perform a safety assessment. Three groups of reliability methods are discussed in this paper, the 

level III, level II and level I methods (Jonkman, Steenbergen, Morales-Nápoles, Vrouwenvelder, & 

Vrijling, 2016). 

2.2.1 Level III methods 
Level III methods determine the probability of failure given by the integral (2.7) exactly. The integral 

can be calculated analytically, which is only possible in a limited number of simple cases. The integral 

can also be calculated numerically. This is only possible when the number of random variables 𝑛 is 

small. Furthermore Monte Carlo simulations (figure 6) and Importance sampling are possibilities to 

calculate the probability of failure exactly.  

 

Figure 6. Level III method: Monte Carlo simulation where the probability of failure is found by dividing the number of 
outcomes in the unsafe region by the total number of outcomes (Engen, 2017). 

2.2.2 Level II methods  
Level II methods approximate the probability of failure. The non-linear limit state function will be 

linearized in the design point, i.e. the point on 𝐺(𝑿) = 0 with the highest probability density. The 

design point is also the point on 𝐺(𝑼) = 0 closest to the origin in the standard normal space (figure 

7). In this thesis the first order reliability method (FORM) will be used to determine if the intended 

safety level of the safety formats is met. 

 

Figure 7. Level II method: the reliability index is found by locating the point on 𝑔(𝑼) = 0 closest to the origin in the standard 
normal space (Engen, 2017). 

2.2.3 Level I methods 
Level I methods are semi-probabilistic methods. The distributions of the stochastic variables are used 

to determine the characteristic value of the corresponding variable. The characteristic value for the 

resistance is a low percentile and for the load a high percentile of the probability density function.  

Furthermore partial factors 𝛾’s are used to calculate the design values. The partial factors are derived 

using a level II method. Therefore the design procedure in the Eurocode according to the local safety 

evaluation is a level I method. Also the global safety evaluation used for the safety formats as 

presented in the Model Code 2010 (fib, 2012) is a level I method since a global safety factor is used. 
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Figure 8. Level I method: the nominal values for the basic variables 𝑥𝑖𝑘  are scaled with partial factors 𝛾𝑖 in order to impose 
an intended safety level (Engen, 2017). 

2.3 First order reliability method 
The first order reliability method (FORM) is a level II approximation method. The explicit limit state 

function (LSF) should be linear and contain normally distributed variables in order to calculate the 

probability of failure with equation (2.5). An explicit LSF can be expressed with an analytical model in 

contrast to an implicit LSF as defined in equation (1.3), which is given by a NLFE model. A non-linear 

explicit LSF can be linearized in a certain point using a first order Taylor expansion (Jonkman, 

Steenbergen, Morales-Nápoles, Vrouwenvelder, & Vrijling, 2016): 

𝐺 ≈ 𝐺(𝑥𝑖
∗) + ∑

𝜕𝐺(𝑥𝑖
∗)

𝜕𝑋𝑖
(𝑋𝑖 − 𝑥𝑖

∗)𝑛
𝑖=1 .          (2.12) 

This leads to an approximation of the LSF with the following general form: 

𝐺 = 𝑎0 + ∑ 𝑎𝑖𝑋𝑖
𝑛
𝑖=1 ,          (2.13) 

where 𝑎𝑖 =
𝜕𝐺(𝑥𝑖

∗)

𝜕𝑋𝑖
 and 𝑎0 = 𝐺(𝑥𝑖

∗) − ∑ 𝑎𝑖𝑥𝑖
∗𝑛

𝑖=1  are the constant coefficients of the linear equation.  

In order to reduce the error, the non-linear LSF should be linearized in the design point, which is the 

point on the LSF with the highest probability of failure. Therefore, the reliability index is the shortest 

distance from the LSF (design point) to the origin when the stochastic variables are transformed to 

the standard normal space: 

𝛽 = min
𝑧=0

(√∑ 𝑈𝑖
2𝑛

𝑖=1 ).          (2.14) 
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2.3.1 FORM real space 
The design point, the reliability index and the corresponding probability of failure can be determined 

using an iterative process with an explicit limit state function in the real space: 

1. Estimate the design point 𝑥𝑖
∗ (start with 𝜇𝑖). 

2. Linearize the LSF 𝐺(𝑋1, 𝑋2, . . , 𝑋𝑛) function according to equation (2.13). Therefore the 

following constants should be determined: 

𝑎𝑖 =
𝜕𝐺(𝑥𝑖

∗)

𝜕𝑋𝑖
 and 𝑎0 = 𝐺(𝑥𝑖

∗) − ∑ 𝑎𝑖𝑥𝑖
∗𝑛

𝑖=1 . 

3. Calculate the mean, standard deviation, reliability index , sensitivity factors and the new 

design point with the following formulas: 

𝜇𝐺 = 𝑎0 + ∑ 𝑎𝑖
𝑛
𝑖=1  𝜇𝑖,         (2.15) 

𝜎𝐺 = [ ∑ (𝑎𝑖  𝜎𝑖)
2𝑛

𝑖=1 ]1/2 ,         (2.16) 

𝛽 =
𝜇𝐺

𝜎𝐺
,           (2.17) 

𝛼𝑖 =
𝜎𝑖

𝜎𝐺
 𝑎𝑖,          (2.18) 

𝑥𝑖 = 𝜇𝑖 − 𝛼𝑖 𝛽 𝜎𝑖.         (2.19) 

4. Check convergence with: |𝛽𝑖+1 − 𝛽𝑖| < 𝜖 (e.g. 𝜖 = 10−3). If convergence is not achieved 

proceed with step 1. 

5. Calculate the probability of failure 𝑝𝑓 = Φ(−𝛽). 

2.3.2 FORM standard normal space 
The design point, the reliability index and the corresponding probability of failure can be determined 

using an iterative process with an explicit limit state function in the standard normal space 

(Sørensen, 2004): 

1. Guess 𝒖0,   (vector containing first guess of the design point) 

set 𝑖 = 0. 

2. Calculate 𝑔(𝒖𝑖)  (explicit LSF). 

3. Calculate ∇𝑔(𝒖𝑖)   (vector containing partial derivatives 
𝛿𝑔

𝛿𝑢𝑖 at place 𝑖). 

4. Calculate an improved guess of the 𝛽 point: 

𝒖𝑖+1 = ∇𝑔(𝒖𝑖)
∇𝑔(𝒖𝑖)

𝑇𝒖𝑖− 𝑔(𝒖𝑖)

∇𝑔(𝒖𝑖)
𝑇∇𝑔(𝒖𝑖)

.         (2.20) 

5. Calculate the corresponding reliability index: 

𝛽𝑖+1 = √(𝒖𝑖+1)
𝑇𝒖𝑖+1.         (2.21) 

6. Check convergence with: |𝛽𝑖+1 − 𝛽𝑖| < 𝜖 (e.g. 𝜖 = 10−3). If convergence is not achieved 

then 𝑖 = 𝑖 + 1 and proceed with step 2. 

When convergence is achieved the reliability index 𝛽 = 𝛽𝑖+1, the probability of failure is 𝑝𝑓 =

Φ(−𝛽), the design point is 𝒖∗ = 𝒖𝑖+1 and the vector 𝜶 containing the sensitivity factors can be 

determined with: 

𝜶 = −
∇𝑔(𝒖∗)

|∇𝑔(𝒖∗) |
.           (2.22) 
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2.4 Response surface method in combination with the FORM 
The use of a NLFE model results in an implicit limit state function (LSF) since there is no analytical 

expression available for the LSF. In order to find the design point for an implicit LSF, a response 

surface can be fitted to the results of the NLFE model. The actual LSF 𝐺(𝑿) can be replaced by a 

response surface 𝐺(𝑿), which is usually a quadratic polynomial function with undetermined 

coefficients (Engen, 2017): 

𝐺(𝑿) ≈ 𝐺(𝑿) = 𝑨𝒃 + 𝑒,         (2.23) 

where 𝐺(𝑿) is the response surface based on several NLFE analyses with stochastic variables 𝑿, the 

matrix 𝑨 contains the powers of the random variables 𝑿, the vector 𝒃 contains the undetermined 

coefficients and 𝑒 is error term. The model uncertainty can be included by multiplying equation 

(2.23) with the model uncertainty 𝜃𝑚 and can be treated as a stochastic variable. 

The error term 𝑒 is due to an approximation of the NLFE analyses with a polynomial function and is 

assumed to have a mean equal to zero and an unknown standard deviation i.e. 𝑒~𝑁(0, 𝜎𝑒
2) (Engen, 

2017). In this thesis it is assumed that the coefficient 𝒃 are deterministic i.e. neglecting the 

uncertainty introduced by the response surface and the correlation between the coefficients (Engen, 

2017). The approximation error in terms of the failure probability will be very small and can be 

neglected if the experimental points are chosen in a judicious way (Zhao & Qiu, 2013). 

The response surface method is often combined with the FORM following an iterative approach 

(Engen, 2017): 

1. Fit the response surface to a set of experimental points. The first set of experimental points 

are usually centered on the mean values of the random variables. 

2. Find the location of the design point by using the FORM. 

3. Find a new center for the experimental points based on the design point. 

4. Check for convergence. 

In order to reduce the number of iterations needed to find the design point (reduction of NLFE 

analyses) several studies have been performed to optimize step 3 (Engen, 2017). The approaches of 

Bucher and Bourgund (1990) and Zhao and Qiu (2013) are treated in this thesis.  

2.4.1 Approach Bucher and Bourgund (1990) 

The actual LSF 𝐺(𝑿) is replaced by the response surface 𝐺(𝑿) which is a usually a quadratic 

polynomial function without cross terms: 

𝐺(𝑿) = 𝑎 + ∑ 𝑏𝑖 𝑥𝑖
𝑛
𝑖=1 + ∑ 𝑐𝑖 𝑥𝑖

2𝑛
𝑖=1 ,        (2.24) 

where 𝑛 is the number of random variables 𝑿 and 𝑎, 𝑏𝑖 and 𝑐𝑖 are the 2𝑛 + 1 undetermined 

coefficients. Without cross terms the function basically represents the actual LSF 𝐺(𝑿) along the 

coordinate axes. The undetermined coefficients 𝑎, 𝑏𝑖 and 𝑐𝑖 can be solved by performing 2𝑛 + 1 

NLFE analyses of 𝐺(𝑿). The following 2𝑛 + 1 experimental points are suggested to perform the NLFE 

analyses: the mean values 𝑿  and 𝑿𝒊 = 𝑿𝒊 ± 𝒇𝒊 𝝈𝒊. In which 𝑓𝑖 is an arbitrary factor and 𝜎𝑖 is the 

standard deviation of the considered variable. The value 𝑓 = 3 is recommended in several papers 

(Zhao & Qiu, 2013). The points should also lie along the axes (figure 9) since there are no cross terms 

used in the RSF (equation (2.24)).  
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Figure 9. Example of experimental points to obtain the RSF two random variables are considered: points along the 
coordinate axes indicated with o (mostly used for a RSF without cross terms) and other possible experiment points (could be 
added for a RSF with cross terms) indicated with * (Rajashekhar & Ellingwood, 1993). 

The response surface can also be written in matrix notation: 

𝐺(𝑿) = 𝑨𝒃,           (2.25) 

where 𝑨 = [1, 𝑥1, 𝑥2, 𝑥1
2, 𝑥2

2] is the matrix that contains the powers of random variables and 𝒃 =

[𝑎, 𝑏1, 𝑏2, 𝑐1, 𝑐2]
𝑇 is the vector of undetermined coefficients when only two random variables are 

considered. The sample space is saturated when the number of undetermined coefficients is equal to 

the number of sample points. The coefficients can be determined with the following expression: 

𝒃 = 𝑨−1 𝑮,           (2.26) 

where 𝑮 is a vector with NLFE analyses results of the experimental points. When the sample space is 

over-saturated. In this case there are more experimental points than undetermined coefficients. The 

coefficients 𝒃 can only be determined by means of a least squares approach (Eklund, Skorve, & 

Strand, 2017): 

𝒃 = (𝑨𝑇𝑨)−1𝑨𝑇𝑮.          (2.27) 

In order to reduce the number of NLFE analyses an over-saturated sample space should be avoided. 

When more accuracy is needed the cross terms can be included in the RSF: 

𝐺(𝒙) = 𝑎 + ∑ 𝑏𝑖 𝑥𝑖
𝑛
𝑖=1 + ∑ 𝑐𝑖  𝑥𝑖

2𝑛
𝑖=1 + ∑ ∑𝑑𝑖𝑗  𝑥𝑖  𝑥𝑗𝑖≠𝑗 .      (2.28) 

More experimental points in figure 9 should be used to determine all coefficients.  

The response surface 𝐺(𝑿) with known coefficients 𝒃 is used to make a first estimation of the design 

point 𝑿𝑫 with the use of FORM. When 𝑿 is found, 𝐺(𝑿𝑫) is evaluated with a NLFE analysis and the 

new center point 𝑿𝑴  is chosen on a straight line from the mean vector 𝑿 to 𝑿𝑫 such that 𝐺(𝑿) = 0 

at the new center point 𝑿𝑴 i.e., 

𝑿𝑴 = 𝑿 + (𝑿𝑫 − 𝑿)
𝐺(𝑿)

𝐺(𝑿)−𝐺(𝑿𝑫)
.        (2.29) 

The new center point 𝑿𝑴 is used instead of 𝑿 to obtain new experimental points and a new RSF can 

be determined. The process is repeated until 𝑿𝑫 is sufficiently stable. The response surface 𝐺(𝑿) and 

the design point  𝑿𝑫 is found. 
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Figure 10. Schematic sketch of the suggest procedure (Bucher & Bourgund, 1990). 

 

2.4.2 Approach Zhao and Qiu (2013) 
Zhao and Qiu (2013) have improved the approach of Bucher and Bourgund (1990) in order to reduce 

the number of NLFE analyses needed to find the design point. Therefore the control point of 

experimental points is constructed. The control point is constructed in such a way that the center of 

the experimental points lies exactly on the failure surface and is close to the actual design point. The 

control point can be constructed in with the following steps (Zhao & Qiu, 2013): 

1. Select 𝑛 + 1 experimental points, 𝑿 and 𝑿𝒊 = 𝑿𝒊 − 𝒇𝒊 𝝈𝒊 with 𝑓 = 3. 

2. Perform 𝑛 + 1 NLFE analyses of the experimental point selected in step 1 and determine 

𝐺(𝑿 ) and 𝐺(𝑿𝒊). 

3. Calculate the differences between 𝐺(𝑿 ) and 𝐺(𝑿𝒊), as follows: 

𝐹(𝑿𝒊) = 𝐺(𝑿 ) −  𝐺(𝑿𝒊), 𝑖 = 1,2, . . , 𝑛.      (2.30) 

4. The weight of each experimental point is determined: 

𝑤𝑖 =
𝐹(𝑿𝒊)

∑ |𝐹(𝑿𝒋)|
𝑛
𝑗=1

, 𝑖 = 1,2, . . , 𝑛.        (2.31) 

5. The control point in the standard normal space is: 

𝑼𝑐 = ∑ 𝑤𝑖𝑼𝑖
𝑛
𝑖=1 ,         (2.32) 

where: 

𝑼𝑖 = (𝑿𝑖 − 𝑿)./𝝈,         (2.33) 

where the symbol ./ represents the division of the corresponding component between two 

vectors. 

The control point in the actual space can be calculated with: 

𝑿𝑐 = 𝑼𝑐  .× 𝝈 + 𝑿,          (2.34) 

where the symbol .× represents the product of the corresponding components between two vectors.  

The design point and the reliability index can be found using the following iterative procedure (Zhao 

& Qiu, 2013): 

1. Determine the control point with equation (2.34). 

2. The new center point 𝑿𝑀 can be determined with: 

𝑿𝑀𝑖+1
= 𝑿𝑀𝑖

+ (𝑿𝑀𝑖−1
− 𝑿𝑀𝑖

)
𝐺(𝑿𝑀𝑖

)

𝐺(𝑿𝑀𝑖
)−𝐺(𝑿𝑀𝑖−1

)
 .     (2.35) 

For the first iteration equation (2.35) is expressed as: 

𝑿𝑴 = 𝑿 + (𝑿𝑐 − 𝑿)
𝐺(𝑿)

𝐺(𝑿)−𝐺(𝑿𝑪)
.       (2.36) 
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Check the convergence. If the convergence is not achieved, repeat equation (2.35) for a new 

iteration. The convergence criterion is as follows: 

|
𝐺(𝑿𝑀𝑖+1

)

𝐺(𝑿)
| < 𝜖.         (2.37) 

 

This criterion with the maximum error e.g. 𝜖 = 0.001 guarantees that 𝑿𝑀 lies on the 

original limit state surface and does not deviate from the actual design point excessively.  

3. Select 2𝑛 + 1 experimental points depending on the center point 𝑿𝑀 and 𝑿𝒊 = 𝑿𝑴 ± 𝒇𝒊 𝝈𝒊, 

where 𝑓 = 1 since the region close to the design point gives the main contribution to the 

failure probability.  

4. Determine the response surface 𝐺(𝑿) given in (2.25). 

5. Apply FORM to determine the design point and calculate the reliability index 𝛽. 

6. Delete the old design point. The updated set of experimental points is the new design point 

as center point in combination with the previously selected experimental points (in total 

2𝑛 + 1 experimental points). Go to step 4 for a new iteration. 

7. Check convergence. 

8. If the convergence is not achieved, go to step 4.  

Convergence criteria: 

 The reliability indices of two subsequent iterations are almost the same: 

|
𝛽𝑖+1−𝛽𝑖

𝛽𝑖+1 | < 𝜖.            (2.38) 

 The LSF at the design point 𝑼∗ is close to zero: 

|
𝐺𝑖(𝑼∗)

𝐺(𝒙)
| < 𝜖.          (2.39) 

The maximum error is for example 𝜖 = 0.001.  
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2.5 Transformation of log-normal and correlated variables 
In order to perform a first order reliability analysis for correlated and non-normal variables they are 

transformed to their corresponding normal variables. Only the transformation of lognormal to 

normal distributed variables is presented in this thesis. Normal correlated variables can be 

transferred to normal uncorrelated variables using Cholesky triangulation (Sørensen, 2004).  

2.5.1 Transformation of lognormal variables  
The lognormal distribution function of variable 𝑋 with expected value 𝜇 and standard deviation 𝜎 is 

presented below (Sørensen, 2004): 

𝐹𝑋(𝑥) = Φ(
ln 𝑥−𝜇𝐿

𝜎𝐿
),          (2.40) 

where: 

𝜎𝐿 = √ln (
𝜎2

𝜇2 + 1) and 𝜇𝐿 = ln𝜇 −
1

2
 𝜎𝐿

2.      (2.41) 

The transformation of the lognormal to a normal distribution can be performed by: 

Φ(𝑈𝑖) = 𝐹𝑋𝑖
(𝑋𝑖),          (2.42) 

where:  𝑈𝑖~𝑁(0,1) is a standard normal variable and Φ(𝑈𝑖) is the corresponding cumulative density 

function.  

Φ(𝑢) = Φ(
ln 𝑥−𝜇𝐿

𝜎𝐿
),          (2.43) 

𝑥 = exp (σL 𝑢 + 𝜇𝐿).          (2.44) 

This leads to a normally distributed variable 𝑌 = ln (𝑋)~𝑁(𝜇𝐿 , 𝜎𝐿) with expected value 𝜇𝐿 and 

standard deviation 𝜎𝐿. The mean and the standard deviation can be found with equation (2.41). The 

transformation of the real 𝑥 space to the standard normal  𝑢 space can be obtained using equation 

(2.44). 

 

 

 

  

Figure 11. Relation between normal and log-normal distribution (De Vuyst , 2018). 
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2.5.2 Transformation of normal correlated variables 
Cholesky triangulation is used to transform the correlated normally distributed variables 𝑿 =

𝑋𝑖 , . . , 𝑋𝑛, with mean values 𝜇𝑋𝑖
, . . , 𝜇𝑋𝑛

, standard deviations 𝜎𝑋𝑖
, . . , 𝜎𝑋𝑛

 and correlation coefficient 

matrix 𝝆 = 𝜌𝑖𝑗, 𝑖, 𝑗 = 1. . 𝑛 to uncorrelated normally distributed variables. If the correlated variables 

are transformed from lognormal to normal the correlation coefficient matrix 𝝆 is transformed to 𝝆′ 

(difference between 𝝆 and 𝝆′ is negligible for small coefficients of variation). The correlation matrix 

coefficient matrix is defined as: 

𝝆 =

[
 
 
 

1 𝜌𝑋1𝑋2
⋯ 𝜌𝑋1𝑋𝑛

𝜌𝑋1𝑋2
1 ⋯ 𝜌𝑋2𝑋𝑛

⋮ ⋮ ⋱ ⋮
𝜌𝑋1𝑋𝑛

𝜌𝑋2𝑋𝑛
⋯ 1 ]

 
 
 

,        (2.45) 

where: 

𝜌𝑋1𝑋2
=

𝐶𝑜𝑣[𝑋1𝑋2]

𝜎𝑋1𝜎𝑋2

 and  𝐶𝑜𝑣[𝑋1𝑋2] = 𝐸[(𝑋1 − 𝜇𝑋1
)(𝑋2 − 𝜇𝑋2

)].   (2.46) 

The normal variables 𝑋𝑖  are transformed to the normalized variables 𝑌𝑖 =
𝑋𝑖−𝜇𝑋𝑖

𝜎𝑋𝑖

 to obtain the 

vector 𝒀. The vector 𝒀 is transformed to the normalized and uncorrelated variables 𝑼 with a lower 

triangular transformation matrix 𝑻 (i.e. 𝑇𝑖𝑗 = 0 for 𝑗 > 𝑖). The covariance matrix 𝑪𝒀 for 𝒀 can be 

written as (Sørensen, 2004): 

𝑪𝒀 = 𝐸[𝒀𝒀𝑇] = 𝐸[𝑻𝑼𝑼𝑇𝑻𝑇] = 𝑻𝐸[𝑼𝑼𝑇]𝑻𝑇 = 𝑻𝑻𝑇 =   𝝆.     (2.47) 

The matrix  𝑻 can be formed by using 𝑻𝑻𝑇 =   𝝆 which results in (Cholesky decomposition): 

𝑇11 = 1 

𝑇21 = 𝜌12 𝑇22 = √1 − 𝑇21
2  

𝑇31 = 𝜌13 𝑇32 =
𝜌23−𝑇21𝑇31

𝑇22
 𝑇33 = √1 − 𝑇31

2 − 𝑇32
2  

etc.            (2.48) 

The transformation from 𝑿 to 𝑼 is: 

𝑿 = 𝝁𝑿 + 𝑫𝑻𝒖,          (2.49) 

where 𝑫 is a diagonal matrix with the standard deviations in the diagonal and 𝑿~𝑁(𝝁𝑿, 𝑫𝑻) is a 

normally distributed variable with expected value 𝝁𝑿 and standard deviation 𝑫𝑻.   
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3 Review of safety formats for non-linear analysis 
In order to determine a safe structural resistance of a structural system by means of the global safety 

approach using a NLFE model, the Model Code 2010 (fib, 2012) suggest several safety formats. The 

Safety formats are divided into two groups, namely the global resistance methods and the partial 

safety method. 

3.1 General 
The general design condition is formulated in equation (1.2):  

𝐹𝑑 ≤ 𝑅𝑑,  

where 𝐹𝑑 is the design value of the external load and 𝑅𝑑 =
𝑅𝑚

𝛾𝑅  𝛾𝑅𝑑
 is the design resistance. The global 

resistance factor 𝛾𝑅 is dependent from the chosen Safety Format and the value of the model 

uncertainty is 𝛾𝑅𝑑 = 1.06 for models with low uncertainties. 

 

3.2 Global resistance methods 
The global resistance factor method (GRFm) and the estimation of a coefficient of variation of 

resistance method (ECOV) are the two global resistance methods according to the Model Code 2010 

(fib, 2012). Each global resistance method has a different way to determine the global resistance 

factor. 

3.2.1 Global resistance factor method (GRFm) 
This safety format determines the design resistance 𝑅𝑑 with a NLFE analysis with the input of mean 

GRF material parameters with the same (scaled) global resistance factor for each material (Appendix 

A.1). 

The design resistance is calculated from: 

𝑅𝑑 =
𝑟(𝑓𝑚

𝐺𝑅𝐹,… )

𝛾𝑅  𝛾𝑅𝑑
,           (3.1) 

where: 

𝑟(𝑓𝑚
𝐺𝑅𝐹 , … )  is the function 𝑟 calculate the resistance of the NLFE analysis with mean GRF 

   input material; 

𝛾𝑅 = 1.2  is the partial factor of the resistance (Appendix A.1); 

𝛾𝑅𝑑 = 1.06  is the model uncertainty. 

The input values for the NLFE analysis for steel and concrete can be calculated with following 

formulas (Appendix A.1): 

𝑓𝑦𝑚
𝐺𝑅𝐹 = 1.1 𝑓𝑦𝑘,          (3.2) 

𝑓𝑐𝑚
𝐺𝑅𝐹 = 0.85 𝑓𝑐𝑘.          (3.3) 
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3.2.2 Estimation of a coefficient of variation of resistance method (ECOV) 
Probabilistic studies indicate a log-normal distribution function (fib, 2012) for the resistance of  

reinforced concrete beams. The mean and characteristic resistance determine the two-parameter 

lognormal distribution. From this log-normal distribution the global resistance factor 𝛾𝑅 can be 

calculated. The design resistance is defined as: 

𝑅𝑑 =
𝑅𝑚

𝛾𝑅  𝛾𝑅𝑑
,           (3.4) 

where: 

𝑅𝑚   is the mean resistance obtained from  NLFE analysis with mean input  

   parameters; 

𝛾𝑅   is the global resistance factor; 

𝛾𝑅𝑑 = 1.06  is the model uncertainty factor.  

To determine the two-parameter lognormal distribution two non-linear finite element analyses 

should be performed resulting in:  

𝑅𝑚 = 𝑟(𝑓𝑚, … ),          (3.5) 

𝑅𝑘 = 𝑟(𝑓𝑘, … ).           (3.6) 

where: 

𝑟(𝑓𝑚, … )  represents a NLFE analysis with mean input parameters; 

𝑟(𝑓𝑘, … )  represents a NLFE analysis with characteristic input parameters. 

The coefficient of variation of the resistance can be calculated according to (Appendix A.2): 

 𝑉𝑅 =
1

1.65
ln (

𝑅𝑚

𝑅𝑘
).          (3.7) 

The global resistance factor is defined as (Appendix A.2):    

𝛾𝑅 =
𝑅𝑚

𝑅𝑑
= 𝑒𝛼𝑅 𝛽 𝑉𝑅 = 𝑒3.04 𝑉𝑅 ,         (3.8) 

where: 

𝛼𝑅 = 0.8  is the sensitivity factor (dominant strength parameter); 

𝛽𝑡 = 3.8  is the target reliability index; 

𝑉𝑅   is the coefficient of variation. 

The ECOV method has the advantage that the 𝛽 factor could be changed in order to fulfill the 

required safety level. The reliability of this method depends strongly on the selection of the relevant 

material parameters for the corresponding failure mode.  
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3.3  Partial factor method (PFm) 
The input for the material parameters in the NLFE analysis are the design values. The low material 

values can cause unrealistic redistribution of the internal forces. This may cause deviations in the 

structural response. The failure mode of the NLFE analysis could be different from the real failure 

mode. However case studies indicate that the partial factor method can be used as a safe solution 

(fib, 2012). The design values of the materials can be obtained with the partial safety factor 𝛾𝑀, 

which consist of a factor for a material property 𝛾𝑚  and a factor for the model uncertainty 𝛾𝑅𝑑: 

𝛾𝑀 = 𝛾𝑚 𝛾𝑅𝑑.           (3.9) 

Therefore no global resistance factor is needed for this safety format. The resistance 𝑅𝑑 of the NLFE 

analysis can be calculated according to: 

𝑅𝑑 = 𝑟(𝑓𝑑 , … ),           (3.10) 

where: 

𝑟(𝑓𝑑, … )  represents a NLFE analysis with design input parameters. 
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4 Three designs of a concrete frame based on ductility 
Three reinforced concrete portal frame designs will be described in this chapter. The three designs 

are used to determine the influence of ductile behavior and redistribution of internal forces on the 

structural safety. The structural resistance will be determined using a Level I reliability method on 

local and a global level. After that there will be determined if there is any additional capacity. This 

chapter describes the three portal frame designs in detail. The safety of the global structural 

resistance obtained by the safety formats will be assed in chapter 7 using a global level II reliability 

method. 

First several corner reinforcement detailing possibilities will be presented in chapter 4.1. Secondly 

chapter 4.2 presents the three portal frame designs i.e. the dimensions, corner reinforcement, the 

longitudinal reinforcement, the shear reinforcement, steel grade and the concrete strength class of 

the three reinforced concrete frames by means of a description and technical drawings. 

Subsequently in chapter 4.3 a level I reliability method is used to perform a local safety check to 

determine the structural resistance of the three portal frame designs according to the Eurocode 2 

(NEN-EN 1992 -1-1, 2011). In chapter 4.4 a Level I reliability method is used on global level to 

determine the structural resistance of the three portal frame designs according to the Model Code 

2010 (fib, 2012). In this way the failure modes predicted with a local and global safety approach can 

be compared. Finally in chapter 4.5 there will be determined if there is any additional capacity by 

comparing the structural resistance of a local and a global level approach.  

4.1 Reinforcement detailing in concrete frame corners 
The ductility of the portal frame determines the degree of redistribution of internal forces. The 

forming of plastic hinges in the plastic frame leads to more or less redistribution of the internal 

forces. In order to have a ductile frame behavior the bending moment resistance of the corner 

should be at least equal to the bending moment resistance of the members. Therefore an important 

part of the frame design is the detailing of the corners. The ductility of the corner is in fact the 

rotational capacity.  

The corner reinforcement is based on a strut and tie model. The corners of a reinforced concrete 

portal frame should be able to resist an opening and a closing moment. However in this thesis the 

loading is defined is such a way that corner B is subjected to an opening moment and corner D to a 

closing moment. The strut and tie models for corner B subjected to an opening moment and corner D 

subjected to a closing corner are presented in figure 12.  

 

 

Figure 12. Strut and tie model for an opening moment (left, corner B) and a closing moment (right, corner D) (Johansson, 
2000). 

Both corners B and D can be reinforced according to the longitudinal reinforcement detailing 

(without the inclined bar, which is only needed for opening moment) presented in figure 13 (a) and 

(b). Figure 13 (a) shows the detailing with spliced bars, where an inclined bar is used to resist an 
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opening moment. Figure 13 (b) is the conventional detailing of a corner subjected to a closing 

moment. The longitudinal reinforcement with spliced bars in figure 13 (a) is easier to place compared 

to the longitudinal reinforcement of figure 13 (b) (Johansson, 2000).  

 

Figure 13. Reinforcement detailing with spliced bars (inclined bar for opening moment) (a) and the conventional 
reinforcement detailing (b) (Johansson, 2000). 

The inclined bar (figure 13 (a)) should prevent the occurrence of a diagonal crack (figure 15 (a), crack 

1) as result from an opening moment. However the inclined bar is not as effective as was believed in 

the past and could be replaced by enough longitudinal reinforcement. (Johansson, 2000). This is 

shown in figure 14.  

 

 

 

 

 

 

 

 

The failure modes of the corners subjected to an opening and closing moment are presented in 

figure 15. A corner subjected to an opening moment is sensitive for secondary cracks. Additional 

radial stirrups can be added perpendicular to the expected secondary crack to increase the corner 

capacity (figure 15 (b)). 

 

Figure 15. Failure modes corner subjected to an opening moment without (a) and with radial stirrups (b) and corner 
subjected to a closing moment (c) (Johansson, 2000). 

Figure 14. Replacement inclined bar with enough longitudinal reinforcement to resist an opening moment (Johansson, 2000). 
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4.2  Portal Frame designs 
The linear elastic moment distribution as result from the external loading is given in figure 16. The 

reinforced detailing should be able to resist an opening and a closing moment. The opening moment 

in corner B is relatively low due to the external loading. No additional corner reinforcement, i.e. an 

inclined bar and/or radial stirrups, is necessary in corner B. In figure 14 is already shown that enough 

longitudinal reinforcement can replace the inclined bar. Therefore corner B (opening moment) and 

corner D (closing moment) of the three portal frame designs are equipped with the same 

reinforcement detailing as presented in figure 15 (a) and (c) for corner B and D, respectively.  

The largest linear elastic moments exist in C, D and E (figure 16) as results of the vertical loading 𝐹𝑣 in 

C and the horizontal loading 𝐹ℎ in B. If the plastic hinges show a ductile behavior the frame is capable 

to resist a larger additional vertical load compared to a frame with a more brittle behavior. Especially 

corner D is vulnerable to show a brittle behavior due to a large stress concentration.  

 

Figure 16. Linear elastic moment distribution resulting from Fv and Fh. 

The portal frame shows a ductile behavior if the plastic moment resistance of an abutting member is 

equal or smaller than the plastic moment resistance of the corner (Johansson, 2000). Due to the 

external loading, corner D is exposed to a closing moment. The failure mode of a corner subjected to 

a closing moment is mainly determined by a concrete compressive failure (Johansson, 2000). The 

ductility of corner D can be improved by placing additional longitudinal reinforcement or using a 

higher concrete strength class. No additional reinforcement is placed in the corners since this mainly 

improves the ductility of a corner subjected to an opening moment (corner B). This is hardly needed 

since the loading of the portal frame leads to a very small moment in corner B which is exposed to an 

opening moment.  

The safety of the safety formats will be validated for three portal frame designs. The ductility of the 

portal frame determines the degree of redistribution of the internal forces. Therefore the case study 

will focus on three designs with all a different ductile behavior: 

 Design 1: basic design 

 Design 2: higher longitudinal reinforcement ratio (compared to design 1) 

 Design 3: higher concrete strength class (compared to design 1) 
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4.2.1 Design 1 
Design 1 is similar to one of the reinforced portal frame designs used in the experiment (Seraj, 

Kotsovos, & Pavlovic, 1995) discussed in chapter 5. Design 1 is verified using a local safety approach 

according to the Eurocode 2 and is able to resist a vertical design load in C of 𝐹𝑣 = 18.8 kN and a 

horizontal design load in B of 𝐹ℎ = 15.7 kN.  

 

  

Figure 17. Design 1: longitudinal reinforcement diameter d=10 mm and concrete strength class: C30 (Blomfors, 2014). 

4.2.2 Design 2 
The longitudinal reinforcement ratio of design 2 is higher compared to design 1 and the shear 

reinforcement ratio is still the same as for design 1.  

 

Figure 18. Design 2: longitudinal reinforcement diameter d=11 mm and concrete strength class: C30. 
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4.2.3 Design 3 
Design 3 is made with a higher concrete class: C40 and the same longitudinal and shear 

reinforcement ratio is used as for design 1.  

 

Figure 19. Design 3: longitudinal reinforcement diameter d=10 mm and concrete strength class: C40. 

 

4.3 Level I reliability method: local design resistance (Eurocode 2) 
To perform a local safety evaluation a distinction between the several elements is necessary. 

Therefore the elements will be numbered from left to right. This leads to the following element 

numbering: the left column (AB), beam (BD) and the right column (DE) are labeled as element 1, 

element 2 and element 3, respectively. The element numbering is shown in figure 20. 

 

Figure 20. Element numbering 

The determination of the design resistance for the elements of the three portal frame designs can be 

found in Appendix C.1. Design 1 is made by Seraj et al. (1995) and is used in an experiment described 

in chapter 5. Design 1 is provided with only the minimum required shear reinforcement since the 

shear resistance 𝑉𝑅𝑑,𝐶  was found to be sufficient to resist the shear forces 𝑉𝐸 resulting from the 

external load 𝐹𝑣 and 𝐹ℎ. The shear resistance 𝑉𝑅𝑑,𝑆 based on the implemented shear reinforcement is 

much lower and therefore 𝑉𝐸 cannot be higher than 𝑉𝑅𝑑,𝐶  (Appendix C.1). The maximum shear 

resistance of design 2 and 3 is the same since there is not used more shear reinforcement. 

The general check for the shear resistance is defined as (NEN-EN 1992 -1-1, 2011): 

𝑉𝐸 < 𝑉𝑅𝑑,𝐶, no shear reinforcement is needed, otherwise:     (4.1) 

𝑉𝐸 < 𝑉𝑅𝑑,𝑆.           (4.2) 
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The bending moment resistance of the elements in design 2 and 3, is larger than the shear resistance 

(Appendix C.1.3.2). Therefore a shear failure mode determines the structural resistance of the 

elements of the three portal frame designs. For simplification all portal frames are assumed to have a 

local design resistance of: 

𝐹𝑣 = 18.8 kN,   𝐹ℎ = 15.7 kN.     

The governing local safety evaluation by means of a unity check (UC) for portal frame design 1, 2 and 

three is determined below. The unity check is defined as: 𝑈𝐶 =
𝑉𝐸

𝑉𝑅𝑑,𝐶
, when 𝑉𝑅𝑑,𝐶,𝑚𝑖𝑛 ≤ 𝑉𝑅𝑑,𝐶. 

Table 1. Local safety evaluation for the shear resistance without shear reinforcement. 

Shear resistance of elements without shear reinforcement  

Design 1 VRd,C,min (kN) VRd,C (kN) VE (kN) UC (-) 

Element 1 6.0 10.5 4.21 0.40 

Element 2 8.1 12.8 13.68 1.06 

Element 3 7.2 11.7 11.48 0.98 

Design 2  VRd,C,min (kN) VRd,C (kN) VE (kN) UC (-) 

Element 1 6.0 11.2 4.21 0.4 

Element 2 8.1 13.6 13.68 1.0 

Element 3 7.2 12.3 11.48 0.9 

Design 3 VRd,C,min (kN) VRd,C (kN) VE (kN) UC (-) 

Element 1 6.9 11.5 4.21 0.37 

Element 2 9.2 14.0 13.68 0.98 

Element 3 8.0 12.7 11.48 0.91 

 

4.3.1 Strut and tie model corner region 
The analyses of the separate elements leads to the conclusion that structural resistance of the portal 

frame is determined by the shear resistance of element 2. However a detailed analyses of the corner 

region should be performed to verify this conclusion. The external loading of the portal frame leads 

to a situation where corner D is exposed to a large closing moment. The resistance of the internal 

compressive strut in corner D should be determined in order to determine the bending moment 

capacity of the corner. This should be done based on a strut and tie model as shown in chapter 4.1. 

4.4 Level I reliability method: global design resistance (Model Code 2010) 
The NLFE models of portal frame design 1, 2 and 3 used to determine the design resistance according 

to the safety formats are presented in Appendix D. The model uncertainty is not needed to 

determine the global design resistance of the portal frame designs 1, 2 and 3 since the safety formats 

make use of a prescribed model uncertainty. 

All settings of the NLFE model are chosen according to the Guidelines for Non-Linear Finite Element 

analyses of Concrete Structures (Hendriks, de Boer, & Belletti, 2017). Therefore errors in the results 

due to incorrect user input is minimized. The material input parameters in the NLFE model for the 

three portal frame designs can be found in Appendix B.2. The safety formats and the NLFE analyses 

that have to be performed in order to obtain the global design resistance are discussed in chapter 3. 

The results of the global design resistance according to the safety formats are presented in table 2. 

The NLFE analyses and the corresponding load displacement diagrams to obtain the global design 

resistance are presented in the chapters 4.4.1 - 4.4.3. 
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Table 2. Results NLFE analyses and calculated global design resistance according to the safety formats. 

  Result NLFE analyses (kN) Resistance Safety Format (kN) 

Design 1 mean characteristic mean GRF design GRFm ECOV PFm 

Fv (kN) 28.80 25.30 26.00 19.20 17.08 20.40 19.20 

Fh (kN) 15.70 15.70 15.70 15.70 15.70 15.70 15.70 

Design 2 mean characteristic mean GRF design GRFm ECOV PFm 

Fv (kN) 33.10 30.60 35.60 28.00 24.63 26.09 28.00 

Fh (kN) 15.70 15.70 15.70 15.70 15.70 15.70 15.70 

Design 3 mean characteristic mean GRF design GRFm ECOV PFm 

Fv (kN) 28.30 25.20 27.60 21.30 18.34 20.58 21.30 

Fh (kN) 15.70 15.70 15.70 15.70 15.70 15.70 15.70 

 

The results of the safety formats with the highest probability of failure for each design are: ECOV, 

PFm and PFm for design 1, 2 and 3, respectively (table 2). The lowest probability of failure is obtained 

when the lowest design resistance is obtained. For each design the lowest global design resistance is 

obtained with the GRFm.  

4.4.1 Design 1: Global design resistance according to the safety formats 
In order to calculate the global design resistance according to the GRFm, the ECOV method and the 

PFm 4 NLFE analyses have been performed. The input material values for the NLFE analyses can be 

found in Appendix B.2. To obtain the global design resistance according to the GRFm a NLFE analysis 

with mean GRF material values has been performed. The global design resistance according to the 

ECOV method can be found after performing two NLFE analyses with mean and characteristic 

material values. The global design resistance of the PFm is found with a NLFE analyses with design 

material values. The load is incrementally applied in three phases (figure 21). The load-displacement 

diagrams of the NLFE analyses are shown in figure 22. 

Load phases: 

Phase 1: incrementally applied vertical load till 𝐹𝑣 = 18.8 kN; 

Phase 2: incrementally applied horizontal load till 𝐹ℎ = 15.7 kN and constant 𝐹𝑣 = 18.8 kN; 

Phase 3: incrementally applied vertical load till failure kN and constant 𝐹ℎ = 15.7 kN. 

 

 

 

 

Figure 21. The three applied load phases. 
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Figure 22. Load-displacement diagram for the NLFE analyses with mean, characteristic, mean GRF and design material 
values. The vertical load Fv and the vertical displacement C are shown. 

4.4.1.1 Global design resistance according to the GRFm 

The focus of this thesis is to determine if there is any additional vertical capacity of portal frame. The 

horizontal load 𝐹ℎ = 15.7 kN on the portal frame is therefore always the same and will not be 

reduced by a safety factor. The resistance of the portal frame obtained with a NLFE analysis with 

mean GRF material values is: 

𝐹𝑣 = 26.0 kN and 𝐹ℎ = 15.7 kN. 

This result is also presented in table 2. The definition of the total structural resistance made by 

Blomfors (2014) is used to calculate the global design resistance. The total structural resistance is 

defined as the sum of the vertical and horizontal load. This total structural resistance is not a real 

physical quantity since the loads are orthogonal. However this definition can be used to implement 

all safety in the vertical force. This is done since the horizontal load is assumed to be always present 

on the structure and will not be reduced by a safety factor. Therefore all safety is implemented in the 

vertical resistance of the structure. This leads to a lower global design resistance compared to a 

situation where only the vertical load is evaluated and is assumed to be a safe solution. The global 

design resistance according to the GRFm is determined with equation (3.1): 

𝑅𝑑 =
𝑟(𝑓𝑚

𝐺𝑅𝐹,… )

𝛾𝑅  𝛾𝑅𝑑
=

41.7

1.2∙1.06
= 32.78 kN.  

This leads to the following global design resistance according to the GRFm: 

𝐹𝑣 = 17.08 kN and 𝐹ℎ = 15.7 kN. 
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4.4.1.2 Global design resistance according to the ECOV method 

To determine the global design resistance according to the ECOV method two NLFE analyses with 

mean and characteristic material values have been performed. The resistance of a NLFE analysis with 

mean material values is: 

𝐹𝑣 = 28.8 kN and 𝐹ℎ = 15.7 kN. 

The resistance of a NLFE analysis with characteristic material values is: 

𝐹𝑣 = 25.3 kN and 𝐹ℎ = 15.7 kN. 

The coefficient of variation of the resistance can be calculated according to equation (3.7): 

 𝑉𝑅 =
1

1.65
ln (

𝑅𝑚

𝑅𝑘
) =

1

1.65
ln (

44.5

41.0
) = 0.0496. 

The global resistance factor is calculated with equation (3.8):    

𝛾𝑅 = 𝑒3.04 𝑉𝑅 = 1.16. 

The global design resistance according to the ECOV method is determined with equation (3.4): 

𝑅𝑑 =
𝑅𝑚

𝛾𝑅  𝛾𝑅𝑑
=

44.5

1.16∙1.06
= 36.1 kN. 

This leads to the following global design resistance according to the ECOV method: 

𝐹𝑣 = 20.40 kN and 𝐹ℎ = 15.7 kN. 

4.4.1.3 Global design resistance according to the PFm 

The global design resistance according to the PFm is obtained after performing a NLFE analysis with 

design material values. The global design resistance is equal to the resistance of a NLFE analysis with 

design material values is: 

𝐹𝑣 = 19.20 kN and 𝐹ℎ = 15.7 kN. 

4.4.1.4 Structural failure of the portal frames  

Several elements have to fail before the structural system fails since the portal frame is statically 

indeterminate.  First the concrete compressive strut in closing corner D (right corner) fails partially. In 

figure 23 the principle stresses in the concrete compressive strut are shown before partial failure. 

The principle stresses after partial failure of the concrete compressive strut is shown in figure 24. The 

failure of the concrete compressive strut is also visible in the load-displacement diagram presented in 

figure 26. In fact the softening behavior of the parabolic concrete compression diagram (figure 25) is 

used to redistribute the internal forces to the other parts of the portal frame. The middle part of the 

concrete compressive strut fails and the remaining concrete compressive stresses are redistributed in 

the lower and upper part of the concrete compressive strut.  The stiffness of corner D is decreasing 

due to the failing compressive strut. The internal forces are redistributed to other parts of the portal 

frame. Eventually three additional plastic hinges start to appear in locations A, C and E. Now a 

mechanism starts to develop and lead to the failure of the structural system.     
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Due to the softening behavior of the concrete in corner D the maximum moment capacity of corner 

D is reached. Composed line elements are included in the NLFE model. This elements can integrate 

the stresses over the height of the element to determine the moment distribution at a certain 

position. In figure 27 the moment distribution is shown directly after the failure of the concrete 

compressive strut (load-step 25). Figure 28 shows the moment distribution before failure of the 

structural system (load-step 29). The maximum moment capacity of corner D is reached after load-

step 25 and cannot increase any more. 

  

Figure 23. Principle stresses before 
partial failure of the compressive strut 
in corner D (load-step 24). 

Figure 24. Principle stresses after 
partial failure of the compressive 
strut in corner D (load-step 25). 
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Figure 25. Parabolic compression 
diagram concrete (Hendriks, de Boer, 
& Belletti, 2017). 

Figure 26. Load-displacement diagram for a NLFE analysis with mean material values. A lot of additional vertical 
displacement is shown after the partial failure of the compressive strut in corner D. Partial failure of the compressive strut 
occurs between load-step. 
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The failure of the structural system occors after the forming of plastic hinges at midspan C (load-step 

89) and the bottom of the left and the right column (load-step 113). The forming of the plastic hinges 

occurs after the yielding of the reinforcement. This is shown in figure 29 and 30. The partial failure of 

corner D and the forming of the plastic hinges at location A, C and E lead to a mechanism and 

eventually to the failure of the structural system at load-step 130.  

 

 

 

 

 

 

 

 

For the other NLFE analyses with characteristic, mean GRF and design material values a simular 

partially failure of corner D and the forming of plastic hinges at A, C and E has been found. 

  

Figure 28. Moment distribution composed line elements 
before the structural system failure (load-step 130). 

Figure 27. Moment distribution composed line 
elements after failure of the concrete compressive 
strut (load-step 25). 

Figure 29. Yielding of the steel reinforcement at 
midspan C (load-step 89). 

Figure 30. Yielding of the steel reinforcement at 
location A and E (load-step 113).   
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4.4.2 Design 2: Global design resistance according to the safety formats 
The load-displacement diagram of the NLFE analyses with mean, characteristic, mean GRF and design 

material values for design 2 are presented in figure 31. Design 2 has a larger longitudinal 

reinforcement ratio compared to design 1. Therefore the stiffness of the portal frame has increased, 

which results in less vertical displacement of point C, especially in the first two loading phases. A 

larger stiffness results in a more brittle behavior. The rotational capacity of the corner is decreasing 

when a higher concrete strength (which leads to a higher stiffness) is used.  

 

 

Figure 31. Load-displacement diagram for the NLFE analyses with mean, characteristic, mean GRF and design material 
values. The vertical load Fv and the vertical displacement C are shown. 

For example the load-displacement diagrams of a NLFE analysis with mean and mean GRF material 

values will be compared. The yield strength used in both NLFE analyses is more or less the same 

(Appendix B.2): 

𝑓𝑦,𝑚𝑒𝑎𝑛 = 560 MPa  and  𝑓𝑦,𝑚𝑒𝑎𝑛 𝐺𝑅𝐹 = 558 MPa. 

The difference in both NLFE analyses can be found in the used concrete compressive strength 

(Appendix B.2): 

𝑓𝑐,𝑚𝑒𝑎𝑛 = 38 MPa and  𝑓𝑐,𝑚𝑒𝑎𝑛 𝐺𝑅𝐹 = 25.5 MPa.  

The stiffness of the concrete for the portal frame with mean GRF material values is lower and 

therefore the rotational capacity of corner D is larger. Due to a larger rotational capacity a ductile 

failure of the portal frame is obtained and this even led to a higher structural resistance of the portal 

frame with mean GRF values. This example shows clearly that the rotational capacity of the corner is 

an important factor for a brittle or ductile behavior of the portal frame.  
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4.4.2.1 Global design resistance according to the GRFm 

The resistance of the portal frame obtained with a NLFE analysis with mean GRF material values is: 

𝐹𝑣 = 35.60 kN and 𝐹ℎ = 15.7 kN.  

The global design resistance according to the GRFm is determined with equation (3.1): 

𝑅𝑑 =
𝑟(𝑓𝑚

𝐺𝑅𝐹,… )

𝛾𝑅  𝛾𝑅𝑑
=

51.3

1.2∙1.06
= 40.33 kN.  

This leads to the following global design resistance according to the GRFm: 

𝐹𝑣 = 24.63 kN and 𝐹ℎ = 15.7 kN. 

4.4.2.2 Global design resistance according to the ECOV method 

To determine the global design resistance according to the ECOV method two NLFE analyses with 

mean and characteristic material values have been performed. The resistance of a NLFE analysis with 

mean material values is: 

𝐹𝑣 = 33.1 kN and 𝐹ℎ = 15.7 kN. 

The resistance of a NLFE analysis with characteristic material values is: 

𝐹𝑣 = 30.6 kN and 𝐹ℎ = 15.7 kN. 

The coefficient of variation of the resistance can be calculated according to equation (3.7): 

 𝑉𝑅 =
1

1.65
ln (

𝑅𝑚

𝑅𝑘
) =

1

1.65
ln (

48.8

46.3
) = 0.0319. 

The global resistance factor is calculated with equation (3.8):    

𝛾𝑅 = 𝑒3.04 𝑉𝑅 = 1.10. 

The global design resistance according to the ECOV method is determined with equation (3.4): 

𝑅𝑑 =
𝑅𝑚

𝛾𝑅  𝛾𝑅𝑑
=

48.8

1.10∙1.06
= 41.79 kN. 

This leads to the following global design resistance according to the ECOV method: 

𝐹𝑣 = 26.09 kN and 𝐹ℎ = 15.7 kN. 

4.4.2.3 Global design resistance according to the PFm 

The global design resistance according to the PFm is obtained after performing a NLFE analysis with 

design material values. The global design resistance is equal to the resistance of a NLFE analysis with 

design material values is: 

𝐹𝑣 = 28.0 kN and 𝐹ℎ = 15.7 kN. 

4.4.2.4 Structural failure of the portal frame  

The structural failure of portal frame design 2 is comparable to portal frame design 1. Only the NLFE 

analysis with mean material values leads to a brittle failure of corner D and the plastic hinges at 

location A, C and E are not fully formed.  
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4.4.3 Design 3: Global design resistance according to the safety formats 
The load-displacement diagram of the NLFE analyses with mean, characteristic, mean GRF and design 

material values for design 3 are presented in figure 32. Design 2 has a larger concrete compressive 

strength compared to design 1.  

 

Figure 32. Load-displacement diagram for the NLFE analyses with mean, characteristic, mean GRF and design material 
values. The vertical load Fv and the vertical displacement C are shown. 

4.4.3.1 Global design resistance according to the GRFm 

The resistance of the portal frame obtained with a NLFE analysis with mean GRF material values is: 

𝐹𝑣 = 27.6 kN and 𝐹ℎ = 15.7 kN.  

The global design resistance according to the GRFm is determined with equation (3.1): 

𝑅𝑑 =
𝑟(𝑓𝑚

𝐺𝑅𝐹,… )

𝛾𝑅  𝛾𝑅𝑑
=

43.3

1.2∙1.06
= 34.04 kN.  

This leads to the following global design resistance according to the GRFm: 

𝐹𝑣 = 18.34 kN and 𝐹ℎ = 15.7 kN. 

4.4.3.2 Global design resistance according to the ECOV method 

To determine the global design resistance according to the ECOV method two NLFE analyses with 

mean and characteristic material values have been performed. The resistance of a NLFE analysis with 

mean material values is: 

𝐹𝑣 = 28.3 kN and 𝐹ℎ = 15.7 kN. 

The resistance of a NLFE analysis with characteristic material values is: 

𝐹𝑣 = 25.2 kN and 𝐹ℎ = 15.7 kN. 

The coefficient of variation of the resistance can be calculated according to equation (3.7): 

 𝑉𝑅 =
1

1.65
ln (

𝑅𝑚

𝑅𝑘
) =

1

1.65
ln (

44.0

40.9
) = 0.0442. 
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The global resistance factor is calculated with equation (3.8):    

𝛾𝑅 = 𝑒3.04 𝑉𝑅 = 1.14. 

The global design resistance according to the ECOV method is determined with equation (3.4): 

𝑅𝑑 =
𝑅𝑚

𝛾𝑅  𝛾𝑅𝑑
=

44.0

1.14∙1.06
= 36.28 kN. 

This leads to the following global design resistance according to the ECOV method: 

𝐹𝑣 = 20.58 kN and 𝐹ℎ = 15.7 kN. 

4.4.3.3 Global design resistance according to the PFm 

The global design resistance according to the PFm is obtained after performing a NLFE analysis with 

design material values. The global design resistance is equal to the resistance of a NLFE analysis with 

design material values is: 

𝐹𝑣 = 21.3 kN and 𝐹ℎ = 15.7 kN. 

4.4.3.4 Structural failure of the portal frame  

The structural failure of portal frame design 3 is comparable to portal frame design 1. Only the NLFE 

analysis with mean material values leads to a brittle failure of corner D and the plastic hinges at 

location A, C and E are not fully formed.  

4.5 Additional load carrying capacity  
The maximum additional vertical capacity is the difference between the global and local design 

resistance and is presented in table 3. The question that remains is how safe is the global design 

resistance obtained with a safety format i.e. what is the reliability index 𝛽𝑅. This will be determined 

in chapter 7, for the safety formats which obtain the highest global design resistance and therefore 

lead to the lowest reliability index.  

Table 3. Additional vertical capacity: difference between the least conservative global and local design resistance using a 
level I reliability method. 

 Global design resistance (kN)   Local design resistance (kN) Additional vertical  capacity (kN) 

Design 1 Least conservative safety format (SF)  𝛽𝑅 Eurocode 2 (EC2) Difference SF and EC2 

Fv (kN) ECOV 20.4 ? 18.8 1.6 

Fh (kN)   15.7  15.7   

Design 2           

Fv (kN) PFm 28.0 ? 18.8 9.2 

Fh (kN)   15.7  15.7   

Design 3           

Fv (kN) PFm 21.3 ? 18.8 2.5 

Fh (kN)   15.7  15.7   

 

The safety formats that leads to the most conservative global design resistance is for al portal frame 

designs the same, namely the GRFm. This safety format leads to a conservative global design 

resistance and is for design 1 and 3 even lower than the local design resistance.   
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Table 4. Additional vertical capacity: difference between the most conservative global and local design resistance using a 
level I reliability method. 

 Global design resistance (kN) Local design resistance (kN) Additional vertical  capacity (kN) 

Design 1 Most conservative safety format (SF) Eurocode 2 (EC2) Difference SF and EC2 

Fv (kN) GRFm 17.1 18.8 -1.7 

Fh (kN)   15.7 15.7   

Design 2         

Fv (kN) GRFm 24.6 18.8 5.8 

Fh (kN)   15.7 15.7   

Design 3         

Fv (kN) GRFm 18.3 18.8 -0.5 

Fh (kN)   15.7 15.7   

 

A more realistic failure mode of the reinforced portal frame design for the defined load situation is a 

compressive strut failure in the frame corner due to a closing moment followed by the formation of 

three plastic hinges at location A, C and E (NLFE results indicates this failure mode). A detailed 

analysis of a strut and tie model according to Eurocode 2 of the concrete frame corner could lead to 

a lower local design resistance compared to the local element resistance. Therefore the additional 

vertical capacity could be higher.  
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5 Structural analysis of an experiment of a Portal Frame 
In order to perform a safety assessment of a statically indeterminate portal frame by means of NLFE 

analyses a real experiment (Seraj, Kotsovos, & Pavlovic, 1995) is used to determine the model 

uncertainty. The model uncertainty involves all uncertainties which are not included in the NLFE 

model.  

The portal frames tested in the experiment are more or less similar compared to the three portal 

frame designs described in chapter 4.2. Only the loading of the experimental frame is different from 

the loading described in chapter 1. Unfortunately there are no experimental results available of the 

three portal frame designs described in chapter 4.2 with the same loading procedure. However, the 

best way to quantify the model uncertainty is to use the results of the experiment. The model 

uncertainty can be determined after comparing the structural resistance of the experiment with the 

structural resistance of the NLFE model (of the experiment). 

5.1 Experiment by Seraj, Kotsovos & Pavlovic (1995) 

5.1.1 Frame details experiment 
Two portal frames were designed and tested by Seraj et al. (1995). The portal frames have fixed 

supports and corner connections. The frames were labelled as Portal Frame 1 (PF1) and Portal Frame 

2 (PF2). PF1 was designed according to the British Code 8110 (1985) and PF2 was designed according 

to the compressive-force path (CFP) method. 

 

  

Figure 33. Dimensional, cross-sectional and design details of the fixed Portal Frames: PF1 (a) and PF2 (b) (Seraj, Kotsovos, & 
Pavlovic, 1995). 
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The CFP method is a force path which follows the compressive side of the frame due to bending 

moments (figure 34 (c)). If the sign of the bending moment changes the force path goes from the 

lower side to the upper side of an element. This happens at the location where the moment is zero. 

The locations are called internal supports (IS1, IS2 and IS3 in figure 34 (c)). The design procedure of 

the CFP method is not discussed extensively in this thesis since only the load-carrying capacity for 

this frame design is important and the design method is of less importance. Design details of both 

frames can be found in figure 33. The fixed supports were made by post-tensioning the footings to 

the laboratory floor.  

Both frames are designed to resist a vertical force of 𝐹𝑣 = 24 kN and a horizontal force of 𝐹ℎ = 20 

kN. Linear elastic calculations are performed to design the frames using a local design approach. The 

linear elastic moment and shear force diagram are shown in figure 34.  

 

 

The design is made using a local design approach with mean material strength values in order to 

design the frame as close as possible to the real structural resistance. The used mean material values 

are given in Appendix B.3. Only nominal shear reinforcement is placed in PF1 since according to the 

British Code 8110 (1985) no shear reinforcement is required. In PF2 some additional shear 

reinforcement was needed in accordance with the CFP method for the sections F-F and G-G. The 

frames are also provided with the necessary amount of corner reinforcement at the beam-column 

intersection following standard design practice (no further details given).  

 

 

Figure 35. Corner reinforcement at the beam-column intersection (Seraj, Kotsovos, & Pavlovic, 1995). 

Figure 34. Linear elastic shear force diagram (a), moment diagram (b) and CFP of PF2 (c) (Seraj, Kotsovos, & Pavlovic, 1995). 
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The reinforcement applied in both corners (figure 35) is to prevent a diagonal crack which starts from 

the inside of the corner as a result of an opening moment (figure 36). The radial stirrups are place to 

prevent the secondary cracks as explained in chapter 4.1. The most critical corner is corner D which is 

loaded with a closing moment (figure 37). The inclined bar and the radial stirrups have no use for the 

closing moment at D and the opening moment stays very low at B. When a closing moment is applied 

to a corner the concrete needs to resist the compressive stresses in the compression strut (figure 37).  

 

 

 

 

 

 

 

 

2.1.2 Test setup 
The test setup is shown in figure 38 and the instrumentation in figure 39. The vertical force is applied 

with a tension jack at location C and the horizontal force with a compression jack at location B. The 

tension jack was connected to a steel framework which was pulled downward to apply the vertical 

load. The loads were recorded separately by a data logger. The vertical displacement of C is 

measured with LVDT 1 and the horizontal displacement of D is measured with LVDT 2. The strain is 

measured with strain gauges at location C, 𝜖4 and 𝜖11 (compression and tension), and at location D, 

𝜖3  and location E, 𝜖8. More instrumentation is used during the experiments but the results are not 

given by Seraj et al. (1995). 

 

  

 

 

 

 

 

 

 

 

 Figure 38. Test setup (Seraj, Kotsovos, & Pavlovic, 1995). 

Figure 37. Closing moment 
(Walraven & Fennis, Gewapend 
Beton (CTB2220), 2013). 

Figure 36. Opening moment 
(Walraven, Staafwerkmodellen als 
basis voor het detailleren van 
betonconstructies, 1988). 
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5.1.3 Structural resistance 
The theoretical loading procedure is as follows. First the vertical load 𝐹𝑣 = 24 kN is incrementally 

applied to the frame. After that the vertical load is kept constant (controlled by the data logger) and 

the horizontal load 𝐹ℎ is incrementally applied until failure.  

During the experiment the loads were recorded and the results will be described here. First the 

frames PF1 and PF2 were incrementally subjected to a vertical load of 23.72 kN and 23.69 kN, 

respectively (table 5). Maintaining the vertical loads constant in the loading machines, the frame is 

now incrementally subjected to a horizontal load. Failure of PF1 and PF2 happened at a horizontal 

load of 20 kN and 19.95 kN, respectively.  

The results are shown in table 5 and in Appendix E.1. After inspecting the results of the experiment. 

The strain at location C (𝜖11) has been increased after the vertical load was totally applied on the 

frame (table 5). The horizontal load should theoretically not produce any extra strain at C since the 

bending moment at C only depends on the vertical force.  

Table 5. Results PF1 and PF2 (Seraj, Kotsovos, & Pavlovic, 1995). 

 

It was concluded that the side sway of the frame leads to an additional vertical force on the frame. 

This is caused by the steel framework which was fixed after applying the vertical force 𝐹𝑣 = 24 kN. 

The side sway of the reinforced concrete frame due to the horizontal force 𝐹ℎ leads to elongation of 

the steel framework which causes the additional vertical force 𝐹𝑣,𝑠𝑤𝑎𝑦.  

 

The length of the steel frame is equal to OC after applying the vertical force (figure 40). The 

horizontal load on the frame leads to a side sway of the frame. To make this side sway possible the 

length of the steel frame connected to the tension jack must increase with OC’-OC (figure 40). Since 

the tension jack is displacement controlled i.e. steel frame is fixed after applying the vertical force, 

Figure 39. Instrumentation on the portal frame (Seraj, Kotsovos, & Pavlovic, 1995). 
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the elongation of the steel frame leads to an additional vertical force 𝐹𝑣,𝑠𝑤𝑎𝑦 on the structure. 

Theoretically there should also be a horizontal force component but this has a negligible effect the 

experimental results.  

 

Figure 40. Pull-down effect due to side sway of the portal frame (Seraj, Kotsovos, & Pavlovic, 1995). 

The measured strain at the midspan of C during failure can be translated using the bending moment 

resistance of a section at C (local level approach) to the applied total vertical load of 28.50 kN and 

33.68 kN for PF1 and PF2, respectively (table 5).  

 

According to the experimental results this additional vertical load due the side sway 𝐹𝑣,𝑠𝑤𝑎𝑦 is almost 

not present at initial sway, but after an applied horizontal force 𝐹ℎ = 15 kN, the additional force in 

more or less linear increasing from 0 to 𝐹𝑣,𝑠𝑤𝑎𝑦 = 28.50 − 23.72 = 4.78 kN and 𝐹𝑣,𝑠𝑤𝑎𝑦 = 33.68 −

23.69 = 10 kN for PF1 and PF2, respectively.  

 

The additional vertical load due to the sway effect is described here very accurately. This is needed to 

simulate the experiments in order to make an accurate assumption of the model uncertainty  

5.1.4 Deformational response 

 The results of the deformational response are shown in the graphs in Appendix E1, figure E1 

(a), (b), (c), (d), (e) and (f).  

 The results of the vertical and horizontal deformation, figure E1 (a) and (b), show a more 

ductile behavior for PF2 (more vertical and horizontal deformation).  

 The horizontal deformation of PF2 is much larger than the deformation of PF1. This leads to 

higher strains at midspan C, figure E1 (c) and (d), due to a higher pull down effect.  

 The steel strain in corner D is larger for PF1 than in PF2, indicating more rotational 

deformation in PF1 than in PF2 figure E1 (e).  

 At the inner side of the support at E, both frames PF1 and PF2 has reach the yield stress but 

only frame PF2 was exposed to plastic deformation (indicated by a horizontal upper bound). 

 It appears that the rotations at point D and E due to the moments are transferred more 

uniformly in the case of PF2. For PF1 the rotations are more concentrated in corner D.  

 The strain gauges 𝜖7 and 𝜖15 at support A show that a plastic hinges was formed in PF2. PF1 

nearly reaches its plastic capacity.  

5.1.5 Cracking process and failure mechanism 
The cracks formed near failure of PF1 and PF2 are shown in figures E2 till E7. The crack pattern at B 

and C for PF1 and PF2 are almost similar. The crack pattern near corner D and E is different for PF1 

and PF2. The cracking process and the failure mechanism is described below.  
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5.1.5.1 Vertical loading Fv 
The observations during the vertical loading are the same for both frames PF1 and PF2. The first 
flexural crack was observed at midspan C at a vertical load of Fv = 10 kN. The flexural cracks were 
gradually propagating upwards and the deepest fissure was found at the end of the vertical loading. 
Cracks also appeared in the corners B and D when the vertical load 𝐹𝑣 = 18 kN. 
 
5.1.5.2 Horizontal loading Fh and additional vertical loading due side sway Fv,sway 

In both frames flexural cracks were detected in corner D at a horizontal load 𝐹ℎ = 2 kN. When the 

horizontal load was increased more cracks appeared in the top right half of column DE. The depth of 

these cracks was less for PF1 than for PF2. The cracks for PF1 were concentrated near corner D in 

contrast with PF2 were the cracks were more spread over both tension sides of the column. When 

the failure load was almost reached cracks were visible at the bottom half of column AB in PF2. No 

cracks were detected in PF1.  

5.1.5.3 Failure mechanism 

The failure of PF1 was caused by excessive cracking at corner D. Wide diagonal cracks and spalling of 

the concrete lead to the collapse of this frame. A mechanism could not be formed since the corner D 

already failed.  

PF2 failed almost like a mechanism when the diagonal cracks at D became wide and eventually the 

tension strength of steel at the supports was reached.   

5.1.6 Conclusion experiment  
Both frames have the same amount of corner reinforcement but the additional amount of shear 

reinforcement in PF2 at the internal supports IS2 and IS3 (figure 34 (c)) leads to a more spreading 

crack pattern at the region near corner D. In contrary with PF1 where the cracks are concentrated at 

corner D. This stress concentration in PF1 leads to earlier failure of corner D which results in a brittle 

behavior. PF2 failed like a mechanism since corner D failed after the mechanism was formed.  

The main conclusion from this experiment is that corner D determines a ductile or brittle failure of 

the reinforced concrete frame. Ductile when the corner can resist the stress concentrations and is 

able to redistribute the internal forces and a brittle failure when corner D fails to redistribute the 

internal forces.  

 

5.2 Level I reliability method: local design resistance experiment Seraj et al. (1995) 
A local safety approach according to the Eurocode 2 (NEN-EN 1992 -1-1, 2011) is used to roughly 

indicate which and where a specific failure mode starts to develop. The local safety approach 

described in the Eurocode 2 is only meant to determine the design resistance of an element against a 

certain failure mode.  

The portal frame from the experiment of Seraj et al. (1995) is designed with mean material values. 

This leads to the mean resistance of the structure, which is able to resist a vertical load 𝐹𝑣 = 24 kN 

and a horizontal load of 𝐹ℎ = 20 kN. The design resistance of several sections is too low according to 

the Eurocode 2. The design can be improved with a higher reinforcement ratio, higher concrete class 

or adapting the dimensions of the frame. However the main focus of this study is to determine the 

real resistance of the structure. Since the local safety approach in Eurocode 2 is conservative it is 

unlikely that the portal frame cannot resist the vertical and horizontal force.  
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5.2.1 Determination of the internal forces (linear elastic calculation) 
To perform a local safety evaluation the linear elastic moments, shear- and normal forces should be 

determined. The linear elastic calculations are performed with the software package Matrix Frame 

5.3. The results are shown in figure 41.  

 

 

 

 

 

The elements will be numbered from left to right, which is shown in figure 20. The maximal internal 

forces for each element are summarized in table 6. 

Table 6. Internal forces. 

  ME (kNm) VE (kN) NE (kN) 

Element 1 7.1 5.4 6.6 

Element 2 12.8 17.4 14.6 

Element 3 12.8 14.6 17.4 

  

5.2.2 Determination of the resistance (ULS)  
The bending moment resistance, the shear resistance with and without shear reinforcement is 

determined in the ultimate limit state (ULS) for each element in the portal frame. The results are 

presented here and the calculations can be found in Appendix C2.  

5.2.2.1 Bending moment capacity (ULS) 

The bending moment capacity 𝑀𝑅𝑑  is determined in accordance to Eurocode 2 (NEN-EN 1992 -1-1, 

2011). The normal force in the portal frame elements leads to a higher bending moment capacity 

compared with an element without a normal force. However this positive effect of the normal force 

on the bending moment resistance is neglected, which is a conservative assumption.  The bending 

moment capacity for each element according to the Eurocode 2 is presented in table 7. In element 2 

and 3 a plastic hinge will develop since redistribution of forces is possible in a statically indeterminate 

portal frame.  

Table 7. Design bending moment capacity (EC2). 

EC2 MRd (kNm) ME (kNm) UC (-) 

Element 1 10.0 7.1 0.71 

Element 2 12.6 12.8 1.02 

Element 3 10.0 12.8 1.28 

 

  

Figure 41. Linear elastic moment, shear force and normal force diagram (kNm). 
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Since the frame is designed using mean material values the mean bending moment capacity 𝑀𝑅𝑚 of 

the elements is also calculated and given in table 8. However it is necessary to mention that the 

mean bending moment capacity does not lead to an intended reliability index of 𝛽𝑅 = 3.04. 

Table 8. Mean bending moment capacity. 

Mean MRm (kNm) ME (kNm) UC (-) 

Element 1 12.9 7.1 0.55 

Element 2 16.2 12.8 0.79 

Element 3 12.9 12.8 0.99 

 

5.2.2.2 Shear capacity (ULS) 

Elements without shear reinforcement 

The design value for the shear resistance 𝑉𝑅𝑑,𝐶  is determined according to the EC2 with the empirical 

formula (C.6). The calculations are given in appendix C.2.2.2.  The shear resistance for elements 

without shear reinforcement is dependent on the normal force in the specific element. Therefore 

each element has a different shear resistance. The design shear capacity 𝑉𝑅𝑑,𝐶  and the minimum 

shear capacity 𝑉𝑅𝑑,𝐶,𝑚𝑖𝑛 of the elements is presented in table 9. Element 2 and 3 need shear 

reinforcement according to EC2.  

Table 9. Design shear capacity without shear reinforcement (EC2). 

EC2 VRd,C,min (kN) VRd,C (kN) VE (kN) UC (-) 

Element 1 6.2 10.7 5.36 0.50 

Element 2 8.6 13.3 17.45 1.21 

Element 3 7.7 12.2 14.64 1.20 

 

The mean shear capacity 𝑉𝑅𝑚,𝐶 and the minimum mean shear resistance 𝑉𝑅𝑚,𝐶,𝑚𝑖𝑛  can be 

determined by using formula (C.6) and set the partial safety factor to 𝛾𝑐 = 1.0. The results are given 

in table 10. All unity checks are below zero. This indicates that no shear reinforcement is needed 

when there is no deviation from the mean value.  

Table 10. Mean shear capacity without shear reinforcement. 

Mean VRm,C,min (kN) VRm,C (kN) VE (kN) UC (-) 

Element 1 6.9 15.6 5.36 0.34 

Element 2 9.4 18.9 17.45 0.92 

Element 3 8.3 17.1 14.64 0.86 
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Elements with shear reinforcement 

For members with vertical shear reinforcement, the shear capacity is the smallest value of 𝑉𝑅𝑑,𝑆  

and 𝑉𝑅𝑑,𝑚𝑎𝑥, the maximum tensile force in the stirrups and the maximum compression force in the 

compression chord, respectively. The calculation according to the EC2 can be found in appendix 

C.2.2.2 and the results are presented in table 11. 

Table 11. Design shear resistance with shear reinforcement (EC2). 

EC2 VRd,S (kN) VRd,max (kN) VE (kN) UC (-) 

Element 1 7.0 33.4 5.36 0.76 

Element 2 8.6 42.0 17.45 2.02 

Element 3 7.0 35.0 14.64 2.08 

 

There is not enough shear reinforcement to prevent a shear failure according to the Eurocode 2.  

5.2.2.3 Plastic analysis (ULS) 

The Eurocode 2 (NEN-EN 1992 -1-1, 2011) is not exactly clear about the rotational capacity of a 

reinforced concrete corner connection. The Eurocode 2 does only mention some restrictions for the 

rotational capacity of a statically indeterminate beam. Therefore it is not clear if the corner is ductile 

enough to form a full plastic hinge. A plastic upper bound analysis for a portal frame which forms a 

plastic mechanism can be made but it is most likely that the corner D failed earlier which lead to a 

lower structural resistance.  

An attempt will be made to simulate the failure mode of the experiment, where a partially plastic 

mechanism was formed. The forming of a plastic mechanism is possible if there is enough rotational 

capacity for the corners of the frame to form a plastic hinge. Most likely the rotational capacity of 

corner D is too low and the corner will fail, which lead to a partially plastic hinge. First the structural 

resistance of a full plastic mechanism with plastic hinges in A, C, D and E will be determined. The 

horizontal force is assumed to be known 𝐹ℎ = 20 kN. An upper bound of the vertical collapse load 𝐹𝑣 

is determined with virtual work according to the following equation: 

∑𝐹 𝛿𝑢 = ∑𝑀𝑅  𝛿𝜃          (5.1) 

where: 

∑𝐹 𝛿𝑢   = 𝑀𝑅𝑚,1 𝜃 + 𝑀𝑅𝑚,2 (𝜃 + 𝜃) + 𝑀𝑅𝑚,3 (𝜃 + 𝜃) + 𝑀𝑅𝑚,3 𝜃   (5.1a) 

∑𝑀𝑅  𝛿𝜃  = 1.725 𝐹ℎ 𝜃 + 1.3715 𝐹𝑣  𝜃.       (5.1b) 

 

 

  

  

  

  

Figure 43. combined mechanism. Figure 42. Portal frame dimensions and load. 
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The mean bending moment resistance 𝑀𝑅𝑚 of the several elements is determined in chapter 3.2.1. 

Equations (5.1a) and (5.2b) are derived for the combined mechanism shown in figure 43. The 

structural resistance of this full plastic mechanism is: 

𝐹𝑣 = 20 kN,   𝐹ℎ = 38.5 kN. 

The structural resistance is much higher than obtained in the experiment of Seraj et al. (1995). This 

indicates that corner D is not able to form a full plastic hinge. The mean experimental structural 

resistance can be found in Appendix E.1: 

𝐹𝑣 = 20 kN,   𝐹ℎ = 31.0 kN. 

The experimental structural resistance can be used to calculate the real bending moment capacity of 

corner D with the virtual work equation (5.1). The maximum bending moment resistance of corner D 

is 0.7 𝑀𝑅𝑚,3. The real bending moment capacity of corner D strongly depends on the case. This effect 

is also described in chapter 5.3.3, where the failure of the NLFE model from the experiment of the 

reinforced portal frame is described. 

5.2.3 Conclusion local design resistance 
The local safety approach (the partial factor method) in the Eurocode 2, leads to a structural 

resistance which is much lower than the mean resistance, since design material values are used. This 

is needed to obtain a reliability level of at least 𝛽𝑅 = 3.04. The design shear resistance of the 

elements is too low and a shear failure should happen. However the experimental results in chapter 

5.1 show a totally different failure mode, namely the forming of a partially plastic mechanism in 

combination with the failure of corner D.  

A more realistic structural behavior is obtained when the partial safety factors are excluded from the 

analyses such that the mean resistance of the elements is obtained. Now the shear resistance of the 

elements is enough to form a partially plastic mechanism in combination with the failure of corner D.   
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5.3 NLFE analyses of experiment Seraj et al. (1995) 
The load carrying capacity of the reinforced concrete frame is modelled with the use of the non-

linear finite element software package: Diana FEA 10.1. The model is made based on the Guidelines 

for non-linear finite element analysis of reinforced concrete structures (Hendriks, de Boer, & Belletti, 

2017).  

5.3.1 Geometry and mesh 
The experiment of Seraj et al. (1995) is simulated with a NLFE model. The designs of the frames PF1 

and PF2 can be found in figure 33.The reinforced concrete frame is modelled with four plane stress 

elements over the height (4 e.o.h.) and embedded reinforcement. There is chosen for 4 e.o.h. while 

the Guidelines for NLFE analyses (Hendriks, de Boer, & Belletti, 2017) suggest that at least 6 e.o.h. 

should be used. The reason for this deviation is a reduction of the computational time and stress 

concentration in the corner D (Appendix D.4). 

There is chosen for a two dimensional model, since the frame is very slender and three dimensional 

effects can be neglected. The geometry, mesh and applied load is shown in the figures below. Only 

the geometry, mesh and applied load are shown for PF2. PF1 is modelled in a similar way only the 

reinforcement design is different (figure 33 and Appendix D.1.2.1). 

 

 

The boundary conditions are shown in figure 44. The columns have fixed translations in the x, y 

direction and a fixed rotation around the z-axis. Furthermore there is no additional corner 

reinforcement placed which is shown in figure 46 since the amount of reinforcement is unknown and 

the design helps only for an opening moment and the governing failure mode is due to a closing 

moment (right corner D).  

5.3.2 Non-linear finite element models 
The element types, constitutive models used in the non-linear finite element model are shown in 

appendix D.2. The material parameters used in the NLFE analysis are based on the values given by 

Seraj et al. (1995) and the unknown material parameters have been calculated according to the 

Model Code 2010 (fib, 2012). The material parameters are derived in Appendix B. The values used in 

the NLFE analysis are the mean values in Appendix B.3. The convergence norm applied in the model 

is a combination of a force and energy norm. The convergence tolerance for the force and energy 

norm is 0.01 and 0.001, respectively. 

 

 

Figure 45. Mesh concrete (plane stress 
elements). 

Figure 44. Geometry, reinforcement and 
applied load PF2. 

Figure 46. Mesh embedded 
reinforcement (bar elements). 
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5.3.2 Load paths for PF1 and PF2 
The loading path is constructed in such a manner that simulates the loading path described by the 

experiment (Seraj, Kotsovos, & Pavlovic, 1995). The additional load due to the sway effect of the 

frame is calculated by Seraj et al. (1995). For both portal frames tested during the experiment this 

additional vertical load is different due to different deformation. The additional vertical load starts 

when a horizontal load of 𝐹ℎ = 15 kN is applied. When this horizontal force is applied on the frame 

there is additional vertical deformation visible which is only explicable due to the additional vertical 

load (Appendix E1, figure E1 (a)). The additional vertical load 𝐹𝑣,𝑠𝑤𝑎𝑦 is calibrated in such a way that 

when a horizontal load 𝐹ℎ = 20 kN is applied on the model, the additional vertical load has reached 

the collapse load from the experiment.   

In the tables 12 and 13 the loading paths are shown. First the vertical load 𝐹𝑣 = 24 kN is applied with 

load increments of 10 percent. Secondly the horizontal load is applied till 𝐹ℎ = 15 kN. Finally the last 

load combination is applied which is a combination of the horizontal force 𝐹ℎ and 𝐹𝑣,𝑠𝑤𝑎𝑦. The last 

load combination is applied till failure of the structure.   

Table 12. Load path PF1. 

PF1         

Equilibrium Iteration Maximum number of iterations Load-steps Line search Load combination 

Regular NR 400 0.1(10) yes Fv = 24 kN 

Regular NR 800 0.05(15) yes Fh = 20 kN 

Secant (Quasi-Newton) 1000 0.05(4) 0.01(100) yes Fv = 20 kN 

    Till failure   Fh (sway) = 18 kN 

 

Table 13. Load path PF2. 

PF2         

Equilibrium Iteration Maximum number of iterations Load-steps Line search Load combination 

Regular NR 400 0.1(10) yes Fv = 24 kN 

Regular NR 800 0.05(15) yes Fh = 20 kN 

Secant (Quasi-Newton) 1000 0.05(4) 0.01(100) yes Fv = 20 kN 

    Till failure   Fh (sway) = 40 kN 

 

5.3.3 Structural failure of the portal frames  
The failure modes of the NLFE model of PF2 are presented below. PF1 have comparable failure 

modes. Several elements have to fail before the structural system fails since the portal frame is 

statically indeterminate.  First the concrete compressive strut in closing corner D (right corner) fails 

partially (figure 47 and 48). In fact the softening behavior of the parabolic concrete compression 

diagram (figure 49) is used to redistribute the internal forces to the other parts of the portal frame. 
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Due to the softening behavior of the concrete in corner D the maximum moment capacity of corner 

D is reached. Composed line elements are included in the NLFE model. This elements can integrate 

the stresses over the height of the element to determine the moment distribution at a certain 

position. In figure 51 the moment distribution is shown directly after the failure of the concrete 

compressive strut (load-step 22). Figure 50 shows the moment distribution before failure of the 

structural system (load-step 29). The moment capacity of corner D is reached after load-step 22 and 

cannot increase any more. 

  

The failure of the structural system occors after the forming of plastic hinges at midspan C (load-step 

23), the bottom of the left and the right column (load-step 29). The forming of the plastic hinges 

occurs after the yielding of the reinforcement. This is shown in figure 52 and 53. The partial failure of 

corner D and the forming of the plastic hinges at location A, C and E lead to a mechanism and 

eventually to the failure of the structural system. 

 

Figure 48. Principle stresses after partial 
failure concrete compressive strut corner D 
(load-step 21). 

Figure 47. Principle stresses before 
partial failure concrete compressive 
strut corner D (load-step 20). 

Figure 49. Parabolic compression 
diagram concrete (Hendriks, de Boer, 
& Belletti, 2017). 

Figure 50. Moment distribution composed line elements 
before the structural system failure (load-step 29). 

Figure 51. Moment distribution composed line elements after 
failure of the concrete compressive strut (load-step 22). 

Figure 53. Yielding of the steel reinforcement at location 
A and E (load-step 28). 

Figure 52. Yielding of the steel reinforcement at midspan 
C (load-step 23). 
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5.3.4 Comparison results NLFE analysis and experiment Seraj et al. (1995) 
The non-linear finite element models for PF1 and PF2 are different due to a different reinforcement 

design and other load paths. The load carrying capacity of the two non-linear finite element models 

and the load obtained from the experiment can be found in table 14 and 15.  

Table 14. Results NLFE analysis, experiment and model uncertainty for PF1. 

Model uncertainty PF1     

Direction F experiment  (N) F NLFE analysis (N) F(experiment) / F(NLFE analysis) 

Vertical 28500 28140 1.013 

Horizontal 20000 19600 1.020 

Mean 1.016 

 

Table 15. Results NLFE analysis, experiment and model uncertainty for PF2. 

Model uncertainty PF2     

Direction F experiment  (N) F NLFE analysis (N) F(experiment) / F(NLFE analysis) 

Vertical 33680 32400 1.040 

Horizontal 19950 19200 1.039 

Mean 1.039 

 

According to Engen (2017), the experimental outcome of different experiments can be compared to 

the NLFE analysis results when the same solution strategy is used. The following formula for the 

model uncertainty is applicable in this case: 

𝜃𝑚 =
1

𝑛
 ∑ (

𝑅𝑒𝑥𝑝

𝑅𝑁𝐿𝐹𝐸𝐴
)
𝑖

𝑛
𝑖           (2.1) 

where: 

𝑛 = 2  is the total number of different experiments; 

𝑅𝑒𝑥𝑝  experimental outcome; 

𝑅𝑁𝐿𝐹𝐸𝐴  results from NLFE analysis. 

 

For this case the model uncertainty for the total load is 𝜃𝑚 =
1

2
 (1.016 + 1.039) = 1.028 and the 

coefficient of variation 𝑉𝑚 = 0.01 based on the results of PF1 and PF2. These are not very realistic 

values since just two different experiments have been performed.  

The deformational response of the non-linear finite element model is compared with the 

experimental results in Appendix E.2. Also the measured strain of the reinforcement is compared 

with the strain found with NLFE analysis at several locations. The stiffness of the model is higher than 

the experimental results. This is the main reason for the differences in experimental and modelling 

results.  
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6 Uncertainties in the reinforced concrete frame designs 
The uncertainties in the reinforced concrete frame designs can be divided in physical uncertainties 

(chapter 6.1) and model uncertainties (chapter 6.2).  

6.1 Physical uncertainties 
The physical uncertainties can subsequently divided into: material uncertainties, geometrical 

uncertainties and loading uncertainties. 

6.1.1 Material uncertainties 
The concrete used in portal frame design 1 and 2 is concrete strength class C30. In portal frame 

design 3 the concrete strength class C40 is used. The steel grade is the same in the three portal frame 

designs.  

6.1.1.1 Concrete 

The concrete material parameters such as the compressive strength 𝑓𝑐, tensile strength 𝑓𝑐𝑡, the 
modulus of elasticity 𝐸𝑐, the fracture energy 𝐺𝑓 and the compressive fracture energy 𝐺𝑐 are based on 

experimental test. Therefore all concrete material can be represented by continuous stochastic 
variables with a certain distribution type. In this thesis the following concrete variables are used: 
𝑓𝑐 , 𝑓𝑐𝑡, 𝐸𝑐 , 𝐺𝑓 and 𝐺𝑐. All stochastic variables can be described with the following stochastic 

parameters: distribution type, mean value and coefficient of variation. All concrete variables are 
lognormal distributed since all values are higher than zero (unlike the normal distribution) and it is an 
accurate approach for low and high coefficients of variation (Torrent, 1978). The variables that have 
a large influence on the structural capacity are assumed to be stochastic. The most important 
stochastic variables are: 𝑓𝑐 , 𝑓𝑐𝑡, 𝐸𝑐 and 𝐺𝑓 (table 16 and 17). The compressive fracture energy 𝐺𝑐 is 

assumed to be fully dependent on the fracture energy 𝐺𝑓 according to equation (B.8) in Appendix 

B.1.  
 
Table 16. Stochastic properties concrete C30. 

Concrete C30           

Variable fc (MPa) fct (MPa) Ec (MPa) Gf (Nm/m2) Gc 

Mean   38 2.869 33550.6 140.5 35125.6 

Standard deviation 5.7 0.430 5703.6 28.1 - 

distribution LN LN LN LN 
Fully dependent on the fracture energy 
Model Code 2010 (fib, 2012) 

 

Table 17. Stochastic properties concrete C40. 

Concrete C40           

Variable fc (MPa) fct (MPa) Ec (MPa) Gf Gc 

Mean   48 3.509 36267.6 146.5 36634.2 

Standard deviation 7.2 0.526 6165.5 29.3 - 

distribution LN LN LN LN 
Fully dependent on the fracture energy 
Model Code 2010 (fib, 2012) 

 

The coefficient of variation is 𝑉𝑓𝑐 = 0.15  (Schlune (2011) and Pimentel et al. (2009)), 𝑉𝑓𝑐𝑡
= 0.15, 

𝑉𝐸𝑐
= 0.17 and 𝑉𝐺𝑓

= 0.2 (Strauss, Zimmermann, Lehký, Novák, & Kersner, 2014) for the concrete 

compressive strength, concrete tensile strength, modulus of elasticity and fracture energy, 

respectively. The coefficient of variation is an important factor in the safety analysis. In literature 
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many different values can be found. Selecting the right values for a certain case is of great 

importance to perform a valid safety assessment.  

According to the Model Code 2010 (fib, 2012), the material parameters of concrete can all be 

determined based on the compressive strength of concrete. The relations between the material 

parameters of concrete are shown in Appendix B.1. Full correlation 𝜌 = 1 is assumed between the 

concrete material parameters. The concrete compressive strength of the portal frame can be related 

to the other concrete material parameters and calculated with the formulas shown in Appendix B.1. 

This can be used to perform a safety assessment where full correlation is assumed. The correlation 

between the concrete variables will be discussed in chapter 6.1.1.3.  

6.1.1.2 Reinforcement steel 

The stochastic material properties of the reinforcement steel are given in table 18 and table 19. The 

yield strength of the longitudinal reinforcement 𝑓𝑦,𝑙 is assumed to be lognormally distributed with a 

coefficient of variation 𝑉𝑓𝑦,𝑙
= 0.05 according to Schlune (2011), Pimentel et al. (2014) and Faber & 

Vrouwenvelder (2001). The steel tensile strength 𝑓𝑡,𝑙 of the longitudinal reinforcement is assumed to 

be fully dependent on the yield strength according to equation (B.11) in Appendix B.2. The modulus 

of elasticity 𝐸𝑠 and the yield strain 𝜖𝑠𝑦 of the reinforcement steel is assumed to be deterministic.  

Table 18. Stochastic properties longitudinal reinforcement. 

Longitudinal reinforcement       

Variable fy,l (MPa) ft (MPa) Es (MPa) ϵsy 

Mean   560 680 200000 0.0028 

Standard deviation 28 - - - 

Distribution LN 
Fully dependent on yield strength 
fy,l  Model Code 2010 (fib, 2012) Deterministic Deterministic 

 

The shear reinforcement material values are assumed to be deterministic since the portal frame 

designs are not sensitive for a shear failure mode when a global safety approach is used (see chapter 

4.4).  

Table 19. Stochastic properties shear reinforcement. 

Shear reinforcement       

Variable fy,s (MPa) ft (MPa) Es (MPa) ϵsy 

Mean   460 510 200000 0.0023 

Standard deviation - - - - 

Distribution Determininistic Deterministic Deterministic Deterministic 

 

6.1.1.3 Correlation material properties 

All concrete material properties are dependent correlated variables. The correlation between the 

concrete compressive strength 𝑓𝑐, the tensile strength 𝑓𝑐𝑡 and the modulus of elasticity 𝐸𝑐 is 

determined by Octar et al. (1996), which are presented in table 20. In literature there is not much 

information about the correlation between 𝑓𝑐, 𝑓𝑐𝑡, 𝐸𝑐 and the concrete fracture energy 𝐺𝑓. 

Zimmermann et al. (2016) found the correlation factor 𝜌𝐺𝑓,𝑓𝑐𝑡
= 0.8  between the fracture energy 

and the tensile strength for concrete up to C30/37. The following correlation factors are determined 

by Keršner et al. (2007): 𝜌𝐺𝑓,𝑓𝑐 = 0.714 and 𝜌𝐺𝑓,𝐸𝑐
= 0.657 for the correlation between the fracture 
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energy with the concrete compressive strength and the modulus of elasticity. The longitudinal 

reinforcement is independent and uncorrelated from the concrete material properties (table 20). 

Table 20. Correlation matrix. 

Correlation Matrix         

Variable fc fct Ec Gf fy,l 

fc 1 0.932 0.772 0.714 0 

fct 0.932 1 0.684 0.8 0 

Ec 0.772 0.684 1 0.657 0 

Gf 0.714 0.8 0.657 1 0 

fy,l 0 0 0 0 1 

 

According to chapter 2.5 the correlated lognormal variables can be transformed to correlated normal 

distributed variables ln (𝑿) with mean 𝝁𝑳 and standard deviation 𝝈𝑳. After that the correlated 

normally distributed variables 𝑿 can be transformed to uncorrelated standard normally distributed 

variables 𝑼 using a transformation matrix 𝑻. The matrix 𝑻 is found using Cholesky decomposition of 

the correlation matrix 𝝆 (table 20). This is shown in Appendix F.1. The result of the transformation is 

given below: 

𝑿 = 𝝁𝑳 + 𝑫𝑻𝑼     

[
 
 
 
 
 
𝑋𝑓𝑐

𝑋𝑓𝑐𝑡

𝑋𝐸𝑐

𝑋𝐺𝑓

𝑋𝑓𝑦,𝑙]
 
 
 
 
 

=

[
 
 
 
 
𝜇𝐿,𝑓𝑐
𝜇𝐿,𝑓𝑐𝑡

𝜇𝐿,𝐸𝑐

𝜇𝐿,𝐺𝑓

𝜇𝐿,𝑓𝑦,𝑙]
 
 
 
 

+

[
 
 
 
 
 
 

𝑈𝑓𝑐  𝜎𝐿,𝑓𝑐

(0.932 𝑈𝑓𝑐 + 0.362 𝑈𝑓𝑐𝑡
) 𝜎𝐿,𝑓𝑐𝑡

(0.772 𝑈𝑓𝑐 − 0.098 𝑈𝑓𝑐𝑡
+ 0.628 𝑈𝐸𝑐

) 𝜎𝐿,𝐸𝑐

(0.714 𝑈𝑓𝑐 + 0.371 𝑈𝑓𝑐𝑡
+ 0.226 𝑈𝐸𝑐

+ 0.549 𝑈𝐺𝑓
) 𝜎𝐿,𝐺𝑓

 𝑈𝑓𝑦,𝑙
 𝜎𝐿,𝐹𝑦,𝑙 ]

 
 
 
 
 
 

   (6.1) 

 

However it is questionable if this approach of assuming five distribution functions with their 

corresponding correlation coefficients is a good approximation of the real material behavior. This is 

because the correlation coefficients between all concrete properties are hard to determine since the 

properties are determined separately.  

A better approach is the use of the relation between the concrete properties as described in the 

Model Code 2010 (fib, 2012) and which are presented in Appendix B.1. These relations assume full 

correlation between the concrete properties 𝜌 = 1 because all concrete parameters are depending 

on the concrete compressive strength. This assumption seems to be valid since the correlation 

coefficients as presented in table 20 are rather high. It is certainly better than assuming independent 

concrete properties, where 𝜌 = 0 or correlation values which are almost impossible to determine. 

The correlation matrix for fully dependent concrete properties is shown is table 21.  
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Table 21. Full correlation matrix. 

Full correlation Matrix       
 

  

Variable fc fct Ec Gf Gc fy,l 

fc 1 1 1 1 1 0 

fct 1 1 1 1 1 0 

Ec 1 1 1 1 1 0 

Gf 1 1 1 1 1 0 

Gc 1 1 1 1 1 0 

fy,l 0 0 0 0 0 1 

The same transformation from 𝑿 to 𝑼 according to chapter 2.5 can be done for full correlation 

between the concrete properties. The transformation is shown in Appendix F.2. 

𝑿 = 𝝁𝑳 + 𝑫𝑻𝑼     

[
 
 
 
 
 
 
𝑋𝑓𝑐

𝑋𝑓𝑐𝑡

𝑋𝐸𝑐

𝑋𝐺𝑓

𝑋𝐺𝑐

𝑋𝑓𝑦,𝑙]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝜇𝐿,𝑓𝑐
𝜇𝐿,𝑓𝑐𝑡

𝜇𝐿,𝐸𝑐

𝜇𝐿,𝐺𝑓

𝜇𝐿,𝐺𝑐

𝜇𝐿,𝑓𝑦,𝑙]
 
 
 
 
 

+

[
 
 
 
 
 
 

𝑈𝑓𝑐  𝜎𝐿,𝑓𝑐

𝑈𝑓𝑐  𝜎𝐿,𝑓𝑐𝑡

𝑈𝑓𝑐  𝜎𝐿,𝐸𝑐

𝑈𝑓𝑐  𝜎𝐿,𝐺𝑓

𝑈𝑓𝑐  𝜎𝐿,𝐺𝑐

𝑈𝑓𝑦,𝑙
 𝜎𝐿,𝑓𝑦,𝑙]

 
 
 
 
 
 

        (6.2) 

Equation (6.2) shows that all concrete properties are fully dependent on the concrete compressive 

strength. The only uncertainty here is the coefficient of variation 𝑉 = 𝜎/𝜇 of the other concrete 

properties, namely: the coefficient of variation of the concrete tensile strength 𝑉𝑓𝑐𝑡
, the modulus of 

elasticity 𝑉𝐸𝑐
, the fracture energy 𝑉𝐺𝑓

 and the compressive fracture energy 𝑉𝑔𝑐
. The value of the 

coefficient of variation is strongly dependent on the case and several different values are used in 

literature. 

Therefore the best way to deal with the correlated concrete properties is the use of the relations 

between the concrete properties as described in the Model Code 2010 (fib, 2012) and which are 

presented in Appendix B.1. The coefficients of variations: 𝑉𝑓𝑐𝑡
, 𝑉𝐸𝑐

, 𝑉𝐺𝑓
 and 𝑉𝑔𝑐

 are in fact hidden in 

the empirical formulas presented in Appendix B.1. All concrete properties are related to the concrete 

compressive strength 𝑓𝑐. So only the coefficient of variation of the concrete compressive strength 𝑉𝑓𝑐 

is needed to determine the value of all other concrete properties and the coefficient of variation of 

the steel yield strength 𝑉𝑓𝑦 to determine the steel properties.  
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6.1.1.4 Summary of stochastic material variables used in the safety assessment 

 

The chosen stochastic variables to represent the material uncertainties are the concrete compressive 

strength 𝑓𝑐 and the yield strength of the longitudinal reinforcement 𝑓𝑦,𝑙. All other concrete properties 

are related to the concrete compressive strength using the relations according to the Model Code 

2010 (fib, 2012) presented in Appendix B.1.  

Table 22.Stochastic properties concrete C30 used for the global safety assessment in chapter 7. 

Concrete C30           

Variable fc (MPa) fct (MPa) Ec (MPa) Gf Gc 

Mean   38 2.869 33550.6 140.5 35125.6 

Standard deviation 5.7 - - - - 

distribution LN 
Fully dependent on the compressive strength fc according to the 
Model Code 2010 (fib, 2012) 

 

Table 23. Stochastic properties concrete C40 used for the global safety assessment in chapter 7. 

Concrete C40           

Variable fc (MPa) fct (MPa) Ec (MPa) Gf Gc 

Mean   48 3.509 36267.6 146.5 36634.2 

Standard deviation 7.2 - - - - 

distribution LN 
Fully dependent on the compressive strength fc according to the 
Model Code 2010 (fib, 2012) 

 

The yield strength of the longitudinal reinforcement 𝑓𝑦,𝑙 is related to the steel tensile strength 𝑓𝑡 

using the relation according to the Model Code 2010 (fib, 2012) presented in Appendix B.3 equation 

(B.11). The stochastic steel material properties are the same as described in chapter 6.1.1.2.  

Table 24. Stochastic longitudinal reinforcement used for the global safety assessment in chapter 7. 

Longitudinal reinforcement       

Variable fy,l (MPa) ft (MPa) Es (MPa) ϵsy 

Mean   560 680 200000 0.0028 

Standard deviation 28 - - - 

Distribution LN 
Fully dependent on yield strength 
fy,l  Model Code 2010 (fib, 2012) Deterministic Deterministic 

  

6.1.2 Geometrical uncertainties 
The rotational capacity of corner D is mainly dependent on the used material values and the 

geometrical values. The material uncertainties are already discussed in chapter 6.1.1. The 

geometrical uncertainties will be discussed here. The most important geometrical uncertainty is the 

cross-sectional area of a longitudinal reinforcement bar 𝐴𝑠 since this parameter has a large influence 

on the rotational capacity of corner D. This uncertainty will be discussed in chapter 6.1.2.1. Other 

geometrical properties are of less importance and will be discussed shortly in chapter 6.1.2.2. 
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6.1.2.1 Corner reinforcement detailing  

The cross-sectional area of a longitudinal reinforcement bar is made with a certain accuracy. 

Therefore the cross-sectional area can be seen as a stochastic variable. Due to fabrication the 

coefficient of variation of the cross-sectional area of the longitudinal reinforcement is assumed to 

be 𝑉𝐴𝑠
= 0.02 (Faber & Vrouwenvelder, 2001). 

The corner reinforcement can be placed in several ways. A few examples can be found in chapter 4.1. 

The structural resistance of the corner is different for each reinforcement layout (Johansson, 2000). 

Also for corners with the same reinforcement layout a certain spread in the structural resistance and 

ductility will be obtained. Several corner reinforcement layouts were tested with a high and a low 

reinforcement ratio by Johansson (2000) and Plos (1994). The results are presented in figure 54. 

Figure 54 clearly indicates the uncertainty in the structural resistance and the ductility of a reinforced 

concrete corner.  

 

Figure 54. Load-displacement relations for the frame corners subjected to a closing moment: high reinforcement ratio (a) 
and low reinforcement ratio (b). Specimens RV1 to RV4 were tested by Plos (1994) and RV5 to RV8 by Johansson (2000). 

Normally this uncertainty is implemented in the model uncertainty since the reinforcement detailing 

is exactly known. However, in case of a reassessment of an existing structure this is not always 

known. Specific reinforcement detailing plans may be missing or the reinforcement is not placed 

exactly according to the reinforcement plan. For instance some information was missing for the two 

experiments used in chapter 5. The amount of longitudinal reinforcement and shear reinforcement 

was exactly known and shown on the drawings. However the corner reinforcement detailing was 

only shown on a picture (figure 35). In order to implement this uncertainty the cross-sectional area 

𝐴𝑠 of the longitudinal reinforcement is chosen to be a stochastic variable were a larger coefficient of 

variation 𝑉𝐴𝑠
= 0.10 is assumed because this parameter has a large influence on the rotational 

capacity of the corner. The cross-sectional area 𝐴𝑠 in fact represent the uncertainty in the 

reinforcement detailing. Especially in the region of corner D, where the influence of the tensile area 

𝐴𝑠 on the rotational capacity is rather high.  
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Summarizing the geometrical uncertainty of the longitudinal reinforcement will be implemented in 

the following two cases: 

 The cross sectional area of the longitudinal reinforcement due to fabrication processes is 

assumed to be a normally stochastic variable. The estimated coefficient of variation of the 

cross-sectional area of the longitudinal reinforcement is 𝑉𝐴𝑠 = 0.02 (Faber & Vrouwenvelder, 

2001).  

 The cross-sectional area of the longitudinal reinforcement is assumed to be normally 

distributed to implement the uncertainty of the reinforcement detailing. The coefficient of 

variation is assumed to be 𝑉𝐴𝑠 = 0.10. This uncertainty should reflect the uncertainty in the 

reinforcement detailing and therefore the uncertainty of the resistance and ductility of the 

corner.  

6.1.2.2 Geometrical properties 

The geometrical properties of the reinforced concrete frame are for instance: the height of the 

frame, the span of the frame, the element height, the element width, etc. The geometrical properties 

of the portal frame are chosen to be deterministic except for the cross-sectional area 𝐴𝑠 of the 

longitudinal reinforcement as explained in chapter 6.1.2.1. The cross-sectional area of the shear 

reinforcement is also chosen to be deterministic since this has a relatively low influence on the 

structural resistance of the portal frame.  

6.1.3 Loading uncertainties 
The safety of the reinforced concrete frame is only checked for the resistance side. The implicit limit 

state function is defined as (chapter 1.2.1): 

𝐺(𝑿) = 𝑅(𝑿) − 𝑅𝑆𝐹.         

where the load is defined as 𝑅𝑆𝐹, which is the structural resistance of the non-linear finite element 

model according to the corresponding safety format. Thus the load 𝑅𝑆𝐹 is a deterministic value in this 

approach and the safety of the structure is only estimated from the resistance side of the limit state.  

 

6.2 Model uncertainties 
The model uncertainties are derived in chapter 5.3.3 with the use of the results of the experiment 

from Seraj et al. (1995). This experiment is more or less comparable to the NLFE model that will be 

used for the global safety assessment of portal frame design 1, 2 and 3. The loading is slightly 

different but in absence of better experimental results this is the best approach to make an 

estimation of the model uncertainty. The model uncertainty is the ratio between the experimental 

results and the model results. The model uncertainty 𝜃𝑚 = 1.028 and the coefficient of variation 

𝑉𝑚 = 0.01 are determined in chapter 5.3.3 based on two experiments.  

The model uncertainty that will be used in the global safety assessment is 𝜃𝑚 = 1.0. This is a safe 

assumption since the results of the NLFE model is slightly lower compared to the experimental 

results. The coefficient of variation of the model uncertainty 𝑉𝑚 is neglected since the number of 

experiments is too low to make a justified assumption. However some of the effects which could 

results in a larger model uncertainty are described by the uncertainty in the corner reinforcement 

detailing. This uncertainty is implemented in chapter 6.1.2.1.  
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7 Safety assessment reinforced concrete frame designs  
 

7.1 Level II reliability method: local safety evaluation using explicit limit state 

functions 
A local safety evaluation of the portal frame designs is not performed since there is no analytical 

model available to take into account the rotational capacity and therefore the ductility of corner D. 

This should be incorporated in combination with the forming of the plastic hinges at location A, C and 

E. A practical approach would be to analyze the combined mechanism (chapter 5.2.2.3), where 

corner D is a partial plastic hinge. Still the amount of plasticity in corner D is case dependent and has 

to be assessed in an analytical model. Therefore only a global safety evaluation will be performed in 

chapter 7.2. 

 

7.2 Level II reliability method: global safety evaluation using an implicit limit state 

function 
The reliability level 𝛽𝑅 and the probability of failure of the safety formats can be determined with the 

following implicit limit state function (Blomfors, Engen, & Plos, Evaluation of safety formats for non-

linear finite element analyses of statically indeterminate concrete structures subjected to different 

load paths, 2016): 

𝐺(𝑿) = 𝑅(𝑿) − 𝑅𝑆𝐹          (7.1) 

where 𝑅(𝑿) is the total resistance of a NLFE analysis using stochastic variables 𝑿 and 𝑅𝑆𝐹 is the total 

resistance of the NLFE model according to the corresponding safety format 𝑅𝑆𝐹. The measure of the 

total structural resistance is chosen to be the sum of the vertical and horizontal load (Blomfors, 

Engen, & Plos, Evaluation of safety formats for non-linear finite element analyses of statically 

indeterminate concrete structures subjected to different load paths, 2016). The measure of the 

structural resistance is not a real physical quantity. However, this is not needed since this quantity is 

only used to determine a possible failure of the portal frame. The model uncertainty 𝜃𝑚 of the NLFE 

model is assumed to be 1.0 and therefore not implemented in the LSF. This implicit limit state 

function will be used to perform a global safety assessment of the design resistance according to the 

safety formats. For each portal frame design only the safety format with the highest probability of 

failure will be assed. If the reliability index 𝛽𝑅 ≥ 3.04, the other safety formats are assumed to be 

safe. For each design the safety format with the highest global design resistance, i.e. highest 

probability of failure, can be found in table 2 (chapter 4.4). 

The chosen stochastic variables to perform a safety assessment are based on the rotational capacity 

of corner D. The simplest way to vary the rotational capacity of the corner is to vary the yield 

strength 𝑓𝑦 of the steel and the concrete compressive strength 𝑓𝑐. Therefore Case 1 is defined as: a 

global safety assessment using only stochastic variables: 𝑓𝑦 and 𝑓𝑐. In fact case 1 is a global safety 

assessment where there is no geometrical uncertainty implemented in the reinforcement detailing. 

The advantage of two stochastic variables is that the implicit LSF function derived from the response 

surface can be plotted.  

A more advanced way to vary the rotational capacity is to implement to cross-sectional area 𝐴𝑠 of 

the longitudinal reinforcement as a stochastic variable. This leads to a global safety assessment 

where 𝑓𝑦, 𝑓𝑐 and 𝐴𝑠 are the chosen as stochastic variables to vary the rotational capacity of corner D. 

Two additional cases are defined. Case 2: rotational capacity corner D with geometrical uncertainty 
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in the reinforcement detailing due to fabrication of the longitudinal reinforcement. Case 3 is defined 

as the rotational capacity of corner D with uncertainty in the detailing of the longitudinal corner 

reinforcement. The difference between case 2 and case 3 is the coefficient of variation of the cross-

sectional area of the longitudinal reinforcement, which is: 𝑉𝐴𝑠
= 0.02 and 𝑉𝐴𝑠

= 0.10 for case 2 and 

3, respectively.  

7.2.1 Case 1: rotational capacity corner D without geometrical reinforcement uncertainty 
The simplest way to vary the rotational capacity of the corner is to vary the yield strength of the steel 

and the concrete compressive strength. The stochastic variables 𝑿 used in the global safety 

assessment of Case 1 are: 𝑓𝑦 and 𝑓𝑐.  

 

7.2.1.1 Design 1 

The safety format with the highest global design resistance, i.e. highest probability of failure, for 

design 1 is the ECOV method. The total global design resistance according to the ECOV method is: 

𝑅𝑆𝐹 = 36.1 kN. This leads to the following implicit LSF: 

𝐺(𝑿) = 𝑅(𝑿) − 36.1.          (7.2) 

The response surface to replace the actual LSF is constructed according to the approach of Zhao and 

Qiu (2013). This approach is discussed in chapter 2.4.2. A detailed calculation of the response surface 

is presented in Appendix G.1.1. The used python scripts to run the NLFE analyses and to process the 

results can be found in Appendix H. The structural response of the NLFE model shows a large spread 

in the results. Therefore there is chosen to use more sample points to create the response surface 

than 2𝑛 + 1 sample points recommended by Zhao and Qiu (2013). The center of gravity of all sample 

points is around the initial design point. Subsequently the design point 𝑿1,∗ is obtained with FORM. 

This first obtained design point 𝑿1,∗ is used in a NLFE analysis to determine 𝐺(𝑿1,∗). This results is 

added to update the response surface. Again the FORM is used to determine the second design point 

design point 𝑿2,∗. This procedure is repeated until convergence is achieved. The response surface is 

presented in the real and standard normal space in figure 55 and 56, respectively. The LSF function 

derived from the response surface is also presented in real and standard normal space in figures 59 

and 60, respectively. The real design point is denoted with 𝑿∗ and is presented below. The reliability 

index is 𝛽𝑅 = 5.26. So the safety formats can be used safely for design 1. 

 𝑿∗ = [
441.5
26.7

]  𝑼∗ = [
−4.73
−2.30

]  𝛽𝑅 = 5.26  𝛼𝑅 = [
0.900
0.437

]  

  Figure 55. Design 1: response surface (real space). Figure 56. Design 1: response surface (standard 
normal space). 
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The rotational capacity of corner D has a large influence on the structural resistance and therefore on 

the result of the LSF. The structural resistance of NLFE analyses with sample points close to each other 

can differ significantly. The spreading of the results is shown in figure 57 and 58.   

 

 

The shape of the response surface is only an approximation in the region of the used sample points 

i.e. the region near the design point. In this case all sample points are positioned in the third 

quadrant of a graph with standard normal variables (figure 60). Therefore the parts of the LSF in the 

other quadrants should be neglected. The only reason that this parts of the graph are presented in 

figure 60 is to show that sometimes a design point can be found in a region where hardly any sample 

point are used after performing the FORM. If this is the case additional sample points should be used 

near the approximated design point to create a more accurate response surface. 

 

 

 

  

Figure 60. Design 1: limit state function (standard 
normal space). The limit state function is only accurately 
described by sample points (not visible) in the third 
quadrant. 

Figure 59. Design 1: limit state function (real space). 
Previous design point lies below the new obtained 
design point. 

Figure 57. Design 1: response surface (real space). The 
spreading of the results of the implicit LSF is clearly 
visible. 

Figure 58. Design 1: response surface (real space). The 
spreading of the results of the implicit LSF is clearly 
visible. 
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7.2.1.2 Design 2 

The safety format with the highest global design resistance, i.e. highest probability of failure, for 

design 2 is the PFm. The total global design resistance according to the PFm is: 𝑅𝑆𝐹 = 43.7 kN. This 

leads to the following implicit LSF: 

𝐺(𝑿) = 𝑅(𝑿) − 43.7.          (7.3) 

The initital design point is found using the straight line appoach by Zhoa and Qiu (2013). This 

approach can be found in Appendix G.1.2. Around the initial design point four sets of sample points 

with 𝑓 = 0.5; 1.0; 1.5; 2.0 are used to determine the response surface. The sample points are shown 

in figure 61 and 63.  

 

 

After applying the FORM a design point is found in the region, which is not described by the chosen 

sample points. This is shown in figure 63 and 64.  

 

 

 

  

Figure 62. Design 2: response surface (standard normal 
space). 

Figure 61. Design 2: response surface (real space). 

Figure 63. Design 2: limit state function (real space). 
Design point obtained with the FORM lies in a region, 
which is not described accurately by the sample points. 

Figure 64. Design 2: limit state function (standard normal 
space). The limit state function is only accurately described 
by sample points (not visible) in the third quadrant. 
Therefore the obtained design point is not realistic. 
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Additional sample points with a high concrete compressive strength coordinates are added to have a 

better approximation of the response surface in the region of the added sample points. Otherwise an 

incorrect design point is obtained. The updated response surface is presented in figures 65 till 68.  

 

 

The rotational capacity of corner D has a large influence on the structural resistance and therefore on 

the result of the LSF. The structural resistance of NLFE analyses with sample points close to each 

other can differ significantly. The spreading of the results is shown in figure 67 and 68.   

  

Figure 65. Design 2: updated response surface (real 
space) in order to find the real design point.  

Figure 66. Design 2: updated response surface (standard 
normal space) in order to find the real design point. 

Figure 68. Design 2: updated response surface (real space). 
The spreading of the results of the implicit LSF is clearly 
visible. 

 

Figure 67. Design 2: updated response surface (real 
space). The spreading of the results of the implicit LSF is 
clearly visible. 
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The updated LSF is presented in figure 69 and 70. The obtained design point, reliability index and 

sensitivity factors are presented below.  

𝑼∗ = [
−5.29
−2.25

]   𝑿∗ = [
429.3
26.9

]  𝛽𝑅 = 5.75  𝛼𝑅 = [
0.920
0.391

] 

 

 

 

 

 

 

 

 

  

Figure 70. Design 2: updated limit state function (standard 
normal space).  

Figure 69. Design 2: updated limit state function (real 
space). Previous design point lies below the new obtained 
design point. 
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7.2.1.3 Design 3 

The safety format with the highest global design resistance, i.e. highest probability of failure, for 

design 3 is the PFm. The total global design resistance according to the PFm is: 𝑅𝑆𝐹 = 37.0 kN. This 

leads to the following implicit LSF: 

𝐺(𝑿) = 𝑅(𝑿) − 37.0.          (7.4) 

The obtained response surface in the real and in the standard normal space are shown below.  

 

 

 

 

The higher strength class C40 used in design 3 leads to a portal frame, which is very sensitive for a 

ductile or a brittle failure depending on the rotational capacity of corner D. This results in a large 

spreading of the obtained structural resistance for sample points close to each other. Therefore the 

fit of the response surface is not very accurate which is shown in figure 73 and 74.  

 

 

Figure 71. Design 3: response surface (real space). Figure 72. Design 3: response surface (standard normal 
space). 

Figure 74. Design 3: response surface (standard normal 
space). A lot of spreading in sample points close to each 
other results in a bad fit of the response surface. 

Figure 73. Design 3: response surface (real space). A lot of 
spreading in sample points close to each other results in a 
bad fit of the response surface.  
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However after adding a lot of sample points and using the FORM method a good approximation of 

the real design point can be made. The real design point 𝑿∗  is given below. The reliability index is 

𝛽𝑅 = 5.37 so therefore the safety formats can safely be used for design 3.  

𝑼∗ = [
−4.71
−2.57

]   𝑿∗ = [
442.0
32.35

]  𝛽𝑅 = 5.37  𝛼𝑅 = [
0.878
0.479

] 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 75. Design 3: limit state function (real space). 
Previous design point lies below the new obtained 
design point. 

Figure 76. Design 3: limit state function (standard 
normal space).  
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7.2.1.4 Discussion used method by Zhao and Qiu (2013) to obtain the response surface 

Various issues that arise in obtaining a response surface according to the method proposed by Zhao 

and Qiu (2013) are discussed on the basis of a few examples.  

Obtaining the control point 𝑿𝑐 

Creating a response surface, for a reinforced concrete portal frame, with the use of the control point 

(Zhao & Qiu, 2013) is not always a useful approach in order to reduce the number of NLFE analyses 

needed to find the real design point. Normally the control point is found for a problem with 𝑛 

stochastic variables by performing 𝑛 + 1 NLFE analyses. The mean material values are used in the 

first NLFE analysis and for the 𝑛 other NLFE analyses for one of the stochastic variables a low strength 

value is used. This done by subtracting 𝑓 times the standard deviation from one of the stochastic 

variables. For the other variables the mean values are used. Mostly 𝑓 = 3 is used because it should 

be close to the real design point. However the rotational capacity can be influenced positively when 

a lower concrete compressive strength is used because the Young’s modulus of concrete will be 

lower according to the relation (B.9). The concrete is able to resist a larger deformation and since the 

mean steel values are also used in this analysis the structural resistance could be higher than a NLFE 

analysis with mean material values. This leads to an unrealistic control point and new NLFE analyses 

should be performed with a larger 𝑓 where the structural resistance of the portal frame is lower than 

the load found with mean material values.  

For portal frame design 1 the factor 𝑓 = 3 could be used without any problems. For design 2 and 3 

this factor led to an unrealistic control point. This will be shown in the examples below. 

 Design 2:  

 

The results of the first three NLFE analyses to obtain the control point with 𝑓 = 3 are 

presented below: 

resistance NLFE analysis with 𝑿̅ = [
𝑓𝑦,𝑚𝑒𝑎𝑛

𝑓𝑐,𝑚𝑒𝑎𝑛
] = [

560
38

]: 𝐹𝑣 = 37.1 and  𝐹ℎ = 15.7; 

resistance NLFE analysis with 𝑿 = [
𝑓𝑦,𝑚𝑒𝑎𝑛 − 𝑓𝜎𝑓𝑦

𝑓𝑐,𝑚𝑒𝑎𝑛
]: 𝐹𝑣 = 31.4 and  𝐹ℎ = 15.7; 

resistance NLFE analysis with 𝑿 = [
𝑓𝑦,𝑚𝑒𝑎𝑛

𝑓𝑐,𝑚𝑒𝑎𝑛 − 𝑓𝜎𝑓𝑐

]: 𝐹𝑣 = 37.6 and  𝐹ℎ = 15.7.  

 

The resistance of the NLFE analysis with low concrete material values is actually higher than 

the resistance of a NLFE analysis with mean material values due to a ductile and brittle 

failure mode, respectively. The low concrete values (lower stiffness) has a positive influence 

on the rotational capacity of corner D.  If these results are used to calculate the control point 

with equation (2.34) the following result is obtained: 𝑿𝑐 = [
𝑓𝑦
𝑓𝑐

] = [
423.7
42.3

]. The mean value 

of the concrete compressive strength is 𝑓𝑐,𝑚𝑒𝑎𝑛 = 38 MPa. The direction in which the initial 

design point is being sought is on a straight line between 𝑿̅ and 𝑿𝑐. Thus the initial design 

point is being sought in the direction of concrete values higher than the mean strength. This 

could be the case but some experience with performing NLFE analyses for this problem led to 

the conclusion that this approach deviates significantly from the real design point.  Therefore 

a larger factor 𝑓 = 4.5 is used to obtain the control point.  
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 Design 3: 

 

For design 3 a more realistic control point 𝑿𝑐 can be found when the factor 𝑓 = 3 is used. 

However using this control point led to divergence of the obtained first iteration point 𝑿𝑴𝟏
 

according to equation (2.35). This is shown on the basis of the results of 4 NLFE analyses that 

are used to obtain the first iteration point 𝑿𝑴𝟏
: 

resistance NLFE analysis with 𝑿̅ = [
𝑓𝑦,𝑚𝑒𝑎𝑛

𝑓𝑐,𝑚𝑒𝑎𝑛
] = [

560
48

]: 𝐹𝑣 = 28.3 and  𝐹ℎ = 15.7; 

resistance NLFE analysis with 𝑿 = [
𝑓𝑦,𝑚𝑒𝑎𝑛 − 𝑓𝜎𝑓𝑦

𝑓𝑐,𝑚𝑒𝑎𝑛
]: 𝐹𝑣 = 26.7 and  𝐹ℎ = 15.7; 

resistance NLFE analysis with 𝑿 = [
𝑓𝑦,𝑚𝑒𝑎𝑛

𝑓𝑐,𝑚𝑒𝑎𝑛 − 𝑓𝜎𝑓𝑐

]: 𝐹𝑣 = 26.6 and  𝐹ℎ = 15.7; 

resistance NLFE analysis with 𝑿𝑐 = [
502.6
29.9

]:  𝐹𝑣 = 26.7 and  𝐹ℎ = 15.7. 

 

According to equation (2.35) the first iteration point should be 𝑿𝑴𝟏
= [

308.8
−31.0

]. To avoid this 

divergence a factor 𝑓 = 4 is used to find the initial design point.  

 

The influence of the factor 𝑓 on the initial design point 

Another problem with the control point is to estimate the factor 𝑓 because this factor has an 

influence on the weight factors 𝑤𝑖 and therefore the direction of the straight line between 𝑿̅ and 𝑿𝑐 

that is used to obtain the initial design point. A wrongly chosen factor 𝑓 could lead to a large 

deviation from the initial to the real design point. An example of this can be found in figure 77. A lot 

of additional NLFE analyses are needed to obtain the real design point. 

 

 

 

 

 

 

 

 

 

Exact calculation of the response surface not possible 

The exact calculation of the coefficients 𝒃 of the response surface by using 2𝑛 + 1 NLFE analyses 

suggested by Zhao & Qiu (2013) does not lead to correct results since there is a relatively large 

spreading of the NLFE results. This spreading is mainly caused due to difference in rotational capacity 

for the several combinations of used material values in the NLFE analyses. Therefore it is better to 

use more sample points and make use of a least squares approach to fit a response surface to the 

results. Also the initial founded design point can deviate a lot from the real design point due a badly 

chosen 𝑓-factor. This results in wrongly chosen 2𝑛 + 1 points to create the response surface. 

Figure 77. Design 2: deviation initial design point from real design point due to a wrongly chosen f-factor. 
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7.2.2 Case 2: rotational capacity corner D with reinforcement uncertainty due to fabrication 
A more advanced way to vary the rotational capacity of the corner is to vary the yield strength of the 

steel, the concrete compressive strength and the cross-sectional area of the longitudinal 

reinforcement. The stochastic variables 𝑿 used in the global safety assessment of Case 1 are: 𝑓𝑦, 𝑓𝑐 

and 𝐴𝑠. The coefficient of variation used for the cross-sectional area of the longitudinal 

reinforcement is 𝑉𝐴𝑠
= 0.02 for case 2. The results are presented below. The calculations can be 

found in Appendix G.2. 

7.2.2.1 Design 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑼∗ = [
−4.09
−0.93
−3.85

]   𝑿∗ = [
455.96
32.7
217.5

]  𝛽𝑅 = 5.69  𝛼𝑅 = [
0.718
0.163
0.677

] 

7.2.2.2 Design 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑼∗ = [
−3.615
−2.259
−2.736

]  𝑿∗ = [
466.9
26.8
269.5

]  𝛽𝑅 = 5.07  𝛼𝑅 = [
0.714
0.446
0.540

] 

Figure 78. Design 1: sample points 3D. Figure 79. Design 1: sample points 2D. 

Figure 80. Design 2: sample points 3D. Figure 81. Design 2: sample points 2D. 
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7.2.2.3 Design 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑼∗ = [
−4.191
−1.571
−4.015

]  𝑿∗ = [
453.6
37.6
216.7

]  𝛽𝑅 = 6.01  𝛼𝑅 = [
0.697
0.261
0.668

] 

  

Figure 82. Design 3: sample points 3D. Figure 83. Design 3: sample points 2D. 
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7.2.3 Case 3: rotational capacity corner D with uncertainty in the reinforcement detailing 
A more advanced way to vary the rotational capacity of the corner is to vary the yield strength of the 

steel, the concrete compressive strength and the cross-sectional area of the longitudinal 

reinforcement. The stochastic variables 𝑿 used in the global safety assessment of Case 1 are: 𝑓𝑦, 𝑓𝑐 

and 𝐴𝑠. The coefficient of variation used for the cross-sectional area of the longitudinal 

reinforcement is 𝑉𝐴𝑠
= 0.10 for case 3. The results are presented below. The calculations can be 

found in Appendix G.3. 

7.2.3.1 Design 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑼∗ = [
−0.97
−0.43
−1.94

]   𝑿∗ = [
532.9
35.2
189.9

]  𝛽𝑅 = 2.21  𝛼𝑅 = [
0.438
0.195
0.878

] 

7.2.3.2 Design 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑼∗ = [
−0.6418
0.000596
−2.0851

]  𝑿∗ = [
541.6
37.6
225.7

]  𝛽𝑅 = 2.18  𝛼𝑅 = [
0.294

−0.00027
0.956

] 

Figure 84. Design 1: sample points 3D. Figure 85. Design 1: sample points 2D. 

Figure 86. Design 2: sample points 3D. Figure 87. Design 2: sample points 2D. 
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7.2.3.3 Design 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑼∗ = [
−0.79
−0.30
−2.34

]   𝑿∗ = [
537.7
45.4
180.5

]  𝛽𝑅 = 2.49  𝛼𝑅 = [
0.317
0.120
0.941

] 

  

Figure 88. Design 3: sample points 3D. Figure 89. Design 3: sample points 2D. 
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7.2.4 Summary of the results obtained from the global safety assessment 
The results of the global safety assessment are presented below. The conclusions are presented in 

chapter 9.1. 

Table 25. Results obtained from the global safety assessment. The design point in the real space, the sensitivity factors and 
the design point in the standard normal space.  

Portal frame designs Case 1: fy and fc   Case 2: fy, fc and As with Vas=0.02 Case 3: fy, fc and As with Vas=0.10 

            

Portal frame designs Case 1     Case 2       Case 3       

  βR fy (Mpa) fc (Mpa) βR fy (Mpa) fc (Mpa) As (mm2) βR fy (Mpa) fc (Mpa) As (mm2) 

Design 1 5.26 441.48 26.67 5.69 455.96 32.72 217.47 2.21 532.89 35.24 189.88 

Design 2 5.75 429.29 26.87 5.07 466.87 26.83 269.50 2.18 541.65 37.58 225.65 

Design 3 5.37 442.00 32.35 6.01 453.64 37.55 216.70 2.49 537.73 45.40 180.53 

            

Portal frame designs Case 1     Case 2       Case 3       

  βR α fy α fc βR α fy α fc α As βR α fy α fc α As 

Design 1 5.26 0.90 0.44 5.69 0.72 0.16 0.68 2.21 0.44 0.20 0.88 

Design 2 5.75 0.92 0.39 5.07 0.71 0.45 0.54 2.18 0.29 0.00 0.96 

Design 3 5.37 0.88 0.48 6.01 0.70 0.26 0.67 2.49 0.32 0.12 0.94 

            

Portal frame designs Case 1     Case 2       Case 3       

  βR U fy U fc βR U fy U fc U As βR U fy U fc U As 

Design 1 5.26 -4.73 -2.30 5.69 -4.09 -0.93 -3.85 2.21 -0.97 -0.43 -1.94 

Design 2 5.75 -5.30 -2.25 5.07 -3.62 -2.26 -2.74 2.18 -0.64 0.00 -2.09 

Design 3 5.37 -4.71 -2.57 6.01 -4.19 -1.57 -4.01 2.49 -0.79 -0.30 -2.34 

 

Table 26. The sensitivity factors containing the information about the steel parameters are combined in order to make a 
comparison possible between case 1, case 2 and case 3.  

Portal frame designs Case 1     Case 2       Case 3       

  βR α fy α fc βR 
α fy and 
As α fc   βR 

α fy and 
As α fc   

Design 1 5.26 0.8996 0.43669 5.69 0.9866 0.1631   2.21 0.9808 0.1951   

Design 2 5.75 0.92 0.39 5.07 0.8950 0.4460  2.18 1.0000 0.0003   

Design 3 5.37 0.87785 0.47894 6.01 0.9653 0.2613   2.49 0.9927 0.1205   
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8 Conclusions and suggestion for further work 
In chapter 8.1 the conclusions of this thesis will be presented. Suggestions for further work will be 

given in chapter 8.2.  

8.1 Conclusions 
The evaluation of safety assessment methods is performed according to figure 90. First the 

conclusions will be given in chapter 8.1.1 based on the results of the case study of the three 

reinforced concrete frame designs. Secondly the conclusions based on the used methods are 

provided in chapter 8.1.2. 

 

Figure 90. Schematic representation of the used safety assessment methods 

8.1.1 Conclusions about the case study of a reinforced concrete frame 

8.1.1.1 Level I: local and global safety assessment of the reinforced concrete frame designs.  

A comparison of the obtained failure modes in the reinforced concrete frame designs and the 

obtained structural resistance is made and the conclusions are presented below. 

Eurocode 2 

The local safety assessment according to the Eurocode 2 shows that the individual elements of the 

portal frame designs 1, 2 and 3 can resist the external loads 𝐹𝑣 = 18.8 kN and 𝐹ℎ = 17.7 kN. The 

columns and the beam of the portal frame are designed in such a way that these elements can resist 

the linear elastic bending moment, shear- and normal forces. The shear resistance of the single 

elements determines the structural resistance of the three portal frame designs. The shear resistance 

is the same for each design since the same shear reinforcement ratio is used. However a more 

detailed analysis should be carried out in the corner regions by means of strut and tie models to 

determine the bending moment resistance of the corner. Especially the compressive strut in the 

corner region exposed to a closing moment could influence the structural resistance of the three 

portal frame designs.  

Safety formats (Model Code 2010) 

The results of the global design resistance obtained with the safety formats can be found in table 27. 

The used calculations can be found in chapter 4.4. The concrete portal frame designs can fail in a 

ductile or a brittle manner depending on the used material values. A brittle failure is obtained when 

corner D fails before a partial plastic mechanism is obtained with plastic hinges at location A, C and E. 

A ductile failure is obtained when a partial plastic mechanism lead to the failure of the frame. This 

failure behavior is also indicated in table 27.  
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Table 27. Non-linear finite element analysis (NLFEA), design resistance safety format (SF) included model uncertainty 𝛾𝑅𝑑  
and used global resistance factor 𝛾𝑅. 

  NLFEA Failure γR γRd SF NLFEA Failure   Failure γR γRd SF NLFEA Failure SF 

Design 1 Mean GRF       GRFm mean  characteristic     ECOV PFm   design 

Fv (kN) 26.00 Brittle 1.2 1.06 17.08 28.80 Ductile 25.30 Ductile 1.16 1.06 20.40 19.20 Ductile 19.20 

Fh (kN) 15.70 

   
15.70 15.70  15.70 

   
15.70 15.70 

 

15.70 

Design 2 Mean GRF       GRFm mean  characteristic     ECOV PFm   design 

Fv (kN) 35.60 Ductile 1.2 1.06 24.63 33.10 Brittle 30.60 Ductile 1.10 1.06 26.09 28.00 Ductile 28.00 

Fh (kN) 15.70 

   
15.70 15.70  15.70 

   
15.70 15.70 

 

15.70 

Design 3 Mean GRF       GRFm mean  characteristic     ECOV PFm   design 

Fv (kN) 27.60 Ductile 1.2 1.06 18.34 28.30 Brittle 25.20 Ductile 1.14 1.06 20.58 21.30 Ductile 21.30 

Fh (kN) 15.70       15.70 15.70  15.70       15.70 15.70   15.70 

 

The following conclusions can be made based on table 27: 

 The global resistance factor 𝛾𝑅 derived according to the ECOV method is low compared to 

the global resistance factor defined in the GRF method. This difference is remarkable 

because a NLFE analysis with mean GRF material values is usually lower than a NLFE analysis 

with mean material values. Therefore the design resistance obtained with the GRFm is often 

much lower than the design resistance obtained with the ECOV method.  

 The highest longitudinal reinforcement ratio is used in design 2. The structural resistance of 

design 2 obtained with a NLFE analysis is higher for the analysis with mean GRF material 

values compared to the analysis with mean material values. The yield strength of both 

material values is almost the same (Appendix B.2). However the concrete material values 

used in NLFE analysis with mean GRF values is much lower compared to the mean concrete 

material values. The mean GRF material values show a more favorable ductile failure 

compared to the brittle failure obtained from the NLFE analysis with mean material values. 

This more favorable ductile failure, i.e. more rotational capacity of corner D, leads to a higher 

structural resistance. However the design resistance obtained with the ECOV method is still 

higher compared to the design resistance obtained with the GRF method. This is due to the 

relatively high global resistance factor 𝛾𝑅 = 1.2 used in the GRF method.  

 The lowest global resistance factor 𝛾𝑅 = 1.10 for the ECOV method is obtained when the 

results of the NLFE analysis with mean material values shows a brittle failure and the result 

of the NLFE analysis with characteristic material values show a ductile failure. The global 

resistance factor is relatively low but also the mean resistance is relatively low due to the 

brittle failure. Therefore the structural design resistance of the ECOV method can still be 

safe. 

 The GRF method is in all cases the most conservative safety format due to the relatively high 

global safety factor 𝛾𝑅 = 1.2. 

 The least conservative safety format for design 1 is the ECOV method. This is caused by a 

ductile failure in the NLFE analysis with mean and characteristic material values.  

 The results of the least conservative safety formats for design 2 and 3 are obtained with the 

PFm. The model uncertainty and the partial material factors are already included in the 
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design material values. The design values used in the NLFE analysis are low compared to the 

material values used in the other methods, but the low concrete material values have a 

positive influence on the ductile behavior of the frame design and in most cases a larger 

structural resistance is obtained when a ductile failure is observed.  

Comparison Eurocode 2 and Safety Formats  (Model code 2010) 

The real failure mode of the reinforced portal frame design for the defined load situation is a 

compressive strut failure in the frame corner due to a closing moment followed by the formation of 

three plastic hinges at location A, C and E. A detailed analysis of a strut and tie model of the concrete 

frame corner could lead to a lower design resistance compared to the local element resistance where 

a shear failure is obtained. Therefore the safety formats can improve the design resistance of the 

reinforced concrete frame since this approach makes redistribution of the concrete compressive 

strut possible. The least conservative safety formats already show in table 3 that there is some 

additional vertical capacity. This could probably be higher since the design resistance obtained from a 

strut and tie model according to the Eurocode 2 could lead to a lower local design resistance. 

8.1.1.2 Level II: global safety assessment by means of the FORM & response surfaces 

A level II global reliability analysis is performed to determine the reliability level 𝛽𝑅 of the least 

conservative safety formats. Response surfaces were constructed for the least conservative safety 

formats and the FORM is used to determine the reliability level. Three cases with specified 

uncertainties were defined. Case 1 and 2 are the cases where is assumed that the detailing is known. 

For case 1 there is assumed that there is no geometrical uncertainty and for case 2 there is assumed 

that there is some geometrical uncertainty in the longitudinal reinforcement. Fabrication of 

geometrical reinforcement leads to a coefficient of variation of the cross-sectional area of the 

longitudinal reinforcement 𝑉𝐴𝑠 = 0.02. However, in case of a reassessment of an existing structure 

the reinforcement detailing is not always known. Specific reinforcement detailing plans may be 

missing or the reinforcement is not placed exactly according to the reinforcement plan. Especially the 

specific detailing type in the corner region can be of significant importance as explained in chapter 

6.1.2. Therefore case 3 is defined, where this uncertainty in the reinforcement detailing will be 

reflected in a larger coefficient of variation 𝑉𝐴𝑠 = 0.10. 

In this thesis the safety of the methods used in the Eurocode 2 has not been assessed by means of a 

FORM analysis, since this is already done in the past and could be find in literature. The reliability 

level is assumed to be 𝛽𝑅 > 3.04. 

Comparison of the FORM & response surfaces with the safety formats (Model Code 2010) 

Detailing type is exactly known 

In the cases 1 an 2 where the detailing is exactly known the reliability index is always higher than 

𝛽𝑅 > 3.04 for design 1, 2 and 3. This is shown in table 25. The lowest obtained reliability level is 

obtained in case 2 for design 2, where the reliability index is 𝛽𝑅 = 5.07. This indicates that there is 

some margin to compensate for the model uncertainty derived from the two experiments is 𝜃𝑚 =

1.028 and the coefficient of variation 𝑉𝑚 = 0.01, which was neglected in the level II global reliability 

analysis. Even a compensation for a higher coefficient of variation 𝑉𝑚, which could be the result from 

more experiments should be possible.  

In fact the assumed model uncertainty in the safety formats of 𝑦𝑅𝑑 = 1.06 is already compensating 

for this uncertainties. It should be noted that the model uncertainty derived from the experiment is 

defined as 𝜃𝑚 =
𝑅𝑒𝑥𝑝

𝑅𝑁𝐿𝐹𝐸𝐴
 (Engen, 2017) is the inverse of 𝛾𝑅𝑑 =

𝑅𝑁𝐿𝐹𝐸

𝑅𝑒𝑥𝑝 
. Therefore the obtained model 
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uncertainty 𝜃𝑚 is in this case a positive influence since 
1

𝜃𝑚
= 0.972. However the coefficient of 

variation can still lead to a negative influence on the structural resistance. 

Detailing type is not exactly known 

In case 3 the reinforcement detailing is not exactly known. This uncertainty is implemented in a 

larger coefficient of variation of the cross-sectional area of the longitudinal reinforcement 𝑉𝐴𝑠 =

0.10. Table 25 shows that in each of the three portal frame designs the reliability level 𝛽𝑅 < 3.04. In 

this case the model uncertainty of 𝛾𝑅𝑑 = 1.06 is certainly not sufficient for the unknown detailing 

type. The safety formats should compensate for the unknown detailing type by using a higher model 

uncertainty 𝛾𝑅𝑑. The model uncertainty 𝛾𝑅𝑑 needed for this case can be determined using an inverse 

approach. The design resistance obtained from the safety formats 𝑅𝑆𝐹 should be lowered using a 

slightly larger model uncertainty. The obtained response surfaces will be a bit higher and therefore 

the reliability index will be higher. This iterative process should be repeated until the obtained 

reliability index is equal to 3.04. In case of the PFm it is more work to obtain the design resistance 

with a higher model uncertainty, since the model uncertainty is implemented in the partial safety 

factor 𝛾𝑀 (equation (3.9)). The model uncertainty 𝛾𝑅𝑑 that should be used instead of 𝛾𝑅𝑑 = 1.06 has 

not been determined yet. However, the determination of the model uncertainty that should be used 

in the safety formats is only useful for a situation where the uncertainties are estimated in a better 

way. The uncertainties should be based on more experimental results.  

In case of a reassessment of an existing structure the exact reinforcement design is not always 

known. For instance specific reinforcement detailing plans may be missing or the reinforcement is 

not placed according to the reinforcement plan. The assumed uncertainty is case 3 is still not that 

high and the safety formats already fail to reach the intended reliability level. Therefore the safety 

formats should be used with a certain caution when they are used to reassess a concrete structure.  

8.1.2 Conclusions about the safety assessment methods 

8.1.2.1 Comparison multiple loads in the safety formats (Model code 2010) and Eurocode 2 

The safety formats are not clear on how to determine the structural design resistance of a structure 

with multiple loads placed in a certain order and different load directions. For instance, in this case 

the vertical load is applied first on the structure, after that the horizontal load is applied on the 

structure and subsequently  the structural resistance is obtained by increasing the vertical load until 

failure. There is chosen to put all the safety in the vertical resistance and the horizontal resistance is 

not reduced. This is done to compare the structural resistance of several portal frame designs where 

only the vertical resistance of the portal frame is different. Therefore the safety that could be 

implemented in order to reduce the horizontal resistance is also subtracted from vertical resistance.  

The results of the level II global safety assessment lead to a safe reliability index (case 1 and 2), which 

means that the used approach is safe. There could also be chosen to obtain the structural resistance 

of the portal frame by reducing the vertical and horizontal resistance, which is probably the most 

logical choice in case that the loads are applied at the same time. Or a less safe structural resistance 

can be obtained by only reducing the vertical resistance without applying some additional reduction 

in order to compensate for the not reduced horizontal resistance. However when the partial factor 

method is used it is always clear on how to reduce the structural resistance since the last applied 

load determines the structural design resistance because there is no global resistance factor used. 

Another aspect is that the loading order can have an influence on the structural resistance of the 

structure (Blomfors, Global Safety Assesment of Concrete Structures using Nonlinear Finite Element 

Analysis, 2014). An assumption of a realistic loading order should be made to obtain a realistic design 

resistance. 
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The loading order in a local safety assessment method according to the Eurocode 2 does not matter 

since the loads are present at the same time. Also the assumed resistance models do not take into 

account different loading orders. Furthermore there is no global resistance factor used so there is no 

problem in defining a constant horizontal load that the structure should be able to resist. 

8.1.2.2 Composed line elements used in the NLFE model 

The NLFE model of the statically indeterminate reinforced concrete portal frame is made with plane 

stress elements in combination with integrated composed line elements. Composed line elements 

are incorporated in Diana 10.1, which could integrate the internal stresses over the height of a cross-

section in order to produce a bending moment distribution. Especially for a statically indeterminate 

structure this could help in order to find the plastic hinges that are formed in the portal frame. 

Initially there was expected a plastic hinge in corner D of the portal frame. However, the bending 

moment distribution determined from the composed line elements showed that the bending 

moment capacity of corner D was in fact really low. After thoroughly investigating the corner region 

there was found that the internal compressive strut has failed and therefore the formation of a 

plastic hinge was not possible. The linear elastic (or plastic moment distribution) obtained from a 

local design approach and the bending moment distribution using a global design approach can be 

compared much easier with the use of composed line elements. 

8.1.2.3 FORM & Response surfaces  

In theory creating a response surface in combination with the FORM should be an accurate method 

to determine the reliability index of a structure by means of a NLFE model. However in practice there 

are a lot of issues to discuss. First of all the settings in the used NLFE package. Most of the settings 

that should be used are described in detail in the Guidelines for Non-Linear Finite Element Analysis of 

Concrete Structures (Hendriks, de Boer, & Belletti, 2017). In order to obtain the structural resistance 

of the portal frame the last load-step were the convergence criterion is fulfilled should be checked in 

order to be certain that the structure has failed. Things like convergence criteria, number of 

iterations and load-step sizes can still have an influence on the results. This is one of the reason that 

the safety assessment could not be automated. Some other issues will be described below and are 

more case dependent. These issues are also described with a few examples in chapter 7.2.1.4. 

Obtaining the control point 𝑿𝑐 

To obtain the control point a factor 𝑓 should be chosen in order to assess the individual influence of 

the stochastic variables. A factor 𝑓 = 3 is recommended but this led to an unrealistic design point in 

some of the cases. The control point can be obtained by performing a NLFE analysis with the mean 

values of the stochastic variables and some NLFE analyses where the mean values are used in 

combination with one reduced stochastic variable to determine the individual influence of that 

variable on the structural resistance. The reduction of the stochastic variable is obtained by 

subtracting  𝑓 times the standard deviation from the mean value. For portal frame design 2 and 3 a 

brittle failure was obtained after performing a NLFE analysis with mean material values. The analyses 

with reduced concrete material values with 𝑓 = 3 led to ductile failure mode with even a higher 

structural resistance. This led to an unrealistic control point and a larger value of 𝑓 should be used to 

obtain a more realistic control point. The best way to estimate the factor 𝑓 is to start with a NLFE 

analysis  with mean material values and subsequently performing several NLFE analyses with an 

increasing 𝑓-factor to obtain low concrete material values until a lower structural resistance is 

obtained than the mean resistance. After that the NLFE analyses for the other uncertainties can be 

performed with the correct 𝑓-factor. In this way a lot of time can be saved. 
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The influence of the factor 𝑓 on the initial design point 

The factor 𝑓 have a lot of influence on the control point that is obtained and therefore the direction 

of the straight line between 𝑿̅ and 𝑿𝑐 on which the initial design point is found. The factor 𝑓 is 

basically an initial guess and a correct choice can only be verified when the real design point is found. 

A wrong choice could lead in much more effort to find the real design point since the real design 

point is far away from the initial design point. 

Exact calculation of the response surface not recommended 

In the theory a response surface should be created with 2𝑛+1 sample points. Basically 2𝑛 sample 

points around the initial design point. This lead to an exact calculation of the response surface i.e. the 

response surface goes exactly through the sample points. However due to the brittle and ductile 

failure modes that could be obtained there is always the danger of a response surface that not 

describes the real behavior of the structure. Therefore a least squares approach is used with more 

sample points. However using too many sample points is also not recommended since the obtained 

response surface is hardly changing after adding an intended design point.  

An exact calculation of the response surface is only possible when you are certain that the initial 

design point is very close to the real design points and therefore again strongly dependent on the 

initial choice of the factor 𝑓. 

Poor description of the response surface in the zones without sample points can lead to divergence 

Another problem with creating a response surface is the poor description of the zones without 

sample points. A situation could occur where the region of the real design point is described very 

accurately, but after applying the FORM a design point outside the zone which is described by sample 

point could be obtained i.e. a divergence of the iteration process has been occurred. An example of 

this can be found in chapter 7.2.1.2. A solution to the problem is adding some sample points in this 

region.  

 

8.2 Suggestions for further work 
 A prediction model to determine whether a reinforced concrete corner fails in a brittle or 

ductile manner and what is the influence on the structural resistance based on several 

detailing types and material properties. A lot of experiments should be used to determine 

the model uncertainty. 

 Optimize the reinforcement detailing in the reinforced concrete corner such that a full plastic 

hinge can develop in the corner region. This could have a large effect on the structural 

resistance obtained with the safety formats and therefore on the reliability index.  

 Better ways to determine the control point 𝑿𝑐 probably based on more than 𝑛 + 1 NLFE 

analyses where not only one material parameter is reduced by the factor 𝑓 but make use of 

combinations to obtain a more realistic structural behavior close to unsafe region. In this way 

the initial design point should be much better predicted and convergence will be achieved 

faster.  
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Appendix A Background theory of the safety formats 
 

A.1 Material input values in the GRFm safety format  
This safety format determines the design resistance 𝑅𝑑 with a NLFE analysis with the input of mean 

GRF material parameters with the same (scaled) global resistance factor for each material. Figure A1 

shows the probability density function (PDF) of steel and concrete. The global resistance factor is 

related to the mean variable. 

 

Figure A1. Probabilistic definition of mean (m), characteristic (k) and design (d) values for steel and concrete failure and the 
reduced concrete strength (f) (Cervenka, 2013). 

The global resistance factor of steel is: 

𝛾𝐺𝐿
𝑠𝑡𝑒𝑒𝑙 =

𝑓𝑠𝑚

𝑓𝑠𝑑
=

1.1 𝑓𝑠𝑑 𝛾𝑠 

𝑓𝑠𝑑
= 1.27         (A.1) 

where: 

𝑓𝑠𝑚 =
1.27

1.15
𝑓𝑦𝑘 = 1.1 𝑓𝑦𝑘 = 1.1 𝑓𝑠𝑑  𝛾𝑠  is the mean strength of steel (see figure A1 for factors); 

𝑓𝑠𝑑     is the design strength of steel; 

𝛾𝑠 = 1.15    is the partial safety factor for the characteristic strength of 

     steel.  

 

The global resistance factor of concrete is: 

𝛾𝐺𝐿
𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 =

𝑓𝑐𝑚

𝑓𝑐𝑑
=

𝑓𝑐𝑑 𝛾𝑐 1.27

𝑓𝑐𝑑
= 1.9        (A.2) 

where: 

𝑓𝑐𝑚 =
𝑓𝑐𝑑 𝛾𝑐

1.9

1.5

𝑓𝑐𝑑
    is the mean concrete compressive strength (figure A1); 

𝑓𝑐𝑑     is the design concrete compressive strength; 

𝛾𝑐 = 1.5    is the partial safety factor for the characteristic strength of 

     concrete.  
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In order to have the same global resistance factors for steel and concrete, the mean concrete 

compressive strength is reduced to get a lower global resistance factor for concrete 𝛾𝐺𝐿
𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒.  

 

Figure A1 shows a reduced value for the mean concrete compressive strength 𝑓𝑐𝑚
𝐺𝑅𝐹 at location (𝑓), 

𝑓𝑐

𝑓𝑐𝑑
= 1.27 on the horizontal axis (instead of 𝑓𝑐𝑚 at location(𝑚), 

𝑓𝑐

𝑓𝑐𝑑
= 1.9 on the horizontal axis).  

 

The new reduced mean concrete strength can be derived according to: 

𝑓𝑐𝑚
𝐺𝑅𝐹 =

1.1 𝛾𝑠

𝛾𝑐
𝑓𝑐𝑘          (A.3) 

The new mean concrete compressive strength 𝑓𝑐𝑚
𝐺𝑅𝐹 is lower than the characteristic concrete 

compressive strength 𝑓𝑐𝑘. This leads to the required additional safety for concrete when it is 

compared to steel. The global resistance factor for steel 𝛾𝐺𝐿
𝑠𝑡𝑒𝑒𝑙  is now per definition the same as the 

new obtained global resistance factor for concrete 𝛾𝐺𝐿
𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒. The global resistance factor 𝛾𝐺𝐿is 

defined as: 

𝛾𝐺𝐿 = 𝛾𝐺𝐿
𝑠𝑡𝑒𝑒𝑙 = 𝛾𝐺𝐿

𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 =
𝑓𝑦𝑚

𝐺𝑅𝐹

𝑓𝑐𝑑
=

0.85 𝑓𝑐𝑘
𝑓𝑐𝑘
1.5

= 1.27      (A.4) 

𝛾𝐺𝐿 = 𝛾𝑅 𝛾𝑅𝑑           (A.5) 

where:  

𝛾𝑅 = 1.2 is the partial factor of the resistance; 

𝛾𝑅𝑑 = 1.06 is the model uncertainty. 

From equation (A.5) follows that the partial factor of the resistance 𝛾𝑅 = 1.2. The input values for 

the NLFE analysis for steel and concrete can be derived from (A.1) and (A.3) which leads to the 

following formulas: 

𝑓𝑦𝑚
𝐺𝑅𝐹 = 1.1 𝑓𝑦𝑘,          (A.6) 

𝑓𝑐𝑚
𝐺𝑅𝐹 = 0.85 𝑓𝑐𝑘.          (A.7) 

 

A.2 Global resistance factor ECOV safety format 
Probabilistic studies indicate a log-normal distribution function (fib, 2012) for the resistance of a 

reinforced concrete beam. The random distribution can be described by a two-parameter (the mean 

resistance 𝑅𝑚 and coefficient of variation 𝑉𝑅 of the resistance) log-normal distribution with the lower 

bound at the origin (fib, 2012).  

The random variable  𝑅~𝐿𝑁(𝑅𝑚, 𝜎𝑚
2 ) is log-normal distributed then its natural logarithm  𝑌 = ln (𝑅) 

is normally distributed with the mean 𝜇 and the standard deviation 𝜎.  

𝑅~𝐿𝑁(𝑅𝑚, 𝜎𝑚
2 )            (A.8) 

𝑌 = ln(𝑅)~𝑁(𝜇(𝑌), 𝜎(𝑌)2)         (A.9) 

𝑌 = ln(𝑅) = 𝜇(𝑌) + 𝜎(𝑌)𝑍         (A.10) 

 

𝑅 = 𝑒𝜇(𝑌)+𝜎(𝑌)𝑍          (A.11) 

where:  𝑍~𝑁(0,1)  
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The expected value 𝐸(𝑅) can be estimated with (Jonkman, Steenbergen, Morales-Nápoles, 

Vrouwenvelder, & Vrijling, 2016):  

𝐸(𝑅) = 𝑒𝐸(𝑌)+
1

2
𝜎2(𝑌) ≈ 𝑒𝐸(𝑌)    only valid if: 𝜎(𝑌) ≪ 𝐸(𝑌)  (A.12) 

where:  

𝐸(𝑅) = 𝑅𝑚 

𝐸(𝑌) = 𝜇(𝑌); 

𝜎(𝑦) = √𝑉𝑎𝑟(𝑦). 

This leads to the following approximation:  

𝑅𝑚 ≈ 𝑒𝜇(𝑌).           (A.13) 

The standard deviation 𝜎(𝑅) can be estimated with (Jonkman, Steenbergen, Morales-Nápoles, 

Vrouwenvelder, & Vrijling, 2016):  

𝜎(𝑅) = 𝐸(𝑋)√𝑒𝜎2(𝑌)−1 ≈ 𝐸(𝑅)𝜎(𝑌)   only valid if: 𝜎(𝑌) ≪ 𝐸(𝑌)  (A.14) 

where: 

𝜎(𝑅) = 𝜎𝑚 

𝐸(𝑋) = 𝑅𝑚 

𝜎(𝑌) = √𝑉𝑎𝑟(𝑦). 

 

The coefficient of variation 𝑉𝑅 is defined as: 

𝑉𝑅 =
𝜎𝑚

𝜇𝑅
=

𝜎(𝑅)

𝐸(𝑅)
≈

𝐸(𝑅)𝜎(𝑌)

𝐸(𝑅)
≈ 𝜎(𝑌).        (A.15) 

The characteristic value of the resistance can be calculated according to: 

𝑃(𝑅 < 𝑅𝑘) = 0.05          (A.16) 

Substitute (A.11), (A.13) and (A.15) in equation (A.16): 

𝑃(𝑒𝜇(𝑌)+𝜎(𝑌)𝑍 < 𝑅𝑘) = 𝑃(ln(𝑅𝑚) + 𝜎(𝑌)𝑍 < ln(𝑅𝑘)) = 𝑃 (𝑍 <
ln(𝑅𝑘)−ln(𝑅𝑚)

𝑉𝑅
) = 0.05. 

ln(
𝑅𝑘
𝑅𝑚

)

𝑉𝑅
= −1.65           (A.17) 

An acceptable approximation of the characteristic resistance is: 

𝑅𝑘 = 𝑅𝑚 𝑒−1.65 𝑉𝑅           (A.18) 

where: 

𝑅𝑚  is the mean resistance; 

𝑉𝑅  is the coefficient of variation. 

The coefficient of variation can be estimated for a failure probability of 0.05 by rearranging formula 

(A.18): 

 𝑉𝑅 =
1

1.65
ln (

𝑅𝑚

𝑅𝑘
).          (A.19) 

 



   
 

98 
 

The global resistance factor is defined as:    

𝛾𝑅 =
𝑅𝑚

𝑅𝑑
=

𝑅𝑚

𝑅𝑚 𝑒−𝛼𝑅 𝛽 𝑉𝑅
= 𝑒𝛼𝑅 𝛽 𝑉𝑅 = 𝑒3.04 𝑉𝑅        (A.20) 

where: 

𝑅𝑚  is the mean resistance obtained from  NLFE analysis with mean input parameters; 

𝑅𝑘  is the characteristic resistance obtained from a NLFE analysis with characteristic input

  parameters; 

𝛼𝑅 = 0.8 is the sensitivity factor (dominant strength parameter); 

𝛽 = 3.8 is the reliability index; 

𝑉𝑅  is the coefficient of variation. 
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Appendix B Material properties 
 

B.1 Concrete material properties by Model Code 2010 (fib, 2012) 
Mean compressive strength: 

𝑓𝑐𝑚 = 𝑓𝑐𝑘 + ∆𝑓    where: ∆𝑓 = 8 MPa     (B.1) 

Characteristic compressive strength: 

𝑓𝑐𝑘            (B.2) 

Design compressive strength: 

𝑓𝑐𝑑 = 𝛼𝑐𝑐
𝑓𝑐𝑘

𝛾𝑐
    where: 𝛼𝑐𝑐 = 1.0 and 𝛾𝑐 = 1.5    (B.3) 

 

Mean tensile strength: 

𝑓𝑐𝑡𝑚 = 0.3 𝑓𝑐𝑘
2/3

          (B.4) 

Characteristic tensile strength: 

𝑓𝑐𝑡𝑘,𝑚𝑖𝑛 = 0.7 𝑓𝑐𝑡𝑚          (B.5) 

Design tensile strength: 

𝑓𝑐𝑡𝑑 =
𝑓𝑐𝑡𝑘,𝑚𝑖𝑛

𝛾𝑐
           (B.6) 

 

Fracture energy: 

𝐺𝐹 = 73 𝑓𝑐𝑚
0.18           (B.7) 

Compressive fracture energy: 

𝐺𝐶 = 250 𝐺𝐹           (B.8) 

 

Young’s modulus after 28 days: 

𝐸𝑐𝑖 = 𝐸𝑐𝑜 (
𝑓𝑐𝑚

10
)
1/3

   where: 𝐸𝑐𝑜 = 21500 MPa    (B.9) 

 

B.2 Material input values for the different safety formats Model Code 2010 
The material input values for the safety formats calculated according to Guidelines for NLFE analyses 

of Concrete Structures (Hendriks, de Boer, & Belletti, 2017) are shown in the table B1, B2 and B3.  

Density reinforced concrete:     Partial safety factor concrete:   

𝜌 = 2500 kg/m3     𝛾𝑐 = 1.5 

 

The young’s modulus of reinforcing steel:  Partial safety factor steel: 

𝐸𝑠 = 200000 MPa.      𝛾𝑠 = 1.15 
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Table B1. Material input values for the safety formats: concrete C30. 

Concrete             

C30 fc  (MPa) fct  (MPa) Ec  (MPa) 

Mean Measured fcm 38 fctm 2.896 Eci 33550.6 

Characteristic fck 30 fck, min 2.028 Eci 31008.4 

Mean GRF  fcm,GRF 25.5 fctm, GRF 2.599 Eci 29373.2 

Design fcd 20 fctd 1.352 Eci 27088.3 

              

C30 ν   GF  (Nmm/mm2) Gc  (Nmm/mm2) 

Mean Measured variable   GF  140.5 Gc 35125.6 

Characteristic variable   GF  134.6 Gc 33662.4 

Mean GRF  variable   GF  130.8 Gc 32691.9 

Design variable   GF  125.2 Gc 31293.1 

 

Table B2. Material input values for the safety formats: concrete C40. 

Concrete             

C40 fc  (MPa) fct  (MPa) Ec  (MPa) 

Mean Measured fcm 48 fctm 3.509 Eci 36267.6 

Characteristic fck 40 fck, min 2.456 Eci 34129.1 

Mean GRF  fcm,GRF 34 fctm, GRF 3.149 Eci 32329.4 

Design fcd 26.7 fctd 1.637 Eci 29814.5 

              

C40 ν   GF  (Nmm/mm2) Gc  (Nmm/mm2) 

Mean Measured variable   GF  146.5 Gc 36634.2 

Characteristic variable   GF  141.8 Gc 35451.4 

Mean GRF  variable   GF  137.7 Gc 34429.4 

Design variable   GF  131.8 Gc 32956.2 

 

Table B3. Material input values for the safety formats: longitudinal reinforcement. 

Longitudinal reinforcement         

Steel fy (MPa) ft (MPa) ϵsy  

Mean Measured fym 560 ftm 680 ϵsy 0.0028 

Characteristic fyk 507 ftk 616 ϵyk 0.0025 

Mean GRF  fym,GRF 558 ftk, GRF 677 ϵym, GRF 0.0028 

Design fyd 441 ftd 536 ϵcd 0.0022 

 

 

 

 

 



   
 

101 
 

Table B3. Material input values for the safety formats: shear reinforcement. 

Shear reinforcement           

Steel fy (MPa) ft (MPa) ϵsy (-) 

Mean Measured fym 460 ftm 510 ϵsy 0.0023 

Characteristic fyk 417 ftk 462 ϵyk 0.0021 

Mean GRF  fym,GRF 458 ftk, GRF 508 ϵym, GRF 0.0023 

Design fyd 362 ftd 402 ϵcd 0.0018 

 

The mean, characteristic and design concrete strength can be calculated according to Appendix B.1. 

The mean GRF values can be calculated according to Appendix A.1 and Appendix B.1.  

The mean values of steel yield strength  𝑓𝑦𝑚 and tensile strength 𝑓𝑡𝑚 where measured in the 

experiment. To obtain the characteristic values of the yield strength 𝑓𝑦𝑘  a lognormal distribution is 

assumed with a coefficient of variation ranging from 0.05 to 0.1. The coefficient of variation 𝑉𝑠 = 0.6 

is assumed to be a good intermediate value (Hendriks, de Boer, & Belletti, 2017). The characteristic 

yield strength is determined by a probability of 0.05 of the lognormal distribution: 

𝑓𝑐𝑘 = 𝑓𝑐𝑚 𝑒−1.65 𝑉𝑠          (B.10) 

Furthermore the steel tensile strength is calculated with: 

𝑓𝑡𝑖 = 𝑓𝑦𝑖 𝐴    where: 𝐴 =
𝑓𝑡𝑚

𝑓𝑦𝑚  
     (B.11) 

 

The main design characteristics are given below: 

Design 1: longitudinal reinforcement: 3∅10 𝐴𝑠,𝑙 = 3 (0.25 𝜋 102) = 235.62 mm2  

shear reinforcement  2∅1.5 𝐴𝑠,𝑠 = 2 (0.25 𝜋 1.52) = 3.53 mm2 

concrete strength class  C30   

Design 2:  longitudinal reinforcement 3∅11 𝐴𝑠,𝑙 = 3 (0.25 𝜋 102) = 285.1 mm2 

shear reinforcement  2∅1.5 𝐴𝑠,𝑠 = 2 (0.25 𝜋 1.52) = 3.53 mm2 

concrete strength class  C30 

Design 3: longitudinal reinforcement: 3∅10 𝐴𝑠,𝑙 = 3 (0.25 𝜋 102) = 235.62 mm2  

shear reinforcement  2∅1.5 𝐴𝑠,𝑠 = 2 (0.25 𝜋 1.52) = 3.53 mm2 

concrete strength class  C40 

B.3 Material values used in the experiment Seraj et al. (1995) 

Concrete:  

𝑓𝑐𝑚,𝑐𝑢𝑏𝑒 = 48 MPa (on test day)  

𝑓𝑐𝑚,𝑐𝑖𝑙𝑖𝑛𝑑𝑒𝑟 ≈ 0.8 ∙ 48 ≈ 38 MPa  

Longitudinal reinforcement:  

𝑓𝑦𝑚 = 560 MPa and 𝑓𝑡𝑚 = 680 MPa  3∅10 𝐴𝑠 = 3 (0.25 𝜋 102) mm2 (PF1 and PF2) 

Shear reinforcement: 

𝑓𝑦𝑚 = 460 MPa and 𝑓𝑡𝑚 = 510 MPa  2∅1.5 𝐴𝑠 = 2 (0.25 𝜋 1.52) mm2 (PF1 and PF2) 

      3∅1.5 𝐴𝑠 = 3 (0.25 𝜋 1.52) mm2 (PF2) 
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Appendix C Level I reliability method: local design resistance 

(Eurocode 2) 
To perform a local safety evaluation according to the Eurocode 2 (NEN-EN 1992 -1-1, 2011) a 

distinction between the several elements is necessary. Therefore the elements will be numbered 

from left to right. This leads to the following element numbering: the left column (AB), beam (BD) 

and the right column (DE) are labeled as element 1, element 2 and element 3, respectively. The 

element numbering is shown in figure C1. 

 

Figure C1. Element numbering. 

 

C.1 local design resistance portal frame design 1, 2 & 3 
The local design resistance of the elements of portal frame design 1 will be worked out in this 

appendix. Using the same approach the design resistance of the elements of portal frame design 2 

and 3 can be found. Only the results will be presented in chapter C.1.3.  

C.1.1 Design 1: determination of the internal forces (linear elastic calculation) 
The moment capacities of the elements can be determined using a local element approach for both 

columns 𝑀𝑅,1 = 𝑀𝑅,3 and the beam 𝑀𝑅,2 of the frame. In this calculation there is chosen for a 

simplified moment capacity without a compressive normal force and in only tension reinforcement is 

considered. The moment capacities can be derived from the equilibrium of a section: 

 

𝑁𝑠 = 𝑁𝑐           (C.1) 

where: 𝑁𝑠 = 𝐴𝑠 𝑓𝑦 and 𝑁𝑐 =
3

4
𝑥𝑢 𝑓𝑐𝑑  𝑏. From equation (C.1) 𝑥𝑢 can be solved and the internal lever 

arm for both elements can be calculated: 

𝑧1 = 𝑑1 − 0.39 𝑥𝑢          (C.2a) 

𝑧2 = 𝑑2 − 0.39 𝑥𝑢          (C.2b) 

The moment capacities can be determined with the following formulas: 

 𝑀𝑅,1 = 𝐴𝑠 𝑓𝑦 𝑧1          (C.3a) 

𝑀𝑅,2 = 𝐴𝑠 𝑓𝑦 𝑧2.          (C.3b) 

After substituting all deterministic variables given in chapter 4.2.1 in the following equations can be 

derived:  

𝑀𝑅,1 =
31.8 𝑓𝑦 𝑓𝑐−0.32 𝑓𝑦

2 

𝑓𝑐
 (Nm)         (C.4a) 

𝑀𝑅,2 =
25.9 𝑓𝑦 𝑓𝑐−0.32 𝑓𝑦

2 

𝑓𝑐
 (Nm).         (C.4b) 
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Figure C2. Portal frame design 1: bending moment resistance element 1. 

The bending moment resistance of portal frame design 1 is calculated with the following Maple script 

presented in figure C2. An example is given for the bending moment resistance for element 1, which 

lead to a bending moment resistance of 𝑀𝑅𝑑,1 = 10.0 kNm. The bending moment resistance of 

element 2 and 3 are calculated in the same manner and are equal to 𝑀𝑅𝑑,2 = 12.6 kNm and 𝑀𝑅𝑑,3 =

10.0 kNm.  

 

  

 

The bending moment resistance of each element is needed to determine the linear elastic moment, 

shear and normal force distribution, since the portal frame is statically indeterminate. The moment, 

shear and normal force distribution is determined with the Maple script presented in figure C3. 

Therefore the governing bending moment resistance of element 3 (corner D) is used: 𝑀𝑅𝑑,3 = 10.0 

kNm and the fact that the horizontal wind load is known 𝐹ℎ = 15.7 kN.  The maximum external 

vertical and horizontal force 𝐹𝑣 and 𝐹ℎ is also determined with the Maple script presented in figure 

C3.  
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The maximum external load on the structure is: 𝐹𝑣 = 18.8 kN and 𝐹ℎ = 15.7 kN according to a linear 

elastic moment distribution. This results in the following internal forces as presented in table C1. 

Table C1. Internal forces resulting from Fv and Fh 

 Design 1 ME (kNm) VE (kN) NE (kN) 

Element 1 5.58 4.22 5.12 

Element 2 10.04 13.68 11.48 

Element 3 10.04 11.48 13.68 

 

  

Figure C3. Maple script to determine the external load Fv and Fh of portal frame design 1. 
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C.1.2 Design 1: determination of the resistance  

C.1.2.1 Bending moment resistance (ULS) 

The local safety evaluation for the bending moment resistance of portal frame design 1 is performed 

in table C2. The bending moment resistance and the bending moment due to the external forces is 

determined in Appendix C.1.1.  

Table C2. Local safety evaluation (unity checks (UC)) for the linear elastic bending moment resistance. 

EC2: Design 1 MRd (kNm) ME (kNm) UC (-) 

Element 1 10.0 5.6 0.56 

Element 2 12.6 10.0 0.79 

Element 3 10.0 10.0 1.00 

 

C.1.2.2 Shear resistance (ULS) 

The general check for the shear resistance is defined as (NEN-EN 1992 -1-1, 2011): 

𝑉𝐸 < 𝑉𝑅𝑑,𝐶  no shear reinforcement is needed, otherwise:     (C.5a) 

𝑉𝐸 < 𝑉𝑅𝑑,𝑆.           (C.5b) 

 

 

Elements without shear reinforcement 

Shear capacity elements without shear reinforcement (NEN-EN 1992 -1-1, 2011) 

 

𝑉𝑅𝑑,𝐶 = {𝐶𝑅𝑑,𝐶  𝑘 (100 𝜌𝑙  𝑓𝑐𝑘)
1/3 + 𝑘1 𝜎𝑐𝑝}𝑏𝑤 𝑑      (C.6a) 

with a minimum of 

𝑉𝑅𝑑,𝐶,𝑚𝑖𝑛 = {𝑣𝑚𝑖𝑛 + 𝑘1 𝜎𝑐𝑝} 𝑏𝑤 𝑑        (C.6b) 

where: 

𝑓𝑐𝑘    characteristic concrete strength; 

𝐶𝑅𝑑,𝐶 =
0.18

𝛾𝑐
   empirical factor (𝛾𝑐 = 1.5); 

𝑘 = 1 + √
200

𝑑
≤ 2.0  with 𝑑 in mm; 

𝜌𝑙 =
𝐴𝑠𝑙

𝑏𝑤 𝑑
≤ 0.02  longitudinal reinforcement ratio; 

𝐴𝑠𝑙     is the area of tensile reinforcement; 

𝑏𝑤    is the smallest with of the cross-section in the tensile area; 

𝜎𝑐𝑝 =
𝑁𝐸𝑑

𝐴𝑐
< 0.2 𝑓𝑐𝑑  compressive stresses due to the normal force in the portal frame; 

𝑁𝐸𝑑    is the normal force in the portal frame; 

𝐴𝑐    is the area of the concrete cross-section; 

𝑘1 = 0.15   empirical factor; 

𝑣𝑚𝑖𝑛 = 0.035 𝑘3/2 𝑓𝑐𝑘
1/2

 empirical formula for minimum shear stresses. 
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Table C3. Design 1: calculation shear resistance elements without shear reinforcement. 

EC2: Elements without shear reinforcement         

Element 1      Element 2     Element 3     

V 4220.00 N V 13680.00 N V 11480.00 N 

ν 0.53   ν 0.53   ν 0.53   

V < 52272.00 N V < 64152.00 N V < 52272.00 N 

h 125.00 mm h 150.00 mm h 125.00 mm 

bw  90.00 mm bw  90.00 mm bw  90.00 mm 

c 15.00 mm c 15.00 mm c 15.00 mm 

d 110.00 mm d 135.00 mm d 110.00 mm 

Ac 11250.00 mm2 Ac 13500.00 mm2 Ac 11250.00 mm2 

Crd,c 0.12   Crd,c 0.12   Crd,c 0.12   

k 2.35 < 2 k 2.22 < 2 k 2.35 < 2 

k 2.00   k 2.00   k 2.00   

v min 0.54 N/mm2 v min 0.54 N/mm2 v min 0.54 N/mm2 

Asl 235.62 mm2 Asl 235.62 mm2 Asl 235.62 mm2 

ρl 0.02 < 0.02 ρl 0.02 < 0.02 ρl 0.02 < 0.02 

σcp 0.46 N/mm2 σcp 0.85 N/mm2 σcp 1.22 N/mm2 

k1 0.15   k1 0.15   k1 0.15   

V Rd, c, min 6043.79 N V Rd, c, min 8137.74 N V Rd, c, min 7173.71 N 

V Rd, c 10532.86 N V Rd, c 12848.79 N V Rd, c 11662.78 N 

UC 0.40   UC 1.06   UC 0.98   

 

The calculations and the results of the local safety evaluation (unity check) are presented in table C3 

and C4.  

Table C4. Local safety evaluation (unity checks (UC)) for the shear resistance without shear reinforcement. 

EC2: design 1 VRd,C,min (kN) VRd,C (kN) VE (kN) UC (-) 

Element 1 6.0 10.5 4.21 0.40 

Element 2 8.1 12.8 13.68 1.06 

Element 3 7.2 11.7 11.48 0.98 
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Elements with shear reinforcement 

Shear capacity for elements with shear reinforcement (NEN-EN 1992 -1-1, 2011) 

𝑉𝑅𝑑,𝑆 =
𝐴𝑠𝑤

𝑆
 𝑧 𝑓𝑦𝑤𝑑  cot𝜃         (C.7a) 

and 

𝑉𝑅𝑑,𝑚𝑎𝑥 = 𝛼𝑐𝑤 𝑏𝑤 𝑧 𝑣
𝑓𝑐𝑑

𝑐𝑜𝑡𝜃+𝑡𝑎𝑛𝜃
          (C.7b) 

where: 

𝑠    is the spacing of the stirrups; 

𝑓𝑦𝑤𝑑    is the design yield strength of the shear reinforcement; 

𝑣 = 0.6 [1 −
𝑓𝑐𝑘

250
]  is a strength reduction factor for concrete cracked in shear; 

𝛼𝑐𝑤 = 1 +
𝜎𝑐𝑝

𝑓𝑐𝑑
   is a coeffiecient taking account of the state of stress in the 

    compression chord (for 0 < 𝜎𝑐𝑝 < 0.25 𝑓𝑐𝑑). 

 

Table C5. Design 1: calculation shear resistance elements with shear reinforcement. 

EC2: Elements with shear reinforcement           

Element 1      Element 2     Element 3     

θ 21.80   θ 21.80   θ 21.80   

cot θ 2.50   cot θ 2.50   cot θ 2.50   

Asw 3.53 mm2 Asw 3.53 mm2 Asw 3.53 mm2 

s 45.00 mm s 45.00 mm s 45.00 mm 

z 99.00 mm z 121.50 mm z 99.00 mm 

α cw 1.02   α cw 1.04   α cw 1.06   

tan θ 0.40   tan θ 0.40   tan θ 0.40   

V Rd, max 33181.27 N V Rd, max 41509.36 N V Rd, max 34415.55 N 

V Rd, s 7043.05 N V Rd, s 8643.75 N V Rd, s 7043.05 N 

UC s 0.60   UC 1.58   UC 1.63   

Ucmax 0.13   Ucmax 0.33   Ucmax 0.33   

 

 

The calculations and results of the local safety evaluation (unity check) are presented in table C5 and 

C6. According to this local safety evaluation element 2 and 3 does not have enough shear 

reinforcement, but according to the calculation for elements without shear reinforcement, this is not 

needed since 𝑉𝐸 < 𝑉𝑅𝑑,𝐶.  

Table C6. Local safety evaluation (unity checks (UC)) for the shear resistance with shear reinforcement. 

EC2: design 1 VRd,S (kN) VRd,max (kN) VE (kN) UC (-) 

Element 1 7.0 33.2 4.21 0.60 

Element 2 8.6 41.5 13.68 1.58 

Element 3 7.0 34.4 11.48 1.63 
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C.1.2.3 Strut and tie model 

A detailed analysis of the detailing in the corner region should be performed by means of a strut and 

tie model. This could influence the structural resistance of the portal frame.  

C.1.2.4 Plastic analysis 

There is no reason to perform a plastic analysis for a portal frame which forms a plastic mechanism 

since the frame already has been collapsed due to a shear failure.  

 

C.1.3 Summary results portal frame design 1, 2 and 3 
Portal frame design 1, 2 and 3 are provided with only the minimum required shear reinforcement 

and as a consequence the shear resistance is determined by 𝑉𝐸 = 𝑉𝑅𝑑,𝐶  since 𝑉𝑅𝑑,𝐶 > 𝑉𝑅𝑑,𝑆. 

 

All portal frame designs are supposed to resist a horizontal and vertical load of based on shear 

resistance of the portal frame designs: 

𝐹𝑣 = 18.8 kN and 𝐹ℎ = 15.7 kN.  

 

A detailed analysis of the corner region by means of a strut and tie model has not been performed. 

The bending moment resistance of the corners can have an influence on the structural resistance of 

the portal frame. This could possibly reduce the resistance of the portal frame. 

The critical local safety evaluations for all portal frame designs where the shear resistance 

determines the structural resistance of the three portal frame designs are presented in chapter 

C.1.3.1.  

C.1.3.1 Shear resistance elements without shear reinforcement 

The local safety evaluation of the governing failure mode of portal frame design 1, 2 and 3 is 

presented in the table C7.  

Table C7. Local safety evaluation for the shear resistance without shear reinforcement. 

Shear resistance        

Design 1 VRd,C,min (kN) VRd,C (kN) VE (kN) UC (-) 

Element 1 6.0 10.5 4.21 0.40 

Element 2 8.1 12.8 13.68 1.06 

Element 3 7.2 11.7 11.48 0.98 

Design 2  VRd,C,min (kN) VRd,C (kN) VE (kN) UC (-) 

Element 1 6.0 11.2 4.21 0.4 

Element 2 8.1 13.6 13.68 1.0 

Element 3 7.2 12.3 11.48 0.9 

Design 3 VRd,C,min (kN) VRd,C (kN) VE (kN) UC (-) 

Element 1 6.9 11.5 4.21 0.37 

Element 2 9.2 14.0 13.68 0.98 

Element 3 8.0 12.7 11.48 0.91 
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C.1.3.2 Bending moment resistance 

The bending moment resistance 𝑀𝑅𝑑 and the corresponding horizontal and vertical force 𝐹𝑣 and 𝐹ℎ, 

for a situation when there is no shear failure, is presented in table C8 and C9. This is only the case 

when enough shear reinforcement is used according to Eurocode 2.  

Table C8. Bending moment resistance portal frame design 1, 2 and 3. 

EC2 Design 1 Design 2 Design 3 

  MRd (kNm) MRd (kNm) MRd (kNm) 

Element 1 10.0 12.1 10.1 

Element 2 12.6 15.3 12.7 

Element 3 10.0 12.1 10.1 

 

 Table C9. Design resistance according to the Eurocode 2 using a local safety approach. 

EC2 Design 1 Design 2 Design 3 

Fv (kN) 18.8 28.1 19.2 

Fh (kN) 15.7 15.7 15.7 
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C.2 Local design resistance experiment Seraj et al. (1995) 
 

C.2.1 Determination of the internal forces (linear elastic calculation) 
To perform a local safety evaluation the linear elastic moments, shear- and normal forces should be 

determined. The linear elastic calculations are performed with the software package Matrix Frame 

5.3. The results are shown in figure C4.  

 

 

 

 

 

 

The linear elastic moments, shear forces and normal forces in the sections A, B, C, D and E are also 

calculated with the Maple script below.  

 

Figure C5. Linear elastic calculation critical moment, shear force and normal force distribution 

The governing moment, shear force and normal force are presented in table C10. 

Table C10. Critical moment, shear force and normal force for element 1, 2 and 3. 

  ME (kNm) VE (kN) NE (kN) 

Element 1 7.1 5.4 6.6 

Element 2 12.8 17.4 14.6 

Element 3 12.8 14.6 17.4 

 

Figure C4. Linear elastic moment, shear force and normal force diagram (kNm). 
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C.2.2 Determination of the resistance  

C.2.2.1 Bending moment resistance (ULS) 

The design bending moment resistance according to Eurocode 2 is determined with formulas (C.1) to 

(C.4). The results are presented in the table below. 

Table C11. Design bending moment capacity (EC2). 

EC2 MRd (kNm) ME (kNm) UC (-) 

Element 1 10.0 7.1 0.71 

Element 2 12.6 12.8 1.02 

Element 3 10.0 12.8 1.28 

 

The mean bending moment resistance is determined with formulas (C.1) to (C.4), where the design 

material values are replaced with mean material values. The results are presented in the table below. 

Table C12. Mean bending moment capacity. 

Mean MRm (kNm) ME (kNm) UC (-) 

Element 1 12.9 7.1 0.55 

Element 2 16.2 12.8 0.79 

Element 3 12.9 12.8 0.99 
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C.2.2.2 Shear resistance (ULS) 

The general check for the shear resistance is defined as (NEN-EN 1992 -1-1, 2011): 𝑉𝐸 < 𝑉𝑅𝑑,𝐶, for 

elements without shear reinforcement, otherwise: 𝑉𝐸 < 𝑉𝑅𝑑,𝑆.     

  

Elements without shear reinforcement 

The design shear resistance according to Eurocode 2 is determined with equation (C.6). The 

calculations are presented in table C13 and summarized in table C14. 

Table C13. Calculation shear resistance elements without shear reinforcement. 

EC2: Elements without shear reinforcement 

Element 1     Element 2     Element 3     

VEd 5363.50 N VEd 17452.50 N VEd 14635.50 N 

ν 0.53   ν 0.53   ν 0.53   

V < 52272.00 N V < 64152.00 N V < 52272.00 N 

h 125.00 mm h 150.00 mm h 125.00 mm 

bw  90.00 mm bw  90.00 mm bw  90.00 mm 

c 15.00 mm c 15.00 mm c 15.00 mm 

d 110.00 mm d 135.00 mm d 110.00 mm 

Ac 11250.00 mm2 Ac 13500.00 mm2 Ac 11250.00 mm2 

Crd,c 0.12   Crd,c 0.12   Crd,c 0.12   

k 2.35 < 2 k 2.22 < 2 k 2.35 < 2 

k 2.00   k 2.00   k 2.00   

v min 0.54 N/mm2 v min 0.54 N/mm2 v min 0.54 N/mm2 

Asl 235.62 mm2 Asl 235.62 mm2 Asl 235.62 mm2 

ρl 0.02 < 0.02 ρl 0.02 < 0.02 ρl 0.02 < 0.02 

σcp 0.58 N/mm2 σcp 1.08 N/mm2 σcp 1.55 N/mm2 

k1 0.15   k1 0.15   k1 0.15   

V Rd, c, min 6232.22 N V Rd, c, min 8563.87 N V Rd, c, min 7671.68 N 

V Rd, c 10721.29 N V Rd, c 14412.07 N V Rd, c 12160.75 N 

UC 0.50   UC 1.21   UC 1.20   

 

Table C14. Design shear capacity without shear reinforcement (EC2). 

EC2 VRd,C,min (kN) VRd,C (kN) VE (kN) UC (-) 

Element 1 6.2 10.7 5.36 0.50 

Element 2 8.6 13.3 17.45 1.21 

Element 3 7.7 12.2 14.64 1.20 
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The mean shear capacity 𝑉𝑅𝑚,𝐶 and the minimum mean shear resistance 𝑉𝑅𝑚,𝐶,𝑚𝑖𝑛  can be 

determined by using equation (C.6) and set the partial safety factor to 𝛾𝑐 = 1.0. The results are given 

in table C15. All unity checks are below zero. This indicates that no shear reinforcement is needed 

when there is no deviation from the mean value. 

Table C15. Mean shear capacity without shear reinforcement. 

Mean VRm,C,min (kN) VRm,C (kN) VE (kN) UC (-) 

Element 1 6.9 15.6 5.36 0.34 

Element 2 9.4 18.9 17.45 0.92 

Element 3 8.3 17.1 14.64 0.86 

 

Elements with shear reinforcement 

The design resistance of elements with shear reinforcement according to the Eurocode 2 is 

determined with equation (C.7). The calculations are presented in table C16 and the results are 

summarized in table C17.  

Table C16. Calculation shear resistance elements with shear reinforcement. 

EC2: Elements with shear reinforcement  

Element 1     Element 2     Element 3     

θ 21.80   θ 21.80   θ 21.80   

cot θ 2.50   cot θ 2.50   cot θ 2.50   

Asw 3.53 mm2 Asw 3.53 mm2 Asw 3.53 mm2 

s 45.00 mm s 45.00 mm s 45.00 mm 

z 99.00 mm z 121.50 mm z 99.00 mm 

α cw 1.03   α cw 1.05   α cw 1.08   

tan θ 0.40   tan θ 0.40   tan θ 0.40   

V Rd, max 33387.11 N V Rd, max 41974.84 N V Rd, max 34959.51 N 

V Rd, s 7043.05 N V Rd, s 8643.75 N V Rd, s 7043.05 N 

UC s 0.76   UC s 2.02   UC s 2.08   

Ucmax 0.16 Ucmax Ucmax 0.42   Ucmax 0.42   

 

Table C17. Design shear resistance with shear reinforcement (EC2). 

EC2 VRd,S (kN) VRd,max (kN) VE (kN) UC (-) 

Element 1 7.0 33.4 5.36 0.76 

Element 2 8.6 42.0 17.45 2.02 

Element 3 7.0 35.0 14.64 2.08 

 

The mean shear resistance is not calculated since the mean shear capacity for element without shear 

reinforcement is sufficient.  
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C.2.2.3 Strut and tie model 

A detailed analysis of the detailing in the corner region should be performed by means of a strut and 

tie model. This could influence the structural resistance of the portal frame.  

C.2.2.4 Plastic analysis 

A plastic analysis is not performed since it is unsure if the corner has enough rotational capacity to 

form a plastic hinge. Experimental results show earlier corner failure, which means that there is not 

enough rotational capacity.   
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Appendix D Non-linear Finite element models 
 

D.1 Geometry mesh 
The reinforced concrete frame is modelled with 4 plane stress elements over the height (4 e.o.h.) and 

embedded reinforcement. There is chosen for 4 e.o.h. while the Guidelines for NLFE analyses 

(Hendriks, de Boer, & Belletti, 2017) suggest that at least 6 e.o.h. should be used. The reason for this 

deviation is a reduction of the computational time and stress concentration in the corner D 

(Appendix E.2.4). 

There is chosen for a two dimensional model, since the frame is very slender and three dimensional 

effects can be neglected. The geometry, mesh and reinforcement detailing will be presented in the 

next chapters. The boundary conditions are shown in figure D1. The columns have fixed translations 

in the x, y direction and a fixed rotation around the z-axis. 

D.1.1 Portal frame design 1, 2 and 3 
 

 

 

D.1.2 Experiment Seraj et al. (1995) 
 

D.1.2.1 PF1 

  

Figure D1. Geometry, reinforcement and 
applied load safety format. 

Figure D2. Mesh concrete (plane stress 
elements). 

Figure D3. Mesh embedded reinforcement 
(bar elements). 

Figure D4. Geometry, reinforcement and 
applied load PF1. 

Figure D5. Mesh concrete (plane stress 
elements). 

Figure D6. Mesh embedded reinforcement 
(bar elements). 
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D.1.2.2 PF2 

 

 

 

  

Figure D7. Geometry, reinforcement and 
applied load PF2. 

Figure D8. Mesh concrete (plane 
stress elements). 

Figure D9. Mesh embedded 
reinforcement (bar elements). 
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D.2 NLFE models 
All NLFE models are in accordance with the Guidelines for Non-Linear Finite Element Analysis of 

concrete Structures (Hendriks, de Boer, & Belletti, 2017). The element types, constitutive models 

used in the NLFE models are shown in table D1 and D2. The convergence norm applied in the model 

is a combination of a force and energy norm. The convergence tolerance for the force and energy 

norm is 0.01 and 0.001, respectively. 

Table D1. Concrete: element type and constitutive model used in Diana FEA 10.1. 

Concrete   

Finite Element   

Element type plane stress element CQ16M 

Interpolation scheme Quadratic 

Integration scheme Full (2x2 point Gauss) 

Constitutive Modelling   

Model Total strain based fixed crack model 

Crack orientation Fixed 

Crack bandwidth specification Rots 

Shear behaviour  Constant 

Shear retention 0.1 

Tensile behavior Exponential softening 

Poisson's ratio reduction Damaged based 

Compressive behavior Parabolic  

Reduction due to lateral cracking Vecchio and Collins 1993 

Lower bound reduction curve 0 

Stress confinement model Selby and Vecchio 

 

Table D2. Reinforcement steel: element type and constitutive model used in Diana FEA 10.1. 

Reinforcement Steel   

Finite Element   

Embedded reinforcement Bar element 

Constitutive Modelling   

Model Elastic plastic model with hardening 

Plastic hardening Plastic strain-yield stress 

Hardening hypotheses Strain hardening 

Hardening type Isotropic hardening 
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D.3 Load path 
The loading path is different for each NLFE model and will be presented in the tables below. 

D.3.1 Portal frame design 1, 2 and 3 
First the load determined according to the local design resistance, 𝐹𝑣 = 18.8 kN and 𝐹ℎ = 15.7 kN is 

applied on the structure. After that the vertical load will increased till failure of the portal frame. In 

this way the additional ‘hidden’ capacity of a portal frame design is found. The loading order is 

presented in table D3. First the vertical load 𝐹𝑣 is applied on the structure, subsequently the 

horizontal load 𝐹ℎ is applied and finally the vertical load 𝐹ℎ is increased till failure of the portal frame. 

The load is applied in load-steps, which represents the percentage of the total load (see table D3). 

Table D3. Load path safety format. 

Load path safety formats         

Equilibrium Iteration Maximum number of iterations Load-steps 
Line 
search Load combination 

Regular NR 800 0.1(10) yes Fv = 18.8 kN 

Regular NR 800 0.05(20) yes Fh = 15.7 kN 

Secant (Quasi-Newton) 1000 0.01(1000) yes Fv = 10.0 kN 

    Till failure    

 

D.3.2 Experiment Seraj et al. (1995) 
The derivation of the load path that is used in the NLFE model for PF1 and PF2 is described in chapter 

5.3.2. The loading order is presented in the tables D4 and D5.  

D.3.2.1 Portal frame 1 (PF1) 
 
Table D4. Load path PF1. 

PF1         

Equilibrium Iteration Maximum number of iterations Load-steps Line search Load combination 

Regular NR 400 0.1(10) yes Fv = 24 kN 

Regular NR 800 0.05(15) yes Fh = 20 kN 

Secant (Quasi-Newton) 1000 
0.05(4) 
0.01(100) yes Fv = 20 kN 

    Till failure   Fh (sway) = 18 kN 

 

D.3.2.2 Portal frame 2 (PF2) 

 

Table D5. Load path PF2. 

PF2         

Equilibrium Iteration Maximum number of iterations Load-steps Line search Load combination 

Regular NR 400 0.1(10) yes Fv = 24 kN 

Regular NR 800 0.05(15) yes Fh = 20 kN 

Secant (Quasi-Newton) 1000 
0.05(4) 
0.01(100) yes Fv = 20 kN 

    Till failure   Fh (sway) = 40 kN 
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Appendix E Experiment Seraj et al. (1995) 
 

E.1 Experimental Results  

E.1.1 Load carrying capacity  
 

The collapse load of PF1 and PF2 can be found in table E1. The total vertical load carrying capacity is 

the sum of the applied vertical load and the additional vertical load due to the sway effect. The total 

horizontal load is the measured horizontal load during the experiment.  

 

Table E1. Total load carrying capacity PF1 and PF2 from experiment (Seraj, Kotsovos, & Pavlovic, 1995). 

Results experiment     

Design Fv (kN) Fh (kN) Failure mode 

PF1 28.5 20 Partially corner D failure and three plastic hinges 

PF2 33.68 19.95 Partially corner D failure and three plastic hinges 

 

The results of the experiment are shown in figure E1.  
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Figure E1. Load versus, vertical displacement (a), horizontal displacement (b), steel strain ϵ11 (c), steel strain ϵ 4 (d), steel 
strain ϵ3 (e) and steel strain ϵ8 (e) due to vertical loading Fv and combined vertical Fv,sway and horizontal loading Fh. (Seraj, 
Kotsovos, & Pavlovic, 1995). 
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E.1.2 Crack pattern PF1 and PF2 (Seraj, Kotsovos, & Pavlovic, 1995) 
  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure E2. PF1 and PF2: location B. Figure E3. PF1 and PF2: location C. 

Figure E4. PF1: location D. 

Figure E6. PF1: location E. 

Figure E5. PF2: location D. 

Figure E7. PF2: location E. 
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E.2 Results NLFE analyses experiment Seraj et al. (1995) 
 

E.2.1  Vertical and horizontal deformation experiment PF1 and PF2 
The vertical and horizontal deformation of PF1 and PF2 resulting from the experiment are shown in 

the figures below. 

 

E.2.2 Vertical and horizontal deformation NLFE analyses PF1 and PF2 
The results of the NLFE analyses for PF1 and PF2 are shown in the figures below.  

 

 

E.2.3 Results PF1 and PF2 and experiment (Seraj, Kotsovos, & Pavlovic, 1995) 
The results of the experiment (Seraj, Kotsovos, & Pavlovic, 1995) and the NLFE analysis are shown in 

the graphs below. The graphs show the comparison for PF1 and PF2 on the left and right side, 

respectively. The straight lines shows the displacement or strain due to the vertical load and the 

dashed lines shows the displacement or strain due to the horizontal load. The stiffness of the non-

linear finite element model differs from the experimental results. This results in a different initial 

displacement or strain (caused by the vertical load) of the NLFE analysis and the experimental results 

when the horizontal load is applied. 

Figure E8. Vertical deflection experiment (Seraj, Kotsovos, & 
Pavlovic, 1995). 

Figure E9. Horizontal displacement experiment (Seraj, 
Kotsovos, & Pavlovic, 1995). 

Figure E11. Horizontal displacement FF1 and PF2. Figure E10. Vertical deflection FF1 and PF2. 
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Figure E17. PF2: bottom strain reinforcement C.  

  

Figure E12. PF1: vertical deflection C. Figure E13. PF2: vertical deflection C. 

Figure E14. PF1: horizontal displacement D. Figure E15. PF2: horizontal displacement D. 

Figure E16. PF1: bottom strain reinforcement C. 

Figure E18. PF1: top strain reinforcement C. Figure E19. PF2: top strain reinforcement C. 
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E.2.4 Mesh refinement 
The results of a coarse and a fine mesh for PF2 are given in the graphs below. The number of 

elements over the height of the beam is 4 (4 e.o.h.) and 6 (6 e.o.h.) for the coarse and the fine mesh, 

respectively. The coarse mesh leads to a loading capacity closer to the experimental results (table 

E1). Also the computational time is less, which is an important criterion since many NLFE analyses 

have to be performed in order to do a safety assessment.  

 

 

The fine mesh leads to earlier corner failure since the stress concentration will be higher. This is 

shown in figure E24 and E25 where a jump in the graph is visible for 𝐹ℎ = 12 kN and 𝐹ℎ = 9 kN for 

Figure E20. PF1: strain reinforcement outer right corner D. Figure E21. PF2: strain reinforcement outer right corner D. 

Figure E22. PF1: strain reinforcement inner right support E. Figure E23. PF2: strain reinforcement inner right support E. 

Figure E24. PF2: vertical deflection C (coarse and fine mesh). Figure E25. PF2: horizontal displacement D (coarse and fine 
mesh). 
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the coarse and the fine mesh, respectively. Even if a corner radius (minimum corner radius is 4φ 

(NEN-EN 1992 -1-1, 2011)) is applied for the fine mesh. The results are shown below.  

 

    

 

 

 

 

 

 

 

 

 

 

 

 

For the total load carrying capacity it is not needed to make a very accurate model of the corner. This 

could be done in a detailed analyses but that is not the scope of this thesis. Since the design of a 

corner with a finer mesh performs only worse and the computational time is higher, there is chosen 

for a coarse mesh with 4 e.o.h. 

Table E2. Results experiment PF2 and NLFE analyses: coarse and fine mesh. 

Results NLFE analyses (4 e.o.h. and 6 e.o.h.) and PF2 (experiment) 

 Fv (N) Fh (N) 

PF2 (experiment) 33680 19950 

NLFE analysis (4 e.o.h.)  23400  19200 

NLFE analysis (6 e.o.h.)  28000  17000 

  

Figure E26. Coarse mesh: Left: mesh and reinforcement, middle: before partial failure (load-factor 0.5) and right: 
after partial failure (load-factor 0.55) 

Figure E27. Coarse mesh: Left: mesh and reinforcement with minimum corner radius 4φ, middle: before partial 
failure (load-factor 0.4) and right: after partial failure (load-factor 0.5) 
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Appendix F Transformation to standard normal variables 
 

F.1 Correlation matrix concrete and reinforcement steel  
According to chapter 2.5.2 the correlated lognormal variables can be transformed to correlated 

normal distributed variables 𝑿 with the mean 𝝁𝑳 and the standard deviation 𝝈𝑳. 

Table F1. Transformation to normal correlated variables. 

Concrete and reinforcement steel       

Variable fc (MPa) fct (MPa) Ec (MPa) Gf (Nmm/mm2) fy,l (MPa) 

 μ 38.00 2.87 33550.60 140.50 560.00 

σ 5.70 0.43 5703.60 28.10 28.00 

Distribution LN LN LN LN LN 

 μL 3.63 1.04 10.41 4.93 6.33 

σL 0.15 0.15 0.17 0.20 0.05 

Distribution N N N N N 

 

After that the correlated normally distributed variables 𝑿 can be transformed to uncorrelated 

standard normally distributed variables 𝑼 using a transformation matrix 𝑻. The matrix 𝑻 is found 

using Cholesky decomposition of the correlation matrix 𝝆 = 𝑻𝑻𝑇. Matrix 𝑻 is found with the 

following Maple script: 

 

𝝆 =

[
 
 
 
 

1 0.932 0.772 0.714 0
0.932 1 0.684 0.8 0
0.772 0.684 1 0.657 0
0.714 0.8 0.657 1 0

0 0 0 0 1]
 
 
 
 

 

 

𝑻 =

[
 
 
 
 

1 0 0 0 0
0.932 0.362 0 0 0
0.772 −0.098 0.628 0 0
0.714 0.371 0.226 0.549 0

0 0 0 0 1]
 
 
 
 

 

 

𝑫 =

[
 
 
 
 
 
𝜎𝐿,1 0 0 0 0

0 𝜎𝐿,2 0 0 0

0 0 𝜎𝐿,3 0 0

0 0 0 𝜎𝐿,4 0

0 0 0 0 𝜎𝐿,5]
 
 
 
 
 

 

 

 

 

 

The transformation from the correlated normally distributed variables 𝑿 to the uncorrelated 

standard normally distributed variables 𝑼 can be expressed as: 

Figure F1. Maple script: Cholesky decomposition 
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𝑿 = 𝝁𝑳 + 𝑫𝑻𝑼   

          

[
 
 
 
 
 
𝑋𝑓𝑐

𝑋𝑓𝑐𝑡

𝑋𝐸𝑐

𝑋𝐺𝑓

𝑋𝑓𝑦,𝑙]
 
 
 
 
 

=

[
 
 
 
 
𝜇𝐿,𝑓𝑐
𝜇𝐿,𝑓𝑐𝑡

𝜇𝐿,𝐸𝑐

𝜇𝐿,𝐺𝑓

𝜇𝐿,𝑓𝑦,𝑙]
 
 
 
 

+

[
 
 
 
 
 
 

𝑈𝑓𝑐  𝜎𝐿,𝑓𝑐

(0.932 𝑈𝑓𝑐 + 0.362 𝑈𝑓𝑐𝑡
) 𝜎𝐿,𝑓𝑐𝑡

(0.772 𝑈𝑓𝑐 − 0.098 𝑈𝑓𝑐𝑡
+ 0.628 𝑈𝐸𝑐

) 𝜎𝐿,𝐸𝑐

(0.714 𝑈𝑓𝑐 + 0.371 𝑈𝑓𝑐𝑡
+ 0.226 𝑈𝐸𝑐

+ 0.549 𝑈𝐺𝑓
) 𝜎𝐿,𝐺𝑓

 𝑈𝑓𝑦,𝑙
 𝜎𝐿,𝐹𝑦,𝑙 ]

 
 
 
 
 
 

   (F.1) 

F.2 Full correlation between concrete properties 
The correlation matrix for concrete and reinforcement when full correlation between the concrete 

properties is assumed is: 

𝝆 =

[
 
 
 
 
 
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0
0 0 0 0 0 1]

 
 
 
 
 

. 

Cholesky decomposition is not possible since the matrix 𝝆 is not positive definitive but it is easy to 

see that 𝝆 = 𝑻𝑻𝑇 leads to the following transformation Matrix: 

𝑻 =

[
 
 
 
 
 
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1]

 
 
 
 
 

. 

The 𝑫 matrix with only the standard deviation on the diagonal terms. The transformation from the 

correlated normally distributed variables 𝑿 to the uncorrelated standard normally distributed 

variables 𝑼 is again expressed as: 

𝑿 = 𝝁𝑳 + 𝑫𝑻𝑼  

[
 
 
 
 
 
 
𝑋𝑓𝑐

𝑋𝑓𝑐𝑡

𝑋𝐸𝑐

𝑋𝐺𝑓

𝑋𝐺𝑐

𝑋𝑓𝑦,𝑙]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝜇𝐿,𝑓𝑐
𝜇𝐿,𝑓𝑐𝑡

𝜇𝐿,𝐸𝑐

𝜇𝐿,𝐺𝑓

𝜇𝐿,𝐺𝑐

𝜇𝐿,𝑓𝑦,𝑙]
 
 
 
 
 

+

[
 
 
 
 
 
 

𝑈𝑓𝑐  𝜎𝐿,𝑓𝑐

𝑈𝑓𝑐  𝜎𝐿,𝑓𝑐𝑡

𝑈𝑓𝑐  𝜎𝐿,𝐸𝑐

𝑈𝑓𝑐  𝜎𝐿,𝐺𝑓

𝑈𝑓𝑐  𝜎𝐿,𝐺𝑐

𝑈𝑓𝑦,𝑙
 𝜎𝐿,𝑓𝑦,𝑙]

 
 
 
 
 
 

        (F.2) 
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Appendix G Level II Reliability Method: Global Safety evaluation 
 

G.1 Case 1: rotational capacity corner D without geometrical reinforcement 

uncertainty 
The global safety assessment of portal frame design 1, 2 and 3 is performed and extensively 

discussed below. 

G.1.1 Design 1 
The safety format with the highest global design resistance, i.e. highest probability of failure, for 

design 1 is the ECOV method. The global design resistance according to the ECOV method is: 𝑅𝑆𝐹 =

36.1 kN. This leads to the following implicit LSF: 

𝐺(𝑿) = 𝑅(𝑿) − 36.1.          

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of 

the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 1 is: 

𝑛 = 2. The first step is to perform three NLFE analyses to calculate the control point 𝑿𝑐. Therefore 

NLFE analyses with mean 𝑿̅, low steel 𝑿𝑓𝑦 = 𝑿̅ − 𝑓𝝈 and low concrete 𝑿𝑓𝑐 = 𝑿̅ − 𝑓𝝈 material values 

are performed. The coordinates of the three points are shown in figure G1.  

 

   

The control point 𝑿𝒄 is calculated below: 

 

step 1: 

select 𝑛 + 1 experimental points:  

𝑿̅ = [
𝜇𝑓𝑦
𝜇𝑓𝑐

],   𝑿𝑓𝑦 = [
𝜇𝑓𝑦 − 𝑓𝜎𝑓𝑦

𝜇𝑓𝑐
],    𝑿𝑓𝑐 = [

𝜇𝑓𝑦

𝜇𝑓𝑐 − 𝑓𝜎𝑓𝑐
],  where 𝑓 = 3.  

 

step 2:   step 3:     step 4: 

𝐺(𝑿̅) = 8.9  𝐹(𝑿𝑓𝑦) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑦) = 5.1 𝑤1 =
𝐹(𝑿𝑓𝑦)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)
= 0.72 

𝐺(𝑿𝑓𝑦) = 3.8   𝐹(𝑿𝑓𝑐) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑐) = 2.0 𝑤2 =
𝐹(𝑿𝑓𝑐)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)
= 0.28 

𝐺(𝑿𝑓𝑐) = 6.9 

Figure G1. The n+1 selected experimental points: mean 𝑿̅, 
low steel 𝑿𝑓𝑦  and low concrete 𝑿𝑓𝑐  material values. 

Figure G2. The control point 𝑿𝑐 in the real space is added. 
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step 5: 

The control point in the standard normal space is determined below. First the log-normal distributed 

variables are transformed to standard normal variables according to chapter 2.5.1.  

𝜎𝑓𝑦 = 28 MPa,      𝜇𝑓𝑦 = 560 MPa,  

𝜎𝑓𝑦,𝐿 = √ln(
𝜎𝑓𝑦

2

𝜇𝑓𝑦
2 + 1) = 0.05 MPa,    𝜇𝑓𝑦,𝐿 = ln 𝜇𝑓𝑦 −

1

2
 𝜎𝑓𝑦,𝐿

2 = 6.327 MPa 

𝜎𝑓𝑐 = 5.7 MPa,      𝜇𝑓𝑐 = 38 MPa,  

𝜎𝑓𝑐,𝐿 = √ln (
𝜎𝑓𝑐

2

𝜇𝑓𝑐
2 + 1) = 0.149 MPa,    𝜇𝑓𝑐,𝐿 = ln 𝜇𝑓𝑐 −

1

2
 𝜎𝑓𝑐,𝐿

2 = 3.626 MPa 

 

𝑼1 =

[
 
 
 
 

 
ln(𝜇𝑓𝑦−𝑓𝜎𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

 

]
 
 
 
 

,    𝑼2 =

[
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

 

]
 
 
 
 

 

 

The control point in the standard normal space: 

𝑼𝑐 = ∑ 𝑤𝑖 𝑼𝑖 =𝑛
𝑖=1 [

−2.31
−1.05

]  

 

The response surface and the real desing point are determined using the following steps: 

 

step 1: 

The control point in the real space: 

𝑿𝑐 = [
exp (−2.31 𝜎𝑓𝑦,𝐿 + 𝜇𝑓𝑦,𝐿)

exp (−1.05 𝜎𝑓𝑐,𝐿 + 𝜇𝑓𝑐,𝐿)
] = [

498.3
32.1

]   and 𝐺(𝑿𝒄) = −1.3  

Wrong iteratation method used so the results of the NLFE analysis is not valid 𝐺(𝑿𝒄) = −1.3 and  

will not be used in the response surface to obtain the design point. The results of the NLFE analyses is 

𝐺(𝑿𝒄) = 5.3 when the right iteration method was used. However the coordinates of the design 

points are still valid so the procedure to find the initial design point can still go on. The coordinates of 

the control point are shown in figure G2.  

Step 2: 

1. Based on the control point 𝑿𝑐 and 𝐺(𝑿𝒄) the first iteration point is calculated according to: 

 𝑿𝑀1 = 𝑿 + (𝑿𝑪 − 𝑿)
𝐺(𝑿)

𝐺(𝑿)−𝐺(𝑿𝑪)
 .  

 

𝑿𝑀1 = [
506.2
32.8

],  𝐺(𝑿𝑀1) =7.2,   |
 𝐺(𝑿𝑀1)

𝐺(𝑿)
| = 0.8 < 0.01  

 

2. No convergence, so the second iteration point is calculated with: 

𝑿𝑀𝑖+1
= 𝑿𝑀𝑖

+ (𝑿𝑀𝑖−1
− 𝑿𝑀𝑖

)
𝐺(𝑿𝑀𝑖

)

𝐺(𝑿𝑀𝑖
)−𝐺(𝑿𝑀𝑖−1

)
. 
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𝑿𝑀2 = [
278.1
11.1

],  𝐺(𝑿𝑀2) = −21.0,  |
 𝐺(𝑿𝑀2)

𝐺(𝑿)
| = 2.36 < 0.01 

The first two iteration point are added in the figures G3 and G4, respectively.  

 

    

 

 

 

 

 

 

 

 

 

 

3. No convergence, so the third iteration point is calculated with: 

𝑿𝑀𝑖+1
= 𝑿𝑀𝑖

+ (𝑿𝑀𝑖−1
− 𝑿𝑀𝑖

)
𝐺(𝑿𝑀𝑖

)

𝐺(𝑿𝑀𝑖
)−𝐺(𝑿𝑀𝑖−1

)
. 

𝑿𝑀3 = [
448.0
27.3

],   𝐺(𝑿𝑀3) = 3.0,   |
 𝐺(𝑿𝑀3)

𝐺(𝑿)
| = 0.34 < 0.01 

4. No convergence, so the fourth iteration point is calculated with: 

𝑿𝑀𝑖+1
= 𝑿𝑀𝑖

+ (𝑿𝑀𝑖−1
− 𝑿𝑀𝑖

)
𝐺(𝑿𝑀𝑖

)

𝐺(𝑿𝑀𝑖
)−𝐺(𝑿𝑀𝑖−1

)
. 

𝑿𝑀4 = [
426.8
25.3

],   𝐺(𝑿𝑀4) = −1.9,  |
 𝐺(𝑿𝑀4)

𝐺(𝑿)
| = 0.22 < 0.01 

5. No convergence, so the fifth iteration point is calculated with: 

𝑿𝑀𝑖+1
= 𝑿𝑀𝑖

+ (𝑿𝑀𝑖−1
− 𝑿𝑀𝑖

)
𝐺(𝑿𝑀𝑖

)

𝐺(𝑿𝑀𝑖
)−𝐺(𝑿𝑀𝑖−1

)
. 

𝑿𝑀5 = [
435.1
26.1

],   𝐺(𝑿𝑀5) = −0.6,  |
 𝐺(𝑿𝑀5)

𝐺(𝑿)
| = 0.067 < 0.01 

6. No convergence, so the sixth iteration point is calculated with: 

𝑿𝑀𝑖+1
= 𝑿𝑀𝑖

+ (𝑿𝑀𝑖−1
− 𝑿𝑀𝑖

)
𝐺(𝑿𝑀𝑖

)

𝐺(𝑿𝑀𝑖
)−𝐺(𝑿𝑀𝑖−1

)
. 

𝑿𝑀6 = [
438.9
26.4

],   𝐺(𝑿𝑀6) = −0.4,  |
 𝐺(𝑿𝑀6)

𝐺(𝑿)
| = 0.04 < 0.01 

7. No convergence, so the seventh iteration point is calculated with: 

𝑿𝑀𝑖+1
= 𝑿𝑀𝑖

+ (𝑿𝑀𝑖−1
− 𝑿𝑀𝑖

)
𝐺(𝑿𝑀𝑖

)

𝐺(𝑿𝑀𝑖
)−𝐺(𝑿𝑀𝑖−1

)
. 

𝑿𝑀7 = [
446.4
27.2

],   𝐺(𝑿𝑀7) = 2.8,   |
 𝐺(𝑿𝑀7)

𝐺(𝑿)
| = 0.31 < 0.01 

Figure G3. The first iteration point 𝑿𝑀1 is added. Figure G4. The second iteration point 𝑿𝑀2 is added. 
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8. No convergence, so the eighth iteration point is calculated with: 

𝑿𝑀𝑖+1
= 𝑿𝑀𝑖

+ (𝑿𝑀𝑖−1
− 𝑿𝑀𝑖

)
𝐺(𝑿𝑀𝑖

)

𝐺(𝑿𝑀𝑖
)−𝐺(𝑿𝑀𝑖−1

)
. 

𝑿𝑀8 = [
439.8
26.5

],   𝐺(𝑿𝑀8) = −0.3,  |
 𝐺(𝑿𝑀8)

𝐺(𝑿)
| = 0.03 < 0.01 

 

9. No convergence, so the ninth iteration point is calculated with: 

𝑿𝑀𝑖+1
= 𝑿𝑀𝑖

+ (𝑿𝑀𝑖−1
− 𝑿𝑀𝑖

)
𝐺(𝑿𝑀𝑖

)

𝐺(𝑿𝑀𝑖
)−𝐺(𝑿𝑀𝑖−1

)
. 

𝑿𝑀9 = [
440.4
26.6

],   𝐺(𝑿𝑀9) = −0.4,  |
 𝐺(𝑿𝑀9)

𝐺(𝑿)
| = 0.04 < 0.01 

10. No convergence, so the tenth iteration point is calculated with: 

𝑿𝑀𝑖+1
= 𝑿𝑀𝑖

+ (𝑿𝑀𝑖−1
− 𝑿𝑀𝑖

)
𝐺(𝑿𝑀𝑖

)

𝐺(𝑿𝑀𝑖
)−𝐺(𝑿𝑀𝑖−1

)
. 

𝑿𝑀10 = [
437.9
26.3

],   𝐺(𝑿𝑀10) = −0.5,  |
 𝐺(𝑿𝑀10)

𝐺(𝑿)
| = 0.06 < 0.01 

Divergence of the design point in the ninth and tenth iteration. 𝑋𝑀8 is closest to convergence and will 

be selected as initial design point.  

step 3: 

Select 2𝑛 + 1 experimental points, where the center point is 𝑿𝑀8: 𝑿𝑖 = 𝑿𝑀8 ± 𝑓𝝈, where 𝑓 = 1, 

because the center point should be close to the real design point. This led to the following sample 

points and corresponding limit state functions: 

𝑿1 = [
439.8
26.5

]  𝐺(𝑿1) = −0.3 

𝑿2 = [
467.8
26.5

]  𝐺(𝑿2) = 1.2 

𝑿3 = [
439.8
32.2

]  𝐺(𝑿3) = −0.6    

𝑿4 = [
411.8
26.5

]  𝐺(𝑿4) = −2.2  

𝑿5 = [
439.8
20.8

]  𝐺(𝑿5) = −1.3 

Figure G5. Iteration point 𝑿𝑀3 is added. Figure G6. Iteration point 𝑿𝑀4, 𝑿𝑀5, 𝑿𝑀6, 𝑿𝑀7 and 𝑿𝑀8 are added. 
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The rotational capacity of corner D has a lot of influence on the structural resistance. Some 

experience of using the NLFE model led to the conclusion that the ratio of the concrete strength and 

the steel yield strength has a large influence on the structural resistance. This ratio determines the 

rotational capacity of the corner and therefore leads to a brittle or ductile failure mode. For this 

reason convergence is hard to achieve. The best way to estimate the design point is to determine a 

lot of points around the estimated design point such that the response surface is an accurate 

approximation of the actual LSF.  

Calculation of the design point with the first 5 points is not possible since this leads to an unrealistic 

shape of the response surface 𝐺(𝑿), especially in the region outside the zone where the sample 

points are chosen. The response surface will be determined in step 4. Therefore some additional 

points will be added to create a more realistic response surface.  

 

The additional cross points for are: 

𝑿𝑖 = 𝑿𝑀8 ± 𝑓𝝈, with 𝑓 = 1.0  

𝑿6 = [
467.8
32.2

]  𝐺(𝑿6) = 1.7 

𝑿7 = [
411.8
32.2

]  𝐺(𝑿7) = −2.2  

𝑿8 = [
411.8
20.8

]  𝐺(𝑿8) = −3.2  

𝑿9 = [
467.8
20.8

]  𝐺(𝑿9) = 0.8 

 

The additional points along the axes are:   The additional cross points are:  

𝑿𝑖 = 𝑿𝑀8 ± 𝑓𝝈, with 𝑓 = 1.5    𝑿𝑖 = 𝑿𝑀8 ± 𝑓𝝈, with 𝑓 = 1.5 

𝑿10 = [
481.8
26.5

]  𝐺(𝑿10) = 1.9   𝑿14 = [
481.8
35.1

]  𝐺(𝑿14) = 5.3 

𝑿11 = [
439.8
35.1

]  𝐺(𝑿11) = 2.9   𝑿15 = [
397.8
35.1

]  𝐺(𝑿15) = −0.1 

𝑿12 = [
397.8
26.5

]  𝐺(𝑿12) = −3.0   𝑿16 = [
397.8
18.0

]  𝐺(𝑿16) = −1.6 

𝑿13 = [
439.8
17.8

]  𝐺(𝑿13) = 0.8   𝑿17 = [
481.8
18.0

]  𝐺(𝑿17) = 0.1 

 

𝑿𝑖 = 𝑿𝑀8 ± 𝑓𝝈, with 𝑓 = 2.0    𝑿𝑖 = 𝑿𝑀8 ± 𝑓𝝈, with 𝑓 = 2.0 

𝑿18 = [
495.8
26.5

]  𝐺(𝑿18) = 3.8   𝑿22 = [
495.8
37.9

]  𝐺(𝑿22) = 5.3 

𝑿19 = [
439.8
37.9

]  𝐺(𝑿19) = −0.1   𝑿23 = [
383.8
37.9

]  𝐺(𝑿23) = −1.4 

𝑿20 = [
383.8
26.5

]  𝐺(𝑿20) = −3.8  𝑿24 = [
383.8
15.1

]  𝐺(𝑿24) = −4.6 

𝑿21 = [
439.8
15.1

]  𝐺(𝑿21) = −1.1  𝑿25 = [
495.8
15.1

]  𝐺(𝑿25) = 2.8 
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Also the ten iteration points 𝑿𝑀𝑖, the control point 𝑿𝑐 and the first three points 𝑿̅, 𝑿𝑓𝑦  and 𝑿𝑓𝑐  are 

used to create a realistic response surface. 

step 4: 

The response surface can be formed after determining the unknown coefficients (see chapter 2.4.1). 

A least squares approach is used to determine the unknown coefficients (which leads to an exact 

results if the number of unknown coefficients is equal to the number of sample points). The 

unknown coefficients can be determined according to: 

𝒃 = (𝑨𝑇𝑨)−1𝑨𝑇𝑮. 

Now the response surface 𝐺(𝑿) can be obtained according to the following equation: 

𝐺(𝑿) = 𝑨𝒃  

 

 

 

  

Figure G7. Response surface (real space). Figure G8. Response surface (real space). 

Figure G9. Response surface (real space). Figure G10. Response surface (real space). 
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However this response surface led to divergence after using the FORM in order to obtain the real 

design point. A design point with a larger reliability index than the initial design point was found. The 

initial design point led to the following results: 

𝑿𝑀8 = [
439.8
26.5

]  𝑼𝑀8 = [
−4.73
−2.30

] 𝛽𝑖𝑛𝑖𝑡𝑖𝑡𝑖𝑎𝑙 = 5.34 𝐺(𝑿𝑀8) = −0.3. 

The first iteration using the FORM in order to obtain the real design led to the following results: 

𝑿1,∗ = [
434.5
28.8

]  𝑼1,∗ = [
−5.05
−1.79

]  𝛽1,𝑅 = 5.36  𝐺(𝑿1,∗) = 3.1.  

The results are graphically presented in figure G13 and G14. Immediately can be seen that there is no 

failure in the first obtained design point since 𝐺(𝑿1,∗) > 0. When more iteration were used to obtain 

the real design point only higher values of the reliability index were obtained. This could not be the 

case since the initial design point 𝑿𝑀8 led to a failure of the structure 𝐺(𝑿𝑀8) < 0 with a lower 

reliability index.  

 

  

Figure G11. Response surface (standard normal space). Figure G12. Response surface (standard normal space). 

Figure G13. Limit state function (standard normal space). Figure G14. Limit state function (real space) and sample 
points. 
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To overcome this divergence the results of the implicit limit state function 𝐺̅(𝑿) with relatively large 

outcomes compared to the real design point were not used to create the response surface since this 

points influence the shape of the response surface in the region of the design point too much. The 

adopted response surface could be used to find the real design point 𝑿∗. This led to the following 

response surface, which is shown in the figures G13 till G18. The difference of the shape of the new 

and the old response surface is best noticeable by comparing figures G11 and G12 with G17 and G18, 

where the response surface is presented in the standard normal space.  

 

 

 

 

 

 

 

 

 

 

  

  

Figure G13. Response surface (real space). Figure G14. Response surface (real space). 

Figure G15. Response surface (real space). Figure G16. Response surface (real space). 

Figure G17. Response surface (real space). Figure G18. Response surface (real space). 
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Step 5: 

The design point is determined after several iterations using the FORM in combination with the 

obtained response surface of step 4. This is shown figures G19 and G20. The coordinates of the 

design point in the standard normal space 𝑼∗, the coordinates in of the design point in the real 

space 𝑿∗, the reliability index 𝛽𝑅 and the sensitivity factors 𝛼𝑅 are: 

 

𝑿∗ = [
441.5
26.7

]  𝑼∗ = [
−4.73
−2.30

]  𝛽𝑅 = 5.26  𝛼𝑅 = [
0.900
0.437

].  

  

 

 

 

 

 

 

  

Figure G19. Limit state function (standard normal space). Figure G20. Limit state function (real space) and sample points. 
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G.1.2 Design 2 
The safety format with the highest global design resistance, i.e. highest probability of failure, for 

design 2 is the PFm. The total global design resistance according to the PFm is: 𝑅𝑆𝐹 = 43.7 kN. This 

leads to the following implicit LSF: 

𝐺(𝑿) = 𝑅(𝑿) − 43.7.          

The response surface is constructed according to the approach of Zhao and Qiu (2013). The first step 

is to perform three NLFE analyses to calculate the control point 𝑿𝑐. Therefore NLFE analyses with 

mean 𝑿̅, low steel 𝑿𝑓𝑦 = 𝑿̅ − 𝑓𝝈 and low concrete 𝑿𝑓𝑐 = 𝑿̅ − 𝑓𝝈 material values are performed. For 

this case 𝑓 = 4.5 because otherwise the influence of the individual stochastic variables on the failure 

load is not correctly expressed by the weight factors 𝑤𝑖. However this is an indication i.e. an intitial 

guess so the correct factor of 𝑓 cannot be predicted in advance. A discussion on choosing the factor 

𝑓 can be found in chapter 7.2.1.4. 

 

 The control point 𝑿𝒄 is calculated below: 

 

step 1: 

select 𝑛 + 1 experimental points:  

𝑿̅ = [
𝜇𝑓𝑦
𝜇𝑓𝑐

],   𝑿𝑓𝑦 = [
𝜇𝑓𝑦 − 𝑓1𝜎𝑓𝑦

𝜇𝑓𝑐
], 𝑓1 = 4.5  𝑿𝑓𝑐 = [

𝜇𝑓𝑦

𝜇𝑓𝑐 − 𝑓2𝜎𝑓𝑐
],   𝑓2 = 4.5.  

 

step 2:   step 3:     step 4: 

𝐺(𝑿̅) = 9.1  𝐹(𝑿𝑓𝑦) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑦) = 8.0 𝑤1 =
𝐹(𝑿𝑓𝑦)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)
= 0.57 

𝐺(𝑿𝑓𝑦) = 1.1   𝐹(𝑿𝑓𝑐) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑐) = 6.0 𝑤2 =
𝐹(𝑿𝑓𝑐)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)
= 0.43 

𝐺(𝑿𝑓𝑐) = 3.1 

step 5: 

𝜎𝑓𝑦 = 28 MPa,      𝜇𝑓𝑦 = 560 MPa,  

𝜎𝑓𝑦,𝐿 = √ln(
𝜎𝑓𝑦

2

𝜇𝑓𝑦
2 + 1) = 0.05 MPa,    𝜇𝑓𝑦,𝐿 = ln 𝜇𝑓𝑦 −

1

2
 𝜎𝑓𝑦,𝐿

2 = 6.327 MPa 

𝜎𝑓𝑐 = 7.2 MPa,      𝜇𝑓𝑐 = 38 MPa,  

𝜎𝑓𝑐,𝐿 = √ln (
𝜎𝑓𝑐

2

𝜇𝑓𝑐
2 + 1) = 0.149 MPa,    𝜇𝑓𝑐,𝐿 = ln 𝜇𝑓𝑐 −

1

2
 𝜎𝑓𝑐,𝐿

2 = 3.626 MPa 

 

𝑼1 =

[
 
 
 
 

 
ln(𝜇𝑓𝑦−𝑓𝜎𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

 

]
 
 
 
 

,    𝑼2 =

[
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

 

]
 
 
 
 

 

The control point in the standard normal space: 

𝑼𝑐 = ∑ 𝑤𝑖 𝑼𝑖 =𝑛
𝑖=1 [

−2.89
−3.15

]  
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The response surface and the real desing point are determined using the following steps: 

step 1: 

The control point in the real space: 

𝑿𝑐 = [
exp (−2.89 𝜎𝑓𝑦,𝐿 + 𝜇𝑓𝑦,𝐿)

exp (−3.15 𝜎𝑓𝑐,𝐿 + 𝜇𝑓𝑐,𝐿)
] = [

484.1
23.5

]   and 𝐺(𝑿𝒄) = 2.6 

step 2: 

The initial design point is found with the same approach as for design 1 using the control point.  

step 3 and 4 (a): 

Around the initial design point four sets of sample points with 𝑓 = 0.5; 1.0; 1.5; 2.0 are used to 

determine the response surface. The sample points are shown in figure G21 and G23.  

 

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

  

Figure G22. Design 2: response surface (standard 
normal space). 

Figure G21. Design 2: response surface (real 
space). 
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step 5 (a): 

After using the FORM a design point is found in the region which is not described by the chosen 

sample points. This is shown in figure G23 and G24. Therefore additional sample points were added 

and the response surface is modified. Therfore step 3 and 4 has been perormed again. 

 

 

step 3 and 4 (b): 

Additional sample points with a high concrete compressive strength are added to have a better 

approximation of the response surface in the region of the added sample points. Otherwise an 

incorrect design point is obtained. The updated response surface is presented in figures G25 till G28.  

 

  

  

Figure G23. Design 2: limit state function (real space). 
Design point obtained with the FORM lies in a region, 
which is not described accurately by the sample points. 

Figure G24. Design 2: limit state function (standard 
normal space). The limit state function is only accurately 
described by sample points (not visible in this figure)) in 
the third quadrant. Therefore the obtained design point 
is not realistic. 

Figure G25. Design 2: updated response surface (real 
space) in order to find the real design point.  

Figure G26. Design 2: updated response surface 
(standard normal space) in order to find the real 
design point. 
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The rotational capacity of corner D has a large influence on the structural resistance and therefore on 

the result of the LSF. The structural resistance of NLFE analyses with sample points close to each 

other can differ significantly. The spreading of the results is shown in figure G27 and G28.   

  

  

  

  

  

  

  

  

  

  

 

 

step 5 (b): 

The design point is determined after several iterations using the FORM in combination with the 

obtained response surface of step 4. This is shown figures G29 and G30. The coordinates of the 

design point in the standard normal space 𝑼∗, the coordinates in of the design point in the real space 

𝑿∗, the reliability index 𝛽𝑅 and the sensitivity factors 𝛼𝑅 are: 

 

𝑼∗ = [
−5.29
−2.25

]   𝑿∗ = [
429.3
26.9

]  𝛽𝑅 = 5.75  𝛼𝑅 = [
0.920
0.391

]. 

 

 

Figure G29. Design 2: updated limit state function (real 
space). Previous design point lies below the new obtained 
design point. 

Figure G28. Design 2: updated response surface (real 
space). The spreading of the results of the implicit LSF 
is clearly visible. 

 

Figure G27. Design 2: updated response surface (real 
space). The spreading of the results of the implicit LSF is 
clearly visible. 

Figure G30. Design 2: updated limit state function 
(standard normal space).  
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G.1.3 Design 3 
The safety format with the highest global design resistance, i.e. highest probability of failure, for 

design 3 is the PFm. The total global design resistance according to the PFm is: 𝑅𝑆𝐹 = 37.0 kN. This 

leads to the following implicit LSF: 

𝐺(𝑿) = 𝑅(𝑿) − 37.0.          

The response surface is constructed according to the approach of Zhao and Qiu (2013). The first step 

is to perform three NLFE analysis to calculate the control point 𝑿𝑐. Therefore NLFE analyses with 

mean 𝑿̅, low steel 𝑿𝑓𝑦 = 𝑿̅ − 𝑓𝝈 and low concrete 𝑿𝑓𝑐 = 𝑿̅ − 𝑓𝝈 material values are performed. For 

this case 𝒇=4.0 because otherwise the influence of the individual stochastic variables on the failure 

load is not correctly expressed by the weight factors 𝑤𝑖. 

 

 The control point 𝑿𝒄 is calculated below: 

 

step 1: 

select 𝑛 + 1 experimental points:  

𝑿̅ = [
𝜇𝑓𝑦
𝜇𝑓𝑐

],   𝑿𝑓𝑦 = [
𝜇𝑓𝑦 − 𝑓1𝜎𝑓𝑦

𝜇𝑓𝑐
], 𝑓1 = 4.0  𝑿𝑓𝑐 = [

𝜇𝑓𝑦

𝜇𝑓𝑐 − 𝑓2𝜎𝑓𝑐
],  𝑓2 = 4.0  

 

step 2:   step 3:     step 4: 

𝐺(𝑿̅) = 7.0  𝐹(𝑿𝑓𝑦) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑦) = 3.0 𝑤1 =
𝐹(𝑿𝑓𝑦)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)
= 0.66 

𝐺(𝑿𝑓𝑦) = 4.0   𝐹(𝑿𝑓𝑐) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑐) = 1.5 𝑤2 =
𝐹(𝑿𝑓𝑐)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)
= 0.33 

𝐺(𝑿𝑓𝑐) = 5.5 

step 5: 

𝜎𝑓𝑦 = 28 MPa,      𝜇𝑓𝑦 = 560 MPa,  

𝜎𝑓𝑦,𝐿 = √ln(
𝜎𝑓𝑦

2

𝜇𝑓𝑦
2 + 1) = 0.05 MPa,    𝜇𝑓𝑦,𝐿 = ln 𝜇𝑓𝑦 −

1

2
 𝜎𝑓𝑦,𝐿

2 = 6.327 MPa 

𝜎𝑓𝑐 = 5.7 MPa,      𝜇𝑓𝑐 = 48 MPa,  

𝜎𝑓𝑐,𝐿 = √ln (
𝜎𝑓𝑐

2

𝜇𝑓𝑐
2 + 1) = 0.149 MPa,    𝜇𝑓𝑐,𝐿 = ln 𝜇𝑓𝑐 −

1

2
 𝜎𝑓𝑐,𝐿

2 = 3.871 MPa 

 

𝑼1 =

[
 
 
 
 

 
ln(𝜇𝑓𝑦−𝑓𝜎𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

 

]
 
 
 
 

,    𝑼2 =

[
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

 

]
 
 
 
 

 

 

The control point in the standard normal space: 

𝑼𝑐 = ∑ 𝑤𝑖 𝑼𝑖 =𝑛
𝑖=1 [

−2.95
−1.97

]  
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The response surface and the real desing point are determined using the following steps: 

step 1: 

The control point in the real space: 

𝑿𝑐 = [
exp (−2.95 𝜎𝑓𝑦,𝐿 + 𝜇𝑓𝑦,𝐿)

exp (−1.97 𝜎𝑓𝑐,𝐿 + 𝜇𝑓𝑐,𝐿)
] = [

482.6
35.4

]   and 𝐺(𝑿𝒄) = 3.9 

step 2: 

The initial design point is found with the same approach as in design 1 using the control point.  

step 3: 

Select extra points around the intitial design points to create the response surface using the same 

approach as for design 1. 

step 4: 

The response surface for the selected points in step 3 is determined below. 

  

Figure G31. Response surface (real space). Figure G32. Response surface (real space). 
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Figure G33. Response surface (real space). Figure G34. Response surface (real space). 

Figure G35. Response surface (standard normal space). Figure G36. Response surface (standard normal space). 
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Step 5: 

The design point is determined using a FORM in combination with the obtained response surface in 

step 4. 

 

1. Now FORM is used to obtain the first iteration of the design point. This is shown figures G37 

and G38. The coordinates of the design point in the standard normal space 𝑼1,∗, the 

coordinates in of the design point in the real space 𝑿1,∗ the reliability index 𝛽1,𝑅 and the 

sensitivity factors 𝛼1,𝑅 are: 

𝑼1,∗ = [
−5.65
−3.45

]  𝑿1,∗ = [
421.7
28.4

]  𝛽1,𝑅 = 6.62  𝛼1,𝑅 = [
0.853
0.521

] 

   

 

 

2. However there is still no convergence of the design point since 𝐺̅(𝑿1,∗) = 2.7. Therefore 

several iteration were performed.  The response surface has changed due to the added 

sample points and is given below.   

 

 

 

 

  

Figure G37. Limit state function (standard normal space). Figure G38. Limit state function (real space). 

Figure G38. Design 3: response surface (real space). Figure G39. Design 3: response surface (standard normal 
space). 



   
 

145 
 

The higher strength class C40 used in design 3 leads to a portal frame, which is very sensitive 

for a ductile or a brittle failure depending on the rotational capacity of corner D. This results 

in a large spreading of the obtained structural resistance for sample points close to each 

other. Therefore the fit of the response surface is not very accurate which is shown in figure 

G40 and G41.  

 

 

 

 

  

  

  

  

  

 

The design point is determined after several iterations using the FORM. This is shown figures 

G42 and G43. The coordinates of the design point in the standard normal space 𝑼∗, the 

coordinates in of the design point in the real space 𝑿∗, the reliability index 𝛽𝑅 and the 

sensitivity factors 𝛼𝑅 are: 

𝑼∗ = [
−4.71
−2.57

]   𝑿∗ = [
442.0
32.35

]  𝛽𝑅 = 5.37  𝛼𝑅 = [
0.878
0.479

] 

 

  

  

 

 

 

Figure G41. Design 3: response surface (standard normal 
space). A lot of spreading in sample points close to each 
other results in a bad fit of the response surface. 

Figure G40. Design 3: response surface (real space). A lot 
of spreading in sample points close to each other results in 
a bad fit of the response surface.  

Figure G42. Design 3: limit state function (real space). 
Previous design point lies below the new obtained 
design point. 

Figure G43. Design 3: limit state function (standard 
normal space).  
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G.2 Case 2: rotational capacity corner D with reinforcement uncertainty due to 

fabrication 

G.2.1 Design 1 
The safety format with the highest global design resistance, i.e. highest probability of failure, for 

design 1 is the ECOV method. The global design resistance according to the ECOV method is: 𝑅𝑆𝐹 =

36.1 kN. This leads to the following implicit LSF: 

𝐺(𝑿) = 𝑅(𝑿) − 36.1.          

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of 

the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 2 is: 

𝑛 = 2. The first step is to perform three NLFE analysis to calculate the control point 𝑿𝑐. Therefore 

NLFE analyses with mean 𝑿̅, low steel 𝑿𝑓𝑦 = 𝑿̅ − 𝑓𝝈, low concrete 𝑿𝑓𝑐 = 𝑿̅ − 𝑓𝝈 and a low cross-

sectional area 𝑿𝐴𝑠
= 𝑿̅ − 𝑓𝝈  values are performed, where 𝑓 = 3 is chosen. The results are 

presented below.  

 

 The control point 𝑿𝒄 is calculated below: 

 

step 1: 

select 𝑛 + 1 experimental points:  

𝑿̅ = [

𝜇𝑓𝑦
𝜇𝑓𝑐
𝜇𝐴𝑠

],  𝑿𝑓𝑦 = [

𝜇𝑓𝑦 − 𝑓𝜎𝑓𝑦
𝜇𝑓𝑐
𝜇𝐴𝑠

],  𝑿𝑓𝑐 = [

𝜇𝑓𝑦

𝜇𝑓𝑐 − 𝑓𝜎𝑓𝑐
𝜇𝐴𝑠

]  and  𝑿𝐴𝑠
= [

𝜇𝑓𝑦
𝜇𝑓𝑐

𝜇𝐴𝑠
− 𝑓𝜎𝐴𝑠

].  

 

step 2:   step 3:     step 4: 

𝐺(𝑿̅) = 8.9  𝐹(𝑿𝑓𝑦) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑦) = 5.1 𝑤1 =
𝐹(𝑿𝑓𝑦)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.48 

𝐺(𝑿𝑓𝑦) = 3.8   𝐹(𝑿𝑓𝑐) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑐) = 2.0 𝑤2 =
𝐹(𝑿𝑓𝑐)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.19 

𝐺(𝑿𝑓𝑐) = 6.9  𝐹(𝑿𝐴𝑠
) = 𝐺(𝑿̅) − 𝐺(𝑿𝐴𝑠

) = 3.5 𝑤3 =
𝐹(𝑿𝐴𝑠)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.33 

𝐺(𝑿𝐴𝑠
) = 5.4 

 

step 5: 

The control point in the standard normal space is determined below. First the log-normal distributed 

variables are transformed to standard normal variables according to chapter 2.5.1.  

𝜎𝑓𝑦 = 28 MPa,      𝜇𝑓𝑦 = 560 MPa,  

𝜎𝑓𝑦,𝐿 = √ln(
𝜎𝑓𝑦

2

𝜇𝑓𝑦
2 + 1) = 0.05 MPa,    𝜇𝑓𝑦,𝐿 = ln 𝜇𝑓𝑦 −

1

2
 𝜎𝑓𝑦,𝐿

2 = 6.327 MPa 

𝜎𝑓𝑐 = 5.7 MPa,      𝜇𝑓𝑐 = 38 MPa,  

𝜎𝑓𝑐,𝐿 = √ln (
𝜎𝑓𝑐

2

𝜇𝑓𝑐
2 + 1) = 0.149 MPa,    𝜇𝑓𝑐,𝐿 = ln 𝜇𝑓𝑐 −

1

2
 𝜎𝑓𝑐,𝐿

2 = 3.626 MPa 

𝜎𝐴𝑠
= 4.712 mm2     𝜇𝐴𝑠

= 235.62 mm2, 
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𝑼1 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦−𝑓𝜎𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

, 𝑼2 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

 and 𝑼3 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝑓 𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

 

 

The control point in the standard normal space: 

𝑼𝑐 = ∑ 𝑤𝑖 𝑼𝑖 =𝑛
𝑖=1 [

−1.54
−0.68
−0.99

]  

 

The response surface and the real desing point are determined using the following steps: 

 

step 1: 

The control point in the real space: 

𝑿𝑐 = [

exp (−1.54 𝜎𝑓𝑦,𝐿 + 𝜇𝑓𝑦,𝐿)

exp (−0.68 𝜎𝑓𝑐,𝐿 + 𝜇𝑓𝑐,𝐿)

−0.99 𝜎𝐴𝑠
+ 𝜇𝐴𝑠

] = [
517.9
33.9
231.0

]   and 𝐺(𝑿𝒄) = 5.6  

 

step 2: 

The initial design point is found with the same approach as shown in Case 1 using the control point.  

step 3, 4 and 5: 

Around the initial design point four sets of sample points with 𝑓 = 1.0; 1.5; 2.0 are used to 

determine the response surface. After the initial design point was found several iteration where 

performed in comination with the FORM to obtain the real design point.  

𝑼∗ = [
−4.09
−0.93
−3.85

]   𝑿∗ = [
455.96
32.7
217.5

]  𝛽𝑅 = 5.69  𝛼𝑅 = [
0.718
0.163
0.677

] 
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G.2.2 Design 2 
The safety format with the highest global design resistance, i.e. highest probability of failure, for 

design 2 is the PFm method. The total global design resistance according to the PFm is: 𝑅𝑆𝐹 = 43.7 

kN. This leads to the following implicit LSF: 

𝐺(𝑿) = 𝑅(𝑿) − 43.7.  

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of 

the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 2 is: 

𝑛 = 2. The first step is to perform three NLFE analysis to calculate the control point 𝑿𝑐. Therefore 

NLFE analyses with mean 𝑿̅, low steel 𝑿𝑓𝑦 = 𝑿̅ − 𝑓𝝈, low concrete 𝑿𝑓𝑐 = 𝑿̅ − 𝑓𝝈 and a low cross-

sectional area 𝑿𝐴𝑠
= 𝑿̅ − 𝑓𝝈  values are performed, where 𝑓 = 4.2 is chosen. The results are 

presented below. 

The control point 𝑿𝒄 is calculated below: 

 

step 1: 

select 𝑛 + 1 experimental points:  

𝑿̅ = [

𝜇𝑓𝑦
𝜇𝑓𝑐
𝜇𝐴𝑠

],  𝑿𝑓𝑦 = [

𝜇𝑓𝑦 − 𝑓𝜎𝑓𝑦
𝜇𝑓𝑐
𝜇𝐴𝑠

],  𝑿𝑓𝑐 = [

𝜇𝑓𝑦

𝜇𝑓𝑐 − 𝑓𝜎𝑓𝑐
𝜇𝐴𝑠

]  and  𝑿𝐴𝑠
= [

𝜇𝑓𝑦
𝜇𝑓𝑐

𝜇𝐴𝑠
− 𝑓𝜎𝐴𝑠

].  

 

 

step 2:   step 3:     step 4: 

𝐺(𝑿̅) = 9.1  𝐹(𝑿𝑓𝑦) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑦) = 7.5 𝑤1 =
𝐹(𝑿𝑓𝑦)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.46 

𝐺(𝑿𝑓𝑦) = 1.6   𝐹(𝑿𝑓𝑐) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑐) = 2.2 𝑤2 =
𝐹(𝑿𝑓𝑐)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.13 

𝐺(𝑿𝑓𝑐) = 6.9  𝐹(𝑿𝐴𝑠
) = 𝐺(𝑿̅) − 𝐺(𝑿𝐴𝑠

) = 7.2 𝑤3 =
𝐹(𝑿𝐴𝑠)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.41 

𝐺(𝑿𝐴𝑠
) = 2.4 

 

step 5: 

The control point in the standard normal space is determined below. First the log-normal distributed 

variables are transformed to standard normal variables according to chapter 2.5.1.  

𝜎𝑓𝑦 = 28 MPa,      𝜇𝑓𝑦 = 560 MPa,  

𝜎𝑓𝑦,𝐿 = √ln(
𝜎𝑓𝑦

2

𝜇𝑓𝑦
2 + 1) = 0.05 MPa,    𝜇𝑓𝑦,𝐿 = ln 𝜇𝑓𝑦 −

1

2
 𝜎𝑓𝑦,𝐿

2 = 6.327 MPa 

𝜎𝑓𝑐 = 7.2 MPa,      𝜇𝑓𝑐 = 38 MPa,  

𝜎𝑓𝑐,𝐿 = √ln (
𝜎𝑓𝑐

2

𝜇𝑓𝑐
2 + 1) = 0.149 MPa,    𝜇𝑓𝑐,𝐿 = ln 𝜇𝑓𝑐 −

1

2
 𝜎𝑓𝑐,𝐿

2 = 3.626 MPa 

𝜎𝐴𝑠
= 5.701 mm2     𝜇𝐴𝑠

= 285.1 mm2, 
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𝑼1 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦−𝑓𝜎𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

, 𝑼2 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

 and 𝑼3 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝑓 𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

 

 

The control point in the standard normal space: 

𝑼𝑐 = ∑ 𝑤𝑖 𝑼𝑖 =𝑛
𝑖=1 [

−2.13
−0.82
−1.72

]  

 

The response surface and the real desing point are determined using the following steps: 

 

step 1: 

The control point in the real space: 

𝑿𝑐 = [

exp (−2.13 𝜎𝑓𝑦,𝐿 + 𝜇𝑓𝑦,𝐿)

exp (−0.82 𝜎𝑓𝑐,𝐿 + 𝜇𝑓𝑐,𝐿)

−1.72 𝜎𝐴𝑠
+ 𝜇𝐴𝑠

] = [
502.8
33.3
275.3

]   and 𝐺(𝑿𝒄) = 4.9  

step 2: 

The initial design point is found with the same approach as shown in Case 1 using the control point.  

step 3, 4 and 5: 

Around the initial design point four sets of sample points with 𝑓 = 1.0; 1.5; 2.0 are used to 

determine the response surface. After the initial design point was found several iteration where 

performed in comination with the FORM to obtain the real design point.  

𝑼∗ = [
−3.615
−2.259
−2.736

]  𝑿∗ = [
466.9
26.8
269.5

]  𝛽𝑅 = 5.07  𝛼𝑅 = [
0.714
0.446
0.540

] 
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G.2.3 Design 3 
The safety format with the highest global design resistance, i.e. highest probability of failure, for 

design 3 is the PFm method. The total global design resistance according to the PFm is: 𝑅𝑆𝐹 = 37.0 

kN. This leads to the following implicit LSF: 

𝐺(𝑿) = 𝑅(𝑿) − 37.0. 

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of 

the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 2 is: 

𝑛 = 2. The first step is to perform three NLFE analysis to calculate the control point 𝑿𝑐. Therefore 

NLFE analyses with mean 𝑿̅, low steel 𝑿𝑓𝑦 = 𝑿̅ − 𝑓𝝈, low concrete 𝑿𝑓𝑐 = 𝑿̅ − 𝑓𝝈 and a low cross-

sectional area 𝑿𝐴𝑠
= 𝑿̅ − 𝑓𝝈  values are performed, where 𝑓 = 3.9 is chosen. The results are 

presented in the below. 

The control point 𝑿𝒄 is calculated below: 

 

step 1: 

select 𝑛 + 1 experimental points:  

𝑿̅ = [

𝜇𝑓𝑦
𝜇𝑓𝑐
𝜇𝐴𝑠

],  𝑿𝑓𝑦 = [

𝜇𝑓𝑦 − 𝑓𝜎𝑓𝑦
𝜇𝑓𝑐
𝜇𝐴𝑠

],  𝑿𝑓𝑐 = [

𝜇𝑓𝑦

𝜇𝑓𝑐 − 𝑓𝜎𝑓𝑐
𝜇𝐴𝑠

]  and  𝑿𝐴𝑠
= [

𝜇𝑓𝑦
𝜇𝑓𝑐

𝜇𝐴𝑠
− 𝑓𝜎𝐴𝑠

].  

 

step 2:   step 3:     step 4: 

𝐺(𝑿̅) = 7.0  𝐹(𝑿𝑓𝑦) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑦) =2.9  𝑤1 =
𝐹(𝑿𝑓𝑦)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.26 

𝐺(𝑿𝑓𝑦) = 4.1   𝐹(𝑿𝑓𝑐) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑐) = 0.4 𝑤2 =
𝐹(𝑿𝑓𝑐)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.04 

𝐺(𝑿𝑓𝑐) = 6.6  𝐹(𝑿𝐴𝑠
) = 𝐺(𝑿̅) − 𝐺(𝑿𝐴𝑠

) = 7.8 𝑤3 =
𝐹(𝑿𝐴𝑠)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.70 

𝐺(𝑿𝐴𝑠
) = −0.8 

 

step 5: 

The control point in the standard normal space is determined below. First the log-normal distributed 

variables are transformed to standard normal variables according to chapter 2.5.1.  

𝜎𝑓𝑦 = 28 MPa,      𝜇𝑓𝑦 = 560 MPa,  

𝜎𝑓𝑦,𝐿 = √ln(
𝜎𝑓𝑦

2

𝜇𝑓𝑦
2 + 1) = 0.05 MPa,    𝜇𝑓𝑦,𝐿 = ln 𝜇𝑓𝑦 −

1

2
 𝜎𝑓𝑦,𝐿

2 = 6.327 MPa 

𝜎𝑓𝑐 = 5.7 MPa,      𝜇𝑓𝑐 = 48 MPa,  

𝜎𝑓𝑐,𝐿 = √ln (
𝜎𝑓𝑐

2

𝜇𝑓𝑐
2 + 1) = 0.149 MPa,    𝜇𝑓𝑐,𝐿 = ln 𝜇𝑓𝑐 −

1

2
 𝜎𝑓𝑐,𝐿

2 = 3.871 MPa 

𝜎𝐴𝑠
= 4.712 mm2     𝜇𝐴𝑠

= 235.62 mm2, 
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𝑼1 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦−𝑓𝜎𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

, 𝑼2 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

 and 𝑼3 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝑓 𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

 

 

The control point in the standard normal space: 

𝑼𝑐 = ∑ 𝑤𝑖 𝑼𝑖 =𝑛
𝑖=1 [

−1.11
−1.70
−2.74

]  

 

The response surface and the real desing point are determined using the following steps: 

 

step 1: 

The control point in the real space: 

𝑿𝑐 = [

exp (−1.11 𝜎𝑓𝑦,𝐿 + 𝜇𝑓𝑦,𝐿)

exp (−1.70 𝜎𝑓𝑐,𝐿 + 𝜇𝑓𝑐,𝐿)

−2.74 𝜎𝐴𝑠
+ 𝜇𝐴𝑠

] = [
529.1
36.8
222.7

]   and 𝐺(𝑿𝒄) = 5.2  

step 2: 

The initial design point is found with the same approach as shown in Case 1 using the control point.  

step 3, 4 and 5: 

Around the initial design point four sets of sample points with 𝑓 = 1.0; 1.5; 2.0 are used to 

determine the response surface. After the initial design point was found several iteration where 

performed in comination with the FORM to obtain the real design point.  

𝑼∗ = [
−4.191
−1.571
−4.015

]  𝑿∗ = [
453.6
37.6
216.7

]  𝛽𝑅 = 6.01  𝛼𝑅 = [
0.697
0.261
0.668

] 
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G.3 Case 3: rotational capacity corner D with uncertainty in the reinforcement 

detailing 

G.3.1 Design 1 
The safety format with the highest global design resistance, i.e. highest probability of failure, for 

design 1 is the ECOV method. The global design resistance according to the ECOV method is: 𝑅𝑆𝐹 =

36.1 kN. This leads to the following implicit LSF: 

𝐺(𝑿) = 𝑅(𝑿) − 36.1.          

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of 

the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 2 is: 

𝑛 = 2. The first step is to perform three NLFE analysis to calculate the control point 𝑿𝑐. Therefore 

NLFE analyses with mean 𝑿̅, low steel 𝑿𝑓𝑦 = 𝑿̅ − 𝑓𝝈, low concrete 𝑿𝑓𝑐 = 𝑿̅ − 𝑓𝝈 and a low cross-

sectional area 𝑿𝐴𝑠
= 𝑿̅ − 𝑓𝝈  values are performed, where 𝑓 = 3 is chosen. The results are 

presented in the below.  

 

 The control point 𝑿𝒄 is calculated below: 

 

step 1: 

select 𝑛 + 1 experimental points:  

𝑿̅ = [

𝜇𝑓𝑦
𝜇𝑓𝑐
𝜇𝐴𝑠

],  𝑿𝑓𝑦 = [

𝜇𝑓𝑦 − 𝑓𝜎𝑓𝑦
𝜇𝑓𝑐
𝜇𝐴𝑠

],  𝑿𝑓𝑐 = [

𝜇𝑓𝑦

𝜇𝑓𝑐 − 𝑓𝜎𝑓𝑐
𝜇𝐴𝑠

]  and  𝑿𝐴𝑠
= [

𝜇𝑓𝑦
𝜇𝑓𝑐

𝜇𝐴𝑠
− 𝑓𝜎𝐴𝑠

].  

 

step 2:   step 3:     step 4: 

𝐺(𝑿̅) = 8.9  𝐹(𝑿𝑓𝑦) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑦) = 5.1 𝑤1 =
𝐹(𝑿𝑓𝑦)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.37 

𝐺(𝑿𝑓𝑦) = 3.8   𝐹(𝑿𝑓𝑐) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑐) = 2.0 𝑤2 =
𝐹(𝑿𝑓𝑐)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.14 

𝐺(𝑿𝑓𝑐) = 6.9  𝐹(𝑿𝐴𝑠
) = 𝐺(𝑿̅) − 𝐺(𝑿𝐴𝑠

) = 6.8 𝑤3 =
𝐹(𝑿𝐴𝑠)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.49 

𝐺(𝑿𝐴𝑠
) = 2.1 

 

step 5: 

The control point in the standard normal space is determined below. First the log-normal distributed 

variables are transformed to standard normal variables according to chapter 2.5.1.  

𝜎𝑓𝑦 = 28 MPa,      𝜇𝑓𝑦 = 560 MPa,  

𝜎𝑓𝑦,𝐿 = √ln(
𝜎𝑓𝑦

2

𝜇𝑓𝑦
2 + 1) = 0.05 MPa,    𝜇𝑓𝑦,𝐿 = ln 𝜇𝑓𝑦 −

1

2
 𝜎𝑓𝑦,𝐿

2 = 6.327 MPa 

𝜎𝑓𝑐 = 5.7 MPa,      𝜇𝑓𝑐 = 38 MPa,  

𝜎𝑓𝑐,𝐿 = √ln (
𝜎𝑓𝑐

2

𝜇𝑓𝑐
2 + 1) = 0.149 MPa,    𝜇𝑓𝑐,𝐿 = ln 𝜇𝑓𝑐 −

1

2
 𝜎𝑓𝑐,𝐿

2 = 3.626 MPa 

𝜎𝐴𝑠
= 23.56 mm2     𝜇𝐴𝑠

= 235.62 mm2, 
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𝑼1 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦−𝑓𝜎𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

, 𝑼2 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

 and 𝑼3 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝑓 𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

 

 

The control point in the standard normal space: 

𝑼𝑐 = ∑ 𝑤𝑖 𝑼𝑖 =𝑛
𝑖=1 [

−1.17
−0.50
−1.47

]  

 

The response surface and the real desing point are determined using the following steps: 

 

step 1: 

The control point in the real space: 

𝑿𝑐 = [

exp (−1.17 𝜎𝑓𝑦,𝐿 + 𝜇𝑓𝑦,𝐿)

exp (−0.50 𝜎𝑓𝑐,𝐿 + 𝜇𝑓𝑐,𝐿)

−1.47𝜎𝐴𝑠
+ 𝜇𝐴𝑠

] = [
527.6
34.9
201.0

]   and 𝐺(𝑿𝒄) = 1.6 

step 2: 

The initial design point is found with the same approach as shown in Case 1 using the control point.  

step 3, 4 and 5: 

Around the initial design point four sets of sample points with 𝑓 = 1.0; 1.5; 2.0 are used to 

determine the response surface. After the initial design point was found several iteration where 

performed in comination with the FORM to obtain the real design point.  

𝑼∗ = [
−0.97
−0.43
−1.94

]   𝑿∗ = [
532.9
35.2
189.9

]  𝛽2,𝑅 = 2.21  𝛼𝑅 = [
0.438
0.195
0.878

] 
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G.3.2 Design 2 
The safety format with the highest global design resistance, i.e. highest probability of failure, for 

design 2 is the PFm method. The total global design resistance according to the PFm is: 𝑅𝑆𝐹 = 43.7 

kN. This leads to the following implicit LSF: 

𝐺(𝑿) = 𝑅(𝑿) − 43.7.  

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of 

the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 2 is: 

𝑛 = 2. The first step is to perform three NLFE analysis to calculate the control point 𝑿𝑐. Therefore 

NLFE analyses with mean 𝑿̅, low steel 𝑿𝑓𝑦 = 𝑿̅ − 𝑓𝝈, low concrete 𝑿𝑓𝑐 = 𝑿̅ − 𝑓𝝈 and a low cross-

sectional area 𝑿𝐴𝑠
= 𝑿̅ − 𝑓𝝈  values are performed, where 𝑓 = 4.2 is chosen. The results are 

presented below. 

The control point 𝑿𝒄 is calculated below: 

 

step 1: 

select 𝑛 + 1 experimental points:  

𝑿̅ = [

𝜇𝑓𝑦
𝜇𝑓𝑐
𝜇𝐴𝑠

],  𝑿𝑓𝑦 = [

𝜇𝑓𝑦 − 𝑓𝜎𝑓𝑦
𝜇𝑓𝑐
𝜇𝐴𝑠

],  𝑿𝑓𝑐 = [

𝜇𝑓𝑦

𝜇𝑓𝑐 − 𝑓𝜎𝑓𝑐
𝜇𝐴𝑠

]  and  𝑿𝐴𝑠
= [

𝜇𝑓𝑦
𝜇𝑓𝑐

𝜇𝐴𝑠
− 𝑓𝜎𝐴𝑠

].  

 

 

step 2:   step 3:     step 4: 

𝐺(𝑿̅) = 9.1  𝐹(𝑿𝑓𝑦) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑦) = 7.5 𝑤1 =
𝐹(𝑿𝑓𝑦)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.26 

𝐺(𝑿𝑓𝑦) = 1.6   𝐹(𝑿𝑓𝑐) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑐) = 2.2 𝑤2 =
𝐹(𝑿𝑓𝑐)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.08 

𝐺(𝑿𝑓𝑐) = 6.9  𝐹(𝑿𝐴𝑠
) = 𝐺(𝑿̅) − 𝐺(𝑿𝐴𝑠

) = 19.4 𝑤3 =
𝐹(𝑿𝐴𝑠)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.67 

𝐺(𝑿𝐴𝑠
) = −10.3 

 

step 5: 

The control point in the standard normal space is determined below. First the log-normal distributed 

variables are transformed to standard normal variables according to chapter 2.5.1.  

𝜎𝑓𝑦 = 28 MPa,      𝜇𝑓𝑦 = 560 MPa,  

𝜎𝑓𝑦,𝐿 = √ln(
𝜎𝑓𝑦

2

𝜇𝑓𝑦
2 + 1) = 0.05 MPa,    𝜇𝑓𝑦,𝐿 = ln 𝜇𝑓𝑦 −

1

2
 𝜎𝑓𝑦,𝐿

2 = 6.327 MPa 

𝜎𝑓𝑐 = 7.2 MPa,      𝜇𝑓𝑐 = 38 MPa,  

𝜎𝑓𝑐,𝐿 = √ln (
𝜎𝑓𝑐

2

𝜇𝑓𝑐
2 + 1) = 0.149 MPa,    𝜇𝑓𝑐,𝐿 = ln 𝜇𝑓𝑐 −

1

2
 𝜎𝑓𝑐,𝐿

2 = 3.626 MPa 

𝜎𝐴𝑠
= 28.51 mm2     𝜇𝐴𝑠

= 285.1 mm2, 
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𝑼1 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦−𝑓𝜎𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

, 𝑼2 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

 and 𝑼3 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝑓 𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

 

 

The control point in the standard normal space: 

𝑼𝑐 = ∑ 𝑤𝑖 𝑼𝑖 =𝑛
𝑖=1 [

−1.19
−0.43
−2.80

]  

 

The response surface and the real desing point are determined using the following steps: 

 

step 1: 

The control point in the real space: 

𝑿𝑐 = [

exp (−1.19 𝜎𝑓𝑦,𝐿 + 𝜇𝑓𝑦,𝐿)

exp (−0.43 𝜎𝑓𝑐,𝐿 + 𝜇𝑓𝑐,𝐿)

−2.80 𝜎𝐴𝑠
+ 𝜇𝐴𝑠

] = [
527.0
36.16
231.7

]   and 𝐺(𝑿𝒄) = −4.5  

step 2: 

The initial design point is found with the same approach as shown in Case 1 using the control point.  

step 3, 4 and 5: 

Around the initial design point four sets of sample points with 𝑓 = 1.0; 1.5; 2.0 are used to 

determine the response surface. After the initial design point was found several iteration where 

performed in comination with the FORM to obtain the real design point.  

𝑼∗ = [
−0.6418
0.000596
−2.0851

]  𝑿∗ = [
541.6
37.6
225.7

]  𝛽2,𝑅 = 2.18  𝛼𝑅 = [
0.294

−0.00027
0.956

] 
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G.3.3 Design 3 
The safety format with the highest global design resistance, i.e. highest probability of failure, for 

design 3 is the PFm method. The total global design resistance according to the PFm is: 𝑅𝑆𝐹 = 37.0 

kN. This leads to the following implicit LSF: 

𝐺(𝑿) = 𝑅(𝑿) − 37.0. 

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of 

the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 2 is: 

𝑛 = 2. The first step is to perform three NLFE analysis to calculate the control point 𝑿𝑐. Therefore 

NLFE analyses with mean 𝑿̅, low steel 𝑿𝑓𝑦 = 𝑿̅ − 𝑓𝝈, low concrete 𝑿𝑓𝑐 = 𝑿̅ − 𝑓𝝈 and a low cross-

sectional area 𝑿𝐴𝑠
= 𝑿̅ − 𝑓𝝈  values are performed, where 𝑓 = 3.9 is chosen. The results are 

presented below. 

The control point 𝑿𝒄 is calculated below: 

 

step 1: 

select 𝑛 + 1 experimental points:  

𝑿̅ = [

𝜇𝑓𝑦
𝜇𝑓𝑐
𝜇𝐴𝑠

],  𝑿𝑓𝑦 = [

𝜇𝑓𝑦 − 𝑓𝜎𝑓𝑦
𝜇𝑓𝑐
𝜇𝐴𝑠

],  𝑿𝑓𝑐 = [

𝜇𝑓𝑦

𝜇𝑓𝑐 − 𝑓𝜎𝑓𝑐
𝜇𝐴𝑠

]  and  𝑿𝐴𝑠
= [

𝜇𝑓𝑦
𝜇𝑓𝑐

𝜇𝐴𝑠
− 𝑓𝜎𝐴𝑠

].  

 

 

 

step 2:   step 3:     step 4: 

𝐺(𝑿̅) = 7.0  𝐹(𝑿𝑓𝑦) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑦) =2.9  𝑤1 =
𝐹(𝑿𝑓𝑦)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.21 

𝐺(𝑿𝑓𝑦) = 4.1   𝐹(𝑿𝑓𝑐) = 𝐺(𝑿̅) − 𝐺(𝑿𝑓𝑐) = 0.4 𝑤2 =
𝐹(𝑿𝑓𝑐)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.03 

𝐺(𝑿𝑓𝑐) = 6.6  𝐹(𝑿𝐴𝑠
) = 𝐺(𝑿̅) − 𝐺(𝑿𝐴𝑠

) = 10.8 𝑤3 =
𝐹(𝑿𝐴𝑠)

𝐹(𝑿𝑓𝑦)+𝐹(𝑿𝑓𝑐)+𝐹(𝑿𝐴𝑠)
= 0.77 

𝐺(𝑿𝐴𝑠
) = −3.8 

 

step 5: 

The control point in the standard normal space is determined below. First the log-normal distributed 

variables are transformed to standard normal variables according to chapter 2.5.1.  

𝜎𝑓𝑦 = 28 MPa,      𝜇𝑓𝑦 = 560 MPa,  

𝜎𝑓𝑦,𝐿 = √ln(
𝜎𝑓𝑦

2

𝜇𝑓𝑦
2 + 1) = 0.05 MPa,    𝜇𝑓𝑦,𝐿 = ln 𝜇𝑓𝑦 −

1

2
 𝜎𝑓𝑦,𝐿

2 = 6.327 MPa 

𝜎𝑓𝑐 = 5.7 MPa,      𝜇𝑓𝑐 = 48 MPa,  

𝜎𝑓𝑐,𝐿 = √ln (
𝜎𝑓𝑐

2

𝜇𝑓𝑐
2 + 1) = 0.149 MPa,    𝜇𝑓𝑐,𝐿 = ln 𝜇𝑓𝑐 −

1

2
 𝜎𝑓𝑐,𝐿

2 = 3.871 MPa 

𝜎𝐴𝑠
= 23.56 mm2     𝜇𝐴𝑠

= 235.62 mm2, 
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𝑼1 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦−𝑓𝜎𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

, 𝑼2 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

 and 𝑼3 =

[
 
 
 
 
 
 

 
ln(𝜇𝑓𝑦)−𝜇𝑓𝑦,𝐿

𝜎𝑓𝑦,𝐿

ln(𝜇𝑓𝑐−𝑓 𝜎𝑓𝑐,𝐿
)−𝜇𝑓𝑐,𝐿

𝜎𝑓𝑐,𝐿

𝜇𝐴𝑠−𝑓 𝜇𝐴𝑠

𝜎𝐴𝑠

 

]
 
 
 
 
 
 

 

 

The control point in the standard normal space: 

𝑼𝑐 = ∑ 𝑤𝑖 𝑼𝑖 =𝑛
𝑖=1 [

−0.87
−1.66
−2.98

]  

 

The response surface is determined using the following steps: 

 

step 1: 

The control point in the real space: 

𝑿𝑐 = [

exp (−0.87 𝜎𝑓𝑦,𝐿 + 𝜇𝑓𝑦,𝐿)

exp (−1.66 𝜎𝑓𝑐,𝐿 + 𝜇𝑓𝑐,𝐿)

−2.98 𝜎𝐴𝑠
+ 𝜇𝐴𝑠

] = [
529.1
36.8
222.7

]   and 𝐺(𝑿𝒄) = −2.8 

step 2: 

The initial design point is found with the same approach as shown in Case 1 using the control point.  

step 3, 4 and 5: 

Around the initial design point four sets of sample points with 𝑓 = 1.0; 1.5; 2.0 are used to 

determine the response surface. After the initial design point was found several iteration where 

performed in comination with the FORM to obtain the real design point.  

𝑼∗ = [
−0.79
−0.30
−2.34

]   𝑿∗ = [
537.7
45.4
180.5

]  𝛽2,𝑅 = 2.49  𝛼𝑅 = [
0.317
0.120
0.941

] 
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Appendix H Python scripts to perform NLFE analyses and 

processing results 
 

H.1 Python script to run NLFE analyses 
In the example below a python script is written to perform three NLFE analyses in Diana 10.1. The 

NLFE models defined in Appendix D are used to change several input parameters.  

 

Figure H1. Python code to open a project. 

The input parameters are given below. To run the three different analyses a for loop is used.  
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Figure H2. Python code to run 3 NLFE analyses 

The results for the displacement of node 559 (midspan C) of the three analyses are exported to .txt 

files. This files can be used to obtain the total load carrying capacity.  

 

Figure H3. Python code to export the results to .txt files. 
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H.2 Python script for processing results 
 

The results of the three analyses are imported. 

 

Figure H4. Python code to import the results from the .txt files. 

Two arrays are created containing the maximum vertical and horizontal load of each analyses. 

 

Figure H5. Python code to store the maximum vertical and horizontal load in an array 

  

The structural resistance according to the ECOV method is defined below. 

 

Figure H6. Total structural resistance according to the ECOV method.  

 

The response surface is determined for Case 1: two stochastic variables, Case 2: three stochastic 

variables with 𝑉𝐴𝑠
=0.02 and Case 3: three stochastic variables with 𝑉𝐴𝑠

=0.10. 
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H.2.1 Case 1: rotational capacity corner D without geometrical reinforcement uncertainty 
Two stochastic variables: 𝑓𝑦 and 𝑓𝑐. The control point is determined with the Python code presented 

in figure H7 based on the results of the NLFE analyses.  

 

Figure H7. Python code to determine the control point based on the results of the NLFE analyses. 

The procedure to find the initial design point is explained in Appendix G. Around the initial design 

points several experimental points are selected to create a response surface. In this example the 

initial design point is 𝑿𝑀8. The steel yield strength coordinates are: 

 

Figure H8. Coordinates steel yield strength corresponding to the used input parameters in the NLFE analyses. 
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The concrete compressive strength coordinates are: 

 

Figure H9. Coordinates concrete compressive strength corresponding to the used input parameters in the NLFE analyses. 

This coordinates are used in Matrix 𝑨 in order to find the unknown coefficients 𝒃. Matrix 𝑨 is given 

below: 

  

Figure H10. Matrix 𝑨 based on the coordinates defined in figure H8 and H9. 
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The results of the corresponding NLFE anlyses are stored in array 𝑮:  

 

Figure H11. The results of the implicit LSF 𝑮 based on the resistance of the NLFE analyses are stored in array 𝑮. 

The unknown coefficients 𝒃 can be determined with a least squares approach according to equation 

(2.27): 

 

Figure H12. The matrix 𝑨 and 𝑮 are used to calculate the unknown coefficients 𝒃 according to equation (2.27). 

The response surface 𝑮̅  based on the NLFE analyses 𝑮 with input parameters 𝑓𝑦 and 𝑓𝑐 is given in the 

standard normal space: 

 

Figure H13. The response surface 𝑮̅ defined in the stand normal space. 

To use a FORM, the partial derivatives of the response surface 𝑮̅:  𝑎1 =
𝜕𝐺̅  

𝜕𝑢1
 and 𝑎2 =

𝜕𝐺̅  

𝜕𝑢2
 are 

calculated with Maple and added to the python script: 

 

Figure H14. Partial derivatives response surface 𝑮̅. 
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Now the FORM is used to determine the design point 𝒖∗ and the reliability index 𝛽𝑅 of the response 

surface 𝑮̅.  

 

Figure H15. Python code to perform the FORM for stochastic variables in the standard normal space. 

The figures used in appendix G to graphically show the response surface, the sample points and the 

LSF are made with the following python scripts: 

 

Figure H16. Python code to plot the response surface in the real space. 
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Figure H17. Python code to plot the response surface in the standard normal space. 

 

 

Figure H18. Python code to plot the limit state function in the standard normal space. The limit state function is in fact the 
contour line of the response surface at height 0. 
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Figure H19. Python code to plot the limit state function in the real space. The limit state function is in fact the contour line of 
the response surface at height 0. 
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H.2.2 Case 2: rotational capacity corner D with reinforcement uncertainty due to fabrication 
Three stochastic variables: 𝑓𝑦, 𝑓𝑐 and 𝐴𝑠. The control point is determined with the Python code 

presented in figure H20 based on the results of the NLFE analyses. 

  

Figure H20. Python code to determine the control point based on the NLFE resutls. 

  

The procedure to find the initial design point is explained in Appendix G. Around the initial design 

points several experimental points are selected to create a response surface. In this example the 

initial design point is 𝑋𝑀1. The steel yield strength 𝑓𝑦 coordinates are: 

 

Figure H21. Coordinates steel yield strength corresponding to the used input parameters in the NLFE analyses. 
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The concrete compressive strength 𝑓𝑐 coordinates are: 

 

Figure H22. Coordinates concrete compressive strength corresponding to the used input parameters in the NLFE analyses. 

 

The cross-sectional area 𝐴𝑠 of the longitudinal reinforcement coordinates are: 

 

Figure H23. Coordinates cross-sectional area longitudinal reinforcement, corresponding to the used input parameters in the 
NLFE analyses. 
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The sample points to create the response surface 𝑮̅ can be shown graphically with the following 

python script: 

 

Figure H24. Python script to plot a graphical representation of the chosen sample points.  

 

 

 

This coordinates are used in Matrix 𝑨 in order to find the unknown coefficients 𝒃. Matrix 𝑨 is given 

below: 

 

  

Figure H25. Graphical representation of the chosen sample points 

Figure H26. Matrix 𝑨 based on the coordinates defined in figures H21, H22 and 23. 
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The results of the corresponding NLFE anlyses are stored in array 𝑮:  

 

Figure H27. The results of the implicit LSF 𝑮 based on the resistance of the NLFE analyses are stored in array 𝑮. 

The unknown coefficients 𝒃 can be determined with a least squares approach according to equation 

(2.27): 

 

Figure H28. The matrix 𝑨 and 𝑮 are used to calculate the unknown coefficients 𝒃 according to equation (2.27). 

The response surface 𝑮̅  based on the NLFE analyses 𝑮 with input parameters 𝑓𝑦, 𝑓𝑐 and 𝐴𝑠 is given in 

the standard normal space: 

 

Figure H29. The response surface 𝑮̅ defined in the stand normal space. 
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To use a FORM, the partial derivatives of the response surface 𝑮̅: 𝑎1 =
𝜕𝐺̅  

𝜕𝑢1
, 𝑎2 =

𝜕𝐺̅  

𝜕𝑢2
 and 𝑎3 =

𝜕𝐺̅  

𝜕𝑢3
  

are calculated with Maple and added to the python script: 

 

Figure H30. Partial derivatives response surface 𝑮̅. 

Now the FORM is used to determine the design point 𝒖∗ and the reliability index 𝛽𝑅 of the response 

surface 𝑮̅.  

 

Figure H31. Python code to perform the FORM for stochastic variables in the standard normal space. 

 

H.2.3 Case 3: rotational capacity corner D with uncertainty in the reinforcement detailing 
Basically the same python script is used as for case 2 only a few modifications are made in order to 

implement a different coefficient of variation 𝑉𝐴𝑠 that is used for case 3. 
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