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Abstract

In order to perform a reassessment of existing structures or design new structures in a more efficient
and economical way non-linear finite element (NLFE) models are used to take into account all non-
linear behavior in reinforced concrete structures. The Model Code 2010 (fib, 2012) suggest several
safety formats to perform non-linear finite element analyses with an intended reliability index S =
3.04. The safety formats seems to be safe for statically determinate structures with a predictable
failure mode. For instance a bending failure in a simply supported reinforced concrete beam.
However it is unclear if the intended safety level is met for statically indeterminate structures. Since
the redundancy of the structural system and the several possibilities to redistribute the internal
forces could lead to unpredictable failure modes.

In this thesis three reinforced concrete portal frame designs are used to evaluate the probability of
failure of the structural resistance determined with the safety formats i.e. the safety of the safety
formats will be assessed. The ductility of the portal frame designs determines the degree of
redistribution of the internal forces. Therefore this case study will focus on three portal frame
designs with all a different ductile behavior. The global design resistance is determined according to
the following safety formats: the global resistance factor method (GRFm), the estimation of a
coefficient of variation (ECOV) method and the partial factor method (PFm). A comparison is made
with the local design resistance of the portal frame designs according to the Eurocode 2 using partial
safety factors.

The reliability level of the structural design resistance according to the least conservative safety
formats is determined for each portal frame design. Several response surfaces were constructed and
the first order reliability method (FORM) was used to determine the reliability level. In case of
relatively low material and geometrical uncertainties the safety formats lead to a structural
resistance that can safely be used i.e. the intended reliability level is met. However when the
detailing uncertainties in concrete frame corners are relatively large these uncertainties should be
implemented in the safety formats. Further research and more experimental results are needed to
make a better estimation of the (model) uncertainties possible.

Finally, the used methods are evaluated and several comments are given on the difficulties of using
those methods. Constructing a response surface in combination with the FORM in order to find the
design point is definitely not an automated process as the mathematical procedures seems to
indicate.
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1 Introduction

The infrastructure is growing old and the traffic load will increase in the coming years. According to
the classic design procedure old concrete bridges are not safe anymore and have to be replaced. The
classic design procedure, which is mainly used in the past for structural concrete elements, is based
on local safety evaluation. This means that the safety condition is evaluated for each element at each
critical cross-section individually. This is a quite conservative approach due to simplified models and
less redistribution of the internal forces, which lead to a conservative load carrying capacity of the
structure.

More sophisticated models, namely non-linear finite element (NLFE) models, can be used to take into
account the redundancy of the structural system and the capacity to redistribute the internal forces.
The failure of one element does not automatically mean that the whole structural system fails.
Therefore a global safety evaluation is needed to evaluate the structural system. In order to extent
the lifespan of the existing concrete bridges, a reassessment using non-linear finite element analyses
can be used to reveal any additional ‘hidden’ load carrying capacity. Therefore existing concrete
structures can still be safe enough to resists the increasing traffic load.

This thesis will focus on a case study of a portal frame, which can for instance be used to support a
bridge. The reinforced concrete portal frame is loaded with a vertical load F, and a horizontal

load Fy,. The vertical load F, can be seen as the sum of the self-weight of the bridge and the traffic
load. The horizontal load F;, represent the wind load on the bridge. The loading model is a huge
simplification from reality but it is only meant to place the portal frame in a context. The portal frame
discussed in this thesis is a small scale design in order to compare the NLFE model with experimental
results. The portal frame is designed using a local safety approach to resist the vertical and horizontal
load FE, and Fj,. Any additional capacity of the portal frame can be found using the safety formats for
NLFE analysis, which are described in the Model Code 2010 (fib, 2012). In this case additional
capacity means additional vertical loading on top of the already present vertical and horizontal

load FE, and Fy,. In order to verify the safety level of the maximum structural resistance according to
the safety formats a safety assessment will be performed in this thesis. The safety level will be
verified using a global safety approach.

1371.5 mm 1371.5 mm

Fv

Fh ]

1725 mm

Figure 1. Reinforced concrete portal frame with loads determined by a local safety evaluation.
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This thesis will deepen the work of Blomfors (2014) and Blomfors et al. (2016) where a large scale
NLFE model of a reinforced concrete frame was analyzed. The safety of two loading histories was
assessed. In one of the cases the safety level of the ECOV method was lower than the intended safety
level, which lead to an unsafe situation. This thesis will focus on the safety of three reinforced
concrete portal frame designs. Each design has a different influence on the ductility of the structure
and therefore the capacity to redistribute the internal forces. In this case the ductility means the
ability of a frame to form a plastic mechanism. A ductile frame can form a plastic mechanism and is
more able to redistribute the internal forces compared to a brittle frame, where a brittle failure
almost immediately lead to the total collapse of the frame.

1.1  Background

1.1.1 Local safety evaluation

The classic design approach for reinforced concrete structures is based on a linear elastic model to
determine the internal forces E resulting from an external load F. The critical section of each
component is designed to resist (resistance: R) the internal forces using a local non-linear model or
empirical model. Subsequently the safety of each element is evaluated using a local safety
evaluation. A local safety evaluation leads often to conservative and uneconomic reinforced concrete
structures. According to the Eurocode O (NEN-EN 1990, 2011) the reliability level is met when the
following local safety check is fulfilled:

E; <Ry, (1.1)

where E,; is the design value of the load effects e.g. internal forces, stresses, etc. resulting from the
external load F; and R, is the corresponding design resistance at the critical section of an element.
The design value of the load effects is defined as (NEN-EN 1990, 2011):

Eq = E(yr,: Frep Xa) aq) 121, (1.1a)

where:

Ysd is the partial factor that accounts for model uncertainties;

Yri = Vf,iVsd is the partial factor for the load, with y; ; the partial factor for
unfavorable fluctuations of F compared to F.,;

Fai =vYri Frep, is the design value of the external load;

Fep =9 Fy is the representative load with 1 is the combination factor and Fj, the
characteristic load;

X4 is the vector with the design material values;

ay is the vector with the design values of the geometrical variables, mostly equal
to the nominal value and in case of significant influence on the structural
safety + Aa.
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The design value of resistance is defined as (NEN-EN 1990, 2011):

Xpi .

RdzR(Jﬂuw) i>1, (1.1b)
YM,i

where:

Yrd is the partial factor that accounts for model uncertainties and also includes n;

the conversion factor considering volume and scale effects and influences of
temperature and humidity;

YMi = VRd Ym.i is the partial factor for the resistance, with y,, the local resistance factor for
unfavorable fluctuations of X compared to X}, and the stochastic nature of n;

Xai= y—’“ is the design material value with X}, is the characteristic material value;
M,i
ag = Apom (£ Aa) is the vector with the design values of the geometrical variables (see

equation (1.1a)).

The partial safety factors for the resistance in a local safety evaluation are related to the
characteristic material values.

1.1.2 Global safety evaluation

The classical linear elastic approach (local safety evaluation) leads to internal forces that can differ
significantly from reality. The stiffness of the structure changes due to the cracking of concrete and
yielding of the reinforcement steel. The redundancy of the structural system and the capacity to
redistribute the internal forces is especially high for statically indeterminate structures. In order to
assess this non-linear material behavior NLFE analyses can be performed, which can account for non-
linear material behavior. A NLFE model is the most accurate model to determine the response of a
structural reinforced concrete system. Especially for a statically indeterminate structure where the
failure of one element does not necessarily lead to the failure of the structural system. Statically
indeterminate structures provides several ways to redistribute the internal forces and can find new
equilibrium paths. Therefore global safety evaluation is needed to assess the safety of the structural
system. The global safety check according to the Model Code 2010 (fib, 2012) is defined as:

Fy <Ry, (1.2)

where: F,; is design value of the external load and R is the design resistance of the structural
system. The design value of the external load F; can be found in the same manner as in equation
(1.1a). The design resistance R, is defined as (fib, 2012):

R, = X 1.2a

d YR YRd ( )

where:

Ry, is the mean value of resistance (determined with a NLFE analysis with mean material
values);

YR is the global resistance factor;

Yrd is the model uncertainty factor.

The partial safety factors for the resistance in a global safety evaluation are related to the mean
material values. The value of the model uncertainty is related to the uncertainty of the non-linear
finite element model. In the Model Code 2010 (fib, 2012) the recommended values are:
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Yra = 1.0 for no uncertainties;
Yra = 1.06 for models with low uncertainties;
Yra = 1.1 for models with high uncertainties.

1.2  Problem description

The safety formats as presented in the Model Code 2010 (fib, 2012) will be used to determine the
design resistance R, of the reinforced concrete portal frame. The design resistance of the structure
according to the corresponding safety format (SF) will be denoted as: Rgr and is determined using a
global safety approach.

A global safety evaluation of equation (1.2) should result in an overall target reliability of at

least: B; = 3.8. However, in this thesis only the resistance side of equation (1.2) will be evaluated
since the main interest is to determine the safety of the design resistance Rgr. Therefore the design
resistance Rgr obtained according to a corresponding safety format should lead to a reliability index
of atleast: fr = ag f; = 0.8 3.8 = 3.04, which corresponds to a probability of failure of pr =
®(—Pr) = 1073, The safety formats seems to be safe for statically determinate structures with a
predictable failure mode and will lead to the intended reliability index Sz (Blomfors, Engen, & Plos,
Evaluation of safety formats for non-linear finite element analyses of statically indeterminate
concrete structures subjected to different load paths, 2016). However it is unclear whether the
safety formats lead to a safe design resistances for statically indeterminate structures. Redistribution
of the internal forces leads to unpredictable failure modes which could influence the safety of the
structure.

In this thesis a safety assessment will be performed for a statically indeterminate reinforced concrete
frame (figure 1). The goal is to find out whether the target reliability S of the safety formats is met
in order to safely use the safety formats. Furthermore a comparison between a local and a global
safety approach will be made in order to find out if a global safety approach could lead to any
additional capacity.

1.2.1 Global safety evaluation of a portal frame using implicit limit state functions

The reliability level S and the probability of failure of the safety formats can be determined with the
following implicit limit state function (Blomfors, Engen, & Plos, Evaluation of safety formats for non-
linear finite element analyses of statically indeterminate concrete structures subjected to different
load paths, 2016):

G(X) = 0,y RKX) — R, (1.3)

where 6,, is the model uncertainty of the NLFE model, R(X) is the total resistance of a NLFE analysis
using stochastic variables X and Ry is the total resistance of the NLFE model according to the
corresponding safety format Rgg. The measure of the total structural resistance is chosen to be the
sum of the vertical and horizontal load (Blomfors, Engen, & Plos, Evaluation of safety formats for
non-linear finite element analyses of statically indeterminate concrete structures subjected to
different load paths, 2016). The measure of the structural resistance is not a real physical quantity.
However, this is not needed since this quantity is only used to determine a possible failure of the
portal frame. The limit state function is implicit since there is no analytical model available to assess
the failure modes. Therefore a NLFE model will be used. This implicit limit state function will be used
to perform a global safety evaluation of the design resistance according to the safety formats.
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1.3 Aim

The aim of this thesis is to evaluate safety assessment methods for a reinforced concrete frame. A
distinction will be made between local and global safety assessment methods. The classical design
approach to obtain the structural design resistance of reinforced concrete structures using a local
safety assessment method is described in the Eurocode 2 (NEN-EN 1992 -1-1, 2011). A global safety
assessment method to obtain the structural design resistance of reinforced concrete structures is
proposed in the Model Code 2010 (fib, 2012). A global safety evaluation should be performed using
the safety formats (Model Code 2010) in combination with non-linear finite element analyses.

The degree of redistribution can have an influence on the safety level, especially for statically
indeterminate structures. The ductility of the portal frame determines the degree of redistribution of
the internal forces. Therefore this case study will focus on three portal frame designs with all a
different ductile behavior:

e Design 1: basic design
e Design 2: higher longitudinal reinforcement ratio (compared to design 1)
e Design 3: higher concrete strength class (compared to design 1)

The case study of three designs of a reinforced concrete portal frame will be used to determine the
structural resistance using a local and a global safety approach. A level |l reliability method will be
used to determine if the intended reliability level S = 3.04 of the safety formats is met in order to
safely use the safety formats. A schematic representation of the safety assessment methods that will
be evaluated is given in figure 2. The dotted line stands for the comparison between the local and the
global safety approach using a level | reliability method. The arrow represents the verification of the
intended reliability level used for the safety formats by means of a level Il reliability method.

s ~ - ~ Ve N
Level I reliability method
Global safety assessment
Safety formats (Model
Code 2010)

Level | reliability method
Local safety assessment
Eurocode 2

Level Il reliability method
Global safety assessment
FORM & Response surfaces

Figure 2. Schematic representation of the safety assessment methods

1.4 Limitations

e  Only the reliability of the structural resistance will be assessed in this thesis

e  Only the total load carrying capacity in ULS will be assessed in this thesis.

e Just three portal frame designs are used to evaluate the safety formats.

e Just one loading path will be assed.

e Just two experimental results where available which lead to less information about the
model uncertainty.

e  Only the first order reliability method (FORM) in combination with a response surface is used
to determine the reliability index.

1.5 Outline of contents
An introduction to the subject of this thesis is made in chapter 1. The problem is introduced and the
aim of this thesis is given. Furthermore the limitations of this thesis are shortly discussed.

Chapter 2 contains a review of reliability theory that is used to calculate the probability of failure of a
structural system. A general introduction is made and after that the used reliability methods are
described to perform a safety assessment.

18



In chapter 3 the safety formats are discussed. The safety formats are used to determine the global
design resistance of a structural system by means of a NLFE model. Only the safety formats which are
presented in the Model code 2010 (fib, 2012) will be discussed in this thesis.

Three different reinforced concrete portal frame designs are presented in chapter 4. The ductility
and therefore the ability to redistribute the internal forces is different for each frame. The main
uncertainty is the rotational capacity of the corner of a reinforced concrete portal frame. Several
detailing possibilities will be elaborated. The three introduced portal frame design have a different
structural resistance. The resistance of each frame is evaluated using a local and a global safety
approach. The resistance obtained from a local design approach is believed to be conservative.
Therefore a global safety approach by means of NLFE analyses in combination with the safety
formats is used to determine if there is any additional capacity. Eventually, the main goal of this
thesis is to determine the safety of the structural resistance obtained by the safety formats (global
safety evaluation). This will be verified in chapter 7.

Chapter 5 contains the structural analysis of an experiment (Seraj, Kotsovos, & Pavlovic, 1995)
performed on two different portal frame designs. The portal frame designs used in this experiment
are similar to design 1 given in chapter 4. The experiment is used to determine the real structural
resistance and to analyze the failure modes of the reinforced concrete portal frames. A local safety
approach according to the Eurocode 2 (NEN-EN 1992 -1-1, 2011) will be used to predict the failure
modes. This failure modes will be compared to the failure modes obtained from the experiment.
Finally, a NLFE model will be created based on the experiment. The structural resistance of the NLFE
model and the experiment will be compared to determine the model uncertainty.

In chapter 6 the uncertainties are explained that have an influence on the structural resistance of a
portal frame. The dominating uncertainties are taken into account based on the influence on the
failure mode.

Chapter 7 contains the global safety assessment of the reinforced concrete portal frame. A level Il
reliability method is used to determine if the intended reliability of the safety formats is met i.e. the
validity of the safety formats will be determined. Three cases are introduced based on the
uncertainties defined in chapter 6 and each case has a different influence on the rotational capacity
of the corner and therefore the structural resistance of the portal frame.

Chapter 8 contains the conclusions of this thesis. Also suggestions for further work will be given.
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2 Review of reliability analysis

2.1  Principles of limit state design
In general a structure is safe when the structural resistance R is larger than the loads S (solicitation).
The limit state function (LSF) is is defined as:

G(X)=R-S. (2.1)

Where the vector X contains n basic variables. The probability of failure equals: py = P[G < 0].
Figure 3 shows the variables S, R and G. If S and R are normally distributed than G = R — S is also
normally distributed with the following mean and standard deviation:

Hg = Ur — Us, (2.2)

og = /0}% + aZ. (2.3)

B-ag I'la
Figure 3. Probability of failure for normally distributed variables R and S (Schneider, 2006).

The reliability index is determined as follows:

—Hc
B = (2.4)
Assuming normally distributed variables R and S and a linear LSF the failure probability can be
calculated according to:

pr = ®(=P). (2.5)

2.1.1 Joint probability density function

The problem G = R — S can also represented with a joint probability density function of the
variables R and S (figure 4). The limit state function G = 0 separates the safe domain G > 0 from
the failure domain G < 0. The probability of failure is equal to volume under the joint probability
density function corresponding to the failure domain.

The distribution for the resistance and the load are fz(r) and f5(s), respectively. If R and S are
independent the joint probability density function is:

frs(r,8) = fr(r) fs(s). (2.6)
The failure probability can be calculated with the following integral:
Pr = [Joco fr() fs(s)drds. (2.7)
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Figure 4. The limit state function and the joint probability density function (Schneider, 2006).

2.1.2 The reliability index in the normalized space
The linear limit state function G (X) for two independent random variables X; and X, can be
represented in the following general form:

G(X) = Qq + a1X1 + a2X2.
The normalized variables can be determined according to:

_ Xi—uxi
U; = —_—.
oxi

This leads to following LSF with the standard normal variables:
G(U) = ag + ay uxy + az Uxz + ay 0x1 Uy + a; ax, Uy,

with equations (2.2), (2.3) and (2.4) this can be rewritten to:
GWU) =p —ayU; — azUs,

where:

,B — _Gotaq Ux110s Uxo
\/(‘11 ox1)%+(az 0x2)?
normal space (figure 5);

—aioxi

is a unit vector normal to the LSF (figure 5).
\/(a1 ox1)%+(az 0x2)?

a=ao; =

Ix u,

g(x)=0 g (u)=0
M “

M Xy i
! 1 —

o,

Figure 5. Linear LSF in real (left) and standard normal (right) space (Sgrensen, 2004).

(2.8)

(2.9)

(2.10)

(2.11)

is the shortest distance from the origin to the LSF in standard
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2.2 Reliability methods

The reliability methods can be divided into groups based on the complexity and the time needed to
perform a safety assessment. Three groups of reliability methods are discussed in this paper, the
level lll, level 1l and level | methods (Jonkman, Steenbergen, Morales-Napoles, Vrouwenvelder, &
Vrijling, 2016).

2.2.1 Level lll methods

Level Il methods determine the probability of failure given by the integral (2.7) exactly. The integral
can be calculated analytically, which is only possible in a limited number of simple cases. The integral
can also be calculated numerically. This is only possible when the number of random variables n is
small. Furthermore Monte Carlo simulations (figure 6) and Importance sampling are possibilities to
calculate the probability of failure exactly.

P

AP v "N

. tﬁh " TR Ty

S e Ceag e FLpl e
Pl

*

*

Figure 6. Level Ill method: Monte Carlo simulation where the probability of failure is found by dividing the number of
outcomes in the unsafe region by the total number of outcomes (Engen, 2017).

2.2.2 Level ll methods

Level Il methods approximate the probability of failure. The non-linear limit state function will be
linearized in the design point, i.e. the point on G(X) = 0 with the highest probability density. The
design point is also the point on G(U) = 0 closest to the origin in the standard normal space (figure
7). In this thesis the first order reliability method (FORM) will be used to determine if the intended
safety level of the safety formats is met.

Figure 7. Level Il method: the reliability index is found by locating the point on g(U) = 0 closest to the origin in the standard
normal space (Engen, 2017).

2.2.3 Level | methods

Level | methods are semi-probabilistic methods. The distributions of the stochastic variables are used
to determine the characteristic value of the corresponding variable. The characteristic value for the
resistance is a low percentile and for the load a high percentile of the probability density function.
Furthermore partial factors y’s are used to calculate the design values. The partial factors are derived
using a level Il method. Therefore the design procedure in the Eurocode according to the local safety
evaluation is a level | method. Also the global safety evaluation used for the safety formats as
presented in the Model Code 2010 (fib, 2012) is a level | method since a global safety factor is used.
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Figure 8. Level | method: the nominal values for the basic variables x;;, are scaled with partial factors y; in order to impose
an intended safety level (Engen, 2017).

2.3 First order reliability method

The first order reliability method (FORM) is a level Il approximation method. The explicit limit state
function (LSF) should be linear and contain normally distributed variables in order to calculate the
probability of failure with equation (2.5). An explicit LSF can be expressed with an analytical model in
contrast to an implicit LSF as defined in equation (1.3), which is given by a NLFE model. A non-linear
explicit LSF can be linearized in a certain point using a first order Taylor expansion (Jonkman,
Steenbergen, Morales-Napoles, Vrouwenvelder, & Vrijling, 2016):

n 96G(x;
=1 gx;

G=G(x))+Y X; — x7). (2.12)

This leads to an approximation of the LSF with the following general form:
G =ay+2L,aX;, (2.13)

96(x})

where a; = and ay = G(x;) — X, a;x{ are the constant coefficients of the linear equation.

In order to reduce the error, the non-linear LSF should be linearized in the design point, which is the
point on the LSF with the highest probability of failure. Therefore, the reliability index is the shortest
distance from the LSF (design point) to the origin when the stochastic variables are transformed to
the standard normal space:

B = rzn=1(r)1 <4/ i=1 Ui2>- (2.14)
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2.3.1 FORM real space
The design point, the reliability index and the corresponding probability of failure can be determined
using an iterative process with an explicit limit state function in the real space:

1. Estimate the design point x; (start with y;).
2. Linearize the LSF G (X4, X5, .., X;;) function according to equation (2.13). Therefore the
following constants should be determined:
i =2 and ag = G(x]) — LIy aixi.
3. Calculate the mean, standard deviation, reliability index, sensitivity factors and the new
design point with the following formulas:

Ue = Qo + Xizq a; U, (2.15)
g = [ Xieq(a; 0)*]Y2, (2.16)
B = ‘;—Z (2.17)
a; = ;’—G a;, (2.18)
x; = —a; B oy (2.19)

4. Check convergence with: |B;41 — Bil < € (e.g. € = 1073). If convergence is not achieved
proceed with step 1.
5. Calculate the probability of failure p; = ®(—f).

2.3.2 FORM standard normal space

The design point, the reliability index and the corresponding probability of failure can be determined
using an iterative process with an explicit limit state function in the standard normal space
(Serensen, 2004):

1. Guessuy, (vector containing first guess of the design point)
seti = 0.

2. Calculate g(u;) (explicit LSF).
Calculate Vg (u;) (vector containing partial derivatives % at place i).

Calculate an improved guess of the 8 point:

_ Vg ) Tu'- g(uy)
ui+1 - Vg(ul) Vg(Ui)TVg(Ui) . (2.20)

5. Calculate the corresponding reliability index:
Bivr = (Wir1) Uiy (2.21)
6. Check convergence with: |B;,1 — Bi| < € (e.g. € = 1073). If convergence is not achieved
theni =i+ 1 and proceed with step 2.

When convergence is achieved the reliability index 8 = B;,4, the probability of failure is p; =
@ (—p), the design point is u, = u;, 1 and the vector a containing the sensitivity factors can be
determined with:

_ Vg
Vg I (2.22)

24



2.4 Response surface method in combination with the FORM

The use of a NLFE model results in an implicit limit state function (LSF) since there is no analytical
expression available for the LSF. In order to find the design point for an implicit LSF, a response
surface can be fitted to the results of the NLFE model. The actual LSF G (X) can be replaced by a
response surface E(X), which is usually a quadratic polynomial function with undetermined
coefficients (Engen, 2017):

G(X)~G(X)=Ab+e, (2.23)

where G (X) is the response surface based on several NLFE analyses with stochastic variables X, the
matrix A contains the powers of the random variables X, the vector b contains the undetermined
coefficients and e is error term. The model uncertainty can be included by multiplying equation
(2.23) with the model uncertainty 6,,, and can be treated as a stochastic variable.

The error term e is due to an approximation of the NLFE analyses with a polynomial function and is
assumed to have a mean equal to zero and an unknown standard deviation i.e. e~N (0, 5?) (Engen,
2017). In this thesis it is assumed that the coefficient b are deterministic i.e. neglecting the
uncertainty introduced by the response surface and the correlation between the coefficients (Engen,
2017). The approximation error in terms of the failure probability will be very small and can be
neglected if the experimental points are chosen in a judicious way (Zhao & Qiu, 2013).

The response surface method is often combined with the FORM following an iterative approach
(Engen, 2017):

1. Fitthe response surface to a set of experimental points. The first set of experimental points
are usually centered on the mean values of the random variables.

2. Find the location of the design point by using the FORM.

3. Find a new center for the experimental points based on the design point.

4. Check for convergence.

In order to reduce the number of iterations needed to find the design point (reduction of NLFE
analyses) several studies have been performed to optimize step 3 (Engen, 2017). The approaches of
Bucher and Bourgund (1990) and Zhao and Qiu (2013) are treated in this thesis.

2.4.1 Approach Bucher and Bourgund (1990)

The actual LSF G (X) is replaced by the response surface E(X) which is a usually a quadratic
polynomial function without cross terms:

GX)=a+Xk by x; + Xy ¢ x7, (2.24)

where n is the number of random variables X and a, b; and c; are the 2n + 1 undetermined
coefficients. Without cross terms the function basically represents the actual LSF G (X) along the
coordinate axes. The undetermined coefficients a, b; and c; can be solved by performing 2n + 1
NLFE analyses of E(X). The following 2n 4+ 1 experimental points are suggested to perform the NLFE
analyses: the mean values X and X; = X; + f; 6;. In which f; is an arbitrary factor and o; is the
standard deviation of the considered variable. The value f = 3 is recommended in several papers
(Zhao & Qiu, 2013). The points should also lie along the axes (figure 9) since there are no cross terms
used in the RSF (equation (2.24)).
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Figure 9. Example of experimental points to obtain the RSF two random variables are considered: points along the
coordinate axes indicated with ° (mostly used for a RSF without cross terms) and other possible experiment points (could be
added for a RSF with cross terms) indicated with * (Rajashekhar & Ellingwood, 1993).

The response surface can also be written in matrix notation:
G(X) = Ab, (2.25)

where 4 = [1, x4, x5, x2, x2] is the matrix that contains the powers of random variables and b =

[a, by, by, cq,c,]7 is the vector of undetermined coefficients when only two random variables are
considered. The sample space is saturated when the number of undetermined coefficients is equal to
the number of sample points. The coefficients can be determined with the following expression:

b=A71gG, (2.26)

where G is a vector with NLFE analyses results of the experimental points. When the sample space is
over-saturated. In this case there are more experimental points than undetermined coefficients. The
coefficients b can only be determined by means of a least squares approach (Eklund, Skorve, &
Strand, 2017):

b= (ATA)4ATG. (2.27)

In order to reduce the number of NLFE analyses an over-saturated sample space should be avoided.
When more accuracy is needed the cross terms can be included in the RSF:

G =a+ YL bix;+ Yo x4 Tie; X dij x; x;. (2.28)
More experimental points in figure 9 should be used to determine all coefficients.

The response surface G (X) with known coefficients b is used to make a first estimation of the design
point X with the use of FORM. When X is found, G (Xp) is evaluated with a NLFE analysis and the

new center point X, is chosen on a straight line from the mean vector X to X such that G(X) = 0
at the new center point Xy i.e.,

_v v X
Xu=X+(Xp—-X) ) oy (2.29)

The new center point X, is used instead of X to obtain new experimental points and a new RSF can

be determined. The process is repeated until X is sufficiently stable. The response surface E(X) and
the design point Xp is found.
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Figure 10. Schematic sketch of the suggest procedure (Bucher & Bourgund, 1990).

2.4.2 Approach Zhao and Qiu (2013)

Zhao and Qiu (2013) have improved the approach of Bucher and Bourgund (1990) in order to reduce
the number of NLFE analyses needed to find the design point. Therefore the control point of
experimental points is constructed. The control point is constructed in such a way that the center of
the experimental points lies exactly on the failure surface and is close to the actual design point. The
control point can be constructed in with the following steps (Zhao & Qiu, 2013):

1. Selectn + 1 experimental points, X and X; = X; — f; 0; with f = 3.
2. Perform n 4+ 1 NLFE analyses of the experimental point selected in step 1 and determine

G(X ) and G(X)).
3. Calculate the differences between G()_() and G(X;), as follows:

FX)=6(X)- GX),i=12,..,n (2.30)
4. The weight of each experimental point is determined:
F(X;)

w, = =22 i =12 . n. 2.31
S SR (2.31)

5. The control point in the standard normal space is:

Uc=Xi-iwU;, (2.32)
where:

U;=(X;—X)./o, (2.33)
where the symbol ./ represents the division of the corresponding component between two
vectors.

The control point in the actual space can be calculated with:
X.=U,..x0o+X, (2.34)
where the symbol .X represents the product of the corresponding components between two vectors.

The design point and the reliability index can be found using the following iterative procedure (Zhao
& Qiu, 2013):

1. Determine the control point with equation (2.34).
2. The new center point X;, can be determined with:

XMi+1_XMi+(XMi—1_XMi)m' (235)
For the first iteration equation (2.35) is expressed as:
Xy =X+ (X, - X)X __ (2.36)

G(X)-G(X¢)

27



Check the convergence. If the convergence is not achieved, repeat equation (2.35) for a new
iteration. The convergence criterion is as follows:

G(XMi+1)

e <e. (2.37)

This criterion with the maximum error e.g. € = 0.001 guarantees that X, lies on the
original limit state surface and does not deviate from the actual design point excessively.

3. Select 2n + 1 experimental points depending on the center point X;; and X; = Xy * f; 0},
where f = 1 since the region close to the design point gives the main contribution to the
failure probability.

4. Determine the response surface E(X) given in (2.25).

Apply FORM to determine the design point and calculate the reliability index 3.

6. Delete the old design point. The updated set of experimental points is the new design point
as center point in combination with the previously selected experimental points (in total
2n + 1 experimental points). Go to step 4 for a new iteration.

7. Check convergence.

8. If the convergence is not achieved, go to step 4.

4

Convergence criteria:

e The reliability indices of two subsequent iterations are almost the same:

ﬂi+1—ﬂi
Bi+1

<e. (2.38)

e The LSF at the design point U™ is close to zero:

|ai(u*)
G(X)

(2.39)

The maximum error is for example € = 0.001.
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2.5 Transformation of log-normal and correlated variables

In order to perform a first order reliability analysis for correlated and non-normal variables they are
transformed to their corresponding normal variables. Only the transformation of lognormal to
normal distributed variables is presented in this thesis. Normal correlated variables can be
transferred to normal uncorrelated variables using Cholesky triangulation (Sgrensen, 2004).

2.5.1 Transformation of lognormal variables
The lognormal distribution function of variable X with expected value y and standard deviation ¢ is
presented below (Sgrensen, 2004):

Fe(x) = @ (F2L), (2.40)

oL

where:

o, = /1n (Z—z+ 1) and y, =Inpu —% af. (2.41)

The transformation of the lognormal to a normal distribution can be performed by:
D (U;) = Fx, (X)), (2.42)

where: U;~N(0,1) is a standard normal variable and ®(U;) is the corresponding cumulative density
function.

d(u) = @ (‘“’;—:“L) (2.43)
x = exp(op, u+ u). (2.44)

This leads to a normally distributed variable Y = In(X)~N(y;, a;,) with expected value y; and
standard deviation ;. The mean and the standard deviation can be found with equation (2.41). The
transformation of the real x space to the standard normal u space can be obtained using equation
(2.44).
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Figure 11. Relation between normal and log-normal distribution (De Vuyst, 2018).
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2.5.2 Transformation of normal correlated variables

Cholesky triangulation is used to transform the correlated normally distributed variables X =

Xi, .., Xy, with mean values py,, .., iy, , standard deviations gy, .., oy, and correlation coefficient
matrix p = p;j,i,j = 1..n to uncorrelated normally distributed variables. If the correlated variables
are transformed from lognormal to normal the correlation coefficient matrix p is transformed to p’
(difference between p and p’ is negligible for small coefficients of variation). The correlation matrix
coefficient matrix is defined as:

[ 1 Px,x, leXn]
1

p= |.0X?X2 : : pX?Xn |, (2.45)

|.pX1Xn Px,x, 1
where:

Cov[X1X,]
Px,x, = % and Cov[X,X;] = E[(X; — .le)(Xz - .UXZ)]- (2.46)
X1YX2
Xi—Ux.
The normal variables X; are transformed to the normalized variables Y; = GHX’ to obtain the
Xi

vector Y. The vector Y is transformed to the normalized and uncorrelated variables U with a lower
triangular transformation matrix T (i.e. T;; = 0 for j > {). The covariance matrix Cy for ¥ can be
written as (Sgrensen, 2004):

Cy = E[YYT] = E[TUUTTT] = TE[UUT]TT = TTT = p. (2.47)
The matrix T can be formed by using TTT = p which results in (Cholesky decomposition):

Tll == 1
T21 = p12 Ty =1- T
P23—T1T-
T31 = p13 T3, = % T33 =y1—T5 —T5

etc. (2.48)
The transformation from X to U is:
X = ux + DTu, (2.49)

where D is a diagonal matrix with the standard deviations in the diagonal and X~N (uy, DT) is a
normally distributed variable with expected value py and standard deviation DT.
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3 Review of safety formats for non-linear analysis

In order to determine a safe structural resistance of a structural system by means of the global safety
approach using a NLFE model, the Model Code 2010 (fib, 2012) suggest several safety formats. The
Safety formats are divided into two groups, namely the global resistance methods and the partial
safety method.

3.1 General
The general design condition is formulated in equation (1.2):

Fy < Ry,

Rm

where F; is the design value of the external load and R; = is the design resistance. The global

YR VRd
resistance factor yj is dependent from the chosen Safety Format and the value of the model

uncertainty is ypq = 1.06 for models with low uncertainties.

3.2  Global resistance methods

The global resistance factor method (GRFm) and the estimation of a coefficient of variation of
resistance method (ECOV) are the two global resistance methods according to the Model Code 2010
(fib, 2012). Each global resistance method has a different way to determine the global resistance
factor.

3.2.1 Global resistance factor method (GRFm)

This safety format determines the design resistance R; with a NLFE analysis with the input of mean
GRF material parameters with the same (scaled) global resistance factor for each material (Appendix
A.1).

The design resistance is calculated from:

r(fERF ...

R; = —, 31
a YR YRd ( )

where:

r(f,5RF,..) is the function 7 calculate the resistance of the NLFE analysis with mean GRF

input material;
yr = 1.2 is the partial factor of the resistance (Appendix A.1);
Yra = 1.06 is the model uncertainty.

The input values for the NLFE analysis for steel and concrete can be calculated with following
formulas (Appendix A.1):

yC#l?F =1.1 fyk' (3.2)

GRE = (0.85 f. (3.3)
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3.2.2 Estimation of a coefficient of variation of resistance method (ECOV)

Probabilistic studies indicate a log-normal distribution function (fib, 2012) for the resistance of
reinforced concrete beams. The mean and characteristic resistance determine the two-parameter
lognormal distribution. From this log-normal distribution the global resistance factor y can be
calculated. The design resistance is defined as:

Rd - YRVYRd (34)

where:

Rm is the mean resistance obtained from NLFE analysis with mean input
parameters;

Yr is the global resistance factor;

Yra = 1.06 is the model uncertainty factor.

To determine the two-parameter lognormal distribution two non-linear finite element analyses
should be performed resulting in:

Ry, =1v(fr ), (3.5)
Rk = T(fk,...). (36)
where:

(fr ) represents a NLFE analysis with mean input parameters;

(frer ) represents a NLFE analysis with characteristic input parameters.

The coefficient of variation of the resistance can be calculated according to (Appendix A.2):

Ve =——In (f?—’:) (3.7)

The global resistance factor is defined as (Appendix A.2):

Ve = 1;_1;1 — e%RBVR = 304Vg (3.8)
where:

ap =0.8 is the sensitivity factor (dominant strength parameter);

B = 3.8 is the target reliability index;

Vi is the coefficient of variation.

The ECOV method has the advantage that the f factor could be changed in order to fulfill the
required safety level. The reliability of this method depends strongly on the selection of the relevant
material parameters for the corresponding failure mode.
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3.3 Partial factor method (PFm)

The input for the material parameters in the NLFE analysis are the design values. The low material
values can cause unrealistic redistribution of the internal forces. This may cause deviations in the
structural response. The failure mode of the NLFE analysis could be different from the real failure
mode. However case studies indicate that the partial factor method can be used as a safe solution
(fib, 2012). The design values of the materials can be obtained with the partial safety factor yy,
which consist of a factor for a material property y,, and a factor for the model uncertainty yz4:

YM = Vm VYRd- (3.9)

Therefore no global resistance factor is needed for this safety format. The resistance R; of the NLFE

analysis can be calculated according to:

Rd = r(fd' ), (310)

where:
r(fg, ) represents a NLFE analysis with design input parameters.
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4 Three designs of a concrete frame based on ductility

Three reinforced concrete portal frame designs will be described in this chapter. The three designs
are used to determine the influence of ductile behavior and redistribution of internal forces on the
structural safety. The structural resistance will be determined using a Level | reliability method on
local and a global level. After that there will be determined if there is any additional capacity. This
chapter describes the three portal frame designs in detail. The safety of the global structural
resistance obtained by the safety formats will be assed in chapter 7 using a global level Il reliability
method.

First several corner reinforcement detailing possibilities will be presented in chapter 4.1. Secondly
chapter 4.2 presents the three portal frame designs i.e. the dimensions, corner reinforcement, the
longitudinal reinforcement, the shear reinforcement, steel grade and the concrete strength class of
the three reinforced concrete frames by means of a description and technical drawings.
Subsequently in chapter 4.3 a level | reliability method is used to perform a local safety check to
determine the structural resistance of the three portal frame designs according to the Eurocode 2
(NEN-EN 1992 -1-1, 2011). In chapter 4.4 a Level | reliability method is used on global level to
determine the structural resistance of the three portal frame designs according to the Model Code
2010 (fib, 2012). In this way the failure modes predicted with a local and global safety approach can
be compared. Finally in chapter 4.5 there will be determined if there is any additional capacity by
comparing the structural resistance of a local and a global level approach.

4.1  Reinforcement detailing in concrete frame corners

The ductility of the portal frame determines the degree of redistribution of internal forces. The
forming of plastic hinges in the plastic frame leads to more or less redistribution of the internal
forces. In order to have a ductile frame behavior the bending moment resistance of the corner
should be at least equal to the bending moment resistance of the members. Therefore an important
part of the frame design is the detailing of the corners. The ductility of the corner is in fact the
rotational capacity.

The corner reinforcement is based on a strut and tie model. The corners of a reinforced concrete
portal frame should be able to resist an opening and a closing moment. However in this thesis the
loading is defined is such a way that corner B is subjected to an opening moment and corner D to a
closing moment. The strut and tie models for corner B subjected to an opening moment and corner D
subjected to a closing corner are presented in figure 12.

Figure 12. Strut and tie model for an opening moment (left, corner B) and a closing moment (right, corner D) (Johansson,
2000).

Both corners B and D can be reinforced according to the longitudinal reinforcement detailing
(without the inclined bar, which is only needed for opening moment) presented in figure 13 (a) and
(b). Figure 13 (a) shows the detailing with spliced bars, where an inclined bar is used to resist an
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opening moment. Figure 13 (b) is the conventional detailing of a corner subjected to a closing

moment. The longitudinal reinforcement with spliced bars in figure 13 (a) is easier to place compared
to the longitudinal reinforcement of figure 13 (b) (Johansson, 2000).

e ™ / Y N
.. |

™
inclined bar

(3} (&)

Figure 13. Reinforcement detailing with spliced bars (inclined bar for opening moment) (a) and the conventional
reinforcement detailing (b) (Johansson, 2000).

The inclined bar (figure 13 (a)) should prevent the occurrence of a diagonal crack (figure 15 (a), crack
1) as result from an opening moment. However the inclined bar is not as effective as was believed in

the past and could be replaced by enough longitudinal reinforcement. (Johansson, 2000). This is
shown in figure 14.

Figure 14. Replacement inclined bar with enough longitudinal reinforcement to resist an opening moment (Johansson, 2000).

The failure modes of the corners subjected to an opening and closing moment are presented in
figure 15. A corner subjected to an opening moment is sensitive for secondary cracks. Additional

radial stirrups can be added perpendicular to the expected secondary crack to increase the corner
capacity (figure 15 (b)).

Kﬂ: / T) ‘; [ s ‘?j (h \I. \
—y

(a) (b) (c)

Figure 15. Failure modes corner subjected to an opening moment without (a) and with radial stirrups (b) and corner
subjected to a closing moment (c) (Johansson, 2000).
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4.2  Portal Frame designs

The linear elastic moment distribution as result from the external loading is given in figure 16. The
reinforced detailing should be able to resist an opening and a closing moment. The opening moment
in corner B is relatively low due to the external loading. No additional corner reinforcement, i.e. an
inclined bar and/or radial stirrups, is necessary in corner B. In figure 14 is already shown that enough
longitudinal reinforcement can replace the inclined bar. Therefore corner B (opening moment) and
corner D (closing moment) of the three portal frame designs are equipped with the same
reinforcement detailing as presented in figure 15 (a) and (c) for corner B and D, respectively.

The largest linear elastic moments exist in C, D and E (figure 16) as results of the vertical loading F, in
C and the horizontal loading Fj, in B. If the plastic hinges show a ductile behavior the frame is capable
to resist a larger additional vertical load compared to a frame with a more brittle behavior. Especially
corner D is vulnerable to show a brittle behavior due to a large stress concentration.

1371.5mm  1371.5 mm

Fv

1725 mm

Figure 16. Linear elastic moment distribution resulting from Fv and Fh.

The portal frame shows a ductile behavior if the plastic moment resistance of an abutting member is
equal or smaller than the plastic moment resistance of the corner (Johansson, 2000). Due to the
external loading, corner D is exposed to a closing moment. The failure mode of a corner subjected to
a closing moment is mainly determined by a concrete compressive failure (Johansson, 2000). The
ductility of corner D can be improved by placing additional longitudinal reinforcement or using a
higher concrete strength class. No additional reinforcement is placed in the corners since this mainly
improves the ductility of a corner subjected to an opening moment (corner B). This is hardly needed
since the loading of the portal frame leads to a very small moment in corner B which is exposed to an
opening moment.

The safety of the safety formats will be validated for three portal frame designs. The ductility of the
portal frame determines the degree of redistribution of the internal forces. Therefore the case study
will focus on three designs with all a different ductile behavior:

e Design 1: basic design
e Design 2: higher longitudinal reinforcement ratio (compared to design 1)
e Design 3: higher concrete strength class (compared to design 1)
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4.2.1 Desi

gnl

Design 1 is similar to one of the reinforced portal frame designs used in the experiment (Seraj,
Kotsovos, & Pavlovic, 1995) discussed in chapter 5. Design 1 is verified using a local safety approach

according to the Eurocode 2 and is able to resist a vertical design load in Cof F, = 18.8 kN and a

horizontal design load in B of F;, = 15.7 kN.
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Figure 17. Design 1: longitudinal reinforcement diameter d=10 mm and concrete strength class: C30 (Blomfors, 2014).

4.2.2 Design 2

The longitudinal reinforcement ratio of design 2 is higher compared to design 1 and the shear
reinforcement ratio is still the same as for design 1.

Detailing: Corner D
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Figure 18. Design 2: longitudinal reinforcement diameter d=11 mm and concrete strength class: C30.
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4.2.3 Design 3
Design 3 is made with a higher concrete class: C40 and the same longitudinal and shear
reinforcement ratio is used as for design 1.
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Figure 19. Design 3: longitudinal reinforcement diameter d=10 mm and concrete strength class: C40.

4.3  Level |l reliability method: local design resistance (Eurocode 2)

To perform a local safety evaluation a distinction between the several elements is necessary.
Therefore the elements will be numbered from left to right. This leads to the following element
numbering: the left column (AB), beam (BD) and the right column (DE) are labeled as element 1,
element 2 and element 3, respectively. The element numbering is shown in figure 20.

1,3715m 1,3715m

fh l_FU

2
1 3 1,725m

= W
Figure 20. Element numbering

The determination of the design resistance for the elements of the three portal frame designs can be
found in Appendix C.1. Design 1 is made by Seraj et al. (1995) and is used in an experiment described
in chapter 5. Design 1 is provided with only the minimum required shear reinforcement since the
shear resistance Vi, ¢ was found to be sufficient to resist the shear forces Vg resulting from the
external load F, and Fj,. The shear resistance Vz, s based on the implemented shear reinforcement is
much lower and therefore V;; cannot be higher than Vz, - (Appendix C.1). The maximum shear
resistance of design 2 and 3 is the same since there is not used more shear reinforcement.

The general check for the shear resistance is defined as (NEN-EN 1992 -1-1, 2011):
Ve < Vrac, no shear reinforcement is needed, otherwise: (4.2)

VE < VRd,S' (42)
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The bending moment resistance of the elements in design 2 and 3, is larger than the shear resistance
(Appendix C.1.3.2). Therefore a shear failure mode determines the structural resistance of the
elements of the three portal frame designs. For simplification all portal frames are assumed to have a
local design resistance of:

F, = 18.8 kN, F, = 15.7 kN.

The governing local safety evaluation by means of a unity check (UC) for portal frame design 1, 2 and
Ve

three is determined below. The unity check is defined as: UC = T when Vi cmin < Vrac-

Rd,C

Table 1. Local safety evaluation for the shear resistance without shear reinforcement.

Shear resistance of elements without shear reinforcement

Design 1 VRd,C,min (kN) VRd,C (kN) VE (kN) UcC (-)
Element 1 6.0 10.5 4.21 0.40
Element 2 8.1 12.8 13.68 1.06
Element 3 7.2 11.7 11.48 0.98
Design 2 VRd,C,min (kN) VRd,C (kN) VE (kN) UC (-)
Element 1 6.0 11.2 4.21 0.4
Element 2 8.1 13.6 13.68 1.0
Element 3 7.2 12.3 11.48 0.9
Design 3 VRd,C,min (kN) VRd,C (kN) VE (kN) UC (-)
Element 1 6.9 11.5 4.21 0.37
Element 2 9.2 14.0 13.68 0.98
Element 3 8.0 12.7 11.48 0.91

4.3.1 Strut and tie model corner region

The analyses of the separate elements leads to the conclusion that structural resistance of the portal
frame is determined by the shear resistance of element 2. However a detailed analyses of the corner
region should be performed to verify this conclusion. The external loading of the portal frame leads
to a situation where corner D is exposed to a large closing moment. The resistance of the internal
compressive strut in corner D should be determined in order to determine the bending moment
capacity of the corner. This should be done based on a strut and tie model as shown in chapter 4.1.

4.4  Level |l reliability method: global design resistance (Model Code 2010)

The NLFE models of portal frame design 1, 2 and 3 used to determine the design resistance according
to the safety formats are presented in Appendix D. The model uncertainty is not needed to
determine the global design resistance of the portal frame designs 1, 2 and 3 since the safety formats
make use of a prescribed model uncertainty.

All settings of the NLFE model are chosen according to the Guidelines for Non-Linear Finite Element
analyses of Concrete Structures (Hendriks, de Boer, & Belletti, 2017). Therefore errors in the results
due to incorrect user input is minimized. The material input parameters in the NLFE model for the
three portal frame designs can be found in Appendix B.2. The safety formats and the NLFE analyses
that have to be performed in order to obtain the global design resistance are discussed in chapter 3.
The results of the global design resistance according to the safety formats are presented in table 2.
The NLFE analyses and the corresponding load displacement diagrams to obtain the global design
resistance are presented in the chapters 4.4.1 - 4.4.3.
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Table 2. Results NLFE analyses and calculated global design resistance according to the safety formats.

Result NLFE analyses (kN) Resistance Safety Format (kN)
Design 1 mean characteristic mean GRF  design | GRFm ECOV PFm
Fv (kN) 28.80 25.30 26.00 19.20 17.08 20.40 19.20
Fh (kN) 15.70 15.70 15.70  15.70 15.70 15.70 15.70
Design 2 mean characteristic mean GRF  design | GRFm ECOV PFm
Fv (kN) 33.10 30.60 35.60 28.00 24.63 26.09 28.00
Fh (kN) 15.70 15.70 15.70  15.70 15.70 15.70 15.70
Design 3 mean characteristic mean GRF  design | GRFm ECOV PFm
Fv (kN) 28.30 25.20 27.60 21.30 18.34 20.58 21.30
Fh (kN) 15.70 15.70 15.70 15.70 15.70 15.70 15.70

The results of the safety formats with the highest probability of failure for each design are: ECOV,
PFm and PFm for design 1, 2 and 3, respectively (table 2). The lowest probability of failure is obtained
when the lowest design resistance is obtained. For each design the lowest global design resistance is
obtained with the GRFm.

4.4.1 Design 1: Global design resistance according to the safety formats

In order to calculate the global design resistance according to the GRFm, the ECOV method and the
PFm 4 NLFE analyses have been performed. The input material values for the NLFE analyses can be
found in Appendix B.2. To obtain the global design resistance according to the GRFm a NLFE analysis
with mean GRF material values has been performed. The global design resistance according to the
ECOV method can be found after performing two NLFE analyses with mean and characteristic
material values. The global design resistance of the PFm is found with a NLFE analyses with design
material values. The load is incrementally applied in three phases (figure 21). The load-displacement
diagrams of the NLFE analyses are shown in figure 22.

Load phases:

Phase 1: incrementally applied vertical load till F, = 18.8 kN;
Phase 2: incrementally applied horizontal load till F, = 15.7 kN and constant F, = 18.8 kN;
Phase 3: incrementally applied vertical load till failure kN and constant Fj, = 15.7 kN.
Phase 1 Phase 2 Phase 3
Fv Fv Fv
| Fh | Fh
B D B C D B D
A E A E A E
Incrementally applied Fv Incrementally applied Fh Incrementally applied Fv

Figure 21. The three applied load phases.
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Design 1: vertical displacement C

30
25 Y il
/ Phase 3
20 < ——
— N —e— Mean
<
=15 Characteristic
z
Mean GRF
10
—e— Design
Phase 1
5
0

0 5 10 15 20 25 30 35 40 45 50

Displacement (mm)

Figure 22. Load-displacement diagram for the NLFE analyses with mean, characteristic, mean GRF and design material
values. The vertical load Fv and the vertical displacement C are shown.

4.4.1.1 Global design resistance according to the GRFm

The focus of this thesis is to determine if there is any additional vertical capacity of portal frame. The
horizontal load F;, = 15.7 kN on the portal frame is therefore always the same and will not be
reduced by a safety factor. The resistance of the portal frame obtained with a NLFE analysis with
mean GRF material values is:

F,=260kN and F, =15.7kN.

This result is also presented in table 2. The definition of the total structural resistance made by
Blomfors (2014) is used to calculate the global design resistance. The total structural resistance is
defined as the sum of the vertical and horizontal load. This total structural resistance is not a real
physical quantity since the loads are orthogonal. However this definition can be used to implement
all safety in the vertical force. This is done since the horizontal load is assumed to be always present
on the structure and will not be reduced by a safety factor. Therefore all safety is implemented in the
vertical resistance of the structure. This leads to a lower global design resistance compared to a
situation where only the vertical load is evaluated and is assumed to be a safe solution. The global
design resistance according to the GRFm is determined with equation (3.1):

_r(fSRF) 417
YRYRa  1.2:1.06

Ry = 32.78 kN.

This leads to the following global design resistance according to the GRFm:

F, =17.08kN and  F, = 15.7 kN.
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4.4.1.2 Global design resistance according to the ECOV method

To determine the global design resistance according to the ECOV method two NLFE analyses with
mean and characteristic material values have been performed. The resistance of a NLFE analysis with
mean material values is:

F, =288kN and Fy, = 15.7 kN.
The resistance of a NLFE analysis with characteristic material values is:
E, =25.3kN and F;, = 15.7 kN.

The coefficient of variation of the resistance can be calculated according to equation (3.7):

Ve =——In (’;—Z) =—In (%(5)) = 0.0496.

The global resistance factor is calculated with equation (3.8):

Yr = e>%*'R = 1.16.

The global design resistance according to the ECOV method is determined with equation (3.4):

R, =—fm_ _ _*5 _ 361K\
4 yrYrRa  1.16:1.06 ' '

This leads to the following global design resistance according to the ECOV method:
E, = 20.40 kN and F;, = 15.7 kN.

4.4.1.3 Global design resistance according to the PFm

The global design resistance according to the PFm is obtained after performing a NLFE analysis with
design material values. The global design resistance is equal to the resistance of a NLFE analysis with
design material values is:

F,=19.20kN and  F, = 15.7 kN.

4.4.1.4 Structural failure of the portal frames

Several elements have to fail before the structural system fails since the portal frame is statically
indeterminate. First the concrete compressive strut in closing corner D (right corner) fails partially. In
figure 23 the principle stresses in the concrete compressive strut are shown before partial failure.
The principle stresses after partial failure of the concrete compressive strut is shown in figure 24. The
failure of the concrete compressive strut is also visible in the load-displacement diagram presented in
figure 26. In fact the softening behavior of the parabolic concrete compression diagram (figure 25) is
used to redistribute the internal forces to the other parts of the portal frame. The middle part of the
concrete compressive strut fails and the remaining concrete compressive stresses are redistributed in
the lower and upper part of the concrete compressive strut. The stiffness of corner D is decreasing
due to the failing compressive strut. The internal forces are redistributed to other parts of the portal
frame. Eventually three additional plastic hinges start to appear in locations A, Cand E. Now a
mechanism starts to develop and lead to the failure of the structural system.
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Figure 23. Principle stresses before Figure 24. Principle stresses after Figure 25. Parabolic compression
partial failure of the compressive strut ~ partial failure of the compressive diagram concrete (Hendriks, de Boer,
in corner D (load-step 24). strut in corner D (load-step 25). & Belletti, 2017).
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Figure 26. Load-displacement diagram for a NLFE analysis with mean material values. A lot of additional vertical
displacement is shown after the partial failure of the compressive strut in corner D. Partial failure of the compressive strut
occurs between load-step.

Due to the softening behavior of the concrete in corner D the maximum moment capacity of corner
D is reached. Composed line elements are included in the NLFE model. This elements can integrate
the stresses over the height of the element to determine the moment distribution at a certain
position. In figure 27 the moment distribution is shown directly after the failure of the concrete
compressive strut (load-step 25). Figure 28 shows the moment distribution before failure of the
structural system (load-step 29). The maximum moment capacity of corner D is reached after load-
step 25 and cannot increase any more.
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Figure 27. Moment distribution composed line Figure 28. Moment distribution composed line elements
elements after failure of the concrete compressive before the structural system failure (load-step 130).

strut (load-step 25).

The failure of the structural system occors after the forming of plastic hinges at midspan C (load-step
89) and the bottom of the left and the right column (load-step 113). The forming of the plastic hinges
occurs after the yielding of the reinforcement. This is shown in figure 29 and 30. The partial failure of
corner D and the forming of the plastic hinges at location A, C and E lead to a mechanism and
eventually to the failure of the structural system at load-step 130.

ai
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Figure 29. Yielding of the steel reinforcement at Figure 30. Yielding of the steel reinforcement at
midspan C (load-step 89). location A and E (load-step 113).

For the other NLFE analyses with characteristic, mean GRF and design material values a simular
partially failure of corner D and the forming of plastic hinges at A, C and E has been found.
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4.4.2 Design 2: Global design resistance according to the safety formats

The load-displacement diagram of the NLFE analyses with mean, characteristic, mean GRF and design
material values for design 2 are presented in figure 31. Design 2 has a larger longitudinal
reinforcement ratio compared to design 1. Therefore the stiffness of the portal frame has increased,
which results in less vertical displacement of point C, especially in the first two loading phases. A
larger stiffness results in a more brittle behavior. The rotational capacity of the corner is decreasing
when a higher concrete strength (which leads to a higher stiffness) is used.

Design 2: vertical displacement C

40
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Figure 31. Load-displacement diagram for the NLFE analyses with mean, characteristic, mean GRF and design material
values. The vertical load Fv and the vertical displacement C are shown.

For example the load-displacement diagrams of a NLFE analysis with mean and mean GRF material
values will be compared. The yield strength used in both NLFE analyses is more or less the same
(Appendix B.2):

fymean = 560 MPa  and fymean crr = 558 MPa.

The difference in both NLFE analyses can be found in the used concrete compressive strength
(Appendix B.2):

fc,mean = 38 MPa and fc,mean crr = 25.5 MPa.

The stiffness of the concrete for the portal frame with mean GRF material values is lower and
therefore the rotational capacity of corner D is larger. Due to a larger rotational capacity a ductile
failure of the portal frame is obtained and this even led to a higher structural resistance of the portal
frame with mean GRF values. This example shows clearly that the rotational capacity of the corner is
an important factor for a brittle or ductile behavior of the portal frame.
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4.4.2.1 Global design resistance according to the GRFm
The resistance of the portal frame obtained with a NLFE analysis with mean GRF material values is:

F,=3560kN and F, = 15.7 kN.

The global design resistance according to the GRFm is determined with equation (3.1):

_ r(fSRF,) 513
YR YRd 1.2:1.06

R, = 40.33 kN.

This leads to the following global design resistance according to the GRFm:
E, = 24.63kN and  F; = 15.7 kN.

4.4.2.2 Global design resistance according to the ECOV method

To determine the global design resistance according to the ECOV method two NLFE analyses with
mean and characteristic material values have been performed. The resistance of a NLFE analysis with
mean material values is:

F,=33.1kN and F, =15.7 kN.
The resistance of a NLFE analysis with characteristic material values is:
F,=30.6kN and F, = 15.7 kN.

The coefficient of variation of the resistance can be calculated according to equation (3.7):

Ve =——In (i—r) =—In (%) = 0.0319.

The global resistance factor is calculated with equation (3.8):

Yr = e>%*Vr = 1.10.

The global design resistance according to the ECOV method is determined with equation (3.4):

Ry=—m —_288  _ 4179knN.
YR VR4  1.10-1.06

This leads to the following global design resistance according to the ECOV method:
E, = 26.09kN and  F, = 15.7 kN.

4.4.2.3 Global design resistance according to the PFm

The global design resistance according to the PFm is obtained after performing a NLFE analysis with
design material values. The global design resistance is equal to the resistance of a NLFE analysis with
design material values is:

F,=28.0kN and F, = 15.7kN.

4.4.2.4 Structural failure of the portal frame

The structural failure of portal frame design 2 is comparable to portal frame design 1. Only the NLFE
analysis with mean material values leads to a brittle failure of corner D and the plastic hinges at
location A, C and E are not fully formed.
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4.4.3 Design 3: Global design resistance according to the safety formats

The load-displacement diagram of the NLFE analyses with mean, characteristic, mean GRF and design
material values for design 3 are presented in figure 32. Design 2 has a larger concrete compressive
strength compared to design 1.

Design 3: vertical displacement C
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Figure 32. Load-displacement diagram for the NLFE analyses with mean, characteristic, mean GRF and design material
values. The vertical load Fv and the vertical displacement C are shown.

4.4.3.1 Global design resistance according to the GRFm
The resistance of the portal frame obtained with a NLFE analysis with mean GRF material values is:

F,=27.6kN and F; = 15.7kN.
The global design resistance according to the GRFm is determined with equation (3.1):

_ r(£4FF,.) __433

R
d YR YRd 1.2-1.06

= 34.04 kN.

This leads to the following global design resistance according to the GRFm:
F, = 18.34kN and  F; = 15.7 kN.

4.4.3.2 Global design resistance according to the ECOV method

To determine the global design resistance according to the ECOV method two NLFE analyses with
mean and characteristic material values have been performed. The resistance of a NLFE analysis with
mean material values is:

F,=283kN and F, =15.7kN.
The resistance of a NLFE analysis with characteristic material values is:
F,=252kN and F, =15.7kN.

The coefficient of variation of the resistance can be calculated according to equation (3.7):

Ve =——In (I:Tf) =—In (%) = 0.0442.
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The global resistance factor is calculated with equation (3.8):
Yr = e30%VR = 1,14,

The global design resistance according to the ECOV method is determined with equation (3.4):

Ry=—2m = _*0 _ 3698kN.
YR YRd 1.14-1.06

This leads to the following global design resistance according to the ECOV method:
E, = 20.58 kN and F;, = 15.7 kN.

4.4.3.3 Global design resistance according to the PFm

The global design resistance according to the PFm is obtained after performing a NLFE analysis with
design material values. The global design resistance is equal to the resistance of a NLFE analysis with
design material values is:

F,=213kN and F, = 15.7 kN.

4.4.3.4 Structural failure of the portal frame

The structural failure of portal frame design 3 is comparable to portal frame design 1. Only the NLFE
analysis with mean material values leads to a brittle failure of corner D and the plastic hinges at
location A, C and E are not fully formed.

4.5  Additional load carrying capacity

The maximum additional vertical capacity is the difference between the global and local design
resistance and is presented in table 3. The question that remains is how safe is the global design
resistance obtained with a safety format i.e. what is the reliability index Bg. This will be determined
in chapter 7, for the safety formats which obtain the highest global design resistance and therefore
lead to the lowest reliability index.

Table 3. Additional vertical capacity: difference between the least conservative global and local design resistance using a
level | reliability method.

Global design resistance (kN) Local design resistance (kN) | Additional vertical capacity (kN)
Design 1 Least conservative safety format (SF) Br | Eurocode 2 (EC2) Difference SF and EC2
Fv (KN) ECOV 204 ? 18.8 1.6
Fh (kN) 15.7 15.7
Design 2
Fv (kN) PFm 28.0 ? 18.8 9.2
Fh (kN) 15.7 15.7
Design 3
Fv (kN) PFm 213 ? 18.8 2.5
Fh (kN) 15.7 15.7

The safety formats that leads to the most conservative global design resistance is for al portal frame
designs the same, namely the GRFm. This safety format leads to a conservative global design
resistance and is for design 1 and 3 even lower than the local design resistance.
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Table 4. Additional vertical capacity: difference between the most conservative global and local design resistance using a
level I reliability method.

Global design resistance (kN) Local design resistance (kN) | Additional vertical capacity (kN)
Design 1 Most conservative safety format (SF) Eurocode 2 (EC2) Difference SF and EC2
Fv (kN) GRFm 17.1 18.8 -1.7
Fh (kN) 15.7 15.7
Design 2
Fv (kN) GRFm 24.6 18.8 5.8
Fh (kN) 15.7 15.7
Design 3
Fv (kN) GRFm 18.3 18.8 -0.5
Fh (kN) 15.7 15.7

A more realistic failure mode of the reinforced portal frame design for the defined load situation is a
compressive strut failure in the frame corner due to a closing moment followed by the formation of
three plastic hinges at location A, C and E (NLFE results indicates this failure mode). A detailed
analysis of a strut and tie model according to Eurocode 2 of the concrete frame corner could lead to
a lower local design resistance compared to the local element resistance. Therefore the additional
vertical capacity could be higher.
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5 Structural analysis of an experiment of a Portal Frame

In order to perform a safety assessment of a statically indeterminate portal frame by means of NLFE
analyses a real experiment (Seraj, Kotsovos, & Pavlovic, 1995) is used to determine the model
uncertainty. The model uncertainty involves all uncertainties which are not included in the NLFE
model.

The portal frames tested in the experiment are more or less similar compared to the three portal
frame designs described in chapter 4.2. Only the loading of the experimental frame is different from
the loading described in chapter 1. Unfortunately there are no experimental results available of the
three portal frame designs described in chapter 4.2 with the same loading procedure. However, the
best way to quantify the model uncertainty is to use the results of the experiment. The model
uncertainty can be determined after comparing the structural resistance of the experiment with the
structural resistance of the NLFE model (of the experiment).

5.1 Experiment by Seraj, Kotsovos & Pavlovic (1995)

5.1.1 Frame details experiment

Two portal frames were designed and tested by Seraj et al. (1995). The portal frames have fixed
supports and corner connections. The frames were labelled as Portal Frame 1 (PF1) and Portal Frame
2 (PF2). PF1 was designed according to the British Code 8110 (1985) and PF2 was designed according
to the compressive-force path (CFP) method.
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Figure 33. Dimensional, cross-sectional and design details of the fixed Portal Frames: PF1 (a) and PF2 (b) (Seraj, Kotsovos, &
Pavlovic, 1995).
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The CFP method is a force path which follows the compressive side of the frame due to bending
moments (figure 34 (c)). If the sign of the bending moment changes the force path goes from the
lower side to the upper side of an element. This happens at the location where the moment is zero.
The locations are called internal supports (IS1, 1IS2 and IS3 in figure 34 (c)). The design procedure of
the CFP method is not discussed extensively in this thesis since only the load-carrying capacity for
this frame design is important and the design method is of less importance. Design details of both
frames can be found in figure 33. The fixed supports were made by post-tensioning the footings to
the laboratory floor.

Both frames are designed to resist a vertical force of F, = 24 kN and a horizontal force of F;, = 20
kN. Linear elastic calculations are performed to design the frames using a local design approach. The
linear elastic moment and shear force diagram are shown in figure 34.

V=24 kN
‘ V=24 RN*

Figure 34. Linear elastic shear force diagram (a), moment diagram (b) and CFP of PF2 (c) (Seraj, Kotsovos, & Pavlovic, 1995).

The design is made using a local design approach with mean material strength values in order to
design the frame as close as possible to the real structural resistance. The used mean material values
are given in Appendix B.3. Only nominal shear reinforcement is placed in PF1 since according to the
British Code 8110 (1985) no shear reinforcement is required. In PF2 some additional shear
reinforcement was needed in accordance with the CFP method for the sections F-F and G-G. The
frames are also provided with the necessary amount of corner reinforcement at the beam-column
intersection following standard design practice (no further details given).

Figure 35. Corner reinforcement at the beam-column intersection (Seraj, Kotsovos, & Pavlovic, 1995).
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The reinforcement applied in both corners (figure 35) is to prevent a diagonal crack which starts from
the inside of the corner as a result of an opening moment (figure 36). The radial stirrups are place to

prevent the secondary cracks as explained in chapter 4.1. The most critical corner is corner D which is
loaded with a closing moment (figure 37). The inclined bar and the radial stirrups have no use for the
closing moment at D and the opening moment stays very low at B. When a closing moment is applied
to a corner the concrete needs to resist the compressive stresses in the compression strut (figure 37).
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Figure 36. Opening moment Figure 37. Closing moment
(Walraven, Staafwerkmodellen als (Walraven & Fennis, Gewapend
basis voor het detailleren van Beton (CTB2220), 2013).

betonconstructies, 1988).

2.1.2 Testsetup

The test setup is shown in figure 38 and the instrumentation in figure 39. The vertical force is applied
with a tension jack at location C and the horizontal force with a compression jack at location B. The
tension jack was connected to a steel framework which was pulled downward to apply the vertical
load. The loads were recorded separately by a data logger. The vertical displacement of C is
measured with LVDT 1 and the horizontal displacement of D is measured with LVDT 2. The strain is
measured with strain gauges at location C, €4 and €;;, (compression and tension), and at location D,
€3 and location E, €g. More instrumentation is used during the experiments but the results are not
given by Seraj et al. (1995).

Figure 38. Test setup (Seraj, Kotsovos, & Pavlovic, 1995).
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Figure 39. Instrumentation on the portal frame (Seraj, Kotsovos, & Pavlovic, 1995).

5.1.3 Structural resistance

The theoretical loading procedure is as follows. First the vertical load F, = 24 kN is incrementally
applied to the frame. After that the vertical load is kept constant (controlled by the data logger) and
the horizontal load Fj, is incrementally applied until failure.

During the experiment the loads were recorded and the results will be described here. First the
frames PF1 and PF2 were incrementally subjected to a vertical load of 23.72 kN and 23.69 kN,
respectively (table 5). Maintaining the vertical loads constant in the loading machines, the frame is
now incrementally subjected to a horizontal load. Failure of PF1 and PF2 happened at a horizontal
load of 20 kN and 19.95 kN, respectively.

The results are shown in table 5 and in Appendix E.1. After inspecting the results of the experiment.
The strain at location C (€11) has been increased after the vertical load was totally applied on the
frame (table 5). The horizontal load should theoretically not produce any extra strain at C since the
bending moment at C only depends on the vertical force.

Table 5. Results PF1 and PF2 (Seraj, Kotsovos, & Pavlovic, 1995).

At the end of load V At the end of load V4+H i
Frame "5 oS00 M, KNm  &,X10 &X10 M. KNm Applied ¥, kN Calculated ¥, kKN Applied H, kN
PF1 1679 —514 9.76 2033 —744 11.73 2372 2850 20.00
PR2 1596 —S84 932 213 -89 1326 2369 1368 1995

It was concluded that the side sway of the frame leads to an additional vertical force on the frame.
This is caused by the steel framework which was fixed after applying the vertical force E, = 24 kN.
The side sway of the reinforced concrete frame due to the horizontal force F;, leads to elongation of
the steel framework which causes the additional vertical force F; 4y -

The length of the steel frame is equal to OC after applying the vertical force (figure 40). The
horizontal load on the frame leads to a side sway of the frame. To make this side sway possible the
length of the steel frame connected to the tension jack must increase with OC’-OC (figure 40). Since
the tension jack is displacement controlled i.e. steel frame is fixed after applying the vertical force,
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the elongation of the steel frame leads to an additional vertical force F, 5,4y On the structure.
Theoretically there should also be a horizontal force component but this has a negligible effect the
experimental results.

' Applied displacement at
the midspan = OC'-OC

Figure 40. Pull-down effect due to side sway of the portal frame (Seraj, Kotsovos, & Pavlovic, 1995).

The measured strain at the midspan of C during failure can be translated using the bending moment
resistance of a section at C (local level approach) to the applied total vertical load of 28.50 kN and
33.68 kN for PF1 and PF2, respectively (table 5).

According to the experimental results this additional vertical load due the side sway F; g4y is almost
not present at initial sway, but after an applied horizontal force F;, = 15 kN, the additional force in
more or less linear increasing from 0 to F, 5,4y = 28.50 — 23.72 = 4.78 kN and F, 54y = 33.68 —
23.69 = 10 kN for PF1 and PF2, respectively.

The additional vertical load due to the sway effect is described here very accurately. This is needed to
simulate the experiments in order to make an accurate assumption of the model uncertainty

5.1.4 Deformational response

e The results of the deformational response are shown in the graphs in Appendix E1, figure E1
(a), (b), (c), (d), (e) and (f).

e The results of the vertical and horizontal deformation, figure E1 (a) and (b), show a more
ductile behavior for PF2 (more vertical and horizontal deformation).

o The horizontal deformation of PF2 is much larger than the deformation of PF1. This leads to
higher strains at midspan C, figure E1 (c) and (d), due to a higher pull down effect.

o The steel strain in corner D is larger for PF1 than in PF2, indicating more rotational
deformation in PF1 than in PF2 figure E1 (e).

e At the inner side of the support at E, both frames PF1 and PF2 has reach the yield stress but
only frame PF2 was exposed to plastic deformation (indicated by a horizontal upper bound).

e |t appears that the rotations at point D and E due to the moments are transferred more
uniformly in the case of PF2. For PF1 the rotations are more concentrated in corner D.

e The strain gauges €, and €;5 at support A show that a plastic hinges was formed in PF2. PF1
nearly reaches its plastic capacity.

5.1.5 Cracking process and failure mechanism

The cracks formed near failure of PF1 and PF2 are shown in figures E2 till E7. The crack pattern at B
and C for PF1 and PF2 are almost similar. The crack pattern near corner D and E is different for PF1
and PF2. The cracking process and the failure mechanism is described below.
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5.1.5.1 Vertical loading F,,

The observations during the vertical loading are the same for both frames PF1 and PF2. The first
flexural crack was observed at midspan C at a vertical load of F,, = 10 kN. The flexural cracks were
gradually propagating upwards and the deepest fissure was found at the end of the vertical loading.
Cracks also appeared in the corners B and D when the vertical load F, = 18 kN.

5.1.5.2 Horizontal loading Fy, and additional vertical loading due side sway Fy syay

In both frames flexural cracks were detected in corner D at a horizontal load F;, = 2 kN. When the
horizontal load was increased more cracks appeared in the top right half of column DE. The depth of
these cracks was less for PF1 than for PF2. The cracks for PF1 were concentrated near corner D in
contrast with PF2 were the cracks were more spread over both tension sides of the column. When
the failure load was almost reached cracks were visible at the bottom half of column AB in PF2. No
cracks were detected in PF1.

5.1.5.3 Failure mechanism

The failure of PF1 was caused by excessive cracking at corner D. Wide diagonal cracks and spalling of
the concrete lead to the collapse of this frame. A mechanism could not be formed since the corner D
already failed.

PF2 failed almost like a mechanism when the diagonal cracks at D became wide and eventually the
tension strength of steel at the supports was reached.

5.1.6 Conclusion experiment

Both frames have the same amount of corner reinforcement but the additional amount of shear
reinforcement in PF2 at the internal supports I1S2 and IS3 (figure 34 (c)) leads to a more spreading
crack pattern at the region near corner D. In contrary with PF1 where the cracks are concentrated at
corner D. This stress concentration in PF1 leads to earlier failure of corner D which results in a brittle
behavior. PF2 failed like a mechanism since corner D failed after the mechanism was formed.

The main conclusion from this experiment is that corner D determines a ductile or brittle failure of
the reinforced concrete frame. Ductile when the corner can resist the stress concentrations and is
able to redistribute the internal forces and a brittle failure when corner D fails to redistribute the
internal forces.

5.2 Levell reliability method: local design resistance experiment Seraj et al. (1995)
A local safety approach according to the Eurocode 2 (NEN-EN 1992 -1-1, 2011) is used to roughly
indicate which and where a specific failure mode starts to develop. The local safety approach
described in the Eurocode 2 is only meant to determine the design resistance of an element against a
certain failure mode.

The portal frame from the experiment of Seraj et al. (1995) is designed with mean material values.
This leads to the mean resistance of the structure, which is able to resist a vertical load F, = 24 kN
and a horizontal load of F;, = 20 kN. The design resistance of several sections is too low according to
the Eurocode 2. The design can be improved with a higher reinforcement ratio, higher concrete class
or adapting the dimensions of the frame. However the main focus of this study is to determine the
real resistance of the structure. Since the local safety approach in Eurocode 2 is conservative it is
unlikely that the portal frame cannot resist the vertical and horizontal force.
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5.2.1 Determination of the internal forces (linear elastic calculation)

To perform a local safety evaluation the linear elastic moments, shear- and normal forces should be
determined. The linear elastic calculations are performed with the software package Matrix Frame
5.3. The results are shown in figure 41.
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Figure 41. Linear elastic moment, shear force and normal force diagram (kNm).

The elements will be numbered from left to right, which is shown in figure 20. The maximal internal
forces for each element are summarized in table 6.

Table 6. Internal forces.

Me (kNm) | Ve (kN) | Ne (kN)
Element 1 7.1 5.4 6.6
Element 2 12.8 17.4 14.6
Element 3 12.8 14.6 17.4

5.2.2 Determination of the resistance (ULS)

The bending moment resistance, the shear resistance with and without shear reinforcement is
determined in the ultimate limit state (ULS) for each element in the portal frame. The results are
presented here and the calculations can be found in Appendix C2.

5.2.2.1 Bending moment capacity (ULS)

The bending moment capacity My, is determined in accordance to Eurocode 2 (NEN-EN 1992 -1-1,
2011). The normal force in the portal frame elements leads to a higher bending moment capacity
compared with an element without a normal force. However this positive effect of the normal force
on the bending moment resistance is neglected, which is a conservative assumption. The bending
moment capacity for each element according to the Eurocode 2 is presented in table 7. In element 2
and 3 a plastic hinge will develop since redistribution of forces is possible in a statically indeterminate
portal frame.

Table 7. Design bending moment capacity (EC2).

EC2 Mgd (kNm) | Me (kNm) | UC (-)

Element 1 10.0 7.1 0.71
Element 2 12.6 12.8 1.02
Element 3 10.0 12.8 1.28
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Since the frame is designed using mean material values the mean bending moment capacity My, of

the elements is also calculated and given in table 8. However it is necessary to mention that the
mean bending moment capacity does not lead to an intended reliability index of S = 3.04.

Table 8. Mean bending moment capacity.

Mean | Mgm (KNm) | Mg (kNm) | UC(-)

Element 1 12.9 7.1 0.55
Element 2 16.2 12.8 0.79
Element 3 12.9 12.8 0.99

5.2.2.2 Shear capacity (ULS)
Elements without shear reinforcement
The design value for the shear resistance Vg, ¢ is determined according to the EC2 with the empirical

formula (C.6). The calculations are given in appendix C.2.2.2. The shear resistance for elements
without shear reinforcement is dependent on the normal force in the specific element. Therefore
each element has a different shear resistance. The design shear capacity Vg, ¢ and the minimum
shear capacity Vzg ¢ min Of the elements is presented in table 9. Element 2 and 3 need shear

reinforcement according to EC2.

Table 9. Design shear capacity without shear reinforcement (EC2).

EC2 Vrd,cmin (KN) | Vrac (KN) | Ve (kN) | UC(-)

Element 1 6.2 10.7 5.36 0.50
Element 2 8.6 13.3 17.45 121
Element 3 7.7 12.2 14.64 1.20

The mean shear capacity Vg, ¢ and the minimum mean shear resistance Vg, ¢ min €an be

determined by using formula (C.6) and set the partial safety factor to y, = 1.0. The results are given

in table 10. All unity checks are below zero. This indicates that no shear reinforcement is needed

when there is no deviation from the mean value.

Table 10. Mean shear capacity without shear reinforcement.

Mean | Vemcmin (KN) | Vamc (kN) | Ve (kN) |UC(-)

Element 1 6.9 15.6 5.36 034
Element 2 9.4 18.9 17.45 0.92
Element 3 8.3 17.1 14.64 0.86
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Elements with shear reinforcement

For members with vertical shear reinforcement, the shear capacity is the smallest value of Vpg ¢
and Vg4 max, the maximum tensile force in the stirrups and the maximum compression force in the
compression chord, respectively. The calculation according to the EC2 can be found in appendix
C.2.2.2 and the results are presented in table 11.

Table 11. Design shear resistance with shear reinforcement (EC2).

EC2 Vras (KN) | Vramax (KN) | Ve (kN) |UC (-)

Element 1 7.0 334 5.36 0.76
Element 2 8.6 42.0 17.45 2.02
Element 3 7.0 35.0 14.64 2.08

There is not enough shear reinforcement to prevent a shear failure according to the Eurocode 2.

5.2.2.3 Plastic analysis (ULS)

The Eurocode 2 (NEN-EN 1992 -1-1, 2011) is not exactly clear about the rotational capacity of a
reinforced concrete corner connection. The Eurocode 2 does only mention some restrictions for the
rotational capacity of a statically indeterminate beam. Therefore it is not clear if the corner is ductile
enough to form a full plastic hinge. A plastic upper bound analysis for a portal frame which forms a
plastic mechanism can be made but it is most likely that the corner D failed earlier which lead to a
lower structural resistance.

An attempt will be made to simulate the failure mode of the experiment, where a partially plastic
mechanism was formed. The forming of a plastic mechanism is possible if there is enough rotational
capacity for the corners of the frame to form a plastic hinge. Most likely the rotational capacity of
corner D is too low and the corner will fail, which lead to a partially plastic hinge. First the structural
resistance of a full plastic mechanism with plastic hinges in A, C, D and E will be determined. The
horizontal force is assumed to be known Fj;, = 20 kN. An upper bound of the vertical collapse load F,
is determined with virtual work according to the following equation:

S F 6u =Y My 80 (5.1)
where:

ZF5u = MRm,19+MRm,2 (9"‘9) +MRm,3 (9+9)+MRm,39 (Sla)
Y My 6 =1.725F, 0 + 1.3715 F, 6. (5.1b)
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Figure 42. Portal frame dimensions and load. Figure 43. combined mechanism.
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The mean bending moment resistance Mg, of the several elements is determined in chapter 3.2.1.
Equations (5.1a) and (5.2b) are derived for the combined mechanism shown in figure 43. The
structural resistance of this full plastic mechanism is:

E, = 20 kN, F, = 38.5kN.

The structural resistance is much higher than obtained in the experiment of Seraj et al. (1995). This
indicates that corner D is not able to form a full plastic hinge. The mean experimental structural
resistance can be found in Appendix E.1:

F, = 20 kN, F, = 31.0 kN.

The experimental structural resistance can be used to calculate the real bending moment capacity of
corner D with the virtual work equation (5.1). The maximum bending moment resistance of corner D
is 0.7 Mgy, 3. The real bending moment capacity of corner D strongly depends on the case. This effect
is also described in chapter 5.3.3, where the failure of the NLFE model from the experiment of the
reinforced portal frame is described.

5.2.3 Conclusion local design resistance

The local safety approach (the partial factor method) in the Eurocode 2, leads to a structural
resistance which is much lower than the mean resistance, since design material values are used. This
is needed to obtain a reliability level of at least fz = 3.04. The design shear resistance of the
elements is too low and a shear failure should happen. However the experimental results in chapter
5.1 show a totally different failure mode, namely the forming of a partially plastic mechanism in
combination with the failure of corner D.

A more realistic structural behavior is obtained when the partial safety factors are excluded from the
analyses such that the mean resistance of the elements is obtained. Now the shear resistance of the
elements is enough to form a partially plastic mechanism in combination with the failure of corner D.
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5.3 NLFE analyses of experiment Seraj et al. (1995)
The load carrying capacity of the reinforced concrete frame is modelled with the use of the non-
linear finite element software package: Diana FEA 10.1. The model is made based on the Guidelines

for non-linear finite element analysis of reinforced concrete structures (Hendriks, de Boer, & Belletti,
2017).

5.3.1 Geometry and mesh

The experiment of Seraj et al. (1995) is simulated with a NLFE model. The designs of the frames PF1
and PF2 can be found in figure 33.The reinforced concrete frame is modelled with four plane stress
elements over the height (4 e.0.h.) and embedded reinforcement. There is chosen for 4 e.o.h. while
the Guidelines for NLFE analyses (Hendriks, de Boer, & Belletti, 2017) suggest that at least 6 e.o.h.
should be used. The reason for this deviation is a reduction of the computational time and stress
concentration in the corner D (Appendix D.4).

There is chosen for a two dimensional model, since the frame is very slender and three dimensional
effects can be neglected. The geometry, mesh and applied load is shown in the figures below. Only
the geometry, mesh and applied load are shown for PF2. PF1 is modelled in a similar way only the
reinforcement design is different (figure 33 and Appendix D.1.2.1).
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Figure 44. Geometry, reinforcement and Figure 45. Mesh concrete (plane stress Figure 46. Mesh embedded

applied load PF2. elements). reinforcement (bar elements).

The boundary conditions are shown in figure 44. The columns have fixed translations in the x, y
direction and a fixed rotation around the z-axis. Furthermore there is no additional corner
reinforcement placed which is shown in figure 46 since the amount of reinforcement is unknown and
the design helps only for an opening moment and the governing failure mode is due to a closing
moment (right corner D).

5.3.2 Non-linear finite element models

The element types, constitutive models used in the non-linear finite element model are shown in
appendix D.2. The material parameters used in the NLFE analysis are based on the values given by
Seraj et al. (1995) and the unknown material parameters have been calculated according to the
Model Code 2010 (fib, 2012). The material parameters are derived in Appendix B. The values used in
the NLFE analysis are the mean values in Appendix B.3. The convergence norm applied in the model
is a combination of a force and energy norm. The convergence tolerance for the force and energy
norm is 0.01 and 0.001, respectively.
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5.3.2 Load paths for PF1 and PF2

The loading path is constructed in such a manner that simulates the loading path described by the
experiment (Seraj, Kotsovos, & Pavlovic, 1995). The additional load due to the sway effect of the
frame is calculated by Seraj et al. (1995). For both portal frames tested during the experiment this
additional vertical load is different due to different deformation. The additional vertical load starts
when a horizontal load of F;, = 15 kN is applied. When this horizontal force is applied on the frame
there is additional vertical deformation visible which is only explicable due to the additional vertical
load (Appendix E1, figure E1 (a)). The additional vertical load F, 5,4, is calibrated in such a way that
when a horizontal load F;, = 20 kN is applied on the model, the additional vertical load has reached
the collapse load from the experiment.

In the tables 12 and 13 the loading paths are shown. First the vertical load E, = 24 kN is applied with
load increments of 10 percent. Secondly the horizontal load is applied till F;, = 15 kN. Finally the last
load combination is applied which is a combination of the horizontal force Fy, and F, 5,4y The last
load combination is applied till failure of the structure.

Table 12. Load path PF1.

PF1
Equilibrium Iteration Maximum number of iterations | Load-steps Line search | Load combination
Regular NR 400 | 0.1(10) yes Fv =24 kN
Regular NR 800 | 0.05(15) yes Fh =20 kN
Secant (Quasi-Newton) 1000 | 0.05(4) 0.01(100) | yes Fv=20kN

Till failure Fh (sway) = 18 kN

Table 13. Load path PF2.

PF2
Equilibrium Iteration Maximum number of iterations | Load-steps Line search | Load combination
Regular NR 400 | 0.1(10) yes Fv =24 kN
Regular NR 800 | 0.05(15) yes Fh =20 kN
Secant (Quasi-Newton) 1000 | 0.05(4) 0.01(100) | yes Fv=20kN

Till failure Fh (sway) = 40 kN

5.3.3 Structural failure of the portal frames

The failure modes of the NLFE model of PF2 are presented below. PF1 have comparable failure
modes. Several elements have to fail before the structural system fails since the portal frame is
statically indeterminate. First the concrete compressive strut in closing corner D (right corner) fails
partially (figure 47 and 48). In fact the softening behavior of the parabolic concrete compression
diagram (figure 49) is used to redistribute the internal forces to the other parts of the portal frame.
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Figure 47. Principle stresses before Figure 48. Principle stresses after partial Figure 49. Parabolic compression
partial failure concrete compressive failure concrete compressive strut corner D diagram concrete (Hendriks, de Boer,
strut corner D (load-step 20). (load-step 21). & Belletti, 2017).

Due to the softening behavior of the concrete in corner D the maximum moment capacity of corner
D is reached. Composed line elements are included in the NLFE model. This elements can integrate
the stresses over the height of the element to determine the moment distribution at a certain
position. In figure 51 the moment distribution is shown directly after the failure of the concrete
compressive strut (load-step 22). Figure 50 shows the moment distribution before failure of the

structural system (load-step 29). The moment capacity of corner D is reached after load-step 22 and
cannot increase any more.
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Figure 51. Moment distribution composed line elements after

Figure 50. Moment distribution composed line elements
failure of the concrete compressive strut (load-step 22).

before the structural system failure (load-step 29).

The failure of the structural system occors after the forming of plastic hinges at midspan C (load-step
23), the bottom of the left and the right column (load-step 29). The forming of the plastic hinges
occurs after the yielding of the reinforcement. This is shown in figure 52 and 53. The partial failure of
corner D and the forming of the plastic hinges at location A, C and E lead to a mechanism and
eventually to the failure of the structural system.
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5.3.4 Comparison results NLFE analysis and experiment Seraj et al. (1995)

The non-linear finite element models for PF1 and PF2 are different due to a different reinforcement
design and other load paths. The load carrying capacity of the two non-linear finite element models
and the load obtained from the experiment can be found in table 14 and 15.

Table 14. Results NLFE analysis, experiment and model uncertainty for PF1.

Model uncertainty PF1

Direction F experiment (N) F NLFE analysis (N) F(experiment) / F(NLFE analysis)
Vertical 28500 28140 1.013
Horizontal 20000 19600 1.020
Mean 1.016

Table 15. Results NLFE analysis, experiment and model uncertainty for PF2.

Model uncertainty PF2

Direction F experiment (N) F NLFE analysis (N) F(experiment) / F(NLFE analysis)
Vertical 33680 32400 1.040
Horizontal 19950 19200 1.039
Mean 1.039

According to Engen (2017), the experimental outcome of different experiments can be compared to
the NLFE analysis results when the same solution strategy is used. The following formula for the
model uncertainty is applicable in this case:

1 R
g, ==Y (&) 2.1
moon X RNLFEA/ | (2.1)
where:
n=2 is the total number of different experiments;
Rexp experimental outcome;
RyiFEA results from NLFE analysis.

For this case the model uncertainty for the total load is 8,,, = % (1.016 + 1.039) = 1.028 and the

coefficient of variation V;,, = 0.01 based on the results of PF1 and PF2. These are not very realistic
values since just two different experiments have been performed.

The deformational response of the non-linear finite element model is compared with the
experimental results in Appendix E.2. Also the measured strain of the reinforcement is compared
with the strain found with NLFE analysis at several locations. The stiffness of the model is higher than
the experimental results. This is the main reason for the differences in experimental and modelling
results.
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6 Uncertainties in the reinforced concrete frame designs

The uncertainties in the reinforced concrete frame designs can be divided in physical uncertainties
(chapter 6.1) and model uncertainties (chapter 6.2).

6.1  Physical uncertainties
The physical uncertainties can subsequently divided into: material uncertainties, geometrical
uncertainties and loading uncertainties.

6.1.1 Material uncertainties

The concrete used in portal frame design 1 and 2 is concrete strength class C30. In portal frame
design 3 the concrete strength class C40 is used. The steel grade is the same in the three portal frame
designs.

6.1.1.1 Concrete

The concrete material parameters such as the compressive strength f, tensile strength f,;, the
modulus of elasticity E., the fracture energy Gy and the compressive fracture energy G, are based on
experimental test. Therefore all concrete material can be represented by continuous stochastic
variables with a certain distribution type. In this thesis the following concrete variables are used:

fer fetr Ec) Gy and G. All stochastic variables can be described with the following stochastic
parameters: distribution type, mean value and coefficient of variation. All concrete variables are
lognormal distributed since all values are higher than zero (unlike the normal distribution) and it is an
accurate approach for low and high coefficients of variation (Torrent, 1978). The variables that have
a large influence on the structural capacity are assumed to be stochastic. The most important
stochastic variables are: f, f¢t, Ec and Gy (table 16 and 17). The compressive fracture energy G is
assumed to be fully dependent on the fracture energy Gy according to equation (B.8) in Appendix
B.1.

Table 16. Stochastic properties concrete C30.

Concrete C30
Variable fc (MPa) fct (MPa) Ec (MPa) Gf (Nm/m2) | Gc
Mean 38 2.869 33550.6 140.5 35125.6
Standard deviation 5.7 0.430 5703.6 28.1

Fully dependent on the fracture energy
distribution LN LN LN LN | Model Code 2010 (fib, 2012)

Table 17. Stochastic properties concrete C40.

Concrete C40
Variable fc (MPa) fct (MPa) Ec (MPa) Gf Gc
Mean 48 3.509 36267.6 146.5 36634.2
Standard deviation 7.2 0.526 6165.5 29.3

Fully dependent on the fracture energy
distribution LN LN LN LN | Model Code 2010 (fib, 2012)

The coefficient of variation is Vz = 0.15 (Schlune (2011) and Pimentel et al. (2009)), V. = 0.15,
VEC =0.17 and VGf = 0.2 (Strauss, Zimmermann, Lehky, Novak, & Kersner, 2014) for the concrete

compressive strength, concrete tensile strength, modulus of elasticity and fracture energy,
respectively. The coefficient of variation is an important factor in the safety analysis. In literature
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many different values can be found. Selecting the right values for a certain case is of great
importance to perform a valid safety assessment.

According to the Model Code 2010 (fib, 2012), the material parameters of concrete can all be
determined based on the compressive strength of concrete. The relations between the material
parameters of concrete are shown in Appendix B.1. Full correlation p = 1 is assumed between the
concrete material parameters. The concrete compressive strength of the portal frame can be related
to the other concrete material parameters and calculated with the formulas shown in Appendix B.1.
This can be used to perform a safety assessment where full correlation is assumed. The correlation
between the concrete variables will be discussed in chapter 6.1.1.3.

6.1.1.2 Reinforcement steel

The stochastic material properties of the reinforcement steel are given in table 18 and table 19. The
yield strength of the longitudinal reinforcement f,, ; is assumed to be lognormally distributed with a
coefficient of variation ny'l = 0.05 according to Schlune (2011), Pimentel et al. (2014) and Faber &

Vrouwenvelder (2001). The steel tensile strength f; ; of the longitudinal reinforcement is assumed to
be fully dependent on the yield strength according to equation (B.11) in Appendix B.2. The modulus
of elasticity E; and the yield strain €, of the reinforcement steel is assumed to be deterministic.

Table 18. Stochastic properties longitudinal reinforcement.

Longitudinal reinforcement

Variable fy,| (MPa) ft (MPa) Es (MPa) €esy
Mean 560 680 200000 0.0028
Standard deviation 28 - -

Fully dependent on yield strength
Distribution LN | fy,| Model Code 2010 (fib, 2012) Deterministic | Deterministic

The shear reinforcement material values are assumed to be deterministic since the portal frame
designs are not sensitive for a shear failure mode when a global safety approach is used (see chapter
4.4).

Table 19. Stochastic properties shear reinforcement.

Shear reinforcement

Variable fy,s (MPa) ft (MPa) Es (MPa) €esy

Mean 460 510 200000 0.0023
Standard deviation - - - -

Distribution Determininistic Deterministic | Deterministic | Deterministic

6.1.1.3 Correlation material properties

All concrete material properties are dependent correlated variables. The correlation between the
concrete compressive strength f_, the tensile strength f.; and the modulus of elasticity E_ is
determined by Octar et al. (1996), which are presented in table 20. In literature there is not much
information about the correlation between f;, f., E; and the concrete fracture energy Gy.
Zimmermann et al. (2016) found the correlation factor PGrfo = 0.8 between the fracture energy

and the tensile strength for concrete up to C30/37. The following correlation factors are determined
by Kersner et al. (2007): PG f, = 0.714 and PG, = 0.657 for the correlation between the fracture
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energy with the concrete compressive strength and the modulus of elasticity. The longitudinal

reinforcement is independent and uncorrelated from the concrete material properties (table 20).

Table 20. Correlation matrix.

Correlation Matrix

Variable fc fct Ec Gf fy,|

fc 1 0.932 0.772 0.714 0
fct 0.932 1 0.684 0.8 0
Ec 0.772 0.684 1 0.657 0
Gf 0.714 0.8 0.657 1 0
fy,l 0 0 0 0 1

According to chapter 2.5 the correlated lognormal variables can be transformed to correlated normal
distributed variables In(X) with mean p; and standard deviation o . After that the correlated
normally distributed variables X can be transformed to uncorrelated standard normally distributed
variables U using a transformation matrix T. The matrix T is found using Cholesky decomposition of
the correlation matrix p (table 20). This is shown in Appendix F.1. The result of the transformation is
given below:

[ U O-Lf
[ Xfc '| 'uL,fc fe Je
| X, | [ “L'f“l (0.932U;, +0.362U,) o, 1.,
Xe, | =| e, |+ (0.772 Uy, — 0.098 Uy, + 0.628 U, ) 0y, (6.1)
| %o | |I‘1‘L'Gf | (0.714 Uy, +0.371 Uy, +0.226 Ug, +0.549 Ug, ) 0,6,
Lfy,
ley,lJ yi Ufy,l O-L'Fy,l

However it is questionable if this approach of assuming five distribution functions with their
corresponding correlation coefficients is a good approximation of the real material behavior. This is
because the correlation coefficients between all concrete properties are hard to determine since the
properties are determined separately.

A better approach is the use of the relation between the concrete properties as described in the
Model Code 2010 (fib, 2012) and which are presented in Appendix B.1. These relations assume full
correlation between the concrete properties p = 1 because all concrete parameters are depending
on the concrete compressive strength. This assumption seems to be valid since the correlation
coefficients as presented in table 20 are rather high. It is certainly better than assuming independent
concrete properties, where p = 0 or correlation values which are almost impossible to determine.
The correlation matrix for fully dependent concrete properties is shown is table 21.
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Table 21. Full correlation matrix.

Full correlation Matrix

Variable fc fct Ec Gf Gc fy,|

fc 1 1 1 1 1 0
fct 1 1 1 1 1 0
Ec 1 1 1 1 1 0
Gf 1 1 1 1 1 0
Gc 1 1 1 1 1 0
fy,| 0 0 0 0 0 1

The same transformation from X to U according to chapter 2.5 can be done for full correlation
between the concrete properties. The transformation is shown in Appendix F.2.

X =u; +DTU
[ Xfc ] [:uL,fC ] [ Ufc O-L:fc |
Xee | {Hor, Uy, 0L 1
XEC HULE, Ufc OLE,
Xe. | T u Tl u (6.2)
Gr LGy fe O-L:Gf
Xo. | | # L'chl Uf, 916,
M,
_Xfy,l- fy,l -Ufy,l O-L'fy,l-

Equation (6.2) shows that all concrete properties are fully dependent on the concrete compressive
strength. The only uncertainty here is the coefficient of variation V = ¢ /u of the other concrete
properties, namely: the coefficient of variation of the concrete tensile strength V., the modulus of
elasticity Vg, , the fracture energy VGf and the compressive fracture energy 1, . The value of the
coefficient of variation is strongly dependent on the case and several different values are used in
literature.

Therefore the best way to deal with the correlated concrete properties is the use of the relations
between the concrete properties as described in the Model Code 2010 (fib, 2012) and which are
presented in Appendix B.1. The coefficients of variations: V¢_, Vg, VGf and I _are in fact hidden in
the empirical formulas presented in Appendix B.1. All concrete properties are related to the concrete
compressive strength f... So only the coefficient of variation of the concrete compressive strength V¢,
is needed to determine the value of all other concrete properties and the coefficient of variation of
the steel yield strength ny to determine the steel properties.
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6.1.1.4 Summary of stochastic material variables used in the safety assessment

The chosen stochastic variables to represent the material uncertainties are the concrete compressive
strength f. and the yield strength of the longitudinal reinforcement f,, ;. All other concrete properties
are related to the concrete compressive strength using the relations according to the Model Code
2010 (fib, 2012) presented in Appendix B.1.

Table 22.Stochastic properties concrete C30 used for the global safety assessment in chapter 7.

Concrete C30

Variable fc (MPa) fct (MPa) | Ec (MPa) Gf Gc

Mean 38 2.869 33550.6 140.5 35125.6

Standard deviation 5.7 - - - -
Fully dependent on the compressive strength fc according to the

distribution LN | Model Code 2010 (fib, 2012)

Table 23. Stochastic properties concrete C40 used for the global safety assessment in chapter 7.

Concrete C40

Variable fc (MPa) fct (MPa) | Ec (MPa) Gf Gc

Mean 48 3.509 36267.6 146.5 36634.2

Standard deviation 7.2 - - - -
Fully dependent on the compressive strength fc according to the

distribution LN | Model Code 2010 (fib, 2012)

The yield strength of the longitudinal reinforcement f,, ; is related to the steel tensile strength f;
using the relation according to the Model Code 2010 (fib, 2012) presented in Appendix B.3 equation
(B.11). The stochastic steel material properties are the same as described in chapter 6.1.1.2.

Table 24. Stochastic longitudinal reinforcement used for the global safety assessment in chapter 7.

Longitudinal reinforcement

Variable fy,| (MPa) ft (MPa) Es (MPa) €esy
Mean 560 680 200000 0.0028
Standard deviation 28 - - -

Fully dependent on yield strength
Distribution LN | fy,| Model Code 2010 (fib, 2012) Deterministic | Deterministic

6.1.2 Geometrical uncertainties

The rotational capacity of corner D is mainly dependent on the used material values and the
geometrical values. The material uncertainties are already discussed in chapter 6.1.1. The
geometrical uncertainties will be discussed here. The most important geometrical uncertainty is the
cross-sectional area of a longitudinal reinforcement bar A since this parameter has a large influence
on the rotational capacity of corner D. This uncertainty will be discussed in chapter 6.1.2.1. Other
geometrical properties are of less importance and will be discussed shortly in chapter 6.1.2.2.
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6.1.2.1 Corner reinforcement detailing

The cross-sectional area of a longitudinal reinforcement bar is made with a certain accuracy.
Therefore the cross-sectional area can be seen as a stochastic variable. Due to fabrication the
coefficient of variation of the cross-sectional area of the longitudinal reinforcement is assumed to
be V,, = 0.02 (Faber & Vrouwenvelder, 2001).

The corner reinforcement can be placed in several ways. A few examples can be found in chapter 4.1.
The structural resistance of the corner is different for each reinforcement layout (Johansson, 2000).
Also for corners with the same reinforcement layout a certain spread in the structural resistance and
ductility will be obtained. Several corner reinforcement layouts were tested with a high and a low
reinforcement ratio by Johansson (2000) and Plos (1994). The results are presented in figure 54.
Figure 54 clearly indicates the uncertainty in the structural resistance and the ductility of a reinforced
concrete corner.
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Figure 54. Load-displacement relations for the frame corners subjected to a closing moment: high reinforcement ratio (a)
and low reinforcement ratio (b). Specimens RV1 to RV4 were tested by Plos (1994) and RV5 to RV8 by Johansson (2000).

Normally this uncertainty is implemented in the model uncertainty since the reinforcement detailing
is exactly known. However, in case of a reassessment of an existing structure this is not always
known. Specific reinforcement detailing plans may be missing or the reinforcement is not placed
exactly according to the reinforcement plan. For instance some information was missing for the two
experiments used in chapter 5. The amount of longitudinal reinforcement and shear reinforcement
was exactly known and shown on the drawings. However the corner reinforcement detailing was
only shown on a picture (figure 35). In order to implement this uncertainty the cross-sectional area
A, of the longitudinal reinforcement is chosen to be a stochastic variable were a larger coefficient of
variation V, . = 0.10 is assumed because this parameter has a large influence on the rotational
capacity of the corner. The cross-sectional area A in fact represent the uncertainty in the
reinforcement detailing. Especially in the region of corner D, where the influence of the tensile area
A, on the rotational capacity is rather high.
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Summarizing the geometrical uncertainty of the longitudinal reinforcement will be implemented in
the following two cases:

e The cross sectional area of the longitudinal reinforcement due to fabrication processes is
assumed to be a normally stochastic variable. The estimated coefficient of variation of the
cross-sectional area of the longitudinal reinforcement is Va, = 0.02 (Faber & Vrouwenvelder,
2001).

e The cross-sectional area of the longitudinal reinforcement is assumed to be normally
distributed to implement the uncertainty of the reinforcement detailing. The coefficient of
variation is assumed to be VAS = 0.10. This uncertainty should reflect the uncertainty in the
reinforcement detailing and therefore the uncertainty of the resistance and ductility of the
corner.

6.1.2.2 Geometrical properties

The geometrical properties of the reinforced concrete frame are for instance: the height of the
frame, the span of the frame, the element height, the element width, etc. The geometrical properties
of the portal frame are chosen to be deterministic except for the cross-sectional area A; of the
longitudinal reinforcement as explained in chapter 6.1.2.1. The cross-sectional area of the shear
reinforcement is also chosen to be deterministic since this has a relatively low influence on the
structural resistance of the portal frame.

6.1.3 Loading uncertainties
The safety of the reinforced concrete frame is only checked for the resistance side. The implicit limit
state function is defined as (chapter 1.2.1):

G(X) = R(X) — Rgp.

where the load is defined as Rgf, which is the structural resistance of the non-linear finite element
model according to the corresponding safety format. Thus the load Rg is a deterministic value in this
approach and the safety of the structure is only estimated from the resistance side of the limit state.

6.2  Model uncertainties

The model uncertainties are derived in chapter 5.3.3 with the use of the results of the experiment
from Seraj et al. (1995). This experiment is more or less comparable to the NLFE model that will be
used for the global safety assessment of portal frame design 1, 2 and 3. The loading is slightly
different but in absence of better experimental results this is the best approach to make an
estimation of the model uncertainty. The model uncertainty is the ratio between the experimental
results and the model results. The model uncertainty 8,,, = 1.028 and the coefficient of variation
Vi, = 0.01 are determined in chapter 5.3.3 based on two experiments.

The model uncertainty that will be used in the global safety assessment is 8,,, = 1.0. This is a safe
assumption since the results of the NLFE model is slightly lower compared to the experimental
results. The coefficient of variation of the model uncertainty V,,, is neglected since the number of
experiments is too low to make a justified assumption. However some of the effects which could
results in a larger model uncertainty are described by the uncertainty in the corner reinforcement
detailing. This uncertainty is implemented in chapter 6.1.2.1.
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7 Safety assessment reinforced concrete frame designs

7.1 Level ll reliability method: local safety evaluation using explicit limit state

functions

A local safety evaluation of the portal frame designs is not performed since there is no analytical
model available to take into account the rotational capacity and therefore the ductility of corner D.
This should be incorporated in combination with the forming of the plastic hinges at location A, C and
E. A practical approach would be to analyze the combined mechanism (chapter 5.2.2.3), where
corner D is a partial plastic hinge. Still the amount of plasticity in corner D is case dependent and has
to be assessed in an analytical model. Therefore only a global safety evaluation will be performed in
chapter 7.2.

7.2 Level ll reliability method: global safety evaluation using an implicit limit state

function

The reliability level S and the probability of failure of the safety formats can be determined with the
following implicit limit state function (Blomfors, Engen, & Plos, Evaluation of safety formats for non-
linear finite element analyses of statically indeterminate concrete structures subjected to different
load paths, 2016):

G(X) = R(X) — Rsp (7.1)

where R(X) is the total resistance of a NLFE analysis using stochastic variables X and Rgp is the total
resistance of the NLFE model according to the corresponding safety format Rgr. The measure of the
total structural resistance is chosen to be the sum of the vertical and horizontal load (Blomfors,
Engen, & Plos, Evaluation of safety formats for non-linear finite element analyses of statically
indeterminate concrete structures subjected to different load paths, 2016). The measure of the
structural resistance is not a real physical quantity. However, this is not needed since this quantity is
only used to determine a possible failure of the portal frame. The model uncertainty 6,,, of the NLFE
model is assumed to be 1.0 and therefore not implemented in the LSF. This implicit limit state
function will be used to perform a global safety assessment of the design resistance according to the
safety formats. For each portal frame design only the safety format with the highest probability of
failure will be assed. If the reliability index Sz = 3.04, the other safety formats are assumed to be
safe. For each design the safety format with the highest global design resistance, i.e. highest
probability of failure, can be found in table 2 (chapter 4.4).

The chosen stochastic variables to perform a safety assessment are based on the rotational capacity
of corner D. The simplest way to vary the rotational capacity of the corner is to vary the yield
strength f,, of the steel and the concrete compressive strength f.. Therefore Case 1 is defined as: a
global safety assessment using only stochastic variables: f,, and f¢. In fact case 1 is a global safety
assessment where there is no geometrical uncertainty implemented in the reinforcement detailing.
The advantage of two stochastic variables is that the implicit LSF function derived from the response
surface can be plotted.

A more advanced way to vary the rotational capacity is to implement to cross-sectional area A of
the longitudinal reinforcement as a stochastic variable. This leads to a global safety assessment
where f,, f. and A are the chosen as stochastic variables to vary the rotational capacity of corner D.
Two additional cases are defined. Case 2: rotational capacity corner D with geometrical uncertainty
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in the reinforcement detailing due to fabrication of the longitudinal reinforcement. Case 3 is defined
as the rotational capacity of corner D with uncertainty in the detailing of the longitudinal corner

reinforcement. The difference between case 2 and case 3 is the coefficient of variation of the cross-
sectional area of the longitudinal reinforcement, which is: V, - = 0.02 and V,_ = 0.10 for case 2 and

3, respectively.

7.2.1 Case 1: rotational capacity corner D without geometrical reinforcement uncertainty
The simplest way to vary the rotational capacity of the corner is to vary the yield strength of the steel
and the concrete compressive strength. The stochastic variables X used in the global safety
assessment of Case 1 are: f, and f,.

7.2.1.1 Design 1

The safety format with the highest global design resistance, i.e. highest probability of failure, for
design 1 is the ECOV method. The total global design resistance according to the ECOV method is:
Rgr = 36.1 kN. This leads to the following implicit LSF:

G(X) = R(X) — 36.1. (7.2)

The response surface to replace the actual LSF is constructed according to the approach of Zhao and
Qiu (2013). This approach is discussed in chapter 2.4.2. A detailed calculation of the response surface
is presented in Appendix G.1.1. The used python scripts to run the NLFE analyses and to process the
results can be found in Appendix H. The structural response of the NLFE model shows a large spread
in the results. Therefore there is chosen to use more sample points to create the response surface
than 2n + 1 sample points recommended by Zhao and Qiu (2013). The center of gravity of all sample
points is around the initial design point. Subsequently the design point X, , is obtained with FORM.
This first obtained design point X, , is used in a NLFE analysis to determine G(XL*)- This results is
added to update the response surface. Again the FORM is used to determine the second design point
design point X, ,. This procedure is repeated until convergence is achieved. The response surface is
presented in the real and standard normal space in figure 55 and 56, respectively. The LSF function
derived from the response surface is also presented in real and standard normal space in figures 59
and 60, respectively. The real design point is denoted with X, and is presented below. The reliability
index is fr = 5.26. So the safety formats can be used safely for design 1.
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The rotational capacity of corner D has a large influence on the structural resistance and therefore on
the result of the LSF. The structural resistance of NLFE analyses with sample points close to each other
can differ significantly. The spreading of the results is shown in figure 57 and 58.
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Figure 57. Design 1: response surface (real space). The
spreading of the results of the implicit LSF is clearly
visible.
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Figure 58. Design 1: response surface (real space). The
spreading of the results of the implicit LSF is clearly
visible.

The shape of the response surface is only an approximation in the region of the used sample points
i.e. the region near the design point. In this case all sample points are positioned in the third
guadrant of a graph with standard normal variables (figure 60). Therefore the parts of the LSF in the
other quadrants should be neglected. The only reason that this parts of the graph are presented in
figure 60 is to show that sometimes a design point can be found in a region where hardly any sample
point are used after performing the FORM. If this is the case additional sample points should be used
near the approximated design point to create a more accurate response surface.
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7.2.1.2 Design 2

The safety format with the highest global design resistance, i.e. highest probability of failure, for
design 2 is the PFm. The total global design resistance according to the PFm is: Rgz = 43.7 kN. This

leads to the following implicit LSF:

G(X) = R(X) — 43.7.

(7.3)

The initital design point is found using the straight line appoach by Zhoa and Qiu (2013). This
approach can be found in Appendix G.1.2. Around the initial design point four sets of sample points
with f = 0.5; 1.0; 1.5; 2.0 are used to determine the response surface. The sample points are shown

in figure 61 and 63.
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Figure 61. Design 2: response surface (real space).

Response surface (standard normal space)

Figure 62. Design 2: response surface (standard normal
space).

After applying the FORM a design point is found in the region, which is not described by the chosen

sample points. This is shown in figure 63 and 64.
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Figure 63. Design 2: limit state function (real space).
Design point obtained with the FORM lies in a region,
which is not described accurately by the sample points.
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Therefore the obtained design point is not realistic.
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Additional sample points with a high concrete compressive strength coordinates are added to have a
better approximation of the response surface in the region of the added sample points. Otherwise an

incorrect design point is obtained. The updated response surface is presented in figures 65 till 68.

Response surface (standard normal space)

Response surface (real space)
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Figure 65. Design 2: updated response surface (real Figure 66. Design 2: updated response surface (standard
space) in order to find the real design point. normal space) in order to find the real design point.

The rotational capacity of corner D has a large influence on the structural resistance and therefore on
the result of the LSF. The structural resistance of NLFE analyses with sample points close to each
other can differ significantly. The spreading of the results is shown in figure 67 and 68.
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Figure 67. Design 2: updated response surface (real Figure 68. Design 2: updated response surface (real space)
The spreading of the results of the implicit LSF is clearly

space). The spreading of the results of the implicit LSF is
visible.

clearly visible.
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The updated LSF is presented in figure 69 and 70. The obtained design point, reliability index and

sensitivity factors are presented below.
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Figure 69. Design 2: updated limit state function (real
space). Previous design point lies below the new obtained
design point.
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7.2.1.3 Design 3

The safety format with the highest global design resistance, i.e. highest probability of failure, for
design 3 is the PFm. The total global design resistance according to the PFm is: Rgz = 37.0 kN. This

leads to the following implicit LSF:

G(X) = R(X) — 37.0. (7.4)

The obtained response surface in the real and in the standard normal space are shown below.
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Figure 72. Design 3: response surface (standard normal

Figure 71. Design 3: response surface (real space).
space).

The higher strength class C40 used in design 3 leads to a portal frame, which is very sensitive for a
ductile or a brittle failure depending on the rotational capacity of corner D. This results in a large
spreading of the obtained structural resistance for sample points close to each other. Therefore the
fit of the response surface is not very accurate which is shown in figure 73 and 74.
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Figure 74. Design 3: response surface (standard normal
space). A lot of spreading in sample points close to each
other results in a bad fit of the response surface.

Figure 73. Design 3: response surface (real space). A lot of
spreading in sample points close to each other results in a
bad fit of the response surface.
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However after adding a lot of sample points and using the FORM method a good approximation of

the real design point can be made. The real design point X, is given below. The reliability index is
= 5.37 so therefore the safety formats can safely be used for design 3.
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Figure 75. Design 3: limit state function (real space).
Previous design point lies below the new obtained

design point.
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7.2.1.4 Discussion used method by Zhao and Qiu (2013) to obtain the response surface
Various issues that arise in obtaining a response surface according to the method proposed by Zhao
and Qiu (2013) are discussed on the basis of a few examples.

Obtaining the control point X,

Creating a response surface, for a reinforced concrete portal frame, with the use of the control point
(zhao & Qiu, 2013) is not always a useful approach in order to reduce the number of NLFE analyses
needed to find the real design point. Normally the control point is found for a problem with n
stochastic variables by performing n + 1 NLFE analyses. The mean material values are used in the
first NLFE analysis and for the n other NLFE analyses for one of the stochastic variables a low strength
value is used. This done by subtracting f times the standard deviation from one of the stochastic
variables. For the other variables the mean values are used. Mostly f = 3 is used because it should
be close to the real design point. However the rotational capacity can be influenced positively when
a lower concrete compressive strength is used because the Young’s modulus of concrete will be
lower according to the relation (B.9). The concrete is able to resist a larger deformation and since the
mean steel values are also used in this analysis the structural resistance could be higher than a NLFE
analysis with mean material values. This leads to an unrealistic control point and new NLFE analyses
should be performed with a larger f where the structural resistance of the portal frame is lower than
the load found with mean material values.

For portal frame design 1 the factor f = 3 could be used without any problems. For design 2 and 3
this factor led to an unrealistic control point. This will be shown in the examples below.

e Design 2:

The results of the first three NLFE analyses to obtain the control point with f = 3 are
presented below:

'fy,mean] _ 1560
»fc,mean B 38
_fy,mean - f ny

resistance NLFE analysis with X = ]: F,=37.1 and Fy, = 15.7;

resistance NLFE analysis with X = ]: F, =314 and F, =15.7;

f c,mean
f y,mean

resistance NLFE analysis with X =
Y _fc,mean - f oy,

]: E, =37.6 and F, =15.7.

The resistance of the NLFE analysis with low concrete material values is actually higher than
the resistance of a NLFE analysis with mean material values due to a ductile and brittle
failure mode, respectively. The low concrete values (lower stiffness) has a positive influence
on the rotational capacity of corner D. If these results are used to calculate the control point
fy] [423.7
fe 42.3
of the concrete compressive strength is f. 1,04, = 38 MPa. The direction in which the initial
design point is being sought is on a straight line between X and X,. Thus the initial design
point is being sought in the direction of concrete values higher than the mean strength. This
could be the case but some experience with performing NLFE analyses for this problem led to
the conclusion that this approach deviates significantly from the real design point. Therefore
a larger factor f = 4.5 is used to obtain the control point.

with equation (2.34) the following result is obtained: X, =

].The mean value
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e Design 3:

For design 3 a more realistic control point X can be found when the factor f = 3 is used.
However using this control point led to divergence of the obtained first iteration point X,
according to equation (2.35). This is shown on the basis of the results of 4 NLFE analyses that
are used to obtain the first iteration point Xy, :
‘fy,mean] _ [560
-fc,mean B 48
-fy,mean - f ny

resistance NLFE analysis with X = || R=283 and F, =157

resistance NLFE analysis with X = ]: F, = 26.7 and F, =15.7;

fc,mean
resistance NLFE analysis with X = Jymean . F, =266 and F, = 15.7;
f cmean — f Y
. - _ [502.67. _ _
resistance NLFE analysis with X, = [ 29.9 ] F, = 26.7 and F, =15.7.

_[308.8

According to equation (2.35) the first iteration point should be X, = “31 0]. To avoid this

divergence a factor f = 4 is used to find the initial design point.

The influence of the factor f on the initial design point

Another problem with the control point is to estimate the factor f because this factor has an
influence on the weight factors w; and therefore the direction of the straight line between X and X .
that is used to obtain the initial design point. A wrongly chosen factor f could lead to a large
deviation from the initial to the real design point. An example of this can be found in figure 77. A lot
of additional NLFE analyses are needed to obtain the real design point.
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Figure 77. Design 2: deviation initial design point from real design point due to a wrongly chosen f-factor.

Exact calculation of the response surface not possible

The exact calculation of the coefficients b of the response surface by using 2n + 1 NLFE analyses
suggested by Zhao & Qiu (2013) does not lead to correct results since there is a relatively large
spreading of the NLFE results. This spreading is mainly caused due to difference in rotational capacity
for the several combinations of used material values in the NLFE analyses. Therefore it is better to
use more sample points and make use of a least squares approach to fit a response surface to the
results. Also the initial founded design point can deviate a lot from the real design point due a badly
chosen f-factor. This results in wrongly chosen 2n + 1 points to create the response surface.
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7.2.2 Case 2: rotational capacity corner D with reinforcement uncertainty due to fabrication
A more advanced way to vary the rotational capacity of the corner is to vary the yield strength of the
steel, the concrete compressive strength and the cross-sectional area of the longitudinal

reinforcement. The stochastic variables X used in the global safety assessment of Case 1 are: f,,, fc

and A;. The coefficient of variation used for the cross-sectional area of the longitudinal
reinforcement is V, = 0.02 for case 2. The results are presented below. The calculations can be

found in Appendix G.2.

7.2.2.1 Design 1
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Figure 78. Design 1: sample points 3D.
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7.2.2.2 Design 2
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Figure 80. Design 2: sample points 3D.
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Figure 79. Design 1: sample points 2D.
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7.2.2.3 Design 3
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Figure 82. Design 3: sample points 3D.
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Figure 83. Design 3: sample points 2D.
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7.2.3 Case 3: rotational capacity corner D with uncertainty in the reinforcement detailing

A more advanced way to vary the rotational capacity of the corner is to vary the yield strength of the
steel, the concrete compressive strength and the cross-sectional area of the longitudinal
reinforcement. The stochastic variables X used in the global safety assessment of Case 1 are: f,,, fc
and A;. The coefficient of variation used for the cross-sectional area of the longitudinal
reinforcementis V, = 0.10 for case 3. The results are presented below. The calculations can be

found in Appendix G.3.

7.2.3.1 Design 1
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7.2.3.3 Design 3
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7.2.4 Summary of the results obtained from the global safety assessment
The results of the global safety assessment are presented below. The conclusions are presented in

chapter 9.1.

Table 25. Results obtained from the global safety assessment. The design point in the real space, the sensitivity factors and
the design point in the standard normal space.

Portal frame designs

Case 1: fy and fc

Case 2: fy, fc and As with Vas=0.02

Case 3: fy, fc and As with Vas=0.10

Portal frame designs Case 1 Case 2 Case 3

Br fy (Mpa)  fc(Mpa) | Br fy (Mpa) fc(Mpa) As(mm?) |Br fy (Mpa) fc(Mpa) As(mm?)
Design 1 5.26 441.48 26.67 5.69 455.96 32.72 217.47 2.21 532.89 35.24 189.88
Design 2 5.75 429.29 26.87 5.07 466.87 26.83 269.50 2.18 541.65 37.58 225.65
Design 3 5.37 442.00 32.35 6.01 453.64 37.55 216.70 2.49 537.73 45.40 180.53
Portal frame designs Case 1 Case 2 Case 3

Br o fy a fc Br o fy a fc o As Br a fy a fc o As
Design 1 5.26 0.90 0.44 5.69 0.72 0.16 0.68 2.21 0.44 0.20 0.88
Design 2 5.75 0.92 0.39 5.07 0.71 0.45 0.54 2.18 0.29 0.00 0.96
Design 3 5.37 0.88 0.48 6.01 0.70 0.26 0.67 2.49 0.32 0.12 0.94
Portal frame designs Case 1 Case 2 Case 3

Br U fy U fc Br U fy U fc U As Br U fy U fc U As
Design 1 5.26 -4.73 -2.30 5.69 -4.09 -0.93 -3.85 2.21 -0.97 -0.43 -1.94
Design 2 5.75 -5.30 -2.25 5.07 -3.62 -2.26 -2.74 2.18 -0.64 0.00 -2.09
Design 3 5.37 -4.71 -2.57 6.01 -4.19 -1.57 -4.01 2.49 -0.79 -0.30 -2.34

Table 26. The sensitivity factors containing the information about the steel parameters are combined in order to make a
comparison possible between case 1, case 2 and case 3.

Portal frame designs Case 1 Case 2 Case 3
a fy and a fy and
Br a fy o fc Br As a fc Br As a fc
Design 1 5.26 0.8996 0.43669 5.69 0.9866 0.1631 2.21 0.9808 0.1951
Design 2 5.75 0.92 0.39 5.07 0.8950  0.4460 2.18 1.0000 0.0003
Design 3 5.37 0.87785 0.47894 6.01 0.9653 0.2613 2.49 0.9927 0.1205
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8 Conclusions and suggestion for further work

In chapter 8.1 the conclusions of this thesis will be presented. Suggestions for further work will be
given in chapter 8.2.

8.1  Conclusions

The evaluation of safety assessment methods is performed according to figure 90. First the
conclusions will be given in chapter 8.1.1 based on the results of the case study of the three
reinforced concrete frame designs. Secondly the conclusions based on the used methods are
provided in chapter 8.1.2.

e ~ Vs ~ -~ ~

Level I reliability method
Level I reliability method v Level 1l reliability method
Global safety assessment

Local safety assessment | =e====en Y Global safety assessment

Safety formats (Model
Eurocode 2 Code 2010) FORM & Response surfaces

g -/. Ny J o L

Figure 90. Schematic representation of the used safety assessment methods

8.1.1 Conclusions about the case study of a reinforced concrete frame

8.1.1.1 Level I: local and global safety assessment of the reinforced concrete frame designs.
A comparison of the obtained failure modes in the reinforced concrete frame designs and the
obtained structural resistance is made and the conclusions are presented below.

Eurocode 2

The local safety assessment according to the Eurocode 2 shows that the individual elements of the
portal frame designs 1, 2 and 3 can resist the external loads F, = 18.8 kN and F;, = 17.7 kN. The
columns and the beam of the portal frame are designed in such a way that these elements can resist
the linear elastic bending moment, shear- and normal forces. The shear resistance of the single
elements determines the structural resistance of the three portal frame designs. The shear resistance
is the same for each design since the same shear reinforcement ratio is used. However a more
detailed analysis should be carried out in the corner regions by means of strut and tie models to
determine the bending moment resistance of the corner. Especially the compressive strut in the
corner region exposed to a closing moment could influence the structural resistance of the three
portal frame designs.

Safety formats (Model Code 2010)

The results of the global design resistance obtained with the safety formats can be found in table 27.
The used calculations can be found in chapter 4.4. The concrete portal frame designs can fail in a
ductile or a brittle manner depending on the used material values. A brittle failure is obtained when
corner D fails before a partial plastic mechanism is obtained with plastic hinges at location A, C and E.
A ductile failure is obtained when a partial plastic mechanism lead to the failure of the frame. This
failure behavior is also indicated in table 27.
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Table 27. Non-linear finite element analysis (NLFEA), design resistance safety format (SF) included model uncertainty yrq
and used global resistance factor yp.

NLFEA Failure yr yra  SF NLFEA Failure Failure yr Yrd  SF NLFEA Failure SF
Design 1  |Mean GRF GRFm |mean characteristic ECOV [PFm design
Fv (kN) 26.00 Brittle 1.2 1.06 17.08] 28.80 Ductile 25.30 Ductile 1.16 1.06 20.40, 19.20 Ductile 19.20
Fh (kN) 15.70 15.70f 15.70 15.70 15.70, 15.70 15.70
Design 2 |Mean GRF GRFm |mean characteristic ECOV [PFm design
Fv (kN) 35.60 Ductile 1.2 1.06 24.63| 33.10 Brittle 30.60 Ductile 1.10 1.06 26.09] 28.00 Ductile 28.00|
Fh (kN) 15.70 15.70f 15.70 15.70 15.70, 15.70 15.70
Design 3 |[Mean GRF GRFm |mean characteristic ECOV [PFm design
Fv (kN) 27.60 Ductile 1.2 1.06 18.34| 28.30 Brittle 25.20 Ductile 1.14 1.06 20.58 21.30 Ductile 21.30]
Fh (kN) 15.70 15.70f 15.70 15.70 15.70, 15.70 15.70

The following conclusions can be made based on table 27:

The global resistance factor y; derived according to the ECOV method is low compared to
the global resistance factor defined in the GRF method. This difference is remarkable
because a NLFE analysis with mean GRF material values is usually lower than a NLFE analysis
with mean material values. Therefore the design resistance obtained with the GRFm is often
much lower than the design resistance obtained with the ECOV method.

The highest longitudinal reinforcement ratio is used in design 2. The structural resistance of
design 2 obtained with a NLFE analysis is higher for the analysis with mean GRF material
values compared to the analysis with mean material values. The yield strength of both
material values is almost the same (Appendix B.2). However the concrete material values
used in NLFE analysis with mean GRF values is much lower compared to the mean concrete
material values. The mean GRF material values show a more favorable ductile failure
compared to the brittle failure obtained from the NLFE analysis with mean material values.
This more favorable ductile failure, i.e. more rotational capacity of corner D, leads to a higher
structural resistance. However the design resistance obtained with the ECOV method is still
higher compared to the design resistance obtained with the GRF method. This is due to the
relatively high global resistance factor yz = 1.2 used in the GRF method.

The lowest global resistance factor y = 1.10 for the ECOV method is obtained when the
results of the NLFE analysis with mean material values shows a brittle failure and the result
of the NLFE analysis with characteristic material values show a ductile failure. The global
resistance factor is relatively low but also the mean resistance is relatively low due to the
brittle failure. Therefore the structural design resistance of the ECOV method can still be
safe.

The GRF method is in all cases the most conservative safety format due to the relatively high
global safety factor y = 1.2.

The least conservative safety format for design 1 is the ECOV method. This is caused by a
ductile failure in the NLFE analysis with mean and characteristic material values.

The results of the least conservative safety formats for design 2 and 3 are obtained with the
PFm. The model uncertainty and the partial material factors are already included in the
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design material values. The design values used in the NLFE analysis are low compared to the
material values used in the other methods, but the low concrete material values have a
positive influence on the ductile behavior of the frame design and in most cases a larger
structural resistance is obtained when a ductile failure is observed.

Comparison Eurocode 2 and Safety Formats (Model code 2010)

The real failure mode of the reinforced portal frame design for the defined load situation is a
compressive strut failure in the frame corner due to a closing moment followed by the formation of
three plastic hinges at location A, C and E. A detailed analysis of a strut and tie model of the concrete
frame corner could lead to a lower design resistance compared to the local element resistance where
a shear failure is obtained. Therefore the safety formats can improve the design resistance of the
reinforced concrete frame since this approach makes redistribution of the concrete compressive
strut possible. The least conservative safety formats already show in table 3 that there is some
additional vertical capacity. This could probably be higher since the design resistance obtained from a
strut and tie model according to the Eurocode 2 could lead to a lower local design resistance.

8.1.1.2 Level ll: global safety assessment by means of the FORM & response surfaces

A level Il global reliability analysis is performed to determine the reliability level B of the least
conservative safety formats. Response surfaces were constructed for the least conservative safety
formats and the FORM is used to determine the reliability level. Three cases with specified
uncertainties were defined. Case 1 and 2 are the cases where is assumed that the detailing is known.
For case 1 there is assumed that there is no geometrical uncertainty and for case 2 there is assumed
that there is some geometrical uncertainty in the longitudinal reinforcement. Fabrication of
geometrical reinforcement leads to a coefficient of variation of the cross-sectional area of the
longitudinal reinforcement V5 = 0.02. However, in case of a reassessment of an existing structure
the reinforcement detailing is not always known. Specific reinforcement detailing plans may be
missing or the reinforcement is not placed exactly according to the reinforcement plan. Especially the
specific detailing type in the corner region can be of significant importance as explained in chapter
6.1.2. Therefore case 3 is defined, where this uncertainty in the reinforcement detailing will be
reflected in a larger coefficient of variation V,, = 0.10.

In this thesis the safety of the methods used in the Eurocode 2 has not been assessed by means of a
FORM analysis, since this is already done in the past and could be find in literature. The reliability
level is assumed to be Sz > 3.04.

Comparison of the FORM & response surfaces with the safety formats (Model Code 2010)

Detailing type is exactly known

In the cases 1 an 2 where the detailing is exactly known the reliability index is always higher than

Br > 3.04 for design 1, 2 and 3. This is shown in table 25. The lowest obtained reliability level is
obtained in case 2 for design 2, where the reliability index is Sz = 5.07. This indicates that there is
some margin to compensate for the model uncertainty derived from the two experiments is 8,,, =
1.028 and the coefficient of variation V;,, = 0.01, which was neglected in the level Il global reliability
analysis. Even a compensation for a higher coefficient of variation V,,,, which could be the result from
more experiments should be possible.

In fact the assumed model uncertainty in the safety formats of yp; = 1.06 is already compensating
for this uncertainties. It should be noted that the model uncertainty derived from the experiment is

R .
RNLFE. Therefore the obtained model
P

defined as 6,, = RRi (Engen, 2017) is the inverse of ygp4 =
NLFEA
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uncertainty 8,, is in this case a positive influence since = 0.972. However the coefficient of

m

variation can still lead to a negative influence on the structural resistance.

Detailing type is not exactly known

In case 3 the reinforcement detailing is not exactly known. This uncertainty is implemented in a
larger coefficient of variation of the cross-sectional area of the longitudinal reinforcement V4, =
0.10. Table 25 shows that in each of the three portal frame designs the reliability level Sz < 3.04. In
this case the model uncertainty of y5; = 1.06 is certainly not sufficient for the unknown detailing
type. The safety formats should compensate for the unknown detailing type by using a higher model
uncertainty ygpq4. The model uncertainty yz4 needed for this case can be determined using an inverse
approach. The design resistance obtained from the safety formats Rgr should be lowered using a
slightly larger model uncertainty. The obtained response surfaces will be a bit higher and therefore
the reliability index will be higher. This iterative process should be repeated until the obtained
reliability index is equal to 3.04. In case of the PFm it is more work to obtain the design resistance
with a higher model uncertainty, since the model uncertainty is implemented in the partial safety
factor yy, (equation (3.9)). The model uncertainty yg4 that should be used instead of yg4 = 1.06 has
not been determined yet. However, the determination of the model uncertainty that should be used
in the safety formats is only useful for a situation where the uncertainties are estimated in a better
way. The uncertainties should be based on more experimental results.

In case of a reassessment of an existing structure the exact reinforcement design is not always
known. For instance specific reinforcement detailing plans may be missing or the reinforcement is
not placed according to the reinforcement plan. The assumed uncertainty is case 3 is still not that
high and the safety formats already fail to reach the intended reliability level. Therefore the safety
formats should be used with a certain caution when they are used to reassess a concrete structure.

8.1.2 Conclusions about the safety assessment methods

8.1.2.1 Comparison multiple loads in the safety formats (Model code 2010) and Eurocode 2

The safety formats are not clear on how to determine the structural design resistance of a structure
with multiple loads placed in a certain order and different load directions. For instance, in this case
the vertical load is applied first on the structure, after that the horizontal load is applied on the
structure and subsequently the structural resistance is obtained by increasing the vertical load until
failure. There is chosen to put all the safety in the vertical resistance and the horizontal resistance is
not reduced. This is done to compare the structural resistance of several portal frame designs where
only the vertical resistance of the portal frame is different. Therefore the safety that could be
implemented in order to reduce the horizontal resistance is also subtracted from vertical resistance.
The results of the level Il global safety assessment lead to a safe reliability index (case 1 and 2), which
means that the used approach is safe. There could also be chosen to obtain the structural resistance
of the portal frame by reducing the vertical and horizontal resistance, which is probably the most
logical choice in case that the loads are applied at the same time. Or a less safe structural resistance
can be obtained by only reducing the vertical resistance without applying some additional reduction
in order to compensate for the not reduced horizontal resistance. However when the partial factor
method is used it is always clear on how to reduce the structural resistance since the last applied
load determines the structural design resistance because there is no global resistance factor used.
Another aspect is that the loading order can have an influence on the structural resistance of the
structure (Blomfors, Global Safety Assesment of Concrete Structures using Nonlinear Finite Element
Analysis, 2014). An assumption of a realistic loading order should be made to obtain a realistic design
resistance.
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The loading order in a local safety assessment method according to the Eurocode 2 does not matter
since the loads are present at the same time. Also the assumed resistance models do not take into
account different loading orders. Furthermore there is no global resistance factor used so there is no
problem in defining a constant horizontal load that the structure should be able to resist.

8.1.2.2 Composed line elements used in the NLFE model

The NLFE model of the statically indeterminate reinforced concrete portal frame is made with plane
stress elements in combination with integrated composed line elements. Composed line elements
are incorporated in Diana 10.1, which could integrate the internal stresses over the height of a cross-
section in order to produce a bending moment distribution. Especially for a statically indeterminate
structure this could help in order to find the plastic hinges that are formed in the portal frame.
Initially there was expected a plastic hinge in corner D of the portal frame. However, the bending
moment distribution determined from the composed line elements showed that the bending
moment capacity of corner D was in fact really low. After thoroughly investigating the corner region
there was found that the internal compressive strut has failed and therefore the formation of a
plastic hinge was not possible. The linear elastic (or plastic moment distribution) obtained from a
local design approach and the bending moment distribution using a global design approach can be
compared much easier with the use of composed line elements.

8.1.2.3 FORM & Response surfaces

In theory creating a response surface in combination with the FORM should be an accurate method
to determine the reliability index of a structure by means of a NLFE model. However in practice there
are a lot of issues to discuss. First of all the settings in the used NLFE package. Most of the settings
that should be used are described in detail in the Guidelines for Non-Linear Finite Element Analysis of
Concrete Structures (Hendriks, de Boer, & Belletti, 2017). In order to obtain the structural resistance
of the portal frame the last load-step were the convergence criterion is fulfilled should be checked in
order to be certain that the structure has failed. Things like convergence criteria, number of
iterations and load-step sizes can still have an influence on the results. This is one of the reason that
the safety assessment could not be automated. Some other issues will be described below and are
more case dependent. These issues are also described with a few examples in chapter 7.2.1.4.

Obtaining the control point X,

To obtain the control point a factor f should be chosen in order to assess the individual influence of
the stochastic variables. A factor f = 3 is recommended but this led to an unrealistic design point in
some of the cases. The control point can be obtained by performing a NLFE analysis with the mean
values of the stochastic variables and some NLFE analyses where the mean values are used in
combination with one reduced stochastic variable to determine the individual influence of that
variable on the structural resistance. The reduction of the stochastic variable is obtained by
subtracting f times the standard deviation from the mean value. For portal frame design 2 and 3 a
brittle failure was obtained after performing a NLFE analysis with mean material values. The analyses
with reduced concrete material values with f = 3 led to ductile failure mode with even a higher
structural resistance. This led to an unrealistic control point and a larger value of f should be used to
obtain a more realistic control point. The best way to estimate the factor f is to start with a NLFE
analysis with mean material values and subsequently performing several NLFE analyses with an
increasing f-factor to obtain low concrete material values until a lower structural resistance is
obtained than the mean resistance. After that the NLFE analyses for the other uncertainties can be
performed with the correct f-factor. In this way a lot of time can be saved.
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The influence of the factor f on the initial design point

The factor f have a lot of influence on the control point that is obtained and therefore the direction
of the straight line between X and X . on which the initial design point is found. The factor f is
basically an initial guess and a correct choice can only be verified when the real design point is found.
A wrong choice could lead in much more effort to find the real design point since the real design
point is far away from the initial design point.

Exact calculation of the response surface not recommended

In the theory a response surface should be created with 2n+1 sample points. Basically 2n sample
points around the initial design point. This lead to an exact calculation of the response surface i.e. the
response surface goes exactly through the sample points. However due to the brittle and ductile
failure modes that could be obtained there is always the danger of a response surface that not
describes the real behavior of the structure. Therefore a least squares approach is used with more
sample points. However using too many sample points is also not recommended since the obtained
response surface is hardly changing after adding an intended design point.

An exact calculation of the response surface is only possible when you are certain that the initial
design point is very close to the real design points and therefore again strongly dependent on the
initial choice of the factor f.

Poor description of the response surface in the zones without sample points can lead to divergence
Another problem with creating a response surface is the poor description of the zones without
sample points. A situation could occur where the region of the real design point is described very
accurately, but after applying the FORM a design point outside the zone which is described by sample
point could be obtained i.e. a divergence of the iteration process has been occurred. An example of
this can be found in chapter 7.2.1.2. A solution to the problem is adding some sample points in this
region.

8.2  Suggestions for further work

e Aprediction model to determine whether a reinforced concrete corner fails in a brittle or
ductile manner and what is the influence on the structural resistance based on several
detailing types and material properties. A lot of experiments should be used to determine
the model uncertainty.

e Optimize the reinforcement detailing in the reinforced concrete corner such that a full plastic
hinge can develop in the corner region. This could have a large effect on the structural
resistance obtained with the safety formats and therefore on the reliability index.

e Better ways to determine the control point X, probably based on more than n + 1 NLFE
analyses where not only one material parameter is reduced by the factor f but make use of
combinations to obtain a more realistic structural behavior close to unsafe region. In this way
the initial design point should be much better predicted and convergence will be achieved
faster.
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Appendix A Background theory of the safety formats

A.1  Material input values in the GRFm safety format

This safety format determines the design resistance R; with a NLFE analysis with the input of mean
GRF material parameters with the same (scaled) global resistance factor for each material. Figure Al
shows the probability density function (PDF) of steel and concrete. The global resistance factor is
related to the mean variable.
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Figure Al. Probabilistic definition of mean (m), characteristic (k) and design (d) values for steel and concrete failure and the
reduced concrete strength (f) (Cervenka, 2013).

The global resistance factor of steel is:

yoieet = 2m = npsdls — 27 (A1)

where:

fom = %fyk = 1.1 fyr = 1.1 fsq ¥s is the mean strength of steel (see figure Al for factors);

fsa is the design strength of steel;

ys = 1.15 is the partial safety factor for the characteristic strength of
steel.

The global resistance factor of concrete is:

yéonerete — };CT’Z = f—c"’}/;lﬂ =19 (A.2)
where:
fea Vc% . . .
fom = - is the mean concrete compressive strength (figure Al);
fea is the design concrete compressive strength;
¥, = 1.5 is the partial safety factor for the characteristic strength of
concrete.
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In order to have the same global resistance factors for steel and concrete, the mean concrete

compressive strength is reduced to get a lower global resistance factor for concrete yf;i""ete.

Figure A1 shows a reduced value for the mean concrete compressive strength £,.$RF at location (f),
ff—c = 1.27 on the horizontal axis (instead of f_,, at location(m), ff—” = 1.9 on the horizontal axis).
cd cd

The new reduced mean concrete strength can be derived according to:

117,
C%F = Tsfck (A.3)

The new mean concrete compressive strength f,¢RF is lower than the characteristic concrete

compressive strength f,. This leads to the required additional safety for concrete when it is
compared to steel. The global resistance factor for steel yggeel is now per definition the same as the
new obtained global resistance factor for concrete y59™<"¢*¢. The global resistance factor ygis

defined as:

fym: _ 085 f¢
You = vaieet = yggnerete = B = DB e — 4 57 (A4)
fea ﬁ
YL = YR VRd (A.5)
where:
yr = 1.2 is the partial factor of the resistance;

Yra = 1.06 is the model uncertainty.

From equation (A.5) follows that the partial factor of the resistance yr = 1.2. The input values for
the NLFE analysis for steel and concrete can be derived from (A.1) and (A.3) which leads to the
following formulas:

o =11 fy, (A.6)

"GRF = (.85 £, (A.7)

A.2  Global resistance factor ECOV safety format

Probabilistic studies indicate a log-normal distribution function (fib, 2012) for the resistance of a
reinforced concrete beam. The random distribution can be described by a two-parameter (the mean
resistance R, and coefficient of variation Vy of the resistance) log-normal distribution with the lower
bound at the origin (fib, 2012).

The random variable R~LN(R,,, ) is log-normal distributed then its natural logarithm Y = In(R)
is normally distributed with the mean ¢ and the standard deviation o.

R~LN(R,,, 02) (A.8)
Y =In(R) ~N(u(Y),o(¥)?) (A.9)
Y =In(R) = u(Y) + o(¥)Z (A.10)
R = e#(N+o(NZ (A.11)

where: Z~N(0,1)
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The expected value E(R) can be estimated with (Jonkman, Steenbergen, Morales-Napoles,
Vrouwenvelder, & Vrijling, 2016):

1
E(R) = eFMH7° W) 4 oEW) only valid if: 6(Y) < E(Y) (A.12)
where:
E(R) = R,,
EQY) =u®);

o(y) =4Var(y).
This leads to the following approximation:
R, = et (A.13)

The standard deviation o (R) can be estimated with (Jonkman, Steenbergen, Morales-Néapoles,
Vrouwenvelder, & Vrijling, 2016):

o(R) = E(X)Ve®* -1 = E(R)a(Y) only valid if: 6(Y) < E(Y) (A.14)
where:

o(R) = o,

E(X) =R,

a(Y) =Var(y).

The coefficient of variation Vy is defined as:

—m _ 9B E®I®)
R™ur T E® E(R) ¥). (A.15)
The characteristic value of the resistance can be calculated according to:
P(R < R,) = 0.05 (A.16)
Substitute (A.11), (A.13) and (A.15) in equation (A.16):
P(eM+MZ < Ry ) = P(n(Ry) + 0(V)Z < In(Ry)) = P (2 < 28 - g 05,
R
R
In(=k&
M = —-1.65 (A.17)
Vr
An acceptable approximation of the characteristic resistance is:
R, =R, e 16°Vr (A.18)
where:
Ry, is the mean resistance;
Vi is the coefficient of variation.

The coefficient of variation can be estimated for a failure probability of 0.05 by rearranging formula
(A.18):

Ve =——In (i—’:) (A.19)
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The global resistance factor is defined as:

Yr = };—Z = Rmef% = eWRBVR = 304V (A.20)

where:

Ry is the mean resistance obtained from NLFE analysis with mean input parameters;

Ry is the characteristic resistance obtained from a NLFE analysis with characteristic input
parameters;

apr =0.8 is the sensitivity factor (dominant strength parameter);

B =38 is the reliability index;

|4* is the coefficient of variation.
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Appendix B Material properties

B.1  Concrete material properties by Model Code 2010 (fib, 2012)

Mean compressive strength:

fem = fex +Af

Characteristic compressive strength:

fck

Design compressive strength:

fck
=, —
fcd cc Ye

Mean tensile strength:
2/3
fetm = 0.3 fck/

Characteristic tensile strength:
fctk,min =07 fctm

Design tensile strength:
_ fctk,min
fctd

Ye

Fracture energy:
Gr =73 f3a°

Compressive fracture energy:
Gc = 250 Gg

Young’s modulus after 28 days:

E,; =Eg, (flc_:)n)lﬂ

B.2  Material input values for the different safety formats Model Code 2010

where: Af = 8 MPa

where: ¢, = 1.0andy, = 1.5

where: E., = 21500 MPa

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

The material input values for the safety formats calculated according to Guidelines for NLFE analyses
of Concrete Structures (Hendriks, de Boer, & Belletti, 2017) are shown in the table B1, B2 and B3.

Density reinforced concrete:
p = 2500 kg/m?

The young’s modulus of reinforcing steel:

E, = 200000 MPa.

Partial safety factor concrete:

Y. =15

ys = 1.15

Partial safety factor steel:
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Table B1. Material input values for the safety formats: concrete C30.

Concrete
Cc30 fc (MPa) | fct (MPa) Ec (MPa)
Mean Measured | fcm 38 | fctm 2.896 | Eci 33550.6
Characteristic fck 30 | fck, min 2.028 | Eci 31008.4
Mean GRF fcm,GRF 25.5 | fctm, GRF 2.599 | Eci 29373.2
Design fcd 20 | fctd 1.352 | Eci 27088.3
C30 % GF (Nmm/mm2) | Gc (Nmm/mm?2)
Mean Measured | variable GF 140.5 | Ge 35125.6
Characteristic variable GF 134.6 | Ge 33662.4
Mean GRF variable GF 130.8 | Gc 32691.9
Design variable GF 125.2 | Ge 31293.1
Table B2. Material input values for the safety formats: concrete C40.
Concrete
Cc40 fc (MPa) | fct (MPa) Ec (MPa)
Mean Measured | fcm 48 | fctm 3.509 | Eci 36267.6
Characteristic fck 40 | fck, min 2.456 | Eci 34129.1
Mean GRF fcm,GRF 34 | fctm, GRF 3.149 | Eci 32329.4
Design fcd 26.7 | fctd 1.637 | Eci 29814.5
Cc40 v GF (Nmm/mm?2) | Gc (Nmm/mm?2)
Mean Measured | variable GF 146.5 | Gc 36634.2
Characteristic variable GF 141.8 | Ge 35451.4
Mean GRF variable GF 137.7 | Ge 34429.4
Design variable GF 131.8 | Ge 32956.2

Table B3. Material input values for the safety formats: longitudinal reinforcement.

Longitudinal reinforcement

Steel fy (MPa) | ft (MPa) €sy

Mean Measured | fym 560 | ftm 680 | esy 0.0028
Characteristic fyk 507 | ftk 616 | eyk 0.0025
Mean GRF fym,GRF 558 | ftk, GRF 677 | eym, GRF 0.0028
Design fyd 441 | ftd 536 | ecd 0.0022
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Table B3. Material input values for the safety formats: shear reinforcement.

Shear reinforcement

Steel fy (MPa) | ft (MPa) €sy (-)

Mean Measured | fym 460 | ftm 510 | esy 0.0023
Characteristic fyk 417 | ftk 462 | eyk 0.0021
Mean GRF fym,GRF 458 | ftk, GRF 508 | eym, GRF 0.0023
Design fyd 362 | ftd 402 | ecd 0.0018

The mean, characteristic and design concrete strength can be calculated according to Appendix B.1.
The mean GRF values can be calculated according to Appendix A.1 and Appendix B.1.

The mean values of steel yield strength f,,,,, and tensile strength f;,, where measured in the
experiment. To obtain the characteristic values of the yield strength f,; alognormal distribution is

assumed with a coefficient of variation ranging from 0.05 to 0.1. The coefficient of variation I; = 0.6
is assumed to be a good intermediate value (Hendriks, de Boer, & Belletti, 2017). The characteristic
yield strength is determined by a probability of 0.05 of the lognormal distribution:

fex = fem e 163V

(B.10)

Furthermore the steel tensile strength is calculated with:

fi=fyiA where: 4 =

Jem

ym

(B.11)

The main design characteristics are given below:

Design 1: longitudinal reinforcement:
shear reinforcement
concrete strength class

Design 2: longitudinal reinforcement
shear reinforcement
concrete strength class

Design 3: longitudinal reinforcement:
shear reinforcement
concrete strength class

3010 A, = 3(0.257 10%) = 235.62 mm?
2015 A =2 (0257 1.5%) = 3.53 mm?
C30

3911 Ag; = 3 (0.25 7 102) = 285.1 mm?
2015 Ags =2 (0.257 1.52) = 3.53 mm?
C30

3010 Ag; = 3 (0.25 7 10%) = 235.62 mm?
201.5 Agg =2 (0.257 1.52) = 3.53 mm?
40

B.3  Material values used in the experiment Seraj et al. (1995)

Concrete:
fem,cube = 48 MPa (on test day)
fcm,cilinder ~ (0.8-48 =~ 38 MPa

Longitudinal reinforcement:
fym = 560 MPa and f;,, = 680 MPa

Shear reinforcement:
fym = 460 MPa and f;;, = 510 MPa

3010 A, =3 (0.25m 10%) mm? (PF1 and PF2)

201.5 A =2 (0.25m 1.5%) mm?(PF1 and PF2)
301.5 A, =3 (0.25m 1.5%) mm?(PF2)
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Appendix C Level | reliability method: local design resistance

(Eurocode 2)

To perform a local safety evaluation according to the Eurocode 2 (NEN-EN 1992 -1-1, 2011) a
distinction between the several elements is necessary. Therefore the elements will be numbered
from left to right. This leads to the following element numbering: the left column (AB), beam (BD)
and the right column (DE) are labeled as element 1, element 2 and element 3, respectively. The
element numbering is shown in figure C1.

1,3715m 1,3715m

1 3 1,725m
e o]

Figure C1. Element numbering.

C.1  local design resistance portal frame design 1, 2 & 3

The local design resistance of the elements of portal frame design 1 will be worked out in this
appendix. Using the same approach the design resistance of the elements of portal frame design 2
and 3 can be found. Only the results will be presented in chapter C.1.3.

C.1.1 Design 1: determination of the internal forces (linear elastic calculation)

The moment capacities of the elements can be determined using a local element approach for both
columns Mg ; = Mg 5 and the beam My, , of the frame. In this calculation there is chosen for a
simplified moment capacity without a compressive normal force and in only tension reinforcement is
considered. The moment capacities can be derived from the equilibrium of a section:

Ny =N, (C.1)
where: Ny = A; f, and N, = %xu fea b- From equation (C.1) x,, can be solved and the internal lever

arm for both elements can be calculated:

zy =d; —0.39x, (C.2a)
Zy = d2 —0.39 .xu (C2b)

The moment capacities can be determined with the following formulas:

MR,]_ = AS fy Zq (C.3a)
MR,2 = AS fy Zy. (C.3b)

After substituting all deterministic variables given in chapter 4.2.1 in the following equations can be
derived:

31.8 f,, f,—0.32 f2

Mg, = % (Nm) (C.4a)
259 f, f,—0.32 f2

Mg, = % (Nm). (C.4b)
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The bending moment resistance of portal frame design 1 is calculated with the following Maple script
presented in figure C2. An example is given for the bending moment resistance for element 1, which
lead to a bending moment resistance of Mg, ; = 10.0 kNm. The bending moment resistance of
element 2 and 3 are calculated in the same manner and are equal to Mgy, = 12.6 kNm and Mg, 5 =
10.0 kNm.

restart : # Checkassumption (only yielding in bottom reinforcement): eps_s>0.0028
# Momeni capacity for elements with the following material values and height: s 5 compr — (x1 —¢) e cud-
o= 20 fp= 441 o= 125 pes_comp T
# Constants: eps s compr = 0001465679730 2
b= 90:c= 15 45— 3025 Pi-10%: eps_cu3 == 3.5-107° - Es == 200000 : eps_c_top == eps_cu3;
. i fop = 0.003500000000 3
eps_sy = evmf[ L] : eps_c_top )
Es _ lh—ec—xu) +
# Harizontal equilibrium : Ea i eps_cud,
H:= Nc+ Ns_compr— Ns eps_s = 0.01141834865 (C)]

Ne = 0.75- bxufe:

# assumption carrect
(xu—c)

Ns_compr = - -gps_cu3 As-Es # Moment capacity MR(NmJ:
Ns = firds: MR = [N'r [;7 h— ILS .\'u] + Ns_compr [% h— r] + Ns [% h— f]] 10'3;
sol == solve( | H], [xu]) - MR = 1004421691 )
assign(sol[1]):
xu;
2580714589 (1))

Figure C2. Portal frame design 1: bending moment resistance element 1.

The bending moment resistance of each element is needed to determine the linear elastic moment,
shear and normal force distribution, since the portal frame is statically indeterminate. The moment,
shear and normal force distribution is determined with the Maple script presented in figure C3.
Therefore the governing bending moment resistance of element 3 (corner D) is used: Mg, 3 = 10.0
kNm and the fact that the horizontal wind load is known F;, = 15.7 kN. The maximum external
vertical and horizontal force F, and Fj, is also determined with the Maple script presented in figure
c3.
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restart :

# Statically wndetermined structure with 5 unkowns: Ma, Mb, Me, theta

and Fv (5 equations needed to solve)
# Constants

171+=1725-12:= 2743 b= 90: il +== 250 h2 == 300 ffin == 38 -

i
I
1.75-10
# Not the real EI since the reinforcement is not included bt it's only
meant for the EI ratic between the colianns and the beam

{1 b nroy
&= g"-’{l—w[ moo] JE

A1 b n2 3
2 = ew _—
£ 'M‘f{ 12 1000 [ 1000} JEC'

# The characterisic moment capacity of the column is decisive and is
Jound at location d:
M == 10044 21691

M= 10044 21691 [e}]
assign(sol)
Fh = 1568183475

Fh= 1568133475 @
# Angle conditions (3 equations fo solve the wikowns):
eql = phi A=0:
eg2 = phi B_4B=phi B _BD
eg? = phi_D_BD=phi_D DE
egd = phi E=0:
eg5 == Mo+ Mb+ Md + Me=Fh-il:
# Shear forces:

M A4 M M — M
pas] o AL MBY o (e] - MB])
1 1
2
Vicp)m LMCLEMDD 3y pp) (D] +ME],
5 d2

VAB = 4205514037

Vae = 5133.852532

V= 1368434517

I’DE== 11476 32071 C]

#where:

phi 4=+ ;’— %— 1? %—Lheta
phi_ B_AB =+ %% - %% — theta:
phi_D DE =+ ;—% - %% — theta:
phi E =+1— Mell 1 M—T.heta

soll = solve(|egl. eg’. eg3. eg4 eg5|. | M Mb, Me. theta, Fv|) :
assign(soll) -
# Moments and external loads:

M 4] == Mz M[B] == Mb M[C] = —w + %-FV-FZ;
M|D] = Md M|E]| == Me. Fv:= F\v. Fh= Fli LF = %

M, = 5571722478

.
=
I

fp 7= 1682.789235
M, = 8723.867982
= 10044 21691
= 9752436317

Fv:= 18818 20170
Fii= 15681.83475
LF = 1200000000

&
Ti

# Reaction forces:

[Fv T 2= Firil+ Ma+ Me]

RAH=TABLR AV = =

[Fh-h’ +Fv 12— Ma— m,]

R E Hw=V[DE|;R E V=
R_A_H = 4205.514037
R_A4_V= 5133852526
R_E Hw= 1147632071
R_E_V = 1368434917

2

# Normal forces:
N[4B] = R_A_V: N[BD] == Fh— V[4B]: N|DE] = R_E_V-
N = 5133.852526

Nppt= 11476 32071

13684 34917

Npg:

Figure C3. Maple script to determine the external load Fv and Fh of portal frame design 1.

)]

The maximum external load on the structure is: F;,, = 18.8 kN and Fj, = 15.7 kN according to a linear

elastic moment distribution. This results in the following internal forces as presented in table C1.

Table C1. Internal forces resulting from Fv and Fh

Design 1 | Mg (kNm) | Ve (kN) Ne (kN)
Element 1 5.58 4.22 5.12
Element 2 10.04 13.68 11.48
Element 3 10.04 11.48 13.68
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C.1.2 Design 1: determination of the resistance

C.1.2.1 Bending moment resistance (ULS)
The local safety evaluation for the bending moment resistance of portal frame design 1 is performed
in table C2. The bending moment resistance and the bending moment due to the external forces is

determined in Appendix C.1.1.

Table C2. Local safety evaluation (unity checks (UC)) for the linear elastic bending moment resistance.

EC2: Design 1 | Mgq (kNm) | Me (kNm) | UC (-)

Element 1 10.0 5.6 0.56
Element 2 12.6 10.0 0.79
Element 3 10.0 10.0 1.00

C.1.2.2 Shear resistance (ULS)

The general check for the shear resistance is defined as (NEN-EN 1992 -1-1, 2011):

Vg < Vgac no shear reinforcement is needed, otherwise: (C.5a)

VE < VRd,S'

(C.5b)

Elements without shear reinforcement
Shear capacity elements without shear reinforcement (NEN-EN 1992 -1-1, 2011)

Vrac = {Crac k (100 py )™ + ky 0y )by, d (C.6a)

with a minimum of

VRd,C,min = {vmin + kl ch} bw d (C.6b)
where:
fek characteristic concrete strength;
0.18 -
Crac = o empirical factor (y, = 1.5);
c
k=1+ ZdﬂSZ.O with d in mm;
A N . .
P = ﬁ < 0.02 longitudinal reinforcement ratio;
w
Ag is the area of tensile reinforcement;
b, is the smallest with of the cross-section in the tensile area;
Ocp = % <0.2f.4 compressive stresses due to the normal force in the portal frame;
c
Ng4 is the normal force in the portal frame;
Ac is the area of the concrete cross-section;
k1 = 0.15 empirical factor;

Umin = 0.035 k3/2 f1/?

empirical formula for minimum shear stresses.
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Table C3. Design 1: calculation shear resistance elements without shear reinforcement.

EC2: Elements without shear reinforcement

Element 1 Element 2 Element 3

\ 4220.00 N \Y 13680.00 N Vv 11480.00 N

v 0.53 v 0.53 v 0.53

V< 52272.00 N V< 64152.00 N V< 52272.00 N

h 125.00 mm h 150.00 mm h 125.00 mm

bw 90.00 mm bw 90.00 mm bw 90.00 mm

c 15.00 mm c 15.00 mm c 15.00 mm

d 110.00 mm d 135.00 mm d 110.00 mm

Ac 11250.00 mm2 Ac 13500.00 mm2 Ac 11250.00 mm2
Crd,c 0.12 Crd,c 0.12 Crd,c 0.12

k 235 <2 k 222 <2 k 235 <2

k 2.00 k 2.00 k 2.00

v min 0.54 N/mm?2 v min 0.54 N/mm?2 v min 0.54 N/mm?2
Asl 235.62 mm2 Asl 235.62 mm2 Asl 235.62 mm2

pl 0.02 <0.02 pl 0.02 <0.02 pl 0.02 <0.02
ocp 0.46 N/mm2 | ocp 0.85 N/mm?2 ocp 1.22 N/mm2
k1 0.15 k1 0.15 k1 0.15

V Rd, ¢, min 6043.79 N V Rd, ¢, min 8137.74 N V Rd, ¢, min 7173.71 N

VRd, ¢ 10532.86 N VRd, ¢ 12848.79 N VRd, c 11662.78 N

The calculations and the results of the local safety evaluation (unity check) are presented in table C3

and C4.

Table C4. Local safety evaluation (unity checks (UC)) for the shear resistance without shear reinforcement.

EC2: design 1 |Vrdcmin (KN) [Vrac (KN) Ve (kN) JUC(-)

Element 1 6.0 10.5 4.21 0.40
Element 2 8.1 12.8 13.68 1.06
Element 3 7.2 11.7 11.48 0.98
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Elements with shear reinforcement
Shear capacity for elements with shear reinforcement (NEN-EN 1992 -1-1, 2011)

VRas = ASTW Z fywa coto (C.73)

and

1% = a,, by, zv—Ld (C.7b)
Rdmax ow Ew cotf+tand ’

where:

S is the spacing of the stirrups;

fywa is the design yield strength of the shear reinforcement;

v=20.6 [1 — %] is a strength reduction factor for concrete cracked in shear;

ey =1+ Zep is a coeffiecient taking account of the state of stress in the

fea
compression chord (for 0 < g, < 0.25 f.4).

Table C5. Design 1: calculation shear resistance elements with shear reinforcement.

EC2: Elements with shear reinforcement

Element 1 Element 2 Element 3

) 21.80 Cl 21.80 0 21.80

cot 6 2.50 cot 6 2.50 cot© 2.50

Asw 3.53 mm2 Asw 3.53 mm2 Asw 3.53 mm2
s 45.00 mm S 45.00 mm s 45.00 mm
z 99.00 mm z 121.50 mm z 99.00 mm
acw 1.02 acw 1.04 ocw 1.06

tan 6 0.40 tan @ 0.40 tan 6 0.40

V Rd, max 33181.27 N V Rd, max 41509.36 N V Rd, max 34415.55 N
VRd, s 7043.05 N VRd, s 8643.75 N VRd, s 7043.05 N
UCs 0.60 uc 1.58 uc 1.63
Ucmax 0.13 Ucmax 0.33 Ucmax 0.33

The calculations and results of the local safety evaluation (unity check) are presented in table C5 and
C6. According to this local safety evaluation element 2 and 3 does not have enough shear
reinforcement, but according to the calculation for elements without shear reinforcement, this is not
needed since Vg < Vg4 c.

Table C6. Local safety evaluation (unity checks (UC)) for the shear resistance with shear reinforcement.

EC2: design 1 | Vrds (kN) Vrg,max (kN) | Ve (kN) |UC(-)

Element 1 7.0 33.2 4.21 0.60
Element 2 8.6 41.5 13.68 1.58
Element 3 7.0 34.4 11.48 1.63
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C.1.2.3 Strut and tie model
A detailed analysis of the detailing in the corner region should be performed by means of a strut and
tie model. This could influence the structural resistance of the portal frame.

C.1.2.4 Plastic analysis
There is no reason to perform a plastic analysis for a portal frame which forms a plastic mechanism
since the frame already has been collapsed due to a shear failure.

C.1.3 Summary results portal frame design 1, 2 and 3
Portal frame design 1, 2 and 3 are provided with only the minimum required shear reinforcement
and as a consequence the shear resistance is determined by Vg = Vg, ¢ since Vgg ¢ > Vrgs.

All portal frame designs are supposed to resist a horizontal and vertical load of based on shear
resistance of the portal frame designs:

F, = 18.8 kN and F;, = 15.7 kN.

A detailed analysis of the corner region by means of a strut and tie model has not been performed.
The bending moment resistance of the corners can have an influence on the structural resistance of
the portal frame. This could possibly reduce the resistance of the portal frame.

The critical local safety evaluations for all portal frame designs where the shear resistance
determines the structural resistance of the three portal frame designs are presented in chapter
C.1.3.1.

C.1.3.1 Shear resistance elements without shear reinforcement
The local safety evaluation of the governing failure mode of portal frame design 1, 2 and 3 is
presented in the table C7.

Table C7. Local safety evaluation for the shear resistance without shear reinforcement.

Shear resistance

Design1 | VRd,C,min (kN) |[VRd,C (kN) | VE (kN) | UC(-)
Element 1 6.0 10.5 421 0.40
Element 2 8.1 12.8 13.68 1.06
Element 3 7.2 11.7 11.48 0.98
Design 2 VRd,C,min (kN) |VRd,C (kN) | VE (kN) | UC(-)
Element 1 6.0 11.2 421 0.4
Element 2 8.1 13.6 13.68 1.0
Element 3 7.2 12.3 11.48 0.9
Design 3 VRd,C,min (kN) | VRd,C (kN) | VE (kN) | UC (-)
Element 1 6.9 11.5 4.21 0.37
Element 2 9.2 14.0 13.68 0.98
Element 3 8.0 12.7 11.48 0.91
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C.1.3.2 Bending moment resistance
The bending moment resistance My, and the corresponding horizontal and vertical force F, and F;,,

for a situation when there is no shear failure, is presented in table C8 and C9. This is only the case
when enough shear reinforcement is used according to Eurocode 2.

Table C8. Bending moment resistance portal frame design 1, 2 and 3.

EC2 Design 1 Design 2 Design 3

Mgd (kNm) Mgd (KNm) Mgd (kNm)
Element 1 10.0 12.1 10.1
Element 2 126 15.3 12.7
Element 3 10.0 12.1 10.1

Table C9. Design resistance according to the Eurocode 2 using a local safety approach.

EC2 Design 1 Design 2 Design 3
Fv (kN) 18.8 28.1 19.2
Fh (kN) 15.7 15.7 15.7
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C.2  Local design resistance experiment Seraj et al. (1995)

C.2.1 Determination of the internal forces (linear elastic calculation)

To perform a local safety evaluation the linear elastic moments, shear- and normal forces should be
determined. The linear elastic calculations are performed with the software package Matrix Frame

5.3. The results are shown in figure C4.

-12.79
/’
24.00 24.00 24.00
Ao 656 6.561
20.00 i w2 _, 2000 L 1 gl o0 - o .
0 T2 % T s BT -
el - - B o iy s 1 5
=1 / a7 ‘ o Fr.61 SER
s L " -17.44 1744 4 [ |
fam 11.14 e I —
AT i 8| .
2/ b o b 8 =
N/ [ o ] < [ e 5
—- = “ o - e "

Figure C4. Linear elastic moment, shear force and normal force diagram (kNm).

The linear elastic moments, shear forces and normal forces in the sections A, B, C, D and E are also

calculated with the Maple script below.

restart -
# Statically undetermined structure with 5 unkowns: Ma, Mb, Md, Me and # Moments:
theta (5 equations needed to solve):

(-Mp+ M) 1
! M[A] = M M[B] == Mb M[C] = -2 280 L L pygo

External loads - 1]4] der M B] 1k M C] 2 + T Fvi2

Fv = 24000 : Fh == 20000 : M[D] = AEE M[E] = Me:

# Not the real EI since the reinforcement is not included bnt it's only M= T7105.957394

meemt_for the El ratic berween the colimns and the beam

s My = 2146.163714
[1:=1.725:12:=2743:b:=90: kI = 250: h2 = 300 fin = 38:

M= 11126 08074
Eew T - 1o
1.75-10 My = 1281000224
1 e avad] B[ V) g M, == 1243787666
12 1000 | 1000 £
) Al b n2 Y # Shear forces
EI? = eval FW[WJ Ec: V8] e MLALF MB)) o (MIC]— MIB)
# Angle conditions (5 equations to selve the uniowns): 11 ’ 1 2 ’
eql = phi A=0 2
242 ot B AB = phi B BD- Vo) WACIE MDD 1y (MID]+ MED
eq3 = phi_D_BD=pii_D_DE: Lo 1
egé = phi E=0 2y s sasas
eqs = Ma -+ Mb+ Md+ Me=Fh 1] 45T 20002
7 = 6547515
i LML L MBI Vo= 6547.515148
3oEm 6 B Vop = 17452 48486
cpi= 17452
phi_B AB =+ L My L Mall theta -
B Y TE 6 El : V= 14636.43154
2
) 1 Mpi2 1 M2 1 Rel?
PHEBBD=-T Zr=* 5 I T 1 I
5
L Mz 1 Mpiz 1 FviZ
PDED = o=t e T Y16 TEn #Normal forces
N[AB] == R_4_V: N[BD] == Fh— V[4B]; N[DE| := R_E_V.
) 1 ML 1 Medl A D} = E_
PH_D_DE =+ == — - — theta N = 6547.515148
¥ ¥ Nypi= 4513
phi Bemy LMD L MANL Ngpi= 1463645153

o g Npg = 1745248485
sol = solve( [eql, eq2, eg3. eq4, eqS). [ Ma, M, M Me, theta])

assign(sol)

Figure C5. Linear elastic calculation critical moment, shear force and normal force distribution

The governing moment, shear force and normal force are presented in table C10.

Table C10. Critical moment, shear force and normal force for element 1, 2 and 3.

M¢e (kNm) Ve (kN) Ne (kN)

Element 1 7.1 5.4 6.6
Element 2 12.8 17.4 14.6
Element 3 12.8 14.6 17.4
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C.2.2 Determination of the resistance

C.2.2.1 Bending moment resistance (ULS)
The design bending moment resistance according to Eurocode 2 is determined with formulas (C.1) to

(C.4). The results are presented in the table below.

Table C11. Design bending moment capacity (EC2).

EC2 Mg (kKNm) | Mg (kNm) | UC(-)

Element 1 10.0 7.1 0.71
Element 2 12.6 12.8 1.02
Element 3 10.0 12.8 1.28

The mean bending moment resistance is determined with formulas (C.1) to (C.4), where the design
material values are replaced with mean material values. The results are presented in the table below.

Table C12. Mean bending moment capacity.

Mean Mgm (KNm) | Mg (kNm) | UC (-)

Element 1 12.9 7.1 0.55
Element 2 16.2 12.8 0.79
Element 3 12.9 12.8 0.99
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C.2.2.2 Shear resistance (ULS)
The general check for the shear resistance is defined as (NEN-EN 1992 -1-1, 2011): Vg < Vg4 ¢, for
elements without shear reinforcement, otherwise: Vg < Vg4 s.

Elements without shear reinforcement
The design shear resistance according to Eurocode 2 is determined with equation (C.6). The
calculations are presented in table C13 and summarized in table C14.

Table C13. Calculation shear resistance elements without shear reinforcement.

EC2: Elements without shear reinforcement

Element 1 Element 2 Element 3

VEd 5363.50 N VEd 17452.50 N VEd 14635.50 N

v 0.53 Y 0.53 v 0.53

V< 52272.00 N V< 64152.00 N V< 52272.00 N

h 125.00 mm h 150.00 mm h 125.00 mm
bw 90.00 mm bw 90.00 mm bw 90.00 mm

o 15.00 mm o 15.00 mm o 15.00 mm

d 110.00 mm d 135.00 mm d 110.00 mm
Ac 11250.00 mm?2 Ac 13500.00 mm2 Ac 11250.00 mm2
Crd,c 0.12 Crd,c 0.12 Crd,c 0.12

k 235 <2 k 222 <2 k 235 <2

k 2.00 k 2.00 k 2.00

v min 0.54 N/mm2 |vmin 0.54 N/mm?2 v min 0.54 N/mm?2
Asl 235.62 mm2 Asl 235.62 mmz2 Asl 235.62 mmz2
pl 0.02 <0.02 pl 0.02 <0.02 pl 0.02 <0.02
ocp 0.58 N/mm2 | ocp 1.08 N/mm2 ocp 1.55 N/mm2
k1 0.15 k1 0.15 k1 0.15

V Rd, ¢, min 6232.22 N V Rd, ¢, min 8563.87 N V Rd, ¢, min 7671.68 N
VRd, c 10721.29 N VRd, c 14412.07 N VRd, c 12160.75 N

Uc 0.50 Uc 121 Uc 120 |

Table C14. Design shear capacity without shear reinforcement (EC2).

EC2 Vra,c,min (KN) | Vrac (KN) | Ve (kN) [UC(-)

Element 1 6.2 10.7 5.36 0.50
Element 2 8.6 13.3 17.45 1.21
Element 3 7.7 12.2 14.64 1.20
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The mean shear capacity Vg, ¢ and the minimum mean shear resistance Vg, ¢ min €an be
determined by using equation (C.6) and set the partial safety factor to ¥, = 1.0. The results are given

in table C15. All unity checks are below zero. This indicates that no shear reinforcement is needed

when there is no deviation from the mean value.

Table C15. Mean shear capacity without shear reinforcement.

Mean | Vemcmin (KN) | VRmc (KN) | Ve (kN) | UC (-)

Element 1 6.9 15.6 536 034
Element 2 9.4 18.9 17.45 0.92
Element 3 8.3 17.1 14.64 0.86

Elements with shear reinforcement
The design resistance of elements with shear reinforcement according to the Eurocode 2 is
determined with equation (C.7). The calculations are presented in table C16 and the results are

summarized in table C17.

Table C16. Calculation shear resistance elements with shear reinforcement.

EC2: Elements with shear reinforcement

Element 1 Element 2 Element 3

) 21.80 Cl 21.80 0 21.80

cot 6 2.50 cot 6 2.50 cot© 2.50

Asw 3.53 mm2 Asw 3.53 mm2 Asw 3.53 mm2
s 45.00 mm S 45.00 mm s 45.00 mm
z 99.00 mm z 121.50 mm z 99.00 mm
acw 1.03 acw 1.05 ocw 1.08

tan 6 0.40 tan @ 0.40 tan 0.40

V Rd, max 33387.11 N V Rd, max 41974.84 N V Rd, max 34959.51 N
VRd, s 7043.05 N VRd, s 8643.75 N VRd, s 7043.05 N
UCs 0.76 UCs 2.02 UCs 2.08
Ucmax 0.16 Ucmax Ucmax 0.42 Ucmax 0.42

Table C17. Design shear resistance with shear reinforcement (EC2).

EC2 Vira,s (KN) | Vrdmax (KN) | Ve (kN) | UC(-)

Element 1 7.0 334 5.36 0.76
Element 2 8.6 42.0 17.45 2.02
Element 3 7.0 35.0 14.64 2.08

The mean shear resistance is not calculated since the mean shear capacity for element without shear
reinforcement is sufficient.
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C.2.2.3 Strut and tie model
A detailed analysis of the detailing in the corner region should be performed by means of a strut and
tie model. This could influence the structural resistance of the portal frame.

C.2.2.4 Plastic analysis
A plastic analysis is not performed since it is unsure if the corner has enough rotational capacity to
form a plastic hinge. Experimental results show earlier corner failure, which means that there is not

enough rotational capacity.
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Appendix D Non-linear Finite element models

D.1  Geometry mesh

The reinforced concrete frame is modelled with 4 plane stress elements over the height (4 e.o.h.) and
embedded reinforcement. There is chosen for 4 e.o.h. while the Guidelines for NLFE analyses
(Hendriks, de Boer, & Belletti, 2017) suggest that at least 6 e.o.h. should be used. The reason for this
deviation is a reduction of the computational time and stress concentration in the corner D
(Appendix E.2.4).

There is chosen for a two dimensional model, since the frame is very slender and three dimensional
effects can be neglected. The geometry, mesh and reinforcement detailing will be presented in the
next chapters. The boundary conditions are shown in figure D1. The columns have fixed translations
in the x, y direction and a fixed rotation around the z-axis.

D.1.1 Portal frame design 1, 2 and 3

=m0 SR e [T
Figure D1. Geometry, reinforcement and Figure D2. Mesh concrete (plane stress Figure D3. Mesh embedded reinforcement
applied load safety format. elements). (bar elements).

D.1.2 Experiment Seraj et al. (1995)

D.1.2.1 PF1

==z mInmnn P PR T
it - 2|

Figure D4. Geometry, reinforcement and Figure D5. Mesh concrete (plane stress Figure D6. Mesh embedded reinforcement

applied load PF1. elements). (bar elements).
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D.1.2.2 PF2
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Figure D7. Geometry, reinforcement and
applied load PF2.

Figure D8. Mesh concrete (plane

stress elements).

Figure D9. Mesh embedded
reinforcement (bar elements).
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D.2  NLFE models

All NLFE models are in accordance with the Guidelines for Non-Linear Finite Element Analysis of
concrete Structures (Hendriks, de Boer, & Belletti, 2017). The element types, constitutive models

used in the NLFE models are shown in table D1 and D2. The convergence norm applied in the model

is a combination of a force and energy norm. The convergence tolerance for the force and energy

norm is 0.01 and 0.001, respectively.

Table D1. Concrete: element type and constitutive model used in Diana FEA 10.1.

Concrete

Finite Element

Element type
Interpolation scheme

Integration scheme

plane stress element CQ16M
Quadratic

Full (2x2 point Gauss)

Constitutive Modelling

Model

Crack orientation

Crack bandwidth specification
Shear behaviour

Shear retention

Tensile behavior

Poisson's ratio reduction
Compressive behavior

Reduction due to lateral cracking
Lower bound reduction curve

Stress confinement model

Total strain based fixed crack model
Fixed

Rots

Constant

0.1

Exponential softening

Damaged based

Parabolic

Vecchio and Collins 1993

0

Selby and Vecchio

Table D2. Reinforcement steel: element type and constitutive model used in Diana FEA 10.1.

Reinforcement Steel

Finite Element

Embedded reinforcement

Bar element

Constitutive Modelling

Model
Plastic hardening
Hardening hypotheses

Hardening type

Elastic plastic model with hardening
Plastic strain-yield stress
Strain hardening

Isotropic hardening
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D.3  Load path
The loading path is different for each NLFE model and will be presented in the tables below.

D.3.1 Portal frame design 1, 2 and 3

First the load determined according to the local design resistance, F, = 18.8 kN and F;, = 15.7 kN is
applied on the structure. After that the vertical load will increased till failure of the portal frame. In
this way the additional ‘hidden’ capacity of a portal frame design is found. The loading order is
presented in table D3. First the vertical load F, is applied on the structure, subsequently the
horizontal load Fj, is applied and finally the vertical load Fj, is increased till failure of the portal frame.
The load is applied in load-steps, which represents the percentage of the total load (see table D3).

Table D3. Load path safety format.

Load path safety formats
Line
Equilibrium Iteration Maximum number of iterations | Load-steps search Load combination
Regular NR 800 | 0.1(10) yes Fv=18.8 kN
Regular NR 800 | 0.05(20) yes Fh =15.7 kN
Secant (Quasi-Newton) 1000 | 0.01(1000) yes Fv=10.0 kN
Till failure

D.3.2 Experiment Seraj et al. (1995)
The derivation of the load path that is used in the NLFE model for PF1 and PF2 is described in chapter
5.3.2. The loading order is presented in the tables D4 and D5.

D.3.2.1 Portal frame 1 (PF1)

Table D4. Load path PF1.

PF1
Equilibrium Iteration Maximum number of iterations | Load-steps Line search | Load combination
Regular NR 400 | 0.1(10) yes Fv =24 kN
Regular NR 800 | 0.05(15) yes Fh =20 kN
0.05(4)
Secant (Quasi-Newton) 1000 | 0.01(100) yes Fv=20kN
Till failure Fh (sway) = 18 kN
D.3.2.2 Portal frame 2 (PF2)
Table D5. Load path PF2.
PF2
Equilibrium Iteration Maximum number of iterations  Load-steps Line search  Load combination
Regular NR 400 | 0.1(10) yes Fv =24 kN
Regular NR 800 | 0.05(15) yes Fh =20 kN
0.05(4)
Secant (Quasi-Newton) 1000 | 0.01(100) yes Fv=20kN
Till failure Fh (sway) = 40 kN
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Appendix E

Experiment Seraj et al. (1995)

E.1  Experimental Results

E.1.1 Load carrying capacity

The collapse load of PF1 and PF2 can be found in table E1. The total vertical load carrying capacity is
the sum of the applied vertical load and the additional vertical load due to the sway effect. The total
horizontal load is the measured horizontal load during the experiment.

Table E1. Total load carrying capacity PF1 and PF2 from experiment (Seraj, Kotsovos, & Pavlovic, 1995).

Results experiment

Design Fv (kN) | Fh (kN) Failure mode
PF1 28.5 20 | Partially corner D failure and three plastic hinges
PF2 33.68 19.95 | Partially corner D failure and three plastic hinges

The results of the experiment are shown in figure E1.
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Figure E1. Load versus, vertical displacement (a), horizontal displacement (b), steel strain €11 (c), steel strain € 4 (d), steel
strain €3 (e) and steel strain €8 (e) due to vertical loading Fv and combined vertical Fv,sway and horizontal loading Fh. (Seraj,
Kotsovos, & Pavlovic, 1995).
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E.1.2 Crack pattern PF1 and PF2 (Seraj, Kotsovos, & Pavlovic, 1995)

Figure E4. PF1: location D.

Figure E6. PF1: location E. Figure E7. PF2: location E.
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E.2  Results NLFE analyses experiment Seraj et al. (1995)

E.2.1 Vertical and horizontal deformation experiment PF1 and PF2
The vertical and horizontal deformation of PF1 and PF2 resulting from the experiment are shown in

the figures below.

Experiment: Vertical deflection midspan C

Load (kN})
= = N N w
(=] w o w o
L]
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»

v

.
0 5 10 15 20 25

Vertical displacement (mm)

=}

---8--- Experiment PF1 (Fh)
Experiment PF2 (Fh)

—=e— Experiment PF1 (Fv)
Experiment PF2 (Fv)

Figure E8. Vertical deflection experiment (Seraj, Kotsovos, &
Pavlovic, 1995).

Experiment: Horizontal displacement corner D
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Experiment PF2 (Fv)

Figure E9. Horizontal displacement experiment (Seraj,
Kotsovos, & Pavlovic, 1995).

E.2.2 Vertical and horizontal deformation NLFE analyses PF1 and PF2
The results of the NLFE analyses for PF1 and PF2 are shown in the figures below.

PF1 and PF2: Vertical deflection midspan C
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Figure E10. Vertical deflection FF1 and PF2.

PF1 and PF2: Horizontal displacement corner D
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Figure E11. Horizontal displacement FF1 and PF2.

E.2.3 Results PF1 and PF2 and experiment (Seraj, Kotsovos, & Pavlovic, 1995)

The results of the experiment (Seraj, Kotsovos, & Pavlovic, 1995) and the NLFE analysis are shown in
the graphs below. The graphs show the comparison for PF1 and PF2 on the left and right side,
respectively. The straight lines shows the displacement or strain due to the vertical load and the
dashed lines shows the displacement or strain due to the horizontal load. The stiffness of the non-
linear finite element model differs from the experimental results. This results in a different initial
displacement or strain (caused by the vertical load) of the NLFE analysis and the experimental results

when the horizontal load is applied.
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PF1: Vertical deflection midspan C
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Figure E12. PF1: vertical deflection C.

PF1: Horizontal displacement top right corner D
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Figure E14. PF1: horizontal displacement D.

PF1: Strain reinforcement bottom midspan C
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Figure E16. PF1: bottom strain reinforcement C.

PF1: Strain reinforcement top midspan C
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Figure E18. PF1: top strain reinforcement C.
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Figure E13. PF2: vertical deflection C.
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Figure E15. PF2: horizontal displacement D.
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Figure E17. PF2: bottom strain reinforcement C.
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Figure E19. PF2: top strain reinforcement C.
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Figure E20. PF1: strain reinforcement outer right corner D.
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Figure E22. PF1: strain reinforcement inner right support E.

E.2.4 Mesh refinement
The results of a coarse and a fine mesh for PF2 are given in the graphs below. The number of
elements over the height of the beam is 4 (4 e.0.h.) and 6 (6 e.o.h.) for the coarse and the fine mesh,
respectively. The coarse mesh leads to a loading capacity closer to the experimental results (table
E1). Also the computational time is less, which is an important criterion since many NLFE analyses
have to be performed in order to do a safety assessment.

PF2: Vertical deflection midspan C
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Figure E24. PF2: vertical deflection C (coarse and fine mesh).
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Figure E21. PF2: strain reinforcement outer right corner D.

PF2: Strain reinforcement inner right support E
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Figure E23. PF2: strain reinforcement inner right support E.

PF2: Horizontal displacement top right corner D
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Figure E25. PF2: horizontal displacement D (coarse and fine
mesh).

The fine mesh leads to earlier corner failure since the stress concentration will be higher. This is
shown in figure E24 and E25 where a jump in the graph is visible for F;, = 12 kN and F;, = 9 kN for
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the coarse and the fine mesh, respectively. Even if a corner radius (minimum corner radius is 4¢
(NEN-EN 1992 -1-1, 2011)) is applied for the fine mesh. The results are shown below.

L L]

Figure E26. Coarse mesh: Left: mesh and reinforcement, middle: before partial failure (load-factor 0.5) and right:

after partial failure (load-factor 0.55)

Figure E27. Coarse mesh: Left: mesh and reinforcement with minimum corner radius 4¢, middle: before partial

failure (load-factor 0.4) and right: after partial failure (load-factor 0.5)
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2.59e+06
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-8.78e+06
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-201e+07

(N/mn2)
2.86e+06
I -6.70e+05
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-2.18e+07
-2.54e+07

For the total load carrying capacity it is not needed to make a very accurate model of the corner. This

could be done in a detailed analyses but that is not the scope of this thesis. Since the design of a

corner with a finer mesh performs only worse and the computational time is higher, there is chosen

for a coarse mesh with 4 e.o.h.

Table E2. Results experiment PF2 and NLFE analyses: coarse and fine mesh.

Results NLFE analyses (4 e.o.h. and 6 e.o.h.) and PF2 (experiment)

Fv (N) Fh (N)
PF2 (experiment) 33680 19950
NLFE analysis (4 e.o.h.) 23400 19200
NLFE analysis (6 e.0.h.) 28000 17000
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Appendix F

F.1

Transformation to standard normal variables

Correlation matrix concrete and reinforcement steel

According to chapter 2.5.2 the correlated lognormal variables can be transformed to correlated
normal distributed variables X with the mean u; and the standard deviation o7} .

Table F1. Transformation to normal correlated variables.

Concrete and reinforcement steel

Variable fc (MPa) fct (MPa) | Ec (MPa) | Gf (Nmm/mm2) | fy,| (MPa)
v 38.00 2.87 | 33550.60 140.50 560.00
o 5.70 0.43| 5703.60 28.10 28.00
Distribution LN LN LN LN LN
puL 3.63 1.04 10.41 4.93 6.33
oL 0.15 0.15 0.17 0.20 0.05
Distribution N N N N N

After that the correlated normally distributed variables X can be transformed to uncorrelated
standard normally distributed variables U using a transformation matrix T. The matrix T is found
using Cholesky decomposition of the correlation matrix p = TTT. Matrix T is found with the
following Maple script:

T = Matrix(n) -

sl=10:52=10:
for from 1 tondo
for i from 1 tondo

if i = i then

forjfrom 1to (if— 1)do
s1e=Tlicj1 + 51

end do;

T[ki] = sqri(rho[ & k] — 51);
51 =10

elif ©>> i then

for jfrom 1to (i — 1)do
s2= T[ij]-T[kj] + 52
end do;

_ (rho[&i] —52)
% 1]

else
T[ij] =0

end if
end do

end do
T=T

Figuré F1. Maple script: Cholesky decomposition

p

T =

1 0932
0932 1
~l0772 0684
[0.714 0.8

0 0

1 0
[0.932 0.362

0.772 —0.098
[0.714 0.371
0 0
[or1 0
I 0 o
D=] 0 0
| 0 0
lo o

0.772
0.684
1
0.657
0

0.628
0.226

0.714
0.8
0.657

The transformation from the correlated normally distributed variables X to the uncorrelated
standard normally distributed variables U can be expressed as:

o O O O

|
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F.2

Full correlation between concrete properties

Ur, ovy,

(0.932 Uy, + 0362 Ug,) g, 7,
(0.772 Uy, — 0.098 Uy, + 0.628 Ug,) 0y,

(0.714 Uy, +0.371 Uy,, +0.226 Ug, +0.549 Ug, ) 01,6,

Ur,, OLF,,

(F.1)

The correlation matrix for concrete and reinforcement when full correlation between the concrete
properties is assumed is:

1 1
11
11
11
11
0 0

S W =Y

0

10]

R R R e

0 1

Cholesky decomposition is not possible since the matrix p is not positive definitive but it is easy to

see that p = TTT leads to the following transformation Matrix:

Lo

0

S OO OO
SO o oo

0

S O O OO

0

OO]

ol

0
0 0
0
0 0
o 1l

The D matrix with only the standard deviation on the diagonal terms. The transformation from the

correlated normally distributed variables X to the uncorrelated standard normally distributed
variables U is again expressed as:

X =p, + DTU
— X —
fc I'I'L'fc -l
R T
Xg, _ HUiE,
XGf - .uL,Gf
X¢ | UG, |
X :u-L,fy,lJ
L fy_l_

+

B
Ufc OLfet
Uy, 0Lk,
Uy, 016,
U, 916,

_Ufy_l O-L,fy'l_

(F.2)
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Appendix G Level Il Reliability Method: Global Safety evaluation

G.1  Case 1: rotational capacity corner D without geometrical reinforcement
uncertainty

The global safety assessment of portal frame design 1, 2 and 3 is performed and extensively
discussed below.

G.1.1 Design1l

The safety format with the highest global design resistance, i.e. highest probability of failure, for
design 1 is the ECOV method. The global design resistance according to the ECOV method is: Rgp =
36.1 kN. This leads to the following implicit LSF:

G(X) = R(X) — 36.1.

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of
the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 1 is:
n = 2. The first step is to perform three NLFE analyses to calculate the control point X .. Therefore
NLFE analyses with mean X, low steel Xfy = X — fo and low concrete Xr = X — fo material values

are performed. The coordinates of the three points are shown in figure G1.

5] ° 2 rsd * b4
35.0 1 35.0 4
32.5 32.5 | o
T e
30.0 1
£ £ 300
£ g
27.5 1 275 ]
25.0 25.0
2251 22.5 -
L] L]
‘ ‘ . . .
480 500 520 540 560 480 500 520 540 560
fy (MPa) fy (MPa)

Figure G1. The n+1 selected experimental points: mean X, ~ Figure G2. The control point X in the real space is added.
low steel Xfy and low concrete Xy_material values.

The control point X, is calculated below:

step 1:
select n + 1 experimental points:
Y — 'ufy — 'ufy_fo-fy:l _[ ‘ufy ] —
X= [“fc]' Xfy = [ iy, , Xr = us — for | where f = 3.
step 2: step 3: step 4:
G(X) = 89 F(X:) = GX) - G(X;) = 5.1 wy =) oo
fy fy 1 F(Xfy)+F(Xfc)
3 F(Xs)

G(Xs)=238 F(Xsf)=G(X)—G(X:)=2.0 w, = ———=10.28

Xg,) (X7,) = 6X) - G(Xy) 27 F(xp) )+F(Xp)
G(X;) =169
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step 5:
The control point in the standard normal space is determined below. First the log-normal distributed

variables are transformed to standard normal variables according to chapter 2.5.1.

of, = 28 MPa, ug, = 560 MPa,

+ 1) = 0.05 MPa, Hp, =Inpg —% af,. = 6.327 MPa

Ur. = 38 MPa,

0.2

f _ — 1 2 _
Of. 1 = #—j%z + 1) = 0.149 MPa, Krp = Inpg — > Ol = 3.626 MPa

ln(”fy_fafy)_”fyl ln(“fy)_”fyi
U, = Tyl I U, = Iyt
In(ure)-treL n(ie—sar ) Hret
OfclL J OfcL

The control point in the standard normal space:

U, =S, w U, =| 23]

—1.05

The response surface and the real desing point are determined using the following steps:

step 1:
The control point in the real space:

exp(—2.310r ; +
p( R ) _[498.3 and GX) = —13

- exp(—1.0505, + 1y, 1) 1321

c

Wrong iteratation method used so the results of the NLFE analysis is not valid G(X,) = —1.3 and

will not be used in the response surface to obtain the design point. The results of the NLFE analyses is
G(X.) = 5.3 when the right iteration method was used. However the coordinates of the design
points are still valid so the procedure to find the initial design point can still go on. The coordinates of
the control point are shown in figure G2.

Step 2:

1. Based on the control point X, and G (X,) the first iteration point is calculated according to:

¥ ¥)_ 6X)
X=X+ (Xc—X) RTER
_ [506.2 _ 6Ctun)| _
Xur = | s ] G(Xy1) =7.2, | =08 <001

2. No convergence, so the second iteration point is calculated with:

129



278.1
111 7F

G(Xm2)

G(X)

The first two iteration point are added in the figures G3 and G4, respectively.

Xu2 = [ G(Xy2) = —21.0,

= 2.36 < 0.01

. . L] L]
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fy (MPa) fy (MPa)
Figure G3. The first iteration point X ;1 is added. Figure G4. The second iteration point Xy, is added.

3. No convergence, so the third iteration point is calculated with:

Xy.. =Xy +(Xy. . —Xy,) 7—"—".
Mira Mi ( Mima Ml) G(XMi)_G(XMi—1)
Xous = [550], G(Xy3) = 3.0, |Gé’(‘)’_(”’)3) = 0.34 < 0.01
4. No convergence, so the fourth iteration point is calculated with:
G(Xm,)
Xy... =Xy +( Xy, . — )=
s = Kot G =Ko )G et
Xus = [525] G(Xpa) = =19, |GG(’(‘;_(”’)“) =022 < 0.01
5. No convergence, so the fifth iteration point is calculated with:
Miyy M; Mi_y M; G(Xm,)-6(Xn,_ )’
Xus = [42365'11 ) G(Xms) = —0.6, |GG(’(‘)’_(”’)5) = 0.067 < 0.01
6. No convergence, so the sixth iteration point is calculated with:
Xu, = Xog + (Xog_, = Xpg ) ——at)
M1 M; Mi_q M; G(XMi)_G(XML__l)'
Xus =[50, G(Xye) = —0.4, el =004 <001
7. No convergence, so the seventh iteration point is calculated with:
Xy = Ko, + (Kua, = X)) G(Xm,)-6(Xn,_ )’
Xur = [4164), G(Xyy) = 2.8, | =031 <001
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No convergence, so the eighth iteration point is calculated with:

G(Xpm,)
Xu. =XM.+(XM. —XM.)—l.
i+1 A -1 1A -
6(X )6, )
439.8 G(Xms)
Xy = [ ; G(Xys) = —0.3 S&us)l _ 003 < 0.01
M8 26.5 ’ ( M8) ’ G(X)
. L ] L] L ]
354 35
. L]
L] L]
30 1 30
— - . ..o
£ 251 £ 25 .
- L ] - L]
20 20
15 1 15 ]
L] L]
10 = T T - - - T 10 4 T T - - - -
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fy (MPa) fy (MPa)

Figure G5. Iteration point X 3 is added.

Figure G6. Iteration point X 4, X ys, Xme, Xy7 and Xy g are added.

9. No convergence, so the ninth iteration point is calculated with:

Xui, = Xuy + (XMi—1 XMi) G(XMi)_G(XMi_l)'
_[440.4 _ G(Xmo)| _
Xus = e e ] G(Xyo) = —0.4, | =004 <001
10. No convergence, so the tenth iteration point is calculated with:
Xy =Xy + (Xpy — Xy, ) i)
My = O M; Mi—y M; G(XMi)_G(XMi—l)'
_[437.9 _ GXmi0)| _
Xuio = [ 5p 3 ! G (Xy10) = —0.5, EY| =006 <001

Divergence of the design point in the ninth and tenth iteration. Xjg is closest to convergence and will
be selected as initial design point.

step 3:

Select 2n + 1 experimental points, where the center point is Xg: X; = Xyg £ fo, where f =1,
because the center point should be close to the real design point. This led to the following sample
points and corresponding limit state functions:

" :42369..58:
T :43121..28:
T :42369'.58:
Xs =1 208

G(X;) =—03
G(X,) =12

G(X3) =—06
G(X,) = —2.2
G(X5) =—1.3
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The rotational capacity of corner D has a lot of influence on the structural resistance. Some
experience of using the NLFE model led to the conclusion that the ratio of the concrete strength and
the steel yield strength has a large influence on the structural resistance. This ratio determines the
rotational capacity of the corner and therefore leads to a brittle or ductile failure mode. For this
reason convergence is hard to achieve. The best way to estimate the design point is to determine a
lot of points around the estimated design point such that the response surface is an accurate
approximation of the actual LSF.

Calculation of the design point with the first 5 points is not possible since this leads to an unrealistic

shape of the response surface E(X), especially in the region outside the zone where the sample
points are chosen. The response surface will be determined in step 4. Therefore some additional
points will be added to create a more realistic response surface.

The additional cross points for are:
[467.8]

X6 = ] 32.2 ] G(XG) = 1.7
[411.8]

X7 = ] 32.2 ] G(X7) = _2.2
[411.8]

X8 = ] 20_8 ] G(Xs) = _3.2
[467.8]

Xg = ] 20_8 ] G(Xg) = 0.8

The additional points along the axes are: The additional cross points are:
[481.8] [481.8]

X10= | 26.5 | G(X10) = 1.9 X114 = [ 351 | G(X14) =53
[439.8] [397.8]

X11 = ] 351 ] G(Xll) = 29 X15 = ] 351 ] G(X15) = _01
[397.8] [397.8]

X12 = _265_ G(Xlz) =_30 X16= _180_ G(X16) = _16
[439.8] [481.8]

X3 = | 17.8 | G(X13) = 0.8 X7 = | 18.0 | G(X17) =01
[495.8] [495.8]

X1 = | 26.5 | G(X1g) = 3.8 X202 = [ 379 | G(X32) =53
[439.8] 1383.8]

X19= _379_ G(X19) =_01 X23 = _379_ G(X23) = _14
[383.8] 1383.8]

X200 = | 26.5 | G(X30) = —3.8 Xo4 = [ 15.1 | G(Xz4) = —4.6
[439.8] [495.8]

X21 = | 151 ] G(le) = _11 X25 = | 151 ] G(X25) = 28
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Also the ten iteration points X ;;, the control point X, and the first three points X, Xfy and Xy,_are

used to create a realistic response surface.

step 4:

The response surface can be formed after determining the unknown coefficients (see chapter 2.4.1).

A least squares approach is used to determine the unknown coefficients (which leads to an exact

results if the number of unknown coefficients is equal to the number of sample points). The
unknown coefficients can be determined according to:

b = (ATA)"1ATG.

Now the response surface G (X) can be obtained according to the following equation:

G(X) = Ab

Response surface (real space)
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Figure G7. Response surface (real space).
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Figure G9. Response surface (real space).
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Figure G8. Response surface (real space).
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Figure G10. Response surface (real space).
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Response surface (standard normal space)

Response surface (standard normal space)

20.0
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15.0
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10.0
7.5
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0.0

Figure G11. Response surface (standard normal space).

Figure G12. Response surface (standard normal space).

However this response surface led to divergence after using the FORM in order to obtain the real
design point. A design point with a larger reliability index than the initial design point was found. The
initial design point led to the following results:
439.8 —4.73
Xus = |5 5 Uns=| 5]  Bmiciwia =534 G(Xug) = —03.
The first iteration using the FORM in order to obtain the real design led to the following results:
_[434.5 _ [-5.05 _ _
X,, = [28_8] Uy, = [_1_79 Bir = 5.36 G(Xy,) = 3.1.
The results are graphically presented in figure G13 and G14. Immediately can be seen that there is no

failure in the first obtained design point since G(Xl,*) > 0. When more iteration were used to obtain

the real design point only higher values of the reliability index were obtained. This could not be the
case since the initial design point X g led to a failure of the structure G(Xp3) < 0 with a lower
reliability index.

Limit state function (standard normal space)
\ ~— 25.000 q

Limit state function (real space)
Ute T _ @ Previous design point { J‘o
15 g | C 50 4 : Nlje: design point (FORM) :% 2,
— 41 - — Contour lines RS
E A
g 24 40 4 | K
. \ Ve
- 1 \
T T T T T T \ \
-10 -8 -6 -4 2 4 Uty = | |
' < \l »
\\ \ 1
1 1
| 20 \ !
w AN :
|I P ‘. ol
" @ Previous design point |
| »  Design point obtained with FORM 10 L ;
4 = — L5F !
b a
=3 = — Contour lines RS I ||
- —104 T T T T T T T
seta: 5,96 250 300 350 400 450 500 550 600
New design point, beta: 5 36 fy (MPa) Previous design point, G(X): -0.3
Figure G13. Limit state function (standard normal space).

Figure G14. Limit state function (real space) and sample
points.
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To overcome this divergence the results of the implicit limit state function G (X) with relatively large
outcomes compared to the real design point were not used to create the response surface since this
points influence the shape of the response surface in the region of the design point too much. The
adopted response surface could be used to find the real design point X,. This led to the following
response surface, which is shown in the figures G13 till G18. The difference of the shape of the new

and the old response surface is best noticeable by comparing figures G11 and G12 with G17 and G18,

where the response surface is presented in the standard normal space.

Response surface (real space)
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Figure G13. Response surface (real space).

Response surface (real space)

L ]
0
300 350 01§3§03§‘a\
400 450 5gg 1 ot
fy (Mpay 550 ©

Figure G15. Response surface (real space).
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Figure G17. Response surface (real space).
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Figure G14. Response surface (real space).
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Figure G16. Response surface (real space).
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Figure G18. Response surface (real space).
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Step 5:

The design point is determined after several iterations using the FORM in combination with the
obtained response surface of step 4. This is shown figures G19 and G20. The coordinates of the
design point in the standard normal space U,, the coordinates in of the design point in the real
space X,, the reliability index Sz and the sensitivity factors a are:

—4.73
—-2.30

0.900

4415 B B
Br =526 %R = [0.437 '

X. = [26.7

v.=|

Limit state function (standard normal space)

Limit state function (real space)
-0y \

~~ @ Previous design point |

~ U fc i
o, . ~_ 50 - ® Newdesign peint (FORM}
2% S P — LsF
— — Contour lines RS
°
2] 2
e 40 4
N \
~ vooe
\
T T & T T \
-10 —8 2 4 U = \ "‘
N \
N fy £ \
N s, £ Y .
\ _ el | \
\
5 20 '
|
—6 1 ~
S / S
« Previous design point \ T
»  Design point obtained with FORM 10 e ".‘
— LSF \
—— Contour lines RS ‘.‘
. 104 T T T T T T T
Beta: 5.26 250 300 350 400 450 500 550 600

New design point, beta: 5.26 fy (MPa) Previous design point, G(X): 0.0

Figure G19. Limit state function (standard normal space). Figure G20. Limit state function (real space) and sample points.
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G.1.2 Design 2

The safety format with the highest global design resistance, i.e. highest probability of failure, for
design 2 is the PFm. The total global design resistance according to the PFm is: Rgz = 43.7 kN. This
leads to the following implicit LSF:

G(X) = R(X) — 43.7.

The response surface is constructed according to the approach of Zhao and Qiu (2013). The first step
is to perform three NLFE analyses to calculate the control point X .. Therefore NLFE analyses with

mean X, low steel Xs, = X — fo and low concrete X, = X — fo material values are performed. For
this case f = 4.5 because otherwise the influence of the individual stochastic variables on the failure

load is not correctly expressed by the weight factors w;. However this is an indication i.e. an intitial
guess so the correct factor of f cannot be predicted in advance. A discussion on choosing the factor

f can be found in chapter 7.2.1.4.

The control point X, is calculated below:

step 1:
select n + 1 experimental points:
7 _ [*A ug, = fioy, 1y
x=[] Xy =[5 A%] fmas x| | f-ss
Hre & He h 7= g, ~ foop k2
step 2: step 3: step 4:
GX) = 9.1 F(X;) = G(X) - G(X;.) = 8.0 wy = — ) sy
Iy Iy 1 F(Xfy)+F(Xfc)
_ _ Y _ _ _ F(Xfc) _
G(Xz,) =11 F(X;)=GX)—-G(Xg) =6.0 w, = G ora 0.43
G(Xr)=31
step 5:
of, = 28 MPa, hg, = 560 MPa,
O-)%y 1 2
Of,1 = In E-}_ 1) = 0.05MPa, He,1 = lnufy —5 0L = 6.327 MPa
o5, = 7.2 MPa, Ur, = 38 MPa,
crzc 1
o, = |In (# + 1) = 0.149 MPa, Hr=Inps —> of | =3.626 MPa
Irln(#fy—fdfy) HfyL ]l |[ ln(lify)—lify,L —!
U1 = I Ofy.L |, l]2 — | OfylL I
[ In(ur)—treL J [‘n(#fc—f ”fC,L)_”fC'LJ
OfclL OfcL

The control point in the standard normal space:

U =XYL,wU;= [:32?2]
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The response surface and the real desing point are determined using the following steps:

step 1:

The control point in the real space:

exp(—2.89 or,1 + U, L) 484.1
= ' = : X,) =2
Xe exp(—3.15 07, + pif, 1) [ 23.5 and  G(Xe) 6

step 2:
The initial design point is found with the same approach as for design 1 using the control point.

step 3 and 4 (a):

Around the initial design point four sets of sample points with f = 0.5; 1.0; 1.5; 2.0 are used to
determine the response surface. The sample points are shown in figure G21 and G23.

Response surface (real space) Response surface (standard normal space)

FORN WA GG |
o

Figure G22. Design 2: response surface (standard

Figure G21. Design 2: response surface (real
normal space).

space).
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step 5 (a):

After using the FORM a design point is found in the region which is not described by the chosen
sample points. This is shown in figure G23 and G24. Therefore additional sample points were added

and the response surface is modified. Therfore step 3 and 4 has been perormed again.

Limit state function (real space)
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Figure G23. Design 2: limit state function (real space).
Design point obtained with the FORM lies in a region,
which is not described accurately by the sample points.

step 3 and 4 (b):

Limit state function (standard normal space)
6
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-
.
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ufy
—2 ]
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v
(=
‘o -6 4
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\ — 15F
\\ \ —— Contour lines RS
—104
Beta: 3.03

Figure G24. Design 2: limit state function (standard
normal space). The limit state function is only accurately
described by sample points (not visible in this figure)) in
the third quadrant. Therefore the obtained design point

is not realistic.

Additional sample points with a high concrete compressive strength are added to have a better
approximation of the response surface in the region of the added sample points. Otherwise an
incorrect design point is obtained. The updated response surface is presented in figures G25 till G28.

Response surface (real space)

300,
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400, "
fy (Mpy, %0055
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Figure G25. Design 2: updated response surface (real
space) in order to find the real design point.

Response surface (standard normal space)
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Figure G26. Design 2: updated response surface
(standard normal space) in order to find the real

design point.
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The rotational capacity of corner D has a large influence on the structural resistance and therefore on
the result of the LSF. The structural resistance of NLFE analyses with sample points close to each
other can differ significantly. The spreading of the results is shown in figure G27 and G28.

Response surface (real space)
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Figure G27. Design 2: updated response surface (real
space). The spreading of the results of the implicit LSF is
clearly visible.

step 5 (b):

Response surface (real space)

650 10 20 30 40 50 60 70

fc (MPa)

Figure G28. Design 2: updated response surface (real
space). The spreading of the results of the implicit LSF
is clearly visible.

The design point is determined after several iterations using the FORM in combination with the
obtained response surface of step 4. This is shown figures G29 and G30. The coordinates of the
design point in the standard normal space U,, the coordinates in of the design point in the real space
X, the reliability index S and the sensitivity factors ay are:

v.= [—2.25] X.= 26.9]
Limit state function (real space)
@ Previous design pomt. /
@ Design point obtained with FORM ./ ¢ *
— L5F /
607 _ Contourtines RS
i i
504 | 1
1 1
! ':
w404 | V
5 \
g
301 13
‘n“
204 n
A
Ay
ko)
10 4 %0
\

250 300 350 400 450 500 550 600

New design point, beta: 5.75 fy (MPa) Previous design point, G(X): -0.2

Figure G29. Design 2: updated limit state function (real
space). Previous design point lies below the new obtained
design point.
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Figure G30. Design 2: updated limit state function
(standard normal space).
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G.1.3 Design 3

The safety format with the highest global design resistance, i.e. highest probability of failure, for
design 3 is the PFm. The total global design resistance according to the PFm is: Rgz = 37.0 kN. This

leads to the following implicit LSF:

G(X) = R(X) — 37.0.

The response surface is constructed according to the approach of Zhao and Qiu (2013). The first step
is to perform three NLFE analysis to calculate the control point X .. Therefore NLFE analyses with
mean X, low steel Xs, = X — fo and low concrete X, = X — fo material values are performed. For

this case f=4.0 because otherwise the influence of the individual stochastic variables on the failure

load is not correctly expressed by the weight factors w;.

The control point X, is calculated below:

step 1:

select n + 1 experimental points:

Y — 'ufy _ Mfy_flo-fy:l —
o B e
step 2: step 3:

GX)=7.0 F(Xfy) =6(X)— G(Xfy) = 3.0
G(Xz,) =40 F(X;)=GX)-GX;) =15
G(X;) =55

step 5:

of, = 28 MPa,

o5 = ln< 2+ 1) = 0.05 MPa,
fy

o, = 5.7 MPa,

of = 1n< le + 1) = 0.149 MPa,
fc

[ .
I TfylL I
[ ln(“fc) HfclL J’

OfclL

The control point in the standard normal space:

U =XYL,wU;= [jgg]

ML =Inpg =20

Mg,
X, = [ ] = 4.0
%o = \uy, — foorl 2
step 4.
wy = ——00)___ 66
F(Xfy)+F(Xfc)
wy= %) _ 33
F(Xfy)+F(Xfc)

hg, = 560 MPa,

. = 6.327 MPa

Ur, = 48 MPa,

Kpp =Inpg —= O'f ; = 3.871 MPa

ln(“fy) Kyl ]I
O'fy I

ln(#fc—faf L) THfeL

OfclL
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The response surface and the real desing point are determined using the following steps:

step 1:

The control point in the real space:

3 exp(—2.95 af,1 + .ufy,L) B [482.6

" lexp(=1.97 a;, + s )|~ 1354 and  G(Xc) =39

c

step 2:

The initial design point is found with the same approach as in design 1 using the control point.

step 3:

Select extra points around the intitial design points to create the response surface using the same
approach as for design 1.

step 4:

The response surface for the selected points in step 3 is determined below.

Response surface (real space) Response surface (real space)
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Figure G31. Response surface (real space). Figure G32. Response surface (real space).
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Response surface (real space)
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Figure G33. Response surface (real space).

Response surface (standard normal space)
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Figure G35. Response surface (standard normal space).
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Figure G34. Response surface (real space).
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Figure G36. Response surface (standard normal space).
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Step 5:
The design point is determined using a FORM in combination with the obtained response surface in

step 4.

1. Now FORM is used to obtain the first iteration of the design point. This is shown figures G37
and G38. The coordinates of the design point in the standard normal space U, ,, the
coordinates in of the design point in the real space X, , the reliability index 3, g and the
sensitivity factors a; p are:

_ 0.853]

—5.65 421.7
Uy, = ] X = [ Bir = 6.62 AR = 0.521

* 7 1-3.45 ' 28.4

Limit state function (real space)

Limit state function (standard normal space) ‘
6+ | @ Previous design point
Ufec 50 4 @ Design point obtained with FORM 4
e ———_—— —— — LsF
R ~ -10.000 = 44 — Contour lines RS
- T
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24 40 1
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|
r T T o T T !
-10 -8 -2 2 4 s y
U fy 2 30\ \
-2 £ \ ,
" \ - ;
& ~ 5005
4] )
204
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ko)
L & Previous design point L 9%
N w»  Design point obtained with FORM 10 4 . 0000 —
* — LSF AN
N — Contour lines RS | A | | | | !
o= 250 300 350 400 450 500 550 600
Beta: 6.62
New design point, beta: 6.62 fy (MPa) Previous design point, G{X): -0.3
Figure G37. Limit state function (standard normal space). Figure G38. Limit state function (real space).

2. However there is still no convergence of the design point since G(Xl,*) = 2.7. Therefore
several iteration were performed. The response surface has changed due to the added

sample points and is given below.

Response surface (real space) Response surface (standard normal space)

Figure G38. Design 3: response surface (real space). Figure G39. Design 3: response surface (standard normal
space).
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The higher strength class C40 used in design 3 leads to a portal frame, which is very sensitive
for a ductile or a brittle failure depending on the rotational capacity of corner D. This results
in a large spreading of the obtained structural resistance for sample points close to each
other. Therefore the fit of the response surface is not very accurate which is shown in figure

G40 and G41.

Response surface (real space)
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Figure G40. Design 3: response surface (real space). A lot
of spreading in sample points close to each other results in
a bad fit of the response surface.
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Figure G41. Design 3: response surface (standard normal
space). A lot of spreading in sample points close to each
other results in a bad fit of the response surface.

The design point is determined after several iterations using the FORM. This is shown figures
G42 and G43. The coordinates of the design point in the standard normal space U,, the
coordinates in of the design point in the real space X,, the reliability index Sz and the

sensitivity factors ap are:

U - [—4.71] X = [442.0
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Figure G42. Design 3: limit state function (real space).
Previous design point lies below the new obtained
design point.
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Figure G43. Design 3: limit state function (standard
normal space).
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G.2  Case 2: rotational capacity corner D with reinforcement uncertainty due to
fabrication

G.2.1 Designl

The safety format with the highest global design resistance, i.e. highest probability of failure, for

design 1 is the ECOV method. The global design resistance according to the ECOV method is: Rgr =
36.1 kN. This leads to the following implicit LSF:

G(X) = R(X) — 36.1.

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of
the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 2 is:

n = 2. The first step is to perform three NLFE analysis to calculate the control point X .. Therefore
NLFE analyses with mean X, low steel Xp, = X — fo, low concrete X; = X — fo and a low cross-
sectional area X, = X — fo values are performed, where f = 3 is chosen. The results are
presented below.

The control point X, is calculated below:

step 1:
select n + 1 experimental points:
_ M Ky, —fop, Hry P
X = |45 |, Xfy = Uy, , Xfc = Uy, —fO'fc and XAs = My,
Hag Mo Hag Ka, — foa,
step 2: step 3: step 4:
G(X) =89 F(X:)=GX) - G(Xz) =51 wy = F(xr,) =0.48
Ty Ty F(Xpy ) +F(Xp o) +F(Xay)
_ _ Y _ _ _ F(Xfc) _
G(Xfy) = 3.8 F(Xfc) =6(X)—G(Xy) =20 wy, = F(Xfy)+F(XfC)+F(XAS) =0.19
v F(X4,)
G(Xr)=69 F(X4)=GX)—G(X,) =35 w3 = = = 0.33
( fc) ( As) ( ) ( As) 3 F(Xfy)+F(Xfc)+F(XAs)
G(Xa,) =54
step 5:

The control point in the standard normal space is determined below. First the log-normal distributed
variables are transformed to standard normal variables according to chapter 2.5.1.

of, = 28 MPa, hg, = 560 MPa,
UJ%y 1 2
of,. = |In W-l_ 1) =0.05MPa, He, =Inpe —-of ;| = 6.327 MPa
y
o, = 5.7 MPa, Yy, = 38 MPa,
= |in(Ze+1) = 0.149 =1 L o2, =3.626
O-fC,L - n u_chC+ - " MPa’ #fc;L - n‘LlfC _E O-fCrL - ) MPa
oy, = 4.712 mm? Ha, = 235.62 mm?,
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The control point in the standard normal space:

U.=Y,w; U;=]|-0.68

—-0.99

—1.54]

The response surface and the real desing point are determined using the following steps:

step 1:
The control point in the real space:

exp(—1.54 O-fy,L + .ufy,L) 517.9
X, =|exp(—0.680p , +pur )| = [ 33.9 ] and  G(X.) =56
—0.99 0y + Ua, 231.0

step 2:

The initial design point is found with the same approach as shown in Case 1 using the control point.

step 3,4 and 5:

Around the initial design point four sets of sample points with f = 1.0; 1.5; 2.0 are used to
determine the response surface. After the initial design point was found several iteration where
performed in comination with the FORM to obtain the real design point.

—4.09 455.96 0.718
U,=1-0.93 X, =\ 327 Pr = 5.69 ag =10.163
—-3.85 217.5 0.677
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G.2.2 Design 2

The safety format with the highest global design resistance, i.e. highest probability of failure, for
design 2 is the PFm method. The total global design resistance according to the PFm is: R¢r = 43.7
kN. This leads to the following implicit LSF:

G(X) = R(X) — 43.7.

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of
the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 2 is:

n = 2. The first step is to perform three NLFE analysis to calculate the control point X .. Therefore
NLFE analyses with mean X, low steel Xp, = X — fo, low concrete X; = X — fo and a low cross-
sectional area X, = X — fo values are performed, where f = 4.2 is chosen. The results are
presented below.

The control point X, is calculated below:

step 1:
select n + 1 experimental points:
I L g, — fop, Ky, K,
X = 'ufc ’ Xfy = 'qu ’ Xfc = 'ufc - fo_fc and XAs = 'ufc .
Hag Hag Hag Bag — fou,
step 2: step 3: step 4:
G(X) =9.1 FX)=G6X)—GX;) =75  wy= ) — 046
g g F(Xfy)+F(Xfc)+F(XAg)
X F(Xf.)
G(Xs)=1.6 F(X;)=G6X)—-G(X;)=22 w, = £ =0.13
( fy) ( fC) ( ) ( fC) g F(Xfy)+F(Xfc)+F(XAs)
— _ Y) _ _ _ F(XAs) _
G(Xs) =69 F(Xs,)=GX)—G(X,,) =72 ws = e ) 0.41
G(Xa,) =24
step 5:

The control point in the standard normal space is determined below. First the log-normal distributed
variables are transformed to standard normal variables according to chapter 2.5.1.

O'fy =28 MPa, ,Llfy =560 MPa,
O-}%y 1 2
of,L = In @+ 1) = 0.05MPa, Bf,L = ln,ufy 5 0fL = 6.327 MPa
op, = 7.2 MPa, Ur, = 38 MPa,
szr 1 2
o = |In (u_zc + 1) = 0.149 MPa, e, =Inpe —- of | = 3.626 MPa
fc
gy, = 5.701 mm? Ha, = 285.1 mm?,
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The control point in the standard normal space:

U.=X,w;U;=]|-0.82

-1.72

—2.13]

The response surface and the real desing point are determined using the following steps:

step 1:
The control point in the real space:

exp(=2.13 05 1. + Ug,1)]  [502.8
X =|exp(=08207; +pur1)| = [ 33.3 ] and  G(X.) =49
—1.72 04, + g, 275.3

step 2:

The initial design point is found with the same approach as shown in Case 1 using the control point.

step 3,4 and 5:

Around the initial design point four sets of sample points with f = 1.0; 1.5; 2.0 are used to
determine the response surface. After the initial design point was found several iteration where
performed in comination with the FORM to obtain the real design point.

—3.615 466.9 0.714
U.=|-2.259 X, =1268 Br = 5.07 ag = 10.446
—2.736 269.5 0.540
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G.2.3 Design 3

The safety format with the highest global design resistance, i.e. highest probability of failure, for
design 3 is the PFm method. The total global design resistance according to the PFmis: Rgr = 37.0

kN. This leads to the following implicit LSF:

G(X) = R(X) — 37.0.

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of
the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 2 is:
n = 2. The first step is to perform three NLFE analysis to calculate the control point X .. Therefore
NLFE analyses with mean X, low steel Xp, = X — fo, low concrete X; = X — fo and a low cross-

sectional area X, = X — fo values are performed, where f = 3.9 is chosen. The results are

presented in the below.

The control point X, is calculated below:

step 1:
select n + 1 experimental points:
_ M Ky, —fop, Hry P
X = |45 |, Xfy = Uy, , Xfc = Uy, —fO'fc and XAs = My,
Hag Hag Hag Bag — fou,
step 2: step 3: step 4:
G(X)=7.0 F(X:)=GX) —G(X;) =2.9 wy = r(xr,) =0.26
Ty Ty F(Xfy)+F(Xfc)+F(XAs)
v F(Xf.)
GX;)=41 F(X;)=G6X)—-G(X;)=04 w, = £ = 0.04
(Xg,) (¥r.) = 630 — 6X) 2 = Ftyy )Pty TP ()
v F(Xa5)
G(Xr)=6.6 F(X;.)=G6X)—-G(X,)=17.38 w3 = S = (.70
( fc) ( As) As 3 F(Xfy)+F(Xfc)+F(XAS)
G(X,,)=-038
step 5:

The control point in the standard normal space is determined below. First the log-normal distributed
variables are transformed to standard normal variables according to chapter 2.5.1.

of, = 28 MPa,

0'2
o, = |In[—=X+1)=0.05MPa,
v uf,

o, = 5.7 MPa,

0.2
= [l (ﬁ 1): 14 ,
051 n ”12“c+ 0.149 MPa

oy, = 4.712 mm?

hg, = 560 MPa,
1
Hp,L = ln/,tfy —3 O']%”L = 6.327 MPa

Ur, = 48 MPa,

K = Inpg —% O'fZC'L = 3.871 MPa

Ha, = 235.62 mm?,
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The control point in the standard normal space:

U.=Y,w; U;=|-1.70

—2.74

—1.11]

The response surface and the real desing point are determined using the following steps:

step 1:
The control point in the real space:

exp(=1.110p 1 +up1)] 15291
X.=|exp(-1.70 07, + 1) | = [36.8] and  G(X.) =52
—2.74 05, + g, 222.7

step 2:

The initial design point is found with the same approach as shown in Case 1 using the control point.

step 3,4 and 5:

Around the initial design point four sets of sample points with f = 1.0; 1.5; 2.0 are used to
determine the response surface. After the initial design point was found several iteration where
performed in comination with the FORM to obtain the real design point.

—-4.191 453.6 0.697
U,=|-1.571 X.=1376 Pr = 6.01 ag =10.261
—4.015 216.7 0.668
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G.3  Case 3: rotational capacity corner D with uncertainty in the reinforcement
detailing

G.3.1 Designl

The safety format with the highest global design resistance, i.e. highest probability of failure, for

design 1 is the ECOV method. The global design resistance according to the ECOV method is: Rgr =
36.1 kN. This leads to the following implicit LSF:

G(X) = R(X) — 36.1.

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of
the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 2 is:

n = 2. The first step is to perform three NLFE analysis to calculate the control point X .. Therefore
NLFE analyses with mean X, low steel Xp, = X — fo, low concrete X; = X — fo and a low cross-
sectional area X, = X — fo values are performed, where f = 3 is chosen. The results are
presented in the below.

The control point X, is calculated below:

step 1:
select n + 1 experimental points:
_ M Ky, —fop, Hry P
X = |45 |, Xfy = Uy, , Xfc = Uy, —fO'fc and XAs = My,
Hag Mo Hag Ka, — foa,
step 2: step 3: step 4:
G(X) =89 F(X:)=GX) - G(Xz) =51 wy = F(xr,) =0.37
Ty Ty F(Xfy)+F(Xfc)+F(XAs)
_ _ Y _ _ _ F(Xfc) _
G(Xfy) = 3.8 F(Xfc) =6(X)—G(Xy) =20 wy, = F(Xfy)+F(XfC)+F(XAs) =0.14
v F(X4,)
G(X:)=169 F(X;)=G6X)—G(X,)=6.8 w3 = = = 0.49
( fc) ( As) ( ) ( As) 3 F(Xfy)+F(Xfc)+F(XAs)
G(X,,) =21
step 5:

The control point in the standard normal space is determined below. First the log-normal distributed
variables are transformed to standard normal variables according to chapter 2.5.1.

of, = 28 MPa, hg, = 560 MPa,

UJ%y 1 2
of,. = |In @+ 1) =0.05MPa, He, =Inpe —-of ;| = 6.327 MPa
o, = 5.7 MPa, Yy, = 38 MPa,

U]%c 1 2
o = |In (E + 1) = 0.149 MPa, Kp =Inpg — > Ol = 3.626 MPa
o4, = 23.56 mm? Ha, = 235.62 mm?,
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The control point in the standard normal space:

U.=Y",w; U; =[-0.50

—-1.47

—1.17]

The response surface and the real desing point are determined using the following steps:

step 1:
The control point in the real space:

exp(=1.17 05 1 + g, 1)]  527.6
—1.470, + g, 201.0

step 2:

The initial design point is found with the same approach as shown in Case 1 using the control point.

step 3,4 and 5:

Around the initial design point four sets of sample points with f = 1.0; 1.5; 2.0 are used to
determine the response surface. After the initial design point was found several iteration where
performed in comination with the FORM to obtain the real design point.

—0.97 5329 0.438
U,=1-043 X,.=]352 P2r = 2.21 ag =0.195
—-1.94 189.9 0.878
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G.3.2 Design 2

The safety format with the highest global design resistance, i.e. highest probability of failure, for
design 2 is the PFm method. The total global design resistance according to the PFm is: R¢r = 43.7
kN. This leads to the following implicit LSF:

G(X) = R(X) — 43.7.

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of
the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 2 is:

n = 2. The first step is to perform three NLFE analysis to calculate the control point X .. Therefore
NLFE analyses with mean X, low steel Xp, = X — fo, low concrete X; = X — fo and a low cross-
sectional area X, = X — fo values are performed, where f = 4.2 is chosen. The results are
presented below.

The control point X, is calculated below:

step 1:
select n + 1 experimental points:
I L g, — fop, Ky, K,
X = 'ufc ’ Xfy = 'qu ’ Xfc = 'ufc - fo_fc and XAs = 'ufc .
Hag Hag Hag Bag — fou,
step 2: step 3: step 4:
G(X) =9.1 FX)=G6X)—GX;) =75  wy= ) — 0.26
g g F(Xfy)+F(Xfc)+F(XAg)
X F(Xf.)
G(Xs)=1.6 F(X;)=G6X)—-G(X;)=22 w, = £ = 0.08
( fy) ( fC) ( ) ( fC) g F(Xfy)+F(Xfc)+F(XAs)
— _ Y) _ _ _ F(XAs) _
G(Xs) =69 F(X0,)=GX)—G(X,) =194 ws= Pl P ) 0.67
G(X,,)=-103
step 5:

The control point in the standard normal space is determined below. First the log-normal distributed
variables are transformed to standard normal variables according to chapter 2.5.1.

O'fy =28 MPa, ,Llfy =560 MPa,
O-}%y 1 2
of,L = In @+ 1) = 0.05MPa, Bf,L = ln,ufy 5 0fL = 6.327 MPa
op, = 7.2 MPa, Ur, = 38 MPa,
szr 1 2
o = |In (u_zc + 1) = 0.149 MPa, e, =Inpe —- of | = 3.626 MPa
fc
gy, = 28.51 mm? Ha, = 285.1 mm?,
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The control point in the standard normal space:

Uu.= Z?:1 w; U; =(-0.43

—2.80

—1.19]

The response surface and the real desing point are determined using the following steps:

step 1:
The control point in the real space:

exp(=1.19 Ofy.L + 'ufy'L) 527.0
X.=|exp(-043 07, +us,)|= [36.16] and G(X,) =—45
~2.80 0, + 4 231.7

step 2:
The initial design point is found with the same approach as shown in Case 1 using the control point.

step 3,4 and 5:

Around the initial design point four sets of sample points with f = 1.0; 1.5; 2.0 are used to
determine the response surface. After the initial design point was found several iteration where
performed in comination with the FORM to obtain the real design point.

—0.6418 541.6 0.294
U, =(0.000596 X, =376 P2r = 2.18 ag = [—0.00027
—2.0851 225.7 0.956
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G.3.3 Design 3

The safety format with the highest global design resistance, i.e. highest probability of failure, for
design 3 is the PFm method. The total global design resistance according to the PFmis: Rgr = 37.0
kN. This leads to the following implicit LSF:

G(X) = R(X) — 37.0.

The response surface is constructed according to the approach of Zhao and Qiu (2013). The theory of
the method is explained in detail in chapter 2.4.2. The number of stochastic variables for Case 2 is:

n = 2. The first step is to perform three NLFE analysis to calculate the control point X .. Therefore
NLFE analyses with mean X, low steel Xp, = X — fo, low concrete X; = X — fo and a low cross-
sectional area X, = X — fo values are performed, where f = 3.9 is chosen. The results are
presented below.

The control point X, is calculated below:

step 1:
select n + 1 experimental points:
_ M Ky, —fop, Hry P
X = |45 |, Xfy = Uy, , Xfc = Uy, —fO'fc and XAs = My,
Hag Hag Hag Bag — fou,
step 2: step 3: step 4:
GX)=7.0 F(Xs) = G(X) — G(Xr) =29 w; = F(Xfy) =0.21
y y F(Xpy )+F(Xp ) +F(Xag)
3 F(Xf.)
GXs)=41 F(X;)=G6X)—-G(X;)=04 wy = £ = 0.03
(Xg,) (¥r.) = 630 — 6Xp) 2 = F 7y )R8y TP ()
_ _ Y\ _ _ _ F(XAS) _
G(X;) =66 F(Xs)=GX)—G(X,) =108 w3 = ) n) 0.77
G(X,,)=-38
step 5:

The control point in the standard normal space is determined below. First the log-normal distributed
variables are transformed to standard normal variables according to chapter 2.5.1.

of, = 28 MPa, he, = 560 MPa,
Jfgy 1 2
of,L = In @+ 1) = 0.05MPa, He, L = ln,ufy 5 0fL = 6.327 MPa
o5, = 5.7 MPa, Ky, = 48 MPa,
2
or, = |In (% + 1) = 0.149 MPa, tp, =Inpp —% af . = 3.871MPa
fc
gy, = 23.56 mm? Ha, = 235.62 mm?,
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The control point in the standard normal space:

Uu.= Z?:1 w; U; =|-1.66

—2.98

—0.87]

The response surface is determined using the following steps:

step 1:
The control point in the real space:

EXp(—O87 Ufy,L + nu'fy,L) 529.1
X.=|exp(-1.6607, +us )| = [ 36.8 ] and G(X,) =-2.8
—2.98 Op, + Hag 222.7

step 2:
The initial design point is found with the same approach as shown in Case 1 using the control point.

step 3,4 and 5:

Around the initial design point four sets of sample points with f = 1.0; 1.5; 2.0 are used to
determine the response surface. After the initial design point was found several iteration where
performed in comination with the FORM to obtain the real design point.

-0.79 537.7 0.317
U,=1-0.30 X, =454 P2r = 2.49 ag =10.120
—2.34 180.5 0.941
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Appendix H

processing results

H.1

Python script to run NLFE analyses
In the example below a python script is written to perform three NLFE analyses in Diana 10.1. The
NLFE models defined in Appendix D are used to change several input parameters.

openProject( "C:/Users/..../ECOV/Three variables/Design 1/Portal Frame.dpf” )

L I

w0

# parameters shear reinforcement
setParameter( "GEOMET", "Shear reinforcement"”, "REIEMB/CROSSE", ((2.0%@.25%1.5%%2%3.141592654)*10%%-6.0) )

1@
11

12 #NLFE analyses
13 copyAnalysis( "Nonlinear Main", "Nonlinear Main - Copy 1" )
14 renameAnalysis( "Nonlinear Main - Copy 1", "Main1" )

15

16 copyAnalysis( "Nonlinear Main", "Nonlinear Main - Copy 1" )
17 renameAnalysis( "Nonlinear Main - Copy 1", "Main2" )

18

19 copyAnalysis( "Nonlinear Main", "Nonlinear Main - Copy 1" )
20 renameAnalysis( "Nonlinear Main - Copy 1", "Main3" )

Figure H1. Python code to open a project.

The input parameters are given below. To run the three different analyses a for loop is used.

212 ## Material input parameters

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

for i in range (3):

1 =

if i

i+1
#Mean strength values

i

e

#

=3
f loadResults( "Maini1"”, "C:/Users/....ECOV/Three variables/Design 1/Maini.dnb" ):
loadResults( "Maini1"”, "C:/Users/..../ECOV/Three variables/Design 1/Maini.dnb" )

1se:

parameters concrete

setParameter( "MATERIAL", "Concrete”, "LINEAR/ELASTI/YOUNG", (21500%(38/10.0)**(1.0/3.0)*10%%6) )
setParameter( "MATERIAL", "Concrete”, "TENSIL/TENSTR", ((@.3%(38.0-8.0)#*(2.8/3.0))*10+%6) )

setParameter( "MATERIAL", "Concrete”, "TENSIL/GF1", (73.0%(38.0)*%0.18) )

setParameter( "MATERIAL", "Concrete", "COMPRS/COMSTR", 38.0e+6 )

setParameter( "MATERIAL", "Concrete”, "COMPRS/GC", ((73.0%(38.0)#%0.18)%250.0)
parameters longitudinal reinforcement

setParameter( "MATERIAL", "Longitudinal reinforcement", "PLASTI/HARDI2/KAPSIG",

[ -0.1138, -6.8e+08, @, -5.6e+08, @, 5.6e+08, ©.1138, 6.8e2+88 ] )

parameters shear reinforcement
setParameter( "MATERIAL", "Shear reinforcement"”, "PLASTI/HARDIZ/KAPSIG",
[ -0.1152, -5.1e+08, 0, -4.6e+08, 0, 4.6e+08, 0.1152, 5.1e+08 ] )

parameters longitudinal reinforcement
setParameter( "GEOMET", "As longitudinal reinfercement”, "REIEMB/CROSSE"
((3.0%0.25%10.0%%2%3.141502654) x1@%*-6.0) )

generateMesh( [] )

analysis
runsolver( "Main1” }
i=i-1

Python scripts to perform NLFE analyses and

)
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249 #low steel strength

250 elif i==

251 if loadResults( "Main2", "C:/Users/..../ECOV/Three variables/Design 1/Main2.dnb" }:
252 loadResults( "Main2", "C:/Users/..../ECOV/Three variables/Design 1/Main2.dnb" )
253

254

255 else:

256

257 # parameters concrete

258 setParameter( "MATERIAL", "Concrete”, "LINEAR/ELASTI/YOUNG", (21500+(38/10.0)**(1.0/3.0)*10%%6) )
259 setParameter( "MATERIAL", “"Concrete”, "TENSIL/TENSTR", ((@.3%(38.8-8.0)##(2.0/3.0))*10%+6) )
260 setParameter( "MATERIAL", “"Concrete”, "TENSIL/GF1", (73.9+*(38.0)%%2.18) )

261 setParameter( "MATERIAL", "Concrete", "COMPRS/COMSTR", 38.0e+6 )

262 setParameter( "MATERIAL", “"Concrete", "COMPRS/GC", ({73.@#(38.0)%%0.18)%250.0) )
263 # parameters longitudinal reinforcement

264 setParameter( "MATERIAL", "Longitudinal reinforcement", "PLASTI/HARDI2/KAPSIG",
265 [ -0.1138, -5.78e+08, @, -4.76e+08, @, 4.762+08, 0.1138, 5.78e+08 1 )

266

267 # parameters shear reinforcement

268 setParameter( "MATERIAL", "Shear reinforcement"”, "PLASTI/HARDIZ/KAPSIG",

269 [ -0.1152, -5.1e+08, 0, -4.6e+08, 0, 4.6e+08, 0.1152, 5.1e+08 ] )

27e

271 # parameters longitudinal reinforcement

272 setParameter( "GEOMET", "As longitudinal reinforcement"”, "REIEMB/CROSSE",

273 ((3.0%0.25%10.0%%2%3,141502654) = 10%*-6.0) )

274

275 generateMesh( [1 )

276 # analysis

277 runSolver( "Main2" )

278 i=i—1

280 #low concrete strength

281 elif i==

282

283 if loadResults( "Main3", "C:/Users/..../ECOV/Three variables/Design 1/Main3.dnb" ):
284 loadResults( "Main3"”, "C:/Users/..../ECOV/Three variables/Design 1/Main3.dnb" )
285

286

287 else:

288

289 # parameters concrete

200 setParameter( "MATERIAL", "Concrete”, "LINEAR/ELASTI/YOUNG", (21500%(20.9/10.0)#%(1.0/3.8)*10%%6) )
201 setParameter( "MATERIAL", "Concrete”, "TENSIL/TENSTR", ((@.3%(20.9-8.0)#%(2.0/3.0))*10%%6) )
202 setParameter( "MATERIAL", "Concrete”, "TENSIL/GF1", (73.0%(20.9)%%0.18) )

203 setParameter( "MATERTAL", "Concrete”, "COMPRS/COMSTR”, 20.9e+6 )

204 setParameter( "MATERIAL", "Concrete”, "COMPRS/GC", ((73.0%(20.9)#%0.18)%250.0) )
285 # parameters longitudinal reinforcement

206 setParameter( "MATERIAL", "Longitudinal reinforcement", "PLASTI/HARDIZ/KAPSIG",
297 [ -8.1138, -6.8e+08, @, -5.6e+08, @, 5.6e+08, 0.1138, 6.8e+08 1 )

298

209 # parameters shear reinforcement

300 setParameter( "MATERIAL", "Shear reinforcement”, "PLASTI/HARDIZ/KAPSIG"

301 [ -8.1152, -5.1e+88, @, -4.62+08, 0, 4.6e+08, 0.1152, 5.1e+08 1 )

382

303 # parameters longitudinal reinforcement

304 setParameter( "GEOMET", "As longitudinal reinforcement"”, "REIEMB/CROSSE",

305 ((3.0%0.25%10. 0#%2%3.141502654) *10%%-6.0) )

3e6

307 generateMesh( [1 )

308 # analysis

309 runselver( "Main3" )

3180 i=i—1

Figure H2. Python code to run 3 NLFE analyses

The results for the displacement of node 559 (midspan C) of the three analyses are exported to .txt
files. This files can be used to obtain the total load carrying capacity.

1911 # Results

1912 cases = resultCases('Maini’', "Output’)

1913 table = [ 'Main1’, 'Output', 'Total Displacements']

1914 exportResultsToCSY( "C:/Users/..../ECOV/Three variables/Design 1/Results/1.txt", table, cases, [559%1 )
1915

1916 cases = resultCases('Main2’', 'Output’)

1917 table = [ "Main2', 'Output', 'Total Displacements']

1918 exportResultsToCSV( "C:/Users/..../ECOV/Three variables/Design 1/Results/2.txt", table, cases, [55%] )
1919

1920 cases = resultCases('Main3’, "Output’)

1921 table = [ "Main3’, 'Output', 'Total Displacements']

1922 exportResultsToCSV( "C:/Users/..../ECOV/Three variables/Design 1/Results/3.txt", table, cases, [55%] )

Figure H3. Python code to export the results to .txt files.
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H.2  Python script for processing results

The results of the three analyses are imported.

16 #1 rt results

17

18 # n imber of Analyses

19 n =

20 Fh = np.zeros(n)

21 Fv = np.zeros({n)

22

23j=0

24 for j in range (n):

25 j = i+

26

27 if j==1:

28 datal = np.genfromtxt('C:/Users/..../ECOV/Three variables/Design 1/Results/1.txt’,
28 delimiter=","', skip_header = 2,skip_footer = 1)

30 elif j==2:

31 datal = np.genfromtxt('C:/Users/..../ECOV/Three variables/Design 1/Results/2.txt’,
32 delimiter=","', skip_header = 2,skip_footer = 1)

33 elif j==3:

34 datal = np.genfromtxt('C:/Users/..../ECOV/Three variables/Design 1/Results/3.txt’,
is delimiter=","', skip_header = 3,skip_footer = 1)

Figure H4. Python code to import the results from the .txt files.

Two arrays are created containing the maximum vertical and horizontal load of each analyses.

167
168 # Load cary
169

ing capacity

170 j=j-1

171 case_1 = datall:,2]

172 k1 =len(case_1)-1

173 i=owo

174 for i in range (k1):

175 i=i+1

176 if case_1[il<11:

177 Fv1 = datall[i,3]1#18818.20170/1000.9

178 Fh1 = @

179 elif case_1[il<71:

180 Fh1 = datal1[i,3]*15681.83475/1000.90

181 else:

182 Fvl = datal1[9,3]1*18818.20170/1000.9 + datall[i,3]*100¢0.0/1000.0
183 Fh1 = datal1[69,31+#15681.83475/1000.0 + datall[i,3]+%0.08/1000.0
184 Fv[jl = Fv1

185 Fh[j1 = Fh1

Figure H5. Python code to store the maximum vertical and horizontal load in an array

The structural resistance according to the ECOV method is defined below.

187
198 #Resistance safety format

189

20@ #=ECOV

281 Rsf_ECOV = 36.18

Figure H6. Total structural resistance according to the ECOV method.

The response surface is determined for Case 1: two stochastic variables, Case 2: three stochastic
variables with V, =0.02 and Case 3: three stochastic variables with V4 =0.10.
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H.2.1 Case 1: rotational capacity corner D without geometrical reinforcement uncertainty
Two stochastic variables: f,, and f. The control point is determined with the Python code presented
in figure H7 based on the results of the NLFE analyses.

189

190 Fdpr 2873)

191

192 #pifference from mean

193 F1 = (Fv[el+Fh[el) - (Fv[11+Fh[11)

194 F2 = (Fv[@l+Fh[@l) - (Fv[21+Fh[21)
195
196 &hel factors

197 wl /(abs(FHF?))
198 w2 = F2/(abs(F1+F2))

! to normal

201 = = sqri(np. log(sdx1#*2/(mx1%*2)+1)) ;mx_| L1 = np.log(mx1)-0@.5*sdx_L1%%2;
202 mx2 = 38.0; sdx2 = 5. ? sdx_| L2 = = sqrt(np.log(sdx2%#2/(mx2%x%2)+1));mx_L2 = np.log(mx2)-@.5*sdx_L2x%2;
203

204 U1 = np.array([(np.log(560.0-3.0%28.0)-mx_L1)/sdx_L1,{(np.log(38.0)-mx_L2)/sdx_L2]1)

205 U2 = np.array([(np.log(56@)-mx_L1)/sdx_L1,(np.log(38.0-3.0%5.7)-mx_L2)/sdx_L2])

206

207 #Control point

208 Uc = np.array({[wi=U1[0] + w2zU2[0],w1xU1[1] + w2xU2[1]])

209 Xc = np.array([np.exp(sdx_L1*Uc[@1+mx_L1},np.exp(sdx_L2*Uc[11+mx_L2)1}

21@

D11 B R B R B B AR R AR B PR SRR

Figure H7. Python code to determine the control point based on the results of the NLFE analyses.

The procedure to find the initial design point is explained in Appendix G. Around the initial design
points several experimental points are selected to create a response surface. In this example the
initial design point is X,,g. The steel yield strength coordinates are:

NS R EEEE F T FE i EEs
496 ¥ Steel

487 fy = np.array([

498

489 Xm8[o],xXm8[0]1+28.0,Xm8[0],Xm8[@]1-28.0,Xm8[a],
500

501 #Cross points f=1.8@

502 Xm8[@]1+1.9%28.02,Xm8[@]1-1.0+28.0,Xm8[@1-1.0+28.0,Xm8[0]+1.0%28.8@,
503

504 #Cross points f=1.5

505 Xm8[@]+1.5%28.9,Xm8[8]-1.5%28.0,Xm8[0]1-1.5%28.0,Xm8[0]+1.5%28.0,
506

507 #Cross points f=2

508 Xm8[@]+2.9%28.0,Xm8[e]1-2.0%28.0,Xm8[0]1-2.0+28.0,Xm8[0]+2.0%28.0,

509

510 #f=2

511 Xm8[e]+2.0x28.0,Xmg[e], Xme[0]-2.0=28.0,Xm8[e],
512

513 #f=7.5

514 ¥m8[01+1.5+28.0,Xm8[2], Xm8[@1-1.5+28.0,Xm8[a],
515

516 Ffexira

517 448.5,434.5,420.5,434.5,448.5,420.5,420.5,448.5,434.5,
518

519 fmean

520 560,

521
522 #
523
524
525
526 &
527 XC[O]
528
529 #£It fon point
53@ Km1[0] Km2[0]
531 1)

537 BEEEEEE R R R R R R R REEE

m3[@],xXm4[@],Xm5[e],xm6[@], Xxm7[@],Xm&[0], xme[e],Xxm1oLa],

Figure H8. Coordinates steel yield strength corresponding to the used input parameters in the NLFE analyses.
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The concrete compressive strength coordinates are:

534
535
536
537
538
53¢
540
541
542
543
544
545
546
547
548
548
550
551
552
553
554
555
556
557
558
558
56@
561
562
563
564
565
566
567
568
568
57@
571

Figure H9. Coordinates concrete compressive strength corresponding to the used input parameters in the NLFE analyses.

# Concrete
fc = np.array([

Xm8[1]1,Xm8[1],Xm8L11+5.7,Xm&[1]1,Xm8[11-5.7

#Cross points f=1.8
Km8L11+1.8+5.7,Xm8[1]1+1.045,.7,Xm8[11-1.0+5.7,Xm8[11-1.90*5.7,

#Cross points f=1.5
Xm8[11+1.5%5.7,Xm8[1]+1.5%5.7,Xm8[1]1-1.5+%5.7,Xm8[11-1.5%5.7,
#Cross points F=2.8
Xm8[11+2.0+5.7,Xm8[1]+2.0+5.7,Xm8[1]1-2.0%5.7,Xm8[1]-2.0%5.7,
#f=2

Xkm8[1]1,Xm8[1]+2.0+5.7,Xm8[1]1,Xxm8[1]1-2.0%5.7,

#F=1.5

Xm8[11,Xm8[1]+1.5%5.7,Xm8[ 11, Xm8[11-1.5%5.7,

Fextra

28.8,31.6,28.8,25.9,31.6,31.6,25.9,25.9,28.8,

Fmean

38,

#first two points

38.9,

38.0-3.0%5.7,

#control point

xcl11,

#iteration points

Xm1[11,Xm2[1],Xm3[1],Xm4[1]1,Xm5[1]1,Xm6[ 1], Xm7[1],Xm8L1], Xmo[ 11, Xxm10[1],

This coordinates are used in Matrix A in order to find the unknown coefficients b. Matrix A is given

below:

572

573 A1 = np.array([

574 [1.0,fy[0],fclol, fy[el**2, fe[@l*+2], o0
575 [1.0,fy[1],fc1], fy[1]1%=*2, fc[11**2], 500
576 [1.0,fy[2],fcl2], fy[21#*2, fe[2]##2], o1l
577 [1.0,fy[3],fcl3], fy[3]#+2,fc[3]#+2], 502
578 [1.0,fy[4],fcl4], fy[41%+2, fe[41##2], 3
579 [1.0,fy[5],fcl5], fy[5]1#+2,fc[51#*2]1, 504
580 [1.0,fy[6],fc[6], fy[61%+2,fc[6]++2], 505
581 [1.0,fy[7],fcl7], fy[7]#+2,fc[7]1#+2], 506
582 [1.0,fy[8],fc[8], fy[81*+2,fc[8]+=*2], 507
583 [1.0,fy[9],fcl9], fy[9]#+2,fc[9]1#*2], 508
584 [1.0,fy[10],fc[10], fy[10]#+2, fc[101==2], 609
585 [1.0, fy[111,Fc[111, fy[111#%2, fc[11]#x2], 610
586 [1.0,fy[121,fc[12],fy[12]#+2, fc[121==2], 61
587 [1.0, fy[131,Fc[131, fy[13]1#%2, fc[13]#x2], 612
588 [1.0,fy[141,fc[14], fy[14]#%2, fc[14]+*2]1, 613
589 [1.0, fy[151,Fc[15], fy[15]1#%2, fc[15]##2], 614
590 [1.0,fy[161,fc[16],fy[161++2, fc[161%=2], 615
591 [1.0, fy[171,Fc[171, fy[17]1#%2, fc[17]#*21, 616
592 [1.0,fy[18],fc[18],fy[18]#*2, fc[18]+*2]1, 617
593 [1.0, fy[191,fc[19], fy[19]#*2, fc[19]#+2], 618
594 [1.0,fy[20],fc[20],fy[20]+*2, fc[20]+*2], 519
595 [1.0, fy[211,fc[21], fy[21]#%2, fe[21]##2], 620
596 [1.0,fy[22],fc[22], fy[22]**2, fc[22]**2], 621
597 [1.0,fy[23],fc[23],fy[23]1##2, fc[23]%%2], 522
598 [1.0,fy[24],fc[24], fy[24]*%2, fc[24]+*2], 623

[1
[
[1
[
[1
[
[1
[
[1
[
[1
[
[1
[
[1
[
[1
[
[1
[
[1
[
L1
n

.0, fy[251,fel251, fy[251#+#2, fc[25]++21,
.0, fy[26],fc[26], fy[26]##2, fc[26]+%2],
.0, fy[271,fel271, fy[271#%2, fc[271++21,
.0, fy[28],fc[28], fy[28]##2, fc[28]+#2],
.0, fy[291,fel291, fy[29]#*2, fc[29]++21,
.0, fy[30],fel30], fy[30]#2, fc[30]+#2],
.0, fy[311,Fe311, fy[31]#%2, fc[31]#+21,
.0, fy[32],fe[32], fy[32]##2, fc[32]##2],
.0, fy[331,fel331, fy[33]#*2, fc[33]++21,
.0, fy[34],fc[34], fy[34]#%2, fc[34]##2],
.0, fy[351,fcl351, fy[351##2, fc[35]++21,
.0, fy[36],fc[36], fy[36]#2, fc[36]+#2],
.0, fy[371,fel371, fy[371#*2, fc[371++21,
.0, fy[38],fc[38], fy[38]##2, fc[38]##2],
.0, fy[391,fcl39], fy[39]#%2, fc[30]++21,
.0, fy[40],fcl40], fy[40]#=2, fc[40]+#2],
.0, fy[411,fc[411, fy[411#%2, fc[41]++21,
.0, fy[42],fc[42], fy[42]##2, fc[42]#%2],
.0, fy[431,fcl43], fy[43]#%2, fc[43]++21,
.0, fy[44],fc[44], fy[44]##2, fc[44]##2],
.0, fy[451,fcl451, fy[451#%2, fc[451++21,
.0, fy[46],fcl46], fy[461#2, fc[46]+%2],
.0, fy[471,fcl471, fy[471#%2, fc[471++21,

Figure H10. Matrix A based on the coordinates defined in figure H8 and H9.
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The results of the corresponding NLFE anlyses are stored in array G:

623
624
625 G = np.array([

626

627 [Fv[111+Fh[11]1-Rsf_ECOV],

628 [Fv[141+Fh[14]1-Rsf_ECOV], [Fv[151+Fh[15]1-Rsf_ECOV], [Fv[16]1+Fh[16]1-Rsf_ECOV], [Fv[171+Fh[17]-Rsf_ECOV],
629

630 #Cross peints f=1.8@

631 [Fv[26]1+Fh[ —Rsf _Ecov], [Fv[27]1+Fh[27]1-Rsf_ECOV], [Fv[28]+Fh[28]1-Rsf_ECOV], [Fv[28]+Fh[29]1-Rsf_ECOV],
632

633 #Cross peints f=1.5

634 [Fv[301+Fh[30]1-Rsf_ECOV], [Fv[311+Fh[311-Rsf_ECOV], [Fv[32]1+Fh[32]1-Rsf_ECOV], [Fv[33]1+Fh[33]-Rsf_ECOV],
635

636 #Cross points f=2.¢

637 [Fv[341+Fh[34]1-Rsf_ECOV], [Fv[351+Fh[35]1-Rsf_ECOV], [Fv[36]1+Fh[36]1-Rsf_ECOV], [Fv[37]1+Fh[37]-Rsf_ECOV],
638

639 #f=2

640 [Fv[181+Fh[18]1-Rsf_ECOV], [Fv[191+Fh[18]1-Rsf_ECOV], [Fv[2@]+Fh[2@]-Rsf_ECOV], [Fv[21]1+Fh[21]-Rsf_ECOV],
541

642 #f=71.5"

643 221+Fh[22]1-Rsf_ECOV], [Fv[231+Fh[23]1-Rsf_ECOV], [Fv[24]1+Fh[24]-Rsf_ECOV], [Fv[25]1+Fh[25]-Rsf_ECOV],
544

645 Fexira

646 [Fv[381+Fh[38]1-Rsf_ECOV],

647 [Fv[391+Fh[39]-Rsf_ECOV], [Fv[401+Fh[40]1-Rsf_ECOV], [Fv[411+Fh[411-Rsf_ECOV], [Fv[42]1+Fh[42]-Rsf_ECOV],
648 [Fv[431+Fh[43]-Rsf_ECOV],[Fv[441+Fh[44]1-Rsf_ECOV], [Fv[451+Fh[45]-Rsf_ECOV], [Fv[461+Fh[46]1-Rsf_ECOV],
549

650 fLmean

651 [Fv[@l+Fh[@]-Rsf_ECOV],

652

653 #first two points

654 [Fv[1]+ Fh[1] Rsf _Ecov],

655 [Fv[21+Fh[21-Rsf_ECOV],

556

657 Fcont
658 [Gxcl,

659

660 fiteration points

661 [GX11,[GX2]1,[GX3],[GX4],[GxX5], [GX6],[6X7], [Gx8], [Gx9],[GcX1@],
662 1)

Figure H11. The results of the implicit LSF G based on the resistance of the NLFE analyses are stored in array G.

The unknown coefficients b can be determined with a least squares approach according to equation
(2.27):

692 b = np.dot(np.dot{inv(np.dot(np.transpose(Al1)},A1)),np.transpose(Al1}),G)
Figure H12. The matrix A and G are used to calculate the unknown coefficients b according to equation (2.27).

The response surface G based on the NLFE analyses G with input parameters fy and f, is given in the
standard normal space:

701 # Transformation LSF to d normal space

702 mx1 560;sdx1 28.0; sdx_| LW sgri(np.log(sdx1##2/(mx1#%2)+1)});mx_L1 = np.log(mx1)-0.5%sdx_L1%#2;
703 mx2 = 38; sdx2 = 5.7;sdx_L2 = sqrt(np.log(sdx2##2/(mx2#%2)+1));mx_L2 = np.log(mx2)-08.5%sdx_L2#*2;
704

705 b@ = np.asscalar(bl2])

706 b1 = np.asscalar(b[11)

707 b2 = np.asscalar(b[2])

708 b3 = np.asscalar(b[3])

709 b4 = np.asscalar(b[4])

710

711 def G(ul,u2):

712 X1 = exp(mx_L1+ul#sdx_L1)
713 x2 = exp{mx_L2+uZ#sdx_L2)
714 G = be+b1*x1+b2*x2+b3*X1**2+b4*x2*%2
715 return G

Figure H13. The response surface G defined in the stand normal space.

To use a FORM, the partial derivatives of the response surface G: a; = % anda, = g% are
calculated with Maple and added to the python script:

718 #Differentiati
719 def al{ul,u2):

720 al = 0.9993758450e-1+(exp(0.4996879225e-1%u1+6. 326688344) ) x*%2+b3+0.4996879225e-1+exXp(@. 4896879225e-1+u1+6. 326688344) *b1
721 return al

722

723 def azZ{ul,u2):

724 a2 = .2983327600%(exp(.1491663800+u2+3.626460856))+*2%b4+,14091663800*exp(. 1491663800%u2+3.626460856)*b2

725 return a2

Figure H14. Partial derivatives response surface G.
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Now the FORM is used to determine the design point u, and the reliability index Bz of the response
surface G.

728 #step 1: Guess ué@ 776 print 'beta

729 u = np.array([-5.9,-56.01) 777 print beta

730 ul = ufe] 778 print

731 u2 = ul1] 779 print 'Phi(-beta):

732 betal = np.sgrt(np.dot{u,u)) 78@ print norm.cdf(-beta)
733 781 print

734 alpha = np.zeros((2)) 782 print 'alphal and alpha2?
735 u12 = np.zeros{(2)) 783 print alpha

736 784 print

737 e = 10.0 785 print 'ul* and u2*

738 n = 2 786 print u12

739 787 print

740 while (e>0.001): 788 mx_L = np.array([mx_L1,mx_L2]1)
74 788 sdx_L = np.array([sdx_L1,sdx_L2])
742 beta® = betal 79@ x12 = np.exp{mx_L+ul2*sdx_L)
743 791 print 'x1% and x2%: '
744 #step 2 782 print x12

745 gu = G{ul,u2) 793 print 'gu:

746 #step 3 784 print gu

747 dgl = al(ul,u2)

748 dg2 = a2(ul,u2)

749 dg = np.array([dgl,dg2])

750 #step 4

751 u =dg#((np.dot(dg,u))-gu)/(np.dot{dg,dg))

752 ul = ufel

753 uz = ul11

754 #step 5

755 betal = np.sgrt(np.dot{u,u))

156 # betail

757 #step 6

758 e = abs(betal-beta®)

759 beta = betal

760 alphal2_store = dg/(np.sgrt(np.dot(dg,dg))})

761

762 for j in range (n):

763 alphalj]l = alphal2_store[]j]

764 u12[31 = uljl

Figure H15. Python code to perform the FORM for stochastic variables in the standard normal space.

The figures used in appendix G to graphically show the response surface, the sample points and the
LSF are made with the following python scripts:

858
859 £ R
86@

861 fig = plt.figure()

862 ax = fig.gca(projection="3d")

863 ax.set_xlabel('fy (MPa)")

864 ax.set_ylabel('fc (MPa)')

865 ax.set_zlabel('G")

866 plt.title('Response surface (real space)')
867

868

869 # Make data.

870 x1 = np.arange(30@, 560, 1.0)

871 x2 = np.arange(1@, 40, 1.@)

872 x1, x2 = np.meshgrid{x1, x2)

873

874 £Res; face # load LF 5
875 G1 = b[@]+b[11#x1+b[2]#x2+b[3]1#x1#*2+b[4]*x2%%2
876
877
878 ax.scatter(fy, fc, G, label = 'Sample points'})

879

880 # / e surface.

881 surf = ax.plot_surface(x1, x2, G1, cmap=cm.coolwarm, alpha=8.5,

882 linewidth=0, antialiased=True,)

883

884 ¥ Add a color bar which maps values te colors.

885 fig.colorbar{surf, shrink=0.5, aspect=5)

886

887 plt.show()

888

P e e e

nse surface (real space)

Figure H16. Python code to plot the response surface in the real space.

164



888
9@
891
892
893
894
895
896
897
898
89¢
900
901
902
903
904
985
908
Q07
908
908
a1e
911
912
913
914
915

927
928
929
938
931
932
933
934
935
936
937
938
939
94
a4
942
943
944
945
946
947
948
Q49
958
951
952
953
954
955
956

958
959
960
961
962
963
964
965
966
967
968
969
970
871
972
973
974
975
976

# Response surface (Standard normal space)

fig = plt.figure()

ax = fig.gca(projection="23d')

ax.set_xlabel('U fy')

ax.set_ylabel('U fc')

ax.set_zlabel('G")

plt.title('Response surface (standard normal space)')
ax.set_zlim3d(-1,20)

# Make data.

ul = np.arange(-19@, 12, 1.@)

u2 = np.arange(-190, 190, 1.0)

ul, u2 = np.meshgrid(ul, u2)

#Response surface standard normal space calculated with Maple

g1 = (np.exp(0.4996879225a-14ul1+6.326688344))##2+h3+(np.exp(.1491663800+u2+3. 626460856))#+25hd
+ np.exp(0.4996879225e-1%U1+6,326688344) *b1+np. exp(. 1491663800%u2+3.626460856)*b2+b@

# Plot the surface.
surf = ax.plot_surface(ul, u2, g1, cmap=cm.coolwarm, alpha=@.5,linewidth=@, antialiased=Trus)

surf = ax.plot_surface(ul, u2, @, cmap=cm.coolwarm, alpha=@.5,linewidth=0, antialiased=True)

plt.show()

#Plot LSF standard normal space

delta = 9.025

ul = np.arange(-10.8, 5, delta)
u2 = np.arange(-10.@, 6.1, delta)
ul, u2 = np.meshgrid{ul, u2)

gl = g1 = (np.exp(0.4936879225e-14ul+6.326688344))*#2%b3
+(np. exp(.1491663800+u2+3. 626460856)) **2xh4
+np.exp(0.4996879225e-1+ul+6. 326688344) #b1
+np.exp(.1491663800%u2+3. 626460856)~b2+ba

fig = plt.figure()

ax = fig.add_subplot(1,1,1)
ax.spines['left’'].set_position('zero')
ax.spines[’'right’].set_color('none’)
ax.spines['bottom’].set_position('zero')
ax.spines['top'].set_color('none')
ax.spines['left’].set_smart_bounds(True)
ax.spines['bottom’]. set_smart_bounds(True)
ax.xaxis.set_ticks_position('bottom’)
ax.yaxis.set_ticks_position('left’)

ax.grid()

ax.grid(linestyle="-', linewidth="2.1", color='black')
ax.minorticks_on()

ax.text(5, -1.5, 'U fy' ,coler="k", fontsize=11)
ax.text(-1.5, 5, 'U fc' ,coler="k", fontsize=11)
ax.text(-1@, -11, "Beta: " +str(round(beta,2)) ,color='k"', fontsize=8)

levels = np.arange(@,0.25,0.25)

levels2 = np.arange(-5,400.0,10)

C51 = plt.contour(ul, u2, g1, linewidths=2.8, colors=('r"), levels=levels)
cs2 = plt.contour(ul, u2, g1, linewidths=0.5, colers=('b'), levels=levels2)

plt.plot(ulel,ul1]1, 'ro',markersize=3, label='Previous design point')
plt.plot{u12[e],u12[1]1, 'bo',markersize=3, label='Design point cbtained with FORM')
labels = np.array(['LSF', "Contour lines RS'1)
C51.collections[8].set_label{labels[a])

Cs2.collections[1].set_label(labels[11)

plt.legend(loc="lower right', fontsize=7)

plt.clabel(CS1, inline=1, fontsize=8)
plt.clabel(CS2, inline=1, fontsize=8)
plt.title('Limit state function (standard normal space)’)

plt.show()

Figure H18. Python code to plot the limit state function in the standard normal space. The limit state function is in fact the
contour line of the response surface at height 0.
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#Plot LSF real space

# Make data.

x1 = np.arange(250, 650, 1.8)
X2 = np.arange(5, 55, 1.9)
x1, x2 = np.meshgrid(x1, x2)

#Response surface Main load LF 5
G1 = b[el+bL11#x1+b[2]1#x2+b[3]#x1%#2+b[4]#x2#%2

fig = plt.figure()

ax = fig.add_subplot(1,1,1)

ax.grid()

ax.grid(linestyle="-', linewidth='®.1', color="black")
ax.minorticks_on()

ax.set_xlabel('fy (MPa)')
ax.set_ylabel('fc (MPa)')

levels = np.arange(@,9.25,0.25)
levels? = np.arange(-15,50.8,10)

Cs1 = plt.contour(x1, x2, G1, linewidths=@.8, colors=('r'), levels=levels)
€52 = plt.contour(x1, x2, G1, linewidths=0.5, colors=('b'), levels=levels2)

plt.plot(fy[al,fc[e]l, 'ro’',markersize=5, label='Previous design point')
plt.plot{x12[@1,x12[11, 'bo',markersize=5, label="New design point (FORM)')

labels = np.array(['LSF", 'Contour lines RS'])
CS1.collections[@].set_label(labels[@]1)
€s2.collections[2].set_label(labels[1])
plt.legend(loc="upper left’,fontsize=T7)

ax.text(250, -1, 'New design point, beta: ' +str{round(beta,2)) ,color='k', fontsize=8)
ax.text(51@, -1, 'Previous design point, G(X): ' +str(round(GLe1,2)) ,coler="k', fontsize=8)

plt.plot(fy, fc, 'ro',markersize=3)
plt.title('Limit state function (real space)’)

plt.clabel(CS1, inline=1, fontsize=8)
plt.clabel(Cs2, inline=0.1, fontsize=8)
plt.show()

Figure H19. Python code to plot the limit state function in the real space. The limit state function is in fact the contour line of
the response surface at height 0.
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H.2.2 Case 2: rotational capacity corner D with reinforcement uncertainty due to fabrication
Three stochastic variables: f,, f. and Ag. The control point is determined with the Python code
presented in figure H20 based on the results of the NLFE analyses.

DOT R R B R R BB BB A B BB AR IR
203 #Approach Zhoa and Qiu (2073)

204

205 #Difference from mean

208 F1 = (Fv[@1+Fh[0]) - (Fv[11+Fh[1])
207 F2 = (Fv[el+Fh[0]) - (Fv[21+Fh[2])

208 F3 = (Fv[el+Fh[el) - (Fv[3]1+Fh[31)

209

21@ #weight factors

211 w1 = F1/(abs(F1+F2+F3))

212 w2 = F2/(abs(F1+F2+F3))

213 w3 = F3/(abs(F1+F2+F3))

214

215 # !

216 sgqri(np.log(sdx1#+2/(mx1#*2)+1));mx_L1 = np.log(mx1)-0.5%sdx_L1%%2;
217 mx2 = 38.90; sdx2 = 5. ? sdx_L2 = sgrt(np.log(sdx2*#2/(mx2%=2)+1));mx_L2 = np.log(mx2)-0.5%sdx_L2*=%2;
218 mx3 = 235.619449; sdx3 = mx3%0.02;

219

220 N np.array([(np.log(560.0-3.0%28.@)-mx_L1)/sdx_L1, (np.log(38.@)-mx_L2)/sdx_L2, ((mx3)-mx3)/sdx31)

221 U2 = np.array([(np.log(560)-mx_L1)/sdx_L1,{np.log(38.8-3.0%5.7)-mx_L2)/sdx_L2, ((mx3)-mx3)/sdx3]1)
222 U3 = np.array({[(np.log(56@)-mx_L1)/sdx_L1,{np.log(38.0)-mx_L2)/sdx_L2, {(mx3-3.%sdx3)-mx3)/sdx3]1)
223

224 #control pi
225 Uc = np. array([wﬂ U1Le] + w2xU2[8] + w3xU3[@], wl#U1[1] + w2#U2[1]1+w3%U3[1], wixU1[2] + w2%U2[2] + w3*U3[2] 1)
226 Xc = np.array{[np.exp(sdx_L1*=Uc[@]+mx_L1), np.exp({sdx_L2*=Uc[1]+mx_L2), Uc[2]*sdx3+mx3 1)

227

Figure H20. Python code to determine the control point based on the NLFE resutls.

The procedure to find the initial design point is explained in Appendix G. Around the initial design
points several experimental points are selected to create a response surface. In this example the
initial design point is X4 . The steel yield strength f,, coordinates are:

572
573 # Steel
574 fy = np.array([

575
576 xmi[e],
577

578 # £=1.

578 Km1[0]+48 @,Xmi[e], Xm1[0] Xm1[2]-28.0,Xm1[2],Xmi[@],
588 #Cross peoints f=1.
581 xmi[el+28.0, Km1[0] 48 @,Xm1[0]-28.2,Xm1[@]1+28.0,Xm1[@]+28.2,Xm1[@]-28.0,Xm1[@]-28.0,XmI[@]+28. 2,

582

583 # F=2.@

584 Xm1[@1+2%28.0,Xm1[0],Xm1[e], Xxm1[@1-2#28.0,Xm1[e],Xm1[e],
585

586 # r=1.

587 Km1[0]+1
588 #Cross p
589 Xm1[0]+1. 5’48 Q, Km1[0] 1.5%28.0,Xm1[@]1-1.5%28.0,Xm1[0]+1.5%28.0,Xm1[@]+1.5%28.@,Xm1[@]-1.5%28.@,Xm1[@]1-1.5%28.0,Xm1 [@]+1.5*%28.@,
590

581 #Hextra

592 454.85911513,456.17734552,

593

594 Zmean

595 560,

596

597 #f1

598
599
60@ #control point

601 Xc[ol,

602

603 #iteration peints

604 Xm1[e]1,Xm2[2],Xm3C0],Xm4[ @], Xxm5L0],Xm6[@], Xm7 @], Xm8L[e]1, xm9Le], xmielel, Xxm11[e],
505

606 1)

GO7 AEEEEE R R R R E R ERE

‘8 0 Km1[0] Xm1[@]1,Xm1[@]-1.5%28.@,Xm1[2],Xmi[@],

Figure H21. Coordinates steel yield strength corresponding to the used input parameters in the NLFE analyses.
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The concrete compressive strength f, coordinates are:

GO R AR R
610 # Concrete
611 fc = np.array([

612
613 Xxm1[11,
614
616 & f=7.9

616 Xm1[11,Xm1C11+5. 7, Xm1 017, Xm1 011, Xm1[11-5.7,xm1[1],
617 #Cross points f=
618 Xm1[1]1+5.7,Xm1[11+5.7,Xm1[1]1-5.7,Xm1[1]1-5.7,Xm1[1145.7,%m1[1]+5.7,Xm1[1]1-5.7,Xm1[1]-5.7,
619

620 £ f=2.4

621 Xm1[1],

622 Xm1[1]+2%5.7,

623 ¥m1[1],

624 Xxm1[1],

625 Xm1[1]1-2%5.7,

626 Xm1[1],

627

628 £ f=1.5

629 Xm1[11,Xm1C11+1.5%5. 7, Xm1 11, Xxm1011,Xm1011-1.5*5.7,Xm1[1],

630 #Cross points f=1.5

631 Xm1[11+1.5+5.7,Xm1[1]+5.7,Xm1[1]-1.5%5.7,Xm1[1]-1.5%5.7,Xm1[1]+1.5%5.7,Xm1[1]+1.545.7,Xm1[1]-1.5%5.7,Kkm1[1]-1.5%5.
632

633 Fexira

634 32.38530659,32.7999568,

635

636 #Fmean

637 38,

638

639 #first two points

640 38.0,38.0-3.0%5.7,38.0,

541

642 #control point

643 Xc[11,

544

645 fiteration points

646 Xm1[1]1,Xm2[1]1,Xm3[1],Xm4[1],Xm501],Xm6[1],Xm7[1],Xm8[1],Xma[1]1,Xm16L1],Xm11[11],

647

648 1)

GAQ BEEEEHE SRS EEE RS IEEIIEE

~

Figure H22. Coordinates concrete compressive strength corresponding to the used input parameters in the NLFE analyses.

The cross-sectional area Ay of the longitudinal reinforcement coordinates are:

VT T i i
650 # As

651 As = np.array([

652

653 Xm1[2],

654

655 # f=1.8

656 Xm1[2]1,Xm1[2],Xm1[2]+sdx3,Xm1[2],Xm1[2],Xm1[2]-sdx3,

657 #Cross points f=7.8

658 Xm1[2]+sdx3,Xm1[2]+sdx3,Xm1[2]+sdx3,Xm1[2]+sdx3,Xm1[2]-sdx3,Xm1[2]-sdx3,Xm1[2]-sdx3, Xm1[2]-sdx3,

659

660 # f=2.4

661 Xm1[2]1,Xm1[2],Xm1[2]+2#%sdx3, Xm1[2],Xm1[2],Xm1[2]-2*sdx3,
662

663 £ r=7.5

664 Xm1[2]1,Xm1[2],Xm1[2]+1.5*sdx3,Xm1[2]1,Xm1[2],Xm1[2]-1.5*sdx3,
665 #Cross points f=71.5

666 Xm1[2]1+1.5+sdx3,Xm1[2]+1.5%sdx3, Xm1[2]+1.5%sdx3,¥m1[2]+1.5+sdx3,Xm1[2]-1.5+%sdx3,Xm1[2]-1.5%sdx3,Xm1[2]-1.5%sdx3,Xm1[2]-1.5%sdx3
667

668 Fextrs

669 217.64278599,217.43310791,

670

671 Fmean

672 mx3,

673

674 #first two points

675 mx3,

676 mx3,

677 mx3-3.0+xsdx3,

678

679 #control point

680 Xcl[21,

681

682 #iteration points

683 Xm1[21,Xm2[2],Xm3C2], Xxm4[2], Xm5[ 2], Xm6[2], Xm7[2], Xm8[2]1,Xme[2]1,Xm1@[2]1, Xxm11[2],
684

685 1)

P s s s s

Figure H23. Coordinates cross-sectional area longitudinal reinforcement, corresponding to the used input parameters in the
NLFE analyses.

168



The sample points to create the response surface G can be shown graphically with the following
python script:

980
981
982
983
984
985
986
987
988
989
99@
991
992
993
994
995
996
997
998
999
1eee

# sample points te create the response surface

fig = plt.figure()

ax
ax.set_xlabel('fy
ax.set_ylabel('fc
ax.set_zlabel( 'As
plt.title('Sample

= fig.gca(projection="3d")
(MPa)')
(MPa)")
(mm2) ')
points'}

# Make data.

x1
x2
x1,

np.arange({ 300, 560, 1.@)
np.arange(1@, 40, 1.8)
x2 = np.meshgrid(x1, x2)

#Sample points
ax.scatter(fy, fc, As, label = 'Sample points')

plt.show()

Figure H24. Python script to plot a graphical representation of the chosen sample points.

Sample points
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Figure H25. Graphical representation of the chosen sample points

1, 15 20
Paj ‘5

This coordinates are used in Matrix A in order to find the unknown coefficients b. Matrix A is given
below:

686
687
688
689
690
691
692
693
694
685
696
687
698
689
700
701
702
703
To4
785
706
7a7
708
709
7i@
711
712
713
714

Al
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[1
[
[1
[
[1
[
[1
[

= np.array([

.0, fy[el,fclel,As[@],fy[@1+*2,fc[@]**2,As[0]**2],
.0, fy[11,fcl11,As[1], fy[11#%2, fc[11#%2,As[11%%2],
.0, fy[2],fcl2]1,As[2], fy[2]1**2,fc[2]**2,As[2]**2],
.0, fy[3],fc[3],As[3], fy[3]1##2, fc[3]#%2,As[3]#%2],
.0, fy[4],fc[4]1,As[4],fy[41#%2,fc[4]**2,As[4]%%2],
.0, fy[4],fc[51,As[5], fy[51##2, fc[51#%2,As[5]*%2],
.0, fy[6],fcl6]1,As[6],fy[61*+*2,fc[6]**2,As[6]*%2],
.0, fy[71,fcl71,As[7], fy[71##2, fc[71#%2,As[T]1*%2],
.0, fy[8],fc[8]1,As[8], fy[81**2,fc[8]**2,As[8]*=*2],
.0, fy[9],fc[9],As[9], fy[9]1##2, fc[9]#%2, 6 As[9]*%2],
.0, fy[10],fcl10],as10], fy[10]+=2, fc[10]#=2,As[10]+=2],
.0, Fy[111,fcl11],A4s011], Fy[11]%%2, fc[11]%%2,As[11]#%2],
.0, fy[12]1,fcl12],as012], fy[12]#=2, fc[12]#=2,As[12]=2],
.0, fy[131,fcl13],As013], Fy[13]#%2, fc[13]%+2,As[13]%2],
.0, fy[14]1,fc[14],4s014], fy[14]#%2, fc[14]#%2,As[14]%2],
.0, fy[151,fcl15],As[15], fy[151%%2, fc[15]%#2,As[15]%%2],
.0, fy[16]1,fcl16],4s16], fy[16]+=2, fc[16]#=2,As[16]+%2],
.0, fy[171,fcl17],4s017], Fy[17]%%2, fc[17]%#2,As[17]+%2],
.0, fy[18]1,fcl18],As018], fy[18]#=2, fc[18]#=2,As[18]+=2],
.0, fy[19]1,fc[19],As[18], Fy[19]#%2, Fc[19]%#2,As[18]+%2],
.0, fy[20],fc[20],as[20], fy[20]+=2, fc[20]#=2,As[20]+%2],
.0, Fy[211,Fc[21],As[21], Fy[21]#%2, Fc[21]%#2,As[21]#%2],
.0, fy[22],fcl22],as022], fy[22]#%2, fc[22]#%2,As[22]+%2],
.0, fy[23]1,fc[23],As023], Fy[23]#%2, Fc[23]%+2,As[23]+%2],
.0, fy[24],fc[24],as024], fy[24]#%2, fc[24]#%2,As[24]#%2],
.0, fy[251,fc[25],As[25], Fy[25]+%2, Fc[25]%#2,As[25]+%2],
.0, fy[26]1,fc[26],As026], fy[26]#=2, fc[26]#+2,As[26]%2],

715
716
ni7
78
719
720
21
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
™
742

[
L1
[
L1
[
L1
[
[1
[
[1
[
[1
[
[1
[
[1
[
[1
[
[1
[
[1
[
[1
[
L1

.0, fy[27],fc[27],As[27], fy[27]#%2, fc[27]#%2,As[27]#%2],
.0,fy[28],fc[28],As[28], fy[28]##2, fc[28]##2,As[28]%#2],
.0, fy[20],fc[29],As[208], fy[20]##2, fc[29]#*2,As[20]+#2],
.0,fy[30],fc[30],As[30], fy[30]##2, fc[30]#+2,As[30]%#2],
.0,fy[31],fc[31],As[31], fy[311#%2, fc[31]#*2,As[31]#%2],
.0,fy[32],fc[32],As032], fy[321##2, fcl[32]##2,As[32]%#2],
.0,fy[33],fc[23],As[33], fy[33]##2, fc[33]#*2,As[23]#%2],
.0,fy[34],fc[34]1,As034], fy[341##2, fc[34]##2,As[34]%#2],
.0,fy[35],fc[35],As[35], Ffy[35]+%2, fc[35]#*2,As[35]++2],
.0,fy[36],fc[36],As[36], Fy[361##2, fc[361##2,As[36]%#2],
.0,fy[37],fc[37],As[37], fy[37]#%2, fc[37]#*2,As[37]#%2],
.0, fy[38],Fc[38],As[38], fy[38]##2, fc[38]#%2,As[38]#+2],
.0,fy[398],fc[39],As[30], fy[30]##2, fc[39]#*2,As[30]#+2],
.0, Fy[40],Fc[40],As[40], Ffy[40]+#2, Fc[40]#*2,As[40]#+2],
.0, fy[41],fc[41],As[41], fy[41]#%2, fc[41]#*2,As[41]#%2],
.0, Fy[42],Fc[42],As[42], fy[42]##2, fc[42]#%2,As[42]#+2],
.0,fy[43],fc[43],As[43],fy[43]#=2,fc[43]#=2,As[43]#=2],
.0, Fy[44],Fc[44],As[44], fy[44]##2, fc[44]#%2,As[44]#+2],
.0,fy[45],fc[45],As[45], fy[45]#=2, fc[45]#=2,As[45]==2],
.0, Fy[46],Fc[46],As[46], Fy[461##2, fc[46]#%2,As[46]#+2],
.0,fy[47],fc[47],As[47], fy[47]#=2, fc[47]#*2,As[47]##2],
.0, Fy[48],Fc[48],As[48], fy[48]##2, fc[48]#%2,As[48]#+2],
.0, fy[49],fc[49],As[49], fy[40]#=2, fc[49]#=2,As[40]+#2],
.0, Fy[50],Fc[50]1,As[50], fy[501+#2, fe[50]#%2,As[50]++2],
.0,fy[51],fc[511,As[51], fy[511#%2, fc[51]#*2,As[51]##2],
.0,Fy[52], Fc[52],As[52], Fy[521#%2, fc[52]#%2, As[52]+2],

Figure H26. Matrix A based on the coordinates defined in figures H21, H22 and 23.
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The results of the corresponding NLFE anlyses are stored in array G:

742

743 G = np.array([

T44

745 fal design point
746 [Fv[5]1+Fh[5]1-Rsf_ECOV],
747

748 #f=1.0

749 [Fv[16]1+Fh[16]-Rsf_ECOV],
750 [Fv[1°]+Fh[1°] Rsf. ECDV]
751 #Cross poi f=7.

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
m
772
772
774
775
776
777
778
779
780
781

Figure H27. The results of the implicit LSF G based on the resistance of the NLFE analyses are stored in array G.

[Fv[22]1+Fh[2 ] Rsf_| ECDV]
[Fv[26]+Fh[26]-Rsf_ECOV],

[Fv[301+Fh[301-Rsf_ECOV]

[Fv[33]+Fh[33]1-Rsf_ECOV],

#f=1.5

[Fv[171+Fh[17]-Rsf_ECOV],
[Fv[201+Fh[20]-Rsf_ECOV],

[Fv[231+Fh[23]1-Rsf_ECOV]

,[Fv[311+Fh[31]1-Rsf_ECOV],
[Fv[34]+Fh[24]-Rsf_ECOV],

[Fv[18]1+Fh[18]-Rsf_ECOV],
[Fv[21]1+Fh[21]1-Rsf_ECOV],

,[Fv[241+Fh[24]-Rsf_ECOV],
[Fv[27]+Fh[27]-Rsf_ECOV],

[Fv[28]+Fh[28]1-Rsf_ECOV],

[Fv[32]1+Fh[32]-Rsf_ECOV],
[Fv[35]1+Fh[35]1-Rsf_ECOV],

[Fv[36]1+Fh[36]1-Rsf_ECOV], [Fv[371+Fh[37]1-Rsf_ECOV], [F¥v[381+Fh[28]-Rsf_ECOV],

[Fu[;°]+Fh[3°] RSF ECDV]
#Cross points
[Fv[42]+Fh[42]1-Rsf ECDV]
[Fv[461+Fh[461-Rsf_ECOV],

#extra

[Fv[641+Fh[64]1-Rsf_ECOV], [Fv[651+Fh[65]1-Rsf_ECOV],

#mean

[FvLel+Fh[e]-Rsf_ECOV],

[Fv[401+Fh[40]-Rsf_ECOV],

[Fv[43]+Fh[43]-Rsf_ECOV],
[Fv[471+Fh[47]1-Rsf_ECOV],

[Fv[41]1+Fh[41]-Rsf_ECOV],

[Fv[44]1+Fh[44]1-Rsf_ECOV]
[Fv[481+Fh[481-Rsf_ECOV],

#Fi two pl 5

[Fu[1]+Fh[1] Rsf_|l ECDV] [Fv[2]+Fh[2]1-Rsf_ECOV], [Fv[31+Fh[3]1-Rsf_ECOV],
#control point

[Gxc],

#ite

[Gx11, [GK2] [GX3] [Gxa1,[GX5]1,[Gx6],[GX7]1,[Gx8],[Gxe],[Gx10],[GX11],
n

[Fv[25]1+Fh[251-Rsf_ECOV],
[Fv[29]+Fh[28]1-Rsf_ECOV],

,[Fv[45]+Fh[45]-Rsf_ECOV],
[Fv[49]+Fh[48]1-Rsf_ECOV],

The unknown coefficients b can be determined with a least squares approach according to equation
(2.27):

850 b = np.dot{np.dot{inv(np.dot(np.transpose({Al),Al1)),np.transpose(Al)),G)

Figure H28. The matrix A and G are used to calculate the unknown coefficients b according to equation (2.27).

The response surface G based on the NLFE analyses G with input parameters fy, fe and Ag is given in
the standard normal space:

normal space

4}

@;sdx1 = 28.0;sdx_L1 = sgri{np.log(sdx1#%2/(mx1%%2}+1));mx_L1 = np.log(mx1)-0.5%sdx_L1%%2;
L2 = sgri({np.log(sdx2**2/(mx2**2)+1));mx_L2 = np.log(mx2)-0.5*sdx_L2**2;

= b@ + b1*x1 + b2*x2 + b3*x3 + b4*X1%%2 + bE*x2#%%2 + bB*x3**2

859 » LSF to st

868 mx1 = 55

861 mx2 = 38; sdx2 = 5.7; sdx

862

863

864 b@ = np.asscalar(bl21)

865 b1 = np.asscalar(b[1])

866 b2 = np.asscalar(bl[21)

867 b3 = np.asscalar(b[3])

858 b4 = np.asscalar(bl[41)

868 b5 = np.asscalar(b[5])

870 b6 = np.asscalar(b[6])

&7

872 def G(ul,u2,u3):

873 x1 = exp(mx_L1+ulssdx_L1)
874 X2 = exp(mx_L2+u2=sdx_L2)
875 x3 = mx3+u3*sdx3

876

877 return G

Figure H29. The response surface G defined in the stand normal space.
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oG oG G

To use a FORM, the partial derivatives of the response surface G: a; = —, a, = —and a; = —
dul ou2 ou3

are calculated with Maple and added to the python script:

878 #Differen tion

8808 def al(ul,u2,u3):

881 al = 0.9993758450e-1*(exp(0.4996879225e-1%uU1+6.326688344))**2+b4+0.4996879225c-1*%exXp(@.4996879225e-1*u1+6.326688344)*b1

882 return al

883

884 def a2(ul,u2,u3):

885 a2 = .2083327600+(exp(.1491663800*u2+3.626460856))**2xb5+.1491663880*exp(.1491663800*u2+3,626460856)*b2

886 return a2

887

888 def a3(ul,u2,u3):

889 a3 = (9.424777960+(4.712388980+u3+235.6194480))*b6+4.712388580*b3

8g%e return a3

Figure H30. Partial derivatives response surface G.

Now the FORM is used to determine the design point u, and the reliability index Sz of the response
surface G.

883 #

947 print 'beta: *
948 print beta

895 ul = ule] 949 print

Bag 2 Z t“EH 950 print 'Phi(-beta): '

808 print u 951 print norm.cdf{-beta)

889 betal = np.sqrt(np.dot(u,u)) 952 print A A )

900 print betal 953 print 'alphal, alpha2 and alpha3:
9@l e = 10.0 954 print alpha

202 i=0 955 print

903 = 0 2. P ’
956 print 'ul®, u2* and u3*:

904 alpha = np.zeros((3)) =

905 u123 = np.zeros((3)) fa print ulas

96 i -0 958 print

907 n = 3 959

908 96@ ul = ui23[e]

909 while (e>0.0000001): 961 u2 = u123[1]

91e 962 u3 = ul23[2]

m betad = betal 963 x1 = exp(mx_L1+ul=sdx_L1}
Sia . 964 x2 = exp(mx_L2+u2*sdx_L2})
913 #step 2 =

a1 gu = G(ul,uz,u3) 965 X3 = mx3+u3+*sdx3

915 #step 3 966 x123 = np.array([x1,x2,x31)
916 dgl = al(ul,u2,u3) 967

917 dg2 = a2(ul,u2,u3) 968 print 'x1% and x2%: '
918 dg3 = a3(u1,u2,u3) 969 print x123

919 np.array([dg1,dg2,dg3]) 97@ print 'gu: '

920 £ 4 s

a2 dg*((np. dot (dg, u))-gu)/ (np. dot(dg, dz)) s

922 ul = ufe]

923 uz2 = ul1]

924 u3 = uf2]

925 #step 5

926 betal = np.sgrt(np.dot(u,u))

927 #step 6

928 e = abs(betal-betad)

929 beta = betal

930 alphal2_store = dg/(np.sqrt(np.dot(dg,dg)))

931

932 for j in range (n):

933 alphaljl = alpha12_store[j]

934 u123031 = uljl

Figure H31. Python code to perform the FORM for stochastic variables in the standard normal space.

H.2.3 Case 3: rotational capacity corner D with uncertainty in the reinforcement detailing
Basically the same python script is used as for case 2 only a few modifications are made in order to
implement a different coefficient of variation V4 that is used for case 3.
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