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Realization of a degenerate parametric oscillator in electromechanical systems

E. Jansen, J. D. P. Machado, and Ya. M. Blanter
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands

(Received 12 November 2018; published 2 January 2019)

We consider an electromechanical system in which a microwave cavity is coupled to a mechanical resonator,
with a mechanical frequency twice the microwave frequency. In this regime, the effective photon-phonon
interaction is equivalent to that of a degenerate parametric amplifier, instead of the typical radiation pressure
interaction. If the mechanical resonator is strongly driven, it undergoes a phase transition to a state in which
the energy pumped into the mechanical mode is entirely converted to the photonic mode. Quantum fluctuations
smear this phase transition. We describe these effects with a steady-state Fokker-Planck equation in the complex
P representation and compute the photonic field intensity and quadrature variances, as well as the mechanical
amplitude. This Fokker-Planck method performs better than the standard linearization results when compared to
numerical simulations.

DOI: 10.1103/PhysRevB.99.045401

I. INTRODUCTION

The field of optomechanics, which studies the interaction
of light with mechanical motion in an optical cavity, has been
rapidly developing in the past decade [1]. It was initiated
because of the interest in the quantum measurement limit in
gravitational wave detectors [2]. More recently, interest has
risen in the utilization of opto- and electromechanical systems
in quantum information processing [3,4] and for fundamental
tests of quantum physics [5].

In parallel, research has been performed on mechanical res-
onators coupled to superconducting microwave circuits. This
field is usually referred to as microwave optomechanics since,
despite big differences in setup and in parameter regimes, the
physics these systems display is remarkably similar to that of
optomechanical systems. In particular, similar to optomechan-
ics, mechanical resonators couple to microwave radiation via
radiation pressure. Indeed, the simplest realization of such a
system is an LC circuit in which one of the capacitor’s plates
is a vibrating drum (capacitive coupling) [6]. Typically, the
LC resonance frequency (ωLC ∼ gigahertz) is much bigger
than the mechanical frequency (�m ∼ megahertz), leading
to the usual radiation pressure Hamiltonian [1]. Similarly,
an inductive coupling, where a mechanical element forms a
movable part of a superconducting loop, leads to radiation-
pressure interaction [7]. Experiments with microwave op-
tomechanics demonstrated a number of remarkable effects,
including sideband cooling [8], reaching the quantum ground
state of a mechanical oscillator and controllably creating
single-phonon excitations [9], and measurement of mechan-
ical motion near the quantum limit [10].

When the frequency of the mechanical resonator is much
lower than the cavity frequency, the effective interaction
takes the usual form [1] a†a(b† + b), but different forms of
interaction can be attained for higher mechanical frequencies.
Mechanical resonators in the gigahertz frequency range exist
and have been integrated into optomechanical systems (see,
e.g., Refs. [11–14]), and relatively large coupling rates have

already been reported in the microwave regime [with coupling
values close to [15] and at [16] the megahertz (MHz) range].
Alternatively, the LC resonance frequency can be, in princi-
ple, lowered to the MHz level by using a large inductance or
capacitance.

Microwave circuits with integrated mechanical resonators
(referred to below as electromechanical systems) in the regime
where the microwave and mechanical frequencies have the
same order of magnitude do not have the standard interaction
term a†a(b + b†) as the main coupling mechanism. Little is
known about this regime, and investigation is needed to estab-
lish the basic behavior of such electromechanical systems.

In this paper, we study these systems in the parametric
regime, defined by the condition 2ωLC ∼ �m. The circuit
corresponding to the electromechanical system under consid-
eration is shown schematically in Fig. 1. The effective Hamil-
tonian describing the system is of the form of the degenerate
parametric oscillator, which is well known in the context
of quantum optics [17,18]. This Hamiltonian describes a
special case of the parametric down-conversion process: the
phenomenon where an incoming pump photon with frequency
� is converted to two photons with frequencies ω,ω′ such
that � = ω + ω′. This conversion can occur in a nonlinear
medium like a nonlinear χ (2) crystal [19]. Degenerate para-
metric down-conversion refers to the special case where ω =
ω′. Classically, this system exhibits a phase transition at the
critical driving strength. Below the transition, the amplitude of
the pump (harmonic) mode increases linearly with the driving,
whereas the amplitude of the subharmonic mode equals zero.
Above the transition, the pump amplitude becomes constant,
and all energy pumped into the system is converted to the
subharmonic mode.

In electromechanical systems, if the mechanical element is
driven, its motion modulates the capacitance (or inductance)
of the circuit, and the down-conversion process corresponds
to the creation of two microwave photons from a mechanical
phonon. This photon creation process is connected to the
dynamical Casimir effect (DCE) [20], and the connection
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FIG. 1. The lumped-element representation of a RLC circuit
where one of the capacitor plates is a vibrating drum. This plate is
mechanically driven so that the effective distance d0 + x between
the plates of the capacitor is varied. A resistor was included to depict
the unavoidable dissipation affecting the circuit.

between the parametric oscillator and DCE connection has
been explored in the optical domain [21]. Recently, there have
been proposals to observe this effect in electromechanical
systems [22], valid below threshold. To enhance the cre-
ation of microwave photons, the mechanical resonator must
be strongly driven, but over a certain driving strength, the
backaction from microwave photons will affect the modulat-
ing mechanical element. Here, we take this backaction into
account.

In the quantum optical case and in the usual regime of a
fast-decaying pump mode, the dynamics is solved through
adiabatic elimination of the pump mode [18,23]. However,
in electromechanics the photonic (subharmonic) dissipation
rate κ is typically much bigger than the phononic (pump)
dissipation rate �, so that the pump mode cannot be elim-
inated adiabatically. This regime is known as the diabatic
regime. Furthermore, because the system undergoes a phase
transition at the critical driving strength, a simple lineariza-
tion procedure produces diverging results for the system’s
observables near the transition. To overcome this problem,
a self-consistent linearization procedure was proposed [24].
However, when both modes decay on the same timescale, the
predictions of the self-consistent method deviate qualitatively
from our numerical results. Here, we find the steady-state
solutions for the system’s observables by deriving an effective
steady-state Fokker-Planck (FP) equation in the complex P

representation [25] equivalent to that describing the adiabatic
regime [23], so that known results may be extended to the
electromechanical situation. We argue that in the diabatic limit
the fluctuations become small and this approach becomes a
very good approximation. Away from the diabatic limit, it
reduces to a linearization. We also compare the results of this
approach to those of numerical simulations.

This paper is organized as follows. In Sec. II, we derive the
Hamiltonian describing the circuit in Fig. 1 and show that it
has the form of a degenerate parametric oscillator. Then, we
show how the phase transition occurs in the model and how
self-consistently linearized solutions can be found. In Sec. III,
we derive an effective FP equation that is equivalent to the
FP equation describing the adiabatic regime and argue that it
describes the steady state of the system in the diabatic regime
to a good approximation as well. We present analytical expres-
sions for the photonic moments and mechanical amplitude by

extending known results [23]. In Sec. IV, we compare the
results of the FP method for the mechanical amplitude and the
photon number with the results of the semiclassical (mean-
field) approach, the self-consistent approach, and numerical
simulations. These simulations show that above threshold, the
system goes into a mixture of photonic coherent states. In
Sec. V, we present the conclusions.

II. THE HAMILTONIAN

The circuit in Fig. 1 describes two coupled harmonic
oscillators: an LC resonator and a mechanical resonator. The
energy stored in the system is given by

H = 1

2L
�2 + 1

2
C(x)Q2 + 1

2m
p2 + 1

2
m�2

mx2, (1)

where � and L are, respectively, the magnetic flux through
the inductor and the inductance, Q is the capacitor charge, x

and p are the displacement and momentum of the mechanical
resonator, and m is its mass. For a parallel-plate capacitor,
the capacitance varies with the position of the mechanical
resonator as C(x) = C0

d0
d0+x

, where C0 and d0 are the unper-
turbed capacitance and distance between the capacitor plates,
respectively. With the quantization rules of quantum network
theory [26] and including driving of the mechanical resonator,
the quantum Hamiltonian corresponding to this circuit is

H = ωLCa†a + �mb†b − g(a† − a)2(b† + b)

+ E (b†e−iωDt + beiωDt ), (2)

where a (b) is the annihilation operator for the LC (me-
chanical) resonator, g = ωLCxZPF/(4d0) is the single-photon
coupling rate, which scales linearly with the zero-point mo-
tion xZPF, and E is the driving amplitude. The explicit time
dependence of the Hamiltonian can be removed by transform-
ing to the rotating frame via the unitary transformation U =
exp[−iωDt ( 1

2a†a + b†b)]. Driving the mechanical oscillator
at its resonance frequency (ωD = �m), Eq. (2) becomes

H ′ = UHU † + i(dtU )U †

= (
ωLC − 1

2�
)
a†a + E (b† + b)

− g(a†eiωLCt − ae−iωLCt )2(b†eiωDt + be−iωDt ) (3)

in the driving reference frame. When ωLC � �m, the
rotating-wave approximation (RWA) makes the effective in-
teraction take the form of the usual radiation pressure term.
Here, we are interested in the parametric frequency regime,
where 2ωLC = �m. Invoking the RWA, the Hamiltonian (3)
reduces instead to the form of the degenerate parametric
oscillator

H = ig(a†a†b − aab†) + iE (b† − b), (4)

where we rotated the b field by a phase of −π/2 to make the
resulting equations of motion real (b → −ib). The Hamil-
tonian (4) describes the conversion of a phonon from the
pump (phononic/harmonic) mode b to two photons in the pho-
tonic (subharmonic) mode a. Taking dissipation into account,
the quantum Langevin equations (QLEs) derived from the
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Hamiltonian (4) are

∂ta = −κ

2
a + 2ga†b + iηA,

∂tb = −�

2
b − ga2 + E + iηB, (5)

where κ (�) is the photonic (phononic) decay rate and ηi are
stochastic Gaussian noise operators. Since the QLEs (5) are
nonlinear, there is no generic way to solve these equations.
As the deterministic part of the steady-state QLEs is invariant
under the photonic parity transformation a → −a, we expect
〈a〉ss = 0. This point will be addressed in Sec. IV. As a start
in understanding the behavior of the system, one can find
semiclassical steady-state solutions to the QLEs (5). These are

(α, β )ss =
(

0,
2E
�

)
, (α, β )ss =

(
±

√
E − Ec

g
,

κ

4g

)
, (6)

where Ec = κ�/(8g) is the critical driving. Importantly, the
second solution above exists only when E > Ec, so that we
may define an above-threshold phase and a below-threshold
phase. Below threshold, the photonic field amplitude equals
zero, whereas the mechanical amplitude increases linearly
with the driving. Above threshold, the mechanical amplitude
saturates, an effect known as pump depletion [17,18], and
all the energy pumped into the system is converted to the
subharmonic (photonic) mode. As the rate at which this hap-
pens scales with E , the photonic amplitude grows as

√
E . The

emergent picture is that of a phase transition. Because of this,
a simple linearizaton procedure a → αss + a, b → βss + b

yields diverging results for the system’s observables near the
threshold Ec. A way to overcome this problem is the use of a
self-consistent linearization [24].

It is more convenient to write the QLEs (5) in
terms of the scaled variables ε = E/Ec, x = κ�/(8g2),
y = κ2/(16g2), a = √

x ã, b = √
y b̃, ηA = √

κ ξA,
and ηB = √

� ξB . The inverse of x is related to
the single-photon cooperativity 4g2/(κ�). With
this scaling, the critical point is fixed at εc = 1,
thus facilitating the comparison of solutions with different
parameters and the quantitative comparison of the stochastic
fluctuations in the diabatic regime (� 	 κ). With the scaled
variables, the QLEs (5) reduce to

γ ∂τ ã = −ã + ã†b̃ + i

√
2

x
ξA(τ/γ ),

∂τ b̃ = −b̃ − ã2 + ε + i

√
2

y
ξB (τ ), (7)

where τ = 1
2�t , γ = �/κ , and 〈ξi (t ), ξ †

i (t ′)〉 = (n̄i + 1)
δ(t − t ′). Here and in the following, we consider that there are
no thermal fluctuations for the photonic mode (n̄A = 0) and
that the system is in the diabatic limit, where the phonon dis-
sipation is negligible, γ 	 1. As the smallest y for microwave
resonators [1] is ∼105, the contribution of ξB is negligible for
low thermal phonon numbers (n̄B 	 y). Another noise con-
tribution to the dynamics of the mechanical mode b̃ originates
from the fluctuations of the coupling term: ãã − 〈ãã〉. These
fluctuations are proportional to the quantum noise introduced

FIG. 2. Scaled steady-state mechanical amplitude as a function
of driving. For lower x, the amplitude exhibits a more rounded
transition near the threshold. When the single-photon cooperativity
approaches zero, the noiseless classical result is reproduced.

by ξA and occur on the much faster timescale τ/γ [they scale
with 〈ξAξ

†
A〉 = γ δ(τ − τ ′)]. Thus, in the diabatic limit, these

fluctuations vanish as well.
Having discussed the fluctuations of the scaled QLEs (7),

we turn to the self-consistent linearization procedure. We
proceed by linearizing the phononic field around the steady-
state amplitude

β̃ss = ε − α̃2
ss, (8)

where α̃ss is still to be determined. We let b → β̃ss + δb and
substitute this result into the QLEs (5). Throwing away terms
with products of fluctuations leads to

γ ∂τ ã = −ã + β̃ssã
† + i

√
2

x
ξA, (9)

which can be readily solved for the photonic field ã. Solving
Eq. (9) enables the evaluation of all steady-state photonic
moments 〈ã†nãm〉. Importantly, one finds

〈ã†ã〉ss = β̃ss〈ã2〉ss = β̃2
ss

2x
(
1 − β̃2

ss

) , (10)

where β̃ss still needs to be determined self-consistently. Com-
bining Eq. (10) with Eq. (8), one arrives at

β̃ss = ε − β̃ss

2x
(
1 − β̃2

ss

) . (11)

The solution to Eq. (11) is

β̃ss = ε

3
− (1 − i

√
3)ℵ

6
3
√

ε � + i
√ℵ3 − ε2�2

− (1 + i
√

3)

6

3

√
ε � + i

√
ℵ3 − ε2�2, (12)

where

ℵ = ε2 + 3

2x
+ 3 and � = ε2 + 9

4x
− 9. (13)

Figure 2 shows the normalized mechanical amplitude β̃ss as
a function of the normalized driving ε. For large x, when the
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FIG. 3. Scaled steady-state photon number as a function of driv-
ing. For lower x, the system exhibits a smoother (more rounded)
transition near the threshold. The semiclassical result is met only for
high and low driving.

coupling is small with respect to the geometric average of the
dissipation rates, the self-consistent result tends towards the
semiclassical solution. This happens because the fluctuations
introduced by the noise operator are suppressed [see Eq. (7)].
For lower x, the self-consistent result deviates significantly
from the semiclassical prediction near threshold. In this case,
the noise introduced by ξA plays a significant role. In general,
we expect the self-consistent approach to yield exact results
in the limit y → ∞, where the fluctuations of the mechanical
oscillator play no role. Plugging Eq. (12) into Eq. (10), one
arrives at the self-consistent linearized expressions for the
moments. Figure 3 shows the normalized expected photon
number 〈ã†ã〉 as a function of the normalized driving ε. Again,
for large x, the self-consistent result tends to the semiclassical
prediction. For smaller x, it deviates from the semiclassical
prediction because the fluctuations are no longer negligible.
The most important difference from the semiclassical picture
is that microwave photons are still created below threshold
due to zero-point fluctuations.

III. THE FOKKER-PLANCK APPROACH IN THE
COMPLEX P REPRESENTATION

Although the self-consistent linearization method succeeds
in producing analytical results, the results still differ qualita-
tively from numerical results (see Sec. IV). In order to obtain
better results, we resort to the technique of FP equations in the
complex P representation. To derive a FP equation describing
the degenerate parametric oscillator, it is convenient to start
from a master equation for the density matrix of the Lindblad
type:

dtρS = − i[HS, ρS] + κL(a)ρS + �n̄BL(b†)ρS

+ �(n̄B + 1)L(b)ρS, (14)

where HS is given in Eq. (4) and the superoperator L(O) is
defined as

L(O)ρS ≡ OρSO† − 1
2

(
O†OρS + ρSO†O

)
. (15)

The path from the Lindblad equation (14) to the FP equation
in the complex P representation [25] is well trodden, so here
we present only the result [17,18]:

∂tP (�, t ) =
{
∂α1

[κ

2
α1 − 2gβ1α2

]
+ ∂α2

[κ

2
α2 − 2gβ2α1

]

+ ∂β1

[
�

2
β1+gα2

1 + E
]
+∂β2

[
�

2
β2 + gα2

2 + E
]

+ g
[
∂2
α1

β1 + ∂2
α2

β2
] + �n̄B∂β1∂β2

}
P (�, t ),

(16)

where � = (α1, α2, β1, β2). Using the same scaled variables
as before, the FP equation becomes

∂τP (�̃, τ ) =
{

1

γ
∂α̃1 [α̃1 − β̃1α̃2] + 1

γ
∂α̃2 [α̃2 − β̃2α̃1]

+ ∂β̃1

[
β̃1+α̃2

1+ε
] + ∂β̃2

[
β̃2 + α̃2

2 + ε
]

+ 1

2γ x

[
∂2
α̃1

β̃1+∂2
α̃2

β̃2
] + 2n̄B

y
∂β̃1

∂β̃2

}
P

(
�̃, τ

)
.

(17)

Equation (17) is not easily solvable, and in order to
make progress it must be brought to a simpler form.
As before, the mechanical mode can be eliminated in the
steady state, and the thermal noise of the mechanical oscillator
can be disregarded. The validity of this approach can be seen
from the stochastic differential equations (SDEs) correspond-
ing to Eq. (17). Using the Itô rules, the SDEs are found to be
[23]

γ ∂τ

[
α̃1

α̃2

]
=

[
α̃2β̃1 − α̃1

α̃1β̃2 − α̃2

]
+

[
β̃1

2x
0

0 β̃2

2x

] 1
2 [

ζA1

ζA2

]
,

∂τ

[
β̃1

β̃2

]
=

[
ε − α̃2

1 − β̃1

ε − α̃2
2 − β̃2

]
+

[
0 2n̄B

y
2n̄B

y
0

] 1
2 [

ζB1

ζB2

]
, (18)

where 〈ζi1〉 = 〈ζi2〉 = 0 and 〈ζi1ζi2〉 = δ(t − t ′).
In the adiabatic regime (� � κ), these coupled SDEs can

be reduced to a simpler form by substituting in the steady-state
solution β̃ss,i = ε − α̃2

ss,i in the upper two equations of relation
(18). This adiabatic elimination is especially convenient for
low phonon thermal numbers (n̄B 	 y), so the thermal fluc-
tuations of the mechanical oscillator can be disregarded. This
is the typical case in quantum optics, and the resulting steady-
state FP equation was already solved analytically [18,23]. The
situation for higher n̄β has also been considered [23].

For electromechanical systems, however, one is typically
concerned with the diabatic regime (� 	 κ), where adiabatic
elimination is not valid. However, for the steady state of the
system, it is still possible to derive the same FP equation for
the diabatic regime and compute observables to very good
approximation.

Outside the adiabatic regime, it is, in general, possible
to consider the substitution of the steady-state solution β̃ss,i

as a linearization around the deterministic steady state: β̃i =
β̃ss,i + δβ̃i , where β̃ss,i = ε − α̃2

ss,i and δβ̃i represents the
fluctuations around the steady state. From Eq. (7), we know
that in the diabatic regime, when κ � g � �, the thermal
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fluctuations affecting the mechanical resonator become small,
close to the steady state. Thus, we expect the linearization
to produce good results as long as the fluctuations are small.
Substituting the steady-steady solution β̃ss,i in the SDEs (18),
these become

γ ∂τ

[
α̃1

α̃2

]
=

[
α̃2β̃ss,1 − α̃1

α̃1β̃ss,2 − α̃2

]
+

[
β̃ss,1

2x
0

0 β̃ss,2

2x

] 1
2 [

ζA1

ζA2

]
. (19)

The steady state of the FP equation associated with Eq. (18) is

0 =
{
∂α̃1

[
α̃1 − (

ε − α̃2
1

)
α̃2

] + ∂α̃2

[
α̃2 − (

ε − α̃2
2

)
α̃1

]

+ 1

2x

[
∂2
α̃1

(
ε − α̃2

1

) + ∂2
α̃2

(
ε − α̃2

2

)]}
Pss(α̃1, α̃2). (20)

This partial differential equation is equivalent to that stud-
ied in the quantum optics situation [18,23]. The solution to
Eq. (20) is readily found to be

Pss = N
[(

ε − α̃2
1

)(
ε − α̃2

2

)]x−1
e2α̃1α̃2x, (21)

where N is a normalization constant. The photonic moments
are defined as [25]

〈ã†nãm〉 =
∫
C

∫
C ′

dα̃1dα̃2α̃
n
2 α̃m

1 P (α̃1, α̃2). (22)

For the complex P distribution (21) an analytical expression
for arbitrary n,m can be written as

〈ã†nãm〉ss =N ′
∞∑

k=0

(2x)k

k!
(
√

ε)k+m(
√

ε)k+n

× 2F1( − (k + m), x, 2x, 2)

× 2F1( − (k + n), x, 2x, 2), (23)

where 2F1(u, v,w, z) is the hypergeometric function and N ′
is a normalization constant. It is also possible to obtain an
analytical expression for the steady-state mechanical ampli-
tude as it is defined in terms of the second-order moment
〈a2〉ss. Figure 4 shows the steady-state photonic field intensity
as a function of the driving for different values of x. The
FP approach predicts an “undershooting” of the semiclas-
sical prediction just above threshold which becomes more
pronounced when x is small, that is, when the coupling is
large with respect to the dissipation rates. For x = 50, the
FP approach tends towards the semiclassical prediction as
the fluctuations of the mechanical and LC oscillator become
small. For x = 12.5, the undershooting is relatively small
because the quantum fluctuations introduced to ã by ξA in
Eq. (7) are suppressed. In contrast, for x = 0.125, the quan-
tum fluctuations are relatively large, and the undershooting is
more pronounced.

IV. COMPARISON OF APPROACHES
WITH NUMERICAL RESULTS

To check the performance of the FP approach outside
the adiabatic regime, we compare our results with numerical
simulations. The simulations are performed for κ = � = 1,
g = 0.1, where the system is still tractable numerically, and
are done using QUTIP [27]. To obtain precise results for the

FIG. 4. Steady-state photon number as a function of driving for
different values of x. For x = 50, the FP approach converges to
the semiclassical prediction as the fluctuations of the mechanical
oscillator become small. For x = 12.5, the scaled photon number
undershoots the semiclassical prediction just above threshold. This
behavior is not predicted in the linearized approach. For x = 0.125,
the quantum fluctuations introduced by ξA lead to a more pronounced
undershooting.

observables, the dimension of the matrix representing the
operator should be significantly bigger than the expected
outcome of the observable’s value. Constructing a Fock-state
basis containing 2N photons and N phonons requires all ma-
trices to have size 2N2 × 2N2. We found that taking N = 23
provides reasonable precision while avoiding memory issues.
However, for higher values of the driving, this dimension is
not sufficient. In these cases, we used Shanks’s extrapolation
with, as input, the results of N = 15, . . . , 23 to improve the
results. The chosen region of the parameter space lies neither
in the adiabatic regime nor in the diabatic regime, so that
the FP approach can, at best, be regarded as a linearization.
As x = 12.5 and y = 6.25, we expect the noise contributions
ξA and ξB to be negligible, making this linearization a rea-
sonable approximation in the steady state.Figures 5 and 6

FIG. 5. Normalized photon number as a function of the normal-
ized driving. The FP approach corresponds very well to the numerical
data.
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FIG. 6. Normalized mechanical amplitude as a function of the
normalized driving. Numerical simulations show that the actual am-
plitude overshoots the self-consistent prediction in the intermediate
driving regime.

show, respectively, the scaled steady-state photon number and
mechanical amplitude obtained via different methods. The
numerical result is shown the blue line with dots. The dashed
red line represents the semiclassical (mean-field) solution
to the steady-state QLEs (6). The numeric behavior of the
system coincides roughly with the semiclassical result, but
it deviates from it around the threshold. The self-consistent
linearization is shown by the solid orange line, and it coincides
with the semiclassical result for high and low driving power
but connects these limits smoothly (in contrast to the sharp
transition of the semiclassical result). However, it does not
predict the undershooting of the photon number and the over-
shooting of the mechanical amplitude just above threshold,
unlike the numerical predictions. The FP approach (dotted
black line) does predict the overshooting and undershooting,
and it is qualitatively similar to the numerical result. Upon
close inspection, it is seen that the numerical results reach
the semiclassical result for higher driving slightly faster than
the FP result. This small discrepancy could have two ori-
gins. First, the numerical simulations become less precise for
higher values of the driving. Second, in the κ = � regime,
the FP method gives a linearized approximation of the true
steady-state observables, implying that the discrepancy could
originate in shortcomings of the analytical method.

Figure 7 shows the steady-state fluctuations of the photonic
quadratures X = a† + a and Y = i(a† − a) for the different
methods. The behavior of the fluctuations for the X̃ quadrature
is qualitatively similar to that of the photon number. The
fluctuations for the Y quadrature drop below 1 for nonzero
driving, suggesting that the photonic state is squeezed. To
clarify this, the plot shows the unscaled quadrature Y . Above
threshold, a clear discrepancy between the FP result and the
self-consistent result can be seen. This discrepancy has been
reported before [28] but has not yet been explained. The
numerical result does not coincide with either one. This might
be caused by the dimensional issues discussed above.

As a final note, we come back to the invariance of the
mean-field steady-state equations of motion with respect to
the transformation α → −α. In Sec. II, we noted that this

FIG. 7. Steady-state fluctuations of the scaled photonic X̃ and
unscaled Y quadratures as a function of driving. The behavior of
〈X̃2〉 is qualitatively similar to that of the photon number. For
the Y quadrature, the fluctuations decrease below 1 with driving,
indicating the presence of squeezing. A yet unexplained discrepancy
is observed between the numerical data and the self-consistent and
the FP approaches.

implies that αss = 0, which is indeed what follows from
computing it through Eq. (23). For this to be consistent with
the phase transition behavior obtained via the semiclassical
approximation, the system must go from the Gaussian vacuum
state to a mixture of coherent states near and above the thresh-
old. This behavior is confirmed by numerical simulations, as
seen from the evolution of the cavity state with the driving, as
displayed in Fig. 8.

FIG. 8. Q function of the LC steady state for different values
of driving. For well-resolved density maxima, as for E = 3.0, the
centers of the maxima lie at the branches of the square root defined
in Eq. (6).
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V. CONCLUSION

We have discussed the behavior of an electromechanical
system in the parametric regime, where 2ωLC ∼ �m. In this
regime and with RWA, the Hamiltonian effectively assumes
the form of the degenerate parametric oscillator that is well
known in quantum optics. It is known from the latter’s context
that the system undergoes a phase transition: below the critical
driving, the mechanical amplitude grows linearly with the
driving, while the photon number is unaffected (in a semi-
classical picture); above the critical driving, the mechanical
amplitude saturates, and the photon number grows with the
driving. For the electromechanical case, this transition takes
place when the phonon number created by the mechanical
driving reaches the value (8g/κ )−2, which requires at least
∼104 pump phonons for current devices [1]. We also find
for all the different quantum approaches that quantum fluc-
tuations smear this transition and that photons can be created
below the threshold.

In contrast to the quantum optical situation, the mechanical
dissipation rate in electromechanical systems is usually much
smaller than the photonic dissipation rate. However, in this di-
abatic limit, the fluctuations of the mechanical mode become
negligible [24]. We have shown that in this case, it is possible
to linearize the SDEs corresponding to the full Fokker-Planck
equation to arrive at the same effective SDEs that describe

the quantum optical system after adiabatic elimination. In the
diabatic limit, where γ → 0, and in steady state, this method
provides a very good approximation, and known analytical
results [23] can be extended. With these results, an expression
for the steady-state mechanical amplitude can be found self-
consistently.

We found that the use of a Fokker-Planck approach agrees
better with the numerical results (specifically for the parame-
ter values κ = � = 1, g = 0.1), and in contrast to the standard
linearization techniques, the FP approach and the numerical
simulations both predict an undershooting of the photon num-
ber above the threshold. We were not able to check whether
the FP method provides close-to-exact analytical results in the
diabatic limit for the steady-state moments.

Although the focus of this paper is the parametric regime
in electromechanics, it might be possible to find analogous
effects in other optomechanical systems, such as a membrane
in the middle with quadratic coupling driven at � = −2�.
Although experiments on electromechanical systems in the
parametric regime have not yet been reported in the literature,
they can be performed with the existing technology.
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