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Executive summary

This research investigates photon-sail trajectories towards a rocky, Earth-like exoplanet, Proxima b,
located in the habitable zone of Proxima Centauri (AC-C). AC-C is part of the Alpha Centauri system,
the stellar system closest to the Solar system. At the center of Alpha Centauri is a binary star system
consisting of Alpha Centauri A and B (AC-A and AC-B), revolving around their mutual barycenter in
elliptic orbits. AC-C is in a bound orbit around the AC-A/AC-B system at a distance of approximately
13,000 AU. AC-C is a red dwarf star with a small mass; currently, two planets are confirmed to orbit it:
Proxima b and Proxima c. Proxima b is a rocky planet and, therefore, the closest Earth-like exoplanet in
our galaxy. Visiting Proxima b with an uncrewed probe could provide us with the first view of Earth-like
exoplanets and allow us to learn more about the evolution of planets and possibly the formation of life.
A solid scientific interest thus endorses a mission towards Proxima b. Breakthrough Starshot was the
first to propose a fly-through mission of the Alpha Centauri system, for which photographing Proxima
b is the goal. The project aims to send a swarm of miniature spacecraft attached to futuristic ultra-light
photon sails and use an Earth-based laser array to propel them to 20% of the speed of light, reaching
Alpha Centauri in little over 20 years. While many engineering problems still lie ahead, their proposal
initiated other research into photon-sail missions towards or within the Alpha Centauri system. In other
literature, the capture of a highly futuristic graphene photon sail to get into a bound orbit about one
of the stars in the AC-A/AC-B system is investigated. In that case, a travel time of 75-80 years can
be expected. This research is meant as an extension of the work and investigates the next step after
reaching the AC-A/AC-B system: going to Proxima b.

To find transfer trajectories from the AC-A/AC-B star system towards Proxima b, a link between the
equilibrium points of both systems is searched for through heteroclinic connections. This is done
by using the (un)stable photon-sail augmented manifolds of the AC-A/AC-B (departure phase) and
AC-C/Proxima b (arrival phase) systems. The manifolds are propagated up to a suitably positioned
Poincaré section at which the mismatch between the states of the unstable and stable manifolds is
examined. By minimizing the mismatch in position, velocity, and time, a smooth link between trajecto-
ries from both systems is searched for. The departure locations investigated for this transfer are the
co-linear Lagrange points in the AC-A/AC-B system. The arrival locations are both the co-linear and
triangular Lagrange points in the AC-C/Proxima b system. The sail can be maintained at the Lagrange
points with an edge-on-sail attitude. To move away from the Lagrange point, the sail attitude is changed
to a to-be-optimized attitude, which is kept constant along the augmented photon-sail manifold. Differ-
ent futuristic sail configurations are assumed based on graphene sail structures with reflective coatings
on one or both sides of the sail. A grid search is applied to conduct a first analysis of the problem and
explore the design space. The design space exploration focuses on minimizing the linkage errors in
position and velocity at the Poincaré section. A genetic algorithm is then applied to also close the gap
in linkage time and further minimize the errors in position and velocity. Both methods use the same
six parameters to optimize the link: the cone angle (during the departure and arrival phases), the clock
angle (again, during the departure and arrival phases), and the departure and arrival dates.

The design space exploration demonstrated that the double-sided reflective sail configuration provides
little improvement over a one-sided reflective sail configuration. This is due to the fact that a constant
sail attitude is kept along the transfer trajectory so that the features of a double-sided sail are only
partially exploited. However, using a double-sided sail does open up the opportunity to depart from
the L1-point in the AC-A/AC-B system. The design space exploration also showed that the mismatch
in velocity is the most problematic objective. This can be explained by the different nature of the AC-
A/AC-B system compared to the AC-C/Proxima b system. Where the latter only contains one very dim
red-dwarf star, the first contains two Sun-like stars. Therefore, the velocity build-up in the departure
system is often too large to appropriately decelerate the sail in the arrival system, creating a significant
mismatch at linkage. This can be overcome by departing from the L2-point in the AC-A/AC-B system;
from this point, the build-up in velocity is limited and therefore provides the best match at linkage.
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Although the arrival location hasmuch less influence on the linkage errors, the design space exploration
showed promising results for arrival at the L1 and L3-points in AC-C/Proxima b.

Results from the genetic algorithm showed that a transfer from the L2-point in the AC-A/AC-B system
to the L1-point in the AC-C/Proxima b system can be accomplished with a transfer time of 235 years for
a one-sided graphene-based sail with a surface of 315× 315m2, carrying a payload of 10 grams. The
same transfer, with a slightly smaller one-sided graphene-based sail (75 × 75m2, carrying a payload
of 10 grams), results in transfer time of 1025 years. It can therefore be concluded that a very large,
futuristic graphene-based photon sail must be used to ensure a reasonable transfer time towards AC-
C/Proxima b. For a transfer with either sail configuration, the position error at linkage is kept below
1% of the total travel distance, the velocity error below 1% of the average velocity at linkage, and the
time error below 1% of the total transfer time. The results of this research could be used as an initial
guess for further optimization efforts to reduce the link errors and possibly decrease the transfer time.
To conclude, although the sail configurations utilized in this research may be considered futuristic, the
applied methodology has been demonstrated to successfully achieve a transfer to Proxima b.
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1
Introduction

Since humans have been marching the Earth, they have been gazing up at the stars, admiring both
their beauty and mystery. Different cultures have had different ideas, explanations, or beliefs about the
starry night above their heads and what it could mean. While star constellations were already used
to predict seasons by Mayan astronomers [1], the ancient Greeks invented stories and sagas about
their Gods to explain the constellations [2]. Later, during the time of the explorers, stars were merely
used as a tool to navigate the oceans. It was Giordano Bruno who proposed that the stars could be
other ”Suns” and got burned as a heretic in 1600 for his way of thinking. Nowadays, with the help
of advanced equipment and much better-developed theories in astronomy, many questions about the
vast Universe surrounding us can be answered. It is now known that many of the stars we see are in
fact entire galaxies, each one consisting of billions of stars, and the Earth is located in the Milkyway
galaxy. However, despite the giant leaps in technological advancement humanity has gone through so
far, many questions remain. The depth to which we understand the Universe, based only on theory and
observations from the Solar system, is impressive. Nevertheless, one can imagine how our observation-
based knowledge could be enriched when in-situ measurements of other systems are possible. What if
we could measure (from closeby) gravity, magnetic fields, temperatures, and atmospheric compositions
of celestial bodies? What if we could make pictures of exoplanets, exomoons, other stars, or even black
holes? How would that change our view of the Universe? In a more general way, human expansion
is a phenomenon that can be seen throughout our entire history. The need for cultures to reach out
to distinct, unknown places has always been evident. Furthermore, this is all primarily based on one
simple question: ”What is out there?”. Translated to modern times, it is humans’ own to start exploring
the space surrounding us. In line with this, there is the search for extraterrestrial life. Exploring other
worlds and stars might give us more information about how and where life can form, and telescopes
can only provide this to a certain extend. In other words, there is an unmistakable scientific base for
developing interstellar probes.

1.1. Interstellar travel
In the past decades, scientific efforts have been made to determine the feasibility of interstellar mis-
sions. It is obvious that the large travel distances pose the biggest challenge to overcome for interstellar
travel. For that reason, a portion of the research on interstellar travel considers currently unavailable
or undesired technology, such as nuclear pulse propulsion, antimatter, nuclear fusion, or a ramjet [3,
4]. A less ”science-fiction like” solution would be the use of photon-propelled spacecraft [5–7], also
called photon or solar sails. Such a spacecraft uses a surface to reflect photons that consequently
transfer a momentum to the sail in the opposite direction, ”pushing” the sail through space. Despite
many challenges still ahead, this method is currently seen as one of the feasible ways to succeed in
(uncrewed) interstellar travel. In 2016, the Breakthrough Initiatives program proposed a futuristic mis-
sion (Breakthrough Starshot) towards Alpha Centauri.1 Alpha Centauri is an interesting target because
it is the closest stellar system [8, 9], at a distance of approximately 4.37 lightyears from the Sun, see

1https://breakthroughinitiatives.org/initiative/3, access date:13-12-2022
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1.2. Photon sailing 2

Table 1.1: Parameters for the three stars within the Alpha Centauri system. The mass, luminosity, and radius are expressed in
solar units: m! = 1.989110 ∗ 1030 kg, R! = 6.9598 ∗ 105 km and L! = 3.854 ∗ 1026 W [8, 9, 13].

AC-A AC-B AC-C Sun Unit
mass m 1.100 0.9070 0.1230 1 m"
Luminosity L 1.519 0.5002 0.0015 1 L"
Radius R 1.230 0.8570 0.1450 1 R"
Avg. Temperature T 5790 5260 3040 5770 K

Figure 1.1: Schematic overview of the stars closest to the Solar system.

Fig. 1.1.2 The system consists of three stars: a binary system consisting of the stars Alpha Centauri
A (AC-A) and Alpha Centauri B (AC-B), moving in elliptical orbits about their common barycenter. The
third star, a red dwarf called Proxima Centauri (AC-C), orbits the AC-A/AC-B system at a distance of
approximately 13,000 AU. In Table 1.1, the mass m, luminosity L, radius R and average surface tem-
perature T of each star is given. As of today, two planets are confirmed to orbit AC-C, Proxima b and
Proxima c, from which the first is a rocky planet in the habitable zone of AC-C [10–12]. The eccentric
orbit of Proxima b has a semi-major axis of 0.05 AU, whereas Proxima c is further away from AC-C, at
a distance of 1.5 AU. As in-situ measurements could add much to our knowledge of exoplanets and the
potential formation of life in the Universe, this work aims to search for trajectories to Proxima b. The
Breakthrough Starshot project also proposes a mission to Proxima b: it aims to visit the Alpha Centauri
system with a swarm of ultra-lightweight laser-propelled photon sails to photograph planet Proxima b.
The swarm will be accelerated to 20% of the speed of light by using a 100GW Earth-based laser array,
reaching the system in a little over 20 years. It then takes four years to send data back to Earth. The
probes in the swarm consist of gram-scale wafers with measurement and communication equipment,
attached to a meter-scale photon sail.3

1.2. Photon sailing
The concept of using photon sails for propulsion in space was already introduced by rocket scientist
Tsiolkovsky at the beginning of the 20th century [14]. A photon sail is a lightweight, highly reflective
sail-like structure with a large surface area that is deployed in space [15]. Reflecting photons transfer
a momentum to the sail; therefore, light can be used as an infinite source of propellant (as long as one
stays in the proximity of a star). The main benefit of this technology is that no fuel is needed (after
placement in orbit) to propel a spacecraft through space. Several missions have already proved the
feasibility of this concept. JAXA launched the first photon sail in 2010, the IKAROS (Interplanetary
Kite-craft Accelerated by Radiation Of the Sun) spacecraft that performed a flyby of Venus [16]. The

2https://photojournal.jpl.nasa.gov/catalog/PIA18003, accessed:05-01-2023
3https://breakthroughinitiatives.org/concept/3, access date:05-01-2023



1.3. State-of-the-art literature review 3

principal mission was to measure the acceleration from solar radiation pressure on the sail and demon-
strate attitude control of the thin membrane sail. The Planetary Society has launched two photon sails,
Lightsail 1 and 2 [17], see Fig. 1.2 for a picture and artist impression of Lightsail 2. The first was merely
a deployment demonstration launched in 2015, whereas the latter successfully managed to change its
orbital altitude by using solar radiation pressure only. NASA has launched the NanoSail-D2 spacecraft
[18] and will launch the ACS3 (Advanced Composite Solar Sail System) mission in 2023 [19]. NanoSail-
D2 was NASA’s first solar-sail demonstrator mission to test the deployment and deorbit functionality,
launched in 2011. The ACS3 mission is merely meant to test a new composite sail boom material.

(a) (b)

Figure 1.2: (a) Planetary Society’s Lightsail 2 sail, unfolded on the deployment table on Earth. Image Credit: Planetary
Society/Justin Foley ”LightSail 2 with solar sails deployed.” , licensed under CC BY 3.0. (b) LightSail 2 deployed in space (artist
impression). Image Credit: Planetary Society/Josh Spradling ”LightSail, a Planetary Society solar sail spacecraft.” , licensed

under CC BY 3.0

1.3. State-of-the-art literature review
Several publications investigate photon-sail missions towards and in the Alpha Centauri system. In ref-
erence [20], the maximum velocity still allowing for capture in the Alpha Centauri system is investigated
by making use of photo-gravitational assists; that is, using gravitation and photonic pressure to slow
down the sail. Using a futuristic graphene sail of 105m2, they computed a maximum arrival speed of
4.6% of the speed of light, resulting in a 95 years journey from Earth to the AC-A/AC-B system and an
additional 46 years to AC-C. The mission scenario described in the paper is displayed in a schematic
in Fig. 1.3. The sail has a sufficiently large surface so that a laser array is not needed to accelerate
the sail to this velocity. They substantially decreased the travel time to 75 years in successive work by
approaching the system differently [21]. Subsequently, they investigated the use of the magnetic fields
of the AC-A/AC-B system to decelerate a spacecraft [22], in combination with photo-gravitational ma-
neuvers. They find that magnetism can significantly affect the trajectory if the sail is charged by more
than 10 µC/g (Coulomb/gram), sustaining a larger deceleration. However, a charged sail is extremely
susceptible to small changes in the trajectory and, therefore, highly unpredictable. In reference [23],
different scenarios of a photon-sail exploration mission of the AC-A/AC-B system were investigated.
The authors divide their mission into four phases: a capture about AC-A, a polar orbit about AC-A, a
transfer to AC-B, and a polar orbit about AC-B. Each phase is optimized, finding a total exploration time
of 32.2 years. Their entry velocity was set to 80 km/s, leading to a travel time towards the system of
approximately 150 years. Lastly, in two publications the elliptic restricted three-body problem (ERTBP)
is applied to the AC-A/AC-B system. The ERTBP is a model that describes the dynamics within a sys-
tem of two primary bodies in non-circular orbits. The model assumes a third body that is massless. In
the ERTBP, it is possible to find points in space where centrifugal and gravitational forces sum to zero,
creating equilibrium points. The ERTBP can be augmented with a photon sail. Because this changes
the dynamics of the system, these equilibrium points can be altered into artificial equilibrium points
(AEPs). In reference [24], the AEPs in the AC-A/AC-B system with the addition of a solar balloon are
considered. The authors show that unstable AEPs can be found within the plane of motion of the pri-
maries. By linearization around the points, they prove that these points can be stabilized using control
laws. In addition, in reference [25], the AEPs in the AC-A/AC-B system are examined and the authors
found small, stable regions close to AC-A. Furthermore, they successfully compute transfer trajectories

https://www.planetary.org/space-images/lightsail-2-with-solar-sails
https://creativecommons.org/licenses/by/3.0/
https://www.planetary.org/sci-tech/lightsail
https://creativecommons.org/licenses/by/3.0/
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between different AEPs.

1.4. Brief overview of the approach of this research
This work aims to find optimized trajectories to Proxima b, after a capture in the AC-A/AC-B system has
successfully been accomplished. Therefore, the trajectory departs from the AC-A/AC-B system, with
the Proxima b/AC-C system as a target. Hence, the AC-A/AC-B system is defined as the departure sys-
tem and the AC-C/Proxima b system as the arrival system. Because of the elliptic orbits of the binary
stars and Proxima b about AC-C, in this work the ERTBP is applied on both systems. Then, transfer
trajectories are searched for by optimizing the links between departure and arrival phase (i.e., trajec-
tories moving away/towards the respective system). Previous work on transfer trajectories between
or within such systems was done in the Solar system. In reference [26], heteroclinic connections, that
are, connections between equilibrium points, in the Sun/Earth system [26] are investigated. In refer-
ence [27], heteroclinic connections between halo orbits in different Sun-planet system (Sun/Earth to
Sun/Mars, Sun/Earth to Sun/Mercury) were found. In reference [28], time-optimal solar-sail hetero-
clinic connections between the Earth/Moon and Sun/Mars systems were searched for. In reference
[29], transfer trajectories for spacecraft from the Sun/Earth to the Earth/Moon system were computed
using a patched ERTBP approximation model, in which both the departure and arrival systems are
modelled using the ERTBP. The two systems are then ”patched” together to find a transfer from a
Moon orbit to an equilibrium point in the Sun/Earth system. They use a Poincaré section at which the
two systems are patched together. Such a surface will from now be referred to as the linkage, or the
linkage surface. The publications named above show the potential of using heteroclinic connections
to find suitable transfers between equilibrium points in different systems. Therefore, this work uses a
similar approach applied to the Alpha Centauri system. To optimize the connections between the dif-
ferent systems, the error in position, velocity, and time between the departure and arrival phases at the
link surface is minimized. Different sail configurations, meaning sails with varying lightness numbers
and a reflective coating on one side or on both sides, are used. The lightness number of a photon sail
is a ratio that indicates its efficiency. To solve this optimization problem, two methods are applied: a
grid search and a genetic algorithm. The two methods generally both have advantages and disadvan-
tages. The grid search is computationally heavy but can provide good insight into the problem. It is
also a robust method to find a globally optimal solution. The genetic algorithm is often referred to as
a ’black box’. It requires (almost) no knowledge of the user of the system and its implementation is
straightforward. But, it will not be able to provide much insights into solving the problem. In literature,
both the grid search and the genetic algorithm were already used to optimize heteroclinic connections
or comparable numerical optimization problems [25, 28, 29]. Both methods proved to be capable of
solving these problems. Due to their proven heritage for similar numerical problems, and their oppos-
ing working principles, the combination of these two methods is considered an interesting approach to
solving the numerical problem of this work.

1.5. Research Objective & Questions
As was introduced in the previous sections, this thesis work investigates transfer trajectories to planet
Proxima b. Such a mission is scientifically grounded because in-situ measurements of this system
would provide interesting new insights for (exo-)planetary research. The research objective of this
work is:

“To find photon-sail transfer trajectories between the AC-A/AC-B system and Proxima b
by exploiting heteroclinic connections between the equilibrium points of the two different
systems.”

The research questions that must be answered to consider this research as a valuable contribution to
the existing literature on interstellar photon sailing, or photon sailing in Alpha Centauri, are:

1. Can a transfer be found between equilibrium points of the AC-A/AC-B and AC-C/Proxima
b systems using photon-sail augmented heteroclinic connections?

(a) What are the minimum errors at linkage in terms of position, velocity, and time between the
trajectories from both systems?
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Figure 1.3: Schematic figure of mission proposed by Heller and Hippke (2017) [20].

(b) What is the minimum time of such a transfer?
(c) How do different combinations of departure and arrival locations perform in terms of transfer

time and linkage errors?
(d) How do different sail configurations impact the results in terms of transfer time and linkage

errors?
2. Can a grid search be used to reduce the design space for the genetic algorithm?
3. Is a genetic algorithm a suited tool to solve the optimization problem in terms of global

convergence?

1.6. Report Outline
Themain body of this thesis is written as a journal article, following the format of the Journal of Guidance,
Navigation & Control, a journal published by the American Institute of Aeronautics and Astronautics
(AIAA). Chapter 2 of this report contains the article, which is named:

“Photon-sail trajectories to exoplanet Proxima b using heteroclinic connections. ”

The article is structured according to the guidelines issued by the AIAA.4 The article starts with an
abstract, followed by an introduction. Then, information about the Alpha Centauri system is given, fol-
lowed by a description of the dynamical model, including information about the reference frames used,
the accelerations from radiation pressure, the ephemerides data, and the Lagrange points. Then, the
optimization problem and methods are described in a methodology section, followed by a design space
exploration. The final sections of the article give the results from the genetic algorithm and the conclu-
sions. In the appendix of the article, all the necessary frame transformations are provided. Chapter
3 of this report then gives the additional conclusions and presents the answers to the above state re-
search questions, after which the recommendations for future work are presented. In the first appendix
of this report, the verification and validation of the dynamical model and the frame transformations are
provided. In Appendix B,the tuning the genetic algorithm settings is explained.

4https://www.aiaa.org/home/events-learning/events/Technical-Presenter-Resources, access date: 13-12-2022
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Photon-sail trajectories to exoplanet Proxima b using heteroclinic
connections

Tim J. Rotmans1
Delft University of Technology, 2629 HS, Delft, The Netherlands

Now that a rocky planet is confirmed to orbit in the habitable zone of our closest

stellar neighbor Proxima Centauri, the interest in visiting that system is growing;

especially since Breakthrough Starshot proposed a fly-through mission of the Alpha

Centauri system by sending a swarm of laser-driven photon sails. While many

engineering problems still need to be solved for such a mission to succeed, research

has shown that futuristic, theoretical photon-sail configurations can reach the Alpha

Centauri system within 75-80 years while also getting captured in a bound orbit about

one of the binary stars. This paper investigates trajectories from the binary star

system towards planet Proxima b. A mission to Proxima b is scientifically grounded

since measurements or pictures could help us better comprehend the evolution of

rocky planets and potential life-formation in our Universe. The classical Lagrange

points in the binary system (AC-A/AC-B) and the system Proxima Centauri-Proxima

b (AC-C/Proxima b) are used to find possible trajectories towards Proxima b. The

transfer is divided into a departure phase from AC-A/AC-B and an arrival phase to

AC-C/Proxima b. Heteroclinic connections are then exploited using a patched restricted

three-body problem method to connect the two phases. A grid search is applied on the

optimization parameters to explore the design space, after which a genetic algorithm is

applied to further optimize the link, focusing on minimization of the position, velocity,

and time error at linkage. Futuristic sail configurations are used, including double-sided

reflective sails and lightness numbers up to V = 1779. The design space exploration shows

that a double-sided sail provides little improvement over a one-sided sail, mainly due

to the constant sail attitude along the trajectories. Results from the genetic algorithm

show that a transfer from the !2-point in the AC-A/AC-B system to the !1-point in

the AC-C/Proxima b can be accomplished with a transfer time of 235 years for the

one-sided graphene-based sail with a surface of 315 ⇥ 315 m2 carrying a payload of 10

grams. A transfer from the !2-point in the AC-A/AC-B system to the !3-point in the

AC-C/Proxima b, with a slightly smaller one-sided graphene-based sail (75 ⇥ 75 m2,
1Graduate Student, Department of Astrodynamics and Space Missions, Faculty of Aerospace Engineering, timrotmans@gmail.com.
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carrying a payload of 10 grams), results in a transfer time of 1025 years. For both sail

configurations, the position error at linkage is kept below 1% of the total travel distance,

the velocity error below 1% of the velocity at linkage, and the time error below 1% of

the total transfer time.

Nomenclature

Roman symbols
a acceleration vector n̂ sail normal vector

1 galactic latitude O(X̃, Ỹ, Z̃) observer frame

2 speed of light % period

4 eccentricity %0 last epoch of periastron

⇢ eccentric anomaly P(x, y, z) rotating pulsating barycentric frame

E(j1, j2, j3) International Celestial Reference Frame @1�10 set of target conditions and sail attitude/configuration

⌧ gravitational constant & Poincaré surface

G(x̃, ỹ, z̃) galactic frame r position vector

8 inclination ' radius

I(X,Y,Z) inertial frame S(r̂, )̂ , (̂) sail-centered frame

�1, �2, �3 optimization objective functions B semi-major axis

; galactic longitude C time

! luminosity ) temperature

!1, !2, !3 colinear Lagrange points D binary control variable double-sided sail

!4, !5 triangular Lagrange points * e�ective potential in ERTBP

< mass v velocity vector

" mean anomaly x state vector

= mean motion

Greek symbols

U cone angle d distance between primary bodies

in the ERTBP

V lightness number f sail loading

X clock angle � state transition matrix

n lightness number  argument of periapsis

conversion ratio parameter

\ true anomaly 8 angular velocity vector

` mass parameter ⌦ longitude of the ascending node

Abbreviations and acronyms

AC-A star Alpha Centauri A DEC declination (ICRS coordinates)

AC-B star Alpha Centauri B DV decision variables

AC-C star Alpha Centauri C ERTBP elliptic restricted three-body problem

AU astronomical unit RA right ascension (ICRS coordinates)

CRTBP circular restricted three-body problem rev revolutions

Subscripts

0 arrival system 3 departure system

� Alpha Centauri A � Earth

⌫ Alpha Centauri B � Sun

⇠ Alpha Centauri C 2B double-sided sail
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I. Introduction
While tracking a comet with his telescope in 1689, astronomer Jean Richaud came across the Centaurus

constellation. For the first time, he noticed that the star known back then as Alpha Centauri was in fact a

binary star system [1]. In 1839, 150 years later, astronomer Thomas Henderson determined the parallax

of this binary system [2]: 747.1 milliarcseconds, or 4.37 lightyears away from the Solar system, making

Alpha Centauri our closest stellar neighbor. Another 80 years later, in 1915, astronomer Robert T. A. Innes

discovered Proxima Centauri [3], located at 4.25 lightyears from the Solar system, therefore taking on the title

of being our closest neighbor. As of today, there is strong evidence that Proxima Centauri is in bound orbit

about the binary system [4]. Moreover, two additional discoveries were made in the past ten years. At least

two planets are in orbit about Proxima Centauri: Proxima b and Proxima c [5, 6]. One of these two, Proxima

b, is a rocky planet in the habitable zone of Proxima Centauri, potentially bearing life.

Until today, there has been a vivid discussion about the probability of Proxima b containing life. It is

important to note that many factors play a role in whether life could have formed on Proxima b or not [7, 8].

Two factors that are not beneficial for life-formation on a planet are addressed here. Firstly, Proxima b orbits a

red dwarf, Proxima Centauri, which is much cooler than the Sun, resulting in a habitable zone closer to the

star. This exposes Proxima b to high levels of radiation, flares, and mass ejections [9]. For a rocky planet in

such an environment, keeping an atmosphere stable is di�cult due to a large number of high-energy particles

hitting the atmospheric particles. This process is called atmosphere stripping [9] and could be countered

by a strong magnetic field. Secondly, there is the possibility that Proxima b is tidally locked with Proxima

Centauri, similar to our moon is with the Earth. Such a configuration results in one hot and one cold side

of the planet and is not beneficial for life formation. However, an atmosphere and potential winds could

regulate surface temperatures to some extent. In-situ measurements of Proxima b’s magnetic field and the

star’s surface activity would provide valuable information in the discussion about life formation on Proxima b.

Ultimately, such research would help our understanding of life formation on rocky exoplanets. A mission to

this system is thus endorsed by a strong scientific interest.

Breakthrough Initiatives proposed a mission to the Alpha Centauri system using photon sails.1 The

concept of photon sailing, also called solar sailing, was recently brought into practice when JAXA successfully

launched the first sail in 2010 [10]. A photon sail consists of a highly reflecting, ultra-thin membrane attached

to a payload. It uses the radiation pressure from a star to generate thrust and propel the spacecraft. The

thrust force is proportional to the light’s intensity and the sail’s surface. The light particles, called photons,

transfer their momentum to the sail and cause a small but continuous push in a specific direction, allowing the

1https://breakthroughinitiatives.org/initiative/3, access date: 18/10/2022
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spacecraft to travel through space without the use of traditional fuels. The spacecraft can be controlled by

adjusting the angle of the sail with respect to incoming radiation, changing the direction of the thrust. In

the past ten years, more launched sailcraft followed, such as NASA’s NanoSail-D2 [11], Planetary Society’s

Lightsail 1 and 2, 2 and the upcoming ACS3 (Advanced Composite Solar Sail System) mission[12]. The

Breakthrough Starshot mission has a more futuristic nature than these current photon-sail missions, because

it is an interstellar mission. It aims to send a swarm of ultra-lightweight sails with gram-sized payloads

to Alpha Centauri to perform a flyby of the binary system. Using a 100 GW Earth-based laser array, the

sails are propelled to 20% of the speed of light, reaching the system in a little over twenty years. Although

the technology to launch such a mission is not yet within our grasp, the project initiated other research

on photon-sail missions to Alpha Centauri. In references [13–15], several di�erent mission scenarios are

investigated. Using a futuristic graphene-based sail, they studied the possibility of getting captured in the

binary system, and, trajectories towards Proxima Centauri using gravity assists. They computed trajectories

that decelerate in the binary system by using the radiation pressure and a flyby of Alpha Centauri A. The

trajectory then continues towards Proxima Centauri, and to get in bound orbit about Proxima Centauri, they

calculated a maximum arrival speed in the Alpha Centauri A/B system of 5.7% of the speed of light. This

results in a 75 years journey from Earth and an additional 46 years towards Proxima Centauri. In reference

[16], comparable results are presented for a capture in the Alpha Centauri A/B system using the same sail

configuration.

The research presented in this paper focuses on finding photon-sail trajectories starting from the

colinear Lagrange points in the binary system to the colinear and triangular Lagrange points in the Proxima

Centauri/Proxima b system. The elliptic restricted three-body problem (ERTBP) is applied to the two

di�erent systems: the departure system consists of the stars Alpha Centauri A (AC-A) and Alpha Centauri

B (AC-B), and the arrival system consists of the star Proxima Centauri (AC-C) and planet Proxima b.

Adequate connections between the two systems are sought for using a patched restricted three-body problem

approximation method [17–19]. In this method, the two systems are "patched" together to find a transfer. The

surface at which the two systems are patched is a Poincaré section in phase space, also called linkage surface.

A transfer between the two systems is established using heteroclinic connections (connections between

di�erent Lagrange points). Such connections are constructed by using invariant manifolds; trajectories that

asymptotically lead towards/away from the equilibrium points. The aim is to connect the unstable manifolds

of the Lagrange points of the departure system, with the (artificial) stable manifolds of the Lagrange points

in the arrival system. So the transfer is divided into a departure and an arrival phase. This approach has

2https://www.planetary.org/sci-tech/lightsail, access date: 18/10/2022
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already proved to be successful in finding such links. In reference [19], it is used to find connections for a

photon-sail mission from the Earth-Moon !2 point to the Sun-Mars !1 point. In reference [20], connections

are established between a Sun-Earth !2-halo orbit to a Sun-Mars !1-halo orbit, and between a Sun-Earth

!1-halo orbit and a Sun-Mercury !2-halo orbit. To find a proper link between the two systems, the error

between the departure and arrival phase at the Poincaré section is evaluated. A numerical optimization

problem unfolds in which the error in position, velocity and time is minimized. Similar as in reference [19],

this work uses two techniques to solve this numerical problem: a grid search and a genetic algorithm. The grid

search is used for a design space exploration and gives a first insight into the problem. With the knowledge of

the design space exploration, the genetic algorithm is applied to further optimize the link between the systems.

This paper is structured in the following way. The first section gives an overview of the Alpha Centauri

system, including all the relevant parameters of AC-A, AC-B, AC-C, Proxima b, and Proxima c. Then, the

dynamical model is explained, including the reference frames used, the equations of motion for the photon-sail

augmented ERTBP, the acceleration caused by radiation pressure, the used ephemerides, and the Lagrange

points in both systems. The next section presents the methodology to solve the numerical problem. This

includes an explanation of the patched restricted three-body problem model, the optimization problem, and

the optimization methods. Subsequently, the design space exploration results are presented, containing the

grid search results and conclusions. The final results of the optimization problem generated by the genetic

algorithm are given in the next section, after which the conclusions of this research are presented.

II. Alpha Centauri System
As briefly mentioned in Section I, Alpha Centauri is a triple star system located at 4.37 light-years from

the Sun [21]. AC-A and AC-B are both similar to our Sun in size and luminosity. They form a binary star

system, mutually rotating around the barycenter, with a period of approximately 80 years [22]. In Table 1, all

relevant parameters of the system are given. In Tables 2 and 3, the orbital elements of AC-A, AC-B and AC-C

are presented. In reference [23], it is demonstrated with a high degree of confidence that the third star AC-C

is in a bound orbit about the binary system. In that reference, an approximation of the orbital elements is

given, although improved data was published more recently [24]. This data is provided in Table 3 and given

in the departure observer frame O3 . This frame is explained in Section III.A. AC-C orbits the binary system

at approximately 13,000 AU. AC-C is a red dwarf star with a smaller luminosity and mass than AC-A and

AC-B. Figure 1 gives an overview of the orbits of all bodies of interest. Due to the enlarged orbits of the

binary system and Proxima b, the figure provides the opportunity to visualize and comprehend the system.

At present, it has been confirmed that two planets are in orbit about AC-C: Proxima b and Proxima c

5



Figure 1. An overview of the positions and orbits of the three stars, including the assumed orbit of
Proxima b, at reference epoch J2000. The orbit of AC-C is to scale. The orbits of AC-A and AC-B are
enlarged by a factor 200. Proxima b’s orbit is enlarged by a factor of 80,000.

Table 1. Parameters for the three stars within the Alpha Centauri system. The mass, luminosity and
radius are expressed in solar units: <� = 1.989110 ⇤ 1030 kg, '� = 6.9598 ⇤ 105 km and !� = 3.854 ⇤ 1026

W [21, 25, 26].

AC-A AC-B AC-C Sun Unit

Mass < 1.100 0.9070 0.1230 1 <�

Luminosity ! 1.519 0.5002 0.0015 1 !�

Radius ' 1.230 0.8570 0.1450 1 '�

Avg. Temperature ) 5790 5260 3040 5770 K

Table 2. Orbital parameters for the binary system. The angles are measured relative to the Observer
Frame O3 [24].

AC-A AC-B Units

Semi-major axis B 10.790 12.726 AU

Eccentricity 4 0.5208 0.5208 -

Inclination 8 79.32 79.32 deg

Longitude of ascending node ⌦ 205.064 205.064 deg

Argument of periapsis  232.006 + 180 232.006 deg

Mean anomaly " 19.959 199.959 deg

Period % 79.929 79.929 yr

Last epoch of Periastron %0 August 1955 August 1955
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Table 3. Orbital parameters for AC-C’s orbit [24]. Epoch of periastron passage is relative to present.
The angles are measured relative to the Observer Frame O3 .

AC-C Unit

Semi-major axis B 8.2 kAU

Eccentricity 4 0.497 -

Inclination 8 124.9 deg

Longitude of the ascending node ⌦ 165.0 deg

Argument of periastron  151.0 deg

Period % 511,000 yrs

Epoch of periastron %0 278,000 yrs

Table 4. Kepler elements, parameters, and size/mass estimations of Proxima b and c [5, 6, 27, 29, 30, 32].
The mass and radius are expressed in Earth’s units: <� = 5.972 ⇤ 1024 kg and '� = 6371 km. Kepler
elements are given in the observer frame O0.

Proxima b Proxima c Unit

Mass < 1.3 7 <�

Semi-major axis B 0.05 1.5 AU

Eccentricity 4 0.105 0.04 -

Inclination 8 Unknown 133 deg

Longitude of the ascending node ⌦ Unknown 331 deg

Argument of periastron  310 Unknown deg

radius ' 1.07 Unknown '�

Period % 11.186 1928 days

[27, 28]. The parameters for the two planets are presented in Table 4, given in the arrival observer frame O0.

This reference frame is addressed in Section III.A. Proxima b is an Earth-like, rocky planet located in the

habitable zone. Data on the orbit of Proxima b is scarce, but in Table 4 a collection of the available data is

presented, obtained from multiple sources [5, 27, 29, 30]. From the data in Table 4 it is clear that there are

two unknown orbital elements: the inclination 8 and right ascension of the ascending node ⌦. However, it is

known that Proxima b does not transit AC-C [31], therefore an inclination of 90° (or close to 90) with the

plane tangential to the line-of-sight is impossible. Thus, in this work an inclination of 8 = 45° is assumed.

Proxima c is the second confirmed planet, orbiting much further from AC-C [6, 28, 32]. It orbits AC-C at

approximately 1.5 AU, far outside the habitable zone. Again, Table 4 provides the planets’ specifications.

Since Proxima c is outside of the habitable zone and not likely to be a rocky planet, it is of less interest to the

scientific community. Additionally, several other planets within the Alpha Centauri system were claimed over

the past years, including planets orbiting the binary system, although these have not been confirmed.

III. Dynamical Model
In this section, the dynamical model used in this work for a photon sail in the Alpha Centauri system

is given. Section III.A provides a brief overview of all the reference frames used in this work. All frame
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(a) (b)

Figure 2. Schematic representation of (a) the departure system, including the I3(X3 ,Y3 ,Z3) and
P3(x3 ,y3 ,z3)-frame , and (b) the arrival system, including the I0(X0,Y0,Z0) and P0(x0,y0,z0)-frame.

transformations used for this work are given in the Appendices. Section III.B gives the equations of motion

for a photon sail in the elliptic restricted three-body problem (ERTBP). The ERTBP is a modified version of

the circular restricted three-body problem (CRTBP), used to describe the motion of a massless particles under

the e�ect of two larger bodies that move in non-circular orbits. In Section III.C, the photon-sail acceleration

model is defined using an ideal-sail model. To continue, Section III.D discusses the ephemerides data of

the bodies in the Alpha Centauri system and how that data was obtained. Finally, Section III.E provides the

Lagrange points of the departure and arrival systems.

A. Reference Frames

The first two frames that are introduced are inertial frames. Both inertial frames are non-rotating, fixed

frames, with their origin in the barycenter of the two central bodies of the three-body problem considered.

Frame I3(X3 ,Y3 ,Z3) has its origin in the barycenter of stars AC-A and AC-B, see Figure 2a. The -3-axis is

aligned with the major axis of their elliptic orbits and is positive in the direction of AC-B’s periastron. The

/3-axis is aligned with the angular velocity vector 83 , a vector originating in the barycenter and perpendicular

to the orbital plane of AC-A and AC-B. The .3-axis completes the right-handed frame. Similarly, frame

I0(X0,Y0,Z0) has its origin in the barycenter of star AC-C and planet Proxima b, see Figure 2b. The -0-axis

is aligned with the major axis of Proxima’s orbit and positive in the direction of the periastron. The /0-axis is

aligned with the angular velocity vector 80, a vector originating in the barycenter and perpendicular to the

orbital plane of AC-C and Proxima b. The .0-axis completes the right-handed frame.

Additionally, two observer frames are presented that prove to be helpful when describing the orbits
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of celestial bodies. The O3 (X̃3 , Ỹ3 , Z̃3) frame, located in the barycenter of AC-A and AC-B, and the

O0 (X̃0, Ỹ0, Z̃0) frame, located in the barycenter of AC-C and Proxima b. In both frames, the /̃-axis points

towards the observer, and axes -̃ and .̃ are defined in the plane-of-the-sky (tangential plane), a plane

perpendicular to /̃ , see Fig. 3 for a generalized depiction of an observer frame. If the body of interest is found

on the Northern celestial sphere, the -̃-axis points towards the intersection between the tangential plane and a

line through the Celestial Poles. If located in the Southern celestial sphere, which is the case for the Alpha

Centauri system, the -̃-axis points away from this intersection, so that the negative -̃ direction is towards

the intersection between the tangential plane and a line through the Celestial Poles. The .̃ -axis completes

the right-handed frame. Furthermore, in astronomical data, the right ascension of the ascending node ⌦

of a celestial body is often measured starting from the -̃-axis towards the line of nodes. The inclination 8

represents the angle between the orbital and tangential planes. These definitions are also used in this research,

see Fig. 3.

Furthermore, when working with the ERTBP (explained in Section III.B), it is convenient to define a

rotating pulsating barycentric frame, an extension or variant of the synodic frame used for the CRTBP [33].

As a result of the eccentric orbits of the primary bodies, the distance between them and their angular rotation

rate, expressed in an inertial frame, is non-uniform. The rotating pulsating barycentric frame accounts for this

non-uniform rotation l8 of the two central bodies by expanding its axes in accordance with the instantaneous

distance d8 between the two primaries [33]:

d8 =
B8 (1 � 4

2
8
)

1 + 48 cos \8
, 8 = 3, 0 (1)

where the subscript 8 is used to distinguish between the departure and arrival system parameters. 48 is the

eccentricity, B8 the semi-major axis, and \8 the true anomaly. Due to the expanding and contracting nature of

the frame, the distance between the primaries in this frame remains constant, as well as their locations on the

G8-axis. Consequently, it is possible to define the equations of motion of the ERTBP in a similar manner

as for the circular problem. The equations of motion for the ERTBP are given in Section III.B. Again, two

frames are introduced, with their origins in the barycenters of departure and arrival systems: P3(x3 ,y3 ,z3)

and P0(x0,y0,z0). The P3-frame has its origin in the barycenter of AC-A and AC-B. Its G3-axis is aligned

with the line connecting the two primaries, positive in the direction of AC-B. The I3-axis is aligned with

the angular velocity vector 83 , perpendicular to the G3H3-plane. The H3-axis completes the right-handed

reference frame. The P0-frame has its origin in the barycenter of AC-C and Proxima b. Its G0-axis is aligned

with the line connecting the two primaries, positive in the direction of Proxima b. The I0-axis is aligned with
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Figure 3. A general definition of the observer frame, where the /̃-axis points towards Earth [34].

the angular velocity vector 80, perpendicular to the G0H0-plane. The H0-axis completes the right-handed

reference frame.

Two sail-centered frames are defined to describe the orientation of the photon sail. When the sail is

located in the departure system, it is defined as S3(r̂�,)̂�,(̂
�
). When the sail is in the arrival system, it is

defined as S0(r̂⇠ ,)̂⇠ ,(̂
⇠

). The sail-centered frame has its origin in the center of the sail; see Fig. 4a and

Fig. 4b. The definitions of the three axes are given as:
 
r̂� =

r�
kr�k

, )̂� =
Z3 ⇥ r̂�
kZ3 ⇥ r̂�k

, (̂
�
=

r̂� ⇥ )̂���r̂� ⇥ )̂�

��
!

(2)

 
r̂⇠ =

r⇠
kr⇠ k

, )̂⇠ =
Z0 ⇥ r̂⇠
kZ0 ⇥ r̂⇠ k

, (̂
⇠
=

r̂⇠ ⇥ )̂⇠��r̂⇠ ⇥ )̂⇠
��
!

(3)

where the r̂� and r̂⇠ axes are the unit vectors of r� and r⇠ . r� and r⇠ are vectors from stars AC-A and AC-C

to the sailcraft, see Fig. 4a and Fig. 4b. The )̂�-axis points in the direction perpendicular to a (theoretical)

plane through Z0 and r̂�. The )̂⇠-axis points in the direction perpendicular to a (theoretical) plane through

Z3 and r̂⇠ . The (̂
�
-axis is perpendicular to the r̂�,)̂�-plane, the (̂

⇠
-axis is perpendicular to the r̂⇠ ,)̂⇠-plane.

(a) (b)

Figure 4. Schematic overview of the relevant sail angles and vectors in the (a) departure system and (b)
arrival system.
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A galactic frame G(x̃,ỹ,z̃) is defined, located in the Solar system with its origin in the center of the Sun,

see Figure 5. The G̃-axis is aligned with a line connecting the Sun with the center of the Milky Way. The

Ĩ-axis points towards the North Galactic Pole, the H̃-axis completes this right-handed frame and points in

the direction of rotation of the Sun about the galactic center. From the perspective of an observer within

the Solar system, its axes are fixed. Because of its static nature, the galactic frame is suited to describe the

motion of stellar bodies in the sky. It can also be used to transform a state vector back and forward between

the departure and arrival systems. Note that this transformation also takes the motion of the Solar system

itself into account. In this research, two local galactic frames are defined, originating in the barycenter of

AC-A/AC-B and in star AC-C, respectively: G3(x̃3 ,ỹ3 ,z̃3) and G0(x̃0,ỹ0,z̃0). The axes of both frames are

aligned with those of the general G(x̃,ỹ,z̃)-frame. In addition to its x̃, ỹ, z̃-coordinates, the location of a body

on the Celestial sphere can be expressed by the galactic longitude ; and latitude 1, see Fig. 5.

Figure 5. Definition of the galactic frame G, obtained from [35].

Finally, the ICRS (International Celestial Reference System) coordinate system is adopted, with the

corresponding frame E(j1, j2, j3) (this frame is in literature denoted by ICRF [36]). The ICRS is currently

the standard reference system of the International Astronomical Union (IAU) [36, 37]. The origin of this

frame is at the barycenter of the Solar system, and its axes are defined relative to extragalactic radio sources.

These sources (quasars and active galactic nuclei) are so distant that they are assumed to be fixed on the

celestial sphere. Therefore, the frame is fixed over time as well, so no associated reference epoch is necessary.

Positions in this system are described with the right ascension '� and declination ⇡⇢⇠ of an object on

the celestial sphere. The right ascension and declination are ICRS equivalents of the galactic longitude and

latitude. Again, in this research, two local frames are defined that have their origin in the barycenter of

AC-A/AC-B and in the center of star AC-C, respectively: E3 (j3,1, j3,2, j3,3) and E0 (j0,1, j0,2, j0,3).
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B. Photon-Sail Augmented Elliptic Restricted Three-Body Problem

In departure and arrival systems, the primary bodies move in elliptic orbits about the local barycenter.

Therefore, the same dynamical model is applied to both systems: the photon-sail augmented elliptic restricted

three-body problem. The equations of motion for this model are defined below, again using subscript 8 = 3, 0

to distinguish between variables and parameters of both systems [33, 34, 38]:

•G8 � 2 §H8 =
1

(1 + 48 cos \8)
(
m*8

mG8

+ 0G,8)

•H8 + 2 §G8 =
1

(1 + 48 cos \8)
(
m*8

mH8

+ 0H,8)

•I8 =
1

(1 + 48 cos \8)
(
m*8

mI8

+ 0I,8)

(4)

where 0G,8 , 0H,8 , and 0I,8 are components of the sail acceleration vector aB,8 , which is addressed in Section III.C.

The independent variable is the true anomaly \8. The equations of motion are expressed in the pulsating

rotating barycentric frame P8 , that was introduced in Section III.A. The e�ective potential *8 in both systems

can be expressed as [33]:

*3 =
1
2

⇣
G

2
3
+ H

2
3
+ I

2
3

⌘
+
(1 � `3)

A�

+
`3

A⌫

�
1
2
(1 + 43 cos(\3))I2

3
(5)

*0 =
1
2

⇣
G

2
0
+ H

2
0
+ I

2
0

⌘
+
(1 � `0)

A⇠

+
`0

A?A>G1

�
1
2
(1 + 40 cos(\0))I2

0
(6)

The equations of motion are written in dimensionless form using normalized units: the sum of the two masses

as the unit of mass, the distance between the masses as the unit of length, and the inverse of the system’s

angular velocity 1/l8 as the unit of time. The mass parameter is introduced, `8 =
<2,8

(<1,8+<2,8)
, in which <1,8

corresponds to the primary with the larger mass. In dimensionless form, the masses become <1,8 = 1 � `8

and <2,8 = `8, with corresponding locations on the G8-axis (�`8) and (1 � `8), respectively. The period of

both systems now becomes 2c.

C. Photon-sail acceleration

As was explained in the introduction of this section, an ideal-sail model is used. An ideal sail model

uses a perfect, specular reflecting sail surface. This means that no absorption, re-rediation, or wrinkles in the

sail are assumed [39]. This assumption results in a radiation pressure force that is perpendicular to the sail

surface, in direction of the normal vector n̂. The performance of a photon sail can be expressed using its

lightness number V [39]. The lightness number is a performance ratio that describes the radiation pressure
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acceleration relative to the gravitational acceleration of the star. Both accelerations change with the inverse

square of the distance to the star, so the lightness number is independent of this distance and therefore constant

for a given sail configuration (under the assumption that the mass and luminosity of the Sun do not change).

Alternatively, the lightness number can be expressed as follows [39]:

V =
f
⇤

f

(7)

f
⇤ =

!�

2c⌧<�2

(8)

where the sail loading f describes the properties of the sail configuration (dependent on the sailcraft mass

and area of reflectivity), ⌧ is the gravitational constant, and 2 is the speed of light. The relation between

the Solar lightness number V� and the lightness number relative to another star depends on the mass and

luminosity of the respective star [34, 40]. This relation can be expressed as V: = n:V�, with the ratio n:

defined as n: = !:<�

!�<:
. The subscript : is used to distinguish between the three stars AC-A, AC-B and AC-C

(: = �, ⌫,⇠)

The photon-pressure acceleration acting on a sail in a binary-star system is di�erent than in a single-star

system, because in a binary system, the sail will receive photons from two stars. Since the dynamical model

used in this research consists of both a binary and a single-star system, it is necessary to define the acceleration

in both cases.

First, a normal vector n̂: is introduced, defining the orientation of the sail with respect to the incoming

sunlight. The normal vector’s direction is expressed by using the cone and clock angles U: and X: . The cone

angle is the angle between the normal vector n̂: and the local r̂:-axis. The clock angle is the angle between

the (̂
:
-axis and the projection of the normal vector on the plane perpendicular to vector r̂: (the )̂: , (̂:

-plane).

Defining the normal vector in the local sail-centered S8-frame results in:

n̂3 |S3
=

✓
cosU� sinU� sin X� sinU� cos X�

◆>
(9)

n̂0 |S0
=

✓
cosU⇠ sinU⇠ sin X⇠ sinU⇠ cos X⇠

◆>
(10)

The cone and clock angles of the departure system are measured with respect to star AC-A, so relative to

vector r̂�. In the arrival system, the cone and clock angles are measured with respect to star AC-C, so relative

to vector r̂⇠ . To use the normal vectors in Eqs. 9 and 10, a frame transformation to the pulsating frame P8 is
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necessary:

n̂: |P8
=


r̂: )̂: (̂

:

�
n̂:

����
S8

(11)

In the equations provided in the rest of this section, the frame notations |P8/S8 are dropped. The photon-sail

acceleration in the arrival system can then be expressed as follows [40]:

aB,0 = n⇠

V� (1 � `0)

kr⇠ k2
(r̂⇠ · n̂0)

2n̂0 (12)

Since the sail cannot create an acceleration in the direction of the star from which it receives photons, the

following constraint is enforced:

r̂⇠ · n̂0 � 0 (13)

In the departure system, the sail acceleration is defined as [34]:

aB,3 = a� + a⌫ (14)

aB,3 = V�

✓
nA

1 � `3

krAk
2
(r̂A · n̂3)

2
+ nB

`3

krBk
2
(r̂B · n̂3)

2
◆

n̂3 (15)

In this case, a constraint is enforced to ensure that the non-reflective side of the sail never faces either one of

the stars in the binary system during the transfer:

r̂� · n̂3 � 0 and r̂⌫ · n̂3 � 0 (16)

Furthermore, the expressions in Eq. 16 show that these constraints severely limit the maneuverability of

the sail in the binary star system, because it will be di�cult to not expose both sides to either one of the

stars. Therefore, an additional sail model is investigated, based on other research done on photon sails in

binary system [16, 34]: a sail that reflects photons on both sides. Where a regular one-sided sail in real life

will reflect photons on one side and emit radiation on the backside (for thermal control), the hypothetical

double-sided sail reflects photons from both sides. The ideal-sail model is then applied to both sides of the

sail. The feasibility of the double-sided ideal sail model is not further addressed here. In the arrival system,

applying a double-sided sail model does not change the sail acceleration definition given in Eq. 12. However,

for the departure system, the model results in a slightly altered sail acceleration [34]:
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Figure 6. Schematic display of the working principle of the double-sided sail in the departure system
[34].

aB,3 = V�

✓
nA

1 � `3

krAk
2
(r̂A · n̂3)

2
+ D ⇤ nB

`3

krBk
2
(r̂B · n̂3)

2
◆

n̂3 (17)

In eq. 17, a binary control variable D is introduced that can either take the value of -1 or 1. In case of a

one-sided sail model, the binary value always takes the value 1, and the equation reduces to Eq. 15. In case of

a double-sided sail, the value for D depends on the orientation of the sail with respect to AC-A and AC-B.

This is defined by the flowdown in Eq. 18 and Fig. 6 provides further insight in the working principle of the

binary control variable. If the sail is illuminated by AC-A on one side, and by AC-B on the other, the sail

normal vector n̂⌫ is flipped. In Eq. 17, this is done by setting the control variable to -1. In case both stars

illuminate the same side, D is set to 1, and both normal vectors (n̂� and n̂⌫) are aligned. The constraints on

the orientation of the sail are again given by the expressions in Eq. 16, but the flexibility of the double-sided

sail is improved over the one-sided sail.

D =

8>>>>>>><
>>>>>>>:

one-sided 1

double-sided

8>>><
>>>:

1 if r̂⌫ · n̂3 � 0

�1 otherwise

(18)

D. Ephemerides

The positions and velocities of the di�erent bodies over time must be known in order to find a transfer

trajectory. From the current positions and velocities (or at a specific reference epoch) of all bodies, it is

possible to estimate their future positions at any given time. Figures 7a and 7b present the orbit of AC-C

about the barycenter of Alpha Centauri. Figure 7a gives the orbit in 3D in the galactic reference frame G3 .

Fig. 7b gives the projected orbit of AC-C on the celestial sphere, in ICRS coordinates.
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(a) (b)

Figure 7. (a) 3D presentation of AC-C’s orbit about the barycenter of the system in the galactic G3

frame. The velocity vector of AC-C is given, as well as a vector pointing towards the Sun. The orbit is
labeled with time points that represent millennia. The position and velocity of AC-C are in the year
2021. (b) AC-C orbit projected on the celestial sphere (plane of the sky) in ICRS coordinates.

The reference epoch C0 is August 2035, when AC-A and AC-B are at periastron. Since the true anomaly

of Proxima b is unknown, its periastron is also set to be at reference epoch C0. Note that the period of Proxima

b is short: 11.186 days. Many Proxima b revolutions fit in one departure system period, and transfer times of

hundreds of years are considered reasonable. The assumption on the exact periastron of the arrival system is

thus of minor influence on the results and therefore considered a safe assumption to make.

The relationship between the independent variable \8 and dimensional time C8, is indirectly given by

Kepler’s equation [35]:

"8 = ⇢8 � 48 sin ⇢8 (19)

where, as stated before, subscript 8 is defined as 8 = 3, 0. The variable ⇢8 is the eccentric anomaly and "8 is

the mean anomaly, calculated from "8 = =8 (C8 � )0,8). Time )0,8 is the periastron passage, which is di�erent

from C0 since it refers to the last periastron passage, whereas C0 is set to August 2035. To clarify this, the last

periastron passage is defined as: )0,8 = C0 + A4E8 ⇤ %8, where A4E8 is the number of revolutions done by the

primaries A4E = 1, 2, 3, .., A4E8,<0G . Variable =8 is the mean motion of the system: =8 = 1/%8. To calculate

the dimensional time C8 from the independent variable \8 , the first step is to calculate ⇢8 using the relation in

Eq. 14.

tan
\8

2
=

r
1 + 48

1 � 48

tan
⇢8

2
(20)
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With Kepler’s equation (Eq. 19), the mean anomaly can be calculated and used to compute the time after

periastron (C8 � )0).

E. Lagrange points

The Lagrange points in both the departure and arrival system are exploited to search for a transfer trajectory

from AC-A/AC-B to the vicinity of Proxima b. The sail position can only be maintained at these points by

enforcing the sail to an "edge-on" attitude. Using an edge-on attitude, the generated sail acceleration is zero,

creating the possibility of using the Lagrange points for this purpose. An assumption is made that the sail

will remain in this position only for a relatively short time so that the photon sail will not drift away from

the Lagrange points regardless of the stability of the point. In Table 5, the five Lagrange points in both the

departure and arrival system are given. These are calculated by setting the acceleration and velocity terms to

zero in Eqs. 4.

Since the departure system consists of two stars, it is not possible to establish an edge-on position at the

triangular Lagrange points, as photons from one of the two stars will always create a force on the sail. For

this reason, only the colinear points are used for the departure phase. In addition to this, the fact that the

!1-point lies in between the two stars introduces another problem for a one-sided sail. A sail leaving that

point will (almost) certainly face one of the stars with its non-reflective side for a period of time. Therefore,

the !1-point only serves as a departure location for trajectories with a double-sided sail and is considered an

infeasible departure location for a one-sided sail. In the arrival system, which contains only one star, all five

Lagrange points are used as arrival locations for both a one-sided and a double-sided sail.

Table 5. Lagrange points in the departure and arrival system.

Departure Arrival
x3 y3 x0 y0

!1 0.058151154632749 0 0.978344822171941 0

!2 1.212338004180330 0 1.021909480029498 0

!3 -1.183815561294513 0 -1.000012920599003 0

!4 0.041168983747797 0.866025403784439 0.499968990562389 0.866025403784439

!5 0.041168983747797 -0.866025403784439 0.499968990562389 -0.866025403784439

IV. Methodology
This section presents the methodology employed to address the numerical problem of optimizing a transfer

between the departure and arrival system. To determine a photon-sail transfer trajectory between the two

star systems in Alpha Centauri, a method based on the patched restricted three-body problem approximation

[18, 19, 41] is utilized. This technique is discussed in Section IV.A. An extrapolation method that reduces the
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computational load of the arrival phase is explained in Section IV.B, referred to as "cut-o�". The optimization

problem, including its objectives and constraints, is addressed in Section IV.C. Finally, Section IV.D outlines

the two optimization methods applied to solve the problem: a grid search and the genetic algorithm.

The sail configurations analyzed in this study are presented in Table ??. Four sail configurations are

evaluated: a single-sided and double-sided sail with two di�erent lightness numbers. The lightness numbers

for sail configurations 3 and 4 are based on sail configurations previously studied for photon sailing in Alpha

Centauri [13, 16]. The lightness numbers for configurations 1 and 2 represent a lower limit that appeared

to ensure su�cient acceleration and deceleration during the departure/arrival phases, while maintaining

a reasonable transfer time. Due to the large distances between the systems, a reasonable transfer time is

considered to be anywhere from 100-1000 years for this transfer. The lower limit is primarily imposed by the

small luminosity of AC-C, which a�ects the relative lightness number V⇠ , and, therefore, the deceleration

capability upon arrival at AC-C/Proxima b.

Table 6. The four di�erent sail configurations evaluated in this paper, with the sail loading and lightness
numbers for the Sun, AC-A, AC-B, and AC-C, using two di�erent lightness numbers and both a
one-sided and double-sided sail.

Reflective

sides
V� V� V⌫ V⇠

Sail

loading [6/<
2
]

Configuration 1 1 100 137.4 53.4 1.2 0.015

Configuration 2 2 100 137.4 53.4 1.2 0.015

Configuration 3 1 1779 2444.4 949.4 21.7 0.00086

Configuration 4 2 1779 2444.4 949.4 21.7 0.00086

A. Patched restricted three-body problem approximation method

The patched restricted three-body problem approximation is a method used to find transfer trajectories

between the two di�erent star systems in Alpha Centauri. The method used in this work is based on previous

attempts to find photon-sail transfers between di�erent restricted three-body problems [18–20, 41]. A

schematic of the method is provided in Fig. 8. To connect the two systems, so called heteroclinic connections

are exploited. Heteroclinic connections are trajectories between di�erent equilibrium points and can therefore

also be used to link di�erent three-body problems. These connections are constructed by using manifolds.

Manifolds are sets of trajectories that asymptotically lead towards or away from unstable equilibrium points.

A manifold can be obtained by perturbing the state at the unstable equilibrium point and then propagating the

state over time. The perturbation is applied in the direction of the stable and unstable eigenvectors of the

Monodromy matrix. The Monodromy matrix is obtained by evaluation of the state transition matrix � after
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Figure 8. Schematic overview of the patched restricted three-body problem approximation method.

one period, �(\0 + %) [34, 38]. The state transition matrix is constructed by linearizing the equations of

motion around the equilibrium point, leading to a set of first-order di�erential equations. Exciting the state in

the direction of the eigenvector associated with unstable motion results in motion away from the equilibrium.

This induces the unstable manifold, for which the state is propagated forward in time. Similarly, exciting the

state in the direction of the eigenvector associated with stable motion results in motion towards the point,

providing the stable manifold. To compute the stable manifold, the state is propagated backward in time.

As was stated in III.E, for the initial conditions in the departure system, the colinear Lagrange points are

considered. In the arrival system, all five Lagrange points are investigated as target conditions. The initial and

target conditions define the Lagrange point from where the trajectory is propagated and the time at which the

propagation is initiated. When at the Lagrange point, the sail is positioned with an edge-on attitude. The

unstable manifolds from the colinear Lagrange points in the departure system are used to initiate motion

away from the AC-A/AC-B system. In the arrival system, the stable manifolds are exploited to obtain motion

towards the Lagrange points. However, the !4 and !5-points in the arrival system are stable and do not exhibit

manifolds. But, manifolds can be artificially created by omitting the edge-on attitude. The accelerating force

resulting from the solar radiation pressure then disrupts the stable motion around the equilibrium.

To add flexibility in the design of the transfers, a range of cone and clock angles is considered in the

unstable and (artificial) stable manifolds. A constant sail attitude is assumed along these manifolds to limit

the search space. Additionally, the non-autonomous nature of the ERTBP creates another dimension in

the search space through the time-dependent true anomaly \8, at which a trajectory departs or arrives. The

resulting manifolds form tube-like structures called photon-sail dedicated sets [18]. The manifolds must
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Figure 9. Schematic overview of the construction of the grid search, where for each grid point,
photon-sail dedicated sets are used to search search for a heteroclinic connection.

then be connected in phase space and time to find a transfer trajectory. A detailed overview of the steps

taken to find such transfers, using combinations of sail attitude and departure/arrival time, is given in Fig. 9.

In the schematic, the reference frames associated with each step are also specified. In order to evaluate

the connection between the photon-sail dedicated sets in phase space, the state of the sail is propagated to

a Poincaré section (surface &). Surface & is defined in the departure observer frame O3 . It is a section

perpendicular to the line connecting the barycenter of the departure system with the barycenter of the arrival

system, located exactly halfway along this line. The surface is chosen as the location in phase space where

the state error, in terms of position, velocity, and time, can be evaluated. To reach this surface, the unstable

manifolds of the Lagrange points in the departure system are propagated forward in time up to surface &.

In the arrival system, the (artificial) stable manifolds of the Lagrange points are propagated backwards up

to surface &. The error at surface & is calculated by comparing the state x 5 ,3 and time C 5 ,3 at the end of

the unstable manifold with the state x 5 ,0 and time C 5 ,0 at the end of the (artificial) stable manifolds. The

evaluation of the error can be used to determine whether a heteroclinic connection exists between the departure

and arrival systems, given the initial/target conditions x0,8 and C0,8 . The process of evaluating the connection

between the photon-sail dedicated sets is crucial in determining the feasibility of a transfer trajectory between
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(a) (b)

Figure 10. (a) A typical example of the velocity profile over time for a trajectory reaching surface &,
using sail configuration 1. (b) A typical example of the velocity profile over time for a trajectory reaching
surface &, using sail configuration 3. Both trajectories are given in the I0-frame and propagated
backward in time with a tolerance of 10�11.

the two systems. The aim is to find a set of initial/target conditions for the sail that will result in a successful

transfer trajectory. By propagating the state of the sail to surface &, and evaluating the error at that point, it is

possible to identify which initial/target conditions will result in a successful transfer. It must be noted that

not all initial/target conditions result in a trajectory crossing surface &. In such a case, the final state of that

trajectory will automatically produce a large error, so that the corresponding initial/target conditions are not

further considered.

B. Arrival system cut-o�

A challenge when searching for transfer trajectories lies in the computation cost associated with the arrival

phase. This is due to the short period of the arrival system (11.186 days) relative to the transfer time, which

results in the need to propagate the state of the sail over numerous system revolutions, which can be up to

thousands. The numerical integration process, using Matlab’s inbuilt >3445 solver, becomes time-consuming

as a result. On the other hand, the departure system, with a period of approximately 80 years, requires less

computational e�ort.

It is common practice when doing numerical simulations to make a trade-o� between computation time

and accuracy. Using a low-accuracy integration method can save time at the cost of less accurate results. In

this work, the challenge of reducing computation time is solved by using an state extrapolation method, instead

of using a low-accuracy integration. The developed method is used to approximate the state and time of the
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sail at surface & without having to propagate the entire (artificial) stable manifold. First, the state of the sail in

the P0-frame is defined as x0 (C0) =

G0 H0 I0 §G0 §H0 §I0

�
)

, while the estimated state is denoted as

x0 (C0). The foundation of the method is based on the observation that when backward propagating the state

vector, using di�erent target conditions, most trajectories converge to a constant velocity within a short period

of propagation time, as seen from the inertial I0-frame. This can be illustrated by the velocity profiles of two

example trajectories of a one-sided sail (sail configurations 1 and 3) in Fig. 10, in which, due to the backwards

propagation, the constant velocity phase appears on the left side of the plot. Following the direction of motion

(so not the direction of the backward propagation), the sail is approaching the arrival system with an almost

constant velocity. When close enough to the primary bodies, the gravitational and solar accelerations start to

have more e�ect on the trajectory and the constant velocity phase is breached. It is important to note that the

velocity profile is dependent on factors such as the sail attitude and target conditions, however, the behavior of

most trajectories remains consistent; a long, constant velocity phase upon approach, until getting in close

enough range of the primary bodies to be a�ected by the solar radiation pressure and gravity.

A state extrapolation technique is applied in the arrival phase to reduce its computational load. When

backwards propagating the (artificial) stable manifold, it is assumed that the velocity E2DC> 5 5 and its G, H, and

I components reach a constant value at time C2DC> 5 5 . The time C2DC> 5 5 is determined by setting a threshold on

the acceleration resulting from the gravitational pull of AC-C (02DC> 5 5 ), since the velocity depends on the

target velocity and the accelerations acting on the sail. The state is backward propagated until the threshold is

met, indicating that the sail is su�ciently far in its transfer trajectory, initiating the constant velocity phase.

The propagation is then terminated at this point, referred to as a "cut-o�." The state and time at surface &

are then estimated by linear extrapolation of the state at the cut-o� point up to surface &. The sail is thus

assumed to move in a straight line between the cut-o� point and surface &. The time at which the extrapolated

trajectory reaches surface & is determined by dividing E2DC> 5 5 by the distance between the cut-o� point and

section &. Therefore, the state and time at which the sail reaches surface &, can be analytically approximated

based on the state and time at the cut-o� point.

To prevent that the linear extrapolation method produces erroneous results, the error of the method is

assessed. It is important to realize that it is impossible to calculate the true error resulting from a numerical

computation when no real-time data or measurements exist. However, the error of a lower accuracy method

can be evaluated by comparing it to a benchmark run with a known higher accuracy. Therefore, a high accuracy

benchmark is computed with absolute and relative tolerances of 10�11, using the >3445 integrator in Matlab.

The benchmark is propagated in full, until it reaches surface &. For redundancy reasons, the benchmark

consists of ten di�erent trajectories. Each of these trajectories is propagated using a di�erent set @, consisting
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Figure 11. Schematic of the arrival system cut-o� method. The blue dotted line represents the estimated
state, extrapolated from the cut-o� point.

of a specific target condition, sail attitude and sail configuration. Each set is indicated by a subscript from

one to ten ([@1, @2, ..., @10]), corresponding to the ten di�erent combinations of target condition, sail attitude

and configuration. This leads to ten di�erent benchmark states at surface Q: [x 5 ,01, x 5 ,02, ..., x 5 ,010]14=2⌘..

Then, the extrapolation method is tested against these benchmark trajectories. This is done by using the

same sets @1�10, but this time a cut-o� is performed and the state extrapolated, following the above explained

method, so that ten estimated states at surface & are obtained: [x 5 ,01, x 5 ,02, ..., x 5 ,010]4GCA .. The estimated

states are compared to their corresponding benchmark run and the di�erences are referred to as cut-o� errors:

�A2DC> 5 5 , �E2DC> 5 5 , and �C2DC> 5 5 . Furthermore, the estimated states are computed using di�erent tolerances

for the propagation until cut-o�. So, for each tolerance, the same sets @1�10 are used and the average over the

ten cut-o� errors is calculated and plotted in Fig. 12.

To complete the analysis, the extrapolated state method is also compared to a low-accuracy integration

method. For the low-accuracy integration method, the state is again propagated in full (until section &),

but higher tolerances are used than for the benchmark. The procedure is identical to the one used for the

extrapolation method. The same ten sets @1�10 are used for the propagation of ten trajectories, leading to 10

final states at surface &: [x 5 ,01, x 5 ,02, ..., x 5 ,010];>F . At surface &, the di�erences with the benchmark are

again calculated in position, velocity and time. This process is repeated for each tolerance, ranging from

10�10 to 10�6. The results are displayed together with the estimated (extrapolated) state results in Fig. 12. It is

evident that the extrapolated state x 5 ,0 provides solutions that are closer to the benchmark than those obtained

through full propagation with looser tolerances. The long propagation time of full propagation results in

significant accumulation of numeric (truncation) errors when a looser tolerance is used. Although this is
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Figure 12. The error analysis for the extrapolation method (dotted lines) and for the lower accuracy
propagation (straight lines). From left to right, the errors in distance, velocity and time are given.

a well-known phenomenon in numeric simulation, it is remarkable that the errors from the extrapolation

method are much smaller. These results support the hypothesis of the extrapolation method, which states

that the sail moves (almost) in a straight line through space with a constant velocity, until it comes within a

certain range from the primary bodies. Therefore, the errors from the extrapolation method are smaller than

the numerical errors from lower accuracy propagation, when compared to the high accuracy benchmark.

Furthermore, Fig. 13 displays the average run-time of all ten trajectories per tolerance, for both the

extrapolation and the low-accuracy method. The same computer (2.2 GHz Quad-Core Intel Core i7) was

used for all trajectory propagations. The extrapolated state reduces computation time by a factor of 15-40,

depending on the tolerances. This reduction in runtime, combined with the much smaller errors resulting from

the state estimation method, warrants the use of this method to find a transfer. In addition, when looking only

at the cut-o� errors (extrapolated state errors), a significant decrease in error is observed when lowering the

tolerance. But, lowering the tolerances has far less impact on runtime, as can be seen from Fig. 13. Therefore,

this work uses the state extrapolation method with a tolerance of 10�10 for the computations of the arrival

phase.

C. Optimization problem

The objective of the optimization problem that is solved in this research is to minimize the errors at

linkage. The first two errors are defined as the Euclidean norm di�erence between the states from both phases

at surface & (position and velocity). The third error is the di�erence in the exact time at which both phases

pass surface &. The following sections will further explain the objective functions, constraints, and decision

variables.
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Figure 13. Average runtime from the error analysis for the extrapolation method (dotted lines) and the
lower accuracy propagation (straight lines).

1. Objectives

To find a suitable transfer trajectory, three objectives are introduced that need to be minimized. The

objectives are defined as the errors on the link surface &: position error �A , velocity error �E, and time error

�C. The position and velocity errors are calculated using the Euclidean norm di�erence of the departure and

arrival states at surface &. The time error is calculated in days by subtracting the Julian Date at which the

departure phase passes surface & from the Julian Date at which the arrival phase passes surface &. The three

objectives are thus given as follows:

• �1 =
��rf,d � rf,a

�� [AU]

• �2 =
��vf,d � vf,a

�� [km/s]

• �3 =
��
Cf,d � Cf,a

�� [days]

It is important to note that the error in sail attitude at surface & is not considered in the optimization. This

means that at surface &, a sudden, rapid change in sail attitude is allowed. For a real-life mission scenario, the

attitude rate of change might be limited and a sudden change not possible. To solve this, a transition phase

could be added in between the departure and arrival phase, in which the sail is allowed to slowly change its

attitude. To limit the complexity of the computation in this research, such an approach is not used. The

impact of this design choice on the final trajectory and results is not expected to be significant.

2. Constraints

A first set of constraints on the sail attitude was introduced in Section III.C (by Eqs. 13 and 16) and are

restated here. These constraints are enforced to prevent the non-reflective side of the sail from facing one of

the stars. For all sail configurations the constraints are given by:

r̂⇠ · n̂0 � 0 (21)
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r̂� · n̂3 � 0 and r̂⌫ · n̂3 � 0 (22)

To simplify the problem, the constraints in Eqs. 21 and 22 are only enforced while the sail remains in

the respective systems until surface & is passed. This means, for example, that while the sail trajectory is

propagated in the departure system, it is allowed to face AC-C with its backside. Similarly, during arrival

phase the sail is allowed to face AC-A and AC-B with its backside.

Another set of constraints must be enforced to prevent the sail from passing one of the stars too closely.

Although a significant sail acceleration can be obtained with close stellar flybys [42], the temperature of the

sail can also increase to harmful levels. Therefore, a minimal distance is set to prevent the sail from heating

up too much. Based on values obtained from literature [14, 16], a minimum safe distance of five stellar radii

is used in this research:

r� > 5 ⇤ '�

r⌫ > 5 ⇤ '⌫

r⇠ > 5 ⇤ '⇠

where '3 represents the radius of the respective star.

3. Decision variables

Six variables are used to tune the trajectories so that a smooth link at surface & can be found. These six

variables (⇡+) are the cone and clock angle during each phase (UA,X�,UC,X⇠) and arrival/departure time (C3

and C0):

⇡+ =

UA UC X� X⇠ C3 C0

�
(23)

The bounds on the cone and clock angles during both phases are the following: �90�  U�, U⇠  90�

and 0�  X�, X⇠  180�. As described in the introduction, this work is inspired by the Breakthrough Starshot

project, which would, in a best-case scenario, launch its sails in 2036, resulting in an arrival at the Alpha

Centauri system around 2056. However, it was already shown [4, 16] that to get captured in bound orbit

about AC-A or AC-B, which is a necessity when starting from one of the Lagrange points, longer travel times

should be expected (up to 80 years). Therefore, it is more reasonable to postpone the launch window of the

mission investigated here to a window in a more distant future. So the bounds on the departure time from the

26



Lagrange points are set to 01/01/2095  C3  01/01/2195. The bounds on the arrival time depend on the

sail configuration since a larger lightness number will result in shorter transfer times, and thus, a di�erent

arrival window is used for either lightness number in Table 6. For sail configurations 1 and 2, the arrival time

is set to 01/01/3042  C0  01/01/3122. For sail configurations 3 and 4, the arrival window is bounded by:

01/01/2330  C0  01/01/2420. Note that the search space for the departure and arrival time is slightly

larger than one period of the departure system. This is intentionally chosen to investigate the impact of the

true anomaly \3 on the transfer.

D. Optimization methods

The first step of the optimization process is a design space exploration. This is executed with a grid search

to systematically explore the solution space by dividing all six decision variables into an equally-spaced grid

of :1 ⇥ :2 ⇥ :3 points. The cone and clock angles are divided into a grid of :1 = 35 and :2 = 15 points,

respectively. The departure/arrival times are divided into :3 = 12 points. Each combination of decision

variables is then used to compute a transfer for which �A, �E, and �C are assessed. Furthermore, taking the

time error at & into account in the design space exploration is computationally expensive, and, therefore, the

results of the exploration focus mainly on the link error in position and velocity. After this exploration, a

genetic algorithm is used to further optimize the link at surface & and to also minimize the time error.

The software used to solve this numerical problem is Matlab’s implementation of a multi-objective genetic

algorithm gamultiobj.m. Three genetic algorithm parameters are tuned to fit best to this specific optimization

problem. These parameters are the population size, the number of generations, and the crossover rate. The

tuning of these parameters is done by investigating di�erent values for each one, while keeping the default

value for the other two parameters. The final settings are listed below.

• population size: 2000

• number of generations: 120

• crossover fraction: 0.8

To improve redundancy, the algorithm uses five di�erent seeds3 (with the Mersenne Twister random number

generator in Matlab4) to initialize the population. For the sake of simplicity, the seeds in this paper are

referred to as seed one to five, while their true values are given in brackets in the footnote.

3The seed numbers for sail configuration 1: seed 1 ["4"], seed 2 ["12"], seed 3 ["43"], seed 4 ["58"], and seed 5 ["12345"]. The
seed numbers for sail configuration 3: seed 1 ["4"], seed 2 ["14"], seed 3 ["27"], seed 4 ["55"], and seed 5 ["67"]

4https://nl.mathworks.com/help/matlab/ref/rng.html
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V. Design space exploration
The results of the design space exploration are presented in Tables 7-10. Each table represents a di�erent

sail configuration (defined in Table 6) and provides the best found links between all combinations of initial

and target locations. In the tables, the absolute position and velocity errors (in AU and km/s) are given, as

well as a normalized error percentage. The position error is normalized by comparing the absolute error

to the distance between the barycenters of the two systems. The normalized velocity error is computed by

comparing the absolute velocity error to the velocity magnitude of the sailcraft at surface &. The best solution

for each combination of initial/target location is defined by minimizing the sum of the normalized error

percentages: min.(�A [%] + �E [%]).

The first thing to notice is that there is no di�erence between the one-sided sail and the double-sided

sail configurations, except that the !1-point becomes a feasible departure location for the double-sided

sail configuration. This can be explained by recalling that the double-sided nature of the sail will provide

additional maneuverability in the double-star system. But, it is especially beneficial when the sail is close to,

or, in between of the two stars. But by using large lightness numbers in combination with a constant sail

attitude, most trajectories departing from !2 and !3 will quickly spiral outwards (as seen from a pulsating

rotating frame), away from the two primary bodies. In this way there is not much time to exploit the benefits

of having a double-sided sail. This is visually represented in Fig. 14, where trajectories leaving the departure

!2 are plotted in the O3-frame. For a lightness number of V = 0.05, trajectories propagated for 80 years

remain in proximity of the two stars, with the sail still moving in a bound trajectory. In comparison, the other

two plots in Fig. 14 show that for substantially larger lightness numbers, considered for configurations 1-4,

the sail travels almost in straight lines away from the stars. This behavior can be further explained by looking

at Eqs. 7 and 8. With these large lightness numbers, the solar radiation pressure overcomes the gravitational

attraction, and the sail can move ’freely’. So the grid search contains the exact same trajectories for both a

one-sided and a double-sided sail, without using the benefits of the double-sided sail because of the constant

sail attitude and the large lightness numbers. A sail with a smaller (currently more realistic) lightness number

(as shown in the left plot of Fig. 14) in the departure system will stay close to the two stars for a longer time,

because gravity has more e�ect on the spacecraft. In that case, the double-sided sail could provide additional

benefits that are not exploited by a sail with the lightness numbers used in this research.

Furthermore, the results from Tables 7-10 show that the relative error is much larger for the velocity

than for the position in most cases. It is di�cult to find a matching velocity link at surface & while also

maintaining an appropriate position link. This is because, during the departure phase, the sail is accelerated to

higher velocities than it can be decelerated during the arrival phase. The main reason for this is the dimness of
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Figure 14. Example trajectories leaving !2 in the O3-frame with varying cone and clock angles.
Initial conditions for all three figures are the same, except for the lightness number. The start of the
propagation is at periastron in the year 2035. (a) V = 0.05, (b) V = 100, and (c) V = 1779. The color
represents the clock angle variation. The trajectories are propagated over one departure system period
(⇠80 years).

AC-C, while having a relatively large mass. Table 1 shows that its mass is approximately eight times smaller

than the Sun’s, but its luminosity is approximately 665 times smaller than the Sun’s. This results in the very

small relative lightness number shown in Table 6 and is the reason that the sail is less capable of decelerating

during the arrival phase. The results presented in Fig. 20 support this conclusion. These boxplots contain the

velocities at surface & from all the trajectories in the grid search for each initial/target location (trajectories

that do not pass surface & are discarded). From these plots it is clear that the backward propagated (artificial)

stable manifolds from the arrival system have smaller velocities at surface &. Furthermore, little variation is

observed between Lagrange points in the arrival system. But, the choice of departure location has a much

larger impact on the velocity at surface &. Care must be taken in drawing conclusions from the boxplot

only for two reasons. First, the boxplots provide information on the probability that a good velocity link

can be found between certain initial/target locations. However, a low probability does not necessarily mean

that a link can not exist at all between these initial/target locations. Secondly, the boxplots do not consider

the position errors. But, the boxplots do provide useful insight in this optimization problem and show the

complexity of finding a proper velocity link.

Tables 7-10 and Fig. 20 show that, for both lightness numbers, departing from the !1-point (while using

a double-sided sail) does not provide any improvement over departing from the !2 and !3-points. In fact,

because the sail is very close to both stars when departing from !1, the velocity build-up is too large to find

a proper connection with the arrival phase. Therefore, based on these preliminary results, it is concluded

that the double-sided sail does not provide a benefit over a one-sided sail for the used set-up. So, only sail

configurations 1 and 3 are chosen for further optimization. The boxplots in Fig. 13 show that the highest

probability of finding a good velocity link is given by departure from the !2-point (for both sail configurations

1 and 3). This is also observed in Tables 7-10, where for each sail configuration, the smallest velocity errors
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are found for departures from the !2-point. As was concluded previously, the boxplots show less obvious

di�erences for the target points. But, when looking at the results in Tables 7 and 9, the most promising

combinations are: !2 to !3 for sail configuration 1, and !2 to !1 for sail configuration 3. Therefore, those

initial/target locations are chosen for further optimization. The genetic algorithm is used to investigate whether

the gap in position/velocity error can be further closed, whilst also minimizing the time error at surface &,

which was not taken into account in this design space exploration.

Table 7. The results of the design space exploration for sail configuration 1 (one-sided, V = 100). The
errors at linkage �A and �E are given in AU and km/s, as well as in their error percentages. The best
result is marked in orange.

Arrival

Departure

Location L1 L2 L3 L4 L5

AU - km/s % AU - km/s % AU - km/s % AU - km/s % AU - km/s %

L1
�A - - - - - - - - - -

�E - - - - - - - - - 5.83

L2

�A 138.95 1.14 177.83 1.46 177.16 1.46 436.92 3.60 187.15 1.54

�E 2.81 5.40 2.72 5.28 1.85 3.55 3.21 5.99 5.32 5.83

L3

�A 435.09 3.58 399.48 3.29 438.61 3.61 467.45 3.85 162.88 1.34

�E 12.52 7.97 4.46 4.96 4.55 8.50 9.93 6.46 4.04 4.51

Table 8. The results of the design space exploration for sail configuration 2 (double-sided, V = 100).
The errors at linkage �A and �E are given in AU and km/s, as well as in their error percentages. The
best result is marked in orange.

Arrival

Departure

Location L1 L2 L3 L4 L5

AU - km/s % AU - km/s % AU - km/s % AU - km/s % AU - km/s %

L1
�A 476.39 3.92 304.01 2.50 392.13 3.23 377.86 3.12 162.01 1.33

�E 14.45 8.82 13.43 8.04 14.89 7.22 11.32 5.99 15.93 9.49

L2

�A 138.95 1.14 177.83 1.46 177.16 1.46 436.92 3.60 187.15 1.54

�E 2.81 5.40 2.72 5.28 1.85 3.55 3.21 5.99 5.32 5.83

L3

�A 435.09 3.58 399.48 3.29 438.61 3.61 467.45 3.85 162.88 1.34

�E 12.52 7.97 4.46 4.96 4.55 8.50 9.93 6.46 4.04 4.51

Table 9. The results of the design space exploration for sail configuration 3 (one-sided, V = 1779). The
errors at linkage �A and �E are given in AU and km/s, as well as in their error percentages. The best
result is marked in orange.

Arrival

Departure

Location L1 L2 L3 L4 L5

AU - km/s % AU - km/s % AU - km/s % AU - km/s % AU - km/s %

L1
�A - - - - - - - - - -

�E - - - - - - - - - -

L2

�A 293.29 2.41 456.24 3.76 469.16 3.86 438.55 3.60 325.79 2.68

�E 32.32 10.83 30.22 10.22 30.67 9.94 32.81 10.74 33.02 11.21

L3

�A 143.70 1.18 480.75 3.96 468.66 3.85 495.05 4.08 433.27 3.57

�E 57.06 17.99 52.81 16.64 437.09 13.55 41.03 12.56 57.77 18.48
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Table 10. The results of the design space exploration for sail configuration 4 (double-sided, V = 1779).
The errors at linkage �A and �E are given in AU and km/s, as well as in their error percentages. The
best result is marked in orange.

Arrival

Departure

Location L1 L2 L3 L4 L5

AU - km/s % AU - km/s % AU - km/s % AU - km/s % AU - km/s %

L1
�A 321.20 2.64 379.62 3.12 387.43 3.19 335.63 2.76 451.76 3.71

�E 71.29 24.87 42.02 14.65 48.78 16.53 52.06 17.54 36.87 12.93

L2

�A 293.29 2.41 456.24 3.76 469.16 3.86 438.55 3.60 325.79 2.68

�E 32.32 10.83 30.22 10.22 30.67 9.94 32.81 10.74 33.02 11.21

L3

�A 143.70 1.18 480.75 3.96 468.66 3.85 495.05 4.08 433.27 3.57

�E 57.06 17.99 52.81 16.64 437.09 13.55 41.03 12.56 57.77 18.48

(a) (b)

Figure 15. Boxplots that give the average velocity at surface & (of all trajectories that reach surface &),
for (a) sail configuration 1 (in blue) and 2 (in yellow), (b) sail configuration 3 (in blue) and 4 (in yellow).

VI. Results
The results of the optimization using the genetic algorithm are presented in this section. The Pareto fronts

of the five di�erent seeds and for both sail configurations (1 and 3) are given in Fig. 16. Both the absolute

and relative errors on surface & are given. The results show that the genetic algorithm is able to converge to

solutions that minimize all three objectives e�ectively. Many solutions fall within a 1-5% error margin on all

three objectives, and some solutions score even below 1% on all three objectives. This means that the genetic

algorithm is able to find a link on surface & between the departure and arrival phases within reasonable error

margins. However, the quality of the results varies among di�erent seeds for both sail configurations. This

can be seen from the Pareto fronts, that exhibit significant di�erences between di�erent seeds. For instance,

in sail configuration 1, there is a substantial gap in the quality of results obtained with seed 2 and seed 4,

with the genetic algorithm being unable to find the same quality of solutions using seed 4. This indicates the

dependency of the genetic algorithm on the initial population, highlighting the importance of using multiple
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(a) (b)

(c) (d)

Figure 16. Results from the genetic algorithm, where the top figures represent: (a) the three objectives
(link errors) for sail configuration 1, (b) the three objectives using relative errors. The bottom figures
represent (c) the three objectives (link errors) for sail configuration 3, (d) the three objectives using
relative errors.

seeds when applying the genetic algorithm to this optimization problem. The same trend is observed for sail

configuration 3, although with smaller di�erences between the seeds.

Table 11. Best results from the genetic algorithm, for sail configuration 1 and 3. The results give the six
decision variables for each phase, as well as the times at linkage C&,3 and C&,0, and link errors.

U3 | U0

[°]
X3 | X0
[°]

C3 | C0
[�]

C&,3 | C&,0

[�]

�A
[�*]

�E
[:</B]

�C
[30HB]

Sail conf. 1 -56.40 | 5.11 98.65 | 106.35 2143-27-02 | 3168-02-09 2666-25-11 | 2667-03-09 70.32 0.236 281.52

Sail conf. 3 -53.66 | 30.07 99.53 | 92.93 2144-03-11 | 2379-18-03 2269-13-03 | 2268-02-10 9.13 0.761 161.08

In Fig. 17, the convergence of decision variables for the Pareto fronts presented in the previous section is

shown. It is important to note that, although the phases are plotted separately, the departure and arrival phase

plots are dependent on each other since a link between both phases is evaluated. For both sail configurations,

the departure phase shows clear convergence to an optimal solution for each seed. It is also remarkable

that the region of convergence seems to be independent of the sail configuration, although that should be

further tested on more sail configurations. For both sail configurations (Fig. 17a and c), all five seeds show
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(a) (b)

(c) (d)

(e) (f)

Figure 17. Decision variable values of the Pareto front solutions, for (a) sail configuration 1 departure
phase, (b) sail configuration 1 arrival phase, (c) sail configuration 3 departure phase, (d) sail configuration
3 arrival phase. Plots (e and f) show the departure/arrival time convergence for sail configurations 1
and 3, respectively.
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convergence to a specific area in the solution space: �45°  U3  �65°, and 90°  X3  110°. Moreover,

for both sail configurations, the arrival phase (Fig. 17b and d) shows a less clear area of convergence. This is

especially true for sail configuration 1, where many solutions are found around a zero cone angle, meaning

that the clock angle is not of much influence for those solutions. This is because a zero clock angle implies

that the trajectory stays in the orbital plane of the primaries (see Eqs. 9 and 10). The fact that many solutions

of the arrival phase are found around a zero-clock angle can be explained by the assumed inclination of

the arrival system, which intersects with the orbital plane of the departure system close to the barycenter

of the departure system. Therefore, in-plane arrival phases are more likely to allow for a transfer with the

departure system. The result is that the genetic algorithm does not converge towards a narrow area in the

solution space, because it finds solutions with similar quality despite the clock angle used. The results for

the sail configuration 3 arrival phase show di�erent convergence areas. There, the algorithm converges to

solutions with cone angles slightly further o� from zero, and therefore, the clock angle has more impact on

the quality of the results and the algorithm converged again to a specific area in the solution space. From

Fig. 17d, it can be observed that the algorithm converged to two di�erent regions in the solution space. Only

with seed 2 did the algorithm converge to the area with cone angles slightly larger than zero, whereas using

the other seeds it converged to cone angles slightly smaller than zero. Figure 16 already showed that the

Pareto front for seed 2 contains much better solutions than for the other seeds. Thus, four out of five seeds

got trapped in a local minimum, and, even for seed 2, it is di�cult to conclude whether it has converged to

a globally optimal solution. Once again, the results indicate how sensitive the genetic algorithm is to the

initial population and how susceptible the optimization problem in this work is to very small changes in the

decision variables. Fig. 17e and Fig. 17f show the convergence for the departure and arrival time. For sail

configuration 1, most solutions of di�erent seeds are in good agreement, but there remains a relatively large

spread in the convergence area: 2120  C3  2140, 3180  C0  3210. For sail configuration 3, the five

seeds converged to the same, narrow area: 2140  C3  2150, 2360  C0  2380.

Since the multi-objective optimization results in a 3D Pareto front, no absolute best solution can be

appointed. But, since the objective is to minimize all three of them, it makes sense to look for a solution

in the Pareto front closest to the point (0,0,0). To achieve this, the relative error percentages are employed

to calculate the absolute distance of each point in the Pareto front to the origin, thereby determining the

optimal solution. Subsequently, the arrival phase is fully propagated to surface & without a cut-o�, using

the initial conditions and attitude corresponding to the optimal solution. This yields the true arrival phase.

The resulting trajectories are presented in the O3-frame for both sail configurations and are given by Fig. 18

and Fig. 19. In these figures, the left plot contains the entire trajectory, and in the right plot, the states x3, 5
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Figure 18. Best solution transfer trajectory in the O3-frame sail configuration 1 (left). Right plot shows
states x&,3 and x&,0, normalized to the surface &.

and x0, 5 are projected on surface &. The arrows represent the velocity vectors of both phases at &, colored

corresponding to their magnitude. The remaining linkage errors can therefore clearly be observed for both

sail configurations. In Table 11, the decision variables, time at the linkage, and remaining state errors are all

presented for the best solutions of both sail configurations.

To enhance the visual representation of the results, the departure and arrival of both phases in the P3

and P0-frames are illustrated in Fig. 20a and Fig. 20b for the propagation conducted over two periods of the

corresponding system. Both sail configurations exhibit similar inwards/outwards spiraling trajectories. These

similarities are expected, since the final solutions for both sail configurations are comparable in terms of the

found constant sail attitude. The plots indicate that a larger lightness number results in a more significant

distance traveled (in dimensionless units) during the same propagation time due to a larger sail acceleration; a

straightforward and predictable result from this larger sail acceleration. Furthermore, the departure phase

trajectories show a periodic decrease in G3 , H3 and I3-directions. This can be explained by the pulsating

nature of the P3-frame. As seen from the observer frame, the trajectory is merely a straight line. In the

pulsating frame, this results in a trajectory that periodically shrinks/expands, which can clearly be seen in Fig.

20.

Compared to results in other literature [14], the transfer time of 235 years found in this research is much

longer, using a similar sail configuration. In reference [14], a transfer time of 46 years from AC-A/AC-B to
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Figure 19. Best solution final trajectory in the O3-frame sail configuration 3 (left). Right plot shows
states x&,3 and x&,0, normalized to the surface &.

AC-C was found. The reason for this is that, in their work, the departure towards AC-C is done with a much

larger initial velocity. Their initial velocity results from an interstellar journey at percentages of the speed of

light. However, for the work presented in this paper, the initial velocity depends on the rotational velocity of

the Lagrange points, resulting in much longer transfer times. The found transfer time for sail configuration 3,

when added to the 75-80 years travel time towards AC-A/AC-B, results in an approximate total mission time

of 320 years, taking into account some time to reach the !2-point after being captured in the departure system.

36



(a) (b)

Figure 20. (a) Best solution departure/arrival phases in the P3-frame and P0-frame, for sail configura-
tion 1. (b) Best solution departure/arrival phases in the P3-frame and P0-frame, for sail configuration
3. The bottom plots show the trajectories from a top-view. Trajectories are propagated over two periods
of the respective system.

VII. Conclusion
In this paper, transfer trajectories from the !1, !2, and !3-points in the Alpha Centauri A/B (AC-A/AC-B)

system to all five Lagrange points Alpha Centauri C (AC-C)/Proxima b were investigated. This was done

using four di�erent futuristic sail configurations, using lightness numbers of V = 100 and V = 1779, in

combination with a one-sided or a double-sided reflective sail. A transfer between the systems is sought for

by exploiting photon-sail-induced invariant manifolds. The transfer is divided into two phases: departure

from AC-A/AC-B and arrival at AC-C/Proxima b. The link between the phases is evaluated at a Poincaré

section &. A robust but computationally expansive grid search was applied in a design space exploration as a

first analysis of the problem. The design space exploration revealed that the problem’s most critical part is

finding a good velocity link between the phases. Due to the greater luminosity of the stars in the AC-A/AC-B

system compared to red-dwarf star AC-C, the velocity build-up during the departure phase is too great to be

reduced in the arrival phase. Since the velocity build-up is smallest when starting from the !2-point in the

AC-A/AC-B system, this proved to be the best starting location. The choice of arrival location is of minor

influence on the results and a double-sided sail opens up the possibility to start at the !1-point in the departure

system. However, due to the constant sail attitude and large lightness numbers, it does not improve the results

for a departure from the !2 and !3-points. Based on these preliminary conclusions, for sail configuration 1

(one-sided reflective, V = 100), a transfer from the !2-point in AC-A/AC-B to the !3-point in AC-C/Proxima

b was investigated using a genetic algorithm. For sail configuration 3 (one-sided reflective, V = 1779), a

transfer from the !2-point in AC-A/AC-B to the !1-point in AC-C/Proxima b was explored. The best result
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for sail configuration 1 shows remaining link errors of: �A = 70.32 AU, �E = 0.236 km/s, and �C = 281.52

days, with a total transfer time of 1025 years, departing in the year 2143 and arriving in 3168. The best result

for sail configuration 3 shows remaining link errors of: �A = 9.13 AU, �E = 0.761 km/s, and �C = 161.08

days, with a total transfer time of 235 years, starting in the year 2144 and arriving in 2379. These errors are

small considering the total distance, travel time, and velocity at surface &. The found results could serve as

an initial guess for optimal control algorithms suited for this problem. The genetic algorithm showed robust

convergence with a large number of function evaluations and di�erent seeds, although it can get trapped in

local minima for the arrival phase and did not always exhibit full convergence, which may be improved with a

larger population or more generations. The results from the genetic algorithm do demonstrate that it is possible

to use heteroclinic connections in the Alpha Centauri system to find a transfer towards AC-C. Nevertheless,

the time to reach AC-C/Proxima b for sail configuration 3, including travel time to AC-A/AC-B and time to

reach !2, is estimated to be approximately 320 years, much longer than values in previous literature [14] of

120 years, due to their much larger initial velocity resulting from an interstellar journey.
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Figure 21. Sequence of frame transfromation to convert a state from P0 and P3-frames to O3 .

Appendix
In the appendices, all frame transformations used for this research are given. The sequences to transform

a state vector from the P0 or P3-frame to the O3-frame is given in Fig. 21. The corresponding frame

transformations are provided in Appendices A-I. A general transformation, used to convert the sail normal

vector n8 from its local sail-centered frame S8 to a P8-frame, is given in Appendix J. In addition, the general

rotation matrices, denoted by Z, are given by Eqs. 24-26. These can be applied to rotate a frame around one

of its axes, where a positive angle q generates a counterclockwise rotation. The matrices will be used without

further explanation in the rest of this section:

ZG (q) =

26666666664

1 0 0

0 cos q sin q

0 � sin q cos q

37777777775
(24)

ZH (q) =

26666666664

cos q 0 � sin q

0 1 0

sin q 0 cos q

37777777775
(25)

ZI (q) =

26666666664

cos q sin q 0

� sin q cos q 0

0 0 1

37777777775
(26)
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A. Arrival rotating pulsating barycentric frame P0 �! Arrival inertial frame I0

To convert a state vector from the pulsating P0-frame to the inertial I0-frame, an approach is used

described in [17]. As was stated in the main body of this paper, the subscripts 3 and 0 are used to denote the

departure and arrival system. The mathematics describing this transformation are given as follows:

x|I0 =

2666664
Z�1
I0

(\0) · d0 (\0) 03

d[Z�1
I0 (\0) ·d0 (\0)]

d\0
·

d\0
dC0

Z�1
I0

(\0) · d0 (\0) ·
d\0
dC0

3777775
· x|P0 (27)

The instantaneous distance between the two primaries d0 is a function of the true anomaly \0 and is given as:

d0 (\0) =
B0

�
1 � 4

2
0

�
1 + 40 cos \0

(28)

The angular velocity of the frame 3\0
3C0

is given by:

3\0

3C0

=
⌧

1
2
�
<0,1 + <0,2

�1/2

B
3/2
0

�
1 � 4

2
0

�3/2
(1 + 40 cos \0)2 (29)

B. Arrival inertial frame I0 �! Arrival observer frame O0

This appendix describes how to transform the state from the I0-frame to the O0-frame. An approach

given by [16] is used for this transformation. The full transformation consists of three rotations:

x|O0 =

2666664
Z/0 (⌦0)Z-0 (�80)Z/0 ( 0) 03

03 Z/0 (⌦0)Z-0 (�80)Z/0 ( 0)

3777775
· x|I0 (30)

where the argument of periapsis  0, inclination 80 and right ascension of the ascending node ⌦0 were

provided in Section II.

C. Arrival observer frame O0 �! Arrival ICRS frame E0

The steps provided in this appendix are used to transform the state from the O0-frame to the E0-frame.

The transformation consists of two rotations and a translation. The translation shifts the center of the O0-frame

to the center of AC-C. After this translation, two rotations are necessary to align the axes with the axes of the

ICRS E. The translation is given as follows:

x|O0⇠
= x|O0 + [d0`0 0 0 0 0 0] (31)
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Note that the distance `0 between the barycenter and AC-C is multiplied with the instantaneous separation

between the two primaries d0 to dimensionalize the distance. The next step is to align the frame with the

E-frame. This is done by the following two rotations:

x| E0 =

2666664
Z
/̃0

(�'�⇠)Z.̃0
(⇡⇢⇠⇠ + 90°) 03

03 Z
/̃0

(�'�⇠)Z.̃0
(⇡⇢⇠⇠ + 90°)

3777775
· x|O0⇠

(32)

where the right ascension and declination of AC-C, '�⇠ and ⇡⇢⇠⇠ , were provide in Section II.

D. Arrival ICRS frame E0 �! Arrival galactic G0

The conversion from a state vector in E0 to G0 is described in the Gaia data release [43]:

x|G0 =

2666664
J�1

⌧
03

03 J�1
⌧

3777775
· x| E0 (33)

J�1
⌧

= XI (�;⌦) XG (90� � ⇡⇢⇠⌧) XI (⌧ + 90�)

=

26666666664

�0.0548755604162154 �0.8734370902348850 �0.4838350155487132

+0.4941094278755837 �0.4448296299600112 +0.7469822444972189

�0.8676661490190047 �0.1980763734312015 +0.4559837761750669

37777777775

(34)

where the galactic longitude of the first intersection of the galactic plane with the equator is ;⌦ = 32.93192°,

the right ascension of the north galactic pole '�⌧ = 192.85948°, and the declination of the north galactic

pole ⇡⇢⇠⌧ = 27.12825°.

E. Arrival galactic frame G0 �! Departure galactic frame G3

The conversion of a state vector from the G0-frame to the G3-frame only consists of a translation; the

translation from AC-C to the barycenter of the AC-A/AC-B system:

x|G3 = x|G0 + x⇠ |G3 (35)

Where x⇠ |G3 is the state vector of AC-C with respect to the barycenter of the system.
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F. Departure galactic frame G3 �! Departure ICRS frame E3

The conversion from a state vector in G3 to E3 is the reverse from the transformation described in Section

Appendix D.

x| E3 =

2666664
J⌧ 03

03 J⌧

3777775
· x|G3 (36)

where J⌧ , ;⌦, '�⌧ , and ⇡⇢⇠⌧ are provided in Appendix D.

G. Departure ICRS frame E3 �! Departure observer frame O3

The transformation to transform the state from the E3-frame to the O3-frame consists of two rotations.

Since both frames have their origin in the barycenter, there is no need for an additional translation:

x|O3 =

2666664
Z 92,3 (�(⇡⇢⇠�⌫ + 90)°)Z 93,3 ('��⌫) 03

03 Z 92,3 (�(⇡⇢⇠�⌫ + 90)°)Z 93,3 ('��⌫)

3777775
· x| E3 (37)

where '��⌫ and ⇡⇢⇠�⌫ are the right ascension and declination of the barycenter of AC-A/AC-B.

H. Departure rotating pulsating barycentric frame P3 �! Departure inertial frame I3

This appendix provides the transformation from the P3-frame to the O3-frame. The first part of this

process is to go from the P3-frame to the I3-frame.

x|I3 =

2666664
Z�1
I3

(\3) · d3 (\3) 03

d
h
Z�1

I3
(\3) ·d3 (\3)

i
d\3

·
d\3
dC3

Z�1
I3

(\3) · d3 (\3) ·
d\3
dC3

3777775
· x|P3 (38)

The instantaneous distance between the two primaries is a function of the true anomaly \3 and is given as:

d3 (\3) =
B3

�
1 � 4

2
3

�
1 + 43 cos \3

(39)

The angular velocity of the frame 3\3
3C3

is given by:

3\3

3C3

=
⌧

1
2
�
<3,1 + <3,2

�1/2

0
3/2
3

⇣
1 � 4

2
3

⌘3/2
(1 + 43 cos \3)2 (40)
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I. Departure inertial frame I3 �! Departure observer frame O3

To transform a state vector from the I3-frame to the O3-frame, the following three rotations are applied:

x|O3 =

2666664
Z/3 (⌦3)Z-3 (�83)Z/3 ( 3) 0

0 Z/3 (⌦3)Z-3 (�83)Z/3 ( 3)

3777775
· x|I3 (41)

where the argument of periapsis  3 , inclination 83 and right ascension of the ascending node ⌦3 of AC-A

and AC-B are given in Section II.

J. General: S8 ! P8

In this appendix, the general frame transformation from a sail-centered frame S8 to the rotating pulsating

barycentric frame P8 is given. This transformation can be applied to either the departure or the arrival system

by substituting the subscript 8 (where 8 = 0, 3). The conversion of a vector n̂8 in the S8-frame to the P8-frame

is done by multiplying the vector in the S8-frame by the unit vectors of this frame given in the P8-frame:

n̂|Pi
= n̂ =


r̂8 )̂ 8 (̂

8

�
n̂
����
S8

(42)

This then becomes:

n̂|P8
=

26666666664

G8�`8
A8

cosU8 �
(G8�`8)G8

A8A
⇤

8
sinU8 cos X8 �

H8
A
⇤

8
sinU8 sin X8

H8
A8

cosU8 �
H8 G8
A8A

⇤

8
sinU8 cos X8 +

G8�`8
A
⇤

8
sinU8 sin X8

G8
A8

cosU8 +
A
⇤

8
A8

sinU8 cos X8

37777777775
(43)

Where A⇤
8
=

q
(G8 + `8)

2 + H
2
8
, and U8/X8 are the cone/clock angle.
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3
Conclusions and Recommendations

In this thesis work, heteroclinic connections were employed to find photon-sail transfers between the Al-
pha Centauri A/Alpha Centauri B (AC-A/AC-B) and Alpha Centauri C (AC-C)/Proxima b systems. As an
extension to previous studies, which focused on capturing orbits around AC-A or AC-B or transferring
to AC-C after a flyby of AC-A/AC-B, this work aimed to find a trajectory towards AC-C for conducting
in-situ measurements of Proxima b. This was achieved by patching together two elliptic restricted three-
body problems, each augmented with a photon sail, and using two optimization methods, a grid search
and a genetic algorithm, to establish a connection between the two patched models. The colinear La-
grange points in the AC-A/AC-B system were investigated as departure locations. In the AC-C/Proxima
b system, all five Lagrange points were considered. This chapter presents the findings of the study,
answering the research questions, and provides suggestions for future work in the second section.

3.1. Conclusions
The conclusions are divided into two parts, each containing one of the main research questions, where
each research question has several sub-questions.

1. Can a transfer be found between equilibrium points of the AC-A/AC-B and AC-C/Proxima b
systems using photon-sail augmented heteroclinic connections? The answer to this ques-
tion depends on the answers to the sub-questions. Therefore, the sub-questions are answered
first.

(a) What are the minimum errors at linkage in terms of position, velocity, and time be-
tween the trajectories from both systems

In this work, two optimization methods were applied to find an optimal link between the
two patched elliptic restricted three-body problems. A grid search was used to limit the
design space for the genetic algorithm, resulting in the elimination of two of the four sail
configurations. The sail configurations employed by the genetic algorithm were one-sided
ideal sails with lightness numbers β = 100 and β = 1779, referred to as sail configuration
1 and 3, respectively. The link is evaluated on the Poincaré surface Q, a surface in phase
space perpendicular to the imaginary line connecting the barycenters of the two systems
and located halfway between them. In the departure phase, starting from the AC-A/AC-
B system, the state is propagated forward until section Q. In the arrival phase, ending in
the AC-C/Proxima b system, the state is propagated backward in time. The optimization
aimed to minimize the position, velocity, and time errors between the departure and arrival
phases at surface Q. The final results were presented as three-dimensional Pareto fronts in
absolute units (AU, km/s, and days) and relative error percentages. For the position error,
the relative error is the absolute error divided by the distance between the barycenters of the
two systems. For the velocity, the relative error is the absolute error divided by the velocity
magnitude of the corresponding trajectory at surface Q. For the time, the relative error is the
absolute error divided by the total travel time of the transfer. A solution from the Pareto front
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closest to (0,0,0) was selected for each sail configuration and listed in Table 3.1. In addition,
many solutions in the Pareto fronts of sail configuration 1 and 3 have relative errors smaller
than 1% for all three objectives.

Table 3.1: Best results from the genetic algorithm, for sail configuration 1 and 3. The results give the six decision variables for
each phase, as well as the times at linkage tQ,d and tQ,a, and link errors.

δd | δa
[°]

αd | αa

[°]
transfer time

[years]
∆r

[AU −%]
∆v

[km/s−%]
∆t

[days−%]
Sail conf. 1 -56.40 | 5.11 98.65 | 106.35 1025 70.32 [0.58%] 0.236 [0.16%] 281.52 [0.064%]
Sail conf. 3 -53.66 | 30.07 99.53 | 92.93 235 9.13 [0.075%] 0.761 [0.13%] 161.08 [0.037%]

(b) What is the minimum time for such a transfer? The minimum time found by the genetic
algorithm was 1025 years for sail configuration 1, and 235 years for sail configuration 3.
A direct comparison can be made with the work of Heller & Hippke [20] who calculated a
transfer time of 46 years to AC-C (starting from AC-A/AC-B) using a photon sail similar to
sail configuration 3. However, the initial velocity used in their transfer was much higher due
to a flyby of the AC-A/AC-B system at a high fraction of the speed of light. Given that the
initial and final velocity in this work are mainly coming from the orbital rotation of the primary
masses (about their barycenters), a transfer time five times greater than that of Heller &
Hippke can still be considered a good outcome.

(c) How do different combinations of departure and arrival locations perform in terms of
transfer time and linkage errors? The results of the design space exploration showed that
the departure point has a substantial effect on the outcome. Furthermore, it was found that
the velocity error at linkage is the most challenging factor to overcome. Due to the nature
of the departure system, with two stars with comparable luminosity to the Sun, the relative
lightness number is much higher than in the arrival system. In contrast, since AC-C is a
red-dwarf star with a small luminosity, this considerably reduces the usability and flexibility
of a photon sail in the arrival system compared to the departure system or the Solar system.
As a result, the best departure point was determined to be the L2-point, which minimizes
the velocity build-up and results in better velocity links with the arrival phase at the Poincaré
section. The specific arrival location (in the AC-C/Proxima b system) was found to have
a limited impact on the results, due to the one-star nature of the system and the relatively
small distances between its Lagrange points compared to the total travel distance. Although
the arrival location may affect the trajectory in the arrival pulsating rotating barycentric frame
Pa,1 it will have a minor impact on the overall transfer trajectory in the departure observer
frame Od.2

(d) How do different sail configurations impact the results in terms of transfer time and
linkage errors? The results in Table 3.1 indicate that sail configuration 3 exhibits a sig-
nificant reduction in transfer time, while maintaining comparable absolute errors compared
to configuration 1. But, it is noteworthy that the relative errors for sail configuration 3 are
smaller, a result that can not easily be explained. Combining this with the fact that the differ-
ent seeds of the genetic algorithm did not fully converge to a similar quality of results, there
is a possibility that the algorithm did not converge to a global optimum for sail configuration
1. Another possibility is that the global optimal solution for sail configuration 1 consists of
larger relative errors, or, that there is another underlying reason for these larger relative er-
rors, but this can only be confirmed by further research on the problem. The design space
exploration revealed that a double-sided sail does not significantly improve the results, due
to the constant sail attitude during both phases, meaning that a one-sided or double-sided

1The origin of the Pa(xa,ya,za)-frame is located in the barycenter of AC-C and Proxima b. Its xa-axis is aligned with the line
connecting the two primaries, positive in the direction of Proxima b. The za-axis is aligned with the angular velocity vector ωa,
perpendicular to the xaya-plane. The ya-axis completes the right-handed reference frame.

2The Od(X̃d, Ỹd, Z̃d)-frame is located in the barycenter of AC-A and AC-B, the Z̃d-axis points towards the observer and the
X̃d and Ỹd-axes are defined in the plane-of-the-sky (tangential plane), a plane perpendicular to Z̃d. The X̃d-axis points away
from the intersection between the tangential plane and an imaginary line through the Celestial South Pole. The Ỹd-axis completes
the right-handed frame.
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sail yields similar results in most cases. However, it provides the possibility of departing
from the departure system’s L1-point. When considering the possibility of changing the sail
attitude along the trajectory, the use of a double-sided sail could result in a more substantial
impact on the outcomes.

Based on the answers to the sub-questions above, it can be concluded that good links between
the departure and arrival system can be found by using photon-sail augmented heteroclinic con-
nections. The results showed that the relative errors in position, velocity, and time were kept
within their 1% error ranges, which is considered a reasonable error margin for a proper link.

2. Can a grid search be used to reduce the design space for the genetic algorithm? The grid
search proved to be effective in reducing the design space of the genetic algorithm. Using the
results from the grid search, it was possible to draw conclusions on the suitability of the different
departure and arrival locations, as well as on the sail configuration. The grid search revealed that
especially the departure location was important when constructing a transfer, and that theL1-point
is the best suited departure location. It also showed that the arrival location was of less influence,
but the grid search still provided valuable information to choose a specific location. The grid
search also gave insight into expected nominal transfer times, which helped in defining the bounds
on the departure and arrival times for the genetic algorithm. Furthermore, results showed that
double-sided reflective sails (configurations 2 and 4) offered no improvements compared to the
one-sided configurations (1 and 3). The departure/arrival location and sail configuration choices
reduced the design space significantly, but the grid search proved to be less useful in narrowing
the bounds for cone and clock angles. This is mainly because the attitude needed to create a
proper transfer is also dependent on the departure/arrival time. More specifically, whether the
sail is headed in the correct direction to allow for a transfer, is not only dependent on the attitude,
but also on the true anomaly of the respective system upon departure/arrival. A specific attitude
can lead to a good transfer or not, depending on the true anomaly at departure/arrival. Since the
true anomaly is also a decision variable, it is difficult to narrow down the bounds on the cone and
clock angles, so the bounds on these variables were imposed by the constraints defined in the
methodology.

3. Is a genetic algorithm a suitable tool to solve the optimization problem in terms of global
convergence?

This research showed that the genetic algorithm can be a valuable tool in solving the optimization
problem, being able to compute transfers with reasonable link errors. However, the outcome of
the genetic algorithm still leaves minor errors, which could be overcome when the results are
used as input for an optimal control solver. The advantage of the genetic algorithm is clearly its
simplicity of implementation, in combination with the fact that no apriori knowledge of the problem
is necessary. A disadvantage is that the algorithm does not provide much insight in the problem.
This disadvantage is what is often referred to as a ”black box”. Therefore, using only a genetic
algorithm to solve similar problems remains tricky. A good, safe strategy is thus to combine it with
another optimization technique, such as a grid search.

From literature, it is known that a genetic algorithm is able to converge to global minima, under
certain circumstances. The results from this research cannot definitively confirm if the genetic al-
gorithm found the global optimal solution, as the global optimum is unknown. In theory, the global
optimum of this optimization problem could be the point (0,0,0) in solution space. One of the goals
of this research was to investigate the feasibility of a transfer, so whether such a perfectly smooth
link (with zero position, velocity and time errors between the phases) truly exists is unknown. It
is possible that the results presented in this work are already close to the global optimal solution,
or even contain this solution. But, the genetic algorithm improved its solutions during the final
iterations for all seeds and both sail configurations, implying that the global optimum may not
have been found. Furthermore, during the arrival phase, for sail configuration 1, a wide spread of
decision variable convergence is observed, although this does not necessarily mean the genetic
algorithm has not properly converged. During the arrival phase, most solutions in the Pareto front
have cone angles around zero degree. This is due to the inclined orbit of Proxima b, relative to
the plane perpendicular to the line of sight (for an observer located in the Solar system). Due
to this inclination, arrival trajectories that stay close to or in the orbital plane result in the best
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link. Since the cone angle for the optimal solution is close to zero, the clock angle does not have
much influence on the sail acceleration. Hence, the algorithm finds equally good solutions with a
wide spread on the clock angle. Furthermore, four out of the five seeds show a similar quality of
results in the Pareto front, suggesting that the global optimal solution could be present in the solu-
tion space to which these seeds have converged. For sail configuration 3 (during arrival phase),
the results show that seed 2 gave much better solutions than the other seeds and converged to a
different cone/clock angle range. This indicates that, the algorithm got trapped in a local optimum
with the other four seeds. So, especially the results for the arrival phase suggest that the genetic
algorithm is not always able to converge to a global minimum with the settings used in this work.
However, during departure phase, for both sail configurations, the algorithm converged to narrow
cone, clock, and departure time ranges, suggesting that the decision variable convergence in that
phase is independent of the seed. To conclude, the results show how sensitive the optimization
problem is to small changes in the decision variables. However, the results do suggest that the
algorithm can converge to a global solution with a large enough population size and number of
generations. Choosing a larger population size will produce a denser initial population, increasing
the chance of finding the globally optimal solution, especially in combination with a larger number
of generations, so that it can be ensured that the algorithm fully converges.

3.2. Recommendations
Now that the conclusions of this thesis work are given, the recommendations for future research are
presented here. The recommendations are meant to either provide possible extensions of the work
presented on heteroclinic connections in Alpha Centauri, or to improve this thesis research. Because of
this thesis’s futuristic nature, some remarks can be made on the applicability of this research, especially
regarding the currently available data on the bodies in the Alpha Centauri system.

Optimal control solver
The first recommendation is to use the results from this research as an initial guess as input for an op-
timal control solver suited for this problem, such as the open-source PSOPT algorithm. This algorithm
already proved to be suited for similar research on photon-sail heteroclinic connections [27, 28]. The
optimization algorithm can then use the initial guess to close the gap between departure and arrival
phases on the Poincaré section and ensure a smooth linkage. In addition, such an optimizer can im-
prove the sudden attitude change at linkage, which was for simplicity accepted in this research, with
a smoother change of attitude by, for example, introducing a transition phase between the departure
and arrival phases. Furthermore, in this thesis, the three main objectives were the position, velocity,
and time errors at link surface Q. An optimal control solver could also be used to minimize the transfer
time while keeping the linkage errors minimal. Doing this with the genetic algorithm implementation
in Matlab (gamultiobj.m), by adding a fourth objective that minimizes the time along with the linkage
errors, could potentially lead to a large amount of function evaluations. An optimal control solver might
be able to do this more efficiently, especially when using the results of this work as initial guess. An
interesting feature to add when using an optimal control solving algorithm is allowing the sail to change
attitude along the trajectory, which could lead to improvement of the results. Especially for the parts
of the trajectories close to the stars, allowing the sail to change attitude could result in much different
trajectories.

Dynamical model improvement
A second recommendation is to enhance the dynamical model by incorporating fourth-body pertur-
bations in the ERTBP to maintain constant dynamics throughout the entire transfer. To simplify the
problem, this was not done in this thesis, and a change in dynamical model is made at linkage Q.
Incorporating fourth-body perturbations would account for gravitational and radiation pressure effects
from the other system’s bodies. Because the velocity increase/decrease mainly occurs during the start
and end of the phases, where accelerations from the central bodies dominate over perturbing forces,
making this simplification is considered reasonable. Nevertheless, it can be interesting to test whether
the results change when adding fourth-body perturbations. Especially if the sail is far away from both
systems and gravitational/radiation effects from both systems are almost equal (although both are very
small).
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Tuning of the departure/arrival locations
Another recommendation is to consider using artificial equilibrium points as departure/arrival points in-
stead of the classic Lagrange points. Artificial equilibrium points are equilibrium solutions in the elliptic
restricted three-body problem, enhanced with a satellite/body that is able to produce a continuous low
thrust, such as a photon sail. An artificial equilibrium point is dependent on the sail attitude and light-
ness number, therefore, by controlling/adjusting the attitude, the equilibrium location can be shifted.
In theory, there exist an infinite amount of AEPs, making the departure/arrival point a potential opti-
mization variable. As the results of this work showed, especially the departure location was of great
influence on the results, mainly because of its impact on the velocity build-up. By exploiting AEPs as
departure locations, the velocity at a Poincaré surface can be controlled, which would make it much
easier to find good connections with the arrival phase.

Sensitivity analysis
To advance this work, it is recommended to conduct a sensitivity analysis to evaluate the impact of small
variations in the initial conditions and parameters used. Especially since there is much uncertainty in
the astronomical data of the Alpha Centauri system. For example, the orbital parameters of AC-C
about AC-A/AC-B are not yet confirmed by multiple sources; therefore, it can be expected that this
data contains significant uncertainties. Furthermore, the angles used to transform a state from the AC-
C -centered frame to the AC-A/AC-B -centered frame are all subject to high uncertainties since there is
also little data on Proxima b’s orbit yet, and some assumptions had to be made on its Kepler elements.
For example, in this research an inclination of i = 45 degrees was assumed for Proxima b, while this
parameter is of large influence on the results because it determines what sail attitude is needed during
arrival phase to find a good transfer. Therefore a sensitivity analysis on the influence of the orbital
parameters of AC-C and Proxima b would significantly increase the scientific impact of this research.

Other photon-sail missions in the AC-C/Proxima b system
Finally, it is suggested to further explore the potential of photon sails in the AC-C/Proxima b system.
Now that a first estimation of the travel time to this system is known, mission applications within that sys-
tem can be investigated. For example, finding periodic orbits, optimizing trajectories from the Lagrange
points to an orbit about Proxima b, flyby missions on Proxima b, or trajectory optimization between the
Lagrange points. There are still many opportunities to investigate, given Proxima b’s proximity and
its status as the closest known rocky exoplanet, making missions related to Proxima b scientifically
valuable.
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A
Verification & Validation

In this appendix, the verification and validation of the dynamical model and numerical methods is given.
Verification and validation is a crucial part of this thesis, since it is meant to ensure the correctness
and relevance of this research to science. The first section of Appendix A will describe the verification
of the dynamical model, including the ERTBP, computation of manifolds, and the computation of the
Monodromy matrix. The second section of Appendix A describes the verification of four frame transfor-
mations used: from the Pi-frame to the Ii-frame, from the Ii-frame to the Oi-frame, from the Ei-frame
to the Gi-frame, and from the Ga-frame to the Gd-frame. Subscript i = d, a, so the frame transformations
for frames with this subscript can be applied to both the departure or the arrival system.

A.1. Dynamical model
To verify that the equations of motion for a photon-sail augmented ERTBP are correctly implemented,
the Artificial Equilibrium Points (AEPs) of the system are calculated. AEPs are mathematically similar
to Lagrange points, but including the photon-sail acceleration. Secondly, the computation of manifolds
is verified against literature, since these form the basis of the heteroclinic connections that are used
in this research. Because no literature is available on manifolds in the ERTBP, this is done in the
CRTBP. Therefore, one additional verification must be done: the computation of the Monodromy matrix.
Computation of the Monodromy matrix is necessary to obtain a manifold in the ERTBP. Therefore, the
verification of this matrix, together with the verification of the computation of manifolds, will ensure that
the manifolds in the ERTBP are computed correctly.

A.1.1. SS-ERTBP
In reference [25], the contour plots, that connect artifial equilibrium points (AEPs) of similar sail perfor-
mance in the Alpha Centauri A/B system, are given. These can be used to verify the implementation
of the photon-sail augmented ERTBP. To do this, the same parameters (gravitational parameter µd,
luminosity LA and LB , eccentricity ed) as in the paper is used, and three different cases are presented.
The first case considers the contour plots of the AC-A/AC-B system (A.1 for a one-sided ideal sail. The
second case considers those for a double-sided ideal sail. In this way, also the implementation of the
double-sided sail model is verified. Thirdly, the contour plots for the system with AC-B’s luminosity
set to zero are given to mimic the arrival system. The plots from the paper (left) exactly comply with
the computed plots (right), therefore, it can be concluded that the equations of motion are correctly
implemented. Note that the equations of motion for the arrival system are the same as for case 3: an
ERTBP with only one radiation body, instead of two. So the implementation for the arrival equations
do not have to be separately verified.
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(a) (b)

Figure A.1: (a) Contour plot of the artificial equilibria in the photon-sail augmented ERTBP model applied to the AC-A/AC-B
system, using a one-sided ideal sail [25]. (b) Computed contour plot, using the same parameters and contour lines. Each

contour line represents one specific lightness number β.

(a) (b)

Figure A.2: (a) Contour plot of the artificial equilibria in the photon-sail augmented ERTBP model applied to the AC-A/AC-B
system, using a double-sided ideal sail [25]. (b) Computed contour plot, using the same parameters and contour lines. The

dynamical model for a double-sided sail is applied. Each contour line represents one specific lightness number β.

(a) (b)

Figure A.3: (a) Contour plot of the artificial equilibria in the photon-sail augmented ERTBP model applied to the AC-A/AC-B
system, using a one-sided ideal sail and with the luminosity of AC-B set to zero [25]. (b) Computed contour plots, using the
same parameters and contour lines. Luminosity of AC-B is set to zero. Each contour line represents one specific lightness

number β.

A.1.2. Manifolds
The computation of the manifolds requires the perturbation of the state at an equilibrium point, in the
direction of the eigenvectors of the Jacobian (CRTBP) or the Monodromy matrix (ERTBP). Motion
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Figure A.4: Manifolds in the Sun-Earth system for three different values of β [26], where the bottom plots show zoomed in
figures.

associated with the imaginary eigenvalues of the Jacobian/Monodromy matrix can be excited to obtain
stable or periodic motion. Similarly, the motion associated with the real eigenvalues can be excited
to create unstable behavior. By doing this, asymptotic motion towards or away from this equilibrium
point is induced. These trajectories are called manifolds. The state is forward propagated to obtain
the unstable manifold, and backwards propagated to obtain the stable manifold. In [26], three different
examples of manifolds are given for the Sun-Earth system, each representing the manifold of a different
lightness number. As can be seen from Figs. A.5, A.6, and A.7, the computed manifolds are in exact
agreement with the manifolds presented in the paper (Fig. A.4). Minor differences occur because the
exact propagation time was not correctly specified in the paper. But, it can be concluded from these
plots that the computation of manifolds in the CRTBP is done correctly.

(a) (b)

Figure A.5: Computed manifolds using the same initial conditions and lightness number (β=0) as in [26].
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(a) (b)

Figure A.6: Computed manifolds using the same initial conditions and lightness number (β=0.01) as in [26].

(a) (b)

Figure A.7: Computed manifolds using the same initial conditions and lightness number (β=0.03) as in [26].

A.1.3. Monodromy matrix
The verification of the Monodromy matrix is done by comparing to stability plots found in [25]. There,
the stability of equilibrium solutions in the AC-A/AC-B system is investigated by linearizing around the
equilibrium point. Following the same approach as described there, the Monodromymatrix is computed
and its eigenvalues λi are determined to analyse the stability. The linearized system is said to be stable
if |λi| ≤ 1. If |λi| ≤ 1 +∆ holds, the system is almost stable, where ∆ must be a small number. The
plots from the paper are given in Fig. A.8; the top plots give the stability regions of the system for both
a one-sided and double-sided sail, where black, dark-gray, white and light-gray indicate, respectively,
unstable, almost-stable, stable, and infeasible motion. The bottom plots are zoomed in on a specific
region in the double-sided plot, for different values of∆. As can be seen, the computed stability regions
(Figs. A.9 and A.10) are in agreement with the plots presented in Fig. A.8. Therefore, the computation
of the Monodromy matrix is considered verified.
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Figure A.8: Stability regions in the AC-A/AC-B system for a one-sided and double-sided sail [25]. In the plots, black, dark-gray,
white and light-gray indicate, respectively, unstable, almost-stable, stable, and infeasible.

(a)
(b)

Figure A.9: Computed stability region plots for the AC-A/AC-B system, using both a one and double-sided sail configuration.

A.2. Frame Transformations
In this section, the verification of four frame transformations will be discussed. The first one is the trans-
formation from the rotating pulsating barycentric frame Pi to the inertial frame Ii. This transformation
can be applied to both the departure and arrival system (so from Pd to Id, or from Pa to Ia). The second
one is the transformation from the inertial frame Ii to the observer frame Oi. Again, this transformation
can be applied to both systems. The third transformation converts a state from the observer frame Oi

to the galactic frame Gi, once more it can be applied to both systems. The last transformation is used
to convert a state from the arrival galactic frame Ga to the departure galactic frame Gd, which is merely
a translation from AC-C to the barycenter of AC-A/AC-B.

A.2.1. Rotating pulsating barycentric frame Pi to inertial frame Ii
The verification of the transformation from the rotating pulsating barycentric frame to the inertial frame
is done in two steps. To do this, a trajectory in the rotating pulsating barycentric frame Pi is computed



A.2. Frame Transformations 63

Figure A.10: Computed stability region plots for the AC-A/AC-B system, zoomed in on a specific area of the double-sided sail
configuration plot, using different values of ∆.

and entirely (at each timestep) transformed to the inertial frame Ii. The initial conditions in the Pi-frame
are given as: x0|Pi . The second step consists of propagating a trajectory in the Ii-frame. To do this,
initial conditions x0|Pi are transformed to the Ii-frame, with the new initial conditions given as: x0|Ii .
Both trajectories are propagated over the same time interval. Note that the time is dimensionless in the
Pi-frame, so this dimensionless time θi must also be converted to dimensional time ti, in order to let
propagate both trajectories over the same interval. The transformed trajectory (propagated in Pi and
converted to Ii for each timestep) and the trajectory propagated in the Ii-frame can then be compared.
Ideally, they should overlap and end in the same final state.

To execute the above explained verification, the equations of motion of a sail in the inertial frame must
be written out. These differ from the equations of motion of the photon-sail augmented ERTBP, in which
the rotation of the frame is taken into account. The equations of motion can easily be obtained. In fact,
the starting point of the derivation of the equations for the ERTBP give the equations needed. From
[30], it is known that the equations of motion of a massless particle in the inertial frame are given as:

r̈|I = −G

(
m1

r31
r1 +

m2

r32
r2
)

(A.1)

with the masses of the primary bodies m1 and m2 , gravitational constant G, and the position vectors
relative to the primary bodies, r1 and r2. Equation A.1 holds under the assumptions that; the two bodies
rotate in elliptic orbits about their common barycenter, the mass of the third body is negligible, and no
additional perturbations are exerted on the third mass except the gravitational forces from the primary
bodies. So, when adding the sail acceleration, this becomes:

r̈|I = −G

(
m1

r31
r1 +

m2

r32
r2
)
+ as (A.2)

The position vectors relative to the primary bodies, r1 and r2, are defined as:

r1 =




X + ρ ∗ µ ∗ cos(θ)
Y + ρ ∗ µ ∗ sin(θ)

Z



 (A.3)
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r2 =




X − ρ ∗ (1− µ) ∗ cos(θ)
Y − ρ ∗ (1− µ) ∗ sin(θ)

Z



 (A.4)

where X,Y, Z are the position coordinates in the inertial frame, the true anomaly is denoted using θ,
and the instantaneous distance between the primaries ρ is given as:

ρ =
s(1− e2)

1 + e cos θ
, (A.5)

with the semi-major axis s and eccentricity e. In this verification, a one-starred system is considered,
and the sail acceleration is given as:

as =
β"(1− µ)

‖r1‖2
(r̂1 · n̂)2n̂ (A.6)

where the sail normal vector n is defined using the cone/clock angle α and δ:

n̂|S =
(
cosα sinα sin δ sinα cos δ

)# (A.7)

the cone and clock angle are defined relative to r1 and given in the local sail-centered frame Si. The
frame definition is not relevant in this section, but the conversion from this frame to the Pi-frame is
given as:

n̂|Pi
= n̂ =

[
r̂i θ̂i η̂i

]
n̂
∣∣
Si

(A.8)

after which the transformation from Pi to Ii is done in a similar manner as for the state vector. The tra-
jectories are propagated using tolerances of 10−10, a lightness number β = 0.5, cone and clock angle
α = 0, δ = 0. A fictional system is used with an eccentricity of e = 0.0167 and a mass parameter of µ =
0.4. The trajectories are propagated over three periods of the fictional system. Two different initial states
x0|Pi were used to increase the robustness of this verification: [0.7, 0.8, 0.0, 0.0000000006, 0.0031,−0.00000004]
and [0.95, 0.003, 0.015, 0.00000043, 0.00051, 0.00008]

For both initial conditions, the verification trajectories are given in Figs. A.11 and A.12. So, the trajectory
propagated in the Pi-frame and transformed to Ii, and the trajectory for which only the initial conditions
are transformed to the Ii-frame, and are propagated in the Ii-frame. When looking at Figures A.11
and A.12, it can be concluded that there is a good overlap. The Euclidean norm differences between
the final states are, for both cases, 2.3187 km/1.6301∗10−4 m/s, and 1.87 km/0.0026 m/s. The minor
differences are likely to be caused by integration errors, since both trajectories use different equations
of motion and different r1 and r2 vectors.

Figure A.11: Comparison between the transformed trajectory and the trajectory propagated in the inertial frame. The
Euclidean norm position difference is 2.3187 km. The Euclidean norm velocity difference is 1.6301∗10−4 m/s.



A.2. Frame Transformations 65

Figure A.12: Comparison between the transformed trajectory and the trajectory propagated in the inertial frame. The
Euclidean norm position difference is 1.87 km. The Euclidean norm velocity difference is 0.0026 m/s.

Although the above presented results give base for the conclusion that the transformation is correct,
there is the possibility of a systematic error in the transformation. A systematic error can result in a
wrong transformed trajectory from Pi to Ii-frame. This error will then also exist in the initial state x0|Ii

used for the propagation in the Ii-frame, possibly resulting in an overlapping trajectory. This could
lead to a wrong conclusion that the transformation is correct. To rule out the possibility of a systematic
error in the transformation, an additional verification step is taken. For this, it is convenient to use an
analytical solution that is known in both frames. In this way, the initial states for propagation in both the
Pi and Ii-frames can be calculated separately from each other. The same procedure is then applied,
but now the initial state in the Ii-frame propagation is not dependent on the transformation. An example
of a known solution in both frames are the Lagrange points in the Sun-Earth system (e = 0.0167, β = 0).
Note that the Lagrange points in the Pi-frame are fixed in time, while in the Ii-frame they will rotate
along with the primary bodies. So the Lagrange points are calculated at t = 0.

Following the equations described in literature [31], theL4 andL5 points can be analytically calculated in
both frames, see Table A.1. Table A.1 also give the transformed L4 and L5 points, which are (almost)
exactly the same. This confirms the preliminary conclusions that the transformation is correct. In
addition, the propagated trajectories are given in Figures A.13 and A.14. Note that these trajectories
simply represent the motion of the L4 and L5 points in time. The L4 and L5 points are stable in the
Sun-Earth system, so a massless particle placed there will stay there (although in reality, perturbing
forces could make a spacecraft drift away over time). The small differences in final states after three
Sun-Earth (Eucl. norm), given in Table A.2, are thus caused by numerical integration errors.

Table A.1: L4 and L5 analytically determined in the Pi-frame and in theIi-frame (columns 1-4). Columns 5-6 give the L4 and
L5 points transformed from the Pi-frame to the Ii-frame.

L4 analytic in Pi-frame
(dimensionless
units)

L5 analytic in Pi-frame
(dimensionless
units)

L4 analytic position in Ii-frame at t = 0
[m - m/s]

L5 analytic in Ii-frame at t = 0
[m - m/s]

L4 transformed from Pi

to Ii-frame at t = 0 [m - m/s]
L5 transformed from Pi

to Ii-frame at t = 0 [m - m/s]

x 0.499996996639646 0.499996996639646 0.735504698561195*1∗1011 0.735504698561195*1∗1011 0.7355046985611955*1∗1011 0.7355046985611955*1∗1011
y 0.866025403784439 -0.866025403784439 1.273939159310350*1∗1011 -1.273939159310350*1∗1011 1.273939159310351*1∗1011 -1.273939159310351*1∗1011
z 0 0 0 0 0 0
ẋ 0 0 -2.622915961910904∗104 2.622915961910904∗104 -2.622915961910904∗104 2.622915961910904∗104
ẏ 0 0 1.514332140446162∗104 1.514332140446162∗104 1.514332140446162∗104 1.514332140446162∗104
ż 0 0 0 0 0 0
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Table A.2: Euclidean norm errors after propagation over three periods of the Sun-Earth system.

Euclidean norm difference
after 3 periods Position [km] Velocity [m/s]

L4 0.357 7.2e-05
L5 0.374 7.6e-05

Figure A.13: Comparison between the transformed trajectory and the trajectory propagated in the inertial frame. The trajectory
represent the motion of the L4 point over three periods of the Sun-Earth system.

Figure A.14: Comparison between the transformed trajectory and the trajectory propagated in the inertial frame. The trajectory
represent the motion of the L5 point over three periods of the Sun-Earth system.

From the above presented work it can be concluded that the frame transformation from the rotating
pulsating barycentric frame Pi to the inertial frame Ii is verified.
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A.2.2. Inertial frame Ii to observer frame Oi
The transformation used to convert a state vector from the inertial frame Ii to the observer frame Oi

consists of three rotations. In essence, it is therefore only necessary to verify that the rotation matrices
are correctly implemented. To do this, Figures A.15 and A.16 (obtained from [32]) are used. Figure
A.15 describes the motion of AC-A and AC-B about their barycenter, in the inertial frame. Figure A.16
describes the motion of AC-A and AC-B about their barycenter in the observer frame.

Figure A.15: Orbital trajectories of AC-A and AC-B about the barycenter in the orbital plane, with the blue arrow indicating the
Sun’s direction (inclined with 10.68° with respect to the orbital plane). Obtained from [32].

Figure A.16: Orbital trajectories of AC-A and AC-B about the barycenter, 3D-view with the projection of the orbits on the plane
of the sky representing the apparent orbits as dots. Obtained from [32].

Following a procedure described in [30], the Kepler elements of the orbits provided in [32] can be
converted to Cartesian elements. In this way, Figures A.15 and A.16 are reproduced, see Figures A.17
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and A.18. Note that the implementation of the conversion of Kepler elements into Cartesian elements
is directly verified in this step by reproducing Figures A.15 and A.16.

Figure A.17: Orbital trajectories of AC-A and AC-B about the barycenter in the inertial frame.

Figure A.18: Orbital trajectories of AC-A and AC-B about the barycenter in the observer frame.

Finally, the verification of the implementation of the frame transformation is done by taking the orbits
displayed in Figs. A.15 and A.17, so the orbits in the inertial frame, and transforming the entire orbit
into the observer frame. The result should be two orbits that are exactly similar to the orbits displayed
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in Figs. A.16 and A.18. Figure A.19 shows that this is indeed accomplished. There, the orbits in inertial
frame are given by red and blue lines, and the transformed orbits in purple. The inverse transformation
is also verified. This is done following the same procedure, so taking the orbit from Figure A.16/A.18
and transform them to the inertial frame. Figure A.20 shows the result. To conclude, since the three
angles (the right ascension of the ascending node, inclination, and argument of periapsis) with which
the rotations are done are constant over time, the transformation is the same for both the position and
velocity components of the state vector. It can be concluded that the transformation that converts a
state vector from the inertial frame to the observer frame is verified.

Figure A.19: Representation of the transformation from Inertial to observer frame.

Figure A.20: Representation of the transformation from observer to inertial frame.
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A.2.3. ICRS frame Ei to galactic frame Gi
The transformation from the ICRS frame Ei to galactic frame Gi (and its reverse) is verified by using
the coordinates of a celestial object in both galactic and ICRS coordinates, obtained from the Simbad
database1. The Simbad database contains astronomical data on celestial objects. The celestial object
can be any, but appropriately the coordinates of AC-C are used. The verification process is based
on equations from the Gaia data release [33]. The first step is to calculate the position unit vector of
AC-C in the ICRS frame E with its origin in the barycenter of the Solar system. The position vector
of AC-C describes where it is located as seen from the Solar system. The position unit vector can
be calculated using the right ascension RAC and declination DECC of AC-C, both obtained from the
Simbad database. Then, the transformation from the Ei-frame to the galactic frame Gi is executed by
using matrix DG, provided in the Gaia data release [33]. This transformation thus gives the position
unit vector in the Gi-frame. From this position vector, the galactic longitude and latitude l and b can be
calculated. These two values will then be compared to the values in Simbad, concluding the verification
of this transformation.

So, the position unit vector of AC-C, in the ICRS frame E is calculated using the right ascension RAC

and declination DECC of AC-C:

r̂ICRS =




cosRAC cosDECC

sinRAC cosDECC

sinDECC



 (A.9)

Then, the transformation is applied using matrix DG:

r̂Gal = A−1
G r̂ICRS (A.10)

The final step is to calculate the galactic longitude and latitude:

lC = atan 2 (ỹGal , x̃Gal ) (A.11)

bC = atan 2
(
z̃Gal,

√
x̃2
Gal + ỹ2Gal

)
(A.12)

The right ascension, declination, galactic longitude and latitude, obtained from the Simbad database,
are:

• RAC = 217.4289422216058°
• DECC = -62.6794901890756°
• lC = 313.9398620493784°
• bC = -01.9271491330428°

The calculated values, using steps A.9-A.12, of the galactic longitude and latitude are:

• lC = 313.9398558803908°
• bC = -1.927146404534169°

The calculated values are in good agreement with the values obtained from Simbad, although small
differences are observed. The difference might occur because the values of the galactic north pole
(RAG, DECG) and the galactic longitude of the first intersection of the galactic plane with the equator
lΩ, used in matrixDG and obtained from the Gaia data release [33], are slightly different then the values
used by Simbad. But, since the differences are very small, the transformation is considered verified.
The reverse of this transformation can be achieved by taking the inverse of DG and is not separately
verified here.

1http://simbad.cds.unistra.fr/simbad/
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A.2.4. Arrival galactic frame Ga - Departure galactic frame Gd
This frame transformation shifts the origin of the Ga-frame to the barycenter of the AC-A/AC-B system
to obtain the state in the Gd-frame. The translation is done by addition of the state vector of AC-C,
which is calculated from its Kepler elements [34]. To verify that the correct AC-C state vector is added
in the translation, the plot in Fig. A.21(a) is used [21]. There, a trajectory is given from the Solar system
towards Alpha Centauri. The current positions of the barycenter of AC-A/AC-B and of AC-C are given
in the galactic frame originated in the Solar system. The plot in Fig. B21(b) shows that the computed
current position of AC-C in the galactic frame is correct. Therefore, it is concluded that the translation
from Ga-frame to Gd-frame is verified.

(a) (b)

Figure A.21: (a) A photon-sail trajectory from the Solar system toward Alpha Centauri, showing the location of the Sun relative
to AC-A/AC-B and AC-C [21]. (b) Plot made to verify the correctness of the shift from AC-C to the barycenter of AC-A/AC-B.



B
Genetic algorithm settings

This Appendix presents the argumentation for the choices in genetic algorithm settings. Properly tuning
the settings of the genetic algorithm can help it converge faster, prevent to get trapped in local optima,
and, in general, find better solutions.

Three genetic algorithm parameters were chosen to be tuned: the crossover fraction, the population
size and the number of generations. The default settings for these parameters are 0.8, 1000 and 40,
respectively. To properly tune the settings of the algorithm, different values for each parameter are
investigated, while keeping the other two at their default value. The tuning of the parameters was done
using the optimization problem described in this research, using the one-sided sail configuration with
lightness number β = 1779. The departure location is the L2 point (in the AC-A/AC-B system), and
the target location is the L3 point (in the AC-C/Proxima b system). The genetic algorithm is then used
to create Pareto fronts that contain the error at linkage between the systems in position, velocity and
time, see Figures B.1(a), B.1(b), and B.1(c). The crossover parameter was tested on its default value
0.8, and on one additional value of 0.7. The impact of this variable on the results is the most difficult
to predict beforehand. Therefore, tuning of the crossover is done carefully; only one value close to
the default (0.7) is tested to see how it impacts the results. It can be seen that a crossover fraction of
0.7 does not necessarily change the resulting Pareto solutions, therefore the crossover setting is kept
to its default of 0.8. For the population size, three different values were tested: 500, 1000, and 4000.
Figure B.1(b) clearly shows a better convergence towards an optimal solution for the largest population
size, and also 1000 performs better than 500. For the number of generations, five different values were
tested: 20, 40, 60, 80, and 100. When analysing the plot for the number of generations (Fig. B.1(c)),
it is again clear that more generations leads to better results. There can even be seen a difference
between generation 80 and 100, where 100 converged slightly more towards the minimal error values.
Figure B.1(d) show the convergence of each objective separately over the generations. The blue dots
indicate the average score of the entire generation and the red dots mark the best scores for each
generation. Especially for the velocity and time errors, it can be seen that the average score is still
changing over time, which might indicate that the genetic algorithm has not yet converged towards the
optimal solution. To ensure that the genetic algorithm fully converges, the population size is therefore
set to 120, so higher than the maximum tested number. Taking into account the number of function
evaluations needed, the population size is not set to 4000, although this performed by far the best. Out
of computational load considerations, a trade-off was made and the population size was set to 2000.
This leads to the final genetic algorithm settings of:

• Crossover: 0.8
• Population size: 2000
• Number of generations: 120
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(a) (b)

(c) (d)

Figure B.1: Pareto front plots made to tune the settings of the genetic algorithm. (a) crossover settings, (b) population size
settings, (c) number of generations settings, (d) convergence of each objective over 100 generations (pop 1000, cross 0.8).
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