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Abstract. Blockchains is a special type of distributed systems that op-
erates in unsafe networks. In most blockchains, all nodes should reach
consensus on all state transitions with Byzantine fault tolerant algo-
rithms, which creates bottlenecks in performance. In this paper, we
propose a new type of blockchains, namely Value-Centric Blockchains
(VCBs), in which the states are specified as values (or more comprehen-
sively, coins) with owners and the state transition records are then spec-
ified as proofs of the ownerships of individual values. We then formalize
the “rational” assumptions that have been used in most blockchains. We
further propose a VCB, VAPOR, that guarantees secure value transfers if
all nodes are rational and keep the proofs of the values they owned, which
is merely parts of the whole state transition record. As a result, we show
that VAPOR enjoys significant benefits in throughput, decentralization,
and flexibility without compromising security.

Keywords: Blockchain, Distributed Ledgers, Consensus Algorithm, Scal-
ability, Decentralization

1 Introduction

Blockchain technology, also referred as distributed ledger technology, considers a
distributed system operating in a network with untrusted nodes. In blockchains,
all nodes of the system apply the same rules to process consistent data, which
mainly takes form of data blocks chained with unbreakable hash functions.
We can categorize all existing blockchains into two categories by their data
structures: one follows the idea of Bitcoin [22] and we call Transaction-Centric
Blockchains (TCBs), and the other follows from Ethereum [32] and the classical
state machine replication model, we call Account-Centric Blockchains (ACBs).
The former is commonly referred as ledgers, since all data are transactions, i.e.,
value transfer records. The concepts of account and balance are not explicitly
emphasized. The latter, on the other hand, the states of nodes like their balances
and other variables are defined and the state transition records, e.g., the trans-
actions, are put to the back-end of the system. In either case, all nodes in the
blockchain system should essentially always keep a consistent state regardless
of whether the concept of state is explicitly emphasized. Then, in blockchains,
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nodes should only pre-agree with the initial state, i.e., the genesis block, and
then be able to use a consistent rule to independently validate each input and
then perform their state transitions. As a result, both TCBs and ACBs require
the complete state transition records to be acquired reliably and consistently by
all nodes in the network, which causes a critical bottleneck in the performance of
blockchain. In this paper, we use the term “traditional blockchains” to refer to
all blockchains that all nodes need to acquire the whole state transition records.

A straightforward consequence of the bottleneck is the scalability issue which
has been addressed in several other works [9, 31]. The throughput of blockchains
does not grow with the number of nodes as the requirement of communication,
computation, and storage grow at least proportionally to the number of nodes
in the network. Hence, the throughput is limited to the capacity of the least
capable node in the network and will not increase as the network grows.

Then, we also observe that centralization is an indirect consequence of the
requirement for the whole state transition record. As novel blockchain systems
are pursuing high throughput in terms of transaction per second (TPS), the
requirement for communication, computation, and storage becomes a threshold
too high for normal users to participate. Then, the participation threshold is
a crucial factor in evaluating the decentralization of the blockchain, since a
blockchain with a high participation threshold will be consequentially unfriendly
to normal users and more centralized, regardless of whether a fully decentralized
consensus algorithm is used.

The third problem we address in traditional blockchains is inflexibility. As
blockchains are decentralized by their nature, an upgrade or change to the system
is much more difficult than centralized systems as inconsistency might happen if
nodes follow different rules. Some examples of such inconsistency are “forks” like
Bitcoin Cash/Bitcoin and Ethereum Classic/Ethereum, which cause the system
to split and degrade in security.

In this paper, we address the problem of “all nodes need to acquire and agree
with all state transitions” which essentially causes all above mentioned problems.
To solve this problem, we propose a new type of blockchains called Value-Centric
Blockchains (VCBs) that are equally secure as traditional blockchains but re-
quires each node to only acquire partial state transitions. More precisely:

– We formalize the rationality of nodes in value transfer system, we call Ratio-
nality of Value Owner (RVO), which has already been explicitly or implicitly
used in almost all blockchains without specification.

– We propose a novel type of blockchains, called VCBs, which differ from
traditional blockchains as the states are specified as the distribution for
all values. A value can have an arbitrary amount and can be conceptually
interpreted as a banknote. Then, all state transitions are sorted into proofs
for the ownership of individual values. 1

1 Similar ideas can be found in many classical digital cash systems, i.e., Ecash [7, 8].
The relationship and difference between VCBs and early digital cash systems will
be discussed in Subsection 7.1.
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– We propose a VCB called VAPOR in which nodes only needs to hold the
proof of their own values. We further prove that it guarantees secure and
fully decentralized value-transfer under the RVO assumption. Moreover, with
examples, we show that VAPOR can be easily extended with extra function-
alities like fast payment channels.

– We show that VAPOR has significant advantages over traditional blockchains
in throughput, decentralization, and flexibility.

This paper is organized as follows. In Section 2, we formally introduce the
rationality of value owners in blockchains. Then, in Section 3, we introduce
VCBs, their features, and the conditions required for a valid VCB. In Section 4,
we introduce a VCB, called VAPOR, and prove that it guarantees reliable value
transfer. We show some examples of extension of VAPOR in Section 5 and show
the advantages of VAPOR over traditional blockchains in Section 6. At last, we
compare our system to some related works in Section 7 and conclude in Section 8.

2 Rationality of Value Owner

Blockchain technology is no stranger to the notion of rationality as it was in-
troduced as one of the fundamentals of Bitcoin. However, the rational behaviors
of nodes in blockchains, especially regarding the values they owned, are seldom
formalized. A commonly utilized rationality assumption is that rational trans-
action issuers are motivated to prove to the receivers that the transactions are
successful. It is mostly in the form of transaction fees, i.e., rational nodes would
like to pay reasonable transaction fees so that their transactions could be added
to the chains by the “miners”, which is shown as the evidences that the transac-
tions are successful. It has also been utilized in other forms, e.g., in the Tangle
[27], rational nodes will do a POW and validate two previous transactions to
make a transaction and in Omniledger [17], rational nodes will take initiative
in issuing their inter-shard transactions to all related shards and take effort in
completing the transactions.

There is another type of rationality, the rationality of receiving values, which
is mostly ignored in literature. In Bitcoin for instance, once a transaction is
issued, a rational receiver should observe the chain for the transaction and a
number of consecutive blocks to confirm the transaction. However, this is not
emphasized since in most blockchains, the receiver do not need to validate extra
information besides the blockchain itself. However, some off-chain solutions like
Lightning Network (LN) and Plasma [25, 26] introduce new requirements for the
rational receivers to validate some off-chain information to confirm a transaction.

Finally, we also specify a rationality, the rationality of holding values, which
is usually considered trivial. In the basic Bitcoin system, it is simply holding
the private key and keeping it secret. However, in current Bitcoin system, there
are some special transactions called Pay-to-Script-Hash (P2SH) transactions, in
which the values are locked by scripts that the value owners should be able
to provide. Then, in LN, rational nodes also need to keep certain “commitment
transactions” secretly. Moreover, they should actively monitor the chain to check
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if some specific transactions appear and take certain responses. Otherwise, their
received transactions could be canceled.

In this paper, we formally introduce the Rationality of the Value Owners
(RVO), which is the combination of all three rationalities mentioned above. These
rules are in fact no stronger than the common rationality assumptions made in
existing blockchains. We say that if a rational node follow the RVO rules, then
he (we use the pronouns “he” for a node throughout this paper) would use his
communication, computation, and the storage resources to perform the following:

– Rationality in Holding Value: If he owns a value, he will make sure that
he could prove the ownership.

– Rationality in Sending Value: If he sends a value, then he will take
responsibility of proving to the receiver that 1), he owned this value; 2), the
value is successfully transferred to the receiver.

– Rationality in Receiving Value: If he receives a value, then he will take
responsibility of validating 1), the authenticity of that value; 2), the value
transfer is successful.

3 Value Centric Blockchains

The data structure of VCBs is similar to many “off-chain” schemes like [19].
Each node individually puts its own transactions in off-chain transaction blocks
and periodically sends an abstract of those blocks to a globally agreed main
chain. Then, the key elements in VCBs are values and their ownership. A value
can be conceptually interpreted as a banknote with arbitrary denomination.
Virtually, there exists a list of all values in the system, their amount, and their
owners which updates with the system states. Moreover, for each ownership,
there is a proof and an verification algorithm that could be used to determine the
ownership, which consists of a subset of all transaction blocks. In this section, we
introduce the basic concepts in VCBs: the main chain, the values, the verification
algorithm, and the conditions required for a valid VCB, i.e., a valid VCB should
be able to guarantee secure value transfers between nodes.

3.1 Main Chain

For a VCB, we define the main chain as a sequence of data blocks chained
with unbreakable hash function, denoted by B = {B1, B2, . . .}. The main chain
should have the following property, which is essentially achieved by all traditional
blockchains.

Property 1 (Consensus on the Main Chain).

– Asynchronous Consistency: In the situation where the message delay in
the network is arbitrary, if an honest node agrees with a block Bi as the i-th
block of the chain, then another honest node will not agree with B′i 6= Bi as
the i-th block of the chain.
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– Synchronous Liveness: In the situation where the message delay in the
network could be bounded by a constant τ , if an honest node proposes a mes-
sage m, then eventually an honest node will agree with a block B containing
m.

The main chain has two functions. First, it serves as a global clock. Throughout
this paper, we use the term “the system is at state Bi” to represent a state that
the system has just reached consensus on Bi. Second, it is used to reach consensus
on data that needs global agreements, e.g., the initial value distribution, the
verification algorithm, and digital signatures of the transaction blocks of nodes,
which we will specify later.

3.2 Value, Ownership, and Proof

We assume that there are N nodes in the network, denoted by 1, 2, . . . , N . We
assume that there is a unique public key attached to each node and we can
match the node and its public key when both are shown. In VCB, at each
state of the system Bi, associated with a value vj , j = 1, 2, . . ., we have the
amount of the value Q(B1) = {Q(v1), Q(v2), . . . , } and the owner of the value
O(vj , Bi) ∈ {NA, 1, 2, . . . , N}. Here, O(vj , Bi) = NA suggests that this value
is not owned by anyone at state Bi. We define value distribution of state Bi as
V(Bi) = {[vj , O(vj , Bi)] : ∀vj}. The initial value distribution and the amount of
each value, i.e., V(B1) and Q(B1), are contained in the first block of the main
chain B1. Then, for a transaction, or more specifically a transfer of the value
vj from owner x to y, denoted by txm(vj , x → y), we will have O(vj , Bi) = x
and O(vj , Bi+1) = y for a certain state Bi. Furthermore, we define a verifica-
tion scheme, consists of an verification algorithm GetOwner(vj , Bi, p) and proofs
P (vj , Bi) for all i, j, that satisfies that 1), GetOwner(vj , Bi, p) returns O(vj , Bi)
if p = P (vj , Bi); 2), GetOwner(vj , Bi, p) returns “Fail” if p 6= P (vj , Bi). The
algorithm GetOwner(vj , Bi, p) should also be agreed in B1.

Now, we have all fundamental elements of VCBs: for a state Bi, there exists
a set of values vj ,∀j, their corresponding owners O(vj , Bi), their proofs of the
ownership of the values P (vj , Bi), and an algorithm GetOwner(vj , Bi, p) that
could determine the owner of a value when the proof is given.

Creating, Demolishing, Merging, and Dividing Values The creation and
demolition of values are crucial in many blockchains with Nakamoto-like con-
sensus algorithms, since usually part of the incentives is given by creating new
values. On the other hand, merging and dividing values are optional since the
value exchange does not require the values to be divisible or mergeable, e.g.,
fiat currencies with banknotes and coins. Hence, we introduce how values could
be created or demolished here, and the merging and dividing of values will be
introduced in Section 5.1 as an additional functionality.

The creation and demolition of value should be agreed by all nodes, thus
will be contained in the main chain. More precisely, to create a new value vj :
[vj , O(vj , Bi)] /∈ V(Bi), a statement [Add : vj , Q(vj), O(vj , Bi+1)] should be in
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block Bi+1. Similarly, to demolish value vj , we put a statement [Delete : vj ] in
block Bi+1.

3.3 Validity of VCB

As far as we know, a rigorous definition of a valid value transfer system is still
lacking, which remains a non-trivial and interesting topic for future research. In
this work, we aim to propose a system that provides an equivalent value transfer
functionality as other traditional blockchain systems, e.g., Bitcoin. Hence, we
have the following definition for a valid VCB.

Definition 1 (Valid VCB). Firstly, we give the following properties.

– Ownership: The owner of a value vj is able to validate the value and prove
it to others, i.e., if O(vj , Bi) = x, then node x will eventually have P (vj , Bi).
Moreover, the ownership can only be transferred by the owner.

– Liquidity: The owner of a value can transfer it to any other node within
a certain period of time, i.e., if O(vj , Bi) = x, then node x can make
O(vj , Bi+k) = y for some k, k ≥ 1.

– Authenticity: All values have at most one owner at each state, i.e., for all
vj , Bi, we have O(vj , Bi) ∈ {NA, 1, 2, . . . , N}.

A VCB is valid if and only if Ownership and Authenticity are guaranteed un-
der asynchronous network settings and Liquidity is guaranteed in synchronous
network settings.

3.4 RVO Rules in VCBs

In a VCB, the RVO rules becomes:

– Rationality in Holding Value: At a state Bi, if node x is the owner
of value vj , he will always make sure that he has a proof p such that
GetOwner(vj , Bi, p) = x unless he sends vj at Bi.

– Rationality in Sending Value: At a stateBk, for a value vj thatO(vj , Bk) =
x, if node x would like to send this value, he will take responsibility of pro-
viding to the receiver y: 1), the time of the transaction Bi, i > k; 2), a
proof p such that GetOwner(vj , Bi−1, p) = x and; 3), a proof p such that
GetOwner(vj , Bi, p

′) = y.
– Rationality in Receiving Value: For node y to receive this transaction,

it will check 1), GetOwner(vj , Bi−1, p) = x; and 2), GetOwner(vj , Bi, p
′) = y.

4 VAPOR

In this section, we propose a VCB, namely VAPOR, which stands for the five
basic elements of our system, Value, Agreement, Proof, Ownership, and Ratio-
nality. As introduced in Section 3, a valid VCB should have the following.
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– A main chain that guarantees Property 1.
– The owner and proof of valueO(vj , Bi), and a valid authenticating scheme in-

cluding P (vj , Bi) for all i, j and a verification algorithm GetOwner(vj , Bi, p)
as described in Subsection 3.2.

Now we describe these two parts in VAPOR. Then, we prove its validity and
state its features.

4.1 Main Chain and Its Consensus Algorithm

There are two major types of algorithms that could achieve Property 1: BFT al-
gorithms and Nakamoto-like algorithms. The former includes [6, 13, 18, 21] which
explicitly requires the identity/public keys and the number of nodes to be prede-
termined and known by all nodes. The latter is inspired by Bitcoin and has been
greatly developed in recent years. It contains a large number of algorithms such
as Proof-of-Work based algorithms [10, 16, 24], Proof-of-Stake based algorithms
[4, 12, 15], Directed Acyclic Graph based algorithms [27, 29, 30], etc. This type of
algorithms do not require nodes to be predetermined. However, economical and
game theoretical aspects have to be introduced to prevent Sybil attack as well as
to encourage honest behaviors, and Property 1 is achieved with overwhelmingly
high probability rather than absolute.

In VAPOR, any of the existing consensus algorithms that guarantee Prop-
erty 1 (with a high probability) can be used for the main chain B = {B1, B2, . . .}.
Then, VAPOR has the same requirements as the consensus algorithm and achieve
the same level of security. For instance, if PBFT [6] is chosen, then VAPOR al-
lows less than 1/3 of the predetermined nodes to be malicious. Then, if Bitcoin
POW is chosen, then VAPOR tolerates less than 1/4 of the total mining power
to be malicious [11] and the confirmation of the transactions is probabilistic.

4.2 Proofs and the Verification Algorithm

The main content of VAPOR is transactions. The proofs of the ownership of
values are just different subsets of the whole transaction set. Here, we first in-
troduce the data structure of the transactions, then introduce how the proof is
chosen for each value.

Transaction Blocks In VAPOR, each node independently makes transaction
blocks with the transacitons sent by itself. A transaction txm(vj , x → y) is
defined as

txm(vj , x→ y) = [vj , y, sn],

in which sn is an internal serial number generated by node x to identify his
transactions. Since transactions are then put in blocks with index of x, x is
omitted in individual transactions. Note that here m is a virtual global trans-
action identifier we used in this paper and it does not actually acknowledged
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by any node. Periodically, a node puts transactions in a transaction block b and
send an abstract,

a(x) = [x,H(pkx), Sigx(x|H(pkx)|MR(b))],

to reach consensus on the main chain, where H(pkx) is the hash of the public
key of x and Sigx(H(pkx)|MR(b)) is a digital signature made with H(pkx)
concatenated with the Merkle root of b encrypted by the private key of x. In
each round, at most one abstract from a node can be included in the main chain.
If multiple different abstracts from the same node are received in the same round,
then only one of them is considered valid. By the property of digital signature,
the content of b is immutable once the abstract a(x) is confirmed on the main
chain. Hence, we denote the abstract a(x) contained in block Bi by ai(x) and
the block b by bi(x) and call it a confirmed block. Then, as B is agreed by all
nodes, blocks bi(x),∀x will also form a chain that as immutable as B. Then, we
define CB = {bi(x),∀i, x}.

Transaction Fee for Abstracts In our system, instead of individual transac-
tions, the consensus is only reached on the abstracts. Then, for many consensus
algorithms, a transaction fee should be provided to the block proposers, namely
the miners, for them to include the abstract. The amount of the transaction fee
should not be fixed so that a market can be created between the nodes and the
miners. It can be achieved by introducing a new type of transactions in which
the receiver is the miner, i.e., in a transaction block bi(x), node x could create
transactions in form of txm(vj , x→ [miner]) = [vj , x, [miner], sn], where [miner]
is a variable that equals to the proposer of the block Bi. A non-trivial problem
for the transaction fee is that the sender of this transaction does not know the
receiver in advance, which hinders him from sending the proof to the receiver.
Hence, in the scope of this paper, the transaction fees are only feasible if the main
chain uses BFT algorithms or algorithms that the block proposer is determined
before the block, e.g., [10, 12, 15]. Then, the sender will give the proof of this
transaction to the corresponding node so that the abstract would be included.

Value Ownership and Proof Firstly, we define the ownership of values as
the following.

Definition 2 (Value Ownership).

– The initial value ownership is agreed on the main chain, either by the initial
value distribution in B1 or value creation in Bk, k ≥ 1.

– We assume that node x started owning a value vj at Bi′ . Then, he will transit
the ownership of this value to node y if he makes a transaction in a confirmed
block bi(x) and has not make any transaction of this value in any confirmed
blocks bk(x), k ∈ [i′ + 1, i− 1].

– If there are more than one transaction of the same value in one transaction
block, it is a clear sign of an attempt of double spending. Hence, we forbid
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this by stating that if a value is transacted more than once by its owner in a
confirmed block, then the owner of that value is NA.

Then, we define the proof P (vj , Bi) as a subset of CB, which is essentially
all confirmed transaction blocks that are considered in the second item of Def-
inition 2, as well as all necessary public keys to verify them. The algorithm
Proof(vj , Bi, CB) can be used to get the proof P (vj , Bi), which is given in Ap-
pendix A.

Verification Algorithm Further, as defined in Subsection 3.2, a verification
algorithm in a VCB should be able to determine the ownership when the proof
is given and output “Fail” if any input other than the correct proof is given.
In Algorithm 1, we propose GetOwner(vj , Bi, p) that outputs O(vj , Bi) if p =
P (vj , Bi) and outputs ‘Fail’ for p 6= P (vj , Bi).

Algorithm 1 Verification Algorithm GetOwner(vj , Bi, p)

Get the block of initial distribution (creation) of value vj in the main chain: Bindex

Set owner according to the initial distribution from the main chain.
index++;
while aindex(owner) exists in Bindex do

if bindex(owner) or the public key of owner does not exist in p then return Fail;

if Merkle root and signature do not match then return Fail;

count← number of transactions of vj in bindex(owner);
if count = 0 then

index++;
else if count = 1 then

index++;
owner← the receiver of the transaction of vj ;

else return Fail;

if index > i then
if All data in p are blocks and all blocks have been checked then return

owner;
else return Fail;

The validity of GetOwner(vj , Bi, p) as an verification algorithm could be easily
shown. First, it uses the same method as the second item in Definition 1 to
check whether p consists of the exact transaction blocks as P (vj , Bi) and any
mismatch returns ‘Fail’. Then, since the algorithm use exactly the same rules
as the definition of ownership to determined the owner, it returns O(vj , Bi) if
p = P (vj , Bi).

4.3 Validity of VAPOR

Here, we prove that VAPOR is a valid VCB under RVO rules and the consistency
of the system is uncompromised even if RVO rules do not hold.
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Theorem 1. In VAPOR, the properties of a valid VCB will hold in the following
conditions.

Properties Ownership Liquidity Authenticity

Conditions RVO rules Synchrony —

Due to space limitation, we only give an outline of the proof and provide the
full proof in Appendix B. The Ownership could be proved by induction: for each
owner of the value, he is always able to receive the proof of the value from a
rational previous owner. Moreover, only the owner can transfer the value since
the transaction only happens when the block is confirmed. The Liquidity follows
from the Synchronous Liveness property of the main chain. Then, the Authen-
ticity follows from the Asynchronous Consistency of the main chain, which also
guarantees the consistency of all confirmed transaction blocks. Then, Authen-
ticity is proved as at each state, the values, owners, and proofs are based on the
confirmed transactions blocks in a deterministic and one-to-one mapped fashion.

The holding condition of each property in Theorem 1 provides a good in-
sight on VAPOR and its differences from traditional blockchains. First, even if
RVO rules do not hold, e.g., a sender refuses to send the proof to the receiver, it
only causes a fail to prove the ownership of this exact value. The Liquidity and
Authenticity of the system are not violated and other values are not corrupted.
Second, the Ownership does not depend on synchrony. Hence, if a value is trans-
ferred and the network lose synchrony for Liquidity, the proof of the value could
still be delivered to the receiver if the sender is rational.

4.4 Features of VAPOR

The most distinctive feature of VAPOR is that each node only needs to acquire
and keep the proofs of the values that it owns, i.e., at a state Bi, node x only
needs to have P (vj , Bi),∀O(vj , Bi) = x. To efficiently record the proofs, we
propose the following implementation:

– The main chain is stored and updated according to the consensus algorithm.
– A node keeps a transaction block database of for all confirmed transaction

blocks that he has.
– A node keeps a value ownership table that updates with the main chain and

keeps track of the values, their owners, and the proofs that he knows, which
includes his own values. The proofs are simply pointers to the transaction
block database.

Comparing to TCBs and ACBs, a transaction of multiple values need to be
recorded as multiple transactions in VAPOR. However, for all these transactions
plus all transactions included in the same transaction block, only one signature
is required in VAPOR, which is in fact more efficient in storage. The commu-
nication is also efficient as transaction blocks are acquired directly from the
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sender of the value with point-to-point communication and guaranteed security
under the RVO rules. Moreover, the receivers could inform the sender about the
transaction blocks that it already has to avoid overhead. Then, as a trade-off
between storage and communication, a node can choose to not delete the proofs
of the already spent values. This means that they do not need to re-acquire some
transaction blocks for future received values.

5 Extending VAPOR by Modifying the Verification
Algorithm

In Section 4, we introduced how transactions could be verified with the verifica-
tion algorithm GetOwner with the proof P (vj , Bi). In this section, we show the
flexibility of this framework by providing examples of extended functionalities.
More precisely, we will show that the functionalities of value division, fast off-
chain transactions, and value-related smart contracts can be easily achieved by
simple modifications to the verification algorithms.

5.1 Value Division

The functionality of value division can be achieved with a new type of transac-
tions called value division that has the form:

[Divide : vsource → (vsource,1, Q(vsource,1)), . . . , (vsource,n, Q(vsource,n)).

The index source forms a chain that can be traced back to the origin. Then, to
validate a value divided from another value, we simply call GetOwner to check
the owner of each value on the chain recursively from the origin. This new type
of transactions can either be added by making modifications to GetOwner or
defining another algorithm GetOwnerDV on the main chain that recursively calls
GetOwner. We describe GetOwnerDV in Appendix C.

5.2 Fast Off-chain Payment

In VAPOR, the confirmation of the transaction is dependent on the main chain,
thus it essentially has the same latency as traditional blockchains. However, a
fast off-chain payment solution like LN or Plasma [25, 26] can also be deployed in
VAPOR. Briefly speaking, an off-chain payment scheme works as follows. Firstly,
some value is locked on the main chain as the deposit for the “fast payment chan-
nel” to a particular receiver. Then, transactions can be made to that receiver
without confirmations on the main chain. The safety of the transactions are
guaranteed by a mechanism for the receiver to take all deposit when the sender
tries to cancel a transaction. However, this mechanism requires synchrony be-
tween the receiver and the main chain. Then, there is a mechanism allowing the
sender to safely shut the off-chain payment channel at any time.

In VAPOR, similar ideas can be implemented under the same synchrony
assumption. A node can independently lock its values for a receiver and then
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makes off-chain transactions by signing them and sending signed transactions to
the receivers as proofs. Then, the verification scheme should be modified to be
able to verify these proofs. The detail of this scheme will be given in Appendix D.

5.3 Smart Contracts

In the previous subsections, it is revealed that additional functionalities can be
easily achieved by changing the rules for verification, which is merely a mod-
ification to GetOwner, or agreeing on new verification algorithms on the main
chain. In fact, as long as values are transferred and there are interested parties
following RVO rules, smart contracts can be written in VAPOR as new verifica-
tion algorithms with one principle: only data that is against the value owners’
interest is required to be put on the main chain and other data can be safely
moved off-chain to the corresponding value owners. We give an example of such
smart contracts, a betting game, in Appendix E.

6 Advantages of VAPOR

It has been shown that in VAPOR, nodes do not necessarily need to record
the whole transaction set to allow secure value transfer. This fundamental dif-
ference from traditional blockchains leads to the advantageous in throughput,
decentralization, and flexibility.

6.1 Throughput

The most straightforward advantage of VAPOR is the throughput because nodes
only need to acquire the proofs of their own values instead of the whole trans-
action set, as stated in Subsection 4.4. However, this improvement is not trivial
to quantify as it depends heavily on the networks and the transaction patterns.
Here, we theoretically analyze the throughput in terms of the transaction cost
C, defined as a combination of the expected bandwidth, computation, and stor-
age resources required to communicate, validate, and store a transaction in the
whole network.

Unlike traditional blockchains, the cost of an individual transaction in VA-
POR is determined by the proof size, which is situational. Hence, we calculate
C by looking at the expected transaction blocks in a round that a node even-
tually needs to acquire, which we denote by b. Then, we have C = O(b) since a
transaction will be eventually acquired by b nodes on average. Let us consider a
transaction block bi(x). It will eventually be acquired by node y if node x holds
a value at state Bi and at a state Bj , j > i node y receives that value. In other
words, for the set of values Vi(x) holding by node x at state Bi, if all other nodes
will receive a value from Vi(x) sometime in the future, then VAPOR have no
throughput gain over traditional blockchains. In all other cases, as long as there
exists some nodes that will never acquire any value in Vi(x), then we have b < N
and VAPOR has a throughput benefit.
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In [28], a concept of spontaneous sharding is proposed, which roughly works
as the following. When performing a transaction, a rational node will choose the
value with the least transaction blocks to transmit among all values that he has.
In other words, they tends to use the values for which the most part of the proof
is already known and validated by the receiver, e.g., the value that once owned
by the receiver. As a result, some values will only cycle in a part of the network,
namely a shard, instead of the whole network. Then, a node holding g values is
equivalent to participating in g shards and b will then equal to the expected size
of the union of these shards. Then, it is shown in [28] that in many scenarios,
we have C = O(b) = o(N), i.e., the throughput will scale out. Note that any
group of frequent transacting nodes can decide to perform this optimization at
any time to gain the throughput benefit, regardless of the rest of the network.
Hence, since spontaneous sharding gives direct benefit to individuals even if
other nodes refuse to cooperate, the “the tragedy of the commons” [14] problem
will not occur. We refer the readers to [28, Remark 2] for more discussion.

6.2 Decentralization

In Section 1, we address the centralization problem due to the high participation
threshold. In VAPOR, this problem is significantly mitigated due to the value
centric principle: nodes only transmit and store the data needed for validation of
their own values, which is mostly not the whole transaction set. For example, in
traditional blockchains, for nodes who only own a few coins in a blockchain, they
still have to acquire and validate the whole chain to validate their own values
and make transactions. In VAPOR, their cost of validating their own values and
making transactions is O(1).

6.3 Flexibility

As shown in Section 5, VAPOR enjoys benefits of easy modification, extension,
and upgrading by simply agreeing on new verification algorithms on the main
chain. However, this can be pushed one step further by allowing nodes to in-
dividually choose the algorithms that they like to use. Then, hard forks like
Bitcoin/Bitcoin Cash or Ethereum/Ethereum Classic can be avoided. Instead,
the forks will be “hidden” as some values might not be validated by some users
as they disagree with a certain rules. However, they could still agree with the
main chain and contribute to the security of the entire system. We consider this
as an advantage of flexibility, as nodes are more freely to agree/disagree with
each other, without destroying the consistency of the whole system as long as
they have the basic agreement.

7 Related Works

This work is mainly inspired and developed from [28]. However, it does has
similarities to other studies if we view VAPOR in different perspectives. We
explain the similarities and relations of this work and other works in this section.
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7.1 Value Centric Principle

The origin of describing value transfer systems by values (or alternatively called
coins, notes, bills) can be dated back to some pioneering digital cash works like
[7, 8, 23]. However, in these schemes, the notions of value and transaction are
interchangeable as a central authority is required to validate each transaction.
Hence, Bitcoin, as well as most of its successors known as alt-coins, use TCBs
that focus on the validity of individual transactions rather than the value. The
main difference from TCBs and VCBs can be clarified using the example of the
Simple-Payment-Verification (SPV) nodes in Bitcoin. SPV nodes could verify
whether all related transactions of a value are validated by the miners and are
on-chain, but they could not validate the authenticity of this value, i.e., could
not detect double-spending.

Chainspace [2] is a blockchain with sharding that uses a similar value-centric
idea for inter-shard transactions, i.e., each transaction should include a “Trace”
pointing back to the source of the value, so that the validators from the value-
receiving shard only need to check the shards of the sources to prevent double
spending. However, it has more redundancy as the value-centric idea is used in a
shard level instead of the node level, and thus has less throughput improvement
comparing to VAPOR.

7.2 Off-Chain and DAG Techniques

In the perspective of data structure, VAPOR has its similarities to many off-
chain systems like RSK [19] as data is stored off-chain and a main chain is
used for the hash of the data. However, most off-chain systems compromise in
decentralization as some trusted nodes are required to validate the contents of
the off-chain data. Also, comparing to the off-chain payment schemes like LN
and Plasma [25, 26], VAPOR essentially moves all proofs for values off-chain. As
a result, it is no longer necessary to use deposits to enforcing the consistency
of the off-chain and on-chain values. Then, it is also similar to Hashgraph [3]
in the sense that node individually create their own transactions. However, in
Hashgraph, all nodes eventually need the whole transaction set.

7.3 Sharding

Recently, many sharding schemes have been proposed to divide the network into
small shards. Then, the transactions in a shard do not need to be communicated
outside the shard. However, a key problem is that the double spending prevention
of inter-shard transactions relies on the security of shards instead of the whole
network, which is a degradation in the security. Shards can be either determined
artificially by the network topology [5] or at random [17, 20], or determined based
on applications or users [1, 2], to reduce the number of inter-shard transactions
as well as the probability of malicious shards. However, our system guarantees
no degradation on security since essentially, the shards are spontaneously formed
by the value transfer patterns. In other words, all shards are secure for their own
intra-shard transactions and there will be no inter-shard transactions.
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7.4 Performance Comparison

It is difficult to make fair throughput comparison between VAPOR and other
systems using a uniform standard, e.g., transaction per second (TPS), as schemes
have different security assumptions and the throughput also depends on the net-
work settings. Therefore, we use a theoretical approach to analyze and compare
the throughput and security of VAPOR with a typical system of each kind, i.e.,
LN for off-chain schemes, PHANTOM for DAG, and Omniledger for sharding
schemes. We consider the transaction cost C (defined in Subsection 6.1) and
the security S of a transaction, which is defined as the amount of compromised
nodes (corresponding resources for POW or POS) required to perform a double-
spending attack. We present the results in Table 1.

Schemes VAPOR LN PHANTOM Omniledger

C O(b) O(1) O(N) O(d)

S O(N) O(1) or O(N) O(N) o(N)
Table 1. The cost and security of a transaction in VAPOR, LN, PHANTOM, and
Omniledger for the whole network. Here b is the average transaction blocks of each
state acquired by a node and d is size of the shard.

The cost and security of VAPOR are given in Subsection 6.1 and Subsec-
tion 4.3, respectively. For LN, note that this transaction is different from classi-
cal notion of transactions as it relies on a deposit and the value would be locked
until the channel is shut down. The security relies on the synchrony between the
receiver and the system (explained in Appendix D), thus would be compromised
if either one is compromised. PHANTOM uses a block DAG structure to remove
the dependency of security on the throughput of a chain-structure blockchain.
However, all nodes still need to eventually acquire all transactions and the sys-
tem will not scale out. Omniledger reduces the cost to O(d) where d is the shard
size and promises a throughput benefit that is proportional to N/d. However, as
Omniledger yields a random approach to keep the malicious nodes within each
shard to be below 1/3, the security of the system becomes a non-trivial function
of d and N , which is dominated by N but not explicitly stated in [17].

8 Conclusion

In this paper, we address and formalize the fundamentals of a value-transfer sys-
tem and the rationality assumptions. The highlight of this work is that we clarify
the redundancy in traditional blockchains for value-transfer and how this redun-
dancy can be removed by using the rationality assumptions and VCBs. We hope
that this work would set a theoretical framework for future blockchain designs
and inspire many theoretical studies on other basic concepts in blockchains, e.g.,
the rational assumptions in non-value-transfer blockchains.
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A Algorithm Proof(vj, Bi, CB)

We define the proof of the ownership P (vj , Bi) as a subset of CB that output by
an algorithm Proof(vj , Bi, CB) shown in Algorithm 2.

B Proof for Theorem 1

Proof. Firstly, we prove Ownership by induction. It is clear that the first owner
of any value vj will have the proof of this value, which are basically all of his
public key and his own confirmed transaction blocks until the block before the
one that spends it. Then, assume that the t-th owner of vj , denoted by ot,
has the proof P (vj , Bk) proving the ownership O(vj , Bk) = ot at state Bk.
Then, assume that the t+ 1-th owner, ot+1 starts to own the value at state Bi,
i.e., O(vj , Bi−1) = ot, O(vj , Bi) = ot+1. Then, by the definition of proof, there
exists a transaction in bi(ot) that send the value to ot+1. By the Rationality of
Holding Value in RVO, ot would not make this transaction unless he would like
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Algorithm 2 Proof(vj , Bi, CB)

Get the block of initial distribution (creation) of value vj in the main chain: Bindex

Set owner according to the initial distribution from the main chain.
index++
Proof={}
while aindex(owner) exists in Bindex do

if Merkle root and signature do not match then return Proof

Add bindex(owner) and the public key of owner to Proof

count← number of transactions of vj in bindex(owner)
if count = 0 then

index++
else if count = 1 then

index++
owner← the receiver of the transaction of vj .

else return Proof

if index > i then return Proof

to send this value. Then, by the Rationality of Sending Value in RVO, ot will
take responsibility of giving proof P (vj , Bi) to ot+1. Again, by the definition of
proof, P (vj , Bi) is merely P (vj , Bk) ∪ {bl(ot) : k < l ≤ i} ∪ {public key of ot},
which can be independently provided by ot. Hence, we prove that in this case
ot+1 will eventually has the proof P (vj , Bi). Furthermore, it is clear that only
the owner of a value could transfer it as a transaction must be included in a
block confirmed with the private key of the owner.

Then, we prove Liquidity. To transact a value, the owner simply needs to
put a transaction in a confirmed transaction block. Then the property (Partial)
Synchronous Liveness in Property 1 guarantees that the transaction block can
be confirmed as the abstract will be included in the main chain.

At last, we prove Authenticity. This is actually guaranteed by the design of
VAPOR. Firstly, the initial ownership of a value is unambiguous because it is
on the main chain which has Asynchronous Consistency in Property 1. Then,
the ownership transition is always determined by a confirmed block which is
immutable. Then, there are three possibilities for the number of transactions of
the same value in a confirmed block: 1) if there is no transactions of that value,
then the ownership remains unchanged; 2) if there is one transaction of that
value, then the ownership is changed to the receiver; 3) if there are more than
one transactions of that value, then the ownership becomes NA. Since all three
possibilities result in unambiguous ownership, we proved Authenticity. �

C Verification Algorithm for Value Division GetOwnerDV

Here we introduce GetOwnerDV in Algorithm 3. Note that in here, a minor mod-
ification should be made on GetOwner so that the result will not be ‘Fail’ if
redundant elements are detected in p.
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Algorithm 3 Verification Algorithm for Divided Value GetOwnerDV(v[seq], Bi, p)

Find all value division transactions and their corresponding states in p. Order the
states by [s1, s2, . . .];
j ← the first entry of [seq];
t← 1;
while t ≤ the length of seq. do

owner = GetOwner(vj , Bs1 , p);
Check if the corresponding value division transaction is in bst(owner) and the

sum of the amount of the divided value equals to the amount of the source value.
Return ‘Fail’ if the check fails.

t + +, j = [j, next element in seq];

if All blocks in p are checked then return owner

else return Fail

D Off-chain Payment Scheme

Our fast payment scheme contains two new type of transactions, two new types
of message to the main chain, and a new verification algorithm GetOwnerFP. If
node x wants to make fast payment to node y, he simply performs the following:

– Node x makes deposit transactions to lock up a number of values with in-
dications that they could only be send to y, confirm the blocks, and send
them to node y to initialize the fast payment.

– When a fast payment of value vj is issued, node x sends a signed transaction
of vj to node y, denoted by tx. Then, node y can include this transaction in
his own blocks at any time and confirm them to receive the value.

– When node x wants to end the fast payment and unlock a value vk, he sends
an unlock message to the main chain.

– The unlock will succeed in T rounds if no objection message shows in the
main chain. An objection message can be made by any node by sending tx
to the main chain.

Then, in GetOwnerFP we define three new rules on checking the proofs for own-
ership:

1. A value vj locked by node x is no longer considered as owned by x, but NA
indicating no owner. It will be reconsidered as owned by x if there is only
one unlock message is on the main chain, assume that it is included in Bi,
and there is no objection message included in Bk, i+ 1 ≤ k ≤ i+ T .

2. A value vj is transacted from node x to node y in state Bi if it is locked
by node x to send to node y at a state Bi′ , i

′ < i, and there is a signed
transaction by x included in block bi(y). There should not be a unlocking
message for this value on the main chain that is not responded for more than
T blocks.

Note that although a fast transaction is only confirmed when the block is con-
firmed, the transaction itself is completed as soon as the signed transaction is
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received by node y, since node y can then independently make the proof of him
owning this value.

Some drawbacks in existing off-chain payment schemes, e.g., LN, are: 1),
the values in the transactions and deposit will be locked until the channel is
closed. Hence, it is a different type of transaction and can only be considered as
a supplement to the value transfer system. 2), the receiver should have a certain
synchrony, i.e., the receiver should be able to issue a transaction to the chain to
take the deposit before it is refunded to the sender when he catches the sender
cheating. 3), the security of this scheme is not formally proved. A big advantage
of the off-chain payment scheme in VAPOR is that node y can spend vj as soon
as he owns it, without requiring shutting down the whole channel, i.e., all deposit
values been spend or unlocked. Moreover, we could use similar arguments as the
proof in Subsection 4.3 to prove the Ownership property holds when the network
is synchronous and the RVO rules apply.

E Betting Game

Here, we give a smart contract for on-chain betting. Node x and node y would
like to bet even or odd on the hash of block Bi. Then, we simply add a new
type of transaction which is Bet : [vj , x, y, Bi, sn]. The bet transaction will lock
the value vj until Bi with one unlocking condition: another value with the same
amount is bet by y before Bi with x and the ownership will depend on the hash
of Bi. Then, the verification algorithm is simply checking the lock transaction,
the ownership for both values, and the hash of Bi, i.e., if node x bet on even,
then the ownership of both locked values will be node x at state Bi if the hash
of Bi is even.

However, the difficulty is to make sure that both node x and node y could get
the proofs of ownership and the locking message for both values. This is a prob-
lem since there is always one node in the betting would benefit from not sharing
the proof and/or the locking message, which will cause a scenario similar to Two
Generals Problem. As a result, the verification algorithm must also check for a
confirmation send by one node on the main chain, which shows the agreement
for both nodes that both proofs are acquired. Without such confirmation, the
value will be unlocked at state Bi to its original owner.


