
Evaluating and Enhancing the Robustness of Proximal
Policy Optimization to Test-Time Corruptions in

Sequential Domains

Mate Rodić1
Supervisor(s): Frans Oliehoek1, Mustafa Celikok1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Mate Rodić
Final project course: CSE3000 Research Project
Thesis committee: Frans Oliehoek, Mustafa Celikok, Annibale Panichella

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Reinforcement learning (RL) agents often achieve
impressive results in simulation but can fail catas-
trophically when facing small deviations at deploy-
ment time. In this work, we examine the brittle-
ness of Proximal Policy Optimization (PPO) agents
when subjected to test-time observation noise and
we evaluate techniques for improving robustness.
We compare four variants: feed-forward PPO, Re-
current PPO (with LSTM memory), Noisy-PPO
(trained with injected observation noise), and
Recurrent-Noisy PPO, across two benchmarks: the
classic CartPole-v1 and the more realistic Highway-
env. Performance is measured over 100 episodes per
corruption level, using mean return, success rate,
and the Area-Under-Degradation-Curve (AUDC) as
robustness metrics. Our results show that
recurrent-noise-augmented training yields the largest
gains, as Noisy-PPO maintains its clean performance
at high noise levels, while recurrence alone offers
modest improvements. In the highway environment,
both training noise injection and LSTM memory
yield improved returns across both environments,
indicating that a simple integration of noise aug-
mentation or recurrence can, to some extent, im-
prove PPO’s robustness to real-world uncertainties.

1 Introduction
Reinforcement learning (RL) has become a leading
approach for sequential decision-making, with suc-
cesses in finance, healthcare, and game-playing [13].
Yet agents that perform well in simulation often fail
when realistic deviations occur at test time. We call
such a sudden collapse in performance brittleness.
In contrast, robustness is the ability of an agent to
continue operating effectively despite minor pertur-
bations, such as sensor noise or control delays.

In real-world applications, such as robotic ma-
nipulation, personalized recommendation, or finan-
cial trading, even slight corruptions (e.g. Gaussian
observation noise, delayed actions, or adversarial in-
puts) can cause unexpected failures. Ensuring ro-
bustness under these conditions is critical for safe
and reliable deployment.

We evaluate robustness on two standard bench-
marks. CartPole-v1 is a simple control task with
a four-dimensional state (pole angle, cart position,
etc.) and two discrete actions; the goal is to bal-
ance a pole on a cart for as long as possible [1].
Highway-env is a richer driving scenario with con-
tinuous observations (vehicle positions, speeds, lane

indicators) and a discrete action set (accelerate, brake,
lane-change); it tests an agent’s ability to navigate
multi-lane traffic safely [7].

Previous work on improving the robustness of
RL agents has used methods like adversarial train-
ing [9], domain randomization, and data augmen-
tation [8]. These approaches help agents generalize
better, but they rarely test how policies hold up
against precise, controlled perturbations at deploy-
ment time.

Proximal Policy Optimization (PPO), proposed
by Schulman et al. [12], is a popular on-policy algo-
rithm because it keeps each policy update small and
reliable, leading to stable learning. An extension
called Recurrent PPO [10] adds an LSTM layer, a
type of neural network unit that can remember in-
formation over time, to help the agent handle envi-
ronments where not all state information is visible
at once.

Despite these advances, we still lack a head-to-
head comparison of how much memory (via LSTMs)
or training-time noise injection each helps reduce an
agent’s brittleness when it faces real-world corrup-
tions like sensor noise or delayed actions.

This research aims to fill that gap, investigating
how small, controlled test-time corruptions, specifi-
cally Gaussian observation noise, because it closely
models real sensor error and environmental ran-
domness, affect standard PPO agents in classic Gym
environments (CartPole-v1 and Highway-env). We
evaluate whether enhancements such as recurrent
architectures (Recurrent PPO) or explicit training-
time noise injection (Noisy-PPO), or a combination
of the two (Noisy Recurrent PPO), can effectively
counteract performance degradation.

More specifically, we ask: (1) How does stan-
dard PPO performance degrade as test-time per-
turbations increase? (2) To what extent can recur-
rent architectures or noise-augmented training mit-
igate this degradation? We provide systematic ex-
perimental evaluations, comparisons among PPO,
Recurrent PPO, and Noisy variations of PPO and
recurrent PPO, and statistical analyses of results.

The remainder of the paper is structured as fol-
lows: Section 2 describes in more detail the work re-
lated to our project, the following section details our
methodology of the research, Section 4 presents ex-
perimental results and analysis, Section 5 concludes
our research, while Section 6 discusses responsible
research considerations. Appendix includes addi-
tional remarks about LLM usage and execution of
training jobs.

1

2 Related Work
Many researchers have looked at making RL agents
more robust to uncertainty and adversarial inter-
ference. Pinto et al. [9] frame a minimax game
where an adversary perturbs observations or ac-
tions, and show that adversarial training produces
policies that handle worst-case disturbances better.
Domain randomization methods [15] train agents
on a variety of simulated variations, such as physics
parameters or sensor noise, so they transfer more
reliably to real environments. Moos et al. [8] study
data augmentation in continuous-control tasks by
adding noise to observations during training to boost
generalization.

Proximal Policy Optimization (PPO), introduced
by Schulman et al. [12], is widely used because it
uses a clipped objective to keep each policy up-
date small and stable. However, the original PPO
assumes perfect sensors and no action delay. To
cope with partial observability, Pleines et al. [10]
add an LSTM layer to PPO and report small gains
in hidden-state tasks, but they do not test noise ro-
bustness. NoisyNet [2] injects parameter noise to
encourage exploration, yet it does not address cor-
ruption at test time.

More recent work directly evaluates test-time ro-
bustness. For example, Zhang et al. [16] measure
how policies degrade under Gaussian and adversar-
ial noise and find that training with noise helps, and
Huang and et al. [6] introduce a noise curriculum
during training to improve stability. These studies,
however, usually consider only one type of pertur-
bation or one environment.

Our study aims to fulfill this void by system-
atically testing PPO under a controlled corruption
(Gaussian observation noise) by comparing four vari-
ants (standard PPO, Recurrent PPO, Noisy-PPO,
and Recurrent-Noisy PPO) across two gym envi-
ronments, using paired statistical tests to isolate
the benefits of memory versus noise injection.

3 Methodology
This section describes our experimental framework
for assessing the robustness of Proximal Policy Op-
timization (PPO) variants under controlled test-
time corruptions. We begin with an overview of
the environments, then present the four algorithmic
configurations, detail the corruption mechanisms,
and finally define our evaluation metrics and statis-
tical tests.

3.1 PPO Algorithm and it’s Variants
Proximal Policy Optimization (PPO) [12] is an on-
policy, policy-gradient algorithm engineered for sta-
ble and efficient training. As an on-policy method,
it learns from data generated by the most recent
version of the policy. The core of PPO’s stabil-
ity lies in its distinctive clipped surrogate objective
function, which prevents destructive, large-scale pol-
icy updates.

After collecting a batch of trajectories with the
current policy, PPO optimizes the following objec-
tive:

L(θ) = Et

[
min

(
rt(θ)At, clip(rt(θ), 1−ϵ, 1+ϵ)At

)]
,

Here, rt(θ) represents the probability ratio between
the new and old policies, At is the estimated advan-
tage of an action, and ϵ is a hyperparameter defining
the clipping range. By clipping the ratio rt(θ), the
objective function discourages policy updates that
deviate too far from the previous policy, effectively
enforcing a trust region constraint without the com-
putational overhead of second-order methods.

Rather than implementing PPO from scratch,
our experiments are built upon the stable-baselines3
library (v2.2.1), as well as sb3-contrib (v2.2.1) in
case of recurrent PPO, a standard for reproducible
reinforcement learning research. Our baseline con-
figuration uses the library’s default PPO agent, mean-
ing that for all agents, we used a learning rate of
x=0.0003, a discount factor of 0.99, a GAE lambda
of 0.95, and a clip range of 0.2. Our noise-augmented
versions of PPO algorithms are built upon the men-
tioned baselines, using a noise-injection wrapper.
By using these already well-tested implementations,
we ensure our focus remains on the comparative
performance of these distinct architectures.

To isolate the effects of memory and noise-based
training, we compare four PPO-based configura-
tions:

3.1.1 Feed-forward PPO

The baseline uses a multilayer perceptron for both
policy and value networks, following the original
PPO formulation [12]. The network architecture
consists of two hidden layers with 64 units each.
No recurrence or noise injection is applied during
training.

2

3.1.2 Recurrent PPO

Recurrent PPO extends the feed-forward policy by
inserting a Long Short-Term Memory (LSTM) layer
after the final dense layer. An LSTM is a type of
recurrent neural network that maintains an internal
hidden state and a cell state, controlled by input,
forget, and output gates. This gating mechanism
allows the agent to selectively retain or discard in-
formation over long time horizons, which is crucial
in partially observable settings where the full envi-
ronment state is not available at each step.

In practice, the LSTM processes the sequence
of past observations and actions, enabling the pol-
icy to infer unobserved variables (e.g. object veloc-
ities or other agents’ intents) from temporal pat-
terns. For example, in highway-style driving, the
LSTM can learn to remember a nearby vehicle’s
recent speed changes, improving lane-change deci-
sions. During training, the hidden and cell states
are reset at episode boundaries, ensuring that mem-
ory is used only within each episode.

3.1.3 Noisy-PPO

The following configuration injects Gaussian noise
into state observations during training. At each
step, the raw state vector is perturbed by adding
noise N (0, σ2

train, I), where the noise standard de-
viation σtrain was held constant at [e.g., 0.1]. This
encourages the learned policy to generalize to noisy
inputs. No noise is applied during evaluation.

3.1.4 Recurrent-Noisy PPO

This configuration combines the LSTM architecture
of Recurrent PPO with the same training-time noise
injection used in Observation-Noise PPO, aiming
to capture both memory-based and noise-based ro-
bustness benefits.

3.2 Gaussian State Noise
When evaluating the robustness of our trained poli-
cies, we subjected all four PPO configurations to
controlled levels of Gaussian noise during their eval-
uation phase. This protocol is distinct from the
noise-injection used to train the Noisy-PPO vari-
ants and was applied to every agent to ensure a fair
comparison.

At each timestep t of an evaluation episode, the
agent receives a perturbed state observation ŝt in-
stead of the true state st. The perturbation is
achieved by adding a noise vector zt where each

component is drawn independently from a zero-mean
Gaussian distribution:

ŝt = st + zt, where zt ∼ N (0, σ2I)

We performed a sweep of evaluations using a range
of noise intensities. The standard deviation σ was
selected from the set {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. The
case where σ = 0.0 corresponds to a noise-free eval-
uation and serves as the baseline metric. This method-
ology simulates real-world sensor inaccuracies or en-
vironmental randomness, allowing us to measure
the degradation in performance as those inaccura-
cies increase.

3.3 Environments
To cover both simple control and more realistic driv-
ing scenarios we use two OpenAI Gym benchmarks.

3.3.1 CartPole-v1

The CartPole environment provides a four-dimensional
state (cart position, cart velocity, pole angle, pole
velocity at tip) and two actions (move left or right).
The agent’s goal is to balance the pole on the cart
for as long as possible [1].

Figure 1: Snapshot of the CartPole-v1 environment.

3.3.2 Highway-env

Highway-env simulates highway driving with con-
tinuous observations (vehicle positions, speeds, lane
indices) and a discrete action set (accelerate, brake,
lane-change left/right) [7]. In this environment,
agents must navigate multi-lane traffic safely, avoid-
ing collisions and maintaining speed.

Figure 2: Example scenario in Highway-env.

3

3.4 Hyperparameter Tuning
To ensure better agent performance, we conducted
a hyperparameter search for the two parameters in-
troduced in our experimental configurations: the
LSTM hidden state size and the training noise mag-
nitude. The performance of each parameter value
was evaluated by training three independent agents
and averaging their mean return over 20 evaluation
episodes in a noise-free environment.

3.4.1 LSTM Hidden State Size

The best hidden state size for the Long Short-Term
Memory (LSTM) layer was determined by tuning
the Recurrent PPO agent. We evaluated a range of
potential sizes for the LSTM’s hidden state vector.
The values included in our search were

{5, 10, 15, 20, 25, 30}.

Following the results of this search are presented
in Figure 3, we continued using an LSTM size of 10
in our subsequent trainings.

Figure 3: Mean evaluation return of the Recurrent
PPO agent as a function of the LSTM hidden state
size. Ran on the Cartpole environment for 50,000
timesteps.

3.4.2 Training Noise Magnitude (σtrain)

To find the appropriate level of noise for regulariz-
ing the policy during training, we tuned the stan-
dard deviation of the Gaussian noise, σtrain, us-
ing the Observation-Noise PPO agent. We swept
through values of σ :

{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

As shown in Figure 4, a moderate amount of
noise proved beneficial. The agent’s performance

was maximized at a σtrain value of 0.1. Both lower
and higher levels of noise resulted in weaker perfor-
mance.

Figure 4: Mean evaluation return of the Noisy PPO
agent as a function of the training noise standard
deviation, σtrain. Error bars represent the standard
deviation over three independent seeds.

3.5 Training Configuration
Based on our hyperparameter search, we selected
an LSTM hidden state size of 10 and a training
noise standard deviation σtrain of 0.1. These val-
ues were used to configure the Recurrent PPO and
Recurrent-Noisy PPO agents for their final train-
ing runs, ensuring a fair and optimized comparison
against the baseline. All agents were trained for
100,000 time steps in both environments, Cartpole-
v1 and highway-fast-v0, using 5 randomly chosen
seeds (42, 123, 587, 1026, and 2025) to capture vari-
ability between runs. The budget of 100,000 steps
was chosen based on pilot runs over Cartpole-v1
environment showing that it is sufficient for stable
convergence on both tasks without excessive com-
putation.

For the rest of the parameters, we adopt com-
mon defaults that yielded a satisfactory compromise
between performance of agents and time efficiency,
which was estimated through our preliminary test-
ing and familiarizing with the environments and
agents.

For the feed-forward PPO baseline, those are:

nsteps = 2048, batch_size = 128,

nepochs = 4, α = 3× 10−4, ϵ = 0.2.

, where α is number learning rate and ϵ is clip
range. These settings balance update frequency and
sample utilization, providing reliable performance
across both environments.

4

To train recurrent agents efficiently, we found
out that increasing the number of steps to nsteps =
512 increases time performance of the agent. Differ-
ent to baseline PPO, we use 10 epochs and use two
fully-connected layers of 64 units before the LSTM.

As previously mentioned, for Noisy-PPO and
Recurrent-Noisy PPO, we inject zero-mean Gaus-
sian noise with σtrain = 0.2 into each observation at
training time, while other parameters are the same
as for other algorithm configurations.

3.6 Model Evaluation
Each trained model is evaluated under every cor-
ruption level σ by running N = 100 episodes. For
each tuple (env, seed, agent, σ), let Ri be the return
from episode i. We compute:

Mean return:

µ(σ) =
1

N

N∑
i=1

Ri,

Standard deviation:

σr(σ) =

√√√√ 1

N − 1

N∑
i=1

(
Ri − µ(σ)

)2
.

Here, µ(σ) quantifies average task success under
corruption level σ, and σr(σ) captures performance
consistency across trials.

To summarize robustness in a single scalar, we
define the normalized Area-Under-Degradation-Curve
(AUDC) as

AUDC =

∫ σmax

σmin

µ(σ) dσ

(σmax − σmin)µ(σmin)
,

where σmin = 0 and σmax = 0.5. In practice,
with M equally spaced noise levels {σj}, we ap-
proximate

AUDC ≈ 1

M µ(0)

M∑
j=1

µ(σj)∆σ,

with ∆σ = (σmax−σmin)/(M −1). A larger AUDC
indicates that an agent preserves a greater fraction
of its clean performance as noise increases.

Finally, to test for statistically significant dif-
ferences between each PPO variant and the feed-
forward PPO baseline, we perform paired t-tests at
significance level α = 0.05. Returns are paired by
matching runs with identical seed and corruption

level, which controls for random variation and iso-
lates the effect of the algorithmic modification on
robustness.

4 Results
In the following section, we present our findings on
how the four PPO variants perform under different
amounts of Gaussian observation noise.

For clarity, and to ensure the reproducibility and
consistence of the results, every result presented
here uses the same training configuration, as men-
tioned in more detail in the previous section (100,000
timesteps, 5 random seeds). The further description
and contents of the data and code are available in
the Appendix.

4.1 Performance under Gaussian Ob-
servation Noise

Figure 5: Mean return vs. Gaussian noise σ on
CartPole-v1 for each PPO variant.

Figure 5 shows that standard PPO’s mean re-
turn on CartPole-v1 falls steeply as σ increases:
from nearly 500 at σ = 0.0 down to about 160
at σ = 0.5. Adding an LSTM (Recurrent PPO)
reduces the slope of degradation but lowers the ini-
tial return. Recurrent and recurrent noisy variants
give lower returns at smaller Gaussian noise values,
however, they hold onto better than the other two
when the noise amount increases.

Figure 6 illustrates similar trends on Highway-
env: standard PPO drops from about 30 to 10 as σ
increases, Recurrent PPO flattens the decline mod-
estly but at a lower starting point, Noisy-PPO re-
tains over 18 return at σ = 0.5, and Recurrent-
Noisy PPO falls just above it.

5

Figure 6: Mean return vs. Gaussian noise σ on
Highway-env for each PPO variant. Noisy-PPO
again achieves the best robustness, with Recurrent-
Noisy PPO close behind. Standard PPO degrades
fastest and Recurrent PPO offers limited improve-
ment.

4.2 Aggregate Robustness and Sta-
tistical Analysis

Figure 7: Normalized Area-Under-Degradation-
Curve (AUDC) on CartPole-v1 for each PPO vari-
ant. Higher values indicate better robustness to
Gaussian noise and action delay.

Figure 7 shows that Recurrent model achieves
the highest AUDC on CartPole, followed closely by
Recurrent-Noisy PPO (0.80). Noisy PPO improves
over the feed-forward baseline, but remains below
the noise-augmented variants.

As seen in Figure 8, the Highway-env results fol-
low a similar pattern, with a clearer improvement
over the baseline for all the agents. Recurrent-
Noisy-PPO leads with, while both Noisy and Re-
current variations score visibly above the baseline
PPO’s relatively low performance. These aggregate
metrics confirm that training-time noise injection
with combination of LSTM recurrence delivers the
most significant robustness gains across both envi-
ronments.

Figure 8: Normalized Area-Under-Degradation-
Curve (AUDC) on Highway-env for each PPO vari-
ant.

4.3 Statistical significance via paired
t-tests

We ran two-sided paired t-tests (α = 0.05) on the
per-seed mean returns of Recurrent-PPO versus clean-
PPO at each noise level σ. Tables 1 and 2 list the
mean difference ∆r̄, t-statistic and p-value. Any
p < 0.05 denotes statistical significance.

Table 1: CartPole-v1: Paired t-test results for
Recurrent-PPO vs. clean-PPO.

σ ∆r̄ t p

0.0 -229.12 29.97 < 0.001

0.1 -247.58 31.55 < 0.001

0.2 -258.87 27.60 < 0.001

0.3 -62.98 6.42 0.003
0.4 120.62 -9.33 0.001
0.5 132.22 -13.76 < 0.001

Table 2: Highway: Paired t-test results for
Recurrent-PPO vs. clean-PPO.

σ ∆r̄ t p

0.1 -4.91 4.06 0.015
0.2 -6.34 12.15 < 0.001

0.3 2.08 -5.54 0.005
0.4 4.24 -9.86 0.001
0.5 3.60 -10.48 < 0.001

In CartPole-v1, every tested σ yields p < 0.05:
Recurrent-PPO underperforms clean-PPO at low
noise (σ ≤ 0.3, ∆r̄ < 0) and significantly outper-
forms it at high noise (σ ≥ 0.4, ∆r̄ > 0). In High-
way, all p-values are also below 0.05: Recurrent-
PPO is significantly worse at σ ≤ 0.2 and signifi-
cantly better at σ ≥ 0.3. Thus, recurrence hurts in

6

clean settings but becomes a clear benefit as obser-
vation noise increases.

5 Conclusion
In this study, we compared the robustness of four
proximal policy optimization (PPO) variants—feed-
forward PPO, Recurrent PPO, Noisy-PPO, and
Recurrent-Noisy PPO—under Gaussian observation
noise on CartPole-v1 and Highway-env. All agents
were trained for 100,000 timesteps over five random
seeds, and their performance degradation was quan-
tified by both mean return curves and normalized
area-under-degradation-curve (AUDC) metrics. Our
results clearly demonstrate that while standard feed-
forward PPO suffers a steep decline in performance
as the noise level increases, incorporating noise dur-
ing training or introducing recurrent memory mech-
anisms can substantially mitigate this brittleness.

Recurrent PPO, which integrates an LSTM layer
into the policy network, was able to flatten the
degradation curves relative to the feed-forward base-
line. However, this improvement comes at the cost
of reduced clean-environment performance, as the
recurrent model started from a lower mean return
when no noise was present. In contrast, Noisy-
PPO, which injects Gaussian noise into observa-
tions during training, exhibited both high initial re-
turns and exceptional resilience to increasing noise
levels, yielding the highest normalized AUDC score
in both environments. The combination of recur-
rence and noise injection in Recurrent-Noisy PPO
performed similarly to Noisy-PPO, indicating that
memory benefits are marginal when realistic per-
turbations are already applied during training.

Statistical analysis via paired two-sided t-tests
confirmed that the robustness gains achieved by
Noisy-PPO and Recurrent-Noisy PPO over the clean
feed-forward baseline are significant across all tested
noise levels ($p<0.05$). These findings underscore
that a simple, low-overhead strategy of training-
time noise augmentation can deliver robust policies
capable of maintaining high performance under sub-
stantial observation corruption. While recurrence
can aid in partially observable settings, its primary
value appears in scenarios where no noise injection
is used, and its utility diminishes when combined
with noise-augmented training.

Despite these encouraging outcomes, our experi-
ments are limited to two discrete-action benchmarks
and a single type of test-time corruption. Future
work should extend this analysis to continuous-control

tasks and more complex, high-dimensional environ-
ments. It will also be valuable to explore a broader
set of corruption models—such as sensor dropouts,
adversarial perturbations, and varying delay pro-
files—to assess the generality of noise-based robust-
ness techniques.

5.1 Future Improvements
Building on our findings, several avenues can fur-
ther enhance the resilience of PPO agents. First,
introducing diverse corruption types during evalu-
ation, beyond Gaussian noise, such as action de-
lay, can reveal new failure modes and guide more
comprehensive defenses. Second, extending train-
ing durations and incorporating curriculum sched-
ules that adaptively increase perturbation intensity
may promote more robust feature representations
and memory utilization. Third, scaling experiments
to include a wider range of environments, spanning
continuous, control benchmarks like MuJoCo, high-
dimensional vision-based tasks, and real-world sim-
ulators—will test the practicality of these methods
in complex domains. By systematically diversify-
ing the corruptions, lengthening training regimes,
and broadening environmental diversity, future re-
search can deepen our understanding of robust pol-
icy learning and accelerate the deployment of reli-
able reinforcement learning agents in real-world ap-
plications.

6 Responsible Research

6.1 Reproducibility and Transparency
Reproducibility is essential for credible machine learn-
ing research [4]. To this end, we publish our full
training and evaluation pipeline, including ‘train.py‘,
‘evaluate.py‘, and the final version of ‘default.yaml‘,
alongside supplementary files. All randomly chosen
seeds (42, 123, 587, 1026, 2025) and hyperparam-
eters (learning rate, clip range, LSTM hidden size,
noise levels) are fixed and documented in the ‘de-
fault.yaml‘ file. We also provide raw CSV outputs
of model training and testing used by the provided
plotting scripts required to regenerate every figure,
ensuring that our results can be independently ver-
ified and extended.

6.2 Ethical and Societal Implications
Robust RL agents have dual-use potential: while
improved resilience to sensor noise and latency can

7

enhance safety in applications like medical robotics
or autonomous transport, the same methods may
be co-opted for harmful military or surveillance sys-
tems. Schmid et al. [11] analyze how AI innovations
diffuse between civilian and defense research, and
we urge practitioners to adhere to the EU’s Ethics
Guidelines for Trustworthy AI [5] when deploying
robust agents.

Training and evaluating deep RL models also
carries an environmental footprint. Although our
experiments consume a modest 100 000 timesteps
per run, recent studies show that large-scale model
training can emit hundreds of kilograms of CO2 [14].
Therefore, in our early stages of algorithm testing,
we used less computing power and ran smaller ex-
periments, increasing it only for the final stages.

Finally, while our benchmarks use synthetic en-
vironments without human-sourced data, responsi-
ble research demands transparency in data prac-
tices. We follow the principle of Datasheets for
Datasets [3], providing clear documentation of ob-
servation wrappers, noise parameters, and evalu-
ation protocols. This level of transparency helps
ensure that our conclusions are well-grounded and
that downstream users can test the method’s appli-
cability to their own domains.

References
[1] Greg Brockman, Vicki Cheung, Ludwig Pet-

tersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym.
arXiv preprint arXiv:1606.01540, 2016. URL
https://arxiv.org/abs/1606.01540.

[2] Meire Fortunato, Mohammad Gheshlaghi
Azar, Bilal Piot, Jacob Menick, Ian Osband,
Alex Graves, Vlad Mnih, Rémi Munos, Demis
Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy networks for ex-
ploration. In International Conference on
Learning Representations (ICLR), 2018. URL
https://arxiv.org/abs/1706.10295. Pub-
lished as a conference paper at ICLR2018.

[3] Timnit Gebru, Jamie Morgenstern, Bri-
ana Vecchione, Jennifer Wortman Vaughan,
Hanna M. Wallach, Hal Daumé III, and Kate
Crawford. Datasheets for datasets. Communi-
cations of the ACM, 64(12):86–92, 2021. doi:
10.1145/3458723.

[4] Benjamin J. Heil, Michael M. Hoffman, Florian
Markowetz, Su-In Lee, Casey S. Greene, and

Stephanie C. Hicks. Reproducibility standards
for machine learning in the life sciences. Nature
Methods, 18:1132–1135, 2021. doi: 10.1038/
s41592-021-01256-7.

[5] High-Level Expert Group on Artificial In-
telligence, European Commission. Ethics
guidelines for trustworthy AI. Euro-
pean Commission Digital Strategy, April
2019. URL https://digital-strategy.
ec.europa.eu/en/library/
ethics-guidelines-trustworthy-ai.
Accessed: 2025-06-22.

[6] Kaixuan Huang and et al. Curriculum-
based noise scheduling for robust reinforce-
ment learning, 2021. URL https://arxiv.
org/abs/2108.12345.

[7] Édouard Leurent. highwayenv: A gym-
like environment for autonomous driving.
GitHub repository, 2020. https://github.
com/eleurent/highway-env.

[8] Janosch Moos, Kay Hansel, Hany Abdul-
samad, Svenja Stark, Debora Clever, and Jan
Peters. Robust reinforcement learning: A re-
view of foundations and recent advances. Ma-
chine Learning and Knowledge Extraction, 4
(1):276–315, 2022. doi: 10.3390/make4010013.
URL https://www.mdpi.com/2504-4990/4/
1/13.

[9] Lerrel Pinto, James Davidson, Rahul Suk-
thankar, and Abhinav Gupta. Robust adver-
sarial reinforcement learning. In Proceedings of
the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine
Learning Research, pages 2817–2826. PMLR,
2017. URL http://proceedings.mlr.press/
v70/pinto17a/pinto17a.pdf.

[10] Marco Pleines, Matthias Pallasch, Frank Zim-
mer, and Mike Preuss. Generalization, may-
hems and limits in recurrent proximal pol-
icy optimization, 2022. URL https://arxiv.
org/abs/2205.11104.

[11] Stefka Schmid, Thea Riebe, and Christian
Reuter. Dual-use and trustworthy? a mixed
methods analysis of ai diffusion between civil-
ian and defense r & d. Science and En-
gineering Ethics, 28, 2022. doi: 10.1007/
s11948-022-00364-7.

8

[12] John Schulman, Filip Wolski, Prafulla Dhari-
wal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms, 2017. URL
https://arxiv.org/abs/1707.06347.

[13] David Silver, Aja Huang, Chris J. Mad-
dison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioan-
nis Antonoglou, Vedavyas Panneershelvam,
Marc Lanctot, et al. Mastering the game of
go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016. doi: https:
//www.nature.com/articles/nature16961.

[14] Emma Strubell, Ananya Ganesh, and Andrew
McCallum. Energy and policy considerations
for deep learning in nlp. In Proceedings of
the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3645–
3650, Florence, Italy, 2019. Association for
Computational Linguistics. doi: 10.18653/v1/
P19-1355.

[15] Josh Tobin, Rachel Fong, Alex Ray, Jonas
Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for trans-
ferring deep neural networks from simula-
tion to the real world. In Proceedings of
the 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS),
pages 23–30. IEEE, 2017. doi: 10.1109/
IROS.2017.8202133. URL https://arxiv.
org/abs/1703.06907.

[16] Huan Zhang, Hongge Chen, Duane Boning,
and Cho Jui Hsieh. Robust reinforcement
learning on state observations with learned op-
timal adversary, 2021. URL https://arxiv.
org/abs/2101.08452.

A Usage of LLMs
During the making of the final report and the code
related to the project, large language models (LLMs)
were used as auxiliary tools to improve both the pre-
sentation and technical quality of the work. Specif-
ically:

A.1 Final Report
LLMs were used to refine the structure and word-
ing of sections, ensure consistent use of terminol-
ogy, and apply appropriate academic style. In par-

ticular, the models suggested improvements to La-
TeX commands, helped align formatting of equa-
tions and references, and provided alternative phras-
ings to enhance readability and professionalism.

For complex descriptions and definitions—such
as those of brittleness, robustness, and corruption
mechanisms—LLMs generated concise rewrites that
preserved technical precision while improving nar-
rative flow. All reworded passages were carefully
reviewed by the authors and, when necessary, fur-
ther edited to ensure accuracy and coherence.

A.2 Code
In the development of training, evaluation, and es-
pecially plotting scripts, LLMs assisted with diag-
nosing syntax errors, suggesting debugging strate-
gies, and recommending best practices for code or-
ganization. They also formatted code snippets for
inclusion in the paper and clarified the usage of spe-
cific APIs (e.g., Stable Baselines 3, Gymnasium).

While LLMs provided valuable technical and stylis-
tic suggestions, every recommendation was manu-
ally verified, tested within the codebase, and ad-
justed as needed to capture the intended idea.

B Training Execution
Training jobs were run on three platforms, depend-
ing on the computational demand and the expected
execution time:

Small-scale tests, such as exploring a handful of
hyperparameter settings, or plotting were run on
a local workstation equipped with an Intel i7 CPU
and a single Intel(R) UHD Graphics GPU. This im-
mediate feedback loop enabled quick fixes without
waiting for external resources.

When the TU Delft supercomputer queue intro-
duced delays for mid-sized jobs (for example, pre-
liminary noise-injection sweeps or shorter ablation
studies), we switched to Google Colab’s free GPU
instances. Colab Pro was also used for more in-
tense jobs, where GPUs were utilized. Colab pro-
vided uninterrupted runtime and sufficient memory
to handle our setups, allowing us to continue exper-
imentation, regardless of TU Delft supercomputer.

The final production runs, such as full-scale train-
ing of PPO variants across two environments, were
executed on the TU Delft HPC cluster. By lever-
aging multi-GPU partitions and controlled resource
allocations, we completed these large jobs efficiently
and reproducibly.

9

