
SQUARE – A Migration Language for
Robust Data Importing

Version of March 14, 2016

Maikel Krause





SQUARE – A Migration Language for
Robust Data Importing

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Maikel Krause
born in Eelderwolde, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

M-industries
Rotterdamseweg 183c

2629 HD Delft
The Netherlands

m-industries.com

www.ewi.tudelft.nl
m-industries.com


©2016 Maikel Krause. All rights reserved.



SQUARE – A Migration Language for
Robust Data Importing

Author: Maikel Krause
Student id: 1511475
Email: maikelkrause@gmail.com

Abstract

When information systems managed by different organizations are integrated,
the different parties often must collaborate to define a migration system that
transforms the data from one data model to the other. Such a migration step is
a common source of system failures. We present a migration language to define
transformation definitions for real-time unidirectional data migration (i.e. “im-
porting”), from a relational schema to a data model defined in the Alan modeling
language. This migration language has been designed to be transparent (simple to
inspect and validate), easy to debug in case of failures, but expressive enough to
support common patterns encountered in real-world projects. We examine three
different case studies based on real-world software projects to illustrate the char-
acteristics, capabilities, and limitations of the tool.
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Chapter 1

Introduction

In today’s increasingly decentralized business world, information systems are rarely
constrained to a single organization. New information systems are commonly created
by integrating multiple independent systems together, over a network that crosses or-
ganizational boundaries [1].

A consequence is that there is often no longer just one centrally owned database.
Different systems within different organizations may need to work with the same data.
Exchanging this data requires a data migration from the source system’s data model
to the target system’s data model. In practice, this migration step turns out to be a
common source of system failures [2].

One of the major challenges in developing a data migration system is that the correct-
ness of the migration cannot be judged by any of the parties in isolation, because we
need to have intricate knowledge of both the source and target systems (and how they
relate to each other). Being at the intersection of different organizations means that any
communication problems will manifest as faults in the migration. Either by crashing
the system through a runtime error, or worse, not causing any error at all and simply
manifesting as semantically incorrect output at a later stage.

In this thesis report, we focus specifically on unidirectional, real-time data migration,
commonly referred to to as data importing. Our goal is to find an approach to data
importing that leads to more robust import systems. By being robust, we mean not just
preventing as many errors from occurring as possible, but also helping the developer
locate and solve any errors that do occur.

We propose Square, a language to write data import definitions that are:

• transparent, in such a way that both parties can easily understand and validate
the import logic,

• easy to debug, in the sense that any failing assumptions should be reported with
clear, human-readable error reports, and

• expressive enough to be able to express most import rules found in real-world
applications.

1



1. INTRODUCTION

There is a trade-off between the first two points (transparency and debuggability), and
the third (expressivity). A language which is more expressive is generally more com-
plex and therefore more difficult to read, analyze, and debug. We prioritize the first
two, as long as the language is still expressive enough to be practical.

Because we want Square to integrate with pre-existing systems, we need two
schema languages that define the kind of concepts we are able to work with, one for
the source data and one for the target data. Due to the ubiquity of SQL in business ap-
plications, we have chosen to use a source schema language compatible with SQL to
represent source data. For the target, we use Alan, a high-level, structured data model-
ing language that is compatible with common (semi-)structured formats such as XML
and JSON.

In this report we provide a conceptual overview of the language, followed by a more
formal definition, and finally an evaluation. We evaluate Square using a number of
case studies based on real-world projects. This thesis was performed at M-industries,
a developer of industrial software located in Delft, The Netherlands.

1.1 Problem Description

The problem we investigate may be characterized as follows. Suppose a software de-
veloper needs to build an application that provides some service to a client organi-
zation. In order to function, the application requires up-to-date information from the
client’s operational databases, collectively referred to as the source data. In the worst
case, this source data may be:

• Heterogeneous. There may be multiple data sources, in different technical spaces.

• Low-quality. The data generally requires data cleaning in order to meet the re-
quirements of the consuming application.

• Dynamic. The operational data is constantly being updated at the client, which
means that the target database must be refreshed regularly.

We make no assumptions about the application that consumes this data. However, we
assume the existence of a single target schema that dictates the format of the data as
required by the application. The problem of data importing can then be defined more
precisely as follows:

Def. A data import is the process of taking a set of source data, and transforming it
to a valid instance of the target schema.

2



1.1. Problem Description

source
data

target
data

extract transform load

source
schema

target
schema

external
databases

local
database

transformation
definition

Figure 1.1: Data import process.

This process is closely related to Extract-Transform-Load (ETL) tooling as found in
data warehousing [3, 4]. The main difference being that ETL in data warehousing is
used to collect data for analytical purposes. Data warehousing is interested in storing
large amounts of historical data in an efficient way in order to provide access to this
data to knowledge workers. In contrast, we are interested in the more limited use case
of integrating different information systems together.

The transformation part of the process is specified by a set of transformation rules
called the import definition. Such a definition expresses the target schema in terms of
the source schema. Note that although there may be multiple sources, we abstract over
the integration of the different technical spaces and provide a single “source schema”
in a language we can reason about.

This effectively reduces the transformation to the concept of a model transforma-
tion, a concept which is well studied in the field of model-driven engineering [5, 6, 7].

1.1.1 Import failures

Converting data from one schema to another is not a novel problem. The challenge we
concern ourselves with in this thesis is what happens when an import fails. We observe
from practice that despite best efforts, import errors still occur frequently.

Def. An import failure occurs when the importer is unable to produce a valid in-
stance of the target schema for a given set of source data.

One obvious solution to this problem is to ensure that we always produce a valid in-
stance of the target, by enforcing in the import language that the programmer must
handle all possible cases. This, however, is impractical. A poorly designed source
schema may allow many possible instances that we judge to be invalid, and yet are
not properly excluded through schema constraints in the client’s database.

3



1. INTRODUCTION

Consider, for example, the following table:

Transport log
id order id delivery date transport time (seconds)
42 106 NULL NULL

43 101 2016-01-08 3840

44 102 2016-01-10 4120

45 103 2016-01-14 3500

This table contains a log for the transportation of products from a producer to a con-
sumer. By default, the delivery date and transport time are set to NULL. Whenever a
delivery truck finishes the delivery of a particular order, the delivery date is updated
along with the time it took to transport the goods.

We want to import this data to a logistics scheduler, which aims to optimize inven-
tory management by estimating future transport times based on this historical data. As
an application developer, we base our program design on the assumptions we made by
looking at the above example data. In a sense, we are reverse engineering the underly-
ing business rules, purely by looking at the data.

At some point in time, we receive the following new records:

Transport log (cont.)
id order id delivery date transport time (seconds)
281 305 2016-02-30 4590

282 308 2016-01-15 0

283 310 NULL 8760

Notice the following “quirks” (highlighted in the table):

• Row 281 contains an illegal delivery date value (the 30th of February does not
exist). It appears that the date field can contain an arbitrary string, instead of
having been constrained to a proper date type.

• Row 282 contains a transport time of 0. Such a transport time is not possible if we
assume different physical start and end locations, and may break our algorithm
if we had assumed a positive duration (think division by zero errors).

• Row 283 has a transport time, and yet no delivery date. There is an implicit
dependency between these fields that appears to have been violated.

Each of these unexpected values identify an assumption on the developer’s part that has
been violated. Either because the input contains a mistake (e.g. typo), or because there
is a particular business rule that the developer was simply not aware of. For example, a
transport time of 0 might simply be an encoding that the client failed to communicate.
In this example, it may turn out that a transport time of 0 is not a mistake, but rather
systematically encodes an order where no physical goods need to be transported (e.g.
transfer of digital information).

4



1.2. Research Method

In order to be able to resolve these types of mistakes as soon as possible, we need a
methodology that makes the kind of implicit assumptions illustrated in the example
above explicit. By forcing the programmer to explicitly annotate assumptions on the
data, the import system itself may be able to provide useful and timely feedback in the
case of import errors.

1.2 Research Method

In this section we present our approach in designing and evaluating our research pro-
posal. We formulate a number of research questions (RQ) to guide the rest of the text.
We revisit these research questions in the conclusion (chapter 9).

First, in order to study this problem, we need to know about existing research on the
topic. To this end, we need to look at current methods.

RQ1 What are the characteristics of current methods? In particular, what kind of static
guarantees do these methods give us about runtime failures?

Once we have a clear picture of the current landscape of data importing, we can de-
sign a programming model to tackle the problem. We take an empirical approach and
use practical case studies to discover, motivate, and evaluate design choices. The case
studies should answer the following research question:

RQ2 What kind of data import problems typically occur in industrial projects?

Next, we can design the solution itself. We want to design a language that fulfills
the functional needs identified by the case studies, but which succeed at the goals
stipulated in the previous section.

RQ3 What kind of language constructs do we need to be able to implement common
use cases in way that is transparent and easy to debug?

This report is structured as follows. First, we present a number of relevant concepts as
background material for the reader in chapter 2. Next, we give a conceptual overview
of Square in chapter 3. In chapter 4, we dive deeper into the type system and other
static constraints using a more formal notation. Chapter 5 details the implementation
we have built for Square. This is followed by a set of case studies, and an evaluation
in chapters 6 and 7. Finally, we present related work and a final conclusion in chapters
8 and 9.

5





Chapter 2

Background

The topic of data importing touches upon diverse areas of study. In this chapter, we
review some of the basic concepts and technologies that we will assume the reader to
be familiar with in the remainder of the text.

2.1 Technical Spaces

Data importing inherently requires us to jump technological boundaries. We go from
one set of technologies to another. In order to abstract over the concept of a particular
technological context, we will make use of the term technical space (TS), as discussed
by Bézivin et al. in [8]. The notion of a technical space gives us a common framework
to talk about and compare different technologies.

A technical space is defined as “a working context with a set of associated con-
cepts, body of knowledge, tools, required skills, and possibilities” [9, 8]. Examples
include modeling frameworks like OMG’s Model-Driven Architecture (OMG/MDA)
[10], programming languages like Java, semi-structured data languages like XML, and
relational database systems. All of these spaces are different, but they also have certain
interesting aspects in common.

2.1.1 Three-level organization

When we look at different artifacts within technical spaces, we see a common pattern.
Different artifacts are often described by a meta-level artifact. The relation between
the two is characterized by a “conforms-by” relation. For example, an UML-model in
MDA conforms to the UML modeling language, which itself conforms to the MOF
(Meta-Object Facility). An XML document conforms to an XML Schema, which it-
self conforms to the XML Metaschema. An SQL (Structured Query Language [11])
database conforms to an SQL schema, which itself may be described using an SQL
metaschema (many databases support the ANSI-standard Information Schema [12]).

This hierarchy is common across a surprising amount of contexts. This is captured
by the three-level organization shown in figure 2.1. In this organization, we identify
three different levels. At level M1, we find the elementary models that serve as our
abstract representation of the system under consideration (the latter is sometimes in-
cluded in this context as “M0”). The language that these models are written in, or
metamodel, is at M2. Finally, at M3 we find a metametamodel which serves as the

7



2. BACKGROUND

M1

M2

M3 MOF

UML
Metamodel

a UML
model

conforms-to

conforms-to

conforms-to

OMG/MDA TS

XML
Metaschema

an XML Schema

an XML
document

conforms-to

conforms-to

conforms-to

XML TS

SQL
Metaschema

an SQL
schema

a database 
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conforms-to

conforms-to

SQL DBMS TS

Figure 2.1: Three-level model organization.

general framework to talk about all metamodels. Usually, the metametamodel is self-
describing (i.e. conforms to itself), providing a natural end to the chain.

2.1.2 Tool support

A technical space is usually accompanied by tools that work on artifacts in that space.
These tools are made to work with the general concepts captured by the metameta-
model.

A basic function needed to work with any sort of model is the access and retrieval
of information. A navigation language (or query language) is a language to express
this kind of access specifically for a particular TS. Examples include the Object Con-
straint Language (OCL) for MOF [13], the XQuery and XPath languages for XML
[14], and SQL for relational databases.

Also common are transformation languages to operate on artifacts, returning an-
other artifact of the same type. XSLT [15] and XQuery fulfill this role for XML, as
does SQL for relational databases.

2.1.3 Technical space projectors

Having a formal notion of a technical space is especially useful when we start to inte-
grate different technologies. In this case, we want to extract a model in the one space
(the target) from a model in another space (the source). This kind of transformation is
different from the kinds of transformations we mentioned in the previous paragraph,
which only work within a particular space. Bézivin et al. introduce the concept of a
technical space projector for transformations that cross technical spaces [8].

Note that, in general, a technical space projector is not necessarily the same thing
as a data import system. An important distinction here is that a projector may create

8



2.2. Relational Databases

any new model from a source model. This allows it to be defined very generally (po-
tentially, for any model in a TS). In a data importer, both the source and target model
are predefined. Generating an import definition for any pair of source and target mod-
els is impossible, because the transformation depends on the semantics of each model
element. We can view each data importer as a technical space projector which only
works on a specific subset of source and target models.

2.2 Relational Databases

The first technical space we examine is the space of relational databases. This is the
space that serves as the source of our importer.

The relational model, first formulated by Edgar F. Codd in his seminal 1970 paper
[16], is a database model based on first-order logic. In this model, data is organized
into relations, containing a set of tuples that map attribute names to values from some
data domain. More formally, we say that a relation R is defined as:

R = (heading,body)

Here, the heading specifies a set of k attribute names and corresponding domains
d1, . . . , dk. The body is then a set of tuples, each of which a member of the Carte-
sian product d1 × · · · × dk. We call the number of attributes the degree of R, and the
number of tuples the cardinality of R (denoted |R|).

A relation may be thought of as a representation of some first-order logic predicate.
For example, the predicate:

W = “Person P works in department D.”

This is a relation with two attributes: P of domain persons, and D of domain de-
partments. Every tuple contained in the relation encodes a true proposition, where the
attribute values correspond to a particular combination of person and department (e.g.
〈John,Marketing〉).

Following common terminology in database systems, we may also refer to rela-
tions, attributes, and tuples as tables, columns, and rows, respectively. Equivalently,
we may borrow from data modeling and use the terms entities, fields, and records.

2.2.1 Schemas

A relation schema is a definition for some class of relations. Such a schema consists
of two parts: the heading defining the attributes and data domains, and a set of in-
tegrity constraints that must hold for any given instance. Typical constraints that may
be specified in a relation schema are:

1. Key constraints. A key is a subset of attributes for which holds that no two
tuples in the relation contain the same combination of values. We commonly
identify a single primary key (denoted key(R)) to serve as the identity of the
tuple, and in addition there may be zero or more alternative keys that serve as
additional uniqueness constraints.

9



2. BACKGROUND

2. Referential constraints. A relation schema may define zero or more foreign
keys, which map a subset of attributes in R to attributes in another relation S.
Each tuple in R must then refer to some tuple present in S through the foreign
key correspondence (with the exception of NULL values, discussed in section
2.2.2).

We add the restriction (common in database systems, although not universally en-
forced) that each foreign key is defined in terms of a key in S, which ensures that each
foreign key value can only ever refer to a single tuple in S.

A relational database schema (often abbreviated as relational schema, not to be
confused with the term “relation schema”) is a set of named relation schemas.

2.2.2 Three-valued logic

Although not part of the original relational model, most database systems support a
form of three-valued logic. A special NULL value is allowed wherever a regular value
is, indicating a “missing” or “unknown” value. NULL values have the special property
that they are ignored by foreign key constraints, i.e. they can be used to specify the lack
of a link to another table (for example, the “parent” of the root in a tree). They may
also arise as the result of particular operations. For example, outer joins in SQL use
NULL values to fill up values where no record could be matched.

For models that support three-valued logic, we allow the following schema con-
straint type in addition to the ones defined in the previous section:

3. Non-nullability constraints. Declared for a particular attribute to prevent that
attribute from taking on a NULL value.

2.2.3 Query languages

Part of the relational theory are two mathematical systems that serve as the foundation
for query languages: relational algebra and relational calculus (proven to be equivalent
by Codd [17]). These systems have inspired a number of database languages, the most
popular among which is SQL.

SQL consists of two main parts: (1) a data definition language, that allows a
database designer to define a relational schema, and (2) a query language based on
relational algebra. A query in a relational database is the primary mechanism to re-
trieve or transform data. The main operations, using the terminology from relational
algebra, are:

• Basic set operations, such as set union and set difference.

• Selection of records based on a predicate function.

• Projection of a relation to a new set of attributes.

• Join operations, combining records from two different relations.

The expressive power we get when combining these operations is well-known, as dis-
cussed in [18]. SQL goes further and adds arithmetic, grouping, aggregation, and
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even recursion operations that extend the expressive power of the language (at the
cost of increased computational complexity) [19].

A view is a named query, which may itself be queried like any other relation. Views
are the basic tool for mappings in the relational model, with sources (input relations)
and a target (output relation).

2.2.4 Constraint languages

The integrity constraints mentioned so far (key constraints, referential constraints, and
non-nullability) do not provide much expressive power. In particular, we cannot ex-
press the following types of constraints:

• Complex value constraints (e.g. a regular expression match on a text field).

• Constraints that describe dependencies between different fields or relations. For
example, we cannot specify that fields A and B must either both be NULL, or
both not NULL.

• Constraints that prevent recursive links in a data structure. There is, for example,
no general way to represent a tree in a relation with the guarantee that there are
no cycles.

Such constraints are useful to encode the business rules of a particular organization.
Usually, business rules are considered separate from the data store itself, enforced
through additional layers (systems or policy) on top of a database system.

SQL does define mechanisms to express more powerful constraints. Check con-
straints may be specified as part of the schema to check the validity of a row after an
insert or update. However, these checks are limited to the scope of a single row. For
more power, triggers allow arbitrary procedures to run on specific events.

There have also been attempts to extend the relational model with constraint lan-
guages more powerful than first-order predicate logic. In particular, fixpoint logic has
been applied to relational schemas in order to restrict recursive structures [20].

2.3 Data Modeling

In the previous section we looked at the data format of databases from which we want
to import. We use the relational model because that is what is commonly used in indus-
try. For the target schema, we have more freedom to chose a modeling language. The
relational model is ubiquitous, but not necessarily the best way to create a high-level,
conceptual model. In the next chapter (and appendix A), we describe our chosen data
modeling language. In this section, we provide some background on data modeling in
general.

A data model is a conceptual representation of some real world problem domain. The
term is slightly ambiguous. Some authors use the term “data model” to mean a specific
kind of “model”, as defined in the three-level model organization (i.e. level M1 in
figure 2.1). In other contexts, it is used to mean a meta-level artifact that describes data
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2. BACKGROUND

(i.e. a metamodel, which is level M2 in figure 2.1). Following the terminology common
in industry, we use the term in the latter sense (a metamodel). To avoid ambiguity, in
this report we will mostly avoid the term altogether and use “schema” instead, and use
“(schema) instance” to denote the data itself.

2.3.1 Model transformations

A lot of data processing may be viewed as a transformation from one data model to
another. For example, when we need to convert from a relational database to an object-
oriented model (the well-known Object-Relational Mapping). But also other types of
processing where traditionally we might not think in terms of “data models”, such as
compilers (converting from one language to another).

source
model

target
model

transform

source
metamodel

target
metamodel

Figure 2.2: Model transformation.

A model transformation is a mapping from some input model to an output model
[5, 6, 7]. Model transformations may be specified in a general-purpose programming
language, but there are also specialized transformations languages that are designed for
particular input and output metamodels. QVT and ATL are transformation languages
for metamodels defined within the MOF framework [21]. There are also frameworks
specialized in transformation of programs, including Stratego/XT [22].

2.3.2 Model-driven engineering

The idea of a model transformation is a fairly powerful concept. We can use it to de-
velop a data processing tool, but also a language compiler for example. Using the same
principle, we can take a data model, and transform that model to an executable format.
Model-driven engineering (MDE) is a methodology that takes uses this concept to
build entire software applications [23, 24, 25].

Using this approach, we can solve problems by creating high-level, domain-specific
models or languages specially tailored for the problem at hand, and use generic tool-
ing to generate the required software artifacts (like database schemas, user interfaces,
business logic).

A number of toolsets have been developed to support this type of development,
including “language workbenches” like Spoofax, and Ensō [26, 27]. These tools pro-
vide an integrated environment to define new domain-specific languages and transform
them using specialized transformation languages.
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2.4 Data Quality

Data quality is a measure of how fit data is for use by data consumers [28]. Databases
tend to contain a lot of errors – in the form of inconsistencies, redundancies, incom-
pleteness, etc. – that make it harder (or impossible) for a data consumer to perform
the task at hand. When we import data into a system, we want to detect and possi-
bly rectify (“clean”) as many of these errors as we can. To this end, we will give an
overview of the different classes of data quality issues that may occur in databases.
The classification we present is based on the work done by Strong et al. [28], as well
as the analysis of Rahm et al. in [29].

Note that in our definition of data quality, we place special emphasis on the data
consumer. Rather than seeing data quality as an intrinsic property of data, research has
shown that it is important to see these issues within the broader context of the users
[30].

2.4.1 Accuracy

The accuracy of data is a measure of correctness. In other words, does the data accu-
rately reflect the real situation it is supposed to represent? The producer of the data,
being the one with the knowledge of the true facts underlying the data, is often the
only one who can judge this particular quality.

For this reason, we split up inaccuracies into detectable and indetectable issues.1

Detectable issues are issues that are easily recognized by an automated process, simply
by looking at the data. Indetectable issues on the other hand, are indistinguishable
from accurate data, but are semantically wrong. This type of issue should not cause
the consuming application to crash (because the “form” is correct), but may lead to
wrong results.

Detectable inaccuracies
Scope Problem Example
Field Illegal values birthdate=1990-01-99

Record Violated dependencies <gender="male", num_pregnancies=2>

Record type Uniqueness violation <name="Smith", SSN="123456">

<name="Miller", SSN="123456">

(SSN should be unique)
Source Referential integrityviolation <name="John Smith", deptno=78>

(Reference does not exist)

Table 2.1: Examples of detectable inaccuracies in data.

1These definitions are similar to the “schema-level” and “instance-level” classification as defined by
Rahm et al. [29]. We have slightly changed the terminology to decouple it from the expressive power of
any particular schema language.
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Indetectable inaccuracies
Scope Problem Example
Field Dummy values phone="999-99999"

Misspellings city="Liipzig"

Misfielded values city="Germany"

Record type Duplicated records <name="John Smith">

<name="J. Smith">

Contradicting records <name="J. Smith", bdate=1990-01-01>

<name="J. Smith", bdate=1984-05-31>

Source Wrong references <name="John Smith", deptno=17>

(Reference exists, but is wrong)

Table 2.2: Examples of indetectable inaccuracies in data.

Tables 2.1 and 2.2 show a few examples of detectable and indetectable accuracy issues.
Some of the issues in table 2.1 could be prevented by typical relational database con-
straints (e.g. referential integrity constraints), but in general a more powerful constraint
language is needed to catch all of these errors.

2.4.2 Representational quality

Representational issues are those issues where the data is not “wrong” per se, however
the manner in which the data has been represented makes it unnecessarily difficult for
the consumer to interpret.

Representational Issues
Scope Problem Example
Field Cryptic values experience="B"

Embedded values name="J. Smith, New York"

Record type Word transpositions <name="J. Smith">

<name="Miller P.">

Table 2.3: Examples of representational issues in data.

Table 2.3 shows a few examples. Cleaning these issues requires some normalization
procedure.

2.4.3 Contextual quality

The third class of data quality issues are the contextual quality issues. These are issues
which make it harder to consume data when we consider what the data will be used
for. For example, a database where we are only interested in a small part of the data
contains mostly irrelevant data. Another example is localization, where the data con-
sumer needs to perform extra conversions (e.g. currency conversions) to get the data
in a suitable format.
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2.5 Data Warehousing

A data warehouse is a system used by organizations to collect data from different
sources, and present that data to end-users [3]. Among the functionality associated with
data warehousing are the integration of data from various (possibly heterogeneous)
sources, cleaning of the data to improve the data quality, and the provision of various
analytics tools for end-users (data exploration, visualization, reporting, etc.)

2.5.1 Extract-Transform-Load

There are several inherent problems involved in migrating data from external sources:

• The incoming data must be mapped to a common schema.

• Data needs to be cleaned to ensure the end-user gets high-quality data.

• The data must constantly be refreshed in order to have up-to-date information.

The process that tackles these problems is traditionally subdivided into a three-phase
process called Extract-Transform-Load, or ETL [4]. In the extraction phase, the dif-
ferent data sources are consolidated and possibly translated to an intermediate format
suitable for data processing. In the transformation phase this data is then processed and
transformed into an instance of the target schema. Finally, the processed data is loaded
into the target database.

source 1

HTML

CSV

SQL

database

transform
extract load

source 2

source 3

Figure 2.3: Overview of the ETL process.

What makes ETL different from just a view over a set of relations, is that ETL needs to
map data from external sources to a local target. That means that we are dealing with
separate systems, each of which in its own technical space and thus having a different
metamodel.

Vassiliadis et al. [31] present one of the earliest conceptual models for ETL. Their work
presents a formal conceptualization of ETL activities, a set of commonly used ETL
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operators as identified by the authors, and mechanisms for custom transformations and
constraints. The authors use a custom graph-based metamodel consisting of a few types
of nodes, including concepts and attributes for data, and providers and transformations
to relate target nodes to source nodes.

More recent research includes ETL models using more standard metamodels such
as UML [32], alternative transformation methods such as those based on the logical
programming paradigm [33], and semi-automatic methods using semantics-aware do-
main models [34].

2.5.2 Data cleaning

Data cleaning is the process of detecting, and possibly correcting, quality issues in
data. This process is often performed as part of ETL.

A number of tools exist to interactively explore and analyze data sets in order
to identify problems, and possibly rectify these directly. Examples of such tools are
DataWrangler and OpenRefine [35, 36]. Once applied to a specific data set, the opera-
tions performed may be saved into an automated process.

Certain classes of problems can be discovered automatically through data mining
and knowledge discovery techniques [37]. For example, an automated tool may look
for patterns in data that are likely to indicate duplicate records [38, 39].
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Chapter 3

Square

In this chapter, we introduce Square. Square is an import definition language, which
aims to make data import systems more robust in the face of runtime failures. We
achieve this through a methodology that takes into account the uncertainty inherent in
predicting what kind of data the system may encounter in the future. This methodology
is supported by a custom type system and two specialized definition languages. We
focus heavily on static (compile-time) guarantees to verify certain properties of the
transformation.

The purpose of this chapter is to give an informal introduction to Square. A pro-
grammer reading this chapter should be able to get a feel for the programming model,
and be able to write their own programs. To illustrate the different concepts, we pro-
vide code samples written in our own custom syntax. In section 3.5 we describe the
methodology. A more formal description of the type system and other static constraints
is given in chapter 4.

3.1 Overview

A Square execution extracts data from one or more external sources, transforms it
according to an import definition, and finally loads it into a local database. Figure 3.1
shows the data flow for a given execution.

load

external
databases

＊

extract construct

raw source target local
database

distill

raw
schema

source
schema

distillation construction
target

schema

import definition

runtime

Figure 3.1: Data flow of a Square import.
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At the two boundaries we have the extraction of data from external databases, and the
loading of the data into the local database. These two steps are beyond the scope of
Square itself, and are instead described when we look at the implementation in chapter
5.

The tranformation is split into two phases: distillation and construction, each of
which is configured through a corresponding definition language. The choice for this
split comes from the observation that we often want to first break apart the high-level
structure of the data in order to obtain a more convenient structural description of the
data. When this is done, we can focus on “building up” the individual bits of data to
match the target schema.

3.1.1 Import definition

There are two schemas that define the input and the output, respectively. These schemas
are given beforehand by the two different parties involved:

• The raw schema, which describes the external databases collectively.

• The target schema, which describes valid output instances.

The transformation itself is defined by two definitions, one for each of the two-step
process:

• The distillation, which defines the distillation step that transforms an instance
of a raw schema to a source schema.

• The construction, which defines the construction step that transforms an in-
stance of a source schema to the target schema.

The source schema, which is the output of the distillation step, is defined implicitly
by the distillation (indicated by the dotted lines in figure 3.1). Both the raw schema
and the source schema are described by an SQL-compatible language, which we call
the source schema language.

3.1.2 Source schema language

Because we want to be able to import data from pre-existing enterprise databases, we
need a source schema language that matches most existing database schemas as closely
as possible. Due to the prevalence of SQL-based database systems in the enterprise
world, we have chosen a source schema language that is compatible with the SQL data
definition language (DDL).

The data types that we support in this schema language are listed in table 3.1. Since
we are not concerned with data storage, the data types are defined to be as broad
as possible in order to be able to handle values regardless of precision (limited only
by system memory). Note that we also include an enum type, which is non-standard,
but supported by a number of popular database systems (most notably, MySQL and
PostgreSQL).
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Name SQL equivalents Description
text CHARACTER, VARCHAR Arbitrary-length textual value
integer INTEGER Arbitrary-precision integer
decimal FLOAT, DECIMAL Arbitrary-precision floating point number
boolean BOOLEAN Boolean (true or false)
date DATE Absolute date value
datetime TIMESTAMP Absolute time value
enum ENUM One of an enumerated set of options

Table 3.1: Data types.

In addition, we support the following features from the SQL DDL:

• Basic SQL constraints (key constraints, referential constraints)

• NULL values, and non-nullability constraints

We currently do not support arbitrary check constraints (i.e. SQL CHECK clauses). Recall
from section 2.2.4 that check constraints allow database designers to specify predicates
on single rows, to be checked by the database engine on insert or update. Supporting
check constraints would require us to map the entire SQL constraint sublanguage over
to our own schema language, which is possible but requires some effort. Support for
check constraints varies strongly among database systems, with some systems (e.g.
MySQL) not supporting this feature at all, and some supporting a superset (e.g. support
for subqueries that can check beyond the scope of a single row).

We have not encountered any check constraints in our case studies thus far, and
therefore have chosen not to support this feature. In the future however, check con-
straints could provide a useful additional source of integrity constraints.

3.1.3 Target schema language

The target schema serves as the importer’s interface to the application that consumes
the data. Such a schema should detail the exact requirements of the data as imposed by
the application.

The schema language we have selected for this purpose is Alan. Alan is a high-level
data modeling language created at M-industries, to serve as the modeling language
for their model-driven engineering (MDE) platform. The language is comparable to
schema languages for (semi-)structured data languages like XML Schema and JSON
Schema, although unlike the former languages it was designed specifically with MDE
in mind. We provide a more detailed description of Alan in appendix A. A formal
grammar of the language can be found in appendix B.

The fact that Alan was designed for MDE makes it a convenient fit for our pur-
poses, because it means we know that any instance that conforms to an Alan schema
must correspond to a supported use case in applications generated from this model (i.e.
the application should not crash on any valid instance). Hence, we can treat the target
schema as being completely representative of the consuming application. Furthermore,
the fact that Alan is compatible with languages like XML Schema means that we can
use Alan as an intermediate format for many pre-existing systems.
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(

"description" :: text

"version" :: integer

"product types" :: collection ( // Key-value pairs

"description" :: text

"operations" :: collection (

"instruction" :: text

)

)

"orders" :: collection (

"product" :: reference <../"product types">

"quantity" :: integer

"status" :: option (

"pending" :: ()

"finished" :: (

"finish time" :: integer

)

)

"required operations" :: collection of <"product"/"operations"> (

"additional remarks" :: text

)

)

)

Code Snippet 1: An Alan model.

The code sample above shows an Alan model for a simple manufacturing company,
with two main entity types: product types that describe the kinds of products the
company is able to manufacture, and orders that represent the actual incoming orders
from clients for a particular amount of a product.

An Alan instance that conforms to this model is a tree structure, which fills in a
valid value for each Alan property. A formal algorithm describing conformance rules
is given in appendix A.

3.2 Distillation

The distillation phase gives the programmer the opportunity to clean up structural as-
pects of the data. The goal is to identify the logical entity types and fields embedded
in the raw data, as well as create traversable links between the types.

If we think in terms of the ANSI/SPARC three-schema architecture [40, 41], the
goal of this phase may be thought of as “undoing” the optimizations that have been
made in going to a physical schema, and converting it back to a conceptual schema.
Some examples of cleanup operations we may want to perform during this phase are:

• Combine tables that have been partitioned (either horizontal or vertical), despite
being part of a single logical entity type.

• Normalize data that has been denormalized (e.g. for performance reasons).
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• Identify links between tables that exist despite lacking an explicit foreign key
constraint.

• Rename identifiers (table and column names) to more human-readable equiva-
lents. For example, IBM DB2’s 10-character identifier limit means that names
are often “fudged” (forcefully shortened to fit within the character limit).

All of these operations either undo bad design, or undo optimizations made for sec-
ondary requirements, like performance or availability. In an ideal scenario, none of this
would be necessary, and the schema of the input data would already match our desired
source schema. In other words, we want to stick to the intent of the system designer
as much as possible. This is important, because we want the client to be able to study
and validate the correctness of the resulting source schema, in order to prevent faults
caused by communication errors.

3.2.1 Table definitions

Code snippet 2 shows a basic distillation of a table containing specifications of prod-
ucts.

table "products" <= map external "CMPNY.PRODUCT"

column * "product id" :: text <= .["PROD_ID"]

column "description" :: text <= .["DESC"]

column "stock quantity" :: integer <= .["STOCK"]

Code Snippet 2: Basic distillation example.

This example describes a table products with three columns. The primary key is de-
noted by the columns marked with an asterisk (*), which in this case is just the single
product ID. Each table and column takes an import expression (marked by <=) that
describes how to import a new instance from an input.

A table import expression must start with one of several possible operations:

• map (or map on <key name>) performs an exact one-to-one mapping from the in-
put table to the output. To guarantee that we do not end up with conflicting in-
dices, the table definition must preserve the primary key (or an alternative key)
of the input table. This is checked by the compiler (cf. chapter 4).

• aggregate allows a new primary key definition, but forces the programmer to
handle conflicting values at the column level, by using the available aggregation
operators (e.g. min, max, concat).

The input must be in the form of a table. The keyword external may be used to refer
to a table in the external schema, but we can also use sibling table definitions in the
distillation, using the syntax table <table name>.

A table import definition is similar to a “view” in relational terms, but instead of
defining one big query we express the result in terms of a table definition instead. This
gives us the benefit of adding integrity constraints on the result, something which is
not possible in SQL views.
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3.2.2 Filters

We can filter input tables to reduce them to a relevant subset, using the filter operator.
This is similar to a selection operation in relational algebra, or a WHERE clause in SQL
terms.

table "products"

<= map external "CMPNY.PRODUCT"

filter .["ACTIVE"] == "1"

filter .["STATE"] == "P"

//...

Code Snippet 3: Filters on an import expression.

3.2.3 Keys

Keys are sets of columns that represent a uniqueness constraint on the table. The pri-
mary key is defined by annotating columns with an asterisk (*), but we also support
alternative, named keys.

table "users" <= map external "CMPNY.USER"

column * "user id" :: text <= .["USER_ID"]

column "email" :: text <= .["EMAIL"]

key "unique email address": { "email" }

Code Snippet 4: Alternate key definition.

3.2.4 Links

We can add links from one table to another, as shown in snippet 5. Links are the
primary mechanism to traverse from one entity to another, which will become an im-
portant mechanism later in the construction phase.

table "orders" <= map external "CMPNY.ORDER"

column * "order id" :: text <= .["ORDER_ID"]

column "product id" :: text <= .["PROD_ID"]

link "product": single "products"

<= { "product id" <= .["product id"] }

Code Snippet 5: Links on a table.

Links can be marked as single or many (the “multiplicity” of the link), depending on
whether the link resolves to exactly one or a set of rows, respectively. The import
expression that follows specifies the foreign key that links the two tables.

Besides these “forward links”, where the foreign key columns are part of the ta-
ble itself, we also allow “reverse links”, that allow you to name the other side of a
relationship (thus creating a bidirectional link).
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table "products" <= map external "CMPNY.PRODUCT"

//...

link "orders": many "orders"

<= reverse "product"

Code Snippet 6: Reverse links.

In general, forward links tend to be singular, and reverse links plural. This is due the
way foreign keys work in the relational model. Forward links are singular, because we
constrain foreign keys to only ever map to a key of the referenced table (as is customary
in most relational database systems). There are some cases where we allow singular
reverse links, in order to model one-to-one relations. The exact semantics are provided
in section 4.3.

3.3 Construction

A construction is a projection over the target schema (the Alan model), where each
property in the target schema is annotated with an import expression, which tells the
importer how to create an instance of that property. From a high-level perspective,
a construction is a function that takes as input a source instance (i.e. the result of a
distillation), and returns as output either (1) a valid target instance, or (2) an error
report in case of failure.

(

// Basic expressions

"description" :: text <= "Example."

"version" :: integer <= 42

// Collections

"orders" :: collection <= map table "orders": encode key -> (

// Field access

"quantity" :: integer <= .["quantity"]

// Option selection

"status" :: option <= case

.["status"] == "pending"

=> "pending" :: ()

.["status"] == "finished"

=> "finished" :: (

"finish time" :: integer <= .["finish time"]

)

otherwise

=> error <!>

)

)

Code Snippet 7: A basic construction example.
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When a construction definition is compiled, the compiler checks whether the con-
struction represents a correct projection over the target schema (i.e. the construction
tree must match the target schema tree). The language is statically typed; the compiler
checks that all construction expressions are of a type that corresponds with the type of
the property.

A complete overview of the construction syntax is found in appendix B.

3.3.1 Property types

Alan offers the following property types:

Property type Instance result
text Textual value (a string).
integer Arbitrary integer value.
decimal Arbitrary decimal value.
option A choice out of several pre-defined options.
collection Mapping from keys (strings) to entries.
collection-of Collection where the key set is a subset of another collection.
reference Reference to a single entry in a collection.
component An instance of a named component type.

Table 3.2: Alan property types.

For a given property in a construction, the programmer is required to specify an opera-
tion that results in a value of the corresponding type. There are a fixed set of operations
per property type to choose from. Examples of each are given below.

3.3.2 Property expressions

In the following code samples, the placeholder <exp :: type> represents a primitive
expression of the type type. Expressions are written using a generic expression lan-
guage, described in section 3.4.

Primitive operations
"name" :: text <= <exp :: text>

"quantity" :: integer <= <exp :: integer>

"weight" :: decimal <= <exp :: decimal>
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Option operations
"type" :: option <= "a" :: () // Unconditional choice selection

"type" :: option <= error <!> // Unconditional failure

// Select the first choice where the predicate expression is true

"status" :: option <= case

<exp :: boolean> => "pending" :: ()

<exp :: boolean> => "finished" :: ()

otherwise => "unknown" :: () // Fallback (required)

// Cover all the options of an enum

"gender" :: option <= match enum <exp :: enum>

"M" => "male" :: ()

"F" => "female" :: ()

// Select either possibility of an optional-typed value

"has task" :: option <= settle

"task" = <exp :: optional<T>>

=> "yes" :: (

// Constants with the expression results are available in this scope

"task" :: reference <../"tasks"> <= $"task"

)

none => "no" :: ()

// Try to evaluate an unsafe expression, use fallback in case of failure

"has parent" :: option <= try

"parent" = <exp :: unsafe<T>>

=> "yes" :: (

// Constants with the expression results are available in this scope

"parent" :: reference <..> <= $"parent"

)

catch => "no"
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Collection operations

// Map a set of rows to a collection, using a text expression as collection key

"machines" :: collection <= map <exp :: rowset>:

key <!> <exp :: text> -> ( // Note: unsafe (risk of key clashes)

"description" :: text <= .["description"]

)

// Map a set of rows to a collection, using the primary key as collection key

"products" :: collection <= map <exp :: rowset>:

encode key -> ( // Safe (uniquely encodes primary key values as key)

"quantity" :: integer <= .["quantity"]

)

// Map a set of rows to a collection, using an alternate key as collection key

"users" :: collection <= map <exp :: rowset>:

encode key "email" -> ( // Encodes the alternate key named "email"

"name" :: text <= .["name"]

)

Reference operations

Reference operations (and the collection-of operations below) are slightly tricky, be-
cause to be correct, we must select an existing entry in the referenced collection. We
provide several operation types, some of which may result in a failure (i.e. are “un-
safe”), and one which the compiler guarantees to be safe (but is not always possible).

// Select an element from the collection by specifying the key directly

// (Note: unsafe, because the key might not resolve to an entry)

"machine" :: reference <../"machines"> <= key <!> <exp :: text>

// Select an element from the referenced collection by arbitrary row

// (Note: unsafe, because the row might not be part of the collection)

"product" :: reference <../"products"> <= index <!> <exp :: row>

// Select an element from the referenced collection by row entry

// (Note: safe, but only allowed if the compiler can verify correctness)

"order" :: reference <../"orders"> <= entry <exp :: row>

Collection-of operations

Similar to references, but here we need to verify that we have a subset of the entries in
the referenced collection.

// Arbitrary rowset (unsafe)

"my products" :: collection of <../"products">

<= intersect <!> <exp :: rowset>

// Rowset that forms a subset, as verified by compiler (safe)

"custom operations" :: collection of <../"operations">

<= subset <exp :: rowset>
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3.4 Expression Language

The distillation and construction languages are purposefully kept separate, but share
the need for a common bit of functionality: the ability to perform operations on simple
data types as well as more complex relational data. In particular, the construction phase
requires the output of a distillation as its input, which means we would like the two
languages to share a common type system.

We have chosen to implement this with a common sublanguage, which we call the
expression language. This language is a simple, functional language for data manip-
ulation, which supports our basic data types as well as table data types, as defined in
our source schema language.

This language is (at least in its current version) very basic. In particular, we do not
support mutable data, user-defined functions, higher-level functions, recursion, and no
user-defined types beyond the table types defined in the distillation language.

3.4.1 Primitive types

The basic data types are the column types defined as part of the source schema lan-
guage (introduced in section 3.1.2): text, integer, boolean, and so forth. We will refer
to these as the primitive types.

Literals

"foo" // Text literal

42 // Integer literal

42.0 // Decimal literal

true, false // Boolean literals

Basic operators

"foo" ++ " " ++ "bar" // Text concatenation

(42 * 2) + 1 // Arithmetic

true and (not false) // Boolean logic

Type conversions

There are a few constructs available for type conversions. In particular, every primitive
type may be converted from/to text values using the parse and serialize operators,
respectively.

parse "42" :: integer // Text parsing

serialize 42 // Text representation

Scoping

Each expression is evaluated in a particular scope. A scope consists of named con-
stants, which may be accessed using the $"<name>" syntax. We do not include any kind
of mutable state, thus constants cannot be assigned to. We can however create a new
scope for subexpressions using the where syntax.
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// Access constants from parent scope

$"first name" ++ " " ++ $"last name"

// Define a new local scope

$"first name" ++ " " ++ $"last name" where {

"first name" = "John"

"last name" = "Doe"

}

Context

A special scope constant called the context is usually (although not necessarily) avail-
able. This constant is expressed using the dot syntax (.).

// Append the text literal "foo" to the current context

// Note: only valid if the type checker confirms that . is of type text

. ++ "foo"

3.4.2 Row sets

Because we are dealing with relational data, we need to include tabular data types into
our type system. We introduce a single concept, the row set type, to represent this
information. Note that although we use the term “set”, these are not technically sets in
the mathematical sense, because we allow duplicates (i.e. they are multisets, or bags).

Table expressions

We can access the contents of a table simply by referring to table <name>, which
returns the table body as a row set.

table "foo" // Table contents

(table "foo") union (table "bar") // Merge two (compatible) tables

(table "foo") filter (.["type"] == "x") // Filter a subset of rows

Row expressions

Individual rows are typically passed down to subexpressions through the context (.)
mechanism. For example, when we map over a table in a construction definition, the
current row is used as context value. Given a row, we can access the column values, as
well as traverse links.

.["desc"] // Access the column "desc"

. -> "products" // Follow the link named "products"

Note that, although conceptually we are manipulating single rows, there is no “row”
type in our type system. Instead, the operators [] and -> work on row sets. Ensuring
that an expression like .["desc"] resolves to a single text value is done by the type
checker, through the link chain mechanism, which we describe in chapter 4.
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3.4.3 Type constructors (unsafe + optional)

Some expressions may result in an error. For example, the following expression fails
to return an integer:

parse "foo" :: integer // Fails

We say that the parse operator is unsafe. This fact is represented in its return type:
unsafe<T> (where T = integer in this case). We take inspiration from functional lan-
guages (e.g. Maybe in Haskell), and represent errors using a type constructor that “wraps
around” the type in question.

Unsafe expressions

We provide two mechanisms to deal with unsafe-typed values. The first is to explicitly
handle both cases using the try ... catch operator.

try (parse "foo" :: integer) catch 0 // Evaluates to 0

There is a second mechanism, called an assumption marker (<!>), which forcefully
“unwraps” the result of an unsafe operator, without regard for whether it succeeds.
If this does not succeed, a runtime failure is introduced and handled specially by the
runtime engine. The motivation for this construct is given in the next section (3.5).

(parse "42" :: integer) <!> // Evaluates to 42

(parse "foo" :: integer) <!> // Causes a runtime failure

Optional expressions

The type constructor optional<T> is similar to unsafe<T>, in that it encapsulates either
a successful value, or a fallback. The major difference is that we use optional values
to represent values where the fallback is not an error, but rather an explicitly defined
“default” (called the none case).

It is used, among other things, to represent nullable columns (as found in SQL).
Expressions that want to manipulate an optional value must handle both cases using
the settle operator.

// Optional value constructor (is "none" if boolean expressions fails)

optional .["foo"] on (. != "")

settle (.["optional value"]) otherwise 0 // Handle both cases
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3.5 Methodology

In this section we present the methodology that eventually led to the creation of Square.
These are a set of general concepts and guidelines that were developed at M-industries
through practical experience in systems integration. We believe this methodology makes
for a good workflow to write importers in a way that is natural and practical, and which
converges to a robust importer through successive iterations.

3.5.1 Process

Data importers have to deal with varying data over time. Thus, we can view writing an
import definition as a matter of making hypotheses about future inputs. For example,
at some point during the transformation, we might require a particular value to be
an integer, or the result of a join operation to contain exactly one row, or for a tree
encoding to contain no cycles. Even if the source schema does not guarantee such
a property, we might still have good reason to suppose that it will always hold and
perform our transformation rule regardless.

If such a hypothesis were to ever break (through a counterexample), the import
would fail, because the target schema – and thus any consuming application – was
not designed to handle that particular use case. Moreover, we want the import to fail in
this case, because it means somewhere we must have made a design flaw, which makes
manual intervention necessary.

Notice that this is functionally equivalent to the more conventional approach of apply-
ing a set of validation rules prior to performing the transformation itself. However, in
this new perspective the validation rules become an integrated part of the tranformation
itself, instead of a separate phase upfront.

model test

success

analyze failure

Figure 3.2: Feedback loop.

We apply this process iteratively in a kind of trial and error approach. The motiva-
tion for such an approach is the following observation: business operations are often
complex systems for which there is no perfect formal description. Using this type of
iterative process allows us to work towards a correct import definition purely based on
the output data coming from this complex system.

30



3.5. Methodology

3.5.2 Certainty levels

When making a hypothesis, we distinguish between three different cases based on how
certain we are that the hypothesis will hold. We denote these three certainty levels as
follows:

• Know

• Think

• Hope

Consider a particular hypothesis we want to make (e.g. a value is integer). We may be
able to statically prove that the hypothesis is true. For instance, it may be guaranteed
by the source schema. We say that we know that the hypothesis is true. In this case we
are certain we can safely apply the operation without risk of failures.

Alternatively, we may not be able to prove it in an automated fashion, but we
might have good reason to believe it nonetheless. For example, the client may have
informed us that the property in question is checked through alternative means, such
as an internal software system, or company policy. In this case, we think the hypothesis
holds (because we have some rationale), but we cannot prove it automatically.

In the last scenario, we have (at best) circumstantial evidence. For example, we
may have studied data samples and observed that it looks as though a particular field
is always integer. We would like the hypothesis to hold, but because we have no proof
that it does, we feel compelled to handle both cases. We say that we hope that the
hypothesis is correct, but because there is a risk we explicitly handle the fallback case
as well.

3.5.3 Assumptions

The three certainty levels are formalized in the Square programming model. Each sce-
nario corresponds to a particular pattern in the language.

An operation in Square is inherently linked to a language construct called an assump-
tion, which represents a hypothesis on the behalf of the programmer. For each assump-
tion in an import definition, the compiler will attempt to check whether the assumption
is true. For example, a simple field access operation cannot fail. The compiler will thus
mark this operation as safe. This corresponds to the “know” case.

// Here, .["quantity"] is a field of type ’integer’

"quantity" :: integer <= .["quantity"]

On the other hand, if the compiler cannot verify an assumption, it will be marked as
unsafe. This corresponds to the “think” scenario. The compiler forces the programmer
to mark an unsafe assumption in the syntax itself using an assumption marker (<!>).
For example, to parse a text value to an integer:

// Here, .["quantity"] is a field of type ’text’

"quantity" :: integer <= parse .["quantity"] :: integer <!>
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The assumption marker serves to make it explicit that the operation is a potential fail-
ure. A reader of the code should consider it a red flag. A string called the rationale
may be added to the marker to motivate the presence of the unsafe assumption:

"quantity" :: integer <= parse .["quantity"] :: integer

<!"Validated at user input, cf. e-mail correspondence #456">

By making this part of the syntax, we can provide tool support. For example, a re-
porting tool can parse an import definition and produce an overview of all “risks” in
the transformation, which may be shown to the client for verification. Or, when we
encounter an import failure at runtime, the import system can use these markers to
provide better diagnostics.

In the final “hope” scenario, we want to explicitly support the possibility of a failure.
The importer, being a non-interactive background process, cannot deal with the error
itself (it cannot inform the end user). Instead, we require each consuming application
to add explicit error handling logic (e.g. it might ask the end user to “fix” the offending
data).

The presence of such an error handling mechanism must be modeled in the target
schema. In Alan terms, this means we need an option property with a fallback state.

"quantity status" :: option (

"valid" :: (

"quantity" :: integer

)

"error" :: ()

)

In the construction language, we can map this using a try operation.

"quantity status" :: option <=

try "quantity" = parse .["quantity"] :: integer

=> "valid" :: (

"quantity" :: integer <= $"quantity"

)

catch

=> "error" :: ()

A try operation takes a number of named expressions, where assumption markers
are suppressed. If the expressions succeed, the result is made available within the child
scope (accessed through $"quantity"). This idea is similar to the concept of a try/catch
block in many programming languages.
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Chapter 4

Formal Semantics

In the previous chapter, we introduced Square using informal descriptions and code
examples. Here, we dive a little deeper into the semantics of Square using a more stan-
dard, formal notation. We focus in particular on the static semantics of the language,
i.e. the type system and other semantic constraints imposed at compile time.

Throughout the chapter, we will use basic terminology and notation from type the-
ory. We assume that the reader is at least somewhat familiar with: typed variants of the
lambda calculus, typing rules (and their application in type checking), and denotational
semantics (as covered for example in [42]).

4.1 Type System

As discussed in the previous chapter, the distillation and construction languages share
a generic expression language, with a common type system, allowing outputs of the
former to be passed as inputs to the latter. We will refer to this expression language as
E . A complete syntax for the language is given in appendix B.3. E is a statically typed,
purely functional language with strict semantics. The language has been purposefully
kept fairly simple, lacking user-defined functions, custom data types, and recursion.

Recall from chapter 3 that we want to be able to guarantee that an import definition
produces no runtime errors except where explicitly annotated (using assumption mark-
ers). For this reason, we make heavy use of static type checking to make compile-time
guarantees about the output.

The basic syntax of types in E (excluding row types, which we cover in the next sec-
tion) is:

PrimitiveType ::= text | integer | boolean | ...
Type ::= PrimitiveType | optional〈Type〉 | unsafe〈Type〉

Here, PrimitiveType captures the primitive data types. A Type is defined as either a
primitive type, or one of the type constructors optional or unsafe. Note that a type
constructor is a type which takes other types as arguments (i.e. a type-level function).

Per convention, we will denote concrete types in bold font, and type variables using
Greek lowercase letters (τ , σ, ...).
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4.1.1 Typing rules

E is parameterized by an alphabet Σ, and a set Ω containing typed constants c : τ .
There are constants defined for each primitive type (corresponding to the literals avail-
able for that type):

• t : text ∈ Ω for t ∈ Σ∗ = { "", "a", "ab", . . . }
• n : integer ∈ Ω for n ∈ Z = { 0, +1, −1, +2, −2, . . . }
• b : boolean ∈ Ω for b ∈ B = { true, false }
• etc.

To determine whether an expression in E is well-typed, we need a set of typing rules.
Typing rules are logical inference rules that tell us when a particular expression may
be judged to be of a particular type. Each expression is given under a typing context Γ,
which contains the types of free variables in the expression. A complete overview of
all typing rules is provided in appendix C.

For constants, we introduce a trivial typing rule that says that constants of type τ
may be judged to be of type τ under any context Γ.

c : τ ∈ Ω
Γ ` c : τ

E does not allow “undefined” values, nor partial functions. In terms of type theory, we
say that there is no bottom value ⊥, and all types are thus unlifted. We do not need
⊥ to express nontermination either, because an E expression always terminates (the
language does not allow recursive definitions, and built-in operators are designed to
terminate). This limits the expressiveness of the language, but at the benefit of stronger
compile-time guarantees, and improved ability to reason about programs.

In place of a special value, expressions that want to indicate the “lack of” of a
value need to use a different mechanism. The optional type constructor may be used
for values that may or may not exist (similar to the Maybe type in Haskell, or option
in ML). Manipulating such a value must be done using the settle operator, which
forces the programmer to handle both cases.

Γ ` e1 : τ Γ, . : τ ` e2 : boolean

Γ ` (optional e1 on e2) : optional〈τ〉
Γ ` e1 : optional〈τ〉 Γ ` e2 : τ

Γ ` (settle e1 otherwise e2) : τ

(Note that in the above, the syntax Γ, x : τ indicates a typing context, where the free
variable “x” is assigned the type τ . In this case, we set the type of the context variable
“.” because we pass this variable along to the subexpression e2.)
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Errors are handled using a similar construct; operators that may fail need to use the type
constructor unsafe. Accessing its value may be done using a try operation. Values
of type unsafe〈τ〉 are returned either by specific operators (“unsafe operators”), or
directly constructed through the error :: τ syntax.1

Γ ` (error :: τ) : unsafe〈τ〉
Γ ` e1 : unsafe〈τ〉 Γ ` e2 : τ

Γ ` (try e1 catch e2) : τ

Alternatively, we may simply grab the value directly, by applying the assumption
marker <!>. This will either return the value or raise a runtime error. In fact, this is
the only way a runtime error may be raised in E .

e : unsafe〈τ〉
Γ ` (e <!>) : τ

The language provides a number of built-in operators for primitive types, including
basic arithmetic, text manipulation, boolean logic, etc. A few of these operators are
listed with their typing rules below (refer to appendix C for the complete list).

Γ ` e1, e2 : integer

Γ ` (e1 + e2) : integer

Γ ` e1, e2 : text

Γ ` (e1 ++ e2) : text

Γ ` e1, e2 : boolean

Γ ` (e1 and e2) : boolean

Γ ` e1 : boolean Γ ` e2, e3 : τ

Γ ` (if e1 then e2 else e3) : τ

E is strongly typed. There are no implicit type conversions, instead all conversions
must be done through the type conversion mechanisms provided in the language. Of
note, we allow any of the primitive types to be parsed from, or serialized as, text
values.

Γ ` e : text τ is primitive
Γ ` (parse e :: τ) : unsafe〈τ〉

Γ ` e : τ τ is primitive
Γ ` (serialize e) : text

Recall that the typing context Γ contains types of free variables in the current expres-
sion. In our expression language, these free variables correspond to scope constants.
Such a scope constant x may be accessed through the $x syntax. We distinguish a
special constant for the current context,2 denoted with a dot (.).

x : τ ∈ Γ
Γ ` $x : τ

or . : τ ∈ Γ
Γ ` . : τ

1 The manual declaration of the type of error (using ::) is necessary because we lack a polymorphic
type system (i.e. we cannot declare error to be of a variable type).

2 Be careful not to confuse the term “context”, which is a special constant (.) in our language, with
the “typing context” Γ, which is a term we appropriate from type theory.
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Constants may be bound using a where expression.

Γ ` e1 : τ1, . . . , en : τn Γ, x1 : τ1, . . . , xn : τn ` e0 : τ0
Γ ` (e0 where { x1 = e1, . . . , xn = en }) : τ0

4.1.2 Type checking

As we will see in the following sections, E expressions are always embedded in larger
structures. The structure that embeds the expression determines its top-level scope, and
thus its typing context Γ. This typing context will usually – although not necessarily –
include a type τc for the context variable: Γ = { . : τc }). Type checking an expression
is done by recursively applying the typing rules defined above.

4.2 Source Schema

In the distillation language, we define a number of table schemas, which together form
our source schema. We want to introduce new types for each of these table schemas,
so that we can assign types to tabular data. Going beyond just rows and columns,
we also want to be able to reason statically about integrity constraints, such as keys
and foreign keys. Thus, we will formalize all of the information defined in the source
schema directly in the type system, so that we can utilize this information in our typing
rules.

4.2.1 Structure

A database schema is a fairly complex structure. Instead of basing ourselves on an
elementary type theory (e.g. typed lambda theory), we find it easier to give a set-
theoretical definition, and then introduce new types based on these mathematical ob-
jects. In other words, our goal here is to capture the data structure from section 3.2, but
using set theory instead of a grammar.

First, a few basic definitions. Let Σt, Σc, Σl, Σk denote infinite sets of table names,
column names, link names, and key names, respectively. In addition, let T denote the
set of all possible data types, LM = { single, many } the set of the possible link mul-
tiplicities, and LC = { none, unsafe〈〉, optional〈〉, optional〈unsafe〈〉〉 } the set
of type constructors we can apply to link definitions.

We define a few domains to capture the structure of elementary table schema ele-
ments. Each member of the following sets is a single column, link, or key, respectively.

Dcols = { datatype | datatype ∈ T }
Dlinks = { ( target , mult , constr ) | target ∈ Σt, mult ∈ LM , constr ∈ LC }
Dkeys = { columnset | columnset ∈ P(Σc) }
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The following examples illustrate the correspondence between the syntax we defined
in the previous chapter, and the above set encoding:

column "name" :: text

column "name" :: text !

column "name" :: text ?

column "name" :: text ! ?

link "machine": single "machines"

link "machines": many "machines"

link "machine": single "machines" !

link "machine": single "machines" ?

link "machine": single "machines" ! ?

key "email": { "email address" }

text ∈ Dcols

unsafe〈text〉 ∈ Dcols

optional〈text〉 ∈ Dcols

optional〈unsafe〈text〉〉 ∈ Dcols

( "machines", single, none ) ∈ Dlinks

( "machines", many, none ) ∈ Dlinks

( "machines", single, unsafe〈〉 ) ∈ Dlinks

( "machines", single, optional〈〉 ) ∈ Dlinks

( "machines", single, optional〈unsafe〈〉〉 )
∈ Dlinks

{ "email address" } ∈ Dkeys

Note that the grammar is slightly more restrictive than the set encoding. For example,
the grammar does not allow a column of type unsafe〈optional〈text〉〉, despite this
being a valid type. The reason for this discrepancy is that not all combinations of types
correspond to a logical use case, and thus we expressively disallow them in the syntax.
The difference is irrelevant for our typing rules.

Based on the above domains for columns, links, and keys, we can now define how we
create mappings from names to values. Each mapping is a set of names, and a function
that maps each of these names to an element of the corresponding domain.

Mcols = { ( c, domc ) | c ∈ P(Σc), domc : c→ Dcols }
Mlinks = { ( l, dom l ) | l ∈ P(Σl), dom l : l→ Dlinks }
Mkeys = { ( k, domk ) | k ∈ P({pk} ∪ Σk), domk : k → Dkeys }

(Note that we have added a special symbol pk 6∈ Σk to the set of key names, which
distinguishes the primary key, if present.)

A single table schema definition consists of mappings for columns, links, and keys.
We thus define the domain of table schemas as follows:

Dtables = Mcols ×Mlinks ×Mkeys

s.t. all key columns in Mkeys match a column in Mcols

Finally, we can define the structure of an entire database schema. A database schema
is a mapping from table names to table schemas. In other words, a database schema
DB is an element of the following domain:

Mtables = { ( t, domt ) | t ∈ P(Σt), domt : t→ Dtables }
s.t. all link targets match a valid table name t
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For notational convenience, we introduce the following functions to access the indi-
vidual components of any table schema t ∈ Dtables :

columns(t) = { (name, domain ) | name ∈ c, domain = domc(c) }
links(t) = { (name, domain ) | name ∈ l , domain = dom l(l) }
keys(t) = { (name, domain ) | name ∈ k , domain = domk(k) }

for t = ( ( c, domc ), ( l , dom l ), ( k , domk ) ) ∈ Dtables

4.2.2 Row set types

Now that we have a structure for database schemas, we can introduce the correspond-
ing types into our type system. The data types we introduce are sets of rows3 that
conform to a particular table schema. Each row in a row set should instantiate the table
schema’s columns and links. Additionally, all key constraints must hold for the set as
a whole.

A naive approach would be to introduce a type rowset[ t ] for each table t in the
source schema. This, however, is not granular enough for our purposes. We want to be
able to reason about the origin of rows as well. This because the chain of operators
that led to a particular row can determine whether that row is (for example) a valid
reference or not. We want to check these kind of properties at compile time.

For this reason, we introduce the concept of a link chain. An element in a link
chain is a link (of type either single or many), where each link in the chain is applied
in succession. We use the following short-hand syntax for a link element in a chain:

→ t ⇐⇒ ( t, single, none ) ∈ Dlinks

↠ t ⇐⇒ ( t, many, none ) ∈ Dlinks

In other words,→ t and↠ t denote links with target t, of multiplicity single and many
respectively, without any type constructors applied. A link chain, denoted

→p, is then a
sequence of such links. Some examples are given below.

→p = [↠ t ]
→q = [↠ t,→ u ]
→r = [↠ t,→ u,↠ v ]
→s = [

→r,↠ w ] = [↠ t,→ u,↠ v,→ w ]

By convention, the first element of the link chain always gives the base table. Thus,
the result of the chain

→p is the entire table t.
→q produces a single row of the table u,

accessed by following a link from some row in t. The chain →r expresses one additional
step, where a many link from a row in u is followed to the table v, resulting in 0 or
more rows in table v. Lastly, the final link chain →s builds upon an existing chain →r and
appends one more link element→ w.

For a given link chain
→p = [

→q,↠ t ] (or
→p = [

→q,→ t ]), we introduce a new type in
our type system: rowset[

→p ]. An instance of this type is a set of rows conforming to
the target of the final chain element t.

3 Technically, we do allow duplicates in some cases, thus making these objects multisets (or bags)
rather than sets. We stick to the term “row set” because it is a more familiar term.
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4.2.3 Row set operators

Given a database schema S ∈ Mtables, we define a number of operators that work on
rowset types. The simplest operator fetches the contents of an entire table.

(t, domt) ∈ S
Γ ` table t : rowset[↠ t ]

We can take the union of two row sets, if their column sets are equal. The result of a
union conforms to a new table schema u, where we can no longer guarantee the key
constraints of the inputs (because t and s may conflict). We can, however, keep the
links that are shared by both row sets.

Γ ` e1 : rowset[
→p,↠ t ] Γ ` e2 : rowset[

→q ,↠ s ] columns(t) = columns(s)

Γ ` e1 union e2 : rowset[↠ u ]

where u = ( columns(t), links(t) ∩ links(s), ∅ ) ∈ Dtables

A filter takes a row set, and a boolean predicate, and returns a subset of the row set.
The fact that the result is a subset is represented through the addition of a link in the
chain back to the same table.

Γ ` e1 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e2 : boolean

Γ ` e1 filter e2 : rowset[
→p,↠ t ,↠ t ]

The operators above work on row sets of multiplicity many (i.e. rowset[
→p,↠ t ]). If,

on the other hand, we have a row set containing a single row (rowset[
→p,→ t ]), we

can perform row-specific operators.
The first operator we look at is the column indexing operator. The resulting type is

exactly the type of the column as defined in the schema.

Γ ` e : rowset[
→p,→ t ] ( c, τ ) ∈ columns(t)

Γ ` e[c] : τ

Similarly, links may be followed through the link traversal operator. This operator
comes in different flavors, for each of the combinations of single/many and the differ-
ent type constructors specified in the link definition:

Γ ` e : rowset[
→p,→ t ] ( l, ( s, single, τ ) ) ∈ links(t)

Γ ` e -> l : τ〈rowset[
→p,→ t ,→ s ]〉

Γ ` e : rowset[
→p,→ t ] ( l, ( s, many, τ ) ) ∈ links(t)

Γ ` e -> l : τ〈rowset[
→p,→ t ,↠ s ]〉

(Note that the use of τ in the above typing rule represents one of the different possible
type constructors, like optional〈〉, or possibly no constructor at all (none).)
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The final operator we mention here is the inverse of the above link traversal. Given a
row produced through a link chain, we can access its predecessor in the chain through
a parent link step (^).

Γ ` e : rowset[
→p,→ t ]

Γ ` e ^ : rowset[
→p ]

If we view the link chain as a stack, what this operator does is basically a “pop” op-
erator, that returns us to the previous row set result. The typing rule ensures that there
must be at least one item (a single link), or it will not type check.

4.2.4 Aggregation operators

A common use case is to take a set of rows, and flatten them to a single value. There
are several aggregation operators available, for numerical (min, max, avg, sum) and text
types (concat). For example, to take the minimum value over a row set, we can use the
min operator, which has the following typing rule:

Γ ` e0 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e1 : integer

Γ ` (min e1 over e0) : unsafe〈integer〉

The expression e0 gives the base row set to be mapped over. e1 takes some row in
this set as its context and converts it to an integer value. The operator returns the
minimum value if successful. Note that the operator is unsafe, because the input may
be empty. For some operators there is a logical “trivial” default value, but for others
(like min/max/avg), we force the programmer to handle this case themselves.

Another aggregation operator we introduce is the shared operator:

Γ ` e0 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e1 : τ

Γ ` (shared e1 over e0) : unsafe〈τ〉

This operator checks that all of the given values are equal. If so, it returns that value,
otherwise it will cause a failure. The motivation for this operator is due to a common
pattern we observe in working with relational data, specifically in systems that lack
“nested” tables. In these systems, the result of a join operation results in the same
value being replicated across multiple rows. To “undo” such an operation during our
distillation process, we want to be able to express the property that a particular set of
rows share some value.

As with the previous sections, the complete list of typing rules are given in ap-
pendix C.
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4.3 Distillation

Recall from chapter 3 that a distillation is a transformation that takes as input a set
of raw tables, and produces an instance of a source schema as a result. We can now
define this more formally. We are given a raw schema R ∈ Mtables, and a source
schema S ∈Mtables. The raw schema is obtained from some external database schema
definition, and the source schema is defined by the database structure in the distillation
program.

Def. Given R,S ∈ Mtables, a distillation is a transformation that takes an instance
of R and produces a valid instance of S.

Note that – unlike typical transformations (e.g. SQL queries or views) – the structure
of the output is predetermined. The output structure is not derived from the transfor-
mation rules themselves, rather, we limit the transformation rules such that it must
produce a valid instance of the desired schema. This is a subtle but important differ-
ence, because it switches our perspective when it comes to defining static constraints
on the language.

4.3.1 Table structure

A table schema definition consists of two parts: the table structure itself, and the im-
port expressions that are annotated upon it (<=). The table structure determines its
type. There is a simple correspondence between the formal notation from the previous
section, and the Square syntax described in chapter 3, as illustrated by the following
example:

table "products"

column * "product id" :: integer

column "order id" :: integer ?

column "desc" :: text

column "uniq" :: text

link "order": single "orders" ?

link "machines": many "machines"

key "uniq": { "uniq" }

t ∈ Dtables s.t.

columns(t) = {
( "product id", integer ),

( "order id", optional〈integer〉 ),
( "desc", text ),

( "uniq", text )

},

links(t) = {
( "order", ( "orders", single, optional〈〉 ) ),

( "machines", ( "machines", many, none ) )

},

keys(t) = {
( pk , { "product id" } ),

( "uniq", { "uniq" } )

}
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4.3.2 Table import expressions

The import for a table is given by an import expression e, prefixed by an operation
type op:

table "products" <= <op> <e>

The expression e is constrained to be of type rowset[
→p,↠ s ]. In other words, it

should be a table, or the result of a table operator (e.g. filter or union). The expression
may refer to table schemas in R, as well as sibling table schemas in the same source
schema S. For namespacing purposes, table schemas in R are referred to using the
syntax external "<table name>".

The operation type op determines how to map the input rows to the output. There are
two different operations we can choose from:

• map (or map on "<key name>")

• aggregate

Map

The map operation performs a one-to-one mapping from each row in the input to a row
in the output. To guarantee that we can map each input row to a unique output row
(i.e. unique primary key value), the compiler forces the programmer to maintain the
same primary key. In other words, if the primary key of the input rowset is { "pk 1",
"pk 2" }, then the table schema must contain precisely the following key columns:

column * "renamed pk 1" :: text <= .["pk 1"]

column * "renamed pk 2" :: text <= .["pk 2"]

Constraint: Given: a table import expression of type rowset[
→p,↠ s ], on an

output table of type t. A map operation is only valid iff s has a primary key
( k1, ..., kn ), and the primary key of t is ( k ′1, ..., k

′
n ), where each column k′i

imports the column ki.

Implementing this check requires us to look at the AST of each primary key column
expression. In our current implementation, we simply check that each primary key
column k of the input matches exactly one primary key column of the output, i.e. its
expression is precisely .["<k>"]. There are more sophisticated ways of performing
such an equivalence check, but for simplicity we have settled for this solution.

A different key of the table s may be selected using map on "<key>". The same
rules apply, but we use the specified key of the input rather than the primary key.

Aggregate

If the programmer wants to specify a new primary key, then they can use the aggregate

operation. With this operation, rows are automatically grouped based on the new pri-
mary key. Thus, in general, n input rows may map to one output row. All non-primary
key columns must deal with this by flattening the row set to a single value, using an
aggregate operator.
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table "employees" <= map external "EMPLOYEES"

column * "employee id" :: text <= .["EID"]

column "employee name" :: text <= .["NAME"]

column "department" :: text <= .["DEP"]

column "department manager" :: text <= .["DEPMANAGER"]

// Derive a new table of unique departments, based on the employees table

table "departments" <= aggregate table "employees"

// Context (.) is of type rowset (single)

column * "department id" :: text <= .["department"]

// Context (.) is of type rowset (many), and must thus be flattened

column "manager" :: text ! <= shared .["department manager"] over .

An example of an aggregate operation is shown above. Note that primary key columns
are given a single row context as usual, because we use these columns as the basis for
grouping rows. However, for non-primary key columns, . is of type rowset[

→p,↠ s ].

4.3.3 Column import expressions

For columns, the column type determines the expected type of the import expression.
The compiler checks that the types match exactly.

// Type of <e> must be text

column "name" :: text <= <e>

// Type of <e> must be optional<date>

column "start date" :: date ? <= <e>

// Type of <e> must be optional<unsafe<integer>>

column "quantity" :: integer ! ? <= <e>

4.3.4 Key definitions

Non-primary keys provide alternate ways to index a table. To guarantee that a key
does indeed form a unique index, the compiler must verify that an equivalent key is
present on the input. Alternatively, we allow the programmer to specify “unsafe” keys
(annotated with !). We can map over such a key, but because we may end up with
multiple conflicting rows, any row accessed through an unsafe key is returned as an
unsafe-typed value.

table "users" <= map external "USERS"

column * "user id" :: text <= .["UID"]

column "email address" :: text <= .["EMAIL"]

column "alias" :: text <= .["ALIAS"]

// Only valid if the input table has a key { "EMAIL" }

key "by email address": { "email adress" }

// Always possible, but accessing a row through this key is unsafe

key "by alias": ! { "alias" }
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Constraint: Given: a table import expression of type rowset[
→p,↠ s ], on an

output table t. If t has a (safe) key ( k′1, ..., k
′
n ), where each k′i is imported from

some column ki ∈ columns(s), then s must have a corresponding key ( k1, ...,
kn ).

4.3.5 Forward link definitions

A “forward link” is a link where the foreign key definition is on the table itself. There
are several constraints we place on forward link definitions. The first is that all foreign
key definitions must be done on the primary key of the link target table.4

Constraint: Given a table t, and a link l = (u, single, τ ) ∈ links(t). A for-
ward link definition for l is only valid iff the link target u has a primary key
( k1, ..., kn ), and the foreign key mentions each primary key column ki exactly
once.

This constraint ensures that any forward link matches at most one unique row in the
link target. A consequence of this is that forward many links are not possible, and the
compiler will raise an error if you try to define one as such.

table "products" <= map external "PRODUCTS"

column * "product id" :: text <= .["PID"]

column "description" :: text <= .["DESC"]

table "orders" <= map external "ORDERS"

column * "order id" :: text <= .["OID"]

column "product id" :: text <= .["PID"]

column "description" :: text <= .["DESC"]

// Invalid (foreign key does not match the primary key of "products")

link "desc": single "products" <= { "description" <= .["description"] }

// Invalid (forward links can only be single)

link "products": many "products" <= { "product id" <= .["product id"] }

// Only valid if there is a corresponding link on the input table

link "product": single "products" <= { "product id" <= .["product id"] }

As with keys, the presence of a link on a table represents a certain integrity constraint.
Namely, that all rows refer to a valid row in the link’s target table. Defining a link is
only possible if we can statically guarantee that the link resolves for all rows, i.e. there
must be an equivalent link on the input table.

4 The reason for this constraint is that it matches the behavior of foreign keys in most relational
database engines. Most of these systems also support foreign keys on alternate keys, a feature which we
currently do not support.
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Constraint: Given: a table import expression of type rowset[
→p,↠ s ], on an

output table of type t, and a link l = (u, single, τ ) ∈ links(t). A forward link
definition for l is only valid iff s has a link l′ = (u, single, τ ), and l preserves
the foreign key definition of l′.

If any of the columns used in the foreign key definition is of type optional, then the
entire link must be marked optional as well (?). This matches the behavior of foreign
key definitions in SQL using one or more nullable columns.

table "machines" <= map external "MACHINES"

column * "machine id" :: text <= .["MID"]

table "materials" <= map external "MATERIALS"

column * "material id" :: text <= .["MID"]

table "products" <= map external "PRODUCTS"

column * "product id" :: text <= .["PID"]

column "machine id" :: text ? <= .["MACHID"]

column "material id" :: text <= substring .["MATID"] from 0 to 2

// Optional link (resolves to an optional<row>)

link "machine": single "machines" ? <= { "machine id" <= .["machine id"] }

// Unsafe link (resolves to an unsafe<row>)

link "material": single "materials" ! <= { "material id" <= .["material id"] }

Lastly, if we cannot guarantee that a link exists (i.e. we are declaring a new link rather
than preserving one), then we must annotate the link as unsafe (!). A common use case
for this is when the external database lacks a certain foreign key constraint. Or, if the
value we use in the foreign key is the result of some complex expression (like the sub-
string operation in the example above). Unsafe and optional links may be combined.

4.3.6 Reverse link definitions

A “reverse link” resolves not through a foreign key on the table itself, but rather by
referring back to a forward link. For each row, the result of this link is all rows that
refer to it through the forward link. In general, there may be several such rows.

table "products" <= map external "PRODUCTS"

column * "product id" :: text <= .["PID"]

// Safe

link "orders": many "orders" <= reverse "product"

// Unsafe

link "order": single "orders" ! <= reverse "product"

table "orders" <= map external "ORDERS"
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column * "order id" :: text <= .["OID"]

column "product id" :: text <= .["PID"]

link "product": single "products" <= { "product id" <= .["product id"] }

If the reverse link is defined to be single, it must be marked unsafe (!), because the
link fails when there is not exactly one row pointing to it. A reverse many on the other
hand, is never unsafe nor optional.

4.4 Construction

A construction defines how to build an instance of a target schema (an Alan model),
given an instance of a source schema as input. For this to be correct, we want to ensure
that any target instance that results from a construction is a valid instance of the target
schema.

In appendix A, we describe exactly what it means for a document (in JSON format)
to be a valid instance of an Alan model. There are two main requirements:

1. The document must be well-formed, i.e. it must follow the tree structure defined
by the model, with suitable values for each property type.

2. The document must pass referential integrity checks, i.e. all references must
resolve properly.

In this thesis report, we do not give the full operational semantics for the language.
Hence, we cannot formally prove that the target instance always meets the above re-
quirements. We will, however, describe the function of each language construct, along
with a set of static constraints that prevent schema violations – by reasoning about the
semantics. Using this approach, we intend to motivate the soundness of the language
despite the lack of a formal proof.

4.4.1 Primitive operations

Primitive property types take an expression of a corresponding type. We constrain the
import expression to be of the right type. The expression type system was designed
such that we can convert the source schema types to the corresponding Alan type
without loss of information.

(

"foo" :: text <= <e> // <e> must be of type text

"bar" :: integer <= <e> // <e> must be of type integer

"baz" :: decimal <= <e> // <e> must be of type decimal

)
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4.4.2 Option operations

An import expression on an option property is a kind of decision tree, which (eventu-
ally) leads to either:

• One of the choices defined for the option in the target schema, or

• A failure (error<!>)

(

"foo" :: option <= "x" :: () // Unconditional choice selection

"bar" :: option <= error <!> // Unconditional failure

)

(Note that the <!> here is technically not the same as the <!> operator we have seen
before, although syntactically and functionally they work the same.)

Several branching operations are available, as covered in the previous chapter. The
only constraint we place on these operations is that any choice we make matches one
of the valid choices defined in the target schema.

4.4.3 Collection operations

We provide one operation to build collections: the map operation. A map takes an ex-
pression of type rowset[

→p,↠ t ] (i.e. a set of rows conforming to the table schema t),
and maps this one-to-one to a set of (key, entry) pairs. Each entry is passed the current
row in the row set as its context (.).

(

"foo" :: collection <= map <e>:

<key exp> -> (

// Entry fragment (context: current row)

)

// Examples:

"products" :: collection <= map (table "products"):

key <!> (.["product id"]) -> ()

"machines" :: collection <= map (. -> "machines"):

encode key -> ()

)

The collection key used for a particular entry is controlled through the key expression,
which comes in two variants:

• key<!>

• encode key (or encode key "<key name>")

The key<!> operation takes the current row and passes it to an arbitrary text expres-
sion. The operation is unsafe, because keys for different entries may conflict. When a
conflict is detected, the entire subtree of the target instance at this point is invalidated.
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If the rowset passed to the map has a primary key, we also allow the encode key

operation (or any alternative key). This takes the key value of the current row, and
encodes it as a text value to create a collection key that is guaranteed to be unique.

Constraint: Given: a map operation on a collection with an input of type
rowset[

→p,↠ t ]. An encode key operation using the table key k (primary or
otherwise) is valid iff k ∈ keys(t).

If the selected table key is unsafe (cf. section 4.3.4), the row that is passed to the entry
as context is also unsafe. Any conflicting rows will cause a failure. To access the row
safely, the use of an assumption marker is required. For convenience, we can do this
for the entire entry fragment using the with syntax.

"orders" :: collection <= map table "orders":

encode key "unsafe key" -> with . <!"Should be unique on ’unsafe key’"> (

"description" :: text <= .["description"]

)

Note that a key in a table schema may be composed of several key columns, which
must be encoded as a single string. Simply concatenating these values would not work
because, for example, the indices { "aa", "bb" } and { "aab", "b" } would both result
in the collection key "aabb". Instead, we take care to encode multi-column keys using
a separator with escaping.

4.4.4 Reference operations

As described in appendix A, a reference in Alan points to an entry in a collection
(identified by a reference path). Statically guaranteeing that a reference is valid is in
general quite difficult, which is why all but one of the operations are marked as unsafe.

"machines" :: collection <= map table "machines":

encode key -> (

"description" :: text <= .["description"]

)

"default machine" :: reference <"machines"> <= key <!> .["default machine id"]

There are three operation types for references:

• key<!>

• index<!>

• entry

The key<!> operation simply takes a text value, and uses this to index into the refer-
enced collection. If the lookup fails, it causes an import failure.
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"machines" :: collection <= map (table "machines" filter .["active"] == true):

encode key -> (

"description" :: text <= .["description"]

)

"customers" :: collection <= map table "customers":

encode key -> (

"full name" :: text <= .["full name"]

)

"products" :: collection <= map table "products":

encode key -> (

"machine" :: reference <../"machines"> <= index <!> (. -> "machine")

"customer" :: reference <../"customers"> <= entry (. -> "customer")

)

The other two operations are a little more subtle. An index<!> operation takes as input
a row, which is then used to index into the rowset of the collection that is referenced.
If we look at the example above, each “product” has a reference to the “machines”
collection. We use the (. -> "machine") link as a lookup into the collection’s row set.
To get a collection key we can just run the collection’s key expression on that row.

This operation is still unsafe, because we have no guarantee that the row is actually
part of the row set! In the example above, if it turns out that the machine does not
fulfill the filter (.["active"] == true), then it cannot be an element of the “machines”
collection.

In fact, using our type system there is only one case where we know for certain that we
have a valid reference. This is the case where the link chain of the collection rowset
contains just the base table. In other words, the referenced collection imports the entire
table, and thus any row we obtain that originates from the same table must be part of
the collection. This is a rather common use case, and thus we have added a special
operation for it: the entry operation.

Constraint: Given: a reference property r referencing a collection c, where c
maps over an input of type rowset[

→p,↠ s ]. An entry operation on r takes an
input of type rowset[

→q ,→ t ]. This operation is valid iff s = t and
→p = [ ] (i.e.

the type of the input to c is precisely rowset[↠ t ]).

4.4.5 Collection-of operations

The collection-of property type in Alan provides a similar challenge as reference prop-
erties. Again we have a path to some other collection, only this time we want to select
a subset of that collection, rather than just a single entry. There are two operations
available, one unsafe and one safe:

• intersect<!>

• subset
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"operations" :: collection <= map table "operations":

encode key -> (

"tools" :: collection <= map table "tools":

encode key -> (

"description" :: text <= .["description"]

)

)

"products" :: collection <= map table "products":

encode key -> (

"product operations" :: collection of <../"operations">

<= subset (. -> "operations")

"tools" :: collection of <"product operations"/"tools">

<= intersect <!> (. -> "tools")

)

Analogous to index for references, the intersect operation takes as input a set of rows
of the same table as the referenced collection, and uses these to fill the collection-of.
We call the operation “intersect” because we are comparing two subsets of the same
table, where neither is guaranteed to be a subset of the other.

The subset operation (like entry for references) is the safe counterpart, which only
works if the referenced collection uses the complete contents of a table.

Constraint: Given: a collection-of property c′ referencing a collection c, where
c maps over an input of type rowset[

→p,↠ s ]. A subset operation on c′ takes
an input of type rowset[

→q ,↠ t ]. This operation is valid iff s = t and
→p = [ ]

(i.e. the type of the input to c is precisely rowset[↠ t ]).

4.4.6 Components

The last property type in Alan that we have yet to cover are components. Recall that
components are named type fragments, which may be instantiated in multiple locations
(reuse), or even within itself (recursive structures).

(

"products" :: collection <= map table "products": encode key -> (

"operations" :: component "operation list" <= . -> "first operation"

)

)

component "operation list" (

"description" :: text <= .["description"]

"has tail" :: option <= settle "next operation" = . -> "successor"

=> "yes" :: (

"tail" :: component "operation list" <= $"next operation"

)

none => "no" :: ()

)

)
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A component takes an expression of type rowset[
→p,→ t ] (i.e. a single row), which

then gets passed to the component as its context. There is a risk here, in that if the links
we follow end up going in a cycle, the entire construction process will loop forever. We
provide a few constructs to prevent such a scenario, which we detail in the following
section.

4.5 Graph Constraints

Some of the more interesting data structures we may encounter come in the form of
graphs. For example, table 4.1 shows a simple “bill of materials” hierarchy for the
production of a bicycle. Each row is a part, and dependencies between parts are repre-
sented by a foreign key to the parent part. There should one part – the end product –
which does not have a parent, denoted by a NULL value.

Bill of Materials
part id parent id description
40-001 NULL Bicycle

50-001 40-001 Bicycle frame

50-002 40-001 Saddle

60-001 50-002 Saddle support

60-002 50-002 MS Bolt

60-003 50-002 M10 Square nut

... ... ...

Table 4.1: An example of a graph structure encoded as a table.

If designed properly, the table should have a foreign key constraint on the “parent id”
column, referencing back to the same table. Since this is a foreign key on a nullable
column, we can import it as an optional link. We might define a schema for this table
as follows:

table "bill of materials" <= map external "bill of materials"

column * "part id" :: text <= .["part id"]

column "parent id" :: text ? <= .["parent id"]

column "description" :: text <= .["description"]

link "parent part": single "bill of materials" ?

<= { "part id" <= .["parent id"] }

link "subparts": many "bill of materials"

<= reverse "parent part"

The above setup is a common way to encode graphs in tabular format. The problem
with this approach is that we have no guarantee about the form of the graph. We cannot,
for example, ensure that the graph is connected, that there are no cycles, or that the
graph is a tree.

To allow a programmer to express the assumption that something is a tree, we have
added the root operator. This operator is part of the expression language, and has the
following typing rule:
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Γ ` e : rowset[
→p,↠ t ] l ∈ links(t)

Γ ` (root e following l) : rowset[↠ t ,→ t ]

The operator takes a table, and returns the root of the tree by following the given link
(parent link). It fails unless all of the following conditions hold:

1. The graph is connected

2. The graph is acyclic

3. There is exactly one node without a parent link: the root5

A construction of the bill of materials table using this operator is shown below. Once
we have the root, we can then recursively build up the tree by following the reverse
subparts link, with the knowledge that we (1) cover the entire tree, and (2) terminate.

(

"bill of materials" :: component "BOM tree"

<= root (table "bill of materials") following "parent part"

<! "Bill of materials should form a tree" >

)

component "BOM tree" (

"subparts" :: collection <= map . -> "subparts": encode key -> (

"part" :: component "BOM tree" <= .

)

)

We can do something similar for lists (linear graphs). The extra requirement we need
is that each node only has exactly one successor (or none if it is the last). We have
already seen a way to model this kind of relation: give the reverse link multiplicity
single. This allows us to assume a one-to-one relation between parent/child.

// Distillation

table "steps" <= map external "steps"

column * "step id" :: integer <= .["step id"]

column "description" :: text <= .["description"]

column "previous step id" :: integer ?

link "previous step": single "steps" ?

<= { "step id" <= .["previous step id"] }

link "next step": single "steps" ! ?

<= reverse "previous step"

5 The third condition is necessary, because a “parent” link implies a direction, and thus we cannot
root the tree on any arbitrary node. Technically, we are dealing with the directed graph equivalent of a
tree, sometimes called an arborescence.
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// Construction

(

"steps" :: component "step list"

<= root (table "steps") following "previous step"

<! "Steps should have a unique root" >

)

component "step list" (

"description" :: text <= .["description"]

"has tail" :: option <= settle "next step" = . -> "next step"

=> "yes" :: (

"tail" :: component "step list" <= $"next step"

<! "Non-final step should have exactly one successor" >

)

none => "no" :: ()

)

)

53





Chapter 5

Implementation

We have built an implementation of Square, to serve as a proof of concept, but also to
support our evaluation effort in the following chapters. This implementation consists
of two main parts:

• The language definition
• The runtime engine

We make use of M-industries’ language development platform. This platform makes
it easy to build a compiler from a language definition, and a C++ API to access a
compiled data structure (AST) for the runtime engine. The platform is proprietary, but
the architecture we describe in the following sections can be implemented using any
comparable toolchain. In section 5.4 we cover the tracing algorithm that we use to
generate error reports.

5.1 Language Definition

The language definition consists of:

• An abstract syntax definition (written in Alan)

• A set of semantic constraints on the abstract syntax (e.g. for type checking)

• A grammar definition

The abstract syntax of the language is defined as an Alan model. Every possible Square
AST (Abstract Syntax Tree) is an instance of this Alan model. The type system (and
all other static checks) are implemented as additional constraints on the model. The
constraints allow us to invalidate any ASTs which we deem semantically invalid (cf.
the typing rules and constraints listed in chapter 4).

The abstract syntax model is accompanied by a grammar, which annotates each
part of the model with a corresponding concrete syntax rule. A version of this gram-
mar – rewritten in a more standard notation – is given in appendix B. Altogether, the
language definition consists of about ~3000 lines of code.

Feeding the language definition to M-industries’ Alan compiler allows us to parse
and validate Square programs. The result of such a compilation step is an abstract
syntax tree, which we can then feed to the Square engine in order to execute it.
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5.2 Engine

The Square runtime engine is an application written in C++. The engine is configured
by an import definition (a Square AST). Executing the engine takes raw data as input,
and transforms it according to the import definition. An overview of the architecture is
given in figure 5.1.

or
Square

(engine)

raw
instance

import 
definition

target
instance

error
report

adapter serializer

external
databases

local
database

Figure 5.1: High-level architecture of the Square engine.

The output of the engine is either (1) a valid instance of the target schema, or (2) an
error report, in case of one or more failed assumptions. Integration with external source
and target database systems is done through adapters and serializers, respectively.

5.2.1 Adapters

The raw data set that the engine takes as input must contain the actual data, but also
some metadata (schema information like data types and integrity constraints). This is
because we use the schema information in our type system (cf. chapter 4). We use
a custom in-memory database engine to store and query this raw data. An adapter
is necessary to convert from a particular database format to this representation. We
currently provide two adapters:

• CSV adapter

• SQL adapter (through JDBC)

The CSV adapter is very basic, taking a set of CSV files (one table per file), using
the line number as the primary key, and annotating each column as a non-nullable text
column. Since a CSV file does not conform to any schema, this is the best we can do.

The SQL adapter uses Java’s JDBC interface, which means we can read from any
DBMS that has a JDBC connector available.

The SQL adapter doubles as a query generator. We can use it to generate an SQL
query from a distillation definition, to get exactly the data we need. This is necessary,
because some of the tables we encounter contain on the order of millions of records,
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whereas a distillation may filter this down to just a few thousands. Filtering the data
remotely through SQL is important to get a real-time performance.

5.2.2 Serializers

Once we have a target instance, we want to load it into the local database. A serializer
is needed to export to a particular format. The most natural data formats for Alan are
(semi-)structured formats, so we provide serializers for the following common repre-
sentations:

• JSON

• XML

Currently, we do not support any kind of diffing mechanism. In other words, each
time you run the importer you get the entire target data set as output. In the future,
we would like to implement a smarter kind of loader that takes the existing state of the
local database into account. Doing so would require specialized loaders for compatible
database systems (e.g. XML databases, or JSON-based systems like MongoDB).

5.3 Mechanics

5.3.1 Distillation

The raw data is obtained through the following C++ function interface, which is to be
implemented by any adapter:

Database adapt(string file_path);

We designed a simple in-memory database engine for relational data, with support for
basic indexing and querying. The data structure that we store in memory conforms to
the hierarchy in figure 5.2.
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Figure 5.2: Database class diagram (UML).
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The distillation process takes one instance of database structure (the raw database), and
transforms it to another instance (the source database). This transformation is guided
by the AST of the distillation definition. The function signature for this procedure is:

Database distill(AST::Distillation definition, Database raw);

5.3.2 Expression engine

There is an isolated, reusable module for expression evaluation. This module exports
an evaluation function with the following signature:

Value evaluate(AST::Expression, Scope);

The scope object provides the scope constants, including the context (“.”). It returns an
instance of Value, which is the main interface for expression values, as shown in figure
5.3.

Value Type

UnsafeType<T>

RowSetType

TextType

...

1

Error

RowSet

Text

...

Figure 5.3: Expression value hierarchy.

5.3.3 Construction

Finally, the construction step transforms a source database into a target instance:

Target construct(AST::Construction definition, Database source);

Similar to the distill function, we traverse the AST node of the construction def-
inition, building up the target instance piece by piece as we go. Whenever the AST
contains an expression to be evaluated, we invoke the previously mentioned expres-
sion engine with the proper scope.

The Target data structure is an in-memory representation of an Alan instance. To
output this data, we pass it to the chosen serializer. Each serializer implements the
function interface:

string serialize(Target instance);
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5.4 Tracing

In the context of model transformation languages, traceability is the ability to maintain
a relation between target elements and their corresponding source elements [43, 44].
Traceability information allows us to analyze a model transformation; in particular, we
can use it to derive debugging information in the case of a failure.

Traceability information generally takes on the form of a graph, where each trans-
formation rule results in a link between the correponding inputs and outputs.

Let’s take a look at a (contrived) example. Below, we set a target property "number of

products" by writing an assumption that an unsafe constant "parsed quantity" may
be safely “unwrapped” to an integer.

// Construction

"number of products" :: integer

<= $"parsed quantity" <!"Quantity should be integer">

In our scenario, the assumption fails, and we want to print a useful debug message.
The first thing to note is that the actual error did not occur at this location. We simply
use the result, but did not cause the error. To find the actual reason the error occurred,
we need to take a step back to see the definition of the constant "parsed quantity".

// Construction

"parsed quantity" = parse ((. -> "order")["quantity"] ++ "00") :: integer

The constant is defined as the result of a parse operation, from text to integer. This
must be the operation that failed: parse could not convert its input. We now know
what failed, however, this does not give us a great amount of debug information. We
really want to find out why the error occurred.

((. -> "order")["quantity"] ++ "00")

In order for parse to fail, the input to this operator must have been a text value with
an incorrect format: it was not in the form of an integer. Analyzing the expression,
the blame lies with the combination of the two arguments of the concat (++) operator.
The second argument is a literal value, and therefore not of further interest. The first
argument on the other hand, is a cell in a table. Rather than looking at how we got to
this cell (namely, the "order" link), we instead want to know how the value of this cell
was obtained. For that, we need to look at the distillation. Let’s say the relevant table
definition looks as follows:

// Distillation

table "orders" <= map external "EXT.ORDERS"

column "quantity" :: text <= .["raw A"] ++ .["raw B"]

Continuing our way up the chain as before, we finally reach our “raw” values: values
which are part of the external database. In this case, these are the columns "raw A" and
"raw B". The graph of operations from the raw values to the error that we have just
built up is called a trace. Figure 5.4 illustrates this graph for the case where the two
raw columns are instantiated to "4" and "a", respectively.
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Figure 5.4: Example trace.

We now have all the information we need to provide a detailed error report. In particu-
lar, we know where the failure occurred (at the point of the assumption marker), what
the error is (the failed unsafe operator), and why it occurred (the trace).

To prevent information overload, we have chosen to only show the list of raw
values from the trace in the error report. An example of such a report may look as
follows:

Failure at <"orders"/"number of products">:

Assumption failed: "Quantity should be integer"

Reason: Unable to parse "4a00" as integer.

Trace:

- table "EXT.ORDERS" row { "ORDERID" <= "42" }, column "raw A"

- table "EXT.ORDERS" row { "ORDERID" <= "42" }, column "raw B"

In the future, we may expand the debugging facilities, possibly including more detailed
visualization of a trace (including all the intermediate steps).
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Chapter 6

Case Studies

In order to test Square in a practical setting, and compare it to current approaches, we
performed three case studies. Each case study is based on an actual client project from
M-industries. Client names have been anonymized, and certain parts of the projects
have been simplified for presentation purposes. The three case studies are:

1. Alpha

2. Beta

3. Gamma

We chose these projects over others, because they each pose different design chal-
lenges. Gamma, in particular, was chosen because of its relative complexity, and the
fact that it was built using an SQL-based import stack.

During this study, we followed the following approach. For each case, we first analyzed
the characteristics of the project. We looked at the current import solution (if any). We
interviewed three different team members (one per case), in order to discover how the
developers experienced writing and maintaining their current importer. In particular,
we asked the developers to describe any import failures that occurred, and what the
cause was.

In the following sections, we will show how we can design import definitions in
Square that match the project requirements. Along the way, we detail important design
decisions, and describe any difficulties encountered. Our goal is to show how Square
can be applied in a practical setting, as well as demonstrate important quality criteria
like usefulness and usability.
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6.1 Case Study – Alpha

Alpha is a manufacturer of security products, whose products include home secu-
rity items and bicycle locks. The company runs multiple production facilities spread
throughout Europe. Daily operations for each of these facilities follows the typical
manufacturing process: there is a constant stream of production orders coming from
Alpha’s customers, and a supply chain that delivers the required materials. Alpha’s pro-
duction operators work to fulfill each order by following a pre-specified list of product
operations.

M-industries was hired by Alpha to develop a software application that can analyze
the performance of their manufacturing process. This application should import the
production data in real time, crunch the numbers, then report the results to Alpha’s
operators and managers using on-site terminal displays.

The performance metrics generated by this application are based on the standard
OEE (Overall Equipment Effectiveness) heuristic [45]. OEE looks at three factors, the
availability, performance, and quality of the manufacturing operation, and combines
these into an overall measure of effectiveness (e.g. an operation might be “95% effec-
tive” at some particular point in time). Calculating these metrics requires detailed in-
formation about the production – machine schedules, operation times, defective units,
etc.

It is important to note that the development of this application started while this thesis
was ongoing, and in fact uses a version of Square as its import system.1 Thus, while we
cannot use this case study to compare Square to historical results, we will nonetheless
use this project to illustrate Square in a practical setting.

6.1.1 Characteristics

Alpha uses an IBM AS/400 system, running a DB2 database. M-industries has read-
only access to this database through a remote connection. The OEE application itself
runs on a separate system, which displays its output on a terminal at the Alpha produc-
tion site.

The application was built around a data model of Alpha’s production process, writ-
ten in Alan. Such a model is made by analyzing the company, through communication
with an Alpha representative, along with any available technical documents. The model
only captures the concepts needed by the application (i.e. what information is required
to produce the desired output). Since the model for Alpha is fairly small, we will go
through it here in its entirety.

(

// Company assets

"machines" :: collection (

"description" :: text

)

"tools" :: collection (

1 We say “version of”, because M-industries used their own customized implementation to accomo-
date their own development needs.
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"description" :: text

)

"tool sets" :: collection (

// A subset of tools from the above collection

"tools" :: collection of <../"tools"> ()

)

Alpha’s basic assets are its machines and tools. A peculiar concept in Alpha’s infras-
tructure is the existance of “tool sets”, which are groups of tools that may be treated as
though they were an individual tool.

// Product specifications

"products" :: collection (

"description" :: text

"type" :: option (

"material" :: ()

"intermediate" :: ()

"end product" :: ()

"unknown" :: ()

)

"operations" :: collection (

"description" :: text

"has default machine" :: option (

"no" :: ()

"yes" :: (

"machine" :: reference <../../../"machines">

)

)

"uses tools" :: option (

"none" :: ()

"single" :: (

"tool" :: reference <../../../"tools">

)

"set" :: (

"tool set" :: reference <../../../"tool sets">

)

)

)

)

Products capture any item that may be part of manufacturing, including intermediate
products and end products (Alpha’s product line). In Alpha’s database, supply mate-
rials are also included under this entity type. The “operations” subcollection specifies
the tasks that an operator needs to perform to produce a product of this type. Notice
that “operations” does not have an ordering (recall that a collection in Alan is un-
ordered), this is because Alpha does not specify a fixed ordering of operations upfront.
There is some flexibility to choose the order of operations at production time.
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"orders" :: collection (

"product" :: reference <../"products">

"status" :: option (

"pending" :: ()

"finished" :: ()

)

"operations" :: collection of <"product"/"operations"> (

"description" :: text

"quantity" :: integer

"week number" :: integer

// We may specify a machine, or we may just stick to the default

"machine" :: option (

"default" :: ()

"override" :: (

"machine" :: reference <../../../"machines">

)

)

)

)

)

Finally, orders contains incoming orders for an instance of a particular product. The
operations subcollection may override certain product operations. For example, an or-
der may specify that a particular operation should be performed on a different machine
than the default.

6.1.2 Design

The full import definition for Alpha can be found in appendix D.1. We will highlight
some of the more interesting design choices.

Tools

The following definition imports the “TOOL” table from the “A” (Alpha) database in
DB2. Note that DB2 on AS/400 does not support identifiers greater than 10 characters,
which means the external table and column names have been forcefully shortened to
the point where they are barely readable.

table "tools" <= map external "A.TOOL"

column * "tool id" :: text <= .["TOOL#"]

column "description" :: text <= .["TOOLDSC"]

Tool sets are stored in a separate table, where the set ID and tool ID form a compound
primary key. This construction looks similar to a join table, although there is no actual
“tool set” table that forms the other end of the join. For our purposes however, because
we want to import tool sets in to their own collection, we need to aggregate the tool
sets themselves. This is accomplished through the additional tool sets table shown
below.
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// Table which associates tools with tool sets

table "tools x tool sets" <= map external "A.TOOLSET"

column * "tool id" :: text <= .["TOOL#"]

column * "tool set id" :: text <= .["TOOLSET"]

link "tool": single "tools"

<= { "tool id" <= .["tool id"] }

link "tool set": single "tool sets"

<= { "tool set id" <= .["tool set id"] }

// Aggregate all individual tool sets from the "tools x tool sets" table

table "tool sets" <= aggregate table "tools x tools set"

column "tool set id" * <= .["tool set id"]

link "tool entries": many "tools x tool sets"

<= reverse "tool set"

Machine references

There are a few columns that reference other tables without an explicit foreign key. For
example, operations have a reference to the machines table. This field is non-nullable,
but may be empty (""), indicating the lack of a machine. We would like to differentiate
between explicitly empty values, and references that do not resolve. To achieve this,
we introduced the following construct:

// Distillation

table "product operations" <= map external "A.ROUTE"

//...

column "machine id" :: text ? <= optional .["MACH#"] on (. != "")

link "machine": single "machines" ! ?

<= { "machine id" <= .["machine id"] }

// Construction

"has default machine" :: option <= settle "machine" = . -> "machine"

=> "yes" :: (

"machine" :: reference <../../../"machines"> <= $"machine"

<!"Reference to machine should be valid">

)

none => "no" :: ()

The machine ID is imported as an optional value, where the value only exists if the
value is not the empty string. Because the external table has no foreign key, the link
machine is of type optional<unsafe<integer>>. In the construction, we can then settle
the optional value to find out whether there is a default machine. If so, we resolve the
machine reference using an assumption marker, because we assume that the provided
machine reference is always correct (our sample data did not contain any counterex-
amples).
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Collection subset

Production orders in Alpha contain a reference to a product. Let’s call this product P.
There is a complex relation between the operations of P, and the operations specified
in the order. Recall that in our data model, we modeled an order’s operations as a
collection of, which references P’s operation collection. In other words, in other for
an instance to conform to this model, the set of order operations should form a subset
of P’s collection of operations.

"orders" :: collection <= map table "orders": encode key -> (

"product" :: reference <../"products"> <= . -> "product"

"operations" :: collection of <"product"/"operations"> <= subset

<!"Order operations should form a subset of the product’s operations">

. -> "order operations" -> "operation":

encode key <!"References to product operations should be distinct">

-> with .^ (

"description" :: text <= .["description"]

//...

)

)

We chose to approach this problem as follows: we fill the order operations collection
using the subset operation. This operation takes a rowset of the same table as the
original collection. However, because we cannot guarantee that an order operation
does not inexplicably refer to a product operation of a different product, we must mark
this operation as unsafe.

In addition, we have no guarantee that . -> "product operations" -> "operation"

forms a proper set. In other words, two order operations might refer to the same product
operation. For this reason, the compiler cannot guarantee the safety of the collection’s
encode key expression.

6.1.3 Discussion

We had originally made a mistake in our model of Alpha (and therefore also in the
import definition). Based on Alpha’s database schema, we had assumed that a product
operation could only refer to tools that are part of the tools table. The corresponding
construction looked like the following:

"products" :: collection <= map table "products": encode key -> (

"operations" :: collection <= map . -> "operations": encode key -> (

"uses tool" :: option <= settle "tool" = . -> "tool"

=> "yes" :: (

"tool" :: reference <../../../"tools"> <= $"tool"

<! "Reference to tool should be valid" >

)

none => "no" :: ()

)

)
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Testing this import definition on our sample data set resulted in the following error
report (cf. the tracing algorithm in section 5.4):

Failure at <"products"/"operations"/"uses tool"/"yes"/"tool">:

Assumption failed: "Reference to tool should be valid"

Reason: Could not resolve link "tool" on table "product operations".

No row in table "tools" with index:

{ "tool id" <= "A543" }

Trace:

- table "A.ROUTE" row { "PROD#" <= "P42" }, column "TOOL#"

After discussion with Alpha, it turns out that our model was incorrect. The “tool”
reference could be either a tool or it could be a tool set. The logic was supposed to be
as follows: if the tool id refers to a valid entry in tool set, use that, otherwise, look in
the tools table. In other words, their schema really looked like this:

table "product operations" <= map external "A.ROUTE"

//...

// This column ambiguously refers to either a tool *or* a tool set

column "tool or tool set id" :: text <= .["TOOL#"]

link "tool": single "tools" ! ?

<= { "tool id" <= .["tool or tool set id"] }

link "tool set": single "tool set" ! ?

<= { "tool set id" <= .["tool or tool set id"] }

Referring to two tables ambiguously is considered poor design in relational databases.
To tackle this problem, we decided to introduce two separate links to each of the two
tables. Both of these links are necessarily unsafe. During construction, we can then try
to resolve each of the links in the right order.
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6.2 Case Study – Beta

Beta specializes in the production of roll formed metal profiles. Roll forming is a pro-
duction method where thin sheets of metal are bent into complex shapes with a fixed
cross-section (“profiles”). These profiles are used as components in various industries,
like the automotive industry, construction, and furniture.

The application that M-industries develops for Beta is a complaint management
system. Customers may file complaints about Beta’s products when the deliverable
does not match the expected quality. The complaint manager keeps track of all of
Beta’s complaints and their eventual resolution. Various key performance indicators
(KPIs) are calculated from this data, which help to inform Beta’s management about
the quality of their customer support. Complaints are added directly to the application,
but it still needs an importer in order to get an up to date view of Beta’s production
operations.

6.2.1 Characteristics

Beta is part of a larger conglomerate of industrial companies, due to an acquisition.
This conglomerate has a shared IT infrastructure, including a massive DB2 database
containing ~20,000 tables. Among these tables is a single “employees” table, contain-
ing all of the employees (past and present) of the entire conglomorate. Extracting just
the information relevant to Beta from this database is a challenge in and of itself.

One table in particular is interesting – the “articles” table. This table contains spec-
ifications for all sorts of items used in the production process, including materials and
profiles. Profiles are grouped into profile types, but this information must be deduced
by looking at the initial part of the article ID. We consider this to be a poor relational
database design, and the challenge is therefore to dissect this table into a proper hier-
archy.

Another interesting aspect of the database design is the tendency to split up tables
vertically into a primary table and supplementary tables. These are tables that share
a primary key, but where the supplementary tables seem to have been added as an
afterthought to provide extra information. Ideally there would be a strict one-to-one
relation between the primary and supplementary tables, but this is not something that
is guaranteed by the database schema.

The importer for Beta was initially planned to be developed using a system we will call
M-industries’ “SQL stack”, a toolchain where all import logic is written using hand-
written SQL queries. The result of these queries are then trivially mapped to collection
types in the Alan model. The project switched to Square halfway during development.

6.2.2 Design

The import definition for Beta is listed in appendix D.2. We will again go over the
more interesting aspects of this design.
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Customer groups

Customers of Beta are grouped into customer groups. Each customer should belong
to exactly one customer group. The way this has been represented in Beta’s database
is as follows: customer information is stored in its own table (we will denote this the
“primary” table). The group ID of the customer is then stored in a separate table (the
“supplementary” table). The two tables are associated throught their shared primary
key.

table "customers" <= map external "B.VIBQREP"

column * "customer id" :: text <= .["BQIMNB"]

column "name" :: text <= .["BQMICD"]

link "customer group entry": single "customers with group" !

<= { "customer id" <= .["customer id"] }

table "customers with group" <= map external "B.VIBHREP"

column * "customer id" :: text <= .["BHIMNB"]

column "customer group id" :: text <= .["BHS0NA"]

link "customer": single "customers" !

<= { "customer id" <= .["customer id"] }

link "customer group": single "customer groups"

<= { "customer group id" <= .["customer group id"] }

table "customer groups" <= aggregate table "customers with group"

column * "customer group id" :: text <= .["customer group id"]

link "group entries": many "customers with group"

<= reverse "customer group"

We considered a few different ways to model this. For example, we could introduce
a special kind of join that enforces a one-to-one relationship. In the end though, we
settled for the simpler solution above, where each table links to the other using an
unsafe link. We assume that both links always resolve.

Articles

Articles are specifications for all sorts of items used at Beta. The main information is
listed in the table “articles”. Additional information is again given through a supple-
mentary table.

table "articles" <= map external "B.VIAAREP"

column * "article id" :: text <= .["AAAATX"]

column "article type" :: text <= .["AADATX"]

column "description" :: text <= .["AAEVTX"]

column "customer id" :: text <= .["AGAKCD"]

link "supplement": single "articles supplement" !

<= { "article id" <= .["article id"] }

table "articles supplement" <= map external "B.LAST_ART_OV3"
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column * "article id" :: text <= .["AGAECD"]

column "quantity per package" :: integer <= .["AGANNB"]

More specific types of articles are then extracted from this table, like materials and
profiles. In order to get the profile type, we need a slightly more complicated operation:
get the initial part of the article id as the type specifier, then aggregate on this column.

table "profiles" <= map table "articles"

filter (.["article type"] == "profile") // Filter out just the profiles

column * "profile id" :: text <= .["article id"]

// The first 4 characters of the profile ID indicates its "profile type"

column "type" :: text <= substring .["profile id"] from 0 to 4

link "article": single "articles"

<= { "article id" <= "profile id" }

link "profile type": single "profile types"

<= { "profile type id" <= .["type"] }

// Aggregate just the profile types

table "profile types" <= aggregate table "profiles"

column * "profile type id" <= .["type"]

link "profiles": many "profiles"

<= reverse "profile type"

Product operations

Unlike in Alpha, the product operation list at Beta contains an ordering in the database.
The target schema includes a linked list structure (using a recursive Alan component)
to capture this information.

"profile types" :: collection <= map table "profile types": encode key -> (

"profiles" :: collection <= map . -> "profiles": encode key -> (

// (...)

"operations" :: component "profile operation list"

<= root . -> "operations"

<!"Operations list should have a unique root">

)

)

component "profile operation list" (

"machine group" :: reference </"machine groups">

<= entry . -> "machine group"

"operation" :: reference </"operations">

<= entry . -> "operation"

"has tail" :: option <= settle "next operation" = . -> "next operation"

=> "yes" :: (

"tail" :: component "profile operation list" <= $"next operation"

<!"Non-final operation should have exactly one successor">

)

none => "no" :: ()
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)

)

6.2.3 Discussion

The most interesting thing about this case study is the recursive component structure.
It seemed like quite a challenge to “decode” a linked list of components from a table
in a simple, elegant way. In fact, we considered whether we should not just drop this
part altogether in the target and use a simple collection.

We designed the graph constraints in section 4.5 based on this use case. There
turned out to be a surprisingly elegant way to integrate these constraints with the link
feature that we already had, by adding a single root operator.

Running the transformation on Beta’s dataset allowed us to check whether there
were any spurious references. If there were, it would also inform us exactly which
graph property was violated (either the lack of a unique root, or an operation with zero
or multiple successors). We discovered that Beta’s database was in order: it passed all
checks on the first try.

6.3 Case Study – Gamma

Gamma is a leading aluminium extrusion manufacturer, operating in many countries
throughout the world. The company creates aluminium components used in a wide
range of products, using a process called extrusion. In an extrusion process, material
is pressed through a die in order to create objects with a fixed cross-sectional profile
(e.g. beams, tracks, frames).

At Gamma, this manufacturing process is managed by a software system called
EIS (Extrusion Information System), which oversees the machines that actually pro-
duce the aluminium profiles. However, the output of such a machine is not yet a fin-
ished product, and a large number of machines are required to do post-processing in a
separate fabrication step.

The application that M-industries develops is an extension to EIS called PMI
(Product Manager and Interfacing), that takes care of this post-process fabrication.
All of the information that PMI needs comes from a remote relational database, which
is periodically queried and mapped to an Alan model.

6.3.1 Characteristics

PMI is a large, long running project, and has some of the highest complexity amongst
all projects in M-industries’ development history. To import the data, the project used
a custom import system that worked by writing a number of SQL queries, one for each
collection property in the target schema. A converter would translate these query
results to an Alan instance, by trivial mapping from table to collection, and column
to subproperty. Each property type had their own special encoding that the converter
could handle.

We analyzed each of the existing queries, and created an equivalent design written
in Square. We will compare the two in the discussion at the end of this section.
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6.3.2 Design

Alternate customer key

The customers table has a primary key consisting of a unique customer ID. In addition,
each customer also has a “short name” that is commonly used as a human readable
identifier.

table "customers" <= map external "C.EIA4REP"

column * "customer id" :: text <= .["A4A2NC"]

column "short name" :: text <= .["A4B4CD"]

For presentational purposes in their application, M-industries wants to use the short
name as the identifier instead of the customer ID. This should be possible, because
there should never be two customers with the same short name. However, this unique-
ness constraint is not enforced (i.e. there is no key constraint in the schema).

We have chosen to solve this design challenge by introducing an unsafe key defini-
tion for this column. The intuition here is that we feel this key is “missing”, and we will
introduce it regardless. We assume that we always get a unique record by accessing this
key, but doing so is naturally unsafe.

key "short name": ! { "short name" }

In the construction, the resulting definitions looks as follows. We use the short name
as our key, and the resulting entry context (.) is thus of type unsafe<row>. To prevent
having to unwrap this unsafe context for each property, we use a with expression to
write a single assumption marker at the collection entry level.

"customers" :: collection <= map table "customers": encode key "short name"

-> with . <!"Short name should be unique"> (

"branch code" :: text <= .["branch code"]

//...

)

Production articles

At Gamma, there is a certain flexibility for where a particular article may be produced.
A given article may be produced at any amount of different locations, and at each such
location there are different production specifications. In the Gamma schema, this is
modeled as a many-to-many relation, as follows:

* article number
* location

* customer id
* article number
* location

1n

* customer id
* article number

articles
production
alternatives

n1 production
articles

Figure 6.1: Tables related to production, with their primary key columns.
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6.3. Case Study – Gamma

For this particular application, we are only interested in articles produced at a particular
location, namely the site in Hungary. Note that when we fix the location column in
the alternatives table, we end up with exactly the articles that are produced in Hungary,
along with singular links to the corresponding article information and its production
information in the production articles table. This allows us to squash this many-to-
many relation to a flat list of articles we are interested in:

table "articles in hungary" <= map table "production alternatives"

filter .["location"] == "HUN" // Just the articles produced in Hungary

column * "customer id" :: text <= .["customer id"]

column * "customer article number" :: text <= .["customer article number"]

column * "location" :: text <= .["location"]

column "quantity in stock" :: integer

<= (. -> "production article")["quantity in stock"]

column "material source" :: text

<= (. -> "production article")["material source"]

6.3.3 Discussion

As mentioned in section 6.3.1, the Gamma project initially used a custom SQL-based
importer. We interviewed the main M-industries developer in charge of this project, in
order to compare the two methods.

We discovered that the SQL stack would result in failures on a regular basis. For
example, it turns out that the external schema lacked a foreign key constraint on a
certain column. Articles were expected to have a reference to a “product group”, but no
foreign key constraint was specified. For a while, this would not cause any problems.
However, at a certain point, an illegal reference occurred in the articles table.

As a result, the LEFT JOIN operation in the SQL import query would resolve to
NULL. This resulted in an import error, which subsequently caused the entire applica-
tion to halt. Debugging this error turned out to be difficult, because the importer was
unable to specify what exactly went wrong beyond a basic “unexpected NULL value”
error message.

In the Square version, the equivalent definition looks as follows:

table "articles" <= map external "C.EIIQREP"

//...

column "product group id" :: text <= .["IQPLKD"]

link "product group": single "product groups" !

<= { "product group id" <= .["product group id"] }

The presence of the unsafe type (!) on the link is mandated by the lack of a foreign key
on the "IQPLKD" column. When we use the link, we have to add an assumption marker:

"article types" :: collection <= map table "articles in hungary": encode key -> (

"product group" :: reference <../"product groups">

<= index (. -> "product group")
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<!"Each article should belong to a product group">

)

Thus, when we run test the same error using Square, the system will inform us exactly
why the error occurred, and on which row(s).

Going back to the original developers of the Gamma project, they responded positively.
Initially, the idea of having to add these kind of markers throughout the code was
thought to be strange. However, it did not take long for the developers to get used to
the idea, and the increased quality of the feedback in case of errors was very much
welcomed.
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Chapter 7

Evaluation

7.1 Evaluation Setup

7.1.1 Main requirements

The engineering challenge we set for ourselves back in chapter 1 was to design a
specialized language for continuous data importing. This language must:

• Provide natural abstraction mechanisms to represent the source and target sys-
tems.

• Allow us to express a transformation from the source to the target, where the
language statically guarantees that the transformation always results in either
(1) a valid instance of the target, or (2) an error report that tells us exactly where
the programmer made a wrong assumption.

These are the basic requirements for functional correctness. In addition, we formulated
a few core goals that the language should fulfill:

1. Transparency. The transformation language should provide high-level, special-
ized abstractions closely matching the problem domain (i.e. the language should
be highly declarative). There should be low barriers for both parties to introspect
and validate the semantics of the transformation definition.

2. Debugability. The language should facilitate easy debugging of import failures,
when they occur. Good support for tracing is a must.

3. Expressivity. The language should allow us to express a wide range of transfor-
mation operations, as long as it does not detract too much from the other two
goals.

The first two goals focus on the prevention of failures beforehand, and resolving of
failures after they occur, respectively. The last goal states that the language should be
widely applicable. There is a trade-off between the first two goals and the third. As
explained in chapter 1, we prioritize transparency and debugability over expressivity,
as long as we can handle most common use cases.
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7.1.2 Quality criteria

In addition to our own specific requirements, we want to evaluate how well Square
performs when compared to model transformation approaches in general. We will use
the taxonomy of model transformation languages defined by Mens et al. [7].

The taxonomy of Mens at al. consists of five main “questions” that identify impor-
tant aspects of a model transformation language. In particular, the taxonomy classifies
model transformation languages according to the following main aspects:

1. Characteristics of the source and target

2. Characteristics of the transformation

3. Functional requirements

4. Non-functional requirements

5. Mechanics

7.1.3 Evaluation method

We provide an evaluation of Square according to the requirements and quality cri-
teria mentioned above. This is a personal analysis, supported by several information
sources: the factual descriptions of Square as given in chapters 3, 4, and 5, the practical
case studies of chapter 6, and the interviews performed with M-industries’ developers
who have worked on the projects that the case studies were based on.

7.2 Requirements

7.2.1 Correctness

By definition, a transformation is considered correct, if, for every possible source
instance, the transformation produces either (1) a valid target instance, or (2) an error
report in case of one or more failures.

For Square, this means that every potential target instance resulting from a con-
struction step must be a valid instance of the target Alan model. The static semantics
discussed in section 4.4 were designed such that:

1. The structure of the construction follows the structure of the target schema.

2. Referential integrity (reference and collection-of properties) is properly main-
tained by the relevant construction operations.

To prove that each possible output of our transformation conforms to the target schema,
we would need the full operational semantics of the language. In this thesis report, we
provide the typing rules and other static constraints that – as we reason in section 4.4
– should result in a valid instance. However, we do not prove this formally.

We have a reasonable level of trust that the system does indeed always produce
valid instances, due to the fact that we tested the system “in the wild”, on a large
amount of data from different projects. But again, we have no formal proof of this fact.
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7.2.2 Goals

Square is less expressive than a general-purpose solution, but we even fall short when
compared to many comparable languages like SQL. We explicitly chose to sacrifice
expressivity wherever it conflicted too much with our other goals. However, we would
like Square to be expressive enough for most common patterns we find in real-world
projects.

In our case studies, we demonstrated that Square is expressive enough to write im-
port definitions for three different projects. The question of how representative these
examples are is discussed in our threats to validity in section 7.4. We believe that
Square is expressive enough for most simple problems, and easily extended in many
others (e.g. addition of new operators). The case studies and its continued use in pro-
duction systems provide some evidence for this.

Square focuses heavily on the debugability of the language in case of import failures.
The main mechanisms are the type system – limiting potential failures to a particu-
lar language construct (assumptions) – and tracing. Error reports use the assumption
marker as well as traces to help programmers identify the cause of failures. The trace-
ability features of Square were described in section 5.4, and we gave a practical exam-
ple of its usage following an actual import error in case study Beta.

The transparency of the language is somewhat subjective, and therefore difficult to
quantify. In case study Gamma, we compared developer’s experiences in using Square
versus using an equivalent written in SQL. For this specific case at least, the developers
judged Square to be more readable and easier to analyze and debug than the SQL
version.

7.3 Quality Analysis

The following is based on the taxonomy of Mens et al. [7]. We answer each question
posed in their taxonomy in the context of our approach.

1. What needs to be transformed into what?

Square is a model transformation language. It transforms relational data to a
single target data model. The language ostensibly supports multiple sources,
although within the context of the transformation definition itself the program-
mer is presented with a single “source” abstraction (with different namespaces).
Multiple sources must be consolidated into a single internal format through the
use of an adapter.

The transformation is classified as a migration, meaning it is an exogenous,
horizontal transformation (different metamodels, working at the same level of
abstraction). The technical spaces we use for the source and target are the re-
lational model, and Alan, respectively. The transformation operates partly in
each of the technical spaces (distillation versus construction).

2. What are the important characteristics of a model transformation?
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A Square transformation is a manual transformation, of a fairly high level of
complexity. Although ideally the transformation simply translates similar con-
cepts from one metamodel to another, we need to be able to perform fairly com-
plex operations (breaking up and combining tables, transforming values) in or-
der to have the source model match up with the target.

3. What are the success criteria for a transformation language/tool?

Mens et al. suggest a number of functional requirements that may contribute to
the success of a transformation tool. Below, we give each criterion a score from
(1) to (5). These scores should be interpreted as follows:

• (1) Feature nonexistent.
• (2) Very limited functionality.
• (3) Partial functionality.
• (4) Decent functionality.
• (5) Feature fully present without limitation.

Next to the score are relevant chapters (if any) that the reader may refer to.

• Ability to create/read/update/delete transformations
(1) × (5)

As stated by Mens et al., the ability to manage transformations is a trivial
property of transformation languages (because we are just dealing with
text). This criterion is relevant only for certain kinds of tools.

• Ability to suggest when to apply transformations
N/A

Only applicable to interactive tools.
• Ability to customize or reuse transformations

(1) × (5)

All language constructs are predefined, and we do not allow customization
or extension of these constructs.

• Ability to guarantee correctness of the transformations
(1) × (5) (ch. 6)

Assuming our language is correct, we always guarantee that the output is a
valid instance. Whether the language is correct or not is a separate matter,
see the discussion in the previous section.

• Ability to deal with incomplete or inconsistent models
(1) × (5) (ch. 5)

No mechanism for consistency management is provided.
• Ability to group, compose and decompose transformations

(1) × (5) (ch. 4)

Partially available using scope constants, but very limited.
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• Ability to test, validate and verify transformations
(1) × (5)

Testing transformation is only possible by executing them directly. There
is no test infrastructure available, and (because this is a wholly new tool)
no existing framework can be applied to it.

• Ability to specify generic and higher-order transformations
(1) × (5)

Transformation rules are not first-class citizens in our language.
• Ability to specify bidirectional transformations

(1) × (5)

Square only works in one direction; target instances cannot be transformed
back into its source.

• Support for traceability and change propagation
(1) × (5) (ch. 6)

We provide fairly elaborate support for tracing in the implementation. How-
ever, we lack a change propagation mechanism.

4. What are the quality requirements for a transformation language/tool?

Besides the functional requirements above, Mens et al. also stipulate a number of
non-functional requirements. The scores below should be interpreted as a scale
from low quality to high quality.

• Usability and usefulness
(1) × (5) (ch. 6)

We use the case studies to demonstrate both concrete use cases and practi-
cal developer experience.

• Conciseness
(1) × (5) (ch. 6)

We place a high focus on simplicity and conciseness of the syntax. Many
high-level operations are available, as opposed to a large number of simple
ones.

• Scalability
(1) × (5) (ch. 6)

The case studies have been tested with large sets of data (on the order of
GB), from real company databases with a long operational history.

• Mathematical properties
(1) × (5) (ch. 4)

We do not give a formal proof of the correctness of the language. We do
strive to guarantee a number of properties of the transformation. For ex-
ample, the expression language was built such that an expression always
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terminates (although a transformation as a whole may still loop through
misuse of component structures).

• Acceptability by user community
(1) × (5)

At the moment, there is no user community.
• Standardization

(1) × (5)

Relevant standards are SQL, and Alan, for the source and target formats
respectively. The SQL adapter that extracts data from SQL databases uses
the standard JDBC interface, but this is fairly trivial. Alan is not a (public)
standard.

5. Which mechanisms can be used for model transformation?

Square focuses heavily on functional programming mechanisms. All opera-
tions are pure (side-effect free) functions, and operations routinely take other
expressions as input (similar to higher-order functions). The language tries to be
as declarative as possible.

This overview shows how Square lacks a lot of functionality that might be expected
from a more general, powerful transformation language. Instead, we focus on a few
key aspects (transparency, static guarantees, traceability).

7.4 Threats to Validity

The conclusions that we have presented in this chapter are subject to a number of
possible threats to validity. In this section, we treat each of the different categories of
validity one by one.

7.4.1 Internal

The results of this evaluation were made through personal analysis. Although we refer-
ence several sources of information (e.g. developer interviews), there is an undeniable
risk of bias from the author to good scores. We have tried to limit these threats by
motivating each score individually and citing relevant sources.

7.4.2 External

In our analysis, we depend heavily on the results of the case studies we performed. We
try to generalize from these three cases. We have tried to choose projects which are
representative for different classes of problems. However, because this thesis project
was performed at one company (M-industries), working in a specific niche (industrial
companies), our sample set is necessarily limited.

There is an additional threat, in that some of the case studies that we used for the
evaluation were also used as inspiration to design the language in the first place. This
causes a kind of “overfitting” effect, where it is natural for the language to perform
well on the cases for which it was designed.
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7.4.3 Construct validity

We have several conclusions based on the results of interviews with developers of
M-industries. There is a possible bias here, because of familiarity of these developers
with the author of the experiment. In addition, some of these developers were asked for
advice during the design on the language, which makes it natural for these developers
to be pleased with the results.

7.4.4 Reliability

If we were to perform this evaluation again at some later point, we expect the same
results. However, there are some threats. For one, the tool that we have created is
fairly new. Following some time, after extensive use, limitations may be found. Other,
modern tools created after ours may expose lacking features which were not considered
before.
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Chapter 8

Related Work

At its core, data importing is just a conversion between data formats. This is not a new
idea. On the contrary, transformations from one model of data to another are arguably
one of the oldest and most fundamental ideas in software engineering (colorfully il-
lustrated by Favre in the series “From Ancient Egypt to Model Driven Engineering”
[46, 47]).

We will not claim that the work presented in this thesis report is a wholly new
invention, rather we argue that we use a novel combination of techniques that work
well for the specific problem at hand. By focusing heavily on transparency and static
guarantees, we make a strong trade-off of safety over expressivity, which differentiates
Square from other approaches.

8.1 ETL Methods

As touched upon in chapter 2, data warehousing faces many similar challenges. And
because this is a relatively mature field with great interest from industry, there is a lot
of research into good methods for ETL. Note that these methods generally integrate
different relational databases into another relational database, rather than a structured
data model, and thus is mostly just relevant for what we have termed distillation.

Calvanese et al. [48] present a framework for data integration, where the data ware-
house itself is written as a view over the source data. Unlike the typical views in re-
lational databases, the views in this framework are written as queries on a conceptual
model – expressed as an Entity-Relation diagram. The developer can then express as-
sertions between intermediate entities of the model.

The concept of assertions looks similar to the concept of assumptions presented in
this thesis report, but the two are markedly different. We use the work of Calvanese et
al. [48] as an example here, but the distinction applies to a larger category of methods
(notably, those using OCL constraints on UML models).

An assertion provides a runtime check to ensure that some set of data is valid. In
other words, we start with a more lenient type system, and then add constraints to limit
the allowed set of values using ad-hoc expressions.

Our approach on the other hand, starts with a type system that allows only values
where the source data itself guarantees it to be valid, and we can express additional
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(non-statically verifyable) operations only if the programmer tells the system that it is
an assumption on their part (i.e. a risk). To put it simply, assertions are used to nail an
unsafe transformation down, assumptions are required to open a safe transformation
up.

In [31], Vassiliadis et al. present a conceptual modeling framework for ETL. This
framework uses a custom transformation language which is specifically made for the
kinds of patterns found in ETL. This results in a succinct, easy to understand trans-
formation for most applications found in the data warehousing domain. This is similar
to our own approach, where we designed the language specifically for the kinds of
patterns we saw in real-world projects. In fact, we took inspiration from the model of
building up a transformation through a graph (see e.g. the tracing algorithm in sec-
tion 5.4). Unlike Square however, the model of Vassiliadis et al. use the same kind of
assertion system as discussed above.

8.2 Relational – Structured Data Mapping

In going from a relational database schema to an Alan model, we need to map concepts
from the former to the concepts from the latter. We can do this manually (i.e. on the
individual schema level), or automatically (i.e. on the level of the schema language).
The latter corresponds to the notion of a technical space projector [8], as discussed
in chapter 2. Semi-automated methods also exist, by providing defaults but allowing
customizations.

Due to SQL’s ubiquity as a database language, pretty much every technical space
has been projected to, and – more relevant for our purposes – from the SQL data model.
Notable examples include generating program structures for in-memory manipulation
of data, as is done in Object-Relational Mapping [49], LINQ [50], or in functional
languages through by mapping algebraic data types [51]. Other examples are found in
document formats, especially in the XML world, where it is not uncommon to generate
XML Schemas from relational ones [52].

All of these mappings serve to automatically generate a new schema from a rela-
tional one. This is not particularly useful for our purposes, because both the source and
target schema are already given, and thus we have no control over the schema we map
to. We could, however, implement some semi-automatic operations in cases where the
schemas happen to conform to certain patterns.

We identified a few of these patterns when designing Square. For example, we
can easily map graphs encoded as tables to components in Alan (cf. 4.5). Another
possibility (currently not implemented) would be to examine how the concept of an
option type in Alan is commonly encoded in a relational schema, and support specific
language operations for those encodings. In designing Square, we took inspiration
from common conversion schemes in XML and OOP tools, where applicable to Alan.
Other (Alan-specific) constructs like collection-of do not have easy correspondences
(as far as we could find), and so had to be designed from scratch.
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8.3 Model Transformations

The work described above can be mostly generalized to the concept of a model trans-
formation. Model transformations are fundamental to model-driven engineering, and
hence have been studied extensively in this field. The prime example of a model-driven
engineering framework is OMG/MDA [10]. In MDA, the standard model transfor-
mation language is QVT [21], although other MOF-compatible languages have been
proposed, like the ATLAS Transformation Language (ATL) [53].

These model transformation languages work by expressing a set of rules from one
metamodel to another. A sort of pattern matching is used to match source elements,
and transform them to a target element. The language ensures that any result is valid
according to the target metamodel.

Model transformation languages, like QVT and ATL are very powerful. The differ-
ences lie mostly in the fact that Square does not need to be anywhere near as general
or flexible, instead we can design the language specifically for the problem domain.
Instead of pattern matching (which we can be difficult to reason about), we specify
the target instance directly in terms of the target schema. Additionally, the concept of
assumptions does not have a direct analog in any generalized model transformation we
know of.

8.4 Static Guarantees

From the start, we focused heavily on error prevention and error reporting. To achieve
this, we used mostly standard techniques from type theory and compiler construction
(semantic constraints). We took inspiration from functional languages and the lambda
calculus that underlies them for our typing setup, as covered in any introductory text
(e.g. [42]).

One novelty we introduced was the concept of a link chain. This was a natural
consequence of the need to constrain operations on sets of rows, beyond just their row
type. The idea is similar to a dependent type system [54], which allows more expressive
typing rules that depend not just on types but terms as well.

Ultimately, we chose to implement link chains without introducing the full power
of dependent types in our type system. However, further work on Square would natu-
rally work in this direction. A dependent type system would provide an elegant solution
to provide even more safety than we have now. For example, it would allow us to make
division safe, by disallowing division by zero on the type level.
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Chapter 9

Conclusion

9.1 Research Questions

In chapter 1, we formulated a number of research questions. We can now revisit these
questions one by one.

RQ1 What are the characteristics of current methods? In particular, what kind of static
guarantees do these methods give us about runtime failures?

Data importing requires us to convert from a source schema to a target schema, where
both schemas are given beforehand. This is fairly general idea, and we see this prob-
lem in a number of different fields in different incarnations (cf. chapter 2). Typically,
import methods require some kind of manual (or semi-automated) transformation def-
inition, which maps the source schema to the target schema. Some kind of validation
mechanism is usually provided to invalid certain values (cf. chapter 8).

Some methods (especially in ETL, e.g. [31]) do not give any static guarantees
about arbitrary inputs. Other methods (especially in model-driven engineering, e.g.
QVT [21]) take a more formal model transformation approach, where the system guar-
antees a valid output by specialized transformation rules. Most of these transformation
languages operate through a pattern matching mechanism.

RQ2 What kind of data import problems typically occur in industrial projects?

In chapter 6, we presented three case studies based on real-world industrial projects.
We identified a number of design problems in the source database schemas, such as
ambiguous references, entities that have been split up in unnatural ways across tables,
graph structures encoded as flat tables, etc.

Of course, the case studies we have studied cannot represent the full spectrum of
problems that a developer may encounter (see the threats to validity in section 7.4).

RQ3 What kind of language constructs do we need to be able to implement common
use cases in way that is transparent and easy to debug?

In chapters 3 and 4, we have presented Square, a language to define import definitions,
where we can clean up a relational schema using a distillation step, followed by a map-
ping to an Alan model in a subsequent construction step. The case studies demonstrate
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how this language is expressive enough to tackle the design problems we encountered.
In addition, in the evaluation (chapter 7), we argue that the language performs well
in terms of transparency and debugability (although again, we refer to the threats to
validity).

9.2 Conclusions

It is commonly said that “assumption is the mother of all screw-ups”. This certainly
seems to be the case in data migration, where many system failures stem from making
the wrong assumptions about the incoming data. Rather than trying to prevent assump-
tions altogether, we take the practical stance and say that uncertainty is an unavoidable
part of integrating real-world systems together. The import language we have built at-
tempts to make the transformation logic – including all of the assumptions embedded
within it – as clear and explicit as possible.

There are two main contributions that we think are important. The first is the idea
of making a language where we can express assumptions as a first-class language con-
struct. Doing so not only helps document these decisions, but also opens opportunities
to use this information in automated tooling. One example is in tracing, where we can
display debug information in terms of failed assumption, which should help debugging
by locating faults faster.

The second main contribution is in compile-time guarantees. Static type checking
helps discover bugs before we even run the program. By including very fine-grained
information in the type system, like the chain of foreign key relations (links) that leads
to a particular value, we can perform an extensive number of compile-time checks. A
central theme in Square is the presence of two (or more) operations to do the same
thing: one that assumes nothing of the data, and which is possibly “unsafe” in the
general case. And one which is “safe”, as long as the programmer can prove its safety
to the type checker. This particular approach is not something we have encountered in
comparable systems, and it is one that has worked out well in our practical tests.

To evaluate the language, we looked at three case studies, where we designed an
import definition and then tested the definition on real-world data sets. Testing a lan-
guage based on a few examples is inherently limited, but should demonstrate the ex-
pressivity and usefulness of our work.

9.3 Future Work

From the start, we intentionally kept the scope of this thesis limited to fit the project
schedule. The main concession we made was to focus only on data importing, i.e.
unidirectional data migration between two different technical spaces. Another use case
that was discussed early on was data model evolution, i.e. data migration from one
version of a data model to the next. Adapting our current framework to support this
feature would require a different kind of distillation phase, but otherwise could work
with the same basic type system.

A fundamental principle of the current proposal is that we draw from the relational
database schema to get integrity constraints on the source data. However, there may be
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more sources of constraints that we do not take into account. For example, the external
party could use a constraint language like OCL, or perhaps there is a software system
that checks validation rules before each change to the database. Further research could
investigate how we can make better use of these kinds of sources of business rules.

One piece of “low-hanging fruit” is support for SQL check constraints, as dis-
cussed in section 3.1.2. Supporting this feature would require the ability to replicate
the constraint expression in the distillation language, and then we would need to be
able to verify that this constraint matches the one in the original schema exactly.
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Chapter 10

Discussion

The subject of this thesis was very much motivated by practical, industrial concerns.
Over the course of many software projects, with different characteristics, and different
clients, time and time again the biggest source of runtime failures turned out to be
the import chain. An importer is simple to write, but it turned out to be rather diffi-
cult to get it robust. The ideas that accumulated from this experience resulted in what
would become Square. After the initial idea was sketched out, we experimented with
an implementation, and through experimenting and testing we settled on the design
presented here.

In hindsight, the lack of a theoretical foundation from the start made it more dif-
ficult to write this thesis report than need be. In a sense, we had to build the theory
around the implementation, rather than the other way around. It also shows in the eval-
uation, which (being founded entirely on a limited set of case studies), was difficult to
really nail down.

When we implemented the language, we created two artifacts: a language definition,
and an engine. The language definition encompasses an abstract syntax, a description
of a type system, semantic constraints, and a formal grammar. These are all fairly
formal, exact descriptions. The engine on the other hand, was written in C++, and we
made mostly ad-hoc design decisions to get a piece of working software.

This is reflected in the thesis report, where we have an elaborate description of the
static semantics of the language, but where the operational semantics are underspec-
ified. This is a weakness of our work, because a proper operational semantics would
have allowed us to create a formal proof of correctness.

If we were to start over, with the knowledge and experience we have now, one thing
that we would have done differently is start with a better theoretical basis. On the other
hand, we think the focus on practicality and pragmatism makes the end result inter-
esting. An adventage of this approach is that we our end result is significantly “battle-
hardened”, by being constantly exposed to real-world challenges. We have confidence
that the design we have created is useful to a large number of software projects, and
hope to see Square (or any derivative design) adopted in the wider software develop-
ment community.
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[9] I. Kurtev, J. Bézivin, and M. Akşit, “Technological spaces: An initial appraisal,”
2002.

[10] J. Bézivin and O. Gerbé, “Towards a precise definition of the OMG/MDA frame-
work,” in Automated Software Engineering, 2001.(ASE 2001). Proceedings. 16th
Annual International Conference on, pp. 273–280, IEEE, 2001.

[11] C. J. Date and H. Darwen, A guide to the SQL Standard: a user’s guide to the
standard relational language SQL, vol. 55822. Addison-Wesley Longman, 1993.

93



BIBLIOGRAPHY

[12] P. Gulutzan and T. Pelzer, SQL-99 complete, really. CMP books, 1999.

[13] J. B. Warmer and A. G. Kleppe, “The Object Constraint Language: Precise mod-
eling with UML (Addison-Wesley Object Technology Series),” 1998.

[14] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu, “XQuery 1.0: An XML query language,” 2002.

[15] J. Clark et al., “XSL transformations (XSLT),” World Wide Web Consortium
(W3C). URL http://www. w3. org/TR/xslt, p. 103, 1999.

[16] E. F. Codd, “A relational model of data for large shared data banks,” Communi-
cations of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

[17] E. F. Codd, Relational completeness of data base sublanguages. IBM Corpora-
tion, 1972.

[18] M. Y. Vardi, “The complexity of relational query languages,” in Proceedings of
the fourteenth annual ACM symposium on Theory of computing, pp. 137–146,
ACM, 1982.

[19] L. Libkin, “Expressive power of SQL,” in Database Theory–ICDT 2001, pp. 1–
21, Springer, 2001.

[20] J. Cohen, “Constraint logic programming languages,” Communications of the
ACM, vol. 33, no. 7, pp. 52–68, 1990.

[21] T. Gardner, C. Griffin, J. Koehler, and R. Hauser, “A review of OMG MOF 2.0
Query/Views/Transformations Submissions and Recommendations towards the
final Standard,” in MetaModelling for MDA Workshop, vol. 13, p. 41, Citeseer,
2003.

[22] E. Visser, “Program Transformation with Stratego/XT,” in Domain-Specific Pro-
gram Generation, pp. 216–238, Springer, 2004.

[23] S. Sendall and W. Kozaczynski, “Model transformation the heart and soul of
model-driven software development,” tech. rep., 2003.

[24] C. Atkinson and T. Kühne, “Model-driven development: a metamodeling foun-
dation,” Software, IEEE, vol. 20, no. 5, pp. 36–41, 2003.

[25] D. C. Schmidt, “Model-driven engineering,” COMPUTER-IEEE COMPUTER
SOCIETY-, vol. 39, no. 2, p. 25, 2006.

[26] L. C. Kats and E. Visser, “The spoofax language workbench: rules for declarative
specification of languages and IDEs,” in ACM Sigplan Notices, vol. 45, pp. 444–
463, ACM, 2010.

[27] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R. Cook,
A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, et al., “The state of the art in lan-
guage workbenches,” in Software Language Engineering, pp. 197–217, Springer,
2013.

94



Bibliography

[28] R. Y. Wang and D. M. Strong, “Beyond accuracy: What data quality means to
data consumers,” Journal of management information systems, pp. 5–33, 1996.

[29] E. Rahm and H. H. Do, “Data cleaning: Problems and current approaches,” IEEE
Data Eng. Bull., vol. 23, no. 4, pp. 3–13, 2000.

[30] D. M. Strong, Y. W. Lee, and R. Y. Wang, “Data quality in context,” Communi-
cations of the ACM, vol. 40, no. 5, pp. 103–110, 1997.

[31] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos, “Conceptual modeling for ETL
processes,” in Proceedings of the 5th ACM international workshop on Data Ware-
housing and OLAP, pp. 14–21, ACM, 2002.

[32] J. Trujillo and S. Luján-Mora, “A UML based approach for modeling ETL pro-
cesses in data warehouses,” in Conceptual Modeling-ER 2003, pp. 307–320,
Springer, 2003.

[33] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos, “Modeling ETL activities as
graphs.,” in Design and Management of Data Warehouses (DMDW), vol. 58,
pp. 52–61, 2002.

[34] D. Skoutas and A. Simitsis, “Designing ETL processes using semantic web tech-
nologies,” in Proceedings of the 9th ACM international workshop on Data ware-
housing and OLAP, pp. 67–74, ACM, 2006.

[35] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive visual
specification of data transformation scripts,” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 3363–3372, ACM, 2011.

[36] R. Verborgh and M. De Wilde, Using OpenRefine. Packt Publishing Ltd, 2013.

[37] T. Dasu and T. Johnson, Exploratory data mining and data cleaning, vol. 479.
John Wiley & Sons, 2003.

[38] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record de-
tection: A survey,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 19, no. 1, pp. 1–16, 2007.

[39] A. E. Monge, “Matching algorithms within a duplicate detection system,” IEEE
Data Eng. Bull., vol. 23, no. 4, pp. 14–20, 2000.

[40] T. Steel Jr, “ANSI/X3/SPARC Study Group on Data Base Management Systems
Interim Report,” ACM SIGMOD FDT, vol. 7, no. 2, 1975.

[41] M. West, Developing high quality data models. Elsevier, 2011.

[42] H. Geuvers, “Introduction to type theory,” in Language Engineering and Rigor-
ous Software Development, pp. 1–56, Springer, 2009.

[43] F. Jouault, “Loosely coupled traceability for atl,” in Proceedings of the European
Conference on Model Driven Architecture (ECMDA) workshop on traceability,
Nuremberg, Germany, vol. 91, p. 2, Citeseer, 2005.

95



BIBLIOGRAPHY

[44] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation ap-
proaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645, 2006.

[45] Õ. Ljungberg, “Measurement of overall equipment effectiveness as a basis for
TPM activities,” International Journal of Operations & Production Management,
vol. 18, no. 5, pp. 495–507, 1998.

[46] J.-M. Favre, “Foundations of model (driven)(reverse) engineering: Models–
episode I: stories of the fidus papyrus and of the solarus,” in Dagstuhl Seminar
Proceedings, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2005.

[47] J.-M. Favre, “Foundations of meta-pyramids: Languages vs. metamodels–
episode II: Story of thotus the baboon1,” in Dagstuhl Seminar Proceedings,
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2005.

[48] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati, “A Princi-
pled Approach to Data Integration and Reconciliation in Data Warehousing.,” in
DMDW, vol. 99, p. 16, 1999.

[49] E. J. O’Neil, “Object/relational mapping 2008: hibernate and the entity data
model (edm),” in Proceedings of the 2008 ACM SIGMOD international confer-
ence on Management of data, pp. 1351–1356, ACM, 2008.

[50] E. Meijer, B. Beckman, and G. Bierman, “LINQ: Reconciling object, relations
and XML in the .NET framework,” in Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pp. 706–706, ACM, 2006.

[51] G. Giorgidze, T. Grust, A. Ulrich, and J. Weijers, “Algebraic data types for
language-integrated queries,” in Proceedings of the 2013 workshop on Data
driven functional programming, pp. 5–10, ACM, 2013.

[52] J. Fong, F. Pang, and C. Bloor, “Converting relational database into xml docu-
ment,” in Database and Expert Systems Applications, 2001. Proceedings. 12th
International Workshop on, pp. 61–65, IEEE, 2001.

[53] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model transformation
tool,” Science of computer programming, vol. 72, no. 1, pp. 31–39, 2008.

[54] U. Norell, Towards a practical programming language based on dependent type
theory, vol. 32. Citeseer, 2007.

96



Appendix A

Alan

A.1 Concepts

The most basic concept in Alan is the type fragment (or just “fragment”), denoted
by parentheses. A type fragment specifies a set of named properties. Type fragments
themselves are not named, but they may be nested within properties, thus building up
a “schema tree”.

// Type fragment

(

"description" :: text // Property

)

Alan offers the following property types:

• text Textual value (a string).
• integer Arbitrary integer value.
• decimal Arbitrary decimal value.
• option A choice out of several pre-defined options.
• collection Mapping from keys (strings) to entries.
• collection-of Collection where the key set is a subset of another collection.
• reference Reference to a single entry in a collection.
• component An instance of a named component type.

A.2 Primitives

Alan includes a few primitive types, which serve as the leaves of the tree. The basic
types are text, integer, and decimal.

// Alan

(

"description" :: text

"version" :: integer

)

// Instance (JSON)

{

"description": "Basic example",

"version": 8

}
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The snippet on the left shows the schema, and on the right is an example of a valid
instance. Throughout this report we will use JSON as a serialization format for Alan
instances.

A.3 Collections

A collection is a mapping from keys to entries. Each key is a string (which must be
unique within the collection), and each entry is described by the specified entry frag-
ment.

//...

"product types" :: collection (

"name" :: text

)

//...

"product types": {

"P-278": {

"name": "Aluminium profile"

},

//...

}

Collections may be nested under other collections. This can be used to model a one-
to-many relation between the parent and the child collection.

A.4 Options

An option type specifies a set of choices that may be selected from. Each choice is itself
a type fragment. Options are used to model simple enumerated types (like booleans),
but can also include complex type fragments, making it a useful tool to model condi-
tional logic — in the sense that we can include properties that exist only if we are in a
particular state.

//...

"product types" :: collection (

"requires setup" :: option (

"yes" :: ( )

"no" :: ( )

)

"type" :: option (

"intermediate" :: ( )

"final" :: (

"label" :: text

)

)

)

//...

"product types": {

"278": {

"requires setup": [ "no", {} ],

"type": [ "final", {

"label": "..."

} ]

}

}
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A.5 References

References allow us to select a specific entry in a collection. A reference requires a
relative path from the current location in the schema tree to the collection, denoted by
angle brackets (<...>).

//...

"orders" :: collection (

"product" :: reference <../"product types">

)

//...

"orders": {

"ORDER-560": {

"product": "P-278"

}

}

We can also include a reference path on a collection, to create a “mapped collection”
where the keys refer to entries in the referenced collection.

"products" :: collection (

"operations" :: collection (

"description" :: text

)

)

"orders" :: collection (

"product" :: reference <../"products">

// Select a set of operations to be performed for this specific order

"required operations" :: collection of <"product"/"operations"> (

// Specify the priority for each operation

"priority" :: integer

)

)

{

"products": {

"P-278": {

"operations": {

"1": { "description": "Use machine M with materials X, Y, Z." }

}

}

}

"orders": {

"ORDER-560": {

"product": "P-278"

"required operations" :: {

"1": { "priority": 1 }

}

}

}

}
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In this fairly complicated example, we see that we can use mapped collections to select
a particular subset of entries from another collection, and optionally add more infor-
mation. This concept allows us to model a variety of structures, such as many-to-many
relations.

A.6 Components

Components allow us to specify named types, which can then be shared in multiple
locations. They can also be used to model recursive stuctures.

(

"my list" :: component "list"

)

component "list" (

"type" :: option (

"nil" :: ()

"cons" :: (

"head" :: integer

"tail" :: component "list"

)

)

)

Code Snippet 8: Linked list.

(

"my tree" :: component "tree"

)

component "tree" (

"children" :: collection (

"child" :: component "tree"

)

)

Code Snippet 9: Tree structure.

Infinitely recursive structures are technically allowed in Alan. However, any instance
that conforms to such a model must itself be infinite, which means no (finite) data set
will ever conform.
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A.7 Conformance

We can define what it means for an instance to “conform” to an Alan model a little
more precisely. As above, we will use JSON as the serialization format for instances.
Conformance requires two things:

1. The instance should be well-formed, i.e. the structure should match the structure
of the model.

2. Referential integrity should hold for properties which refer to other properties
(references and collection-of).

Given (part of) an Alan model m, and a JSON value i, we recursively define the well-
formedness function wf as:

wf(m, i) = true iff one of the following holds:

−m is a fragment, and i is a JSON object of the form

{

<n>: <v>

such that wf(p, v) is true,

for all properties p with name n in the fragment m

}

−m is a text property, and i is a JSON string

−m is an integer property, and i is a JSON integer

(i.e. a JSON number without a fractional part)

−m is a decimal property, and i is a JSON number

−m is an option property, and i is a JSON array of the form

[ <name(c)>, <v> ]

such that wf(choice_fragment(c), v) is true,

for some choice c in the option m

−m is a collection(-of) property, and i is a JSON object of the form

{

<k>: <v>

such that wf(entry_fragment(m), v) is true,

for any number of distinct JSON keys k

}

−m is a reference property, and i is a JSON string

−m is a component property, and

wf(component_fragment(m), i) is true

Here, the various ∗fragment functions refer to the subfragments defined as part of the
property types.
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To conform, an instance must be not just well-defined, but also must have referential
integrity. Thus, for any model m and instance i, we define the function conforms as:

conforms(m, i) = true iff wf(m, i) and all of the following hold:

− all reference properties in i must refer to a valid

key in the referenced collection

− for all collection-of properties in i, each key must

refer to a valid key in the referenced collection
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Syntax

B.1 Lexical Syntax

The lexical syntax is shared across the languages in the remaining sections. The defini-
tions below are given using regular expression syntax. Note that strings and identifiers
share the same syntax. This is due to a limitation in the Alan-based parser we used for
the project.

WHITESPACE ::= \s+|//.*\n

String ::= ".*"

Integer ::= -?[0-9]+

Decimal ::= -?[0-9]+\.[0-9]+

ID ::= ".*"

B.2 Alan

Choice ::= ID "::" Fragment

PathComponent ::= ".." | ID
Path ::= "<" [ "/" ] [ PathComponent { "/" PathComponent } ] ">"

Property ::= ID "::" (

"text" | "integer" | "decimal"
| "option" "(" Choice { Choice } ")"
| "collection" Fragment

| "reference" Path

| "collection" "of" Path Fragment

| "component" ID

)

Components ::= { "component" ID Fragment }
Fragment ::= "(" { Property } ")"

Schema ::= Fragment Components
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B.3 Expression Sublanguage

The expression sublanguage is used by the construction and distillation languages.
First, some basic definitions:

EnumSet ::= "{" [ String { "," String } ] "}"

PrimType ::= "text" | "integer" | "decimal" | "boolean"
| "date" | "datetime" | "enum" EnumSet

TextLit ::= String

IntegerLit ::= Integer

DecimalLit ::= Decimal

BooleanLit ::= "true" | "false"
Context ::= "."

ConstantRef ::= "$" ID

Assumption ::= "<!" [ String ] ">"

The following gives the most basic kinds of expressions, occurring at the leaves of
expression trees.

AtomicExp ::= "error" "::" PrimType

| TextLit | IntegerLit | DecimalLit | BooleanLit

| ConstantRef

| Context

| "table" ID | "external" ID
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Finally, the following defines the expression syntax, with operators given in order from
lowest precedence to highest.

ConstantDef ::= ID "=" Exp

ConstantsScope ::= "{" [ ConstantDef { "," ConstantDef } ] "}"

Exp ::= Exp "where" ConstantsScope

| "ceil" Exp

| "floor" Exp

| "decimalize" Exp

| "not" Exp

| "count" Exp

| "single" Exp

| "concat" Exp "over" Exp "separated" "by" Exp

| ("min" | "max" | "avg" | "sum") Exp "over" Exp

| "if" Exp "then" Exp "else" Exp

| "substring" Exp "from" Exp "to" Exp

| "parse" Exp "::" PrimType

| "serialize" Exp

| "optional" Exp "on" Exp

| "root" Exp "following" ID

| "try" Exp "catch" Exp

| "settle" Exp "otherwise" Exp

| Exp "filter" Exp

| Exp "union" Exp

| Exp Assumption

| Exp "and" Exp

| Exp "or" Exp

| Exp ("==" | "!=" | "<" | ">") Exp

| Exp ("++") Exp

| Exp ("+" | "-") Exp

| Exp ("*" | "/") Exp

| Exp "[" ID "]"

| Exp ("->" ID | "^")
| AtomicExp

| "(" Exp ")"
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B.4 Construction Language

The construction syntax is similar to that of Alan, the main addition being import
operations. Note that we use the Exp nonterminal from the previous section.

Choice ::= ID "::" Fragment

PathComponent ::= ".." | ID
Path ::= "<" PathComponent { "/" PathComponent } ">"

Property ::= ID "::" (

( "text" | "integer" | "decimal" ) "<=" Exp

| "option" "<=" OptionExp

| "collection" "<=" CollectionExp

| "reference" Path "<=" ReferenceExp

| "collection" "of" Path "<=" CollectionOfExp

| "component" ID "<=" ComponentExp

)

Components ::= { "component" ID Fragment }
Fragment ::= [ "with" Exp ] "(" { Property } ")"

Construction ::= Fragment Components

The import operations for the various types of properties are given by the following
syntax:

Assumption ::= "<!" [ String ] ">"

OptionExp ::= "error" Assumption

| Choice

| "case" { Exp "=>" OptionExp } "otherwise" "=>" OptionExp

| "settle" ID "=" Exp "=>" OptionExp "none" "=>" OptionExp

| "try" ID "=" Exp "=>" OptionExp "catch" "=>" OptionExp

KeyExp ::= "key" Assumption Exp

| "encode" "key" [ ID ]

CollectionExp ::= "map" Exp ":" KeyExp "->" Fragment

ReferenceExp ::= "key" Assumption Exp

| "index" Assumption Exp

| "entry" Exp

CollectionOfExp ::= "intersect" Assumption Exp

| "subset" Exp

ComponentExp ::= Exp
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B.5 Distillation Language

EnumSet ::= "{" [ String { "," String } ] "}"

PrimType ::= "text" | "integer" | "decimal" | "boolean"
| "date" | "datetime" | "enum" EnumSet

Column ::= "column" [ "*" ] ID "::" PrimType [ "!" ] [ "?" ] "<=" Exp

Key ::= "key" ID ":" [ "!" ] "{" ID { "," ID } "}"
Link ::= "link" ID ":" ( "single" | "many" ) ID [ "!" ] [ "?" ] "<=" (

"{" ID "<=" ID { "," ID "<=" ID } "}"
| "reverse" ID

)

TableSchema ::= "table" ID

"<=" ( "map" | "aggregate" ) Exp

{ Column }
{ Key }
{ Link }

Distillation ::= { TableSchema }
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Typing Rules

C.1 Primitive Type Operators

Γ ` e1, e2 : integer

Γ ` (e1 + e2) : integer

Γ ` e1, e2 : integer

Γ ` (e1 − e2) : integer

Γ ` e1, e2 : integer

Γ ` (e1 * e2) : integer

Γ ` e1, e2 : integer

Γ ` (e1 / e2) : unsafe〈decimal〉
(1)

Γ ` e1, e2 : decimal

Γ ` (e1 + e2) : decimal

Γ ` e1, e2 : decimal

Γ ` (e1 − e2) : decimal

Γ ` e1, e2 : decimal

Γ ` (e1 * e2) : decimal

Γ ` e1, e2 : decimal

Γ ` (e1 / e2) : unsafe〈decimal〉
(1)

Γ ` e1, e2 : text

Γ ` (e1 ++ e2) : text

Γ ` e1 : text Γ ` e2, e3 : integer

Γ ` (substring e1 from e2 to e3) : unsafe〈text〉
(2)

Γ ` e1, e2 : boolean

Γ ` (e1 and e2) : boolean

Γ ` e1, e2 : boolean

Γ ` (e1 or e2) : boolean

Γ ` e : boolean

Γ ` (not e) : boolean

Γ ` e1 : boolean Γ ` e2, e3 : τ

Γ ` (if e1 then e2 else e3) : τ

Γ ` e1, e2 : τ τ is primitive
Γ ` (e1 == e2) : boolean

Γ ` e1, e2 : τ τ is primitive
Γ ` (e1 != e2) : boolean

Γ ` (e1, e2 : integer ∨ e1, e2 : decimal)

Γ ` (e1 < e2) : boolean

Γ ` (e1, e2 : integer ∨ e1, e2 : decimal)

Γ ` (e1 > e2) : boolean

1 Unsafe due to possibility of division by zero. Necessary because the type checker cannot differen-
tiate between zero and non-zero denominator values.

2 Unsafe due to possibility of an index being out of range.
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C.2 Type Conversions

Γ ` e : text τ is primitive
Γ ` (parse e :: τ) : unsafe〈τ〉

(3) Γ ` e : τ τ is primitive
Γ ` (serialize e) : text

Γ ` e : decimal

Γ ` (floor e) : integer

Γ ` e : decimal

Γ ` (ceil e) : integer

Γ ` e : integer

Γ ` (decimalize e) : decimal

C.3 Optional and Unsafe

Γ ` e1 : τ Γ, . : τ ` e2 : boolean

Γ ` (optional e1 on e2) : optional〈τ〉
Γ ` e1 : optional〈τ〉 Γ ` e2 : τ

Γ ` (settle e1 otherwise e2) : τ

Γ ` (error :: τ) : unsafe〈τ〉
Γ ` e1 : unsafe〈τ〉 Γ ` e2 : τ

Γ ` (try e1 catch e2) : τ

e : unsafe〈τ〉
Γ ` (e <!>) : τ

C.4 Scoping

x : τ ∈ Γ

Γ ` $x : τ

. : τ ∈ Γ

Γ ` . : τ

Γ ` e1 : τ1, . . . , en : τn Γ, x1 : τ1, . . . , xn : τn ` e0 : τ0

Γ ` (e0 where { x1 = e1, . . . , xn = en }) : τ0

C.5 Row Set Operators

t is a table in the source schema
Γ ` table t : rowset[↠ t ]

t is a table in the raw schema
Γ ` external t : rowset[↠ t ]

3 Unsafe due to possibility of a parse error.
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Γ ` e1 : rowset[
→p,↠ t ] Γ ` e2 : rowset[

→q ,↠ s ] columns(t) = columns(s)

Γ ` e1 union e2 : rowset[↠ u ]

where u = ( columns(t), links(t) ∩ links(s), ∅ ) ∈ Dtables

Γ ` e1 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e2 : boolean

Γ ` e1 filter e2 : rowset[
→p,↠ t ,↠ t ]

(4)

Γ ` e : rowset[
→p,→ t ] ( c, τ ) ∈ columns(t)

Γ ` e[c] : τ

Γ ` e : rowset[
→p,→ t ] ( l, ( s, single, τ ) ) ∈ links(t)

Γ ` e -> l : τ〈rowset[
→p,→ t ,→ s ]〉

Γ ` e : rowset[
→p,→ t ] ( l, ( s, many, τ ) ) ∈ links(t)

Γ ` e -> l : τ〈rowset[
→p,→ t ,↠ s ]〉

Γ ` e : rowset[
→p,→ t ]

Γ ` e ^ : rowset[
→p ]

C.6 Aggregation Operators

Γ ` e0 : rowset[
→p,↠ t ]

Γ ` (count e0) : integer

Γ ` e0 : rowset[
→p,↠ t ]

Γ ` (single e0) : unsafe〈rowset[
→p,→ t ]〉

Γ ` e0 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e1 : τ

Γ ` (shared e1 over e0) : unsafe〈τ〉
(5)

4 Note that we treat a filter as a kind of “link” to itself, to represent the fact that we have a subset.
Hence the addition of t to the link chain in the result.

5 Unsafe, only succeeds if all values are equal.
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Γ ` e0 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e1 : integer

Γ ` (min e1 over e0) : unsafe〈integer〉
(6)

Γ ` e0 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e1 : integer

Γ ` (max e1 over e0) : unsafe〈integer〉
(6)

Γ ` e0 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e1 : integer

Γ ` (avg e1 over e0) : unsafe〈decimal〉
(6)

Γ ` e0 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e1 : integer

Γ ` (sum e1 over e0) : integer

Γ ` e0 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e1 : decimal

Γ ` (min e1 over e0) : unsafe〈decimal〉
(6)

Γ ` e0 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e1 : decimal

Γ ` (max e1 over e0) : unsafe〈decimal〉
(6)

Γ ` e0 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e1 : decimal

Γ ` (avg e1 over e0) : unsafe〈decimal〉
(6)

Γ ` e0 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e1 : decimal

Γ ` (sum e1 over e0) : decimal

Γ ` e0 : rowset[
→p,↠ t ] Γ, . : rowset[

→p,→ t ] ` e1 : integer Γ ` e2 : text

Γ ` (concat e1 over e0 separated by e2) : text

C.7 Graph Operators

Γ ` e : rowset[
→p,↠ t ] l ∈ links(t)

Γ ` (root e following l) : rowset[↠ t ,→ t ]
(7)

6 Unsafe due to the possibility of an empty set as input.
7 Fails if the table is not a valid tree encoding.
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Appendix D

Case Studies

This appendix lists the full import definitions for the three case studies performed as
part of this thesis. These import definitions were developed for actual projects currently
in production. The company names have been anonymized, and identifiers have been
translated to English.

D.1 Alpha

D.1.1 Distillation

table "machines" <= map external "A.MACHINE"

column * "machine id" :: text <= .["MACH#"]

column "description" :: text <= .["MACHDSC"]

table "tools" <= map external "A.TOOL"

column * "tool id" :: text <= .["TOOL#"]

column "description" :: text <= .["TOOLDSC"]

// Table which associates tools with tool sets

table "tools x tool sets" <= map external "A.TOOLSET"

column * "tool id" :: text <= .["TOOL#"]

column * "tool set id" :: text <= .["TOOLSET"]

link "tool": single "tools"

<= { "tool id" <= .["tool id"] }

link "tool set": single "tool sets"

<= { "tool set id" <= .["tool set id"] }

// Aggregate all individual tool sets from the "tools x tool sets" table

table "tool sets" <= aggregate table "tools x tools set"

column "tool set id" * <= .["tool set id"]

link "tool entries": many "tools x tool sets"

<= reverse "tool set"

// Product specifications

table "products" <= map external "A.PRODUCT"
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column * "product id" :: text <= .["PROD#"]

column "description" :: text <= .["PRODDSC"]

column "type" :: text <= .["PRODTYP"]

link "operations": many "product operations"

<= reverse "product"

// Operations that should be performed to make a particular product

table "product operations" <= map external "A.ROUTE"

column * "product id" :: text <= .["PROD#"]

column * "operation id" :: text <= .["RTOP"]

column "description" :: text <= .["RTOPDSC"]

column "standard time" :: float <= .["RTNORM"]

column "machine id" :: text ? <= optional .["MACH#"] on (. != "")

// This column ambiguously refers to either:

// - no tool (empty string)

// - a single tool (reference to the tools table)

// - a tool set (reference to the tool set table)

column "tool or tool set id" :: text ? <= optional .["TOOL#"] on (. != "")

link "product": single "products"

<= { "product id" <= .["product id"] }

// Note: this link is optional (because the machine ID may be empty), but it is

// also unsafe (because there is no foreign key constraint on the external table).

link "machine": single "machines" ! ?

<= { "machine id" <= .["machine id"] }

// Create links for both possibilities of "tool or tool set id"

link "tool": single "tools" ! ?

<= { "tool id" <= .["tool or tool set id"] }

link "tool set": single "tool set" ! ?

<= { "tool set id" <= .["tool or tool set id"] }

// Orders for an instance of a particular product

table "orders" <= map external "A.PRPO"

column * "order id" :: text <= .["WPONR#"]

column "product id" :: text <= .["PROD#"]

link "product": single "products"

<= { "product id" <= .["product id"] }

link "order operations": many "order operations"

<= reverse "order"

// Operations belonging to an order

table "order operations" <= map external "A.WPOROUTE"

column * "order id" :: text <= .["WPONR#"]

column * "operation id" :: text <= .["WPRBEW"]

column "description" :: text <= .["WPRBWD"]

column "machine id" :: text ? <= optional .["WPRMCH"] on (. != "")

column "quantity" :: text <= .["WPRQNT"]
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column "week number" :: text <= .["WPRBWK"]

column "status" :: text <= .["WPRAFG"]

link "order": single "orders"

<= { "order id" <= .["order id"] }

// The corresponding product operation that this operation is based on

link "product operation": single "product operations"

<= {

"product id" <= (. -> "order")["product id"],

"operation id" <= .["operation id"]

}

link "machine": single "machines" ! ?

<= { "machine id" <= .["machine id"] }

D.1.2 Construction

(

"machines" :: collection <= map table "machines": encode key -> (

"description" :: text <= .["description"]

)

"tools" :: collection <= map table "tools": encode key -> (

"description" :: text <= .["description"]

)

"tool sets" :: collection <= map table "tool sets": encode key -> (

"tools" :: collection of <../"tools"> <= subset . -> "tool entries" -> "tool"

)

"products" :: collection <= map table "products": encode key -> (

"description" :: text <= .["description"]

"type" :: option <= case

(.["type"] == "06") => "material" :: ()

(.["type"] == "09") => "intermediate" :: ()

(.["type"] == "15") => "end product" :: ()

otherwise => "unknown" :: ()

"operations" :: collection <= map . -> "operations": encode key -> (

"description" :: text <= .["description"]

// Switch on the optionality of the "default machine" link.

"has default machine" :: option <= settle "machine" = . -> "machine"

=> "yes" :: (

"machine" :: reference <../../../"machines"> <= index $"machine"

<!"Reference to machine should be valid">

)

none => "no" :: ()

// Try both of the "tool"/"tool set" links.

"uses tools" :: option <= settle "unresolved tool set" = . -> "tool set"

=> try "tool set" = "unresolved tool set"

=> "set" :: (

"tool set" :: reference <../../../"tool sets"> <= entry $"tool set"
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)

catch => settle "tool" = . -> "tool"

=> "single" :: (

"tool" :: reference <../../../"tools"> <= index $"tool"

<!"Reference to tool should be valid">

)

none => "none" :: ()

none => "none" :: ()

)

)

"orders" :: collection <= map table "orders": encode key -> (

"product" :: reference <../"products"> <= entry . -> "product"

"status" :: option <= case

(.["status"] == "X") => "finished" :: ()

otherwise => "pending" :: ()

// Note: here we have two row sets which are both subsets of the

// "product operations" table. We assume that the order operations

// form a subset (i.e. the product should match between the two).

"operations" :: collection of <"product"/"operations"> <= intersect

<!"Order operations should form a subset of the product’s operations">

. -> "order operations" -> "operation":

encode key <!"References to product operations should be distinct">

-> with .^ (

"description" :: text <= .["description"]

"quantity" :: integer <= parse .["quantity"] :: integer

<!"Quantity should be integer">

"week number" :: integer <= parse .["week number"] :: integer

<!"Week number should be integer">

"machine" :: option <=

settle "machine" = . -> "machine"

=> "override" :: (

"machine" :: reference <../../../"machines">

<= index $"machine"

<!"Reference to machine should be valid">

)

none => "default" :: ()

)

)

)
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D.2 Beta

D.2.1 Distillation

table "articles" <= map external "B.VIAAREP"

column * "article id" :: text <= .["AAAATX"]

column "article type" :: text <= .["AADATX"]

column "description" :: text <= .["AAEVTX"]

column "customer id" :: text <= .["AGAKCD"]

link "customer": single "customers"

<= { "customer id" <= .["customer id"] }

link "supplement": single "articles supplement" !

<= { "article id" <= .["article id"] }

// A table of additional article information, which is (ideally strictly)

// one-to-one with the "articles" table

table "articles extra" <= map external "B.LAST_ART_OV3"

column * "article id" :: text <= .["AGAECD"]

column "quantity per package" :: integer <= .["AGANNB"]

table "machine groups" <= map external "B.VIBSREP"

column * "machine group id" :: text <= .["BSO6CD"]

column "description" :: text <= .["BSO4CD"]

column "department" :: text <= .["BSBHKO"]

table "tools" <= map external "B.VNDOREP"

column * "tool id" :: text <= .["DOKQKD"]

column "profile id" :: text <= .["DOKRKD"]

// The first character of the tool ID denotes the type

column "type" :: text <= substring .["DOKQKD"] from 0 to 1

column "status" :: text <= .["DOTPST"]

link "profile": single "profiles"

<= { "profile id" <= .["profile id"] }

table "employees" <= map external "B.VIB7REP"

filter (.["B7AWCD"] == "BETA") // Only employees working for Beta

column * "employee id" :: text <= .["B7UQCD"]

column "name" :: text <= .["B7URCD"]

column "supervisor id" :: text ? <= .["B7E2KE"]

column "access card id" :: text <= .["B7CBCO"]

// Access cards are only distributed once (and thus are unique)

key "access card": { "access card id" }

link "supervisor": single "employees" ?

<= { "employee id" <= .["supervisor id"] }

table "suppliers" <= map external "B.VICGREP"

column * "supplier id" :: text <= .["CGWBCD"]
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column "name" :: text <= .["CGWDCD"]

table "materials" <= map table "articles"

filter (.["article type"] == "material") // Filter out just the materials

column * "material id" :: text <= .["AAAATX"]

column "description" :: text <= .["AAEVTX"]

column "type" :: text <= .["AADATX"]

table "material shipments" <= map external "B.VIAJREP"

column * "shipment date" :: date <= .["AJALDT"]

column * "sequence number" :: text <= .["AJBANB"]

column "supplier id" :: text <= .["CHWBCD"]

column "material id" :: text <= .["AJAATX"]

column "quantity" :: integer <= .["AJCSTX"]

link "supplier": single "suppliers"

<= { "supplier id" <= .["supplier id"] }

link "material": single "materials"

<= { "material id" <= .["material id"] }

table "customers" <= map external "B.VIBQREP"

column * "customer id" :: text <= .["BQIMNB"]

column "name" :: text <= .["BQMICD"]

link "customer group entry": single "customers with group" !

<= { "customer id" <= .["customer id"] }

// Same primary key as the "customers" table, but here it lists the customer group.

// Note that not all customers are necessarily present in this table.

table "customers with group" <= map external "B.VIBHREP"

column * "customer id" :: text <= .["BHIMNB"]

column "customer group id" :: text <= .["BHS0NA"]

link "customer": single "customers" !

<= { "customer id" <= .["customer id"] }

link "customer group": single "customer groups"

<= { "customer group id" <= .["customer group id"] }

// Aggregate just the customer groups from the "customers with group" table

table "customer groups" <= aggregate table "customers with group"

column * "customer group id" :: text <= .["customer group id"]

link "group entries": many "customers with group"

<= reverse "customer group"

table "operations" <= map external "B.VIBRREP"

column * "operation code" :: text <= .["BRNMNB"]

column "description" :: text <= .["BRO3CD"]

table "profiles" <= map table "articles"

filter (.["article type"] == "profile") // Filter out just the profiles
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column * "profile id" :: text <= .["article id"]

// The first 4 characters of the profile ID indicates its "profile type"

column "type" :: text <= substring .["profile id"] from 0 to 4

link "article": single "articles"

<= { "article id" <= "profile id" }

link "profile type": single "profile types"

<= { "profile type id" <= .["type"] }

link "operations": many "profile operations"

<= reverse "profile"

// Aggregate just the profile types

table "profile types" <= aggregate table "profiles"

column * "profile type id" <= .["type"]

link "profiles": many "profiles"

<= reverse "profile type"

table "profile operations" <= map external "B.VIB2REP"

column * "profile id" :: text <= .["B2AATX"]

column * "sequence number" :: text <= .["B2TYNB"]

column "operation id" :: text <= .["B2NMNB"]

column "machine group id" :: text <= .["B2O6CD"]

column "description" :: text <= .["B2QZKD"]

column "next sequence number" :: text ? <= .["B2STNR"]

link "profile": single "profiles"

<= { "profile id" <= .["profile id"] }

link "operation": single "operations"

<= { "operation code" <= .["operation id"] }

link "machine group id": single "machine groups"

<= { "machine group id" <= .["machine group id"] }

link "next operation": single "profile operations" ?

<= {

"profile id" <= .["profile id"],

"sequence number" <= .["next sequence number"]

}

table "orders" <= map external "B.VICEREP"

column * "order id" :: integer <= .["CEV0NB"]

column "profile id" :: text <= .["CEAATX"]

column "status" :: text <= .["CEHPST"]

column "start date" :: date <= .["CEBMDT"]

link "profile": single "profiles"

<= { "profile id" <= .["profile id"] }

D.2.2 Construction

(

// Assets
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"machine groups" :: collection <= map table "machine groups": encode key -> (

"description" :: text <= .["description"]

"department" :: text <= .["department"]

)

"tools" :: collection <= map table "tools": encode key -> (

"profile" :: reference <../"profiles"> <= . -> "profile"

"type" :: option <= case

(.["type"] == "1") => "stamp" :: ()

(.["type"] == "2") => "roll form set" :: ()

(.["type"] == "5") => "stencil" :: ()

otherwise => "other" :: ()

)

"employees" :: collection <= map table "employees": encode key -> (

"name" :: text <= .["name"]

"has supervisor" :: option <= settle "supervisor" = . -> "supervisor"

=> "yes" :: (

"supervisor" :: reference <../../"employees"> <= $"supervisor"

)

none => "no" :: ()

)

)

// Because there is a 1:1 correspondence between employees and access cards,

// we can simply map over the employees table here.

"access cards" :: collection <= map table "employees": encode key "access card" -> (

"employee" :: reference <../"employees"> <= .

)

// Supply

"suppliers" :: collection <= map table "suppliers": encode key -> (

"name" :: text <= .["name"]

)

"materials" :: collection <= map table "materials": encode key -> (

"description" :: text <= .["description"]

"type" :: text <= .["type"]

)

"material shipments" :: collection from table "supply orders": encode key -> (

"supplier" :: reference <../"suppliers"> <= . -> "supplier"

"material" :: reference <../"materials"> <= . -> "material"

"quantity" :: integer <= .["quantity"]

"shipment date" :: date <= .["shipment date"]

)

// Demand

"customer groups" :: collection <= map table "customer groups": encode key -> ()

"customers" :: collection <= map table "customers": encode key -> (

"name" :: text <= .["name"]

"group" :: reference <../"customer groups"> <= entry
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(. -> "customer group entry" <!"There should be a corresponding group">)

-> "customer group"

)

// Production

"operations" :: collection <= map table "operations": encode key -> (

"description" :: text <= .["description"]

)

"profile types" :: collection <= map table "profile types": encode key -> (

"customer" :: reference <../"customers"> <= entry

shared . -> "profiles" -> "article" -> "customer"

<!"All profiles falling under a profile type should share

the same customer">

// Instances of this profile type

"profiles" :: collection <= map . -> "profiles": encode key -> (

"description" :: text <= .["description"]

"quantity per package" :: integer <= (

. -> "article" -> "supplement"

<!"Should be supplemental information for each article">

)["quantity per package"]

"operations" :: component "profile operation list"

<= root . -> "operations"

<!"Operations list should have a unique root">

)

)

"orders" :: collection from table "orders": encode key -> (

"profile type" :: reference <../"profile types">

<= entry . -> "profile" -> "profile type"

"profile" :: reference <"profile type"/"profile variants">

<= entry . -> "profile"

"status" :: option <= case

(.["status"] == "P") => "pending" :: (

"scheduled date" :: date <= .["start date"]

)

(.["status"] == "D") => "done" :: ()

otherwise => error <!"Status should be one of: pending, done">

)

)

component "profile operation list" (

"machine group" :: reference </"machine groups">

<= entry . -> "machine group"

"operation" :: reference </"operations">

<= entry . -> "operation"

"has tail" :: option <= settle "next operation" = . -> "next operation"

=> "yes" :: (

"tail" :: component "profile operation list" <= $"next operation"
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<!"Non-final operation should have exactly one successor">

)

none => "no" :: ()

)

)
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D.3 Gamma

D.3.1 Distillation

table "employees" <= map external "C.EIADREP"

column * "employee id" :: text <= .["ADACCD"]

column "full name" :: text <= .["ADABTX"]

table "customers" <= map external "C.EIA4REP"

column * "customer id" :: text <= .["A4A2NC"]

column "short name" :: text <= .["A4B4CD"]

column "full name" :: text <= .["A4B9NA"]

column "responsible employee id" :: text <= .["A4ACCD"]

column "branch code" :: text <= .["A4BCCD"]

column "sales area" :: text <= .["A4IDST"]

// Note: short name should be unique, although the external schema

// does not guarantee it (thus, this definition is marked unsafe)

key "short name": ! { "short name" }

link "sales representative": single "employees"

<= { "employee id" <= .["responsible employee id"] }

link "locations": many "customer locations"

<= reverse "customer"

link "articles": many "articles"

<= reverse "customer"

table "customer locations" <= map external "C.EIA7REP"

column * "customer" :: text <= .["A7A2NC"]

column * "location number" :: text <= .["A7AKNC"]

column "country" :: text <= .["A7A8CD"]

column "address type" :: text <= .["A7BEST"]

column "name" :: text <= .["A7BHNA"]

column "address" :: text <= .["A7H8NA"]

link "customer": single "customers"

<= { "customer id" <= .["customer id"] }

table "machines" <= map external "C.EIA6REP"

column * "operation type" :: text <= .["A6ARCD"]

// Machine number (unique within a particular operation type)

column * "machine number" :: text <= .["A6BSCD"]

column "description" :: text <= .["A6BLNA"]

link "operation type": single "operation types"

<= { "operation type" <= .["operation type"] }

table "treatments" <= map external "C.EIBAREP"

column * "operation type" :: text <= .["BAARCD"]
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column * "treatment id" :: text <= .["BABUCD"]

column "description" :: text <= .["BABQNA"]

link "operation type": single "operation types"

<= { "operation type" <= .["operation type"] }

table "operation types" <= map external "C.EIAKREP"

column * "operation type" :: text <= .["AKARCD"]

link "machines": many "machines"

<= reverse "operation type"

link "treatments": many "treatments"

<= reverse "operation type"

table "product groups" <= map external "C.EIFNREP"

column * "product group id" :: text <= .["FNAEST"]

column "type" :: text <= .["FNJCCO"]

table "articles" <= map external "C.EIIQREP"

// Note: there"s a "special" customer ID ("03408") which is used for stock

// products rather than being a real customer

column * "customer id" :: text <= .["IQA2NC"]

column * "article number" :: text <= .["IQPJKD"]

column "alloy code" :: text <= .["IQAZCD"]

column "customer product" :: text <= .["IQLQNA"]

column "negative length tolerance" :: decimal <= .["IQP6PQ"]

column "positive length tolerance" :: decimal <= .["IQP7PQ"]

column "product group id" :: text <= .["IQPLKD"]

column "finished product length" :: decimal <= .["IQQKPQ"]

column "status" :: text <= .["IQRASS"]

column "description" :: text <= .["IQTTNA"]

link "product group": single "product groups" !

<= { "product group id" <= .["product group id"] }

link "customer": single "customers"

<= { "customer id" <= .["customer id"] }

link "production alternatives": many "production alternatives"

<= reverse "article"

// Note: one-to-one with "articles" once we fix this on a particular location

// (this is evident by comparing the primary keys of the two tables)

table "production alternatives" <= map external "C.EIISREP"

column * "customer id" :: text <= .["ISA2NC"]

column * "customer article number" :: text <= .["ISPJKD"]

column * "location" :: text <= .["ISMYKD"]

column "production article number" :: text <= .["ISPKKD"]

// There is an alternative key, which uses the production article

// number instead

key "alternative by production article":

{
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"customer id",

"location",

"production article number"

}

link "article": single "articles"

<= {

"customer id" <= .["customer id"],

"article number" <= .["customer article number"]

}

link "production article": single "production articles"

<= {

"location" <= .["location"]

"article number" <= .["production article number"]

}

// Articles may be produced in different locations, this table provides

// production information for articles at specific locations

table "production articles" <= map external "C.EIIRREP"

column * "location" :: text <= .["IRMYKD"]

column * "article number" :: text <= .["IRPKKD"]

column "surface quality code" :: text <= .["IRCNCD"]

column "quantity in stock" :: integer <= .["IRCSQT"]

column "anodizing tooling code" :: text <= .["IRPQKD"]

column "operation sequence" :: text <= .["IRRBSS"]

column "material source" :: text <= substring .["IRRBSS"] from 0 to 1

table "articles in hungary" <= map table "production alternatives"

filter .["location"] == "HUN" // Filter just the articles produced in Hungary

column * "customer id" :: text <= .["customer id"]

column * "customer article number" :: text <= .["customer article number"]

column * "location" :: text <= .["location"]

column "quantity in stock" :: integer

<= (. -> "production article")["quantity in stock"]

column "material source" :: text

<= (. -> "production article")["material source"]

link "article": single "articles"

<= {

"customer id" <= .["customer id"],

"article number" <= .["customer article number"]

}

table "areas" <= map external "C.EIAQREP"

column * "location" :: text <= .["AQMYKD"]

column * "area" :: text <= .["AQA6CD"]

link "location": single "locations"

<= { "location" <= .["location"] }
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table "locations" <= aggregate table "areas"

column * "location" :: text <= .["location"]

link "areas": many "areas":

reverse "location"

table "orders" <= map external "C.EIBEREP"

column * "order id" :: text <= .["BEA0NC"]

column "customer id" :: text <= .["BEA2NC"]

column "customer article number" :: text <= .["BEPJKD"]

column "phase" :: text <= .["BEILST"]

column "material source" :: substring .["BECAST"] from 0 to 1

column "requested quantity" :: integer <= .["B2G3PN"]

column "realized quantity" :: integer <= .["B2ZVPN"]

column "delivery date" :: date <= .["KEILDT"]

link "customer": single "customers"

<= { "customer id" <= .["customer id"] }

link "article": single "articles"

<= {

"customer id" <= .["customer id"],

"article number" <= .["customer article number"]

}

link "order phase": single "order phases"

<= { "phase" <= .["phase"] }

table "order phases" <= aggregate table "orders"

column * "phase" :: text <= .["BEILST"]

table "order operations" <= map external "C.EIBPREP"

column * "order id" :: text <= .["BPA0NC"]

column * "operation type" :: text <= .["BPARCD"]

column "customer id" :: text <= .["BPA2NC"]

column "machine number" :: text <= .["BPBSCD"]

column "latest possible starting date" :: date <= .["BPCFDT"]

column "earliest possible starting date" :: date <= .["BPCHDT"]

link "order": single "orders"

<= { "order id" <= .["order id"] }

link "operation type": single "operation types"

<= { "operation type" <= .["operation type"] }

D.3.2 Construction

(

// Demand

"customers" :: collection <= map table "customers": encode key "short name"

-> with . <!"Short name should be unique"> (

"articles" :: collection <= map . -> "articles": encode key -> (
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"description" :: text <= .["description"]

)

"branch code" :: text <= .["branch code"]

"sales area" :: text <= .["sales area"]

// Note: this is not a reference, because we only need the name

"sales representative" :: text <= (. -> "sales representative")["full name"]

"shipping locations" :: collection <= map . -> "locations": encode key -> (

"country" :: text <= .["country"]

"address" :: text <= .["address"]

)

)

// Product line

"operation types" :: collection <= map table "operation types": encode key -> (

// Machines used as part of operation

"machines" :: collection <= map . -> "machines": encode key -> (

"machine number" :: text <= .["machine number"]

"description" :: text <= .["description"]

"is press" :: option <= case

(.["operation type"] == "P") => "yes" :: ()

otherwise => "no" :: ()

)

// Treatments used as part of this operation

"treatments" :: collection <= map . -> "treatments": encode key -> (

"is repacking" :: option <= case

(.["operation type"] == "U") => "yes" :: (

"description" :: text <= .["description"]

)

otherwise => "no" :: ()

)

)

"product groups" :: collection <= map table "product groups": encode key -> (

"type" :: text <= .["type"]

)

"article types" :: collection <= map table "articles in hungary": encode key -> (

"product group" :: reference <../"product groups">

<= index (. -> "product group")

<!"Each article should belong to a product group">

"quantity in stock" :: integer <= .["quantity in stock"]

"type" :: option <= case

(.["customer id"] == "03408") => "stock article" :: ()

otherwise => "customer article" :: (

"customer" :: reference <../../"customers">

"customer article" :: reference <"customer"/"articles">

)

// The type of source material for this article
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"material source" :: option <= case

(.["material source"] == "R") => "stock" :: ()

(.["material source"] == "P") => "extrusion" :: (

// The operation of extrusion is always a press operation

"operation type" :: reference <../../"operation types"> <= key "P"

<!"There should be an operation type with the key ’P’,

representing press operations">

)

otherwise => error <!"Unknown material source type">

// The operation types to produce this article

"operations" :: collection <= map . -> "operations": encode key -> (

"operation type" :: reference <../../"operation types">

<= entry . -> "operation"

"type" :: option <= case

(.["operation type"] == "Q") => "non fabrication" :: ()

otherwise "fabrication" :: ()

)

)

)

// Production

"order phases" :: collection <= map table "order phases": encode key -> ()

"locations" :: collection <= map table "locations": encode key -> (

"areas" :: collection <= map . -> "areas": encode key -> ()

)

"orders" :: collection <= map table "orders": encode key -> (

"quantity" :: integer <= .["requested quantity"]

"delivery date" :: text <= serialize .["delivery date"]

"phase" :: reference <../"order phases"> <= entry . -> "order phase"

"status" :: option <= case

(.["phase"] == "99") => "cancelled" :: ()

(.["phase"] == "98") => "finished" :: ()

otherwise => "active" :: ()

"article type" :: reference <../../"article types"> <= entry . -> "article"

"material source" :: option <= case

(.["material source" == "P"]) => "extrusion" :: ()

(.["material source" == "R"]) => "stock" :: ()

otherwise => error <!"Material source should be either P or R">

"order operations" :: collection <= map table "order operations": encode key -> (

"earliest possible start time" :: text

<= serialize .["earliest possible start time"]

"latest possible start date" :: text

<= serialize .["latest possible start date"]

"is packing operation" :: option <= case
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(.["operation type"] == "E") => "yes" :: ()

otherwise => "no" :: ()

)

"operation type" :: reference <../"article types"/"operations">

<= entry . -> "operation type"

)

)

)
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