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Abstract
We prove that 𝑠𝑟(𝐾𝑘) = 𝑂(𝑘5𝑟5∕2), where 𝑠𝑟(𝐾𝑘) is
the Ramsey parameter introduced by Burr, Erdős and
Lovász in 1976, which is defined as the smallest mini-
mum degree of a graph 𝐺 such that any 𝑟-colouring of
the edges of 𝐺 contains a monochromatic 𝐾𝑘, whereas
no proper subgraph of 𝐺 has this property. The con-
struction used in our proof relies on a group theoretic
model of generalised quadrangles introduced by Kantor
in 1980.

MSC ( 2020 )
05C55, 05D10, 51E12 (primary)

1 INTRODUCTION

A graph 𝐺 is called 𝑟-Ramsey for another graph 𝐻, denoted by 𝐺 → (𝐻)𝑟, if every 𝑟-colouring of
the edges of 𝐺 contains a monochromatic copy of 𝐻. Observe that if 𝐺 → (𝐻)𝑟, then every graph
containing 𝐺 as a subgraph is also 𝑟-Ramsey for 𝐻. Some very interesting questions arise when
we study graphs 𝐺 which are minimal with respect to 𝐺 → (𝐻)𝑟, that is, 𝐺 → (𝐻)𝑟 but there is
no proper subgraph 𝐺′ of 𝐺 such that 𝐺′ → (𝐻)𝑟. We call such graphs 𝑟-Ramsey minimal for 𝐻
and we denote the set of all 𝑟-Ramsey minimal graphs for 𝐻 by 𝑟(𝐻). The classical result of
Ramsey [21] implies that for any finite graph 𝐻 and positive integer 𝑟, there exists a graph 𝐺 that
is 𝑟-Ramsey for𝐻, that is,𝑟(𝐻) is non-empty.
Some of the central problems in graph Ramsey theory are concerned with the case where 𝐻

is a clique 𝐾𝑘. For example, the most well-studied parameter is the Ramsey number 𝑅𝑟(𝑘), that
denotes the smallest number of vertices of any graph in 𝑟(𝐾𝑘). The classical work of Erdős
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[8] and Erdős and Szekeres [9] shows that 2𝑘∕2 ⩽ 𝑅2(𝑘) ⩽ 22𝑘. While these bounds have been
improved since then, most recently by Sah [23] (also see [24] and [5]), the constants in the expo-
nent have stayed the same. We refer the reader to the survey of Conlon, Fox and Sudakov [6] for
more on this and other graph Ramsey problems.
Several other questions on𝑟(𝐻) have also been explored; for example, the well-studied size-

Ramsey number �̂�𝑟(𝐻) which is the minimum number of edges of a graph in 𝑟(𝐻). We refer
the reader to [1, 3, 18, 22] for various results on minimal Ramsey problems. In this paper, we will
be interested in the smallest minimum degree of an 𝑟-Ramsey minimal graph, which is defined by

𝑠𝑟(𝐻) ∶= min
𝐺∈𝑟(𝐻)

𝛿(𝐺),

for a finite graph𝐻 and positive integer 𝑟, where 𝛿(𝐺) denotes theminimumdegree of𝐺. Trivially,
we have 𝑠𝑟(𝐻) ⩽ 𝑅𝑟(𝐻) − 1, since the complete graph on 𝑅𝑟(𝐻) vertices is 𝑟-Ramsey for𝐻 and has
minimum degree 𝑅𝑟(𝐻) − 1. The study of this parameter was initiated by Burr, Erdős and Lovász
[2] in 1976. They were able to show the rather surprising exact result, 𝑠2(𝐾𝑘) = (𝑘 − 1)2, which is
far away from the trivial exponential bound of 𝑠2(𝐾𝑘) ⩽ 𝑅𝑟(𝑘) − 1. The behaviour of this function
is still not so well understood for 𝑟 > 2 colours. Fox et al. [10] determined this function asymp-
totically for every fixed 𝑘 up-to a polylogarithmic factor, and for 𝑘 = 3 their result was further
improved by Guo and Warnke [12] who managed to obtain matching logarithmic factors.

Theorem 1.1 (Fox, Grinshpun, Liebenau, Person, Szabó).

(i) There exist constants 𝑐, 𝐶 > 0 such that for all 𝑟 ⩾ 2, we have

𝑐𝑟2 ln 𝑟 ⩽ 𝑠𝑟(𝐾3) ⩽ 𝐶𝑟2 ln2 𝑟.

(ii) For all 𝑘 ⩾ 4, there exist constants 𝑐𝑘, 𝐶𝑘 > 0 such that for all 𝑟 ⩾ 3, we have

𝑐𝑘𝑟
2 ln 𝑟

ln ln 𝑟
⩽ 𝑠𝑟(𝐾𝑘) ⩽ 𝐶𝑘𝑟

2(ln 𝑟)8(𝑘−1)
2
.

Theorem 1.2 (Guo, Warnke).

𝑠𝑟(𝐾3) = Θ(𝑟2 ln 𝑟).

The constant in the upper bound of Theorem 1.1(ii) is rather large (𝐶𝑘 ∼ 𝑘2𝑒4𝑘
2 ln 2), and in

particular not polynomial in 𝑘. To remedy this, they proved the following general upper bound
which is polynomial in both 𝑘 and 𝑟.

Theorem 1.3 (Fox, Grinshpun, Liebenau, Person, Szabó). For all 𝑘, 𝑟 ⩾ 3,

𝑠𝑟(𝐾𝑘) ⩽ 8(𝑘 − 1)6𝑟3.

For a fixed 𝑟 and 𝑘 → ∞, Hàn, Rödl and Szabó [13] determined this function up-to polyloga-
rithmic factors by proving the following.

Theorem 1.4 (Hàn, Rödl, Szabó). There exists a constant 𝑘0 such that for every 𝑘 > 𝑘0 and 𝑟 < 𝑘2

𝑠𝑟(𝐾𝑘) ⩽ 803(𝑟 ln 𝑟)3(𝑘 ln 𝑘)2.
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We prove the following general upper bound that improves Theorem 1.3, and thus provides the
best known upper bound on 𝑠𝑟(𝐾𝑘) outside the special ranges covered by Theorems 1.1 and 1.4.

Theorem 1.5. There exists an absolute constant 𝐶 such that for all 𝑟 ⩾ 2, 𝑘 ⩾ 3,

𝑠𝑟(𝐾𝑘) ⩽ 𝐶(𝑘 − 1)5𝑟5∕2.

Our proof uses the equivalence between 𝑠𝑟(𝐾𝑘) and another extremal function, called the 𝑟-
colour 𝑘-clique packingnumber [10], defined as follows. Let𝑃𝑟(𝑘)denote theminimum𝑛 forwhich
there exist 𝐾𝑘+1-free pairwise edge disjoint graphs 𝐺1,… , 𝐺𝑟 on a common vertex set 𝑉 of size 𝑛
such that for any 𝑟-colouring of 𝑉, there exists an 𝑖 such that 𝐺𝑖 contains a copy of𝐾𝑘 all of whose
vertices are coloured in the 𝑖th colour.

Lemma 1.6 (see [10, Theorem 1.5]). For all integers 𝑟, 𝑘 ⩾ 2 we have 𝑠𝑟(𝐾𝑘+1) = 𝑃𝑟(𝑘).

Our graphs 𝐺𝑖 in the packing would come from certain point-line geometries known as gen-
eralised quadrangles that we define in the next section. In Section 3, we show that any packing
of ‘triangle-free’ point-line geometries implies an upper bound on 𝑃𝑟(𝑘), assuming certain condi-
tions on the parameters of the geometry. In Section, 4 we give a packing of certain subgeometries
of the so-calledHermitian generalised quadrangles using a group theoreticmodel given byKantor
in the 1980s [15], and deduce that this packing implies our main result.

2 BACKGROUND

A (finite) generalised quadrangle  of order (𝑠, 𝑡) is an incidence structure of points  , lines ,
together with a symmetric point-line incidence relation satisfying the following axioms.

(i) Each point lies on 𝑡 + 1 lines (𝑡 ⩾ 1) and two distinct points are incident with at most one
line.

(ii) Each line lies on 𝑠 + 1 points (𝑠 ⩾ 1) and two distinct lines are incident with at most one
point.

(iii) If 𝑃 is a point and 𝓁 is a line not incident with 𝑃, then there is a unique point on 𝓁 collinear
with 𝑃.

Note that the third axiom above ensures that there are no triangles (that is, three distinct lines
pairwisemeeting in three distinct points) in. The standard reference on finite generalised quad-
rangles is the book by Payne and Thas [20]. The collinearity graph of a generalised quadrangle is
the graph on the set of points with two points adjacent when they are both incident with a com-
mon line. A collineation 𝜃 of , that is, an automorphism of its collinearity graph, is an elation
about the point 𝑃 if it is either the identity collineation, or it fixes each line incident with 𝑃 and
fixes no point not collinear with 𝑃. If there is a group 𝐸 of elations of  about the point 𝑃 such
that 𝐸 acts regularly on the points not collinear with 𝑃, then we say that is an elation generalised
quadrangle with elation group 𝐸 and base point 𝑃. Necessarily, 𝐸 has order 𝑠2𝑡, as there are 𝑠2𝑡
points not collinear to a given point in any generalised quadrangle.
Now suppose we have a finite group 𝐸 of order 𝑠2𝑡 where 𝑠, 𝑡 > 1. A Kantor family of 𝐸 is a set

 ∶= {𝐴𝑖 ∶ 𝑖 = 0,… , 𝑡} of subgroups of order 𝑠, and a set∗ ∶= {𝐴∗
𝑖
∶ 𝑖 = 0, … , 𝑡} of subgroups of

order 𝑠𝑡, such that the following are satisfied.
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TABLE 1 The points and lines of the elation
generalised quadrangle arising from a Kantor family (n.b.,
𝐴𝑖 ∈ , 𝐴∗

𝑖
∈ ∗, g ∈ 𝐸)

Points Lines
elements g of 𝐸 the right cosets 𝐴𝑖g

right cosets 𝐴∗
𝑖
g symbols [𝐴𝑖]

a symbol∞.

Incidence:

g ∼ 𝐴𝑖g

𝐴∗
𝑖
ℎ ∼ 𝐴𝑖g , where 𝐴𝑖g ⊆ 𝐴∗

𝑖
ℎ

𝐴∗
𝑖
ℎ ∼ [𝐴𝑖]

∞ ∼ [𝐴𝑖]

(K0) 𝐴𝑖 ⩽ 𝐴∗
𝑖
for all 𝑖 ∈ {0, … , 𝑡}.

(K1) 𝐴𝑖 ∩ 𝐴∗𝑗 = {1} whenever 𝑖 ≠ 𝑗.
(K2) 𝐴𝑖𝐴𝑗 ∩ 𝐴𝑘 = {1} whenever 𝑖, 𝑗, 𝑘 are distinct.

Due to a theorem of Kantor (cf. [15, Theorem A.3.1]), a Kantor family as described above,
gives rise to an elation generalised quadrangle of order (𝑠, 𝑡), which we briefly describe in
Table 1.
We will simply be needing to use the Kantor family for a well-known family of generalised

quadrangles, where the Heisenberg groups appear as the group 𝐸 in the description above. We
remark that themain propertywewill need is (K2), since it ensures that lines of the form𝐴𝑖g never
form a triangle. For self-containment, we give a proof here. Suppose 𝑓, g , ℎ are three elements of𝐸
forming the vertices of a triangle. Then there are three elements 𝐴, 𝐵, 𝐶 ∈  such that 𝐴𝑓 = 𝐴g ,
𝐵g = 𝐵ℎ,𝐶ℎ = 𝐶𝑓. Therefore,𝑓g−1 ∈ 𝐴, gℎ−1 ∈ 𝐵,𝑓ℎ−1 ∈ 𝐶, fromwhich it follows that𝑓ℎ−1 =
(𝑓g−1)(gℎ−1) ∈ 𝐴𝐵 ∩ 𝐶. Since 𝑓 ≠ ℎ, we have𝐴𝐵 ∩ 𝐶 ≠ {1}. So the condition𝐴𝐵 ∩ 𝐶 = {1} given
by (K2) ensures that there are no triangles.
In this paper, we will also need two commonly used maps on finite fields: the trace and norm

maps. For a finite field, they are the analogues of ‘real part’ and ‘square-modulus’ for the com-
plex numbers. We will not be needing the general theory of traces and norms, just two func-
tions in particular. The relative trace map from 𝔽𝑞2 to 𝔽𝑞 is defined by 𝖳𝗋(𝑥) = 𝑥 + 𝑥𝑞. If 𝜙 is
a field-automorphism of 𝔽𝑞2 , then 𝖳𝗋(𝜙(𝑥)) = 𝖳𝗋(𝑥) for all 𝑥 ∈ 𝔽𝑞2 . Also, 𝖳𝗋 is additive; that is,
𝖳𝗋(𝑥 + 𝑦) = 𝖳𝗋(𝑥) + 𝖳𝗋(𝑦) for 𝔽𝑞2 . The relative norm map 𝔽𝑞2 to 𝔽𝑞 is defined by 𝖭(𝑥) = 𝑥𝑞+1. It
is also invariant under field-automorphisms, and is surjective. We will make use of the following
property: if 𝑞 is odd, then every element of 𝔽𝑞 is a square in 𝔽𝑞2 . To see this, let 𝑡 ∈ 𝔽𝑞. Since 𝖭 is
surjective, there exists 𝑥 ∈ 𝔽𝑞2 such that 𝑡 = 𝑥𝑞+1. Since 𝑞 is odd, the element 𝑦 = 𝑥(𝑞+1)∕2 is well
defined, and then 𝑡 = 𝑦2.

3 PACKING GENERALISED QUADRANGLES

A partial linear space is a point-line incidence structure with the property that any two distinct
points are incident to at most one common line. A triangle-free partial linear space of order (𝑠, 𝑡)
is an incidence structure satisfying Axioms (i) and (ii) of a generalised quadrangle, and (iii)′ there
are no three distinct lines pairwise meeting each other in three distinct points. Clearly, any sub-
geometry of a generalised quadrangle where the number of points on a line and the number of
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lines through a point are constants is a triangle-free partial linear space. We now prove the main
lemma that will imply Theorem 1.5 oncewe have the construction outlined in Section 4. Our proof
follows the same idea as in Dudek and Rödl [7], and Fox et al. [10].

Lemma 3.1. Let 𝑟, 𝑘, 𝑠, 𝑡 be positive integers. Say there exists a family (𝑖)𝑟𝑖=1 of triangle-free partial
linear spaces of order (𝑠, 𝑡), on the same point set and pairwise disjoint line-sets1, … ,𝑟 , such that
the point-line geometry ( ,

⋃𝑟
𝑖=1 𝑖) is also a partial linear space. If 𝑠 ⩾ 3𝑟𝑘 ln 𝑘 and 𝑡 ⩾ 3𝑘(1 + ln 𝑟),

then 𝑃𝑟(𝑘) ⩽ ||.
Proof. In order to show that 𝑃𝑟(𝑘) ⩽ ||, we will exhibit 𝐾𝑘+1-free pairwise edge disjoint graphs
𝐺1,… , 𝐺𝑟 on the common vertex set 𝑉 =  , such that for any 𝑟-colouring of 𝑉, there exists an 𝑖
such that 𝐺𝑖 contains a copy of 𝐾𝑘 all of whose vertices are coloured in the 𝑖th colour. We start by
recalling the following properties about each partial linear space 𝑖 , 𝑖 ∈ {1, … , 𝑟}.

(P1) Every point 𝑝 ∈  is incident with 𝑡 + 1 lines of 𝑖 .
(P2) Every line 𝓁 ∈ 𝑖 contains 𝑠 + 1 points from  .
(P3) Any two points of  lie on at most one line of 𝑖 .
(P4) 𝑖 is triangle-free.

Furthermore, given that ( ,
⋃𝑟
𝑖=1 𝑖) is a partial linear space and the line-sets 1, … ,𝑟 are

disjoint,
(P5) For any 𝑖 ≠ 𝑗, and any𝓁 ∈ 𝑖 ,𝑚 ∈ 𝑗 ,𝓁 and𝑚 are incidentwith atmost one commonpoint.

Let 𝑖 ∈ {1, … , 𝑟}, 𝓁1 = ⌊ 𝑠+1
𝑘
⌋ and 𝓁2 = ⌈ 𝑠+1

𝑘
⌉. For each line 𝓁 ∈ 𝑖 , we select uniformly at ran-

dom one partition of 𝓁 among all 𝓁 =
⋃𝑘
𝑗=1 𝐿

(𝓁)
𝑗
, where 𝐿(𝓁)

𝑗
denotes the jth component of the

partition, such that for some 𝑘′, |𝐿(𝓁)
1

|, … , |𝐿(𝓁)
𝑘′

| = 𝓁1 and |𝐿(𝓁)𝑘′+1
|, … , |𝐿(𝓁)

𝑘
| = 𝓁2. Choices for dis-

tinct lines in 𝑖 are independent.
We define a graph 𝐺𝑖 = (𝑉, 𝐸𝑖) on the vertex set 𝑉 =  as follows. For every 𝓁 ∈ 𝑖 , we

include the edges of a complete 𝑘-partite graph between the vertex sets 𝐿(𝓁)
𝑗

for 𝑗 ∈ {1, … , 𝑘}.
Note that the graph 𝐺𝑖 is a collection of Turán graphs on (𝑠 + 1) vertices with 𝑘 parts. Each
Turán graph comes from one line 𝓁 ∈ 𝑖 . By property (P3), any two points are incident with
at most one line, therefore the different Turán graphs are edge-disjoint. Furthermore, by prop-
erty (P4), 𝐺𝑖 is 𝐾𝑘+1-free. Finally, by property (P5), for any 𝑖 ≠ 𝑗 ∈ {1, … , 𝑟}, 𝐺𝑖 and 𝐺𝑗 are edge
disjoint.
In order to conclude, we need to show that with positive probability, for any 𝑟-colouring of 𝑉,

there exists an 𝑖 such that 𝐺𝑖 contains a copy of 𝐾𝑘 all of whose vertices are coloured in the ith
colour. Note that given 𝐺1,… , 𝐺𝑟 on the vertex set 𝑉 =  , in any 𝑟-colouring of 𝑉, at least one of
the colours occurs at least ||∕𝑟 times. Therefore if for every 𝐺𝑖 , every set of at least ||∕𝑟 vertices
contains a copy of 𝐾𝑘, then we get the desired property. The choices of partitions being done
independently, to conclude our proof it suffices to show that for each 𝑖 ∈ {1, … , 𝑟}, with positive
probability every set of at least ||∕𝑟 vertices contains a copy of 𝐾𝑘 in 𝐺𝑖 .
Fix 𝑖 ∈ {1, … , 𝑟}. For a subset 𝑊 ⊆  , let (𝑊) denote the event that the induced subgraph

𝐺𝑖[𝑊] contains no copy of 𝐾𝑘. Let 𝑈 ⊂  with |𝑈| = ⌊ ||
𝑟
⌋. By property (P4), any copy of 𝐾𝑘 can

only appear from one line 𝓁 ∈ 𝑖 , that is,

(𝑈) ⊆
⋂
𝓁∈𝑖

(𝑈 ∩ 𝓁).
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All the events(𝑈 ∩ 𝓁) are independent, therefore

ℙ((𝑈)) ⩽
∏
𝓁∈𝑖

ℙ((𝑈 ∩ 𝓁)).

For a given line 𝓁 ∈ 𝑖 , let 𝑢𝓁 = |𝑈 ∩ 𝓁|, and let 𝓁 = ⋃𝑘
𝑗=1 𝐿

(𝓁)
𝑗

be the random partition of 𝓁.

Note that𝑈 ∩ 𝓁 contains no copy of𝐾𝑘 if and only if there exists 𝑗 ∈ {1, … , 𝑘} such that𝑈 ∩ 𝐿
(𝓁)
𝑗

=

∅. For a fixed 𝑗 ∈ {1, … , 𝑘},

ℙ

(
𝑈 ∩ 𝐿

(𝓁)
𝑗

= ∅
)
=

(𝑠+1−𝑢𝓁|𝐿(𝓁)
𝑗

|
)

( 𝑠+1|𝐿(𝓁)
𝑗

|) ⩽

(
1 −

𝑢𝓁
𝑠 + 1

)|𝐿(𝓁)
𝑗

|
⩽ exp

(
−
𝓁1𝑢𝓁
𝑠 + 1

)
.

Therefore

ℙ((𝑈)) ⩽
∏
𝓁∈𝑖

ℙ

(
∃ 𝑗 ∈ {1, … , 𝑘}, 𝑈 ∩ 𝐿

(𝓁)
𝑗

= ∅
)

⩽ 𝑘|𝑖| exp
(
−

∑
𝓁∈𝑖

𝓁1𝑢𝓁
𝑠 + 1

)
.

Because every point of 𝑈 is incident with 𝑡 + 1 lines from 𝑖 (by property (P1)),
∑

𝓁∈𝑖
𝑢𝓁 =∑

𝓁∈𝑖
|𝑈 ∩ 𝓁| = (𝑡 + 1)|𝑈|, and thus

ℙ((𝑈)) ⩽ 𝑘|𝑖| exp
(
−
𝓁1(𝑡 + 1)|𝑈|

𝑠 + 1

)
.

Finally,

ℙ

(
∃𝑈 ∈

(
⌊ ||
𝑟
⌋
)
∶ (𝑈)

)
⩽

( ||⌊ ||
𝑟
⌋
)
𝑘|𝑖| exp

(
−
𝑡 + 1

𝑠 + 1
𝓁1⌊ ||𝑟 ⌋)

⩽ (𝑟𝑒)||∕𝑟𝑘|𝑖| exp
(
−
𝑡 + 1

𝑠 + 1
⌊ 𝑠 + 1

𝑘
⌋⌊ ||

𝑟
⌋)

Given that || ⩾ 𝑠 ⩾ 3𝑟𝑘 ln 𝑘, 𝑟 ⩾ 2 and 𝑘 ⩾ 3, we have

⌊
𝑠 + 1

𝑘

⌋
⩾
5

6

𝑠 + 1

𝑘
,

⌊||
𝑟

⌋
⩾
5

6

||
𝑟
.

Therefore,

ℙ

(
∃𝑈 ∈

(
⌊ ||
𝑟
⌋
)
∶ (𝑈)

)
⩽ (𝑟𝑒)||∕𝑟𝑘|𝑖| exp

(
−
𝑡 + 1

𝑠 + 1

5(𝑠 + 1)

6𝑘

5||
6𝑟

)

⩽ exp[|| (1 + ln 𝑟

𝑟
+

|𝑖||| ln 𝑘 − 25

36

𝑡 + 1

𝑟𝑘

)
].



THE MINIMUM DEGREE OF MINIMAL RAMSEY GRAPHS FOR CLIQUES 7

By double counting (using properties (P1) and (P2)), we know that

|𝑖|(𝑠 + 1) = ||(𝑡 + 1),

and therefore

ℙ

(
∃𝑈 ∈

(
⌊ ||
𝑟
⌋
)
∶ (𝑈)

)
⩽ exp

[|| (1 + ln 𝑟

𝑟
+
𝑡 + 1

𝑠 + 1
ln 𝑘 −

25

36

𝑡 + 1

𝑟𝑘

)]
. (3.1)

Note that since 𝑠 ⩾ 3𝑟𝑘 ln 𝑘, we have

25

36

𝑡 + 1

𝑟𝑘
>
2(𝑡 + 1)

𝑠 + 1
ln 𝑘,

and since 𝑡 ⩾ 3𝑘(1 + ln 𝑟), we have

25

36

𝑡 + 1

𝑟𝑘
>
2(1 + ln 𝑟)

𝑟
.

Therefore,

ℙ

(
∃𝑈 ∈

(
⌊ ||
𝑟
⌋
)
∶ (𝑈)

)
< 1.

Then there exists an instance of 𝐺𝑖 such that every subset of  with at least ⌊ ||
𝑟
⌋ vertices con-

tains a copy of 𝐾𝑘 in 𝐺𝑖 . □

4 THE CONSTRUCTION

Let 𝑞 be a prime power, and denote the finite field of order 𝑞2 by 𝔽𝑞2 . We will use the model of the
Hermitian generalised quadrangle 𝐻(3, 𝑞2) that appears in [14, Section 3] (see Example 3). For a
definition of𝐻(3, 𝑞2) see [20, Chapter 3].
Let 𝐸 be the group defined on 𝔽𝑞2 × 𝔽𝑞 × 𝔽𝑞2 by the following operation:

(𝑎, 𝛾, 𝑏)◦(𝑎′, 𝛾′, 𝑏′) = (𝑎 + 𝑎′, 𝛾 + 𝛾′ + 𝖳𝗋(𝑏𝑞𝑎′), 𝑏 + 𝑏′),

where 𝖳𝗋(𝑥) = 𝑥 + 𝑥𝑞 is the relative trace map from 𝔽𝑞2 to 𝔽𝑞. It turns out that 𝐸 is theHeisenberg
group of order 𝑞5 with centre of order 𝑞.
We can construct a generalised quadrangle by constructing a Kantor family of 𝐸. Define

𝐴∗∞ = {(0, 𝛾, 𝑎)∶ 𝑎 ∈ 𝔽𝑞2 , 𝛾 ∈ 𝔽𝑞},

𝐴∗𝑡 = {(𝑎, 𝛾, 𝑎𝑡)∶ 𝑎 ∈ 𝔽𝑞2 , 𝛾 ∈ 𝔽𝑞}, 𝑡 ∈ 𝔽𝑞,

𝐴∞ = {(0, 0, 𝑎)∶ 𝑎 ∈ 𝔽𝑞2},

𝐴𝑡 = {(𝑎, 𝑎𝑞+1𝑡, 𝑎𝑡)∶ 𝑎 ∈ 𝔽𝑞2}, 𝑡 ∈ 𝔽𝑞.
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Then ∶= {𝐴∞} ∪ {𝐴𝑡 ∶ 𝑡 ∈ 𝔽𝑞} and∗ ∶= {𝐴∗∞} ∪ {𝐴
∗
𝑏
∶ 𝑏 ∈ 𝔽𝑞} form a Kantor family of 𝐸 giv-

ing rise to a generalised quadrangle isomorphic to𝐻(3, 𝑞2).†
From now on, we will assume that 𝑞 is odd. Let 𝜅 be an element of 𝔽𝑞2 . For each 𝜆 ∈ 𝔽𝑞2 , define

𝜏𝜆 ∶ 𝐸 → 𝐸 as follows. Let

𝜏𝜆 ∶ (𝑎, 0, 0) ↦
(
𝑎, 𝖳𝗋(𝜆𝑎 + 𝜅𝜆𝑎𝑞 + 1

2
𝜆𝑞𝑎2), 𝜆𝑎𝑞

)
,

𝜏𝜆 ∶ (0, 𝛾, 𝑏) ↦ (0, 𝛾, 𝑏).

By Axiom (K1), we have |𝐴0𝐴∗∞| = |𝐴0||𝐴∗∞|∕|𝐴0 ∩ 𝐴∗∞| = 𝑠(𝑠𝑡)∕1 = |𝐸|. So 𝐸 = 𝐴0𝐴
∗
∞. There-

fore, we can write every element g ∈ 𝐸 as g = g0g∗∞, with g0 ∈ 𝐴0 and g∗∞ ∈ 𝐴∗∞. Define 𝜏𝜆(g) ∶=
𝜏𝜆(g0)◦𝜏𝜆(g∗∞).

Lemma 4.1. For every 𝜆 ∈ 𝔽𝑞2 , 𝜏𝜆 is an automorphism of 𝐸.

Proof. Let 𝜆 ∈ 𝔽𝑞2 . It suffices to show that 𝜏𝜆 is a homomorphism from𝐴0 to 𝐸, since 𝜏𝜆 is clearly
bijective. Let 𝑎1, 𝑎2 ∈ 𝔽𝑞2 . Then

𝜏𝜆(𝑎1 + 𝑎2, 0, 0) =
(
𝑎1 + 𝑎2, 𝖳𝗋(𝜆(𝑎1 + 𝑎2) + 𝜅𝜆(𝑎1 + 𝑎2)

𝑞 +
1

2
𝜆𝑞(𝑎1 + 𝑎2)

2), 𝜆(𝑎1 + 𝑎2)
𝑞
)

Using (𝑥 + 𝑦)𝑞 = 𝑥𝑞 + 𝑦𝑞 in 𝔽𝑞2 , we get,

𝜏𝜆(𝑎1 + 𝑎2, 0, 0) =
(
𝑎1 + 𝑎2, 𝖳𝗋(𝜆𝑎1 + 𝜅𝜆𝑎

𝑞

1
+ 𝜆𝑞𝑎21 + 𝜆𝑎2 + 𝜅𝜆𝑎

𝑞

2
+ 𝜆𝑞𝑎22 + 𝜆𝑞𝑎1𝑎2), 𝜆𝑎

𝑞

1
+ 𝑎

𝑞

2

)
.

Using the fact that 𝖳𝗋 (⋅) is additive, we obtain

𝜏𝜆(𝑎1 + 𝑎2, 0, 0) =
(
𝑎1 + 𝑎2, 𝖳𝗋(𝜆𝑎1 + 𝜅𝜆𝑎

𝑞

1
+ 1

2
𝜆𝑞𝑎21)

+𝖳𝗋(𝜆𝑎2 + 𝜅𝜆𝑎
𝑞

2
+ 1

2
𝜆𝑞𝑎22) + 𝖳𝗋(𝜆𝑞𝑎1𝑎2), 𝜆𝑎

𝑞

1
+ 𝜆𝑎

𝑞

2

)
=
(
𝑎1, 𝖳𝗋(𝜆𝑎1 + 𝜅𝜆𝑎

𝑞

1
+ 1

2
𝜆𝑞𝑎21), 𝜆𝑎

𝑞

1

)
◦
(
𝑎2, 𝖳𝗋(𝜆𝑎2 + 𝜅𝜆𝑎

𝑞

2
+ 1

2
𝜆𝑞𝑎22), 𝜆𝑎

𝑞

2

)
=𝜏𝜆(𝑎1, 0, 0)◦𝜏𝜆(𝑎2, 0, 0).

Therefore, 𝜏𝜆 is an automorphism of 𝐸. □

Lemma 4.2. For every odd prime power 𝑞, there exists 𝜅 ∈ 𝔽𝑞2 such that 𝖳𝗋(𝜅𝑎 + 𝑎2𝑞−1) ≠ 0 for all
non-zero 𝑎 ∈ 𝔽𝑞2 .

Proof. Suppose that 𝖳𝗋(𝜅𝑎 + 𝑎2𝑞−1) = 𝜅𝑎 + 𝜅𝑞𝑎𝑞 + 𝑎2𝑞−1 + 𝑎2−𝑞 = 0 for some non-zero 𝑎 ∈ 𝔽𝑞2 .
Multiplying by 𝑎𝑞−2 and defining 𝑦 = −𝑎𝑞−1 we get the following cubic equation

𝑦3 − 𝜅𝑞𝑦2 + 𝜅𝑦 − 1 = 0.

† In [14], the dual of this generalised quadrangle is defined, denoted by 𝑂−(6, 𝑞), but it is well known that 𝐻(3, 𝑞2) is
isomorphic to the dual of the elliptic generalised quadrangle 𝑂−(6, 𝑞) (see [20, Chapter 3], where 𝑂−(6, 𝑞) is denoted by
𝑄(5, 𝑞)).
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Therefore if 𝜅 is such that the cubic is irreducible, then we get a contradiction. We show that such
a choice of 𝜅 exists. Let 𝑡 be a non-square in 𝔽𝑞 and suppose that 𝛼 is an element of 𝔽𝑞2 such that
𝛼2 = 𝑡. By the Hansen–Mullen Irreducibility Conjecture (which is true, see [4, Theorem 2.7]),
there exists a monic cubic of the form 𝑥3 + 𝑢𝑥2 − 𝑡𝑥 + 𝑣 irreducible in 𝔽𝑞[𝑥] for some 𝑢, 𝑣 ∈ 𝔽𝑞.
Let

𝜅 =
(
−𝑡𝑢 + 3𝑣

𝑡𝑢 + 𝑣
+

4𝑡

𝑡𝑢 + 𝑣
𝛼
)𝑞
.

By [16, Theorem 3], 𝑦3 − 𝜅𝑞𝑦2 + 𝜅𝑦 − 1 is irreducible in 𝔽𝑞2[𝑦]. □

Theorem 4.3. Let 𝜅 be an element of 𝔽𝑞2 such that 𝖳𝗋(𝜅𝑎 + 𝑎2𝑞−1) ≠ 0 for all non-zero 𝑎 ∈ 𝔽𝑞2 . For
each 𝜆 ∈ 𝔽𝑞2 and 𝑡 ∈ 𝔽𝑞 , let

𝐴𝜆𝑡 = {(𝑎, 𝑎𝑞+1𝑡 + 𝖳𝗋(𝜆𝑎 + 𝜅𝜆𝑎𝑞 +
1

2
𝜆𝑞𝑎2), 𝑎𝑡 + 𝜆𝑎𝑞) ∶ 𝑎 ∈ 𝔽𝑞2},

and let

 ∶= {{𝐴𝜆𝑡 ∶ 𝑡 ∈ 𝔽𝑞}∶ 𝜆 ∈ 𝔽𝑞2}.

Then:

(i) every element of  is a set of subgroups and any two cosets from subgroups of different such sets
intersect each other in at most one element;

(ii) if we let  be the underlying set of 𝐸, then for every 𝜆 ∈ 𝔽𝑞2 the set of lines 𝜆 = {𝐴𝜆𝑡 g ∶ g ∈
𝐸, 𝑡 ∈ 𝔽𝑞} gives rise to a triangle-free partial linear space ( ,𝜆) of order (𝑞2 − 1, 𝑞 − 1).

Proof. First, for each 𝜆 ∈ 𝔽𝑞2 and 𝑡 ∈ 𝔽𝑞, we have

𝐴𝜆𝑡 = 𝜏𝜆(𝐴𝑡).

Since 𝜏𝜆 is an automorphism of the underlying group (as per Lemma 4.1), it follows that
{𝜏𝜆(𝐴∞)} ∪ {𝜏𝜆(𝐴𝑡)∶ 𝑡 ∈ 𝔽𝑞} and {𝜏𝜆(𝐴∗∞)} ∪ {𝜏𝜆(𝐴

∗
𝑏
)∶ 𝑏 ∈ 𝔽𝑞} also form aKantor family, and give

rise to an isomorphic generalised quadrangle. Therefore, by taking cosets of the subgroups 𝐴𝜆𝑡 ,
𝑡 ∈ 𝔽𝑞, as lines we get a subgeometry of this generalised quadrangle which is a triangle-free par-
tial linear space of order (𝑞2 − 1, 𝑞 − 1). We now prove the first part.
First we show that 𝐴𝜆1𝑡1 ∩ 𝐴

𝜆2
𝑡2
= {(0, 0, 0)} whenever 𝜆1 ≠ 𝜆2. An element of 𝐴𝜆1𝑡1 ∩ 𝐴

𝜆2
𝑡2

is
of the form (𝑎, 𝑎𝑞+1𝑡1 + 𝖳𝗋(𝜆1𝑎 + 𝜅𝜆1𝑎

𝑞 +
1

2
𝜆
𝑞

1
𝑎2), 𝑎𝑡1 + 𝜆1𝑎

𝑞) for some 𝑎 ∈ 𝔽𝑞2 , but it is also
(𝑏, 𝑏𝑞+1𝑡2 + 𝖳𝗋(𝜆2𝑏 + 𝜅𝜆2𝑏

𝑞 + 1

2
𝜆
𝑞

2
𝑏2), 𝑏𝑡2 + 𝜆2𝑏

𝑞) for some 𝑏 ∈ 𝔽𝑞2 . Therefore, 𝑎 = 𝑏 and hence

𝑎𝑞+1(𝑡1 − 𝑡2) = 𝖳𝗋
(
(𝜆2 − 𝜆1)(𝑎 + 𝜅𝑎𝑞 +

1

2
𝑎2𝑞)

)
𝑎(𝑡1 − 𝑡2) = (𝜆2 − 𝜆1)𝑎

𝑞.

Now 𝑎𝑞+1(𝑡1 − 𝑡2) = 𝑎𝑞𝑎(𝑡1 − 𝑡2) and so

𝖳𝗋
(
(𝜆2 − 𝜆1)(𝑎 + 𝜅𝑎𝑞 +

1

2
𝑎2𝑞)

)
= 𝑎2𝑞(𝜆2 − 𝜆1).
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Expanding this equation gives us

(𝜆2 − 𝜆1)(𝑎 + 𝜅𝑎𝑞 −
1

2
𝑎2𝑞) + (𝜆2 − 𝜆1)

𝑞(𝑎 + 𝜅𝑎𝑞 +
1

2
𝑎2𝑞)𝑞 = 0.

Suppose, by way of contradiction, that 𝑎 ≠ 0. Since 𝜆2 ≠ 𝜆1, we can rewrite the equation as

(𝜆2 − 𝜆1)
𝑞−1 = −

𝑎 + 𝜅𝑎𝑞 − 1

2
𝑎2𝑞

(𝑎 + 𝜅𝑎𝑞 + 1

2
𝑎2𝑞)𝑞

.

Let 𝖭∶ 𝔽𝑞2 → 𝔽𝑞 be the relative norm function, defined by 𝖭(𝑥) = 𝑥𝑞+1. The left-hand side has
norm 1 and hence

𝖭(−(𝑎𝑞 + 𝜅𝑞𝑎 − 1

2
𝑎2)) = 𝖭(𝑎𝑞 + 𝜅𝑞𝑎 + 1

2
𝑎2).

Now 𝖭(−1) = 1 and we can factor out 𝖭(𝑎), so

𝖭(𝑎𝑞−1 + 𝜅𝑞 + 1

2
𝑎) − 𝖭(𝑎𝑞−1 + 𝜅𝑞 − 1

2
𝑎) = 0.

Note that by definition of the relative norm map,

𝖭(𝑥 + 𝑦 + 𝑧) = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧)𝑞

= (𝑥 + 𝑦 + 𝑧)(𝑥𝑞 + 𝑦𝑞 + 𝑧𝑞)

= 𝑥𝑥𝑞 + 𝑦𝑦𝑞 + 𝑧𝑧𝑞 + 𝑥𝑦𝑞 + 𝑦𝑥𝑞 + 𝑥𝑧𝑞 + 𝑧𝑥𝑞 + 𝑦𝑧𝑞 + 𝑧𝑦𝑞

Using that in 𝔽𝑞2 , 𝑦𝑥𝑞 = (𝑦𝑞𝑥)𝑞, we obtain

𝖭(𝑥 + 𝑦 + 𝑧) = 𝖭(𝑥) + 𝖭(𝑦) + 𝖭(𝑧) + 𝖳𝗋 (𝑥𝑦𝑞 + 𝑥𝑧𝑞 + 𝑦𝑞𝑧).

Therefore,

0 =
(
𝖭(𝑎𝑞−1) + 𝖭(𝜅𝑞) + 𝖭(1

2
𝑎) + 𝖳𝗋(𝑎𝑞−1𝜅 + 1

2
𝑎2𝑞−1 + 1

2
𝜅𝑎)

)
−
(
𝖭(𝑎𝑞−1) + 𝖭(𝜅𝑞) + 𝖭(1

2
𝑎) + 𝖳𝗋(𝑎𝑞−1𝜅 − 1

2
𝑎2𝑞−1 − 1

2
𝜅𝑎)

)
=𝖳𝗋(𝜅𝑎 + 𝑎2𝑞−1),

a contradiction. So 𝑎 = 0 and 𝐴𝜆1𝑡1 ∩ 𝐴
𝜆2
𝑡2
= {(0, 0, 0)}.

Now for any two subgroups𝐻,𝐾 of a group, the intersection of two cosets of𝐻 and 𝐾 is either
empty, or a coset of𝐻 ∩ 𝐾, which proves our claim. □

Corollary 4.4. There exists an absolute constant 𝐶 such that for all 𝑟 ⩾ 2, 𝑘 ⩾ 3, we have 𝑠𝑟(𝐾𝑘) ⩽
𝐶(𝑘 − 1)5𝑟5∕2.

Proof. Let 𝑟 ⩾ 2, 𝑘 ⩾ 3, 𝑐 = 10+9 ln 2

3
√
2

and let 𝑞 be the smallest prime such that 𝑞 ⩾ 𝑐𝑘
√
𝑟. By

Lemma 4.2 and Theorem 4.3(ii), there exists a family of 𝑟 ⩽ 𝑞2 triangle-free partial linear spaces
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of order (𝑞2 − 1, 𝑞 − 1), on the same point set  and pairwise disjoint line-sets 1, … ,𝑟, and
by Theorem 4.3(i), the point-line geometry ( ,

⋃𝑟
𝑖=1 𝑖) is also a partial linear space. Note that

𝑞2 − 1 ⩾ 3𝑟𝑘 ln 𝑘 and 𝑞 − 1 ⩾ 3𝑘(1 + ln 𝑟). Combining Lemmas 1.6 and 3.1, 𝑠𝑟(𝐾𝑘+1) = 𝑃𝑟(𝑘) ⩽||. By Bertrand’s postulate, 𝑞 ⩽ 2𝑐𝑘
√
𝑟, and using || = 𝑞5 yields the desired bound, with

𝐶 = ⌈(2𝑐)5⌉ = 26,282. Note that, in light of Conjecture 5.2, we did not try to further optimise this
constant. □

5 CONCLUDING REMARKS

While generalised quadrangles have been used extensively in extremal combinatorics, and par-
ticularly Ramsey theory (for example, [7, 11, 17, 19, 25]), our result appears to be the first instance
in Ramsey theory where the group theoretic structure of these geometries is exploited. We are
hopeful that Kantor’s model of generalised quadrangles will lead to new results in other Ramsey
problems as well.
In the probabilistic argument of Section 3, note that if we use 𝑠 + 1 = 𝑞2 and 𝑡 + 1 = 𝑞, then

from equation (3.1) it follows that we can solve the following quadratic inequality in 𝑞 to ensure
that the probability is < 1:

25

36

1

𝑟𝑘
𝑞2 −

1 + ln 𝑟

𝑟
𝑞 − ln 𝑘 > 0.

One can check that this inequality is satisfied for all 𝑞 ⩾ 36

25
𝑘(1 + ln 𝑟) + 6

5

√
𝑟𝑘 ln 𝑘. Using that for

any 𝑎, 𝑏 > 0, (𝑎 + 𝑏)5 ⩽ 24(𝑎5 + 𝑏5), we obtained the following more refined upper bound.

Theorem 5.1. For all 𝑟 ⩾ 2, 𝑘 ⩾ 2,

𝑠𝑟(𝐾𝑘) ⩽ 212[(𝑘 − 1)5 ln5 𝑟 + (𝑘 − 1)5∕2𝑟5∕2 ln5∕2(𝑘 − 1)].

For further improvements to our upper bound, we should perhaps explore triangle-free partial
linear spaces that do not arise from generalised quadrangles. Moreover, if we could make the
probabilistic argument of Section 3 deterministic, then this could also lead to an improvement in
the bound. We would like to make the following conjecture.

Conjecture 5.2. For all 𝑟 ⩾ 2, 𝑘 ⩾ 2

𝑠𝑟(𝐾𝑘) ⩽ 𝐶𝑘2𝑟2𝑓(ln 𝑘, ln 𝑟)

for some constant 𝐶 > 0 and a constant degree polynomial function 𝑓.
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