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Preface

For the acquisition of the Master of Science degree at Delft Technical University it is required
to do a master thesis project. The master programme I am following is Sustainable Energy
Technology (SET). As my specialization is wind energy, I wanted to do my master thesis
within this department. Because atmospheric wind and, more specific, turbulence had my
interest for a long time, I looked for a project with a relation to this topic. I found this in
the topic of wind gusts, which was part of the course “wind and site conditions” given by
Wim Bierbooms. He has developed a method to numerically simulate wind gusts of a desired
length and amplitude called NewGust. The validity of the mean gust shape has already been
proved by several articles, but until now nobody looked at the validity of the load response
of a wind turbine resulting from wind gusts simulated according to the NewGust method.

Hence, the main topic of my thesis became to investigate the validity of the mean load
response resulting from NewGust wind speed gusts with respect to measured wind speed
gusts. During the process of this thesis it turned out that there are several methods to
simulate wind speed gusts. A number of these methods have been compared with respect to
the mean shape of the load response and the 50-years extreme value of the load response.

First of all I want to thank my supervisor Wim Bierbooms for his kind guidance during
my literature study and following thesis work. Through his coaching I could give this thesis
a scientific value. I want to thank Maaike for always being interested in what I do. I also
want to name my parents, who enabled me to follow this course by always giving a safe home.
I should not forget my brother Jan for his kind review of my English. Above all I have to
thank the Lord God, who gave me the strength, knowledge and intellect to do this.

This research would not have been possible without the kind permission of “Database
of Wind Characteristics” to download measurements from their internet database located at
DTU, Denmark. Internet: “http://www.winddata.com/”. Wind field time series from the
following sites have been applied: Hornsrev (with acknowledgments to ELSAM Engineering,
Denmark), Oak Creek and Toboel (both with acknowledgments to Risø National Laboratories,
Denmark).

Kundert de Wit
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Abstract

This thesis report has been made in the context of acquiring the Master of Science degree for
the master Sustainable Energy Technology at Delft Technical University, faculty of applied
sciences. The thesis work has been conducted at the faculty of aerospace engineering, section
wind energy.

As wind turbines become larger and larger, optimization of material usage becomes rela-
tively more important. The reason lies in the direct connection of material use with investment
costs, which are becoming more important with larger turbines. For this optimization, proper
fatigue analysis and assessment of the extreme loads is highly important. For the assessment
of extreme loads wind gusts are important. Until now, gusts of a deterministic shape have
been used, which is in contrast with the common practise for fatigue analysis. Therefore, Wim
Bierbooms developed the NewGust method for simulating wind speed gusts of any desired
length and amplitude at DUWIND. The validity of the resulting gust shape has already been
proved by several articles, but until now nobody looked into the validity of the load response
of a wind turbine resulting from wind gusts simulated according to the NewGust method.

The main research question of this thesis is:

What is the validity of the mean load response resulting from wind speed gusts
simulated with the NewGust method with respect to measured gusts?

In this context, also some different stochastic gust simulation methods have been compared
with respect to mean gust and load response shape. During the process, two other topics
became of interest:

What is the gust shape causing the extreme loads of a pitch-regulated wind turbine?

How do different stochastic methods compare to each other with respect to the
50-years’ extreme value?

The first question has been answered by comparing load responses from measured wind
speed gusts and wind speed gusts that were simulated with NewGust. The NewGust method
is based upon the assumption of Gaussian distributed turbulence. It has therefore been
verified whether gusts extracted from simulated time series with the same non-Gaussian
distribution as the measured time series give different load responses when compared to the
gusts simulated according to the NewGust method. Risø National Laboratories has developed
a method to simulate non-Gaussian gusts in the same way as the NewGust method. The non-
Gaussian gusts simulated with the Risø method have been compared to the gusts simulated
with the NewGust method.

It appeared that, with respect to the load responses, the NewGust gusts are similar to
measured gusts for the upper range of wind speeds and amplitudes. The more equal the gust
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shapes from different methods are, the more equal are their load responses. The non-Gaussian
Risø gusts are almost equal to the Gaussian NewGust gusts. The gusts from simulated non-
Gaussian turbulence are equal to the gusts from measurements.

The second question has been answered by taking 60 seconds of wind speed data around a
maximum in the corresponding load response. By averaging for certain classes of wind speed,
and load response amplitude the gust shape causing the extreme loads is obtained for a range
of mean wind speeds. If the pitch is active, extreme rise time gusts cause the extreme loads,
otherwise the extreme loads are caused by extreme amplitude gusts.

For the third question, extreme values of the load response with a 50-years’ return period
have been calculated. This has been done for Gaussian theory, measurements and conditional
simulations with NewGust and LoadGust. It appears that conditional simulations give a good
indication of the 50-years’ extreme value, better than the Gaussian theory. This, however,
is only the case if the statistics (skewness and kurtosis) are not too far from the Gaussian
values. For Oak Creek a very high 50-years’ extreme value is found, due to more frequent
large negative gusts, indicated by a large negative skewness.

The most important conclusions are that the resemblance between measured and NewGust
gusts is particularly good in the extreme cases for which NewGust has been designed (high
mean wind speed, high relative amplitude). The comparison of NewGust and non-Gaussian
gusts shows that in these extreme cases there is no need for non-Gaussian simulations of
wind speed gusts. However, in the case of lower mean wind speeds, non-Gaussian theory is
required.

The extreme loading of a pitch-regulated wind turbine is caused by an extreme rise time
gust if the pitch control is active (this in contrast with stall-regulated wind turbines, where
maximum amplitude gusts always cause the extreme load response). However, the most
extreme loads of a pitch-regulated wind turbine occur in the wind speed range just before the
pitch control becomes active. In this wind speed region the extreme load response is caused
by gusts with an extreme amplitude.

In order to assess the extreme wind turbine loading which occurs on average ones in
50 years, conditional simulation with New - or LoadGust can be applied if the turbulence
statistics are not too much different from Gaussian statistics. If the deviation from Gaussian
statistics becomes too large and, in particular, if many large negative gusts are observed,
proper non-Gaussian simulation is required.

The necessary programming for the data analysis and the simulations has been done with
use of MATLAB.
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Chapter 1

Introduction

This document is the final report of the master thesis project “validation of NewGust”. This
thesis was conducted in the context of the master Sustainable Energy Technology at Delft
Technical University, faculty of aerospace engineering, section wind energy.

As wind turbines are getting persistently larger, optimization of the wind turbine with
respect to strength and material usage is getting more and more important. The relative
increase in importance of the optimization of material usage lies in its direct connection with
investment costs. The mass and costs of a turbine rotor scales with (blade length)2.6, while
the energy yield scales with (blade length)2.2. This shows that at a certain point, costs will
exceed revenues. Hence, optimization is becoming more important with larger turbines, in
order to outsmart the current scaling laws. For this optimization, proper fatigue analysis and
assessment of the extreme loads is highly important. Fatigue analysis has been done in a
stochastic way for a long time. This basically means that for load calculations a stochastic
representation of a turbulent wind field is generated, which is used as the input for a simulation
program of the wind turbine. For the assessment of extreme loads wind gusts are important.
Until now, gusts of a deterministic shape have been used, which is in contrast with the
common practice for fatigue analysis.

In this context the NewGust method has been developed by Wim Bierbooms at DUWIND.
NewGust is a method for simulating wind speed gusts of any desired length and amplitude.
The validity of the resulting gust shape has already been proved by several articles, but until
now nobody looked at the validity of the load response resulting from wind gusts simulated
according to the NewGust method.

The main research question of this thesis is:

What is the validity of the mean load response resulting from wind speed gusts
simulated with the NewGust method with respect to measured gusts?

Within this context, also some different stochastic gust simulation methods have been com-
pared with respect to mean gust and load response shape. During the process, two other
question arose:

What is the gust shape causing the extreme loads of a pitch-regulated wind turbine?

How do different stochastic methods compare to each other with respect to the
50-years’ extreme value?



2 Introduction

This report is basically divided into three parts: In part I the theoretical context of wind
speed gusts is described. In part II the practise of validating NewGust and the extreme
value analysis is described. Part III contains the appendices. Each part contains a number of
chapters belonging to the topic of that part; in chapter 2 a description is given of atmospheric
wind. In chapter 3 and 4 atmospheric turbulence and wind gusts are treated in more detail.
In chapter 5 the procedure for validating the NewGust expression is outlined. In chapter 6
and 7 the practise of analyzing numerical wind speed data and the simulation of numerical
wind speed gusts is described. In chapter 8 the method used to simulate the load response
is given. In chapter 9 the results obtained from the data analysis are described. In chapter
10 some questions about extremes are addressed and a comparison is made between several
methods for the analysis of extreme values. Finally, the last chapter contains the conclusions
and recommendations. Additional information and results can be found in the appendices.

This report is written for the examination committee, to be able to give credit to this
thesis work. It also is written to provide other students who want to continue on this research
with a thorough overview of what has already been done. Finally, other people from the SET
master and wind energy department might also be interested in the topic of wind speed gusts.



Part I

Theoretical background of wind
speed gusts





Chapter 2

Atmospheric wind

In this chapter a description is given of the physical context of the phenomenon of wind gusts.
To do this, an explanation is given of (1) the atmospheric boundary layer of the earth, (2)
how the wind resource is structured according to temporal and spatial scales, (3) the seasonal
variations of wind velocity and (4) extreme wind speeds and extreme loads. Turbulence and
wind gusts are treated as separate topics and described in chapter 3 and 4.

2.1 The atmospheric boundary layer

The part of the universe of interest with respect to wind turbines is the earth atmosphere. The
earth atmosphere consists of four characteristic thermally-defined layers; (1) the troposphere
(0 ≤ z ≤ 11 km), (2) the stratosphere (11 ≤ z ≤ 47 km), (3) the mesosphere (47 ≤ z ≤ 85 km)
and (4) the thermosphere (z ≥ 85 km) (cf. figure 2.1). The troposphere is of importance for

Figure 2.1: Graphical representation of the earth atmosphere. The heights (z) of the layers are
indicative and vary with solar activity. The iono- and exosphere are part of the thermo-
sphere [taken from Wikipedia, 2009c]
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wind energy conversion. Within this layer the atmospheric boundary layer (ABL) exists up
to ∼4 km. This layer experiences a daily cycle in temperature, humidity and wind variations
caused by the daily cycle of heating and cooling due to the sun. The bottom 5 to ∼10% of the
ABL is called the surface layer, where today still most of the wind energy conversion takes
place. For this part of the ABL, semi-empirical profiles have been found for the wind speed
variation with height z (cf. figure 2.2).

u(z) =
u∗
κ

ln

(
z

z0

)
(neutral surface layer) (2.1)

u(z) =
u∗
κ

[
ln

(
z

z0

)
+ 6

z

L

]
(stable surface layer) (2.2)

Where z0 is the aerodynamic roughness length, which quantifies the surface roughness. A
table with the Davenport-Wieringa roughness length classification can be found in appendix
B. κ is the von Karman constant which equals ≈ 0.4, u∗ is the friction velocity and L the
Obukhov length:

u∗ =
κur

ln (zr/z0)
(2.3)

L =
−u3
∗

κ (g/Tv)FHsfc
(2.4)

Where ur is the wind speed at reference height zr. r = 10 m for the standard anemometer
height for measuring ’surface winds’. g is the gravitational acceleration, Tv is the absolute
virtual temperature and FHsfc is the kinematic surface heat flux1. The variation of wind
speed with height (also called ’wind shear’) is caused by surface drag, thermal effects and
turbulence. The Reynolds number (Re) of the flow in the ABL is in the order of 107 − 108,
which shows that turbulence is a characteristic feature of atmospheric wind.

Figure 2.2: Example of the variation of mean wind speed with height in the atmospheric boundary
layer. The plot shows the variation of mean wind speed versus height over different
terrain types (roughness lengths).

1The notation in this section has been adapted from Stull [2000].
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2.2 Structure of the wind resource

The power available in wind is the resource for a wind turbine2. The positive side of this
resource is that it is for free, the negative side is its fluctuating behavior. The fluctuations in
the power available in wind are characterized by the wind speed.

Pwind =
1

2
ρū3Ar (2.5)

Where ρ is the air density, ū the mean wind speed and Ar the rotor area of the wind turbine.
The wind speed varies on many different scales both in space and time. In figure 2.3 the

range of space and time scales of atmospheric motion is given. Large scale temporal variations

Figure 2.3: Range of temporal and spatial scales in atmospheric motion (taken from Dutton [1976]).

correspond to wind speed variations from year to year or even from decade to decade at a
certain location. These variations can be connected to global climate fluctuations or other
global phenomena, such as large volcanic eruptions or sunspot activity. Long term variations
are important for the prediction of the economic viability of a wind farm. However, they
are not understood well, which makes an accurate prediction difficult. Within the time-
scale of a year there are seasonal variations, which can be predicted much better. Variations
related to a time scale of a couple of days and a single day are respectively called synoptic and
diurnal variations. These variations are more random and therefore less predictable. Synoptic
variations are related to large scale spatial variations like high and low pressure areas. Diurnal
variations are caused by, for example, heating of the earth surface in daytime and cooling
at night. Fluctuations on a time scale of less than ten minutes are called turbulence. It
is useful to think about turbulence as the fluctuation of the wind speed around the mean
wind speed. This mean wind speed is determined by the larger scale variations described
above, averaged over a period of ten minutes. The distinction between the mean flow and its

2Not all the power available in wind can be extracted by the wind turbine. The ratio between the power
available and the power which can be extracted from wind is called the ‘power coefficient’ Cp. The power
coefficient has a maximum of 16/27 ≈ 0.593, which is known as the Betz limit.
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fluctuations is justified by the existence of a spectral gap between 10 minutes and 2 hours
(cf. figure 2.4). To understand this graph, imagine that the energy at a certain frequency
is linked to some physical phenomenon with the same frequency. It thus gives a view of the
scales of the physical phenomena behind the wind speed variations. Note however that the
empirical evidence for and therefore the existence of this spectral or meso-scale gap is strongly
criticized3 (see e.g. Schertzer and Lovejoy [2004] and references therein).

Figure 2.4: Wind spectrum based on work by van der Hoven. taken from Burton et al. [2008].

Within turbulence, large fluctuations of the wind speed with respect to the mean can
occur on a small time scale. The typical time scale of these large fluctuations is in the range
of couple of seconds up to approximately one minute. This phenomenon is called wind gust.

2.3 Seasonal variations

Wind speed variations within a year can be described well for many typical sites by a Weibull
cumulative probability distribution (cdf). This distribution gives the variations of the mean
wind speed over a year. Usually, hourly or ten-minute mean wind speeds are described. The
equation describing the Weibull cdf is

F (u) = 1− e−
(
ūhr
c

)k
(2.6)

Where ūhr is the hourly mean wind speed and F (u) the fraction of time in which ūhr is
not exceeded. The distribution is characterized by respectively a shape parameter k, which
describes the variability around the mean, and a scale parameter c. For Northern Europe,
k ≈ 2. c is obtained from the annual mean wind speed ūyr and the complete gamma function:

c =
ūyr

Γ
(
1 + 1

k

) (2.7)

A typical plot of f(u) and F (u) for the Netherlands is given in figure 2.5. The values for the

3The main criticism about the graph in figure 2.4 is that it is based upon four different measurements
with different sampling frequencies and different atmospheric conditions. In Schertzer and Lovejoy [2004] it
is mentioned that due to the intermittent nature of atmospheric turbulence, such an atmospheric flow is only
turbulent in tiny fractions of space and time. The use of a limited temporal or spatial frame to characterize
turbulence is thus justified. In wind energy research usually a time fraction of ten-minutes is taken, which is
followed in this thesis as well.
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Figure 2.5: Typical wind velocity probability density and distribution function for The Netherlands
(k = 2, ū = 7.5 m/s).

parameters k and c are obtained by fitting the Weibull distribution to the distribution of the
measured data of a particular site. The measurement time span should be long enough to get
a good Weibull distribution for a certain location.

2.4 Extremes

The former description of wind speed distributions cannot be used for a reliable estimation
of the probability of extreme wind speeds. Almost all of the data used to fit the distribution
will correspond to lower wind speeds, and thus the tails of the distribution does not represent
the real situation well. For a good estimation of the extreme wind speeds corresponding
to a certain recurrence period, the tail of the cdf is important. In the wind turbine design
standards GL and IEC 61400-1, the wind speed with a recurrence period of 50 years is used
for extreme load calculations. For a good estimation of the tail of the distribution, a record
of ∼500 years is needed for a 50-years’ return period. Such long data records of hourly or
ten-minute mean wind speeds would be in the order of respectively 108 and 109 data points
and are not available. Therefore, extreme value analysis has to be used to get a good estimate
of the distribution tail from a shorter record.

An easy method to obtain the extreme cumulative distribution is to use a known cdf of,
let’s say hourly, mean wind speed (e.g. the Weibull distribution). The probability of uex < u
for a return period of one hour is F (u). The probability of an extreme value for a return period
of T hours is F T (u). In figure 2.6 an example is given. The standard method to obtain the
extreme cdf, is to consider a long time record of mean wind speeds (e.g. ten-minute averages
for a time period of six months). From this record, extreme values above a certain threshold
are selected. The threshold should be large enough to get independent extreme values. From
this data a cumulative probability distribution F (u) can be determined. To obtain from this
cdf the cdf of e.g. annual maxima, F (u) has to be scaled with Fyr(u) = FN (u). Where N is
the number of extremes for a year, observed in the data, from where the cdf F (u) is obtained.
From the resulting cdf, the extreme wind speed uex corresponding to a return period T can
be obtained.

T =
1

1− F (2.8)
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Figure 2.6: Example of an extreme value distribution based on the Weibull cdf, for 1 hr (F (u)), 100 hr
(F 100(u)) and 1 yr (F 8760(u)) maximums. The probability and extreme values for T = 50
year are respectively F = 0.9999977, uex. = 30.5 m/s, F = 0.99977, uex. = 30.5 m/s,
F = 0.98, uex. = 30.5 m/s (k=2, ū=7.5 m/s).

For a return period of T = 50 year, the wind speed corresponding to F = 0.98 should be
used, if the cdf is based on 1-yr extremes.

2.4.1 50-years’ extreme load response

Extreme value analysis can also be used to determine the extreme load response resulting
from wind speeds. The loads can for example be calculated for a number of time series of
ten minutes length. The maximum load response in each time series can be used to derive
a distribution function of the ten-minute maximum loads. Because each time series has a
certain mean wind speed ū, a conditional distribution F (lmax|ū) is obtained for a number of
mean wind speeds. To derive from this conditional distribution the cdf of ten-minute maxima
for all wind speeds F (lmax), the following relations are used:

f(lmax|ū) =
f(lmax, ū)

f(ū)
=
dF (lmax|ū)

dlmax
(2.9)

f(lmax) =

∫ ∞
−∞

f(lmax, ū) dū (2.10)

F (lmax) =

∫ lmax

−∞
f(lmax) dlmax (2.11)

By Combining these equations, the distribution of extreme loads can be derived:

F (lmax) =

∫ lmax

−∞

∫ ∞
−∞

f(lmax, ū) dū dlmax (2.12)

F (lmax) =

∫ lmax

−∞

∫ ∞
−∞

f(lmax|ū)f(ū) dū dlmax (2.13)

F (lmax) =

∫ ∞
−∞

F (lmax|ū)f(ū) dū (2.14)

The probability for the 50-years extreme load F50 can be derived as explained above, where
for T the number of ten-minutes in 50 year should be taken. This theory has been applied in
section 10.1.3.
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Gaussian reference value

With respect to the extreme loads of a wind turbine, the response level with a return period
of 50 years is of primary interest. It determines the failure rate together with the statistics
of the structure strength. For a Gaussian random variable a theoretical expression exists for
the mean level up-crossing frequency of level ln [Bierbooms, 2008].

νn =
1

Tn
= ν0e

l2n
2σ2 (2.15)

Where Tn is the number of seconds in n year, ν0 =
√

mf,2
σ2 is the mean zero crossing frequency,

with mf,2 the second order spectral moment (cf. section 3.2.3) and σ the standard deviation
of the load response. The n-years’ response level can be derived from this expression.

ln = σ
√

2 ln (ν0Tn) (2.16)

In the latter part of this thesis, this equation will be denoted as the ’Rice equation’.
A function describing the probability of local maxima in a Gaussian random process is

the Rice probability density function of local maxima;

f(η) = η
√

1− ϕ2e−
η2

2 Φ

(
η
√

1− ϕ2

ϕ

)
+

1√
2π
ϕe
− η2

2ϕ2 (2.17)

Where η = C/
√
mf,0 is the dimensionless level of the local maxima, with mf,0 the zeroth order

spectral moment (variance) of the load response and C the amplitude of the local maximum.

ϕ =

√
1− m2

f,2

mf,0mf,4
is the bandwidth parameter, with mf,2 and mf,4 the second and fourth

order spectral moment of the load response (cf. section 3.2.3). Φ indicates the standard
Gaussian distribution function4. In the latter part of this thesis, this function will be denoted
as the ’Rice pdf’.

This theory gives the possibility to compare the obtained extreme values with a theoretical
value for the 50-years’ response. Note that for the above equations the number of seconds in
50 year should be taken for T50.

4The standard Gaussian distribution function can be written as Φ
(
x−x̄
σx

)
= 1

σx
√

2π

∫ x
−∞ exp

(
−(t−x̄)2

2σ2
x

)
dt.

For a standard Gaussian random variable, x̄ = 0 and σx = 1.
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Chapter 3

Turbulence description

The atmosphere is a very complex system, as briefly shown in chapter 2. What shows the
complexity even more is the fact that it has more than 1030 degrees of freedom. It is impossible
to compute the temporal evolution or to make enough measurements to get the right initial
conditions of such a complex system. The only possibility to describe it is by statistical
physics [Hense and Friederichs, 2006]. One of the many interesting parts of the atmosphere
is its turbulence. Because turbulent flow is not deterministic, it has to be treated as a
random or stochastic process. This chapter, therefore, deals with the statistical description
of turbulence. Only the features of turbulence relevant for this research are explained. These
include: (1) the statistical definition of turbulence as it is used in the context of this research,
(2) the statistical description of turbulence with spectra, autocorrelation functions and the
probability distribution of turbulence. The last section (3) of this chapter deals with numeric
simulation of turbulence.

3.1 Statistical definition

Turbulence, as it is used in the context of this research, is defined as the fluctuations of the
instantaneous wind speed around its ten-minute average (cf. section 2.2). The decomposition
of the instantaneous wind speed u(t) into its ten-minute mean ū and fluctuation ũ(t) is
very useful, because the turbulent part of the wind speed can now be separated from the
instantaneous wind speed, ũ(t) = u(t) − ū. The mean of ũ(t) is zero by definition, because
〈ũ(t)〉 = 〈u(t)− ū〉 = ū− ū = 0. The variance of ũ(t),

〈
ũ(t)2

〉
is a measure of the turbulence

kinetic energy. 〈·〉 denotes the ensemble averaging operator.

Turbulence in the atmospheric boundary layer consists of many scales, ranging from scales
as large as the boundary layer thickness, to the Kolmogorov scales where the turbulent kinetic
energy dissipates into heat by viscous forces (cf. figure 2.3). In the context of wind being
the resource for wind turbines, the medium scale (inertial range, cf. figure 3.1) turbulence is
important. This part of the turbulence can assumed to be isotropic1. In section 2.2 the use
of a limited temporal or spatial frame to characterize turbulence is justified. The averaging
time span has to be small compared to the changing frequency of the average properties.
The spectral gap in the energy spectrum of atmospheric wind speed (cf. figure 2.4) allows
to assume a stationary wind speed on a time scale of ten minutes up to two hours. In this
framework, ten minutes is the shortest time allowed for averaging, which is thus defined as
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Figure 3.1: Theoretical spectrum of physical isotropic turbulence. Taken from Davidson [2007].

the time span to characterize turbulence.
A common measure of the level of turbulence is the turbulence intensity I,

I =
σu
ū

(3.1)

Where σu is the standard deviation of u(t). I can be calculated for each velocity component
(longitudinal u, lateral v, transversal w). For the longitudinal component, σ is almost constant
with height. This implicates a decrease of I with respect to height, because the mean wind
speed increases with height. Different models for all components of turbulence intensity as a
function of height and mean wind speed are given in standards of wind turbine design (e.g.
Germanischer Lloyd, IEC and Danish standards). This method of describing turbulence is not
distinctive, because the same level of intensity can be obtained for many different mean and
standard deviation of the wind speed. A given turbulence intensity hence does not contain
any information about the fluctuations itself and is therefore not useful for gaining insight in
wind gusts.

An important hypothesis about small-scale turbulence is the Taylor hypothesis of frozen
turbulence. Although it seems that wind speed is measured as variations in time, in reality
variations are not measured in time but in space. Taylor’s frozen turbulence hypothesis says
that fluctuations in wind speed are felt by a fixed observer, because eddies (imagine blobs of
vorticity) are convected by the mean flow. These eddies are fixed or frozen into the mean flow,
i.e. they do not change considerably as they are convected (cf. figure 3.2). This hypothesis
holds well for turbulence with lower intensity (high mean wind speed, moderate wind shear),
because then the variations in time due to passage are much smaller than the variations in
space (small turbulence intensity indicates that the passing time of an eddy is small compared
to its life time). To satisfy this requirement, σu <

1
2 ū [Stull, 1988]. In mathematical form,

the transformation from time to space and from frequency (f (cyclic) or ω (angular)) to

1Isotropy is uniformity in all directions, which for turbulence means measuring the same values of properties
like velocity and dissipation along axes in all directions. Homogeneous is independence of physical properties
on (absolute) position
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Figure 3.2: Example of (artificial) blobs of vorticity convected in the mean flow.

wave-number (κ) is defined as

u(x, y, z, t) = u(x− ūt, y, z, 0) (3.2)

κ =
2πf

ū
=
ω

ū
(3.3)

Where x is the coordinate in the mean flow direction, u(t). Officially ū should be the total
magnitude s of the horizontal wind speed, s =

√
ū2 + v̄2 [Stull, 1988]. Since often only the

longitudinal wind speed is known, it is assumed that s ∼= ū. For ultimate gusts, the Taylor
hypothesis is assumed valid, because they are closely related to high mean wind speeds [Larsen
et al., 2003].

3.2 Statistical description

For numerically simulating turbulence (c.f. section 3.3), it is necessary to have a statistical
description of turbulence, both in time and frequency domain. The common way to do this
is by means of a spectral density function for the frequency domain and an autocorrelation
function for the time domain.

3.2.1 Spectral density

The spectral density (spectrum) is used in statistical signal processing and physics to describe
the frequency content of a stochastic process. Two routes are possible to derive the spectral
density of a stochastic process; (1) via the power spectrum and (2) via the energy spectrum.
Both methods are used in the context of this research and are described below. The practice
of estimating a spectrum from discrete time series of turbulent wind speed is described in
section 6.5.
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Energy spectral density

The energy spectral density (ESD) describes how the energy (variance) of a signal or time
series is distributed over the frequencies it contains. The following definition of ESD requires
that the Fourier transform of the signal exists, which means that the signal should be a
well-behaved continuous function2. This requirement ensures that the signal ũ(t) is of finite
energy. The ESD is then defined as

Eũ(f) =

∣∣∣∣∫ ∞
−∞

ũ(t)e−i2πftdt

∣∣∣∣2 = F (f)F ∗(f) (3.4)

σ2
ũ =

∫ ∞
−∞

Eũ(f)df (3.5)

Where f is the cycle frequency, F (f) the Fourier transform of ũ(t) and F ∗(f) its complex
conjugate. In the case of discrete time series, with a finite number of points, the sequence
can be treated as periodic, using a discrete Fourier transform to make a discrete spectrum.
This is further explained in section 6.5.

Power spectral density

The power spectral density (PSD) describes how the power of a signal or time series is
distributed with frequency. Power can be the actual physical power, or for convenience with
abstract signals, the squared value of the signal, ũ2(t). Because the instantaneous power has
a nonzero average root, its Fourier transform doesn’t exist. Therefore, the PSD is defined as
the Fourier transform of the autocorrelation function R(τ) of the signal (Wiener - Khinchin
theorem). This is only possible if the signal is a wide-sense stationary process3. If the signal
is not wide-sense stationary, then the autocorrelation function cannot be a function of only
one variable, so no PSD exists. The PSD is then defined as

Pũ(f) =

∫ ∞
−∞

Rũ(τ)e−i2πfτdτ (3.6)

σ2
ũ =

∫ ∞
−∞

Pũ(f)df (3.7)

The power spectral density and energy spectral density equal each other in the case of ũ(t)
being a real function4. This gives the opportunity to derive the autocorrelation function (acf)
from the spectral density (cf. section 3.2.2). In the latter part of this report, the spectral
density will be denoted by S.

Theoretical models of atmospheric spectra

For atmospheric turbulence, the spectrum of turbulence must5, according to Kolmogorov’s
five-thirds law (Sũ(f) = αũε

2/3f−5/3), approach an asymptotic limit proportional to f−5/3

2In fact the signal (function of a variable) must be square-integrable (or square-summable) over an interval.

This requires that the integral of the square of its absolute value over that interval, is finite,
∫ b
a
|ũ(t)|2 dt 6=∞.

Function and variable can be both real- or complex-valued.
3Wide sense stationary means a stochastic process with constant mean; strict sense stationary requires

also all other statistical properties to be invariant with time.
4In the case of ũ(t) being a real function, Rũ(f) = F (f)F ∗(f) [see e.g. Beers, 2007, p. 450], then Rũ(τ) =

IFT (Rũ(f)). This makes that Pũ(f) = F (f)F ∗(f) = Eũ(f).
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Figure 3.3: (a) Graphical representation of the energy cascading (taken from Davidson [2007]) and
(b) an example of the five-third law

at the inertial subrange (f > 1) (cf. figure 3.3b). Here ε is the dissipation rate of turbulent
kinetic energy and αũ is a universal constant [Tieleman, 1995]. This relationship is based
upon the energy decay of turbulent eddies from low to high frequencies called ’energy cas-
cade’ (cf. figure 3.3a) and is universal for the inertial frequency (or wavenumber) subrange.
For low frequencies, the definition of the spectral density function in eq. (3.6) requires6 that
limf→0 Sũ(f) is proportional to 1. A theoretical representation of the spectrum must hence
exhibit these two asymptotes with a maximum in between. A simple and common interpola-
tion expression is

fSũ(f)

σ2
ũ

=
Gfγ

(1 +Hfα)β
(3.8)

Where in the case of neutral thermal conditions, α = 1, β = 5/3 and γ = 1 for the longitudinal
velocity component [Tieleman, 1995; Olesen et al., 1984]. A plot of the left hand side of eq. 3.8
on a double logarithmic scale has a low-frequency slope of γ and a high-frequency slope7 of
γ − αβ. G and H depend on atmospheric conditions [Olesen et al., 1984]. In this article
several criteria for the construction of models describing atmospheric spectra are given. Eq.
(3.8) is valid in the frequency range representing turbulent motion and gives a smooth curve
with only one maximum. In the case of complex terrain, the factor one in the denominator
of the right hand side of eq. (3.8) can be replaced by a variable I ≤ 1 [Tieleman, 1995].
Two commonly used theoretical expressions of the spectrum for the longitudinal turbulence

5Kolmogorov’s five-thirds law is derived from the Navier-Stokes equation, assuming an infinite Reynolds
number [Laubrich, 2009, Ch. 4.5], which is indeed approached by atmospheric flows due to large length scales
[Kundu and Cohen, 2004]

6Sũ(f) =
∫∞
−∞Rũ(τ)e−i2πfτdτ and T =

∫∞
0
r(τ)dτ . In the limiting case f → 0 and a one-sided spectrum,

Sũ(0) =
∫∞

0
Rũ(τ)dτ , Sũ(0)

σ2
ũ

=
∫∞

0
rũ(τ)dτ = T = 4Lũ/ū (cf. also Kundu and Cohen [2004, Ch. 13]).

7In the case of eq. (3.8) this gives a high-frequency slope of -2/3, which seems to be in contradiction with
Kolmogorov’s five-thirds law. The reason lies in the scaling of the spectrum with the frequency (left hand side
of eq. 3.8), which causes γ to be one. If the frequency scaling of the spectrum is leaved out, γ would be zero



18 Turbulence description

component are the Kaimal and the von Karman spectrum. The Kaimal description applies
better for atmospheric turbulence, while the von Karman spectrum applies well for turbulence
in wind tunnels [Burton et al., 2008]. The Kaimal spectrum is specified in the IEC61400-1
standard as

Sũ(f) = σ2
ũ

4Lũ/ū

(1 + 6fLũ/ū)5/3
(3.9)

Where Lũ is the integral length scale for ũ and Sũ(f) is the spectral density function for ũ. An
example of this spectrum is given in figure 3.3b. Appropriate values for σũ and Lũ are specified
in wind turbine design standards. Note that many different spectra are possible for one and the
same probability density function, because there are many possibilities to distribute the same
variance over the frequencies in a stochastic process. Spectra of physical stationary stochastic
processes exist only for the positive frequencies (called one-sided spectra). For computational
reasons it can, however, be convenient to have double-sided spectra (also defined for negative
frequencies). In such a case, the spectral values should be equally divided over the positive
and negative frequencies (cf. figure 6.4). In appendix B some other theoretical spectra
descriptions can be found.

3.2.2 Autocorrelation function

As the spectral density is used to describe the frequency domain properties of turbulence,
the autocorrelation function is used to represent the time domain properties of turbulence.
It measures the persistence of a wave within a time series. The spectral density and auto-
correlation function form a Fourier transform pair; from the definition given above it follows
that

Rũ(τ) =

∫ ∞
−∞

Sũ(f)ei2πfτdf (3.10)

Rũ(τ) = 〈ũ(t)ũ(t+ τ)〉 (3.11)

rũ(τ) =
Rũ(τ)

σ2
ũ

(3.12)

Where rũ(τ) is the normalized autocorrelation function of ũ(t). If τ = 0, R(0) = σ2
ũ =

〈
ũ2
〉
, is

the average power of ũ(t). For a stationary process R is a symmetric function and its average
power is independent on time. If R is small, this indicates a weak correlation. If R is large
and positive, it indicates a strong correlation. If R is large and negative, it indicates a strong
inverse correlation. In the limiting cases τ → ∞ and τ → 0, r(τ) becomes respectively 0
(totally uncorrelated) and 1 (perfectly correlated). For large time lag τ , the autocorrelation
of turbulence goes to zero, which thus indicates a random process with no regularly-recurring
structures. The area under r(τ) is called the integral time scale T ;

T =

∫ ∞
0

r(τ)dτ (3.13)

The integral time scale is a measure of the memory of the process and indicates the time
over which the turbulence highly correlates with itself. Note that the integral time scale as it

and the high frequency slope indeed is -5/3 (cf. e.g. eq. 3.9). The low frequency slope then goes towards zero
and is thus proportional to one (on a double logarithmic plot). This type of scaling is also the reason why in
literature both values for the high frequency slope can be found.



3.2 Statistical description 19

is defined here, equals in the limiting case f → 0, the factor 4Lũ/ū in the Kaimal spectrum
description given above (eq. 3.9, cf. footnote 6). The derivatives of the autocorrelation
function can be very easily derived via the inverse Fourier transform of the spectrum.

dn

dτn
R(τ) =

∫ ∞
−∞

(i2πf)n Sũ(f)ei2πfτdf (3.14)

3.2.3 Spectral moments

Spectral moments are defined in order to characterize the spectrum. Unfortunately, two
definitions of the spectral moments exist, because the spectrum can be expressed in cyclic
frequency f or angular frequency ω.

mf,n =

∫ ∞
−∞

(f)n Sf,ũ(f) df (3.15)

mω,n =

∫ ∞
−∞

(ω)n Sω,ũ(ω) dω (3.16)

Because in this thesis both definitions are used, the subscript f and ω are used to denote which
definition is used. Of course mf,n and mω,n are connected, because 2πf = ω, which gives
that (2π)nmf,n = mω,n. The connection between the spectral density and autocorrelation
function is also noticeable in the spectral moments.

mf,n = (2πi)−n
dnR(0)

dτn
(3.17)

mω,n = (i)−n
dnR(0)

dτn
(3.18)

If the acf is normalized by the variance contained in the spectrum, normalized moments
are obtained. For the second and fourth order normalized spectral moments a notation of
respectively λ and µ is used, to be in agreement with the notation used in eq. (4.12). The
derivation of the above mentioned equalities can be found in appendix C.

3.2.4 Probability distribution

The probability density of a stochastic variable describes the relative number of times a certain
value of the variable is likely to occur.

f(ũ) = lim
M→∞

M(ũ)

M
(3.19)

Where M(ũ) is the number of times ũ is observed, and M quantifies the total amount of data.
According to this definition, the area below the pdf is normalized to unity. The cumulative
distribution function (cdf) is related to the pdf by

F (ũ) =

∫ ũ

−∞
f(ũ)dũ (3.20)

Where F (ũ) describes the fraction of time for which ũ ≤ ũ. In this section the distribution
of turbulence is described for (1) the case when turbulence can be treated as Gaussian and
(2) when turbulence is non-Gaussian.
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Figure 3.4: Example probability density functions for different skewness (left) and kurtosis (right).
For a Gaussian pdf, skewness is zero, which means the pdf is fully symmetric. The
kurtosis for a Gaussian pdf is three. The pdf related to a high kurtosis has a high central
peak and broad skirts. Values near the mean and unexpectedly high deviations are thus
more common than in a Gaussian process.

Gaussian distributed turbulence

The central limit theorem tells that a random variable, which itself is a sum of many other
random variables, is approximately Gaussian distributed. This type of statistics is often
observed in nature and also applies to turbulence. The probability density function of single-
point grid turbulence is indeed close to the Gaussian pdf. It is symmetric and has a flatness
factor of approximately three. Therefore, small scale wind speed fluctuations (turbulence)
are often assumed to have a Gaussian probability density function (pdf) (cf. figure 3.4).

f(ũ) =
1

σ
√

2π
e
−ũ2

2σ2 (3.21)

The approximation of the Gaussian distribution of turbulence holds for single point fluctu-
ations. For difference in wind speeds between two points in space, separated by a distance
ξ, ũξ(x) = |ũ(x+ ξ)− ũ(x)|, the probability distribution is non-Gaussian [Davidson, 2007;
Schmitt, 2007; Böttcher et al., 2007]. The departure of the pdf from being Gaussian can be

seen from the skewness S = 〈ũ3〉/
(
σ2
ũ

)3/2
and kurtosis (or flatness) K = 〈ũ4〉/

(
σ2
ũ

)2
of the

pdf (cf. also figure 3.4). For a Gaussian pdf, S = 0 and K = 3. For two-point velocity
differences, the tails of the real distribution are significantly different from being Gaussian.
This part of the probability distribution is related to high wind speed fluctuations (gusts).
The approximation of Gaussian distributed turbulence therefore does not estimate the correct
probability of larger wind gusts. In e.g. Peinke et al. [2004], certain gusts are measured each
hour, while these gusts would be expected only once in a century for a corresponding wind
field following Gaussian statistics. The following section, therefore, deals with non-Gaussian
turbulence.
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Non-Gaussian distributed turbulence

The departure of the distribution from being Gaussian depends on the Reynolds number and
the distance ξ between the points. Davidson [2007] gives for ξ = 0 a variation of the flatness
factor with K ∼ 4 for modest Re to K ∼ 40 for high Re (e.g. in the ABL, where Re ∼ 107).
High flatness factors are typical for intermittent signals. Such signals are close to the mean
for a long period of time, suddenly increase and return to the mean again (cf. figure 3.5).
The degree of intermittency thus increases with increasing Re (turbulence). The skewness
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Figure 3.5: Example of an intermittent signal. The signal stays around its mean value (zero) for
most of the time and occasionally increases suddenly and goes back to its mean.

factor is in the range of ∼ -0.4 – 0.1 for Re up to 106 with slightly higher values for higher Re.
The deviation of the real turbulence pdf from being Gaussian decreases if ξ increases. These
results are in agreement with the kurtosis and skewness for Oak Creek in Larsen et al. [2003].
It depends on terrain types and atmospheric conditions how non-Gaussian the turbulence
actually is [Larsen et al., 2003].

In real (atmospheric) turbulence an unexpected (assuming Gaussian turbulence) high
probability of large velocity fluctuations (gusts) exists. This behavior is related to the phe-
nomenon of intermittency in turbulence explained above. This feature of turbulence, however,
is still not fully understood and remains an important area of research. A plausible explana-
tion of its causes is e.g. mixing in internal boundary layers or unsteady flow phenomena like
recirculation zones [Nielsen et al., 2007]. In She [1991] intermittency is explained by highly
localized turbulent structures, which are occasionally excited by self-interaction. These iso-
lated turbulent structures exists within the largely random stochastic velocity field (which is
thus a mixture of random eddies and structures). The random eddies are characterized by
velocities ũ of σũ amplitude. The structures are in contrast characterized by much higher
velocities (ũ >> σũ). The self-interaction of the structures happens due to their exceptionally
high amplitudes.

Any assumption about the distribution of wind speed fluctuations has influence on the
probability of simulating extreme wind gusts. For simulating extreme wind gusts with a
correct probability, the tails of the probability distribution for the real wind speed must
compare with the distribution used for simulation. The difference between non-Gaussian and
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Gaussian distributed turbulence lies mainly in the tails of the probability distribution [Gontier
et al., 2007; Böttcher et al., 2003; Peinke et al., 2004; Böttcher et al., 2007]. Peinke et al.
[2004] shows that the Fokker-Planck equation with adapted coefficients describes the changing
behavior of the anomalous pdf well.

−ξ ∂
∂ξ
f(ũξ, ξ) =

[
− ∂

∂ũξ
D1(ũξ, ξ) +

∂2

∂ũ2
ξ

D2(ũξ, ξ)

]
f(ũξ, ξ)

D1(ũξ, ξ) = −γ(ξ)ũξ (3.22)

D2(ũξ, ξ) = α(ξ)− δ(ξ)ũξ + βξũ2
ξ

Where f(ũξ, ξ) is the pdf of ũξ. The Kramers-Moyal coefficients D1(ũξ, ξ) and D2(ũξ, ξ) can
be estimated from experimental data (see also Nawroth and Peinke [2006]). In Böttcher et al.
[2003], the same behavior of the pdf of wind speed increments is observed with increasing
time lag between two temporal points (ũτ (t) = |ũ(t+ τ)− ũ(t)|) as in Davidson [2007] with
increasing distance between two spatial points (cf. figure 3.6). Their pdf goes from an

Figure 3.6: Conditioned atmospheric pdfs, where τ is 0.008T , 0.03T , 0.2T , 0.95T and 1.9T . The
mean wind interval on which the increments are conditioned is [4.5, 5.6] m/s. The
distributions are shifted vertically against each other for a clearer presentation. (taken
from Böttcher et al. [2003]).

intermittent shape to an almost Gaussian shape when the time lag is near the integral time
scale (The same is given by Bergström [1987]). This is in agreement with the central limit
theorem, which requires uncorrelated variables to get a Gaussian probability distribution. It
also shows the validity of Taylor’s hypothesis of frozen turbulence (Schmitt [2007] confirms
this for large mean velocities). However, this changing behavior of the pdf is only observed
for stationary turbulence, which is never the case for atmospheric wind. To observe the same
behavior for measured wind speed, conditioned pdf’s of the wind speed increments can be
calculated for intervals (approximately 1 m/s width) of the mean wind speed. Böttcher et al.
[2003] shows from these observations that the anomalous statistics of wind speed fluctuations
on discrete time intervals (wind gusts) can be reduced to the intermittent statistics of local
isotropic turbulence. This is based upon a model proposed by Castaing et al. [1990] which
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tells that the velocity increment distribution f(ũτ ) can be interpreted as a superposition
of Gaussian distributions f(ũτ |σ) with standard deviation σ (distributed according to a log-
normal distribution f(σ)). This model of f(ũτ ) is in turn based upon the basis of Kolmogorovs
understanding of turbulent cascade. The pdf of wind speed increments is than described as

f(ũτ ) =

∫ ∞
0

f(ũτ |σ)f(σ)dσ (3.23)

=

∫ ∞
0

1

σ
√

2π
e
−ũ2

τ
2σ2

1

σλ
√

2π
e
− ln2(σ/σ0)

2λ2 dσ (3.24)

Where σ0 is the median and λ2 is the variance of the log-normal distribution. In the limit
of λ→ 0, the log-normal distribution converges toward a delta function, which causes f(ũτ )
to become a Gaussian distribution with variance σ2

0. This ’Castaing distribution’ is used by
Böttcher et al. [2003] to fit the measured pdf’s in figure 3.6 by choosing an appropriate λ. The
form of the resulting pdf f(ũτ ) is determined by λ2, which is therefore called ’form parameter’.
This form parameter can be used to compare the pdf’s with each other in a quantitative way.
A further elaboration of this topic is given in Böttcher et al. [2007]. In this paper it is
proposed that the observed intermittency in the increment pdf’s of atmospheric turbulence
should be explained by mixing different Gaussian distributions rather than by a fractional
(Lévy) stochastic process. Thus, in analogy with the ’Castaing distribution’, atmospheric
turbulence can be considered as a superposition of a number of homogeneous, isotropic,
stationary (Gaussian) turbulent flow segments. These flow segments are characterized by their
mean wind speed (instead of standard deviation in the case of the ’Castaing distribution’)
and denoted by f(ũτ |ū). The mean wind speed is distributed according to a two parameter
Weibull distribution

f(ū) =
k

ck
ūk−1e−( ū

c
k
) (3.25)

In this way an explicit expression for atmospheric wind speed increment pdf’s is obtained

f(ũτ ) =

∫ ∞
0

f(ū)f(ũτ |ū)dū (3.26)

=
k

2πck

∫ ∞
0

∫ ∞
0

ūk−1e−( ū
c
k
) 1

σ2λ
e
−ũ2

τ
2σ2 e

− ln2(σ/σ0)

2λ2 dσdū (3.27)

Here k plays a similar role as λ in determining the shape of the distribution. In the limiting
case k →∞ and λ→ 0 (which happens if τ →∞), f(ũτ ) becomes a Gaussian pdf. To apply
eq. (3.27), c, k, σ0 and λ2 should be known. The parameters for the Weibull distribution can
be obtained from a fit to measured wind speed data. The other two parameters can be fitted
by using the approximations

λ2 = aū − bū ln(τ) (3.28)

σ0 = bτ ū (3.29)

This description of the velocity increment pdf can for example be used as input for simulation
of turbulence with use of continuous time random walks. This is briefly explained in section
3.3.3. For more information the reader is directed to Böttcher et al. [2007]; Peinke et al.
[2008].
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As already said above, the deviation of the pdf of real turbulence from being Gaussian
causes a much smaller probability of extreme wind gusts compared to real wind when simu-
lating Gaussian wind fields. In section 10.2 the effect of non-Gaussian distributed turbulence
on the distribution of the extreme load response of a wind turbine is shown. The deviation of
simulated wind from real wind has influence on the dynamic loads of the turbine, but it’s not
known how significant this influence is. Mann [2007] reports from a Danish study at Risø Na-
tional Laboratory an increase of some loads with 15% for rather complex terrain. Gontier
et al. [2007] reports major influence of non-Gaussian wind simulation on the fatigue loads. For
complex terrain Hansen and Larsen [2007] has found large deviations of extreme coherent wind
speed and direction change (ECD) from the IEC 61400-1 standard. The difference between
loads from Gaussian and non-Gaussian simulation for complex terrain is reasonable. This is
the type of terrain where non-Gaussian time series occur most frequently and non-Gaussian
simulation thus has a greater impact. Despite these deviations from reality, the assumption
of Gaussian turbulence is still made because it simplifies the simulation algorithms so much
and applies well for easier applications.

3.3 Simulation of turbulence

The relation between atmospheric turbulence and the loads on wind turbine blades is highly
nonlinear. Turbulence is the source of a large part of the blade fatigue and extreme gust
loading. The IEC 61400-1 standard states that a number of load calculations must be made to
verify structural safety. For the load calculation of mid- to large size wind turbines numerical
simulation of 3D turbulent wind speed is required. The simulation of numerical turbulence is
done by means of stochastic simulation. In conventional stochastic simulation of turbulence,
it is assumed that turbulence is a stationary Gaussian process specified by a given (cross)
spectral density. However, extensions to general probability distributions are possible. This
section deals with (1) simulation of Gaussian distributed turbulence and (2) correction of this
method to obtain non-Gaussian distributed turbulence.

3.3.1 Gaussian turbulence

The Generation of stochastic time series described in this chapter is based upon a method
for stochastic simulation developed by Shinozuka [1971]. A description of this method for
simulations of turbulent wind fields applied to wind turbines is given by Veers [1988] and
is commonly denoted as “Veers method”. Other more general names are: “Multivariate
Fourier simulation” and “Spectral representation method”. The idea behind this method is
that for simulating almost Gaussian distributed turbulence, the auto- and cross-spectra of
the inflowing turbulent wind field are sufficient. Wind speed time series are simulated at
predefined points in a plane perpendicular to the mean wind direction. When using Taylor’s
frozen turbulence hypothesis (cf. section 3.1) the wind speed time series can be moved
through the rotor plane of a wind turbine in the mean wind direction at the mean wind
speed. In this method empirical one-sided spectra and coherences are used as input. It
is necessary to have a realistic model for the spectral density and coherence to get results
comparable to the real situation. The assumptions about the turbulent wind speed are;
stationary, homogeneous, Gaussian distributed and incompressible flow. When the terrain
is complex or in the case of wind farms, these assumptions can be questioned, because in
these situations special phenomena like micro-bursts or weird gusts can occur. Extensions of
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this method are possible for inhomogeneous, non-stationary processes of general probability
distribution (i.e. non-Gaussian) [Nielsen et al., 2007]. For a one-dimensional Gaussian process,
a stationary stochastic time series ũ(t) can be obtained by summing harmonics with random
phase φ and amplitudes which follow from a given two-sided spectral density function Suu(f).

ũ(t) =
K∑
k=1

√
2Suu(fk)

T
cos(2πfkt+ φk) (3.30)

Where the independent random phase angles φk are uniformly distributed between 0 and 2π,
t is the discretized time, T is the total sampling time (period) and f a set of K equidistant
frequencies. If the number of time steps becomes large, ũ(t) will be Gaussian and the statistical
properties measured over multiple realizations of ũ(t) at a fixed time instant t will be invariant
to the chosen time instant. The simulated stochastic process ũ(t) is periodic with the period
T . An alternative description is

ũ(t) =

K∑
k=1

ak cos(2πfkt) + bk sin(2πfkt) (3.31)

For a Gaussian process with zero mean (i.e. single point turbulence, cf. section 3.2.4), the
Fourier coefficients ak and bk should be Gaussian distributed. They have to be mutually
uncorrelated, with zero mean and variance of Suu(fk)/T (cf. Papoulis and Pillai [2002, p.
411-412]). The advantage of eq. (3.31) over eq. (3.30) is that the former one is always
Gaussian distributed, even for a small number of time steps.

The general procedure for N spatial points is described below according to Veers [1988].
The procedure followed by the Veers method is basically to generate Fourier coefficients with
proper statistics and next perform an inverse Fourier transform to obtain a discrete wind
speed time series. An example is given in appendix D.

The base of the Veers method is the spectral matrix S, which contains the information
about the wind field which has to be represented. This matrix consists of a power spectral
density (PSD) for each spatial point and a cross spectral density (CSD) for between spatially
separated points. The CSD depends solely on the PSD’s and the coherence function (Coh).

Sj,k(f) = Cohj,k(f, ξ, ū)
√

Sj,j(f)Sk,k(f) (3.32)

Where ξ is the distance between points j and k. Thus, in order to construct S, only models for
PSD’s and Coh are needed. The used input models for turbulence PSD and Coh determine the
accuracy of the simulation method. Hence, it is important to have accurate models for PSD
and Coh, depending on the situation the wind is simulated for. Standards on wind turbine
design give recommendations for some input models. In appendix B several descriptions of
PSD and Coh can be found.

The spectral matrix S has to be decomposed into the lower triangular transformation
matrix H and its transpose HT (e.g. with Cholesky factorization).

S(f) =


PSD1,1 CSD1,2 · · · CSD1,N

CSD2,1 PSD2,2 · · · CSD2,N
...

...
. . .

...
CSDN,1 CSDN,2 · · · PSDN,N

 = HHT (3.33)
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All elements of S, and hence of H, are one-sided functions of the frequency f [Hz]. For all N
spatial points, correlated time series of length M must be created. To obtain these N time
series, N independent random processes (white noise) should be generated and stored into
the diagonal matrix X. These white noise inputs are complex exponentials with unit mag-
nitude and random phase φ. To obtain a Gaussian distributed input, φ should be uniformly
distributed within 0− 2π.

X(f) =


eiφ1(f) 0 · · · 0

0 eiφ2(f) · · · 0
...

...
. . . 0

0 0 · · · eiφN (f)

 (3.34)

The Fourier coefficients for all N points (stored in the vector V(f)) are obtained by

V(f) = H(f)X(f)e =


∑1

n=1H1,ne
iθn(f)∑2

n=1H2,ne
iθn(f)

...∑N
n=1HN,ne

iθn(f)

 (3.35)

Where e is a column vector of N ones. Thus the sum of each row of the matrix HX is
obtained. With the multiplication of H and X, the independent input in X is correlated
according to the information of the turbulence PSD and Coh model contained in H. Fourier
transformation (FT) is used to transform Fourier coefficients from frequency to time domain.
In order to obtain the correct Fourier coefficients, the correct frequency components should be
used. The total period T = M∆t contains the frequency components f = ∆f(1, . . . ,M/2−1),
with ∆f = 1/T . In Fourier transformation, the number of frequency components should be
exactly equal to M , to get time series of length M . By using the same amount of neg.
and positive frequencies, the inverse Fourier transform of the Fourier coefficients will sum up
cosines and sines. This results in a time series with only real values.

A physical spectrum can only be one-sided. Therefore, only the positive half of frequencies
is taken into account to obtain the Fourier coefficients. This is corrected in the inverse
Fourier transform below, to get a time series of length M , by assuming an artificial double-
sided symmetric spectrum8 (cf. figure 6.4). For each spatial point N , The inverse Fourier
transform of each row of V is

T = M ∗ IFT (
[
0 V 0 rot90(VT )

]
)

The first Fourier coefficient for the positive frequencies is set to zero, to get a zero mean.
The first of the Fourier coefficients for the negative frequencies is also set to zero, to avoid
imaginary values. In order to keep the area below the spectrum equal to the variance, the
discrete values Sũ(f) obtained from the spectrum should be multiplied with ∆f/2. This
method thus produces a Gaussian time series from the prescribed spectral density and Fourier
coefficients (see appendix D for an example). An additional method to infuse a prescribed
non-Gaussian content in the signal is described in the next section.

8The imaginary Fourier coefficients for the positive frequencies are rotated ninety degrees in the imaginary
plane, to create the Fourier coefficients for the negative frequencies. In this case Sũ(−f) = Sũ(+f)
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3.3.2 Non-Gaussian turbulence

Extensions of the Veers method are possible for inhomogeneous, non-stationary processes of
general probability distribution, as already stated above. A practical description of these
extensions is given by Nielsen et al. [2007]. In the context of this thesis only the extension
to non-Gaussian probability distributions is of relevance. The extension to non-Gaussian
distributed variables can be done by the monotone memoryless transformation

ũ(t) = g(x̃(t)) (3.36)

Where x̃(t) is a real-valued stationary Gaussian process, simulated as explained above, with
zero mean, unit variance and autocorrelation function R(τ) = 〈x̃(t+ τ)x̃(t)〉. Eq. (3.36)
can either be an analytical relation or an empirical mapping scheme [Masters and Gurley,
2003]. The transformation function g should be nonlinear to obtain non-Gaussian distribu-
tions [Grigoriu, 1995, p. 43].

g as an empirical mapping scheme

A non-Gaussian time series can be obtained from a Gaussian one by mapping x(t) to the
realization of the non-Gaussian stochastic process ũ(t).

ũ(t) = F−1 [X(x̃(t))] (3.37)

Where X is the cumulative distribution function (cdf) of x̃(t) and F is a prescribed non-
Gaussian marginal cdf. For every x̃ at time t, the corresponding ũ at time t is calculated in
such a way that F (ũ(t)) = X(x̃(t)) (cf. figure 3.7). This method of non-Gaussian mapping
can also be used in a numerical discretized form, by means of interpolation. However, using
a theoretical model obtained from a fit to an empirical cdf is much faster.

Figure 3.7: Procedure for cdf-mapping. Each value in x(t) is mapped to a value u(t) of the correct
probability. A cdf instead of pdf is used to avoid ambiguity.

g as an analytical relation

Winterstein [1985] uses Hermite expansion estimates of g to provide a useful model for a
transformation to a non-Gaussian process based on known central moments of ũ(t). The
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methods of simulating non-Gaussian stochastic processes in Gurley et al. [1996]; Gurley and
Kareem [1998]; Nielsen et al. [2007] are based on this principle.

ũ(t) =

N∑
n=1

anHen(x̃(t)) (3.38)

Where Hen(x) is the Hermite polynomial of order n, which can be obtained by He0 = 1,
Hex and the recurrence relationship Hen = xHen−1(x)− (x− 1)Hen−2(x), n ≥ 2. A proof of
this approximation is given in Grigoriu [2009]. The Hermite polynomial definition used here
is actually the probabilists’ version of the Hermite polynomial9 [Weisstein, 2009; Wikipedia,
2009b]. The coefficients an can be found by the following integral, where φ(x) is the Gaussian
probability density function.

an =

∫ ∞
−∞

u(t)Hen(x̃(t))φ(x̃(t))dx̃ (3.39)

When the pdf of ũ(t) is only mild non-Gaussian, the Hermite expansion can be truncated at
the third order (N = 3), as has been done in Winterstein [1988]. The Hermite coefficients
can hence be expressed as a function of skewness and kurtosis and can be found by solving
the following system of equations [Ditlevsen et al., 1996; Nielsen et al., 2007].

1 = a2
1 + 2a2

2 + 6a2
3

S = 2a2

(
2 + a2

2 + 18a1a3 + 42a2
3

)
(3.40)

K = 15− 12a4
1 − 264a3

1a3 − 864a2
1a

2
3 − 432a1a

3
3 + 288a1a3 + 936a2

3 − 2808a4
3

Where S stands for skewness, S = 〈ũ3〉/
(
σ2
ũ

)3/2
and K for kurtosis, K = 〈ũ4〉/

(
σ2
ũ

)2
(cf.

section 3.2.4). An approximation of the solution of this system can be found in Winterstein
[1988]. This transformation method is used, for instance, in Gurley et al. [1996].

Spectrum distortion

The nonlinear transformation g forces the probability content of ũ(t) to be conform to the
specified target distribution function. However, the spectral contents of ũ(t) will be distorted
due to the nonlinearity of this transformation. Spectral correction can be used to address
this issue (cf. figure 3.8). The idea is to seek an underlying spectral density Sx̃ to assign
to the initial Gaussian function x̃(t), which differs from the target spectral density of the
final non-Gaussian function STũ . The spectral density Sx̃ should be chosen in such a way,
that the transformation g distorts the spectral content of x̃(t) into the target spectral density
STũ , without causing an inaccurate representation of the target distribution function. Several
spectral correction methods are available, see e.g. Shinozuka and Yamazaki [1988]; Deodatis
and Micaletti [2001]; Gurley and Kareem [1998]. A comparison of these methods has been

9Hermite polynomials are defined as Hen(x) = (−1)nex
2 dn

dxn
e−x

2

(“physicists’ Hermite polynomial”), or

as Hen(x) = (−1)ne
x2

2 dn

dxn
e−

x2

2 (“probabilists’ Hermite polynomial”). The latter one is used by Winterstein
[1985, 1988]; Nielsen et al. [2007]; Grigoriu [2009]; Gurley and Kareem [1998]. For x being standard Gaussian,
these latter Hermite polynomials all have zero mean and are uncorrelated. According to Papoulis and Pillai
[2002, p. 281], they form a complete orthogonal set on the real line. Note that these Hermite polynomials are
used by Papoulis and Pillai [2002] for error correction to a Gaussian pdf.
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Figure 3.8: Schematic diagram of non-Gaussian simulation with (dashed line) and without (solid
line) spectral correction.

made in Masters and Gurley [2003]. The method described by Deodatis and Micaletti [2001]
is a revision of the method described by Shinozuka and Yamazaki [1988]. The characteristic
feature of this method is the spectrum updating scheme

Sj+1
x̃ = Sjx̃(ω)

[
STũ (ω)

Sjũ(ω)

]α
(3.41)

Where j denotes the iterative step and Sjũ(ω) is the spectrum of the current simulation of
ũ(t) and α is a parameter for enhancing convergence, set to 0.3 by Deodatis and Micaletti
[2001] and 1 in [Shinozuka and Yamazaki, 1988]. This scheme is used to iteratively alter
the underlying spectral density until the difference between STũ and Sjũ is acceptably small.
Although α = 0.3 causes better convergence than α = 1, it still happens that eq. (3.41) does
not converge for combinations of a highly non-Gaussian spectrum and acf. The reason lies in
an incompatible pair of an underlying Gaussian spectral density function and a non-Gaussian
distribution function [Deodatis and Micaletti, 2001]. In Lagaros et al. [2005], the spectrum
updating scheme is replaced by approximating the unknown Gaussian spectrum Sx̃ with a
neural network regression model. This drastically reduces the computational effort of the
non-Gaussian simulation and always shows convergence, even for highly skewed distribution
functions.

In this thesis the method described by Deodatis and Micaletti [2001] is used, since only
mild non-Gaussianity is observed. The difference between STũ and Sjũ is quantified by the
mean square error

e =
1

K

K∑
k=1

(
STũ − Sjũ

)2
(3.42)

Now, the largest error allowed has to be chosen. The procedure to arrive at a non-Gaussian
stochastic time series is described by the following steps:

1. find the spectrum STũ of the measured process ũ(t);
2. apply Fourier simulation to generate stochastic Gaussian time series x̃(t);
3. transform x̃(t) into a non-Gaussian time series ũ(t);
4. apply iterative spectral correction until the spectral density is sufficiently accurate.

See figure 3.9 for a flowchart of the process and figure 3.10 for an example of an in this way
obtained non-Gaussian time series.
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Figure 3.9: Flowchart of the iterative spectral correction procedure
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Figure 3.10: Comparison between a Gaussian and non-Gaussian turbulence time series

Correlation distortion

The iterative method described above may be avoided if the autocorrelation function of the
non-Gaussian time series is transformed to the underlying Gaussian process. This approach
is called correlation distortion and is, among others, described by Grigoriu [1995]; Gurley
et al. [1996]; Nielsen et al. [2004, 2007]. In this report only the general procedure is given. In,
for instance, Nielsen et al. [2004]; Grigoriu [1995] the general equations can be found. The
correlation distortion method goes as follows:

1. find the autocorrelation function rũ(τ) of the measured process ũ(t);
2. transform rũ(τ) to the acf rx̃(τ) of the underlying Gaussian process. The method to do

this is e.g. described in Nielsen et al. [2004];
3. simulate a Gaussian time series x̃(t) using the Gaussian spectrum Sx̃(f) associated with
rx̃(τ);

4. transform the Gaussian process to a non-Gaussian process.

In section 2.2 it is explained that gusts are an inherent part of turbulence. By just simu-
lating a very long time series, gusts can be selected and taken as input for load calculations.
This would take much time and will hence be expensive. An alternative is to perform a special
kind of stochastic simulation during which the desired events are automatically selected. In
this context the NewGust method has been developed, which is explained in section 4.4.
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3.3.3 Other turbulence simulation methods

Another important method for simulating 3D wind fields in the Fourier domain is the Mann
model. The characteristic difference with the Veers method is the use of a semi-empirical
3D spectral tensor instead of a 1D PSD. A 3D spectral tensor is physically more correct and
the Mann model should therefore give a better representation of turbulent wind. Another
difference is that the Veers method performs an FFT from frequencies to time domain whereas
the Mann model performs an FFT from wave numbers to space domain. In Gontier et al.
[2007] a comparison between both methods is made.

The single-point statistics of turbulence are Gaussian distributed, as explained in section
3.2.4. Gaussian statistics can be properly represented by spectral representation models, but
the thus simulated turbulende does not include intermittency observed in physical turbulence.
The two-point statistics of turbulence are non-Gaussian distributed and include intermittency
(cf. eq. 3.27). These statistics can be used to simulate turbulence including intermittency. A
model for simulating turbulence, which uses these two-point statistics as input is the Friedrich-
Kleinhans model [Peinke et al., 2004; Gontier et al., 2007; Friederichs and Kleinhans, 2007;
Peinke et al., 2008]. This model generates non-Markovian10 data series in real space domain.
The simulation is based on the theory of ’continuous time random walks’ (CTRW), which is
a generalization of random walk processes. A CTRW ũj(tj) is iteratively defined by

ũj+1 = ũj + ηj and tj+1 = tj + τj (3.43)

For j ∈ N, ũ0 = t0 = 0, τj ≥ 0, ∀ j. The step width and waiting time of the step j are
respectively ηj and τj and are generally random numbers. To make the process applicable to
physical problems, the discrete variable j should be transitioned to a continuous time s. The
equations above (3.43) in this way become stochastic differential equations, coupled via the
intrinsic time s. The latter equation corresponds to the mapping of s on the physical time t.
From a comparison of this model with the Sandia-Veers method with Kaimal, von Karman
PSD’s and the Mann model, it is concluded that the form of the tails of the probability
distribution of the velocity increments has a major influence on the wind turbine fatigue
loads [Gontier et al., 2007].

In Kleinhans et al. [2009] an overview is given of models for simulating turbulence for
wind turbine applications, including a short description of their capabilities, limitations and
current developing state.

10A Markov process is a mathematical model for the random evolution of a memoryless system. In such
a system, the likelihood of a given future state, at any given moment, is independent on any past states and
depends only on its present state. Thus, if the present is specified, the past has no influence on the future.
A non-Markovian process covers all random processes except the ones that have the Markov property. Note,
however, that a Markov process is an (extensively studied) exception. A stochastic model of a process is
non-Markovian, if the idealized assumption of exponential distributions is removed.
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Chapter 4

Wind speed gusts

In section 2.2 and 3.2.4, the physical context of wind speed gusts was described. From this
description, a gust can be defined as a short term wind speed fluctuation in a turbulent wind
field. This chapter describes (1) which definitions of gusts are given in standards and which
gusts are of relevance for this thesis, (2) how gusts are characterized in this thesis, (3) detection
methods for wind gusts from measured wind speed, (4) the NewGust and Risø constrained
simulation method and (5) typical load responses to wind speed gusts and how to obtain the
distribution of extreme loads with NewGust and LoadGust.

4.1 Gust definitions

In literature several definitions of gusts exist. With the IEC 61400-1 standard, the gust
definition has been standardized. In the 2005 version the following gusts are described as
extreme wind conditions:

• Extreme operating gust (EOG): A sudden increase in wind speed within a short time
period smaller then 60 seconds;

• Extreme direction change (EDC): A sustained wind direction change;
• Extreme coherent gust (ECG): A sustained change in wind speed;
• Extreme coherent gust with direction change (ECD): A combination of EDC and ECG;
• Extreme wind shear (EWS): A fluctuation in the horizontal or vertical wind speed

gradient across the rotor.

In the context of this thesis, only positive wind speed gusts are of importance, because this
is the type of gust for which NewGust has been developed. Extreme wind speed gusts are
described in the IEC 61400-1 standard as EOG, which is mathematically represented by eq.
(4.1). If negative wind speed gusts are required, this definition can simply be adapted by
adding instead of subtracting the second term in the right hand side of eq. (4.1).

V (z, t) = V (z)− 0.37Vgust sin

(
3πt

T

)(
1− cos

(
2πt

T

))
; t ∈ 0, . . . , T (4.1)

Vgust = min

{
1.35 (Ve1 − Vhub) ; 3.3

(
σ1

1 + 0.1 D
Λ1

)}
(4.2)

Where T is the duration of the gust (10.5 s) and Vgust is the maximum magnitude of the gust
at the wind turbine hub height. For the explanation and calculation of the other variables
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Figure 4.1: Examples of different extreme operating gusts defined in the standards of Germanische
Lloyd [2005] and IEC 64100-1 [2005]

is referred to the standard itself. The magnitude and shape of the obtained gust depends
on the wind turbine and turbulence class which applies (defined in the standard). The EOG
should be considered for ultimate load calculations during start-up, power production plus
occurrence of a fault and normal shut down. In the GL standard a slightly different EOG is
used

Vgust = β

(
σ1

1 + 0.1 D
Λ1

)
(4.3)

Where β depends on the recurrence period (β is 4.8 or 6.4 for the recurrence period of
respectively 1 year and 50 years). An example of both EOG’s is given in figure 4.1. These
types of gusts are called ’Mexican hat gust’ referring to the shape of a Mexican hat.

4.2 Characterization of gusts

For the purpose of research, a more precise statistical description of wind speed gusts is
necessary. Therefore the statistical parameters to characterize gusts are defined in table
4.1 (inspired by Branlard [2009]; Bergström [1987]; Larsen et al. [2003]). In figure 4.2 the
parameters are visualized. An example of the effect of normalization on the time series is
shown in figure 4.2 (including linear trend removal). For the calculation of the parameters in
table 4.1, ten-minute averages are taken, because this is the typical timescale for turbulence
as described in section 2.2. The gust time period typically ranges between 5 – 60 seconds.

4.3 Methods for detecting wind gusts

Several methods exist to detect extreme wind speed gusts from time series. Each method
can be seen as a different definition of gusts and hence gives different types of gusts. The
methods found in literature are described and compared according to results from a study by
Branlard [2009].
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Wind speed time series u(t)
Wind speed average ū
Wind speed standard deviation σu
Turbulent time series ũ(t) = u(t)− ū
Normalized time series ũn(t) = ũ(t)

σu
Time of the maximum wind speed of the gust t0 = maxt∈Ig(ũ(t))
Time of the start of detecting the gust tstart
Time of the end of detecting the gust tend = tstart + τ

Gust relative amplitude ũn(t0) = ũ(t0)
σu

Gust time period τ
Gust interval Ig = [tstart, . . . , tend]

Table 4.1: Characteristic gust parameters

4.3.1 Peak-peak and velocity increment

Used, among others, by Bergström [1987]; Branlard [2009]; Böttcher et al. [2003]; Peinke et al.
[2004]; Larsen et al. [2003]. The peak-peak method is used to detect extreme values within a
certain time period T (e.g. 10 minutes, an hour, a year etc.). The method can be visualized
by a moving window with a predefined width1 w = τ/2 and height or velocity increment ∆ũ.
The minimum and maximum of each window is defined as

ũmin = min (ũ(t), . . . , ũ(t+ w)) (4.4)

ũmax = max (ũ(t), . . . , ũ(t+ w)) (4.5)

The height is the difference between the minimum and maximum of the window.

∆ũ = ũmax − ũmin (4.6)

The velocity increment or velocity difference method looks for the maximum velocity rise and
is essentially the same as the peak-peak procedure, but defined somewhat differently. Instead
of taking the height ∆ũ as the difference between the minimum and maximum within the
window, it takes the difference between the first and last point of the window.

∆ũ = ũ(t+ w)− ũ(t) (4.7)

The maximum height of all windows in the period T is defined as the extreme gust for that
time period. t0 is the time of the maximum in the window with maximum height. tstart and
tend are respectively t0∓w. The disadvantage of these two methods is that only the extremes
are selected and many other interesting and important gusts are ignored. These methods
only look at the shape of the gust (the steepness of the rise). For both methods it does not
make any difference whether ũ(t) or u(t) is used. However, less computation time is needed
if gusts are selected from the instantaneous wind speed, because averaging is avoided. The

1The width of w = τ/2 is taken to be consistent with the other methods. The Peak-peak and velocity
increment method only take into account half of the gust. The peak over threshold and correlation method
take the whole gust into account. As τ is defined as the gust time period, it becomes clear that w = τ/2 for
the first two methods.
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Figure 4.2: Example of the characterization parameters, note that the displayed time series is part
of a larger time series and that in the right hand figure the linear trend has also been
removed

time period T relevant for selection of gusts is the integral time scale T of the process (to
obtain uncorrelated gusts).

The velocity increment method can also be used to calculate the structure function D(w),
which is equal to the variance of ∆ũ and related to the spectral density function〈

∆ũ2
〉

= D(w) =
〈

(ũ(t+ w)− ũ(t))2
〉

= 2σ2
ũ (1− r(w)) (4.8)

D(w) = 2

∫ ∞
0

(1− cos(2πfw))Sũ(f)df (4.9)

Where f is the frequency in Hz and Sũ(f) is the spectral density function of the wind speed.

4.3.2 Peak over threshold

Used, among others, by Bergström [1987]; Branlard [2009]; Bierbooms et al. [1999]; Larsen
et al. [2003]. This method is used to detect high amplitude gusts. The restricting parameter
is a certain threshold ∆ũ which should be exceeded. Therefore, instead of the two former
methods, a series of gusts can be detected. This method does not take into account the shape
of the gusts and is not dependent on the duration of the gust either. Because of fluctuating
wind speed during a gust, a window (or time instant) with width w = τ is used to prevent
obtaining several results for one gust. In mathematical form, a gust is detected if

max (ũ(t), . . . , ũ(t+ w)) > ∆ũ (4.10)

tstart and tend are respectively t0∓τ/2. The peak over threshold method is similar to the zero
(or mean) passage method if the threshold is set to zero (or the mean). The fluctuating wind
speed has to be used to obtain consistent results, since stationarity is assumed implicitly.
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(a) (b)

Figure 4.3: Gust detection methods; (a) peak-peak and (b) velocity increment

4.3.3 Correlation

Used by [Branlard, 2009]. With this method gusts with a specific shape can be obtained. A
reference signal (e.g. a gust shape from the IEC standard) with duration τ is correlated with
the data. To restrict the amount of detectable gusts, a threshold for the relative amplitude
and the minimum correlation coefficient rmin has to be defined. Only gusts with the same τ
as the reference gust can be found, because correlation is only possible for signals of the same
size. There is no dependence on the amplitude of the reference gust. For this method t0 is
the time where r is maximum in the interval where r > rmin. tstart and tend are respectively
t0 ∓ τ/2.

4.3.4 Velocity increment over threshold

Used, among others, by [Branlard, 2009; Schmitt, 2007]. This method can be used to detect
long time-scale events such as fronts. In addition to the velocity increment method described
above, a constraint is added to the height of the window ∆u ≥ |u(t+ w)− u(t)|. Hence, there
is a threshold to the acceleration of the wind speed. Long time scale events can be detected
by taking a large width (e.g. 10 minutes). This method is in between the velocity increment
and peak over threshold method.

4.3.5 Comparison of detection methods

Each detection method provides different types of gusts (cf. figure 4.5). The characteristic
parameters described in section 4.2 can be used to compare the different gusts. From studies
done by Branlard [2009]; Bergström [1987] the following interesting conclusions can be drawn:

• The correlation and velocity increment method are selective for the rise time due to the
dependency on window width w (in contrast to the peak over threshold method);

• For small τ , time dependent methods will be more likely to provide high acceleration
values;
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(a) (b)

Figure 4.4: Gust detection methods; (a) correlation and (b) peak over threshold

• If the gusts are not centered around their maximum, but in the middle of the interval
where the wind speed is above a threshold, the peak over threshold method gives two
peaks for the mean gust shape, centered around the middle;

• The peak over threshold method can quickly select high amplitude gusts;
• The velocity increment method provides gusts with a far from symmetric shape;
• The correlation method provides more symmetric gusts;
• The correlation coefficient r(τ) is independent on stability and surface roughness.

For more information about these conclusions, the reader is directed to the above mentioned
documents.

4.4 Simulation of NewGust wind speed gusts

In the current wind turbine design standards (IEC 61400-1, 2005; GL wind, 2005), extreme
gusts are defined as coherent with an inherent deterministic character as described in section
4.1. In reality gusts are of a stochastic nature and spatially limited. This difference can cause
significant differences in the calculated and real loads (cf. section 3.2.4). In order to obtain
more realistic load situations, the NewGust method has been developed. This probabilistic
method simulates gusts of a stochastic nature with a predefined amplitude and is in line with
the common practice for fatigue loading. The NewGust method is based upon constrained
stochastic simulation2, which applicability is restricted to events (constraints) which can be
expressed as a linear relation:

y = Gx (4.11)

Where G is a matrix of constants, depending on the desired event. y and x are random
vectors describing respectively the event and the process. Thus, the wind velocities which

2A special kind of stochastic simulation during which the desired events are automatically selected by
considering the conditional density matching the specified constraints.
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Figure 4.5: Different mean gust shape for different detection methods (taken from Branlard [2009]).

are Gaussian distributed should satisfy these constraints to obtain the desired event. The
derivation of an explicit expression in time domain has been done by Bierbooms [2006] for
local maxima and velocity jumps. The time domain expression for local maxima is given by

uc(t) = u(t) +

(
µω

µω − λ2
ω

r (t− t0) +
λω

µω − λ2
ω

r̈ (t− t0)

)
(A− u(t0))

+
ṙ (t− t0)

λω
u̇ (t0) (4.12)

+

(
λω

µω − λ2
ω

r (t− t0) +
1

µω − λ2
ω

r̈ (t− t0)

)
(B − ü(t0))

Where u(t) is a turbulent time series (simulated as explained in section 3.3), r(τ) is the
normalized autocorrelation function (cf. section 3.2.2), λω and µω are respectively the second
and fourth order normalized spectral moments (cf. section 3.2.3) and A and B specify the
local maxima:

u(t0) = A

u̇(t0) = 0 (4.13)

ü(t0) = B < 0

An example of a gust resulting from eq. (4.12) is shown in figure 4.6. The statistics of B can
be derived, which has been done by Bierbooms [2009a, appendix]. The probability density
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function of B is

fB(B) =
|B| f1(B)∫ 0

−∞ |B| f1(B)dB
(4.14)

f1(B) = |B| e
−(B−µ0)2

2σ2
0 (4.15)

µ0 = −λωA (4.16)

σ0 = σu
√
µω − λ2

ω (4.17)

Where µω and λω are the second and fourth order normalized spectral moments as defined
in section 3.2.3 and σ is the standard deviation of the turbulence. The mean gust shape
resulting from equation (4.12) is

ūc(t) =

(
µω

µω − λ2
ω

r (t− t0) +
λω

µω − λ2
ω

r̈ (t− t0)

)
A (4.18)

+

(
λω

µω − λ2
ω

r (t− t0) +
1

µω − λ2
ω

r̈ (t− t0)

)
B

B =

∫ 0

−∞
BfB(B)dB (4.19)

With increasing A, the second term on the right hand side of eq. (4.12) will become more
dominant. This causes the constrained time series to be more and more deterministic in their
shape, proportional to the autocorrelation function. In Bierbooms [2006], it is shown that for
large A the asymptotic form of eq. (4.12) can be considered to be equal to

uc2(t) = u(t) + r (t− t0) (A− u(t0))

+
ṙ (t− t0)

λω
u̇ (t0) (4.20)

In this case local extremes rather than local maxima are considered (its unlikely to encounter
a local minimum for large A, which allows to omit B).

The gusts resulting from the NewGust expression are the same as those selected from
a very long stochastic time series generated by e.g. the Veers method (cf. section 3.3.1).
The advantage of constrained simulation is the reduction in computation time. The basic
assumption behind NewGust is that extreme wind gusts can be described by means of Gaus-
sian processes. The main aim of this thesis project is to validate this assumption, which is
described in part II. From validation work done by Bierbooms et al. [1999]; Larsen et al.
[2003]; Branlard [2009] on the mean gust shape, some interesting conclusions can be drawn:

• In contrast to standards, the mean gust has a rather sharp peak;
• The peak in the mean gust shape is of a universal character;
• The theoretical mean gust shape has to take into account the change of the wind speed

spectrum with the mean wind speed;
• A better resemblance is obtained between the theoretical and measured mean gust shape

for higher wind speed, sampling frequency and amplitude;
• The gust shapes are independent of terrain;

For more information about these conclusions, the reader is directed to the above mentioned
documents.
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Figure 4.6: Example of an instantaneous NewGust gust shape with and without turbulence added.

4.5 Other gust simulation methods

The NewGust method described above is not the only method to describe theoretical wind
speed gusts. In Nielsen et al. [2004] a gust simulation method is described, which is based
upon selection of desired events in a time series with use of a filter function. The filter function
contains the constraints of the desired event. By applying certain constraints, wind speed
gusts can be simulated. The theoretical description of the mean gust obtained in this way is
identical to the NewGust description and gives the same type of gusts. It therefore does not
add anything to the theory described above. However, this gust description is also defined
for non-Gaussian turbulence, which gives the ability to check whether there is a difference
between the mean gust shape resulting from Gaussian and non-Gaussian theory or not. The
gusts resulting from this method are denoted in this report by Risø gusts.

An extensive mathematical derivation of theoretical Gaussian and non-Gaussian gusts can
be found in Nielsen et al. [2004]. The instantaneous Gaussian time series containing a desired
Gaussian gust event is

ũ(t) = x(t) +
vc − (φ(t), x(t))

vc
ũg(t) (4.21)

Where x(t) is a Gaussian time series simulated as explained in section 3.3. ũg(t) is the
Gaussian ensemble mean gust shape, of which the analytical expression is

ũg(t) = vc
R ∗ φ̌

(φ,R ∗ φ)
(4.22)

Where the notation f ∗ g denotes the convolution
∫
f(t − t′)g(t

′
)dt
′

and (f, g) denotes the
inner product

∫
f(t)g(t)dt. The notation φ̌(t) means φ(−t). In case ũ(t) should attain some

large value vc at t = t0, the filter function becomes φ(t) = δ(t− t0), which leads to

ũg(t) = vc
R(t− t0)

R(0)
= Ar(t), t0 = 0 (4.23)

Where vc is a certain (large) value, which is identical to A in the NewGust expression. δ(·)
is the Dirac function. The expression of the mean gust given here is identical to the mean
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Figure 4.7: Evolution of the thrust with the incoming mean wind speed (taken from Branlard [2009]).

gust resulting from the second NewGust expression (eq. 4.20). When implemented in the
expression for the instantaneous time series (eq. 4.21) exactly the same theoretical expression
as equation (4.20) is obtained [Nielsen et al., 2004, Appendix F].

For the derivation of the non-Gaussian wind speed gust, the same theory as explained in
section 3.3.2 is used. For the mathematical derivations of the following theoretical expressions,
the reader is directed to Nielsen et al. [2004, Ch. 6]. The ensemble average non-Gaussian
gust according to the filter function φ(t) = δ(t0 − t) is

ũg(t) = g

(
g−1(vc)

R(t0 − t)
R(0)

)
(4.24)

Where g denotes the transformation function as explained in section 3.3.2. The resulting
instantaneous non-Gaussian time series containing the specified gust event is

ũr(t) = ũ(t)− g
(
g−1(vp)

R(t0 − t)
R(0)

)
+ g

(
g−1(vc)

R(t0 − t)
R(0)

)
(4.25)

Where ũ(t) is a non-Gaussian time series simulated as explained in section 3.3.2. vp =∫
φ(t)ũ(t)dt, which is equal to ũ(t0) for φ(t) being a Dirac function as given above. vc is in

this case the desired amplitude of the gust in the non-Gaussian time series. In section 7.3 the
practice of numerical simulation of these gusts is explained.

4.6 Load response to a wind gust

In Bierbooms [2006, 2005] research has been done on the extreme loads of wind turbines. It
appears that stall regulated wind turbines (fixed blades) are significantly effected by extreme
wind speed gusts. This is not, however, the case for pitch regulated wind turbines, due to
pitch actions initiated by the control system. Pitch regulated wind turbines are assumed to
be more sensitive to extreme rise time gusts than to extreme amplitude gusts. This is shown,
for instance, in Branlard [2009, Ch. 8], where a study was performed on the load response
of a pitch regulated wind turbine to a wind speed gust. Figure 4.7 shows that for above
rated mean wind speeds, a negative wind gust (below mean wind speed) causes the loads to
increase and for a positive wind gust to decrease. This is the opposite for below rated mean
wind speeds. For stall regulated wind turbines, the thrust always increases with wind speed,
so maximum amplitude wind speed gusts are more dangerous for this kind of turbines then
for pitch regulated ones. However, in Bierbooms [2005] a preliminary conclusions is drawn
that extreme rise time gusts at above rated wind speed do not lead to extreme loads of pitch-
regulated wind turbines. Section 10.1 investigates which wind speed gust type leads to the
extreme load response of pitch-regulated wind turbines.
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4.6.1 Determination of extreme loads with use of NewGust

One of the goals behind analyzing atmospheric wind is to find the extreme load response of
a wind turbine with a return period of 50 years. This extreme load then should represent
the worst load case a wind turbine has to deal with during its working life time. Just like
explained in section 2.4, the tails of the load response cdf are of importance for a good
estimation of the 50 year load response. Neither the amount of wind speed data nor the
amount of load response data is available to get a proper estimation of the cdf tail. To
compensate this lack of data, simulations can be done to obtain the required amount of data.
By applying constrained stochastic simulation (cf. section 4.4) the number of simulations
needed to arrive at the extreme 50-years load response can be reduced [Bierbooms, 2008,
2009b]. By simulating a number of gusts with a certain amplitude A and mean wind speed ū,
a conditional distribution of the maximum load resulting from these gusts can be obtained;

f(lmax|ū, A) =
f(lmax, ū, A)

f(ū, A)
=
dF (lmax|ū, A)

dlmax
(4.26)

By inserting eq. (4.26) in eq. (4.27), the distribution of extreme loads can be derived in a
similar way as has been done in section 2.4:

F (lmax) =

∫ lmax

−∞

∫ ∞
−∞

∫ ∞
−∞

f(lmax, ū, A) dAdū dlmax (4.27)

F (lmax) =

∫ lmax

−∞

∫ ∞
−∞

∫ ∞
−∞

f(lmax|ū, A)f(ū, A) dAdū dlmax (4.28)

F (lmax) =

∫ ∞
−∞

∫ ∞
−∞

F (lmax|ū, A)f(ū, A) dAdū (4.29)

In [Bierbooms, 2008] a slightly different method is used, which requires the assumption of
independent3 A and ū, which then gives that f(ū, A) = f(ū)f(A). Eq. (4.29) can than be
rewritten as

F (lmax) =

∫ ∞
−∞

f(ū)

∫ ∞
−∞

F (lmax|ū, A)f(A) dAdū (4.30)

which is equal to the method used by [Bierbooms, 2008, 2009b]. In these latter papers it
is reasoned that the simulated gusts represent ten-minute maxima and that the obtained
distribution is thus constructed from ten-minute extreme loads. The probability for the 50-
years extreme load F50 can be derived from the following equation,

F50 = 1− 1

T50
(4.31)

where T50 is the 50-years return period, in this case equal to the number of ten minutes in 50
year. In section 10.1.3 this theory has been applied.

3If random variables are independent, then they are uncorrelated. However, uncorrelated variables are only
necessarily independent for Gaussian random variables [Papoulis and Pillai, 2002, Theorem 6-5]. If random
variables are independent, then 〈g1(z1) · · · gn(zn)〉 equals 〈g1(z1)〉 · · · 〈gn(zn)〉 [Papoulis and Pillai, 2002, Ch.
7-1]. In section 9.3.4 this has been applied to the random variables ū and A.
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4.6.2 Determination of extreme loads with use of LoadGust

Instead of using NewGust to derive the distribution function of the maximum loads, also
another expression can be used. In Bierbooms [2007] an expression is derived to obtain a gust
leading to an extreme in the load response.

uc(t) = u(t) +
1

∆

(....
R ll(0)Ruu(t+ δ)− R̈ul(δ)R̈lu(t)

)
(A− u(−δ))

− Ṙlu(t)

R̈ll(0)
l̇(0) (4.32)

+
1

∆

(
−R̈ul(δ)Ruu(t+ δ) +Ruu(0)R̈lu(t)

)
(B − r̈(0))

With ∆ = Ruu(0)
....
R ll(0)− R̈2

ul(δ). In case the load response l(t) is defined by a linear system,
the expression for the load response can also be derived.

lc(t) = l(t) +
1

∆

(....
R ll(0)Rul(t+ δ)− R̈ul(δ)R̈ll(t)

)
(A− u(−δ))

− Ṙll(t)

R̈ll(0)
l̇(0) (4.33)

+
1

∆

(
−R̈ul(δ)Rul(t+ δ) +Ruu(0)R̈ll(t)

)
(B − r̈(0))

In these equations, Rll and Ruu are the autocorrelation function of respectively the load
response and the wind speed. Rlu is the cross-correlation function between the load response
and the wind speed. δ denotes the time delay between the extreme in the wind speed and in the
load response. It has been chosen such, that Ṙlu(δ) = 0, which ensured that Rlu(−δ) = Rul(δ)
is a local extreme and lc(0) is a local maximum [Bierbooms, 2007]. Equation (4.33) is therefore
denoted with LoadGust. The cross- and autocorrelation function of wind speed and load
response can be derived from the spectrum of the wind speed Su and the transfer function
H; if ·∗ denotes the complex conjugate, then Slu = H∗Suu; and Sll = |H|2Suu. From these
spectra, the correlation functions can be derived as described in section 3.2.2. The probability
of B can be obtained in the same way as described in section 4.4, with this difference that µ0

and σ0 are defined as

µ0 = A
R̈ul(δ)

Ruu(0)
(4.34)

σ0 =
....
R ll(0)− R̈2

ul(δ)

Ruu(0)
(4.35)

In section 10.1.3 this theory has been applied.
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Validation of NewGust





Chapter 5

Validation procedure

In the preceding chapters, the theoretical background of turbulence and wind gusts has been
explained. Since the theory has been defined, it can be used to validate the assumption of
Gaussian distributed turbulence in atmospheric wind, made in the derivation of the NewGust
mean gust shape (explained in section 4.4). From former validation done on this method, it
can be concluded that the effect of non-Gaussian distributed turbulence does not make a big
difference in the mean gust shape.

The theoretical mean gust shape has been verified by means of simulated and mea-
sured wind data. The resemblance between the theoretical and experimental curves
is good, in particular for the shape in time. [Bierbooms et al., 1999]

The theoretical expression for the mean gust shape is verified by comparison with
simulated wind fields as well as with full scale measured wind fields related to
different wind climate conditions. ...No significant tendencies of terrain dependent
gust shapes are identified. ...For the comparison between the model prediction and
the simulated wind field, where the ACF is known a priori, the resemblance between
“measured” and predicted gust shapes is good for the investigated gust amplitudes
and mean wind speeds. [Larsen et al., 2003]

The probability of gust occurrence has been verified by Bierbooms et al. [2001]. NewGust is
developed to compute loads resulting from wind gusts in the same stochastic manner as has
been common practice for fatigue loading for a long time [Bierbooms et al., 1999; Bierbooms,
2006] (cf. also section 4.4). However, resemblance of only the mean gust shape is not enough
to conclude that the resulting loads will not show any difference between the theoretical and
physical gusts either. Therefore, it is necessary to verify if there is a difference between mean
load responses resulting from theoretical and physical gusts. If there is a difference, it should
be determined whether it is due to the assumption of Gaussian distributed turbulence or to
something else.

The procedure which has been used for the validation can be found in figure 5.1. First of
all, data of measured wind speed has to be acquired. This data is analysed for wind speed
gusts and used as the bases for simulations of NewGust gusts and non-Gaussian time series1.
The gusts, load responses, spectra and probability distributions are compared for each type
of gust (measured, NewGust, non-Gaussian).
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Figure 5.1: Procedure for validating NewGust
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In the following chapters, the practical considerations as well as all decisions made with
respect to the validation are explained. The necessary data processing for the validation
procedure has been done with MATLAB.

1Someone might question the value of validating a model based on measurements of the past; Who does
guarantee that observations from past events will give the same results in the future? The answer lies in one
of the very basic assumptions behind physical science. Expecting a model, confirmed by measurements from
the past, to represent the behavior in future, is only allowed because of the assumption that there is some
continuity in the physical behaviour of natural processes. This assumption of continuity can be observed if
physics, e.g. atmospheric wind, are measured as a spatial quantity, which in the case of wind reduces the
complex overall physical feature of wind to wind speeds.

The validity of a model based upon observations from the past is hence only sufficient for situations where
the future behaviour of the measured physical quantity, the model describes, is expected to be equal to its
behaviour in the past. This clearly shows the limited validity of the validation work done in the context of
this thesis project.
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Chapter 6

Data analysis

In this chapter the process of data analyses and related topics are described. The goal of data
analysis in the context of this thesis is (1) to acquire sequences of measured wind gusts, and (2)
to obtain spectra, autocorrelation functions and spectral moments of the actual turbulence
on a specific site. In appendix H detailed flowcharts of the whole analysis process can be
found.

6.1 Data acquisition

To reach these goals, time series of measured wind speed have been obtained from the internet
database “Database of Wind Characteristics”. In this database, more than 172000 hours of
high sampled meteorological data from as many as 60 sites is available. To be able to make
a rational selection of data, appropriate for the purpose of this project, the following pre-
requirements are used:

• The sampling frequency should be at least 5 Hz, to be able to make accurate load
calculations;

• The measuring wind speed sensor should be at least at a height of 40 meters, to be of
relevance for today’s wind turbine rotor heights;

• The measurements should contain enough data on a broad range of wind speeds. A
time span of at least 400 hrs distributed on approximately 5 – 20 m/s is required, to be
able to select enough gusts to calculate a qualitatively good mean;

• In order to make the validation as broad as possible, data has been acquired for three
sites with different types of terrain and orography. These are: offshore, flat; scrub, hill
and pastoral, flat.

According to these requirements, the following three sites are selected:

Toboel: Measurements from a meteorological met-mast situated at Toboel site, Ribe, Den-
mark. This is a place in the south-west of Denmark, east of Esbjerg. Its coordinates
are: 55◦ 25’ 51.96” N, 8◦ 52’ 4.95” E. The surroundings are classified as a flat landscape,
with open fields and meadows. The wind speed measurements are conducted with a
sonic Gill anemometer at a height of 49 m. The time series are stored with a frequency
of 8 Hz. For the analysis 12000 ten-minute time series are used from this site (equivalent
to ∼ 83 days). The data is divided over the years 1999 (day 306 – 355) and 2000 (day
28 – 182)1.
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Horns Rev: Measurements from a meteorological met-mast from the offshore wind farm
Horns Rev, Esbjerg, Denmark. The met-mast is located at a reef approximately 18
km off Jutland in the North Sea in a very harsh environment. The water depths at
the site vary between 6 and 12 m. Its coordinates are: 55◦ 30’ 0” N, 8◦ 0’ 0” E. The
surroundings are classified as offshore (open sea) with a flat landscape. The wind speed
measurements are conducted with a 3-D sonic METEK anemometer at a height of 50
m above sea level. The time series are stored with a frequency of 12 and 20 Hz. During
the analysis it appeared that the 20 Hz data of Hornsrev is corrupt (cf. appendix G).
Hence, the 12 Hz data has been used. For the analysis 40830 ten-minute time series are
used from this site (equivalent to ∼ 284 days). The data is divided over the years 2001
(day 290 – 365), 2002 (day 1 – 114, 315 – 363) and 2003 (day 1 – 148, 338 – 362).

Oak Creek: Measurements from a meteorological met-mast situated in Oak Creek, near
Tehachapi, California. The wind farm consists of wind turbines erected on a ridge in
a very complex terrain with high wind speeds. Its coordinates are: 35◦ 2’ 32.64” N,
118◦ 22’ 5.54” W. The surroundings are classified as rolling hills, with open bushes and
small trees. The wind speed measurements are conducted with a sonic anemometer at
a height of 80 m. The time series are stored with a frequency of 8 and 16 Hz. For
the analysis 14993 ten-minute time series of the 16 Hz data are used from this site
(equivalent to ∼ 104 days). The data is divided over the years 1998 (day 167 – 365),
1999 (day 7 – 162) and 2000 (day 199 – 309).

6.2 Data conditioning

For each of the sites described above, a drawing of the met-mast can be found in appendix
F. The data of each selected site is stored in ten-minute time series on the ftp server of
“http://www.winddata.com”. Before storage, the following screening has been applied by
“Database on wind characteristics” [taken from Hansen and Larsen, 2001], to ensure a rea-
sonable and documented data quality:

1. σ > 0.0: to ensure that only active signals are registered and used in the database;
2. |max-min| < 6σ: to ensure that extreme ranges correspond to “something” like a normal

distribution - failure in this check item indicates possible spikes;
3. normalized statistical fourth order moment is calculated and range checked (>1.5 and
< 5.0);

4. normalized statistical sixth order moment is calculated and range checked (>8.0 and <
20.0);

5. signal minimum and maximum values are checked according to specified instrument
upper and lower measurement values. Note, that the instrument upper and lower mea-
surement values are entered through the master sensor table;

6. detection of possible (signal) noise;
7. detection of possible (signal) spikes;
8. detection of possible (signal) level jumps.

1This is only a rough indication of the time span, not all days are (completely) included, mainly because
of the data conditioning and the requirement for normal wind turbine operating conditions (ū ≤ 25 m/s).
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These screening criteria can be used to select proper data. For this thesis, the first, fifth, sixth
and seventh criteria are used, to avoid distortion of the spectrum. For Sonic anemometer
signal co-ordinate transformations, the standard Risø alignment procedure for sonic signals
is used. This means that the unaligned (x,y,z) co-ordinate system is transformed to a second
orthogonal system (u,v,w) where the u vector points in the direction of the mean flow; and
hence the mean speeds in the v and w directions are zero. The sonic component s =

√
u2 + v2

has been used for this research. The ten-minute time series are downloaded and stored on a
local disk. For analyzing purposes, only the data series of the required measurement height
is extracted and stored with a follow-up number depending on the measurement date of the
time series. It appeared that the Toboel measurements were not checked for the fifth criteria,
because no information about the instrument’s upper and lower values is available. To exclude
some extreme data for Toboel, further selection criteria are placed on the standard deviation
(σ < 4) and the kurtosis (−2 < K < 8). Before analyzing the ten-minute time series for gusts,
the data has been conditioned by (1) removal of a linear trend and (2) normalization to ũn(t)
as described in section 4.2.

6.3 Extracting gusts

As already explained in chapter 5, extraction of gusts from measured wind speed time series
is necessary to have a reference mean gust shape. The simulated mean wind gusts and their
mean load response should resemble this reference mean gust shape and its resulting mean
load shape. In section 4.3 a number of detection methods for wind gusts are given. As
already explained there, these definitions can be used to detect gusts in a data sequence. In
Branlard [2009] an extensive comparison has been made between the resulting mean gusts of
each method. It appears that for the purpose of this analysis, the peak over threshold method
has several advantages over the other methods:

• the POT method is not sensitive for the shape of a gust;
• it is independent of the duration of the gust compared to other methods;
• several gusts within a certain time-frame can be detected;
• it is in line with former research done on NewGust [Bierbooms et al., 1999; Bierbooms,

2006; Larsen et al., 2003].

The POT method used in this analysis is slightly different from the method used by Branlard
[2009]. Instead of extracting for each gust a specific time around the peak of the gust, a fixed
time τ of 60 seconds is extracted for each gust. Branlard [2009] correctly says that by using
a fixed time, parts of the gusts are left out and that for a large part of the gusts only their
extreme is taken into account. But according to Larsen et al. [2003] it is only this extreme
part which is of importance (for validation of NewGust). The time period of 60 seconds has
been chosen to make a compromise, because most gusts are of shorter duration. The time
period of 60 seconds is in agreement with the maximum time period used by “Database on
wind characteristics” to detect wind speed gusts [Hansen and Larsen, 2001, p. 20-21]. The
POT method is roughly programmed as follows:

1. subtraction of the mean and removing the trend of the ten-minute time series u(t). This
ensures that the procedure ‘sees’ stationary turbulence;

2. weighing each data point, by moving a window of τ/2 (30 seconds) over the whole ten-
minute time series (cf. figure 6.1). The maximum data point in the window is weighted
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Figure 6.1: Peak over threshold method, weighing each data point in a time series with a moving
window.

+1 and the minimum -1.

u(tmax) = max (ũ(t)) , t ∈ t, . . . , t+ τ/2 (6.1)

u(tmin) = min (ũ(t)) , t ∈ t, . . . , t+ τ/2 (6.2)

w(t) = w(t)± 1, t = tmax, tmin (6.3)

3. If a data point is the maximum for the whole gust time period τ , it will have a weight
of w = f τ2 + 1 and is defined as the center of a gust.

Gusts are extracted if (1) their amplitude ratio is above a minimum of ũn(t) = 1, to detect
only gusts larger than the standard deviation and (2) the peak of the former gust is at least
a distance τ away from the peak of the present gust. This more or less ensures independent
gusts.

After all gusts are detected for all ten-minute time series, each gust is classified in a certain
bin-class of mean wind speed and amplitude ratio (cf. table 6.1). These bins and classes are
specifically defined for each site and depend on the number of gusts which could be detected
for each bin-class. At least ∼ 50 gusts are needed to construct a qualitatively good mean gust
shape [Larsen et al., 2003]. Thus, a minimum of 50 gusts is used to restrict and define the
number of bin-classes. For each bin-class the ensemble average is calculated. To be able to
do the classification, to reconstruct the origin of each gust and to find each gust in the local
database, the following properties are stored for each gust:

• index of the ten-minute time series;
• index of the gust (within the ten-minute time series);
• time of the maximum of the gust in the ten-minute time series;
• ten-minute mean;
• ten-minute standard deviation;
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Toboel Horns Rev Oak Creek
bin [m/s] class [-] bin [m/s] class [-] bin [m/s] class [-] index

0-5 1-1.5 0-2 1-1.5 0-1 1-1.5 1
5-6 1.5-2 2-3 1.5-2 1-2 1.5-2 2
6-7 2-2.5 3-4 2-2.5 2-3 2-2.5 3
7-8 2.5-3 4-5 2.5-3 3-4 2.5-3 4
8-9 3-3.5 5-6 3-3.5 4-5 3-3.5 5
9-10 3.5-6 6-7 3.5-6 5-6 3.5-6 6
10-11 7-8 6-7 7
11-12 8-9 7-8 8
12-13 9-10 8-9 9
13-14 10-11 9-10 10
14-15 11-12 10-11 11
15-16 12-13 11-12 12
16-17 13-14 12-13 13
17-19 14-15 13-14 14
19-22 15-16 14-15 15
22-30 16-17 15-16 16

17-18 16-17 17
18-19 17-18 18
19-20 18-19 19
20-21 19-20 20
21-30 20-21 21

21-22 22
22-23 23
23-24 24
24-25 25
25-26 26
26-30 27

Table 6.1: Definitions of wind speed bin and gust amplitude class.

• amplitude ratio;
• B at the gust maximum;
• bin index;
• class index.

The mean and standard deviation have been calculated with the MATLAB comments mean

and std. The second time-derivative at the maximum of each gust (B) has been calculated
by

d2ũ(t0)

dt2
=
ũ(j + 1)− ũ(j) + ũ(j − 1)

∆t2
(6.4)

Where j indicates the position of the gust maximum in the time series and ∆t is the time
step between each data point.
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6.4 Probability density function

For the simulation of non-Gaussian distributed turbulence time series cumulative distribution
functions are required (cf. section 3.3.2). For each measured time series, the cdf has been
estimated with use of the MATLAB function ksdensity. This function uses kernel smooth-
ing based on a Gaussian kernel function to estimate the cdf. The bandwidth of the kernel
smoothing-window is a function of the number of points in the time series and is optimal for
the Gaussian kernel function. For each bin the ensemble average distribution is calculated. To
be able to do the classification, to reconstruct the origin of each distribution and to find each
distribution in the local database, the following properties are stored for each distribution:

• index of the ten-minute time series;
• ten-minute mean;
• ten-minute standard deviation;
• ten-minute skewness;
• ten-minute kurtosis;
• bin index.

For the multi-variate probability density functions presented in chapter 9, the MATLAB
function gmdistribution has been used. This function uses the Expectation Maximization
algorithm to obtain the maximum-likelihood estimates of the parameters in a Gaussian mix-
ture model. The skewness and kurtosis have been calculated with the MATLAB commands
skewness and kurtosis.

6.5 Estimating spectra

Estimating spectral density and autocorrelation functions is necessary to simulate turbulence
with the same characteristics as the turbulence measured on a specific site (cf. section 3.3).
The goal of spectral density estimation is to estimate the spectrum from a finite sequence of
time samples. This is basically done by converting a signal from time domain to frequency
domain by discrete Fourier transforms (cf. section 3.2.1). Many possible methods exist
for estimating the spectral density. A common method is the Welch method of averaged
periodograms, which is computationally one of the most efficient methods [Jokinen et al.,
2000]. Although this method is available in the library of MATLAB, it has been specifically
programmed to meet the needs of estimating atmospheric spectra2. For each ten-minute
time series the spectrum is estimated. The obtained spectra are classified according to the
wind speed bins defined for the gusts (cf. table 6.1). Classification according to classes of
amplitude ratio is avoided by normalizing the spectrum to unit variance. For each bin, an
average spectrum is defined as the ensemble average of all spectra in that bin. The followed
procedure for estimating the spectra is:

1. Removal of the trend and the mean from the original time series u(t);
2. Windowing of the resulting time series ũ(t);

2The purpose of spectral analysis in MATLAB is to identify distinct peaks at certain frequencies. In such
a case, an accurate representation of the total variance is not of great importance. The reason for this can be
found in the history of MATLAB, since it was originally designed for control engineering. For representation
of atmospheric turbulence, the variance of the spectrum is very important. Less or more variance would mean
less or more turbulence than actually exists in the physical wind where the spectrum results from.
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3. For ũ(t) the two-sided periodogram is computed by P = |FFT (U)|2;
4. The resulting periodogram is corrected for the use of a window by dividing P by the

periodogram of the window function;
5. The one-sided periodogram is derived from the two-sided periodogram by P (f) = 2P (f)

for f = ∆f . . . fN , where fN is the Nyquist frequency3;
6. The spectral density is calculated by S = P

∆f ;

7. The spectral density is normalized to unit variance by Sn = S
σ2
ũ

.

The perceptive reader might notice that this is not exactly the Welch method, because no
overlap of windows is used. This is justified by the fact that overlap reduces the frequency
resolution of the resulting spectrum. A reduction in the frequency resolution is not desired,
because for simulating turbulence with the same frequency as the measured data, a spectrum
with the same frequency resolution as the data is required to avoid interpolation (cf. section
3.3). This method of spectrum estimation only differs from the Bartlett method, because of a
window function, which is characteristic for the Welch method [see e.g. Wikipedia, 2009a,d].
The trend removal has been done to prevent distortion of the spectrum by red noise. The
window function4 is used to reduce the problem of leakage which arises from a sharp truncation
of the data sequence. The use of a ten-minute time series for the estimation of the spectrum
is in effect the same as multiplying an infinite time series by a square window function with a
length of ten minutes. The reason for leakage is that the square window function turns on and
off so rapidly. Its Fourier transform therefore has substantial components at high frequencies,
to be able to follow the square window function. The resulting noise in the spectrum is
reduced by multiplying the finite sequence by a smoother window function before conversion
to frequency domain. In this way, the sequence is truncated gradually rather than abruptly.

Since many windows have been developed it is difficult to select one. The principal trade-
off is between making the central peak as narrow as possible versus making the tails of the
distribution fall off as rapidly as possible (in frequency domain). Effective window widths are
of the order of T/2 (T is the total sampling time). In general, the advantages of windows
whose rise and fall time are only fractions of the data length are minor or nonexistent,
and such small window widths should thus be avoided [Press et al., 1992]. To reduce the
effect of unequal weighing of the data by the window, a proper choice of overlapping is
required. Jokinen et al. [2000] shows that for the Blackman and Hann window an overlap of
at least respectively 80% and 66.7% is required to reduce this unequal weighing and resulting
incorrect variance. From the results of this latter paper, the Hann window would be chosen.
But as already explained above, overlap has unwanted effects on the frequency resolution.
To avoid the unequal weighing of the data points and maintain the positive tapering effect
of a window function, the window function is only applied to the initial and final 10% of
the sequence5. This is in agreement with the method for estimating spectra of atmospheric

3It never makes sense to obtain the spectral density of a sampled function outside of the Nyquist interval
since, according to the sampling theorem, there spectral power will have been aliased into the Nyquist inter-
val [see e.g. Press et al., 1992; Stull, 1988]. The sampling theorem indicates that a continuous signal can be
properly sampled, only if it does not contain frequency components above one-half of the sampling rate [Smith,
1997].

4In signal processing, a window function is a function which is zero-valued, or goes sufficiently rapidly
toward zero, outside of a chosen interval. When a data signal is multiplied by the window function, the
product is a zero-valued signal outside the chosen interval. Typical window functions are non-negative smooth
“bell shaped” curves. Selecting a finite time series is the same as multiplying an infinite run of sampled data by
a window function which is unity during sampling time T and zero everywhere else (a square window function).
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Figure 6.2: Example of several window functions.

turbulence described by Stull [1988]. The noise reduction in the spectrum, which is another
advantage of using overlapping window functions is gained by ensemble averaging the spectra
per wind speed bin.

The spectral density function is normalized with the variance of the time series ũ(t)
instead of dividing by the area of the spectrum. In this way it provides a measure of how
well the estimated spectrum represents the variance of the original time series ũ(t). For
example, the average spectrum with a window function applied to the full time series shows a
normalized variance of 1.02, compared to a normalized variance of 1 for the average spectrum
with a window function applied only to the ends of the sequence (which is in agreement with
Jokinen et al. [2000]). In some cases, the time series appeared to be a bit shorter than ten
minutes, these time series are extended with zeros to the required length. To be able to do
the classification and to find back the statistic properties of each spectrum, the following
properties are stored for each spectrum:

• index of the ten-minute time series;
• ten-minute mean;
• ten-minute standard deviation;
• bin index;
• class index.

For each mean spectrum, a least squares fit has been made with Eq. (3.8). This has been
done to represent the real turbulence as much as possible. The estimated spectra show a
smoothing behaviour at the high frequencies, which is due to the estimation procedure and
not a feature of the real turbulence (cf. appendix G). See e.g. Kaimal et al. [1989] for an
interesting reading about the effect of finite sampling on atmospheric spectra.

5This type of window function is not available in the MATLAB library, for the same reasons as why the
standard Welch method from MATLAB could not be used.
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6.6 Deriving autocorrelation functions and spectral moments

For each average spectrum, an autocorrelation function has to be derived for the simulation
of NewGust gusts. This can be done by inverse Fourier transforms, as already shown in
paragraph 3.2.2. In practice, this is basically done in three steps:

1. smoothing the cut-off of the spectrum;
2. applying an inverse Fourier transform;
3. shifting the zero-frequency component to the center of the acf.

The smoothing of the spectrum cut-off is done to prevent oscillatory behaviour of the re-
sulting autocorrelation function. The smoothing is done by multiplying the spectrum with a
window function which gradually goes from one to zero. After this smoothing, the spectrum
is renormalized to its original variance. The effect can be seen in the derivatives of the acf, of
which an example is shown in figure 6.3. For the NewGust expression a double-sided auto-
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Figure 6.3: The effect of smoothing the spectrum on the second derivative of the acf.

correlation function is required. The estimated spectra are one-sided, but in order to derive
a two-sided acf, a two-sided spectrum is required. This requirement is fulfilled by assuming
a symmetric two-sided spectrum S2, which can be constructed from the physical one-sided
spectrum S1 by assuming an artificial double-sided symmetric spectrum. To maintain the
correct variance, the spectral values are multiplied with a factor 1/2 (cf. figure 6.4). This

Figure 6.4: construction of an artificial double sided spectral from a physical one-sided real spectrum.

is allowed, because the spectrum results from a stationary time series. The inverse Fourier
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transform of the resulting double-sided spectrum is taken to obtain the acf. As a result of
the operation shown in figure 6.4, the negative frequency components are on the wrong side
of the acf and should be shifted towards the left hand side of the acf, to get the correct shape
(cf. figure 6.5). The acf is normalized by dividing it by the variance of the spectrum. The

Figure 6.5: Application of a fftshift to obtain a zero-centered autocorrelation function.

equation used to derive the spectral moments from the spectrum is given in section 3.2.3. To
be consistent, the spectrum is conditioned in the same manner as for the derivation of the
acf.



Chapter 7

Simulating turbulence and gusts

The theory regarding simulation of turbulence and gusts is explained in section 3.3 and 4.4.
In this chapter the practical side of programming these simulation methods into MATLAB
is described. Gaussian distributed turbulence time series has been simulated exactly as de-
scribed in section 3.3.1. The required spectra are obtained as described in section 6.5. The
cut-off of the spectrum is done as in section 6.6. This is necessary in order to be consistent
with the derivation of the acf, which is used in the simulation of NewGust.

7.1 Non-Gaussian turbulence

For the simulation of non-Gaussian gusts, a Gaussian distributed turbulence time series, a
target spectral density and a cumulative distribution function is required. The time series
are simulated as described above; target spectrum and cdf are obtained as described in re-
spectively section 6.5 and 6.4. The cdf mapping and iterative procedure for seeking the
underlying Gaussian spectrum are implemented as described in section 3.3.2. Note that for
the cdf-mapping the empirical cdf of the measured and simulated data is used, which requires
interpolation (no theoretical cdf is used). The requirement on the mean square error (mse)
has been set as the average mse between the instantaneous spectra and their corresponding
fitted average spectra. It appeared that this varied from 5.5 – 1.8 for Oak Creek. One to
three iterations are enough to meet the required mean square error. For the simulation of
non-Gaussian time series a normalized spectrum (unit variance) is used. The resulting time
series are thus already normalized to ũn(t).

7.2 NewGust gusts

For the simulation of gusts with the NewGust method, the acf, second and fourth order
spectral moments λ and µ, constraints A and B and a Gaussian distributed turbulence time
series is required. The acf and spectral moments are derived from the estimated spectrum as
described in section 6.6. The turbulent time series has been simulated as described above.
Gusts with a length of the gust time period τ , defined in section 6.3, have been simulated
for all bins and classes defined in table 6.1. A fixed number of gusts has been simulated
for each bin. Constraint A is randomly generated with a distribution corresponding to the
distribution of ũn(t0) of all gusts. Constraint B is derived from A, λ and µ as described in
section 4.4. The integrals mentioned there are solved numerically with use of the MATLAB
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command quadl. Because A is specified in terms of σ and the generated turbulence has unit
variance, the resulting gusts are already normalized to ũn(t).

7.3 Risø gusts

For the simulation of gusts with the Risø method, a non-Gaussian distributed turbulence time
series, a spectral density and autocorrelation function is required. The acf’s are derived from
the estimated spectrum as described in paragraph 6.6. For the transformation function, the
cdf-mapping transformation has been used (cf. section 3.3.2). Only the mean non-Gaussian
gusts of each bin is simulated. The amplitude vc has been taken the same as for the class
wherefore the comparison of measured and NewGust gusts has been done (cf. figure 9.10).
Because vc is specified in terms of σ and the generated turbulence has unit variance, the
resulting gusts are already normalized to ũn(t).



Chapter 8

Calculating the load response

In section 4.6 a short introduction about loads resulting from wind gusts was given. In order
to validate the assumption of Gaussian distributed turbulence, it is necessary to compare the
load responses resulting from measured, non-Gaussian wind speed gusts and with NewGust
simulated wind speed gusts. Because the measured time series are for one point in space, the
loads are calculated with a uniform flow over the rotor area. This is done with a linearized
model of the wind turbine. The wind turbine for which the loads are simulated is the “NREL
offshore 5-MW baseline wind turbine”.

8.1 Description of wind turbine

The “NREL offshore 5-MW baseline wind turbine” is specified in Jonkman et al. [2009]. This
wind turbine was developed by NREL to be a representative utility-scale turbine for research,
to standardize baseline offshore wind turbine specifications. It is a conventional three-bladed
upwind variable-speed variable blade-pitch-to-feather-controlled turbine. The properties of
this turbine taken into account for the simulation are given in table 8.1. Note that the tip
speed ratio and rotor collective blade-pitch at peak power coefficient has been set according to
the Cp-lambda curve obtained from the simplified model. The aerodynamic blade properties
are taken from a custom table of lift and drag coefficients for one airfoil type. The blade is
constructed according to the regions specified in Jonkman et al. [2009, table 3-1].

8.2 Model for load calculations

The calculation of load responses to a wind gust is done with a simulation of the loads based
on the blade element - momentum method. Simplifications made in this code are:

• uniform flow (i.e. wind speed constant over rotor plane; no yawed flow, windshear or
tower shadow);

• no wake rotation (i.e. no tangential induction factor);
• no blade tip loss factor;
• small flap angle;
• gravity is neglected;
• the dynamics of all subsystem are reduced to ’mass-spring-damper’ systems.
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The transfer function of the wind turbine is determined by linearizing the equations of motion
of the following states of the wind turbine:

• Flap angle of rotor blade;
• Flap angular velocity of rotor blade;
• Tower top displacement;
• Tower top speed;
• Rotor angular velocity;
• Torsion angle transmission;
• Torsion angular velocity transmission.

The MATLAB function lsim is used to simulate the response of the discrete linear systems
to arbitrary inputs specified in the transfer function. In figure 8.1 a diagram of the procedure
is shown. The loads are calculated for the aerodynamic flap moment. The blade pitch comes

Figure 8.1: Diagram for the calculation of the load response

into action if the wind speed exceeds its rated value. The applied control on the blade pitch
has been visualized in figure 8.1 and a description can be found in appendix A. The inputs
and outputs of the transfer function of the wind turbine are:

• inputs of wind turbine:

– blade pitch angle;
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– undisturbed wind speed.

• outputs of wind turbine:

– axial force;
– aerodynamic flap moment;
– aerodynamic rotor torque;
– generator power;
– blade pitch angle;
– undisturbed wind speed.

The transfer function is determined separately for each mean wind speed bin. In case the
wind speed is e.g 8 m/s, and a wind gust of 4 m/s happens, no pitch control is applied,
because the transfer function depends on the mean wind speed and does not change during
the calculation of one time series. This implies that the load response calculated for gusts in
the bin-classes with gusts exceeding the rated wind speed are not representative for reality.
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Overall turbine properties

rating 5 MW
rotor orientation, configuration upwind, 3 blades
drivetrain high speed, multiple stage gearbox
rotor, hub diameter 126 m, 3 m
hub height 90
cut-in, rated, cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s
cut-in, rated rotor speed 6.9 rpm, 12.1 rpm
rated tip speed 80 m/s
rotor, nacelle, tower mass 110000 kg, 240000 kg, 347460 kg

Blade properties

length 61.5 m
overall (integrated) mass 17740 kg
second mass moment of inertia w.r.t. root 11776047 kgm2

first mass moment of inertia w.r.t. root 363231 kgm2

Hub and nacelle properties

critical damping ratio 2%

Drivetrain properties

rated generator speed 1173.7 rpm
driveshaft critical structural-damping ratio 5%
gearbox ratio 97:1
electrical generator efficiency 94.4%
generator inertia about high-speed shaft 534116 kgm2

Tower properties

critical structural-damping ratio 1%

Baseline control system properties

peak power coefficient 0.482
tip-speed ratio at peak power coeff. 7.55
rotor collective blade-pitch angle at peak power
coeff.

0.0◦

Full-system natural frequencies

first tower fore-after 0.32 Hz
first blade asymmetric flapwise pitch 0.67 Hz

Table 8.1: Properties for the NREL 5 MW baseline wind turbine according to Jonkman et al. [2009].



Chapter 9

Results

In the preceding chapters, the practice of each step taken in the analysis of the data for
the validation of NewGust has been described. In this chapter the results from the data
analysis are described and explained for (1) the spectral density functions, (2) the cumulative
distribution functions, (3) statistical properties of the time series, (4) the evolution of the
mean gust shape and (5) the resemblance of the mean gusts and their resulting load responses.
Figures of all different spectra, autocorrelation functions, cumulative density functions, gusts
and load responses can be found in appendix J.

9.1 Spectral density function

An example of an estimated spectrum is given in figure 9.1. Due to the cut-off of each spectrum
at the Nyquist frequency, each spectrum shows a smooth round-off at the high frequency tail.
If the spectrum does not show this round-off it points towards aliasing [Smith, 1997]. This
round-off behavior of the spectrum is not an effect from something existing into physical
turbulence. It should therefore not be taken into account when simulating gusts. Hence,
a least squares fit has been made with eq. (3.8) for each average spectrum. It appeared
that the resulting values for G and H exactly matches the Kaimal spectrum (eq. 3.9). The
ratio G/H is indeed1 equal to 4/6. In figure 9.2 the parameter G has been plotted against
the mean wind speed. The plot clearly shows that the spectra are the same for all three
sites and equal to the Kaimal spectrum. This is in agreement with the IEC standard, where
Λũ = min(0.678zhub, 20.3). As the hub heights are 49, 50 and 80 meter, this gives in each
case Lũ = 8.1Λũ = 164.43. The parameter G = 4Lũ/ū and thus scales with the mean wind
speed. In section 3.2.1 (footnote 6) it has been shown that G equals the integral time scale
T = 4Lũ/ū. In Kaimal et al. [1989] it is shown that in order to obtain a correct spectrum
from finite sampled time series with length T , it is required that T > 10Tm, where Tm ∼= T
(compare Kaimal et al. [1989, eq. (18)] with eq. (3.9)). In figure 9.3 this requirement has
been depicted along the mean wind speed. The used time period of 600 seconds is clearly too
short for the wind speeds below 11 m/s, which, according to Kaimal et al. [1989], will result
in an overestimation of the spectrum of approximately 10 – 50%.

1The ratio 2/3 comes from the fact that σ2
ũ =

∫∞
−∞ Sũ(f)df . For the one-sided spectrum in eq. (3.8), with

α = 1, β = 5/3 and γ = 1,
∫∞

0
Sũ(f)df = 3G

2H
σ2
ũ. This gives that 3G

2H
= 1 and G/H = 2/3. This result is in

agreement with Tieleman [1995, eq. 20] and required for the equality σ2
ũ =

∫∞
0
Sũ(f)df to be true. Finally,

because G = 4Lũ/ū, H = 3
2
G = 6Lũ/ū.
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Figure 9.1: Example of an estimated spectrum and the corresponding theoretical fit.
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G
[s
]

 

 

Toboel

Horns Rev

Oak Creek

Kaimal

Figure 9.2: Spectrum parameter G, obtained from a fit to the mean spectra.

Despite the applied selection criteria described in section 6.2, several spectra show dis-
tortions at high frequencies (cf. appendix G). It appeared to be impossible to remove these
distortions, but the fitted spectra are the same as the theoretical ones and can thus be used
for the simulations.

The dependence of the spectral moments on the mean wind speed is given in figure 9.4.
Note that µ is much larger than λ, which has implications on the NewGust expression, as
will be explained in section 9.4. The spectral moments depicted in figure 9.4 are normalized
as explained in section 3.2.3. The difference in the spectral moments between the sites is
explained by the different sampling frequencies. The sampling frequency defines for which
frequencies the spectrum is defined. Hence, this plot clearly shows the dependence of the
spectral moments on the frequency (cf. also appendix E).
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to
ta
l
sa
m
p
li
n
g
ti
m
e
T

[s
]

 

 

Required minimum

Actually used

Figure 9.3: Minimum required total sampling time in order to obtain a correct spectrum description.
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Figure 9.4: Second and fourth order spectral moment. Obtained from the fitted spectra.

9.2 Cumulative density function

An example of an empirical cdf is given in figure 9.5. Both the average empirical cdf of the
measured and the simulated non-Gaussian time series is plotted (no fit to a theoretical cdf
is used, cf. section 7.1). The figure shows that the resemblance of the cdf resulting from
the non-Gaussian simulation is reasonably good. The cdf’s show that the turbulent part of
the wind speed ranges from ∼ -4 – 4 m/s for all three sites (cf. appendix J). The effect of
cdf-mapping on a Gaussian time series depends on the difference between the Gaussian and
measured cdf. An example is given in figure 3.10.

9.3 Statistical properties of time series and gusts

The mean skewness and kurtosis for each site are given in table 9.1. The skewness and kurtosis
for each time series is given for each site in figure 9.6. A fit has been made between skewness
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Figure 9.5: Example of a mean cdf estimated from the measured and the corresponding simulated
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almost perfect.

and kurtosis with a second order polynomial, which shows that there is a relation between the
skewness and kurtosis. The deviation of the statistical properties from being Gaussian is not
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Figure 9.6: Relation between skewness and kurtosis for all three sites, including a second order
polynomial fit.

so large for all three sites. Horns Rev shows perfect Gaussian kurtosis. Oak Creek shows the
highest deviation from pure Gaussian skewness and kurtosis. For this site the non-Gaussian
simulation has been carried out. That Oak Creek shows the highest non-Gaussian behavior
is not strange, because it has a much more complex terrain surrounding the measurement
mast (cf. section 3.2.4 and 6.1). For all sites the mean skewness is negative for almost all
mean wind speeds. This points towards a higher probability for wind speeds lower than the
mean wind speed, compared to what would be expected from the Gaussian distribution (cf.
figure 3.4). The skewness is in the range given in section 3.2.4. The higher kurtosis of Oak
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Creek tells that the mean wind speed occurs more often than expected from the Gaussian
distribution. The opposite is true for Toboel.

bin Toboel Horns Rev Oak Creek
index S K S K S K
1 0.07 2.88 0.06 2.91 0.37 2.90
2 -0.07 2.91 0.02 3.04 0.29 2.95
3 -0.10 2.91 -0.01 3.03 0.22 2.86
4 -0.11 2.85 -0.02 3.01 0.15 3.66
5 -0.11 2.84 -0.05 3.04 0.04 2.93
6 -0.11 2.80 -0.07 3.05 -0.08 2.93
7 -0.04 2.78 -0.11 3.05 -0.18 2.97
8 -0.06 2.76 -0.13 3.06 -0.27 3.12
9 -0.06 2.77 -0.13 3.06 -0.36 3.25
10 -0.06 2.73 -0.15 3.07 -0.45 3.24
11 -0.05 2.77 -0.15 3.05 -0.47 3.46
12 -0.05 2.74 -0.14 3.00 -0.59 3.96
13 -0.01 2.70 -0.12 3.00 -0.53 3.82
14 -0.00 2.74 -0.12 2.99 -0.51 3.73
15 0.01 2.73 -0.15 2.97 -0.53 3.83
16 0.03 2.76 -0.16 2.95 -0.41 3.61
17 -0.16 2.92 -0.44 3.72
18 -0.11 2.97 -0.44 3.66
19 -0.14 2.87 -0.48 3.74
20 -0.18 2.95 -0.46 3.70
21 -0.20 2.97 -0.42 3.50
22 -0.46 3.54
23 -0.47 3.58
24 -0.51 3.70
25 -0.39 3.34
26 -0.38 3.16
27 -0.50 3.27
mean -0.05 2.79 -0.11 2.98 -0.31 3.41

Table 9.1: Mean skewness and kurtosis for each measurement site.

9.3.1 Probability density function of mean wind speeds

In figure 9.7 the mean wind speed probability f(ū) has been plotted. All ten-minute mean
wind speeds have been used to obtain the plot. A fit has been made with the two-parameter
Weibull distribution. The coefficients c and k of the Weibull distribution are obtained from a
maximum likelihood estimate using the MATLAB function wblfit. The fit with the Weibull
distribution is only appropriate for Horns Rev. From a search on the internet, comparable
values for c and k were found for Horns Rev [ū = 9.5 m/s, c = 10.71 and k = 2.33; Sommer,
2002, table 4.1]. To get a good estimate of the wind climate at a certain location, a data set
which is more equally divided over a year should be used for the fit. See section 6.1 for the
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Figure 9.7: Probability density f(ū) of mean wind speed occurrence in the used time series for all
three sites.

time span of the data used for the fits.

9.3.2 Statistics of A

In figure 9.8, the probability of gust amplitude occurrence, f(ū, A) has been visualized for
all three sites. The fit to the data has been done in accordance with section 6.4. The non-
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Figure 9.8: Probability of gust occurrence f(ū, A) for all three sites (ũn(t0) = A).

Gaussian behavior at Oak Creek can clearly be seen in the multi-modal probability density
function. The relative gust amplitude is bound by ∼ 5 – 6 times the standard deviation. The
plots also show that the probability of gusts is highest for gusts with a relative amplitude of
∼ 2.5. The wind speed probability f(ū) =

∫∞
−∞ f(ū, A)dA) can clearly be observed in these

plots.

9.3.3 Statistics of B

In figure 9.9 the pdf of B is given for all three sites. There is a clear difference between the
pdf of B obtained from the measurements and the pdf derived by Bierbooms [2009a] based
on the assumption of Gaussian distributed turbulence. The acceleration of the wind speed
(B) is indeed bounded by zero. However, the measured B shows a much larger probability of
high values compared to the cdf’s predicted by the Gaussian theory of B. The difference in B
is in agreement with observations on the mean gust shape in section 9.4. This suggests that
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in order to obtain correct gusts, the statistics of B should be non-Gaussian. The differences
between the three sites are explained by the differences in the spectral moments (cf. figure
9.4), which is where the theoretical pdf of B is based upon. It should be investigated if the
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ū[m/s]

p
ro
b
a
b
il
it
y
d
en
si
ty

[-
]

(a) F (B, ū) for measured gusts
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(b) F (B, ū) for NewGust gusts derived from Gaussian theory

Figure 9.9: Comparison of cumulative density of wind speed acceleration F (B, ū) for all three sites
for measured and NewGust gusts

measured statistics of B would give better results when used for the simulation of NewGust.
In order to do this, NewGust has been simulated for Oak Creek, with the measured cdf as
input for B. The results are displayed in appendix J. The difference with the NewGust gusts
with theoretical B is only minor and disappears for higher A. In section 9.4 the mean gust
shape resulting from the NewGust expression is further analysed.

9.3.4 Correlation between statistical parameters

In table 9.2 the correlation coefficient between several statistical parameters is given. The
correlation coefficient ρ has been calculated with the MATLAB function corrcoef.

ρ(x, y) =
C(x, y)√

C(x, x)C(y, y)
(9.1)

C(x, y) = 〈(x− x̄) (y − ȳ)〉 (9.2)

Where C(x, y) is the covariance function of x and y. The MATLAB function also calculates the
significance of each correlation coefficient. Although the value of the correlations are different,
each correlation is significant, except the ones indicated with a bar. The table clearly shows
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I ū σũ S K A B

Toboel

I 1.00 0.20 0.62 0.12 -0.36 0.13 -0.20
ū 0.20 1.00 0.88 0.05 -0.12 0.02 -0.70
σũ 0.62 0.88 1.00 0.10 -0.28 -0.05 -0.65
S 0.12 0.05 0.10 1.00 -0.15 0.15 -0.08
K -0.36 -0.12 -0.28 -0.15 1.00 0.05 0.10
A 0.13 0.02 -0.05 0.15 0.05 1.00 -0.14
B -0.20 -0.70 -0.65 -0.08 0.10 -0.14 1.00

Horns Rev

I 1.00 -0.07 0.54 0.15 -0.05 -0.16 -0.25
ū -0.07 1.00 0.73 -0.12 - - -0.41
σũ 0.54 0.73 1.00 - -0.05 -0.12 -0.50
S 0.15 -0.12 - 1.00 -0.24 0.16 -0.02
K -0.05 - -0.05 -0.24 1.00 0.07 0.03
A -0.16 - -0.12 0.16 0.07 1.00 -0.17
B -0.25 -0.41 -0.50 -0.02 0.03 -0.17 1.00

Oak Creek

I 1.00 -0.72 0.10 0.49 -0.05 0.05 -0.03
ū -0.72 1.00 0.37 -0.38 0.04 -0.03 -0.21
σũ 0.10 0.37 1.00 - -0.06 -0.05 -0.40
S 0.49 -0.38 - 1.00 0.10 0.12 -0.02
K -0.05 0.04 -0.06 0.10 1.00 - 0.02
A 0.05 -0.03 -0.05 0.12 - 1.00 -0.21
B -0.03 -0.21 -0.40 -0.02 0.02 -0.21 1.00

Table 9.2: Correlation between several statistical properties of the time series

that the correlation between the turbulence intensity and the standard deviation and mean
wind speed depends on the mean skewness (cf. table 9.1). With increasing negative mean
skewness, the correlation between skewness and turbulence intensity increases. At the same
time, the correlation between standard deviation and turbulence intensity decreases and the
correlation between turbulence intensity and the mean wind speed goes from a positive to an
increasing negative value. Hence, for large negative mean skewness, the turbulence intensity
increases if the mean wind speed decreases. This points towards the application of the rapid
distortion theory [Burton et al., 2008, Ch. 2.11]. Another interesting correlation is the one
between A and B as well as the one between B and ū and σũ, where again the mean skewness
and kurtosis are of influence. In section 4.6 it was said that if for random variables z it holds
that 〈g1(z1) · · · gn(zn)〉 equals 〈g1(z1)〉 · · · 〈gn(zn)〉, then they are independent. This holds well
for the variables ū and A, which justifies to say that they are independent.

9.4 Evolution of the mean gust shape with the wind speed

In figure 9.10 the evolution of the NewGust mean gust shape has been visualized. The
evolution of the mean gust shape as suggested by the NewGust expression is clearly not
present in the measured mean gust shapes. The measured mean gusts in general have a higher
acceleration towards the peak value as suggested by the NewGust expression. The deviation
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Figure 9.10: Evolution of the mean NewGust (left) and mean measured (right) gust shape with
mean wind speed for Oak Creek (gust amplitude class 4 is depicted). The same is
observed for the other sites (cf. appendix J). The mean NewGust shapes are obtained
from ensemble averages of the simulated NewGust gusts.

between the NewGust and measured mean gust shape becomes minor for the higher mean
wind speeds. This is the range of mean wind speeds and relative amplitude that NewGust
was developed for. In figure 9.10, B is the acceleration of the wind speed at the peak value.
Note that the acceleration of the wind towards the peak value is not equal to B.

From the plot it is clear that the acceleration of the wind is much higher for the measured
as for the NewGust gusts. These accelerations can, for example, be quantified by the ratio
∆ũn/∆t for ten seconds before the maximum. The attentive reader might already notice
that this relates to the velocity increment detection method described in section 4.3.1. This
method is also used in the papers dealing with non-Gaussian turbulence mentioned in section
3.2.4. For small time lags a much higher than expected change in turbulent wind speed is
found. This can also be seen in the mean gust shapes in figure 9.10. This would hence mean
that the NewGust gust does not resemble the physical gust. The question to be answered is
if this is a feature of Gaussian gusts or just belongs only to NewGust gusts.

As shown in section 9.1, the discrete spectral moments are site dependent. The effect of
the spectral moments on the NewGust shape is reflected in the three factors in the mean
gust shape (eq. 4.18). The evolution of these factors with respect to the mean wind speed is
given in figure 9.11. From this graph it becomes clear that the effect of B is small, unless B is
large, which is generally not the case as shown in section 9.3.3. Also the effect of adding the
second derivative in the term belonging to A is very small. Therefore, it can be concluded
that the NewGust expression actually is a scaling of the normalized acf. In appendix J the acf
resulting from the spectrum can be found. The mean gust shape indeed very much resembles
the normalized acf.

In this context the evolution of the mean NewGust gust becomes natural, because at lower
mean wind speed, the correlation -represented by the acf- will last longer. This causes the
acf and hence the gust to have a lower acceleration towards the peak value compared to the
physical gusts.
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Figure 9.11: Evolution of the three different factors in the mean NewGust expression depending on
the spectral moments

Although the factors which determine the influence of B in the NewGust expression are
small, the influence of B can still be observed in the mean gust shapes for the lower mean wind
speeds in appendix J. The difference between the mean gust shape resulting from eq. (4.12)
and from eq. (4.20) is only minor and indeed disappears at higher relative gust amplitudes
(The NewGust expression from eq. 4.20 is the asymptotic form of eq. 4.12). The same is
observed when the measured cdf of B is used to simulate NewGust gusts. The influence of B
can thus be neglected.

The difference with measured wind speed gusts becomes much smaller at higher mean
wind speeds. This is explained by the autocorrelation function, which represents a much
shorter temporal correlation for high mean wind speeds. It hence seems that the NewGust
expression for higher mean wind speed, applies also to the gusts in wind with a lower velocity.
This shows the agreement with the explanation of intermittency (gusts) in turbulence given
in section 3.2.4, which said that gusts are part of structures with a much higher velocity than
the surrounding turbulence. The Gaussian theory for simulating gusts based upon the acf of
turbulence is hence insufficient for the lower mean wind speeds.

From section 9.5 it appears that the resemblance between load responses resulting from
several types of gusts is better if the different gust shapes show a better resemblance. There-
fore, the theoretical mean gust shape based on non-Gaussian theory (cf. section 4.5) was
investigated. Only the evolution of the mean gust shape resulting from the non-Gaussian
theory has been simulated (in accordance to section 7.3). The result is shown in figure 9.12.
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From the graph it becomes clear that the transformation to non-Gaussian mean gusts does
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Figure 9.12: Evolution of the mean Risø (left) and mean measured (right) gust shape with mean
wind speed for Oak Creek (gust amplitude class 4 is depicted). The mean Risø gust is
obtained from eq. (4.24).

not change the scaling behavior of the theoretical mean gust shape. However, another trans-
formation function would probably give other results.

9.5 Mean gust and load response

An example of the mean gust and load response shape for the investigated gust types is given
in figure 9.13. In order to be able to quantitatively compare all the mean gust and load
shapes, the mean square error (mse) has been calculated for each site, between all gust types.

e =
1

τ

τ∑
t=1

(ũmeasured(t)− ũNewGust(t))
2 (9.3)

For the calculation of the mse from the load responses, the loads are divided by a factor 106,
to get a meaningful mse. The results of this comparison are given in the figures 9.14a, 9.14b,
9.14c, 9.15, 9.16, 9.17 and 9.18 and tables J.1, J.2 and J.3 and are discussed below.

Resemblance between measured and NewGust gusts

As can be seen from the graphs, the resemblance between the measured and NewGust mean
gust shape is reasonably good for a large range of mean wind speeds and relative gust am-
plitudes. The higher mse at both edges of the normalized amplitude range is due to the low
number of gusts found for these amplitudes, as well as the larger class width. The worse
resemblance at low mean wind speeds can be explained by the sometimes large bin and class
width. More important is that the measured gusts at low mean wind speed are actually
higher amplitude gusts than expected from their classification. This is because they start
at a negative mean wind speed. Hence, the absolute amplitude of the gusts is much higher
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Figure 9.13: Example of a mean gust (left) and load response (right) shape for all simulated gust
types

than the class it belongs to. In lower mean wind speed turbulence it thus seems that the
wind speed has to go down before a gust is possible; as if the structure takes energy from the
surrounding turbulence in order to exist.

The resemblance of the two mean load shapes shows a different character. For most of the
bin-class combinations, the resemblance is quite good. However, between ∼ 4 – 13 m/s the
resemblance is much worse. This behavior is partly related to the bad resemblance of both
gust types and partly to the cut-in and rated wind speed and thus to the behavior of the
turbine pitch-control. As soon as the pitch becomes active, the difference between the load
responses of both gust types disappears. The high peak in the 11 – 12 m/s bin is caused by
the calculation of the loads from NewGust gusts, because one transfer function is used for the
whole bin; whereas for the calculation of the loads from measured gusts a transfer function
depending on the mean wind speed of each time series is used.

Resemblance between non-Gaussian, and measured gust

From the graph in figure 9.15 it can be seen that the resemblance between the measured and
the non-Gaussian gusts is almost perfect. This can be expected, because both the spectral
density function and the distribution function are resolved in the simulation of non-Gaussian
gusts. The worse resemblance of the load responses between 13 – 5 m/s are observed even in
this case.

Resemblance between non-Gaussian and NewGust gusts

From the graph in figure 9.15 it can be seen that the resemblance between the NewGust
and the non-Gaussian gusts is almost equal to the resemblance between the measured and
the NewGust gusts. This is as expected, due to the almost perfect resemblance between the
measured and the non-Gaussian gusts.
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Resemblance between NewGust2 and NewGust gusts

From the graph in figure 9.17 it can be seen that there is almost no difference between the
NewGust2 and the NewGust gusts, which is by no means surprising.

Resemblance between NewGust2 and measured gusts

From the graph in figure 9.18 it can be seen that the resemblance between the NewGust2
and the measured gusts is equal to the resemblance between the measured and the NewGust
gusts. This is as expected, because of the almost perfect resemblance between the NewGust2
and the NewGust gusts.
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(a) Toboel, left: mean gust, right: mean load response
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ū[m/s]

resemblance of measured and NewGust load response
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(b) Horns Rev, left: mean gust, right: mean load response
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ũn(t0) [-]

m
ea
n
sq
u
a
re

er
ro
r
[-
]

(c) Oak Creek, left: mean gust, right: mean load response

Figure 9.14: Graphical representation of the mse comparison between measured and NewGust gusts
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Figure 9.15: Graphical representation of the mse comparison for Oak Creek between measured and
non-Gaussian gusts, left: mean gust, right: mean load response.
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Figure 9.16: Graphical representation of the mse comparison for Oak Creek between NewGust and
non-Gaussian gusts, left: mean gust, right: mean load response.
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Figure 9.17: Graphical representation of the mse comparison for Hornsrev between NewGust2 and
NewGust gusts, left: mean gust, right: mean load response.
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Figure 9.18: Graphical representation of the mse comparison for Hornsrev between NewGust2 and
measured gusts, left: mean gust, right: mean load response.



Chapter 10

Extremes

The final goal behind analyzing gusts is to find the gust leading to the most extreme load
response in the life time of a wind turbine. In this chapter it is investigated (1) which gusts lead
to the extreme load response of the wind turbine, (2) how the 50-years’ load response compares
for several calculation methods and (3) what the influence is of non-Gaussian turbulence on
the distribution of extreme loads.

10.1 Extreme load response

From an investigation of the load response of a pitch-regulated wind turbine to extreme rise
time gusts done by Bierbooms [2005], the question is postulated which gust type leads to the
extreme loading of pitch-regulated wind turbines. In an attempt to answer this question, the
load response has been calculated for all time series from all three sites described in section
6.1. From each load response time series l(t), the load response around the extreme response
l(t0) is stored together with the underlying part of the wind speed time series.

l(t0) = max(l(t)), t ∈ 0 . . . 600s (10.1)

lmax(t) = l(t), t ∈ t0 ± 30s (10.2)

ũmax(t) = ũ(t), t ∈ t0 ± 30s (10.3)

For each site, all load responses and gusts are normalized and classified as described in section
6.3. Of course, the used classes for the loads differ from the ones given there. The extreme
shapes are calculated as the ensemble average of all gusts belonging to a load response in
a certain bin-class. In appendix K graphs of all the extreme mean gust and load response
shapes are given.

10.1.1 Extreme gust shape

Figure 10.1 shows the development of the extreme gust shape with the mean wind speed,
which is equal for all three sites. The graph clearly shows that the extreme gust shape
changes from a gust with extreme amplitude to a gust with extreme rise time1 as soon the
the pitch becomes active. The gusts leading to the extreme load response can thus be divided
in two regions: (1) pitch inactive and (2) pitch active. Within these two regions, the extreme
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mean gust shape shows only minor changes with increasing mean wind speed. The gusts in
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ũ
n
(t

0
)
[-
]

time [s]

bin: 19-20 m/s

−20 0 20
−3

−2

−1

0

1

ũ
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Figure 10.1: Evolution of the average extreme gust shape with the mean wind speed. The results
shown here are for Horns Rev, but are similar for Oak Creek and Toboel. The extremes
are for load response amplitude class 6 (cf. appendix K)

region 2 are equal to the gust leading to the extreme load response of a pitch-regulated wind
turbine as predicted by Nielsen et al. [2004, figure 47]. Note that the gust evolution with the
mean wind speed as depicted in figure 10.1 is valid for one load response class. For the higher
load amplitude classes, the evolution is the same, although the amplitudes are different (cf.
appendix K). The mean gust shape obtained here is quite close to the theoretical extreme rise
time gust developed by Bierbooms [2006]. The difference lies in the reduction of the wind
speed after the velocity jump. This part of the gust, however, is not so important, as the
extreme load response will occur during the jump. The part after the jump hence has no
effect on the extreme load response. The extreme gusts all lack symmetry; and in Bierbooms
[2007] an expression is given to derive the gust leading to an extreme in the load response.
This expression is based upon a combination of the cross- and autocorrelation function of
wind speed and load response, which can give rise to non-symmetric extreme gusts.

1Extreme amplitude gusts are characterized by their extreme amplitude (first three gusts in figure 10.1),
whereas extreme rise time gusts are characterized by their extreme rise time (all other gusts in figure 10.1).
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10.1.2 Wind speed range with maximum loads

In figure 10.2 the development of the gust and load amplitude are shown for one load ampli-
tude class. It is interesting to see that even within the width of a load amplitude class the
highest load responses are indeed not obtained for the extreme rise time gust, but for extreme
amplitude gusts in turbulence with moderate mean wind speeds (∼ 9 – 12 m/s). This is the
transition between region 1 and 2. From comparison with figure 4.7, the same behavior can
be observed. The amplitude of the mean gust leading to the extreme load response in this
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Figure 10.2: Evolution of the average extreme gust and load amplitude with the mean wind speed.
The results shown here are for Horns Rev, but are similar for Oak Creek and Toboel.
The extremes are for load response amplitude class 6 (cf. appendix K)

class is decreasing with the mean wind speed. This is logical, because the loads are increasing
with mean wind speed and hence a smaller gust is required to obtain the same extreme load
response amplitude.

In figure 10.3 the evolution of the extreme load response with the mean wind speed is
given for all time series of each site. The plot shows that the highest load response from
gusts occur in the transition between region 1 and 2, as was already noticed before. In
figure 4.7 the evolution of the thrust with the mean wind speed is plotted. The extreme
loads are added to these mean ones, which shows that the extreme really happens in the
transition between region 1 and 2. This observation explains why negative amplitude gusts
in region 2 are most dangerous for pitch-regulated wind turbines, because they lead to a load
increase. This in contrast with positive amplitude gusts in region 2, which lead to a decreasing
load. When observing the results in appendix K it is noticed that the largest negative gusts
(which also cause high loads) are most present for Oak Creek. This site also has the largest
negative skewness. Negative skewness indicates that values smaller than the mean one are
more often observed as expected from Gaussian theory. This points towards more frequent
(large) negative excursions in the wind speed. This can indeed be observed from the time
series of Oak Creek (see figure 10.4). For these type of wind regimes, extreme loads will thus
be more frequent, as can be observed in figure 10.3.
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Figure 10.3: Evolution of the extreme load response with the mean wind speed. The extreme is
taken as the maximum in a time series of 600 seconds.

10.1.3 50-years’ extreme load response

In section 2.4 it was explained that for wind turbine design the 50-years’ extreme value is used
as the maximum value a wind turbine has to deal with during its life time. In this section
the 50-years’ extreme load response will be derived from measurements, Gaussian theory and
conditional simulations with NewGust and LoadGust. The results will be compared with
each other and with the results from the previous section. It has to be noted that the values
obtained here do not represent the values which will be encountered in reality. Here, only a
comparison between different methods has been made, with many simplifications included.
In appendix E the methods applied here have been checked for Gaussian turbulence which
should then compare with Gaussian theory.

50-years’ extreme using measurements

The measured ten-minute maximum load responses shown in figure 10.3 can be used to derive
a distribution function of the maximum loads. The theory for this is explained in section 2.4.
By assuming that below and above a certain wind speed the maximum loads do not contribute
to the upper tail of the cdf, a limited range of wind speeds can be used. As a consequence of
the amount of data available for the higher and lower wind speeds, a range of 4 – 17, 18 – 20
m/s is chosen for Toboel, a range of 4 – 20 m/s for Horns Rev and 4 – 23 m/s for Oak Creek.
For the density f(ū), results from section 9.3.1 are used. In order to obtain good results, a
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Figure 10.4: Turbulence time series from Oak Creek including a large negative gust. This phe-
nomenon causes the extreme load response in the time series.

small enough bin width should be taken. In this case, that is a bin width of 0.2 m/s because
of the limited amount of time series.

Because the empirical cdf exists only for a limited range of load responses, a fit with some
theoretical extreme value distribution is required for extrapolation. There are many possible
extreme value distributions, but here only a generalized extreme value (GEV) fit has been
used (gevfit in MATLAB). In figure 10.5 an example is given of an empirical cdf and its fit.
For the weighted summation of all conditional cdf’s (eq. 2.14) an inter- extrapolation scheme
has been used, which uses the empirical cdf up to the 90th percentile and the GEV fit for
above the 90th percentile.

In figure 10.6 the conditional distributions F (lmax|ū) for each mean wind speed are shown
for Toboel (with a wind speed bin width of 1 m/s). The thick line is the cdf F (lmax), obtained
via a weighed summation, using eq. (2.14). The lower plot shows the tail of the cdf, with the
horizontal line representing the 50-years’ return period. Note that the cdf F (lmax) is shifted
upwards to one, to compensate for the probability of wind speeds outside the range taken
into account. The graphs for Horns Rev and Oak Creek are similar.
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Figure 10.5: Example of an emipirical cdf and its GEV fit.

In order to find out the influence of the different wind speeds on the average results, a
comparison was made with the other methods for the wind speeds ū =6, 11 and 18 m/s. The
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Figure 10.6: Extreme value distribution for Toboel. For the picture a wind speed bin width of 1
m/s has been taken. The upper graph displays the conditional cdf F (lmax|ū) and total
cdf F (lmax). The lower graph shows the tail of F (lmax). The 50-years’ return period
is indicated by the red line. The corresponding 50-years’ extreme load response is 7.00
MNm.

resulting 50-years’ extreme load responses are given in table 10.1 (assuming a probability of
one for each mean wind speed).

50-years’ extreme using Gaussian theory

In section 2.4 a theoretical expression (Rice equation) has been given to obtain the 50-years’
response level for a Gaussian random variable. This gives the possibility to compare the
extreme values obtained from the measurements with a theoretical value for a Gaussian
random variable. The second order spectral moment µf,2 and standard deviation of the loads
σl are derived from load calculations for the measured time series with a mean wind speed
given in the former paragraph. To obtain the weighed average, the Rice cdf has been used.
In table 10.1 the results are shown.

50-years’ extreme using conditional simulation

The NewGust method for simulating gusts can be used to derive a distribution function of
the maximum loads. The theory for this is explained in section 4.6. The simulations to
obtain F (lmax|ū, A) have been carried out for the same wind speed range as used for the
measurements and an amplitude range of 1 – 7. For the density f(ū, A), results from section
9.3.2 are used. The inter- and extrapolation of the cdf have been done in exactly the same
way as for the empirical cdf resulting from measurements.

The expression given in Bierbooms [2007] to derive a gust leading to an extreme in the
load response can also be used to derive the distribution function of the maximum loads (cf.
section 4.6). Because the load response l(t) is defined by a linear system, eq. (4.33) can be
used, which has been denoted by LoadGust. The simulations have been carried out with the
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same wind speed and amplitude range as simulated with the NewGust method. The results
can be found in table 10.1.

Comparison of 50-years’ extreme values

In table 10.1 the results for the 50-years’ extreme load response are given for the different
methods. There are clear differences between the 50-years’ values of the different methods.

Toboel Horns Rev Oak Creek

weighed average

l50 → meas. [MNm] 8.86 10.38 28.03
l50 → Rice cdf [MNm] 9.66 8.54 8.95

nr. of meas. t-s 11825 38147 11700
l50 → cond. sim. with NewGust [MNm] 8.86 11.47 10.68
l50 → cond. sim. with LoadGust [MNm] 12.21 12.67 13.19

nr. of sim. max. 137800 137800 137800∑
f(ū) 0.99 0.94 0.79

ū = 6±0.1 m/s

l50 → meas. [MNm] 4.25 4.36 5.00
l50 → Rice eq. [MNm] 5.06 5.11 5.34

nr. of meas. t-s 324 636 149
l50 → cond. sim. with NewGust [MNm] 5.13 6.38 6.28
l50 → cond. sim. with LoadGust [MNm] 6.27 6.65 6.53

nr. of sim. max. 1300 1300 1300
f(ū) 0.025 0.015 0.007

ū = 11±0.1 m/s

l50 → meas. [MNm] 7.47 10.28 11.25
l50 → Rice eq. [MNm] 10.18 9.54 10.24

nr. of meas. t-s 218 692 106
l50 → cond. sim. with NewGust [MNm] 9.39 12.49 11.39
l50 → cond. sim. with LoadGust [MNm] 10.44 12.63 12.46

nr. of sim. max. 1300 1300 1300
f(ū) 0.019 0.017 0.006

ū = 18±0.1 m/s

l50 → meas. [MNm] 4.67 5.65 21.88
l50 → Rice eq. [MNm] 4.53 4.85 4.86

nr. of meas. t-s 14 113 193
l50 → cond. sim. with NewGust [MNm] 12.61 5.24 7.62
l50 → cond. sim. with LoadGust [MNm] 12.31 7.59 8.29

nr. of sim. max. 1300 1300 1300
f(ū) 0.001 0.003 0.012

Table 10.1: Extreme values with a return period of 50-year obtained from measurements, Gaussian
distributed turbulence and conditional simulations.

In appendix E (figure E.4) it is shown that each time series has its own extrapolation and
corresponding 50-years’ value. This large range of possible extrapolations is caused by the
limited amount of maxima taken into account. Another reason is the fact that the measured
time series show non-Gaussian statistics, whereas the theory assumes Gaussian statistics. In
figure 10.7 the empirical cdf of local maxima has been plotted for some time series together
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with the Rice cdf of local maxima. The resemblance of the empirical values with the Rice
cdf is reasonably good, although there is a large spread in instantaneous cdf’s (caused by the
limited amount of data in a time series of ten minutes). The average of the GEV fits clearly
shows the influence of one cdf with a heavy tail in case of an ensemble average. The most

Figure 10.7: Empirical cdf’s of local maxima for all the time series from Oak Creek at ū = 18
m/s (dots), together with their corresponding GEV fit (thin solid lines), the Rice cdf
(thick dashed line) and Rice equation (circle) from the ensemble average statistics and
ensemble average of all GEV fits (black thick solid line).

right empirical cdf with the very heavy tail is a result from the turbulence time series with
many negative gusts. In figure 10.8 this time series is shown together with its load response.
A third reason for the differences lies in the discreteness of the calculations and the continuous
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Figure 10.8: Turbulence time series from Oak Creek and its load response, explaining the heavy tail
of the resulting cdf. This turbulence time series has a skewness of -1.58 and kurtosis of
6.88, which indicates that this turbulence is highly non-Gaussian distributed.

theory. This is shown in figure 10.9a; a different width of the wind speed bin gives a different
50-years value.

The large 50-years’ value from measurements at Oak Creek with a mean wind speed of
18 m/s is explained by its fit, as can be seen in figure 10.9b. The heavy tail of the empirical
cdf is explained by figure 10.4 and 10.8. These figures show that the heavy tail is caused
by (frequent) large negative gusts, which are not captured by Gaussian theory. However, it
should be noted that these negative are also not captured by the applied calculation method
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of the load response. A linearized transfer function is used, which has no limit on the pitch
angle if the pitch control is active and hence can be a reason for the very high loads.
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Figure 10.9: a) Effect of discrete calculations visualized by varying the wind speed bin width. b)
Extreme value cdf for Oak Creek at ū = 18 m/s.

10.2 Effect of non-Gaussian turbulence

From the investigation of the non-Gaussian behavior of turbulence in section 3.2.4, the ques-
tion arises what the effect of non-Gaussian turbulence is on the extreme load response. This
has been investigated by simulating the load response for measured, Gaussian and non-
Gaussian simulated ten-minute time series. For each time series the maximum load response
has been stored.

lmax = max (l(t)) , t ∈ 0 . . . 600s (10.4)

For each different type of time series a histogram of the ten-minute maxima has been made.
The measured time series are from Oak Creek and Horns Rev for the 16 – 17 m/s mean wind
speed bin (1138 and 1261 time series) and from Toboel for the 10 – 11 m/s mean wind speed
bin (1132 time series). The number of simulated time series is equal to the number of measured
time series. In figure 10.10 the resulting histograms are presented. The plot clearly shows
that the distribution of the extremes is much wider for the measured as for the simulated
time series. The difference between the distributions of Gaussian and non-Gaussian maxima
are only small. Both methods do not resemble the heavy tail of the measured histogram.
Together with the results of the former section it can be concluded that the non-Gaussian
(measured) behavior of turbulence has significant influence on the extreme loads. Proper
non-Gaussian simulation is therefore necessary to obtain a good estimation of the 50-years’
extreme load. These results are in agreement with the literature (cf. section 3.2.4).
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Figure 10.10: Histograms depicting the distribution of the extreme loads for three different types
of turbulence time series, for all sites. left: measured turbulence, middle: Gaussian
turbulence, right: non-Gaussian turbulence. top: Toboel, middle: Horns Rev, bottom:
Oak Creek.



Conclusion

In general it can be concluded that the resemblance between measured and NewGust gusts
is particularly good in the extreme cases for which NewGust has been designed (high mean
wind speed, high relative amplitude). In these extreme cases the resemblance of the shape
as well as the load responses are comparable with measured gusts. The better the gust
shape resemblance, the better the resemblance of the resulting loads. The comparison of
the different simulation methods shows that in these extreme cases there is no need for non-
Gaussian simulations of gusts. However, in the case of lower mean wind speeds, non-Gaussian
theory is required. Furthermore, the influence of B can be neglected and equation 4.20 suffices.

If the control of the blade pitch angle is active, the extreme loading is caused by an
extreme rise time gust (this in contrast with stall-regulated wind turbines, where maximum
amplitude gusts always cause the extreme load response). However, the extreme loading of a
pitch-regulated wind turbine should not be searched for at the extreme wind speeds, but at
the wind speeds where the transition of inactive to active pitch control takes place. In this
wind speed region the extreme load response is caused by gusts with an extreme amplitude,
as can be simulated with the NewGust method. When the autocorrelation function is used
as a basis to simulate these type of gusts (i.e. with the NewGust and Risø method), a higher
mean wind speed should be taken, to achieve a better resemblance of the theoretical and
physical gust shape and the resulting load response.

In order to assess the 50-years’ extreme wind turbine loading, conditional simulation
with New - or LoadGust can be applied if the turbulence statistics are not to much different
from Gaussian statistics. If the deviation from Gaussian statistics becomes too large and
in particular if many large negative gusts are observed, proper non-Gaussian simulation is
required.

From the research performed in this thesis a number of recommendations can de drawn:

• Time series should be long enough for a proper estimation of the spectrum;
• In order to simulate turbulence with the correct statistics, both the spectral density

function and the probability density function should be taken into account;
• If a fit has to be made to a certain extreme value distribution, to extrapolate the

distribution to a certain extreme value, the amount of data taken into account should
be sufficiently large. If too little data is taken into account, the range of possible
extrapolations and hence of the extreme value becomes too large;

• In the case of discrete calculations for extreme value analysis, the continuous theory
should be approached as much as possible;

To make the validation more universal, other terrain types (wind climates) should be
investigated as well. Although the shape of the same type of gusts are independent of terrain
type, different terrain types give different gust types.
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While only a simplified linear wind turbine model has been taken into account, the vali-
dation of NewGust, and more importantly, the investigation of extreme gusts and 50-years’
load responses, should be extended to a non-linear wind turbine model and three-dimensional
gusts.

In the future, it should be investigated how large the effect of negative (extreme rise time)
gusts is on the pitch-control of the wind turbine, to see if the resulting high loads can be
avoided with another control method; and if so, what type of gusts then cause the extreme
loads.

A field of research that also should get attention is the simulation of non-Gaussian tur-
bulence, in order to get a good representation of ’complex terrain turbulence’. In appendix I
a work plan is proposed for simulation of turbulence using ’continuous time random walks’.
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Appendix A

Pitch controller

For the operation of a wind turbine it is important that the power can be controlled. The
power output should be as high and ’flat’ as possible, while the turbine is protected against
high loads. For operation under full load conditions (wind speed equal to or higher than the
nominal wind speed), this means that the power should be maintained at the nominal level,
especially during wind speed disturbances (e.g. wind gusts). In a pitch controlled turbine
this is achieved by continuously adjusting the blade pitch angle, to compensate for a change
in power resulting from a change in wind speed.

The specifications of the NREL 5 MW turbine can be found in table 8.1. The mean wind
speed of a turbulent wind speed time series is used to determine the transfer function of the
system as described in section 8.2. The transfer function translates the wind speed and blade
pitch angle (input) into the power (output) and defines the operating point around which the
control system works.

The requirements for the operation of the imposed control system are:

• Reach steady state as fast as possible;
• Power fluctuations as small as possible;
• No steady state error.

The imposed control system has the configuration depicted in figure 8.1, where transfer func-
tion and control system are in parallel. In this way, the controller will be able to return the
generated power to its nominal value by changing the pitch angle. This in contrast with the
series configuration, which is not capable of eliminating the effect of a disturbance on the
input signal. The series configuration is however useful in setting the control parameters,
because it makes the steady state error visible (in contrast with the parallel configuration).

As the applied controller is a PI-controller, two control parameters need to be determined,
the gain factor K and integral time factor T. The parameters K and T are determined as
follows:

1. Determine the DC gain GDC of the uncontrolled system to a step in the pitch angle;
2. Use the DC gain to calculate the starting point for searching the optimal K of the

P-control to a step in wind speed. Kstart = 1/GDC ;
3. Search for the K with optimal behavior (fast response, little oscillations, small steady

state error);
4. Search for the optimal T of the PI-control together with the former found K (fast

response, little overshoot).
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Repeat these steps for a number of mean wind speeds, in order to obtain the relation between
mean wind speed and K and T. This procedure has been done for the NREL 5 MW turbine,
with help of MATLAB. An example of the procedure for one mean wind speed is given below.

1 %% initialize parameters
2 V0=16; %mean wind speed
3 %Transfer function of the wind turbine
4 windturbine='NREL 5MW';
5 sys=transfer(windturbine,V0);
6

7 %% Open loop control action to obtain the DC−gain
8 %first an open loop system will be used to determine the DC−gain of the
9 %system. Herefore a hard step on the blade pitch angle is used.

10 Tfinal=60;
11 % a step action, the effect of output 4 (Pg) to input 1 (theta).
12 [y,t] = step(sys(4,1),Tfinal);
13 %the final value is approx. equal to the DC−gain:
14 DCgain = y(length(y)); %= −809,5 kW
15 timeConstantDCgain = DCgain * 0.63; %= −510 kW, which happens
16 %at t=3.16 s (time constant is obtained with use of interpolation).
17

18 %Set the value for K, which is defined as the change in pitch angle applied
19 %upon a change in power of 1 W
20 K = 1/DCgain; %= −1.24e−6 deg/W
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Figure A.1: Open loop control, determine DC gain

1 %% Total system with P−controller('closed loop'); instability check
2 Tfinal=60;
3 %check when instability occurs
4 K = [−1e−7 −1e−6 −1e−5 −1e−4];
5 for j = 1:length(K)
6 % Transfer function of the P−controller
7 syscp=tf(K(j),1);
8 %transfer function of the total system with Proportional control
9 %here feedin=1 means that we are connecting the output of the syscp to the
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10 %input 1 of the system sys and feedout=4 means output 4 of sys is
11 %connected to the input of the controller syscp
12 feedin=1;
13 feedout=4;
14 sysclp=feedback(series(sys,syscp),1,feedin,feedout);
15 %sysclp=feedback(sys,syscp,feedin,feedout);
16 figure('color','none');
17 step(sysclp(4,2),Tfinal); shg
18 end

1 %% Total system with P−controller('closed loop'); optimization
2 Tfinal=60;
3 %optimize K
4 K = [−9e−7 −1e−6 −1.5e−6 −2e−6 −2.5e−6 −3e−6 −4.5e−6];
5 for j = 1:length(K)
6 % Transfer function of the P−controller
7 syscp=tf(K(j),1);
8 %transfer function of the total system with Proportional control
9 %here feedin=1 means that we are connecting the output of the syscp to the

10 %input 1 of the system sys and feedout=4 means output 4 of sys is
11 %connected to the input of the controller syscp
12 feedin=1;
13 feedout=4;
14 sysclp=feedback(series(sys,syscp),1,feedin,feedout);
15 %sysclp=feedback(sys,syscp,feedin,feedout);
16 figure('color','none');
17 step(sysclp(4,2),Tfinal); shg
18 end
19 %desired behavior is achieved at K=−2e−6.
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(a) series configuration
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(b) parallel configuration

Figure A.2: Closed loop proportional control, determine optimal K. In this case only proportional
control is applied

1 %% Total system with PI controller ('closed loop'); instability check
2 Tfinal=60;
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3 K = −2e−6;
4 %check when instability occurs
5 T = [20 10 5 4 3 2 1 0.5 0.2 0.1];
6 for j = 1:length(T)
7 % transfer function of the PI−controller
8 syscpi=tf([K*T(j) K], [T(j) 0]);
9 feedin=1;

10 feedout=4;
11 sysclpi=feedback(series(sys,syscpi),1,feedin,feedout);
12 %sysclpi=feedback(sys,syscpi,feedin,feedout);
13 figure('color','none');
14 step(sysclpi(4,2)); shg
15 end

1 %% Total system with PI controller ('closed loop'); optimization
2 Tfinal=60;
3 K = −2e−6;
4 T = [2.8 2.7 2.6 2.5 2.4 2.3 2.2];
5 for j = 1:length(T)
6 % transfer function of the PI−controller
7 syscpi=tf([K*T(j) K], [T(j) 0]);
8 feedin=1;
9 feedout=4;

10 sysclpi=feedback(series(sys,syscpi),1,feedin,feedout);
11 %sysclpi=feedback(sys,syscpi,feedin,feedout);
12 figure('color','none');
13 step(sysclpi(4,2)); shg
14 end
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(a) series configuration
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(b) parallel configuration

Figure A.3: Closed loop proportional and integral control, determine optimal T. In this case both
proportional and integral control is applied.

If this procedure is repeated for a number of mean wind speeds, the dependence of the control
parameters is obtained. In figure A.4 the results for T and K including a fit are given. In
figure A.5 the difference in the response of the generator power to a wind speed step for the
controlled and uncontrolled wind turbine is illustrated.
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Figure A.4: Dependence of the control parameters on the wind speed. These parameters are for the
PI-controller of the NREL 5 MW wind turbine
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Figure A.5: Illustration of the effect of PI-control on the generator output of the wind turbine.



106 Pitch controller



Appendix B

Spectra descriptions

In this appendix several theoretical descriptions of atmospheric spectra are given. For conve-
nience, also a table with roughness-length is given.

In the IEC 61400-1 wind turbine design standard, the following definition of the Kaimal
spectrum (neutral atmosphere) is given

Kaimal:
fSn(f)

σ2
n

=
4fLn/ū

(1 + 6fLn/ū)5/3
(B.1)

Where f is the frequency in Hz, n denotes the velocity component (u,v,w), Sn is the single-
sided spectrum, σn is the standard deviation, ū is the mean wind speed and Ln is the integral
scale parameter. For n is 1,2,3, σn is respectively σ1, 0.8σ1, 0.5σ1 and Ln is respectively
8.1Λ1, 2.7Λ1, 0.66Λ1. Where Λ1 = min(0.7z, 42), z denotes the height above the ground.

In Veers [1988] the following definitions are given for the Frost (stable atmosphere), von
Karman (neutral atmosphere) and Solari (neutral atmosphere) spectra:

Frost: S(f) =
12.3ū10/

[
ln
(

10
z0

+ 1
)

ln
(
z
z0

+ 1
)]

1 + 192
[
(fz/ū10) ln

(
10
z0

+ 1
)

ln
(
z
z0

+ 1
)]5/3

(B.2)

von Karman: S(f) =
22.8u2

∗L1/ū

1.339
(

1 + 39.48 (fL1/ū)2
)5/6

(B.3)

Solari: S(f) =
2.21u2

∗β
2.5z/ū

(1 + 3.31 (fβ1.5z/ū))5/3
(B.4)

Where u∗ is the friction velocity, u∗ = 0.4ū/ ln(z/z0), in the von Karman spectrum σ2
1 =

5.7u2
∗. To represent the scatter found in measured turbulence spectra, β should be varied by

β = βm + µβ∆β, where µβ is a uniformly distributed random variable in the interval [−1, 1]
and βm and ∆β are

βm =


7.5 z0 ≤ 0.03
4.5− 0.856 ln(z0) 0.03 ≤ z0 ≤ 1.0
4.5 1.0 ≤ z0

(B.5)

∆β =


2.5 z0 ≤ 0.03
2.0− 0.143 ln(z0) 0.03 ≤ z0 ≤ 1.0
2.0 1.0 ≤ z0

(B.6)
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z0 classifiction landscape

0.0002 sea sea, paved areas, snow covered flat plain, tide flat,
smooth desert

0.005 smooth beaches, pack ice, morass, snow-covered fields
0.03 open grass prairie or farm fields, tundra, airports, heather
0.1 roughly open cultivated area with low crops and occasional obstacles

(single bushes)
0.25 rough high crops, crops of varied height, scattered obstacles

such as trees or hedgerows, vineyards
0.5 very rough mixed farm fields and forest clumps, orchards, scat-

tered buildings
1.0 closed regular coverage with large size obstacles with open

spaces roughly equal to obstacle heights, suburban
houses, villages, mature forests

≥2 chaotic centers of large towns and cities, irregular forests with
scattered clearings

Table B.1: The Davenport-Wieringa roughness-length classification. Taken from [Stull, 2000]

In this way, the low frequency part of the spectrum is a random variable, where the high
frequency part matches the Kaimal and von Karman spectrum.

Another description of the von Karman spectrum together with its autocorrelation func-
tion given by Nielsen et al. [2004], is

Sũ(f) =
9

55
αε2/3 1

L−2
ũ + (2πf/ū)2

5/6

(B.7)

Rũ(τ) =
22/39

55
√
πΓ(5

6)
αε2/3(τ ūL)1/3K 1

3
(τ ū/Lũ) (B.8)

Where Γ(·) denotes the Gamma function, and K 1
3
(·) is the Bessel function of second kind of

order 1/3. Typical atmospheric parameters are Lũ = 100 m and αε2/3 = 0.1.
To describe the stochastic behavior of turbulence in space, coherence functions are re-

quired. Some possible coherence functions are found in the IEC standard and Veers [1988];

Kaimal: Coh(r, f) = e−12
√

(fr/ū)2+(0.12r/8.1Λ1)2
(B.9)

Solari: Coh(r, f) = e
−(12+5µb)(r/zm)1/4rf

ū (B.10)

Where r is the magnitude of the separation vector between two points in space onto a plane
normal to the average wind direction, zm is the mean height between the two points and µb
is a random variable uniformly distributed on the interval [−1, 1].
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Relation between different spectral
moments and the autocorrelation
function

In this thesis, Sf (f) and Sω(ω) are the spectral density function of the turbulent wind speed
ũ(t). The mathematical formulation of frequency is either the cyclic frequency f in cycles
per second (Hz) or the angular frequency ω in radians per second (rad/s). The spectral
density function represents the variance of ũ(t) as it is distributed over the frequencies in
ũ(t). Because the total variance is clearly independent of its distribution over ω or f , it holds
that ∫ ∞

0
Sf (f) df =

∫ ∞
0

Sω(ω) dω (C.1)

Because Sf (f) and Sω(ω) represent a real physical process, they are only defined for positive
frequencies. Because ω = 2πf , the relation between both spectra is∫ ∞

0
Sf (f) df =

∫ ∞
0

Sω(ω) d2πf (C.2)

Sf (f) = 2πSω(ω) (C.3)

The spectral moments are defined for both spectra as

mf,n =

∫ ∞
0

(f)n Sf (f) df (C.4)

mω,n =

∫ ∞
0

(ω)n Sω(ω) dω (C.5)

By inserting the relation between both spectra, the relation between both definitions of the
spectral moments is obtained

mf,n =

∫ ∞
0

(f)n Sf (f) df (C.6)

mf,n =

∫ ∞
0

( ω
2π

)n
2πSω(ω) d

ω

2π
(C.7)

mf,n = (2π)−n
∫ ∞

0
(ω)n Sω(ω) dω (C.8)

mf,n = (2π)−nmω,n (C.9)
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The derivatives of the autocorrelation function are obtained with help of the inverse
Fourier transformation. By using the relation between both spectra just like for the spectral
moments, the relation between the acf and both definitions of the spectral moments is found.

dn

dτn
R(τ) =

∫ ∞
0

(i2πf)n Sf (f)e2πiτf df (C.10)

dn

dτn
R(τ) =

∫ ∞
0

(iω)n Sω(ω)eiτω dω (C.11)

For the case τ = 0, this becomes

dn

dτn
R(0) = (i2π)n

∫ ∞
0

(f)n Sf (f)df = (i2π)nmf,n (C.12)

dn

dτn
R(0) = (i)n

∫ ∞
0

(ω)n Sω(ω)dω = (i)nmω,n (C.13)

By its definition, in = (−1)n/2, which gives

dn

dτn
R(0) = (−1)n/2(2π)nmf,n = (−1)n/2mω,n, n = 0, 1, 2, . . . (C.14)

And again,
(2π)nmf,n = mω,n (C.15)

This theory has been checked with the theoretical Fourier pair

r(τ) = e−
|τ |
T (C.16)

Sf (f) =
2T

1 + (2πfT )2
(C.17)

Where T is the integral time scale. It has been checked whether the MATLAB routine to
derive the acf from the spectrum gives the same results as the theoretical spectrum. In figure
C.1 the results are shown. It is clear that the resemblance is almost perfect.

Figure C.1: Comparison of the acf and its first and second derivative (from left to right). Upper row:
discrete acf dirived with help of MATLAB; lower row: continuous acf and its derivatives
derived with help of MuPad (part of the symbolic math toolbox in MATLAB).



Appendix D

Example of Veers method

Discrete fluctuating wind speed time series are obtained with the Veers method by first
generating Fourier coefficients with proper statistics and next perform an inverse FFT to
convert them from frequency to time domain. The following example for N = 1 point in
space, M = 8 points in time with a time step ∆t = 1 and ū = 8, σu = 1, illustrates the
principle:

The Fourier Transform is used to transform the Fourier coefficients from frequency to time
domain. In order to obtain the correct coefficients, first the correct frequency components
should be derived. The total period T = M∆t contains the frequency components f =
∆f(1, . . . ,M/2 − 1), with ∆f = 1/T . In FFT, the number of frequency components should
be exactly equal to M , to get time series of length M . By using the same amount neg. and
positive frequencies, the IFFT of the Fourier coefficients will sum up cosines and sines. This
results in a time series with only real values. Because we are dealing with a physical one-sided
spectrum, only the positive half of frequencies is taken into account. This is corrected in the
inverse Fourier transform below, to get a time series of length M .

f =
[
0.1250 0.2500 0.3750

]
With the above information known, it’s possible to compute the PSD from a specified spec-
trum S(f) for each frequency. For example the Kaimal description can be used (cf. ap-
pendix B). In order to get the correct variance, S(f) should be multiplied with the width of
the frequency bins ∆f and divided by 2 (for a reason explained below). Because we are deal-
ing with one point, there’s no CSD and S(f) is a 1x1 matrix. With Cholesky factorization,
the matrix H(f) is obtained. This matrix H contains all the information about the wind field
which has to be simulated.

S =
[
0.1939 0.0643 0.0333

]
H =

[
0.4403 0.2536 0.1824

]
The starting point for generating the time series are white noise inputs, which are generated
for each frequency component by X(f) = eiθ(f). Where θ is a random phase, uniformly
distributed within 0 − 2π. Another possibility is to generate standard Gaussian distributed
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random variables ak and bk as in eq. (3.31).

X =

−0.3721− 0.9807i
0.6165 + 0.4671i
−0.1800 + 2.4215i


With the multiplication V (f) = X(f)H(f), the random phases become correlated according
to the information stored in H(f).

V =

−0.1517− 0.3999i
0.1448 + 0.1097i
−0.0304 + 0.4092i


To obtain the full time series with M time points for each spatial point N , the following
operation should be done;

T = M ∗ IFFT (
[
0 V 0 rot90(V T )

]
)

T =

−0.0747
−0.4041
1.3286
0.3778
0.6538
−0.0347
−1.9077
0.0610

The first Fourier coefficient is set to zero, to get a zero mean. Next the computed Fourier
coefficients for the positive frequencies are placed. The first of the Fourier coefficients for the
negative frequencies is also set to zero, to avoid imaginary values. Finally, the (imaginary)
Fourier coefficients for the positive frequencies are rotated ninety degrees in the imaginary
plane, to create the Fourier coefficients for the negative frequencies, assuming an artificial
double-sided symmetric spectrum. In order to keep the area below the spectrum equal to the
variance, the discrete values S(f) obtained from the spectrum should be multiplied with ∆f/2.
From the inverse fast Fourier transform, a similar result as in figure D.1 should be obtained.
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Figure D.1: Example of a time series simulated according to Veers method with 8 temporal points
and 213 temporal points (ū = 8, σu = 1).



Appendix E

Check of extreme value routines

For the extreme value analysis in section 10.1.3 the there applied methods have to be checked.
A comparison between the several theories is made for one mean wind speed (ū = 6 m/s). For
this purpose a number of Gaussian time series have been simulated with the Kaimal spectrum
as an input. For each time series the loads have been calculated. These time series have been
used to check the following quantities.

Check of ν0

The zero up-crossing frequency ν0 is used in the Rice equation (cf. section 2.4). It has
been checked if ν0 obtained via direct counting from the load calculations is the same as
the one obtained via the spectrum of the load response. for each load response time series
the spectrum is estimated. From this spectrum the second order spectral moment can be
calculated. Together with the variance of the load response, ν0 can be obtained. The results
can be seen in figure E.1. The magnitude of ν0 from the time series depends on the sampling
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Figure E.1: Frequency of zero-crossings. The up- and down-crossings are almost always equal. The
up-crossing rate from the spectrum seems to be more averaged out. The mean of the
different zero-crossings is equal. The effect of the scatter of ν0 on the Rice equation is
clearly small. The final scatter in the Rice equation is determined by the scatter in the
standard deviation of each time series.

rate and the level of discretization of the spectrum; the higher the sampling rate (sampling
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frequency), the higher ν0. This dependency is caused by the spectral moment mf,2 (cf. section
3.2.3). In figure E.2 the dependency of mf,2 on f and df is visualized. For the continuous
case, where the frequency goes from zero to infinity, mf,2 will be infinitely large (cf. figure
C.1).
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Figure E.2: Dependency of mf,2 (left) and λf,2 (right) on f and df . It is clear that λf,2 depends on
the level of discretization, for small df , λf,2 will approach a limit.

Check of spectrum estimation

The estimation procedure of the spectrum can be verified by checking the relation Srr(f) =
|H(f)|2 Suu(f). The spectra Suu(f) and Srr(f) are known from respectively the input spec-
trum for the simulation of Gaussian wind speed time series and the spectrum of the resulting
load response. H(f) is obtained from the transfer function with as input the wind speed and
as output the blade root bending moment. The frequency response can be obtained with use
of the MATLAB function bode. With H(f) known, Srr(f) can be obtained from the equation
given above and should then coincide with the one obtained from the simulated load time
series. In figure E.3 the results are shown.

Check of different 50-years extreme values

In section 2.4 the Gaussian theory is given with respect to extreme loads. eq. (2.16) and
cdf (2.17) have been used to calculate the 50-years extreme load response. For each load
response time series the maximum has been stored, so a cdf can be constructed. This cdf
is extrapolated with help of MATLAB function gevfit. The average has been taken from
100 simulation of each 1000 time series. The time series have a length of ten minutes. The
obtained average results for each method are given in table E.1 and figure E.4.

The zero up-crossing frequency from the spectral moments differs a bit from the direct
counting, which can be explained by the spectra shown in figure E.3. For the estimation of
the load spectrum a window is used to smooth the time series edges. This results in a little
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Figure E.3: The different obtained spectra. It is clear that the two spectra of the load response
coincide very well. The difference lies in the use of a window to smooth the time series
edges in the estimation procedure.

Value

ν0 counted 0.121 Hz
ν0 from spectrum 0.125 Hz

l50 Rice eq. – counted 4.67 MNm
l50 Rice eq. – from spectrum 4.67 MNm

l50 empirical 10-min max. 4.66 MNm
l50 Rice cdf 4.64 MNm

〈σl〉 (ensemble average) 0.78 MNm

Table E.1: Comparison of the different values for the 50-years extreme load response

different spectral amplitude at low frequencies, which gives the difference in zero up-crossing
frequency.

The difference between the Rice cdf and the empirical cdf is explained by the fact that
the Rice cdf is defined for local maxima, which are assumed to be independent to enable
the extrapolation to the 50-years value. The local maxima in the load response time series
may not be completely independent. The empirical cdf is made for the 10-minute maxima
which can reasonably well be assumed to be independent. This explains why the value for
F50 differs for both methods. The value ϕ used in the Rice cdf is almost one, which means
that the resulting cdf is (almost) Gaussian.

The 50-years extreme values from the empirical cdf is close to the value obtained from
the Rice equation and cdf. Note that a sufficient large amount of maxima is needed to get a
good estimate of (extrapolation to) the empirical 50-years value.
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Figure E.4: a) Example of one realization of the extreme cdf’s. b) 100 realizations of the extreme
cdf’s, each based upon 1000 maxima. For each realization a different extrapolation of
the tail is obtained, which shows the difficulty of extreme value analysis. The thick solid
line is the GEV fit for all the 100000 maxima.



Appendix F

Information about met-masts

In this appendix, the set up of the met-masts of each measurement site described in section
6.1 is given graphically. The pictures are taken from “http://www.winddata.com”.

Figure F.1: layout of Toboel met-mast
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Figure F.2: layout of Hornsrev met-mast

Figure F.3: layout of Oak Creek met-mast



Appendix G

Distorted spectra

In figure G.1 examples of the distorted spectra are given for each site. It appears that each
site shows its own type of distortions in the spectra. The spectra from Toboel show a wide
peak around one frequency, which according to Stull [1988], can be explained by blue noise
which points to high frequency noise imposed on the data by e.g. instrumental error due
to data conversion steps. The spectra from Oak Creek show several smaller peaks at high
frequencies. Its not known what the reason of this noise can be. The spectra for Hornsrev
(12 Hz) show a distinct peak at 0.6 Hz. The spectra for Hornsrev (20 Hz) show a lot of noise
at the high frequency tail.

A possible explanation for spectral distortion is aliasing, because the true signal of atmo-
spheric turbulence always have frequencies higher than the sampling rate of the measuring
instrument. If the data is filtered by an analog electronic filter prior to the digitizing, frequen-
cies higher than the Nyquist frequency can be removed. If this is not done, it is impossible to
digitally filter the data, because its not known which portion of the amplitude at the resolved
frequency is real and what is aliased into it.

The spectra for Hornsrev (20 Hz) show an extreme round-of behavior at the high frequen-
cies, together with large peaks. The reason for this can be found in the description of the
measurement. It appeared that the METEK software had a bug at a sampling rate of 20 Hz.
At this frequency large peaks were introduced in the data, although these were as much as
possible removed by “Database on wind characteristics” it still can be seen in the spectra.

The distortions only appear at the lower wind speeds and disappear (or become small)
for Toboel at 8 m/s, for Hornsrev at 9 m/s and for Oak Creek at 5 m/s.
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(b) Hornsrev 12 Hz
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(c) Toboel 8 Hz
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Figure G.1: Examples of spectra containing distorted high frequency behavior



Appendix H

Flowcharts of the analysis process

The flowcharts showed here correspond to the MATLAB files used for the analysis of the
data. The flowcharts don’t show the details of each m-file, but are meant to tell where each
m-file is used for and what globally is done in each m-file. In the file mainprocess.m all the
main steps in the analysis and simulations can be invoked. The global variables meetplaats
and vlaagtype are defined in dataDirectory.m. Other files which contain important input
are:

• dataDirectory.m, which contains the information about the file paths and general
properties of the different gust types and measurements;

• binClassDef.m, which contains the information about the bin and class definitions.
(extremebinClassDef.m for the analysis of the ’extreme gust shape’);

• turbinemodel.m, which contains the information about the used turbine and the con-
troller;

• extrafiguresresults.m, which contains the code to generate all the figures not gen-
erated with comparison.m.

For more details, the reader is directed to the m-files, which contain a description of their
content.
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Figure H.1: Steps taken for the validation of NewGust
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Figure H.2: Steps taken in the analysis m-file

Figure H.3: Steps taken in the spectrumcalc m-file

Figure H.4: Steps taken in the probdistrcalc m-file
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Figure H.5: Steps taken in the classify m-file

Figure H.6: Steps taken in the results m-file

Figure H.7: Steps taken in the simnewgust m-file

Figure H.8: Steps taken in the msespeccalc m-file



125

Figure H.9: Steps taken in the simnongauss m-file

Figure H.10: Steps taken in the comparison m-file

Figure H.11: Steps taken in the msemeanloadgustcalc m-file
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Figure H.12: Steps taken for the analysis of extremes
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Figure H.13: Steps taken in the extremegust m-file

Figure H.14: Steps taken in the extremeclassify m-file

Figure H.15: Steps taken in the extremeresults m-file

Figure H.16: Steps taken in the extremecomparison m-file



128 Flowcharts of the analysis process

Figure H.17: Steps taken in the extremedistofloads m-file

Figure H.18: Steps taken in the calcextreme m-file

Figure H.19: Steps taken in the fitcdfExtremeNewGust m-file



129

Figure H.20: Steps taken in the fitcdfextremeMeasured m-file

Figure H.21: Steps taken in the fitcdfextremeRice m-file

Figure H.22: Steps taken in the calcextremeresponse m-file

Figure H.23: Steps taken in the fitcdfextremeLoadGust m-file
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Figure H.24: Steps taken in the extrafiguresresults m-file
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Figure H.25: Steps taken in the check meas wind m-file

Figure H.26: Steps taken in the check sim wind m-file
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Appendix I

Work plan to use CTRW for
turbulence simulation

In order to include non-Gaussian behavior of turbulence in numerical simulations, a method
based on continuous time random walks (CTRW) has been developed by Friederichs and
Kleinhans [2007]. This method is especially developed to represent the non-Gaussian behavior
of atmospheric turbulence. It is therefore interesting to investigate if this method gives a
better representation of atmospheric turbulence when compared to the spectral representation
method. The following steps are proposed in order to do this:

1. Literature review in order to find enough information about this method;
2. Describe the theory;
3. Program the method in MATLAB;
4. Perform simulations of turbulence based on Gaussian and non-Gaussian (from measure-

ments) pdf’s, both with the CTRW and spectral representation method;
5. Compare the results with respect to the mean statistics (mean, standard deviation,

skewness, kurtosis) as well as the spectra and probability distributions.

Literature to be read:

• Gontier et al. [2007, Ch. 4];
• Peinke et al. [2008];
• Peinke et al. [2004];
• Friederichs and Kleinhans [2007];
• Nawroth and Peinke [2006];
• Laubrich [2009] (a reference material);
• Papoulis and Pillai [2002] (theory of random walks).
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Appendix J

Graphs of gusts and load responses
for each site

For each site only a small selection is displayed. The digital version contains all graphs.

J.1 Results for Toboel

ũn(t0)→ 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-6
ū ↓ gust load gust load gust load gust load gust load gust load type

0-5 0.76 0.16 0.81 0.11 0.90 0.07 1.02 0.05 1.56 0.09 4.22 0.29 m,n
5-6 0.51 0.45 0.43 0.39 0.40 0.36 0.45 0.41 0.55 0.51 2.02 1.90 m,n
6-7 0.46 0.60 0.35 0.47 0.33 0.45 0.36 0.49 0.36 0.47 1.91 2.61 m,n
7-8 0.46 0.82 0.31 0.56 0.23 0.43 0.24 0.45 0.26 0.47 1.27 2.44 m,n
8-9 0.40 0.94 0.25 0.60 0.20 0.48 0.18 0.45 0.20 0.49 1.08 2.69 m,n
9-10 0.36 1.08 0.22 0.68 0.14 0.44 0.11 0.34 0.14 0.43 0.86 2.68 m,n
10-11 0.45 1.69 0.24 0.93 0.14 0.54 0.10 0.38 0.13 0.49 0.44 1.73 m,n
11-12 0.42 0.14 0.23 0.46 0.11 0.79 0.08 1.32 0.08 1.93 0.61 4.08 m,n
12-13 0.41 0.29 0.22 0.17 0.11 0.08 0.07 0.05 0.08 0.07 0.48 0.36 m,n
13-14 0.40 0.21 0.19 0.10 0.10 0.05 0.06 0.04 0.06 0.04 0.33 0.20 m,n
14-15 0.50 0.20 0.17 0.07 0.09 0.04 0.06 0.03 0.07 0.03 0.54 0.24 m,n
15-16 0.44 0.14 0.15 0.05 0.10 0.03 0.04 0.01 0.11 0.04 0.43 0.16 m,n
16-17 0.40 0.10 0.21 0.06 0.04 0.01 0.03 0.01 0.08 0.04 0.37 0.14 m,n
17-19 0.42 0.08 0.18 0.04 0.08 0.02 0.03 0.01 0.09 0.03 0.35 0.10 m,n
19-22 0.53 0.07 0.16 0.03 0.05 0.01 0.05 0.01 0.07 0.02 0.48 0.10 m,n
22-30 0.42 0.04 0.23 0.03 0.11 0.02 0.05 0.02 0.11 0.06 0.32 0.14 m,n

Table J.1: mse between gusts for Toboel, ‘m’ denotes ‘measured’ and ‘n’ denotes ‘newgust’
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138 Graphs of gusts and load responses for each site
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140 Graphs of gusts and load responses for each site
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142 Graphs of gusts and load responses for each site
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measured, (172 gusts)

NewGust, (2100 gusts)

NewGust2, (2100 gusts)

−30 −20 −10 0 10 20 30
−12

−10

−8

−6

−4

−2

0

2

4

6
x 10

5
re
su
lt
in
g
a
er
o
d
y
n
a
m
ic

fl
a
p
m
o
m
en
t
[N

m
]

time [s]

−30 −20 −10 0 10 20 30
−0.5

0

0.5

1

1.5

2

2.5

n
o
rm

a
li
se
d
w
in
d
sp
ee
d
(ũ
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144 Graphs of gusts and load responses for each site

−30 −20 −10 0 10 20 30
−0.5

0

0.5

1

1.5

2

2.5

3

n
o
rm

a
li
se
d
w
in
d
sp
ee
d
(ũ
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J.2 Results for Oak Creek

ũn(t0)→ 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-6
ū ↓ gust load gust load gust load gust load gust load gust load type

0-1
0.96 0.00 1.10 0.00 1.15 0.00 1.95 0.00 2.16 0.00 5.53 0.01 m,n
0.11 0.00 0.14 0.00 0.21 0.00 0.13 0.00 0.26 0.00 0.19 0.00 m,ng
1.64 0.00 2.00 0.00 2.30 0.00 2.93 0.01 3.69 0.01 7.52 0.02 n,ng

1-2
0.88 0.03 0.95 0.03 0.96 0.03 1.15 0.04 1.64 0.05 3.79 0.13 m,n
0.07 0.00 0.09 0.00 0.13 0.00 0.12 0.00 0.10 0.00 0.08 0.00 m,ng
1.43 0.05 1.58 0.06 1.78 0.06 2.00 0.07 2.50 0.09 4.77 0.17 n,ng

2-3
0.86 0.11 0.79 0.10 0.90 0.12 0.93 0.12 1.07 0.14 2.90 0.39 m,n
0.04 0.01 0.07 0.01 0.06 0.01 0.10 0.01 0.12 0.02 0.05 0.01 m,ng
1.26 0.17 1.31 0.18 1.39 0.18 1.58 0.21 1.87 0.25 3.54 0.47 n,ng

3-4
0.73 0.22 0.70 0.21 0.70 0.22 0.84 0.27 0.95 0.30 2.22 0.71 m,n
0.06 0.02 0.06 0.02 0.06 0.02 0.06 0.02 0.06 0.02 0.06 0.01 m,ng
1.20 0.37 1.14 0.36 1.12 0.35 1.30 0.40 1.43 0.45 2.91 0.92 n,ng

4-5
0.62 0.35 0.60 0.34 0.48 0.28 0.60 0.35 0.70 0.42 1.73 1.03 m,n
0.06 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.04 0.02 0.05 0.02 m,ng
1.03 0.59 0.96 0.55 0.82 0.47 0.98 0.56 1.00 0.58 2.18 1.26 n,ng

5-6
0.63 0.57 0.50 0.46 0.42 0.38 0.40 0.37 0.56 0.52 1.60 1.48 m,n
0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.00 m,ng
0.74 0.67 0.54 0.49 0.49 0.45 0.49 0.46 0.57 0.53 1.58 1.47 n,ng

6-7
0.49 0.65 0.39 0.52 0.32 0.44 0.38 0.52 0.46 0.63 1.21 1.69 m,n
0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.02 0.01 m,ng
0.66 0.88 0.49 0.66 0.38 0.52 0.41 0.57 0.38 0.52 1.26 1.71 n,ng

7-8
0.50 0.90 0.35 0.65 0.29 0.55 0.30 0.57 0.41 0.76 1.35 2.55 m,n
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.05 m,ng
0.62 1.12 0.43 0.81 0.33 0.63 0.34 0.63 0.33 0.63 1.06 1.98 n,ng

8-9
0.38 0.91 0.25 0.62 0.23 0.57 0.27 0.67 0.33 0.80 1.26 3.10 m,n
0.03 0.07 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.05 0.10 m,ng
0.62 1.49 0.33 0.80 0.26 0.65 0.25 0.63 0.27 0.67 0.86 2.13 n,ng

9-10
0.40 1.22 0.23 0.73 0.20 0.63 0.25 0.78 0.40 1.22 1.01 3.12 m,n
0.01 0.03 0.01 0.03 0.01 0.02 0.01 0.01 0.03 0.07 0.03 0.05 m,ng
0.51 1.56 0.32 0.99 0.23 0.74 0.23 0.73 0.24 0.75 0.81 2.52 n,ng

10-11
0.32 1.21 0.26 1.05 0.18 0.70 0.20 0.78 0.26 0.99 0.95 3.60 m,n
0.02 0.08 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.04 0.09 m,ng
0.49 1.86 0.32 1.26 0.21 0.85 0.23 0.92 0.21 0.81 0.86 3.31 n,ng

11-12
0.28 0.16 0.21 0.39 0.20 0.75 0.23 1.14 0.31 1.84 0.82 2.66 m,n
0.03 0.01 0.02 0.00 0.01 0.00 0.02 0.00 0.03 0.02 0.03 0.03 m,ng
0.45 0.13 0.29 0.37 0.20 0.74 0.19 1.14 0.24 1.74 0.68 3.06 n,ng

12-13
0.29 0.21 0.22 0.16 0.15 0.12 0.18 0.14 0.22 0.17 0.95 0.76 m,n
0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.06 0.05 m,ng
0.46 0.33 0.29 0.22 0.18 0.13 0.16 0.12 0.15 0.11 0.61 0.47 n,ng

13-14
0.30 0.16 0.18 0.09 0.15 0.08 0.15 0.08 0.24 0.13 0.69 0.38 m,n
0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.02 0.03 0.02 m,ng
0.49 0.26 0.26 0.13 0.20 0.10 0.14 0.07 0.16 0.08 0.52 0.29 n,ng



146 Graphs of gusts and load responses for each site

ũn(t0)→ 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-6
ū ↓ gust load gust load gust load gust load gust load gust load type

14-15
0.30 0.12 0.18 0.08 0.13 0.06 0.11 0.05 0.19 0.08 0.59 0.25 m,n
0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 m,ng
0.44 0.18 0.26 0.10 0.18 0.07 0.14 0.05 0.13 0.05 0.51 0.22 n,ng

15-16
0.35 0.11 0.19 0.06 0.12 0.04 0.12 0.04 0.15 0.05 0.50 0.18 m,n
0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.02 0.01 m,ng
0.48 0.15 0.29 0.09 0.20 0.06 0.16 0.05 0.17 0.06 0.54 0.18 n,ng

16-17
0.33 0.08 0.18 0.04 0.10 0.03 0.11 0.03 0.14 0.04 0.55 0.16 m,n
0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.01 m,ng
0.45 0.11 0.26 0.07 0.16 0.04 0.15 0.04 0.16 0.04 0.46 0.12 n,ng

17-18
0.32 0.07 0.15 0.03 0.10 0.02 0.08 0.02 0.16 0.04 0.54 0.13 m,n
0.02 0.01 0.01 0.00 0.02 0.00 0.03 0.01 0.01 0.01 0.03 0.02 m,ng
0.46 0.10 0.23 0.05 0.17 0.03 0.15 0.03 0.14 0.03 0.44 0.10 n,ng

18-19
0.35 0.06 0.15 0.03 0.08 0.01 0.07 0.02 0.12 0.03 0.33 0.08 m,n
0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.03 0.01 m,ng
0.46 0.09 0.23 0.04 0.13 0.02 0.11 0.02 0.12 0.02 0.26 0.05 n,ng

19-20
0.35 0.05 0.14 0.02 0.08 0.01 0.05 0.01 0.08 0.02 0.57 0.10 m,n
0.01 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.04 0.02 m,ng
0.48 0.07 0.22 0.03 0.13 0.02 0.08 0.01 0.06 0.01 0.35 0.06 n,ng

20-21
0.39 0.05 0.15 0.02 0.07 0.01 0.05 0.01 0.10 0.02 0.56 0.09 m,n
0.01 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.05 0.02 m,ng
0.45 0.06 0.25 0.03 0.11 0.01 0.08 0.01 0.07 0.01 0.34 0.06 n,ng

21-22
0.37 0.04 0.16 0.02 0.07 0.01 0.06 0.01 0.08 0.01 0.37 0.06 m,n
0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.02 m,ng
0.41 0.05 0.21 0.03 0.11 0.01 0.09 0.01 0.07 0.01 0.29 0.04 n,ng

22-23
0.37 0.05 0.15 0.02 0.07 0.01 0.06 0.01 0.10 0.02 0.44 0.08 m,n
0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.03 0.01 0.06 0.06 m,ng
0.46 0.05 0.22 0.02 0.11 0.01 0.07 0.01 0.06 0.01 0.25 0.04 n,ng

23-24
0.38 0.04 0.14 0.02 0.06 0.01 0.06 0.01 0.12 0.02 0.33 0.05 m,n
0.01 0.01 0.01 0.00 0.01 0.00 0.02 0.01 0.02 0.01 0.02 0.02 m,ng
0.40 0.04 0.19 0.02 0.10 0.01 0.08 0.01 0.07 0.01 0.36 0.04 n,ng

24-25
0.36 0.03 0.18 0.02 0.09 0.01 0.05 0.01 0.08 0.02 0.50 0.05 m,n
0.01 0.01 0.01 0.00 0.02 0.00 0.02 0.00 0.02 0.01 0.06 0.03 m,ng
0.41 0.04 0.21 0.02 0.11 0.01 0.07 0.01 0.06 0.01 0.39 0.04 n,ng

25-26
0.41 0.03 0.17 0.01 0.08 0.01 0.07 0.01 0.08 0.02 0.49 0.08 m,n
0.02 0.01 0.01 0.00 0.02 0.00 0.02 0.00 0.03 0.01 0.13 0.06 m,ng
0.46 0.03 0.21 0.02 0.11 0.01 0.09 0.01 0.06 0.01 0.32 0.03 n,ng

26-30
0.42 0.02 0.16 0.01 0.06 0.00 0.06 0.00 0.14 0.01 0.69 0.03 m,n
0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.07 0.01 0.18 0.06 m,ng
0.40 0.02 0.18 0.01 0.08 0.00 0.05 0.00 0.04 0.00 0.59 0.06 n,ng

Table J.2: mse between gusts for Oak Creek, ‘m’ denotes ‘measured’, ‘ng’ denotes ‘non-Gaussian’
and ‘n’ denotes ‘newgust’
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148 Graphs of gusts and load responses for each site
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(ũ
/
σ
)
[-
]

time [s]

site: oakcreek, bin: 9-10 m/s, class: 2-2.5 ũ/σ
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150 Graphs of gusts and load responses for each site
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152 Graphs of gusts and load responses for each site
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154 Graphs of gusts and load responses for each site
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156 Graphs of gusts and load responses for each site
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J.3 Results for Horns Rev

ũn(t0)→ 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-6
ū ↓ gust load gust load gust load gust load gust load gust load type

0-2
1.41 0.02 1.31 0.02 1.44 0.01 1.62 0.01 2.32 0.02 5.27 0.04 m,n
1.56 0.03 1.46 0.02 1.59 0.02 1.78 0.01 2.51 0.02 5.53 0.05 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

2-3
1.05 0.15 1.04 0.14 1.01 0.13 1.10 0.14 1.45 0.19 2.66 0.35 m,n
1.18 0.16 1.17 0.16 1.13 0.15 1.23 0.16 1.59 0.20 2.86 0.37 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

3-4
1.00 0.32 0.76 0.24 0.84 0.26 0.95 0.29 1.12 0.35 2.32 0.72 m,n
1.13 0.36 0.86 0.27 0.95 0.30 1.07 0.33 1.25 0.38 2.49 0.77 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

4-5
0.82 0.47 0.78 0.45 0.67 0.39 0.77 0.45 0.89 0.51 1.87 1.08 m,n
0.93 0.53 0.89 0.52 0.76 0.45 0.87 0.50 1.00 0.58 2.00 1.16 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

5-6
0.76 0.70 0.60 0.56 0.61 0.57 0.69 0.64 0.90 0.83 1.69 1.56 m,n
0.86 0.80 0.69 0.64 0.70 0.66 0.79 0.73 1.01 0.93 1.82 1.69 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

6-7
0.70 0.95 0.54 0.73 0.50 0.69 0.51 0.70 0.61 0.83 1.27 1.73 m,n
0.80 1.09 0.62 0.85 0.58 0.80 0.60 0.81 0.69 0.94 1.39 1.89 m,n2
0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

7-8
0.70 1.28 0.50 0.94 0.38 0.73 0.43 0.81 0.50 0.92 0.99 1.84 m,n
0.79 1.47 0.58 1.10 0.45 0.86 0.51 0.96 0.57 1.06 1.09 2.02 m,n2
0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 n,n2

8-9
0.63 1.53 0.46 1.14 0.42 1.05 0.42 1.05 0.49 1.19 0.98 2.39 m,n
0.71 1.75 0.53 1.33 0.49 1.23 0.50 1.23 0.56 1.37 1.08 2.65 m,n2
0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 n,n2

9-10
0.61 1.89 0.40 1.26 0.34 1.10 0.36 1.14 0.40 1.25 0.89 2.78 m,n
0.69 2.16 0.46 1.48 0.41 1.31 0.43 1.34 0.46 1.45 0.98 3.06 m,n2
0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 n,n2

10-11
0.60 2.32 0.40 1.55 0.33 1.32 0.34 1.34 0.38 1.44 0.71 2.74 m,n
0.68 2.63 0.46 1.82 0.39 1.56 0.41 1.59 0.44 1.68 0.79 3.03 m,n2
0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 n,n2

11-12
0.53 0.13 0.34 0.36 0.27 0.71 0.31 1.23 0.37 1.71 1.10 3.79 m,n
0.61 0.18 0.40 0.44 0.33 0.82 0.37 1.37 0.43 1.87 1.20 3.99 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

12-13
0.53 0.38 0.31 0.23 0.24 0.18 0.26 0.20 0.31 0.24 0.76 0.58 m,n
0.59 0.43 0.37 0.27 0.29 0.22 0.32 0.24 0.37 0.28 0.84 0.65 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

13-14
0.52 0.26 0.32 0.17 0.24 0.13 0.24 0.13 0.31 0.17 0.64 0.35 m,n
0.58 0.29 0.38 0.20 0.28 0.15 0.29 0.16 0.36 0.20 0.71 0.39 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

14-15
0.52 0.20 0.28 0.11 0.20 0.08 0.20 0.08 0.22 0.09 0.55 0.23 m,n
0.59 0.23 0.33 0.13 0.25 0.10 0.24 0.10 0.27 0.11 0.62 0.26 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2
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ũn(t0)→ 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-6
ū ↓ gust load gust load gust load gust load gust load gust load type

15-16
0.48 0.14 0.27 0.08 0.15 0.05 0.17 0.06 0.18 0.06 0.53 0.17 m,n
0.54 0.16 0.32 0.10 0.19 0.06 0.22 0.07 0.23 0.08 0.60 0.20 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

16-17
0.47 0.11 0.23 0.06 0.13 0.03 0.13 0.03 0.14 0.04 0.46 0.13 m,n
0.53 0.13 0.27 0.07 0.17 0.04 0.16 0.04 0.18 0.05 0.52 0.14 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

17-18
0.53 0.11 0.22 0.04 0.13 0.03 0.10 0.02 0.13 0.03 0.39 0.09 m,n
0.59 0.12 0.26 0.05 0.17 0.03 0.13 0.03 0.17 0.04 0.44 0.10 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

18-19
0.43 0.07 0.19 0.03 0.11 0.02 0.06 0.01 0.09 0.02 0.19 0.05 m,n
0.48 0.08 0.23 0.04 0.14 0.02 0.09 0.02 0.12 0.03 0.23 0.06 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

19-20
0.60 0.09 0.17 0.03 0.11 0.02 0.08 0.01 0.09 0.02 0.24 0.05 m,n
0.66 0.09 0.21 0.03 0.14 0.02 0.10 0.02 0.12 0.02 0.28 0.06 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

20-21
0.72 0.09 0.46 0.06 0.33 0.05 0.31 0.04 0.46 0.07 0.82 0.13 m,n
0.81 0.10 0.54 0.07 0.39 0.05 0.37 0.05 0.53 0.08 0.91 0.14 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

21-30
0.74 0.07 0.42 0.03 0.30 0.02 0.29 0.02 0.49 0.04 1.13 0.10 m,n
0.83 0.07 0.49 0.04 0.36 0.02 0.35 0.02 0.56 0.04 1.23 0.11 m,n2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n,n2

Table J.3: mse between gusts for Hornsrev, ‘m’ denotes ‘measured’, ‘n’ denotes ‘NewGust ’ and ‘n2’
denotes the second NewGust equation
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162 Graphs of gusts and load responses for each site
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164 Graphs of gusts and load responses for each site
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166 Graphs of gusts and load responses for each site
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(ũ
/
σ
)
[-
]

time [s]

site: hornsrev, bin: 19-20 m/s, class: 1.5-2 ũ/σ
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measured, (447 gusts)

NewGust, (1880 gusts)

NewGust2, (1880 gusts)

−30 −20 −10 0 10 20 30
−1.5

−1

−0.5

0

0.5

1
x 10

6

re
su
lt
in
g
a
er
o
d
y
n
a
m
ic

fl
a
p
m
o
m
en
t
[N

m
]

time [s]



J.3 Results for Horns Rev 169

−30 −20 −10 0 10 20 30
−0.5

0

0.5

1

1.5

2

2.5

3

n
o
rm

a
li
se
d
w
in
d
sp
ee
d
(ũ
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Appendix K

Graphs of extreme gusts for each
site

K.1 Results for Toboel
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176 Graphs of extreme gusts for each site
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(ũ
/
σ
)
[-
]

−20

0

20

1 −− 1.5

2 −− 2.5

3 −− 3.5

4 −− 4.5

5.5 −− 12

0

1

2

3

4

5

6

7

x 10
6

time [s]relative amplitude l̃(t0)
σl

[-]

a
er
o
d
y
n
a
m
ic

fl
a
p
m
o
m
en
t
[N

m
]

−20

0

20

2

4

6

8

10

−1

0

1

2

3

4

5

6

7

time [s]

site: hornsrev, bin:9-10 m/s

class

n
o
rm

a
li
se
d
w
in
d
sp
ee
d
(ũ
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(ũ
/
σ
)
[-
]

−20

0

20

1 −− 1.5

2 −− 2.5

3 −− 3.5

4 −− 4.5

5.5 −− 12

−2

0

2

4

6

8

x 10
6

time [s]relative amplitude l̃(t0)
σl

[-]

a
er
o
d
y
n
a
m
ic

fl
a
p
m
o
m
en
t
[N

m
]

−20

0

20

2

4

6

8

10

−1

0

1

2

3

4

time [s]

site: oakcreek, bin:10-11 m/s

class

n
o
rm

a
li
se
d
w
in
d
sp
ee
d
(ũ
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