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Abstract
Cancer represents a huge challenge in the medi-
cal world, necessitating early detection methods to
improve treatment outcomes. The field of frag-
mentomics emerged as a promising option towards
developing efficient non-invasive cancer diagnosis
tools. By analysing the differences between the
cfDNA fragments from blood samples of healthy
patients and patients with cancer, this study aims to
determine the most important fragmentomics fea-
tures for cancer detection. The methods present
in this work involve extracting features from the
cfDNA fragments available in the experimental
dataset, applying a pipeline of feature selection
techniques that removes the redundant features,
training and evaluating a logistic regression and
random forest classifiers to differentiate between
healthy and diseased samples, and finally extracting
the feature weights from the trained models to un-
derstand which features contributed the most to the
classification task. Filter-based variance threshold-
ing and Correlation-based Feature Selection (CFS)
were employed to refine the dataset. Independent t-
test and the Mann-Whitney U test are used to calcu-
late the relationship between the cancer and healthy
samples. The Pearson correlation coefficient calcu-
lates the correlation between each pair of features.
The classification performance of the two proposed
models is assessed using the train/test split and the
nested cross-validation techniques. The evaluation
reveals that logistic regression constantly outper-
forms the random forest and that removing the re-
dundant features increases the performance of both
classifiers. Certain genomic bins, mostly on chro-
mosomes 1, 7 and 8, contain significant features for
the classification task. These findings suggest that
understanding the importance of the fragmentomics
features can lead to improved diagnostic tools such
as cancer detection based on blood tests.

1 Introduction
Cancer is a widespread and complicated illness which entails
considerable challenges for the diagnosed patients, but also
for the doctors and researchers who try to develop efficient
care and treatment options. Early diagnosis of cancer is cru-
cial for determining a successful treatment and there is a lot
of ongoing research into developing diagnostic tests that are
capable of achieving this.

Recently, studying circulating DNA fragments present in
the bloodstream of individuals with cancer emerged as a
promising path in cancer investigation. When a cell dies,
nucleic acids, including DNA, are released into the blood-
stream. This also applies to cancer cells. These resulting
cell-free DNA (cfDNA) fragments from tumour cells contain
genetic variations that differ from those in healthy tissues.
By analysing the differences between the cfDNA fragments
of healthy and diseased samples, valuable information is ob-
tained that can lead to improved cancer diagnostics [1]. The

field of study that analyses the cfDNA fragments in blood
is called fragmentomics. Fragmentomics involves looking at
markers such as the size of the cfDNA fragment, which can
be used to differentiate between cancer and healthy samples
[2].

The use of cfDNA for cancer diagnosis has increased its
popularity in healthcare because it reduces the need for inva-
sive tests like tumour biopsies [1]. The big advantage of this
approach is that the circulating free DNA fragments can be
collected from blood samples. Blood samples are routinely
collected from patients as part of regular medical check-ups.
This eliminates the burden of complicated and unpleasant
procedures such as biopsies, making the entire experience
smoother and easier.

Diagram 1 summarizes the process of getting from the real
DNA to DNA data objects. The DNA data objects are stored
as .bam files, accompanied by their indices (.bam.bai files).
These files represent the aligned paired reads of the DNA
fragments ending up in the blood samples taken from pa-
tients. They also contain the DNA sequence of the reads and
their position on the reference.

Figure 1: Diagram showing the process of obtaining DNA data ob-
jects from the actual DNA.

Literature has described multiple methods to extract fea-
tures from cfDNA fragments for computational tasks such as
classifying healthy or diseased samples [3]–[5]. However, un-
derstanding how these features determine the outcome of the
classification remains incomplete. Identifying which features
are the most important for the classification task represents a
large knowledge gap worth studying since it can provide in-
sights into underlying biology and valuable insights into the
field.
The main focus of this Research Project is to answer the ques-
tion:

Which fragmentomics features are most important for
cancer detection?

The following sub-questions have been identified based on
the given one:

1. Which methods are suited for determining the impor-
tance of fragmentomics features for cancer detection and
what approaches can be used to select those features?



2. How do different classification algorithms perform in
detecting cancer based on the selected fragmentomics
features and what are their results?

3. What approach can be used to identify how much each
selected feature contributed to the classification task?

To answer these questions, the objective is to apply feature
importance and selection techniques to obtain the most im-
portant fragmentomics features from the available data. This
subset of features will be used to classify the samples as
healthy or diseased. With these features, early cancer de-
tection and diagnosis can be significantly improved. Under-
standing the level of importance of the fragmentomics fea-
tures can lead to improved diagnostic tools such as cancer
detection based on blood tests.

2 Related Work
Literature has shown that fragmentomics features offer great
insights into cancer detection, origin and treatment response
[3], [6]. Scientific papers related to the research topic were
read mainly to gather knowledge about the biological under-
pinnings needed to understand the data available and how ex-
actly feature selection and importance play a role in obtain-
ing the most important features. This helped in choosing an
approach for gathering the features from the samples and pro-
vided insights into the possible classifiers that could be used
for the classification task.

Cristiano et al. proposed the DELFI (DNA Evaluation
of Fragments for Early Interception) approach for analyzing
cfDNA fragmentation patterns to detect cancer [3]. Genome-
wide fragmentation features were incorporated into a ma-
chine learning model (gradient tree boosting) to classify pa-
tients as being healthy or having cancer [3]. Their results
suggested that fragment coverage was their major contributor
to their classifier [3].

Moldovan et al. introduced the FrEIA (fragment end in-
tegrated analysis) score, a metric derived from investigating
fragment ends of cfDNA [5]. This score assesses the presence
of cancer-related cfDNA fragments in the blood [5]. cfDNA
fragmentomics features, such as fragment size, fragment end
diversity, and trinucleotide patterns are used to enhance the
detection and classification of cancer [5]. Four supervised
machine learning models (k-neighbours, logistic regression,
random forest, support vector classifier) were trained using
the mentioned features for the classification task [5].

In their work, Renaud et al. developed an unsupervised
method named non-negative matrix factorization (NMF) for
analyzing fragment length distributions in cfDNA [4]. This
method helps determine the contributions of different cfDNA
sources to a sample and identify fragment length signatures
without prior knowledge of genomic alterations or sample
information [4]. They demonstrate that accurate detection
of various early-stage cancers is achieved by using multi-
ple NMF components [4]. For the classification task, frag-
ment length signatures were used with a linear Support Vec-
tor Machine to see if cancer and healthy samples could
be separated based on their signature weights for a given
number of signatures [4].

An et al. proposed a cfDNA ending preference-based
metric for cancer diagnosis, whose performance was vali-
dated on multiple cancer datasets [7]. Adalsteinsson et al.
apply ichorCNA (software that quantifies tumour content in
cfDNA) to blood samples to demonstrate high concordance
of cfDNA and metastatic tumour whole-exome sequencing
[8]. In recent work, Eledkawy et al. use the eXtrem Gradient
Boosting feature importance method to select the top ten most
important features [9]. These features are then used to train a
Light Gradient Boost Machine for the classification task [9].

Except for [3] which mentions fragment coverage as the
major contributor to their classification task, and [4] which
briefly indicates that using NMF can provide the contribu-
tions of cfDNA features, these works do not cover in detail
the actual contributions of the features used for the classifi-
cation task. This further emphasizes the knowledge gap pre-
sented in the introduction. This knowledge gap is what this
work is trying to tackle.

3 Methodology
The method used throughout this research can be divided into
several key components: using the available data for fea-
ture extraction, applying feature selection techniques, train-
ing and evaluating several classifiers for predicting cancer
versus healthy samples and extracting the feature weights (co-
efficients) from the trained classifiers. Figure 2 visualizes the
pipeline of the method used to conduct this research.

Figure 2: Pipeline describing the method used in this research.

Experimental dataset & setup
The sample datasets used throughout the research project
were available through The Delft AI Cluster (DAIC) 1 as
.bam files and their indices (.bam.bai files). The procedure
used to obtain these files is shown in Figure 1. There are
four sample types within the available data: .bam files repre-
senting blood samples taken from healthy patients (control)
and patients with breast (BRCA), colorectal (CRC) and
lung cancer (LUAD).

1https://daic.tudelft.nl/

https://daic.tudelft.nl/


The setup used for conducting this research involved code
written in Python 3.11 2 (which runs through Jupyter Note-
books 3) and Linux command line commands 4 for using the
DAIC cluster.

Feature extraction from the available samples
Gathering features from all DNA data objects was the first
step required for conducting the experiments. The approach
proposed by Cristiano et al. was reproduced for the feature
extraction process. Every DNA data object was tiled into 5
mega base pair (5 million nucleotides) non-overlapping bins
[3]. These bins were taken across all chromosomes within a
sample. Chromosomes X and Y were excluded, ending with
22 chromosomes per sample. A short fragment is defined
as having a length between 100-150 base pairs (bp), while a
long fragment ranges from 151-220 bp [3]. Equation 1 was
used to derive the fragment short-long ratios (FSLR) of the
fragment lengths for every window within each chromosome
[3]. This is done for all samples in the datasets. All ratios are
standardized across the chromosomes within a sample using
the z-score.

FSLR = log2(
nr of short fragments in bin

nr of long fragments in bin
) (1)

Feature selection approaches
Among the extracted features, there might be irrelevant fea-
tures that do not contribute to the classification task. Feature
selection techniques are incorporated to exclude such fea-
tures. An overview of the feature selection approaches used
during this research can be visualized in the Diagram 3.
Inspired by [10] and [11], these feature selection approaches
work as follows: A filter-based variance thresholding is ap-
plied on the initial set of features. This filters the quasi con-
stant features which show the same value in almost all the
observations in the dataset. Because of this, such features are
not very useful for making predictions [10]. The threshold
value is fixed to 0.01 [10], meaning that features with a lower
variance than this threshold are removed.

Correlation-based Feature Selection (CFS) is then applied
to the remaining features. CFS is a method used to select
features strongly correlated with the target variable but with
a low correlation between each pair of features. CFS aims
to choose a subset of features that provide the most infor-
mation about the target variable while reducing redundancy
among features [12]. In the case of the provided data, the tar-
get variables are the labels assigned to each sample accord-
ing to their type. Control samples are labelled with ‘0‘, while
cancer samples with ‘1‘.

Two statistical tests are used to compute the relationship
between the features and the target variables: the Indepen-
dent t-test and the Mann-Whitney U test (also known as the
rank sum test). The independent t-test uses the t-statistic,
representing a ratio of a difference in means to the standard
error of that difference. It is used to determine if there is a

2https://www.python.org/
3https://jupyter.org/
4https://ubuntu.com/

Figure 3: Flowchart describing the feature selection approaches
used. The number at each hexagon’s end represents the amount of
features selected in each subset. The shown numbers are obtained
after the selection techniques are applied to the training set derived
after splitting the initial feature set into train/test sets.

significant difference between the means of the healthy and
diseased groups. The Mann-Whitney U test assesses whether
two groups of observations come from the same distribu-
tion. In both cases, features with a p-value lower than 0.05
were considered because these will discriminate well between
the groups. These features have a statistically significant
difference. Two selected feature subsets are obtained for each
statistical test.

The newly obtained feature subsets are filtered once more,
based on the correlation between each feature pair. For this,
only the Pearson correlation coefficient was considered. If
two features are strongly correlated, selecting both implies
redundancy, thus it is viable to discard one of the features.
However, features with low correlations might provide unique
information and be important for the classification task since
they offer different information. A correlation matrix is
calculated for the present feature subset. One feature is
discarded for each pair of features with an absolute corre-
lation value higher than 0.85. This filtering is applied to each
feature subset obtained after the statistical tests, resulting in
two final sets of selected features.

Classification & Evaluation
Following the feature selection procedure, the following ex-
periment involves the classification task. A logistic regres-
sion classifier and a random forest tree-based model were

https://www.python.org/
https://jupyter.org/
https://ubuntu.com/


used to classify all the available data as healthy or diseased.
They were tested on the data using an 80/20 train/test split.
The feature selection approaches detailed in the previous
subsection were applied only to the training dataset. By do-
ing this, the feature selection process is isolated from the
test set, avoiding exposure to information from the test set
and preventing data leakage. To assess the model’s perfor-
mance accurately, the test data must undergo the same fil-
tering criteria applied during the feature selection for the
training data. This guarantees that the model’s predictions
are based on the same features it learned from, enabling a fair
evaluation.

All classifiers are trained with all the initial gathered fea-
tures, but also with every subset of selected features obtained
after each selection step described previously (the hexagons
from Figure 3). The reason behind this is to compare the re-
sults of the feature selection steps in the classification task in
between them, but also against the entire initial feature set.
The models’ performances are evaluated using the test set to
ensure that classification models perform well on unseen data.

Separately, another random forest tree-based classifier was
used for the classification task, but now the mentioned fea-
ture selection approaches were omitted. An attribute of the
random forest model is that it builds a tree of features used as
decision rules, which can be interpreted to be ranked on im-
portance. This time, the model-dependent feature importance
method provided by the random forest was used to assess the
features’ importance and how the selection of the most im-
portant ones affects the classification. Diagram 4 presents
how the features were selected based on the features’ impor-
tance obtained after training the Random Forest model with
the initial feature set.

Figure 4: Flowchart describing the feature selection approaches used
based on the features’ importance derived from the trained Random
Forest classifier model with all the initial features.

This random forest model was trained using the initial
training set. After the importance of each feature was derived,
this classifier was trained again with the top 50 most im-
portant features and with the features obtained from the Re-
cursive Feature Elimination with Cross-Validation (RFECV)

approach. RFECV is a future selection algorithm that itera-
tively removes the least important features of the model while
using cross-validation to ensure the optimal number of fea-
tures are selected for the best model performance. This ran-
dom forest is retrained to observe if the model using the se-
lected most important features outperforms the model using
the entire feature set.

To ensure that the findings of the classification task do not
depend on the specific split provided by the train/test split,
nested cross-validation was also used to evaluate the perfor-
mance of the classifiers. Nested cross-validation is treating
model hyperparameter optimization as part of the model it-
self. This is evaluated within an inner 3-fold cross-validation
procedure for assessing models for comparison and selection.
A grid search is applied for each training dataset to identify
the optimal set of model hyperparameters. Each hyperparam-
eter configuration is evaluated using a separate 10-fold cross-
validation on the specific train dataset (not the original full
dataset), further splitting it into 10-folds [13]. This procedure
was used to evaluate the performance of the logistic regres-
sion and random forest classifiers, using the same feature sets
used during the train/test split. Figure 12 (from the appendix)
visually explains the nested cross-validation procedure.

The parameters used for hyperparameter tuning are
listed below.

• Logistic regression:

– C: 0.01, 0.1, 1, 10, 100;
– penalty: l1, l2;
– solver: liblinear

• Random forest:

– n estimators: 500, 1000, 10000;
– max depth: None, 10, 20, 30

Extracting the feature coefficients
The last step involves extracting the features’ weights from
the trained classifiers. These coefficients indicate the final
importance of each feature in predicting the class labels. Fur-
thermore, the chromosomes in which these features are lo-
cated are also determined, resulting in a better understand-
ing of the chromosomes containing the most important fea-
tures. Therefore, these feature weights lead to the answer to
the main research topic, in the sense that the features with
the highest weights of the best-performing classifier repre-
sent the most important fragmentomics features for the task
of cancer detection.

4 Results
The approach of generating features inspired by [3] led to
587 features for each sample type. Similar to [3], Figure 5
examines the FSLRs in windows throughout the genome. The
bins with no short or long fragments lead to a ratio of 0 based
on the used implementation, resulting in a high value after the
ratios are standardized. These bins are excluded from the plot
because they are considered outliers. The control samples had
concordant fragmentation profiles because the majority had a
negative or slightly positive ratio. The diseased ones however



had highly variable profiles with mostly decreased correlation
to the median healthy profile. This plot indeed also reflects
the results obtained in [3].

Figure 5: Fragmentation profiles for healthy individuals and patients
with cancer obtained per cancer type using 5-Mb windows. The me-
dian healthy profile is indicated for the control samples. For patients
with cancer, the Pearson correlation between individual profiles and
the healthy median is shown.

The first step in the feature selection procedure, the quasi
constant feature removal, leads to a subset of 371 selected
features out of the 587 initial ones. After the first step of the
CFS where the relationship between the features and the la-
bels are calculated, the independent t-test filtering results in
a selected subset of 149 features, whereas the rank sum test
results in a selected subset of 193 features. Figure 6 visu-
alizes the selection process based on the independent t-test.
In this example, each dot represents a genomic bin. The
plot’s peaks show genomic bins with a statistically signif-
icant difference between cancer and healthy samples. The
higher the peak, the stronger the statistical significance. All
the points above the dashed horizontal line (representing the
previously established 0.05 threshold) are selected by the se-
lection pipeline during this step because they are considered
statistically significant.

The last step of CFS involved calculating the correlation
between each pair of features using the Pearson correlation
coefficient. This ultimate selection step led to two final fea-
ture subsets: one of size 94 (t-test & Pearson) and one of size
109 (rank sum test & Pearson), as shown in Figure 3. Af-
ter this final selection step, the remaining features are mostly
not correlated (Appendix Figure 13). The strongly correlated
ones are filtered out(Appendix Figure 14).

When considering the feature selection methods that in-
volved the random forest trained separately, the top 50 most
important features selected 50 features, whereas RFECV
selected 13 (4).

The accuracy scores obtained using the train/test split are
shown in table 1.

Figure 6: Manhattan plot that displays the genomic coordinates on
the x-axis and the -log10 of the p-value obtained from calculating
the independent t-test statistic between cancer and control samples
on the y-axis. The ratios above the dashed line are selected during
the selection process.

Table 1: Accuracy scores for the classifiers using train/test split
for evaluating their performance. The columns represent the clas-
sifiers used, while the rows indicate each hexagon from Figure 3.
These hexagons serve as a feature subset obtained along the feature
selection process.

Logistic Regression Random Forest

All 78% 72%
Variance Filtering 80% 74%

t-test 76% 76%
Rank sum test 76% 68%

t-test & Pearson 82% 68%
Rank sum test & Pearson 82% 68%

Top 50 most important features - 66%
RFECV - 68%

Table 2 indicates the performances of the classifiers
when they were evaluated using the nested cross-validation
technique.

Table 2: Accuracy scores for the classifiers using nested cross-
validation for evaluating their performance. The average of the ac-
curacy scores of every fold of the cross-validation is illustrated. The
columns represent the classifiers used, while the rows indicate each
hexagon from Figure 3. These hexagons serve as a feature subset
obtained along the feature selection process.

Logistic Regression Random Forest

All 81% 74%
Variance Filtering 80% 74%

t-test 83% 76%
Rank sum test 81% 74%

t-test & Pearson 81% 79%
Rank sum test & Pearson 79% 77%

Receiver Operating Characteristic (ROC) curves illustrate
the performance of a classifier model at different threshold
values. The curve plots the True Positive Rate (TPR) against
the False Positive Rate (FPR). The Area under the ROC curve
(AUC) provides an aggregate measure of performance across
all possible classification thresholds. Figure 7 visualizes the
performance of the classifiers when the train/test split is used.
Similarly, Figure 8 shows the performance of the classifiers
when using nested cross-validation.



Figure 7: ROC curve illustrating the performance of the two classi-
fiers when train/test split is used for evaluation.

In both plots, the ROC curves show the performance of
the classifiers trained with the feature subsets that provided
the best accuracy scores. In Figure 7, the logistic regression
was trained with the subset of features obtained after applying
the t-test and correlation filtering, while the random forest
was trained with the feature subset obtained after the t-test
filtering. In the case of the second curve, logistic regression
was trained using the subset obtained after the t-test filtering.
The random forest was trained using the subset obtained after
selecting the features based on the t-test and correlation.

The classifiers trained with the feature subsets that pro-
vided the highest accuracy scores are chosen for extracting
the features’ coefficients used during the training. Figure 9
displays the weights of the best 20 features for the logistic re-
gression classifier, while Figure 10 displays the 20 most im-
portant features for the classification task that involved the
random forest. These results are shown for the classifiers
trained using the train set obtained after the train/test split
with their corresponding feature subset mentioned in the plots
above.

Figure 9: The coefficient values of the 20 features that contributed
the most to the classification task using logistic regression. For this
setting, the classifier was trained with the feature subset obtained
after applying t-test and correlation-based filtering.

Figure 8: ROC curve illustrating the performance of the two classi-
fiers when nested cross-validation is used for evaluation.

Figure 10: The importance of the 20 features that contributed the
most to the classification task using random forest. For this setting,
the classifier was trained with the feature subset obtained after ap-
plying t-test filtering.

5 Discussion
The logistic regression classifier outperforms the random for-
est classifier in all scenarios. When the data is split into
train/test sets, the logistic regression classifier performs the
best when trained with the feature subset obtained after se-
lecting the features given by any of the statistical tests used
combined with the Pearson correlation coefficient filtering.
The resulting accuracy score is 82%. This result resembles
the one obtained by [5] using the logistic regression classi-
fier. This outperforms the classifier using all the initial fea-
tures, but also the subsets of features that contained more fea-
tures. Thus, while discarding features, the classification task
is improved, meaning that irrelevant features are removed.
Evaluating the performance of the logistic regression with
the nested cross-validation approach provides the best score
when the classifier uses the features selected by the t-test fil-
tering. This yields an accuracy score of 83%. The fold that
provided the best score used C:10, penalty: ‘l2‘ and solver:
‘liblinear‘ as parameters from the trained grid search, which
resulted in a 92% accuracy score. The worst-performing fold
achieved a 76% accuracy using C:1, penalty: ‘l1‘ and solver:
‘liblinear‘ from the grid search.



The best performance obtained by the random forest with
the train/test split is when the subset of features obtained
by applying the independent t-test filtering is used for train-
ing the classifier. The resulting accuracy score is 76%.
This outperforms the classifier using all the initial features
but does not provide better results than after applying the
feature-feature correlation filtering, which lowers the accu-
racy score to 68%. This means that too much relevant in-
formation is lost after this filtering step in the random forest
scenario. Evaluating the performance of the random forest
with the nested cross-validation approach provides the best
score when the classifier uses the features selected by the
t-test and correlation-based filtering. This yields an accu-
racy score of 79%. The fold that provided the best score
used max depth: None and n estimators: 500 as parameters
from the trained grid search, which resulted in a 92% accu-
racy score. The worst-performing fold achieved a 68% ac-
curacy using max depth: None and n estimators: 500 from
the grid search.

Using the selected features based on the importance met-
rics generated by the random forest when trained with all ini-
tial features does not provide better results than the classifier
that uses all samples. It is however important to mention that
when using the subset obtained after applying RFECV, the
performance drops from 72% to 68%. Still, the number of
features used during the classifier’s training drops from 587
to 13. This represents a huge trade-off, and the importance of
these features is already established since they were chosen
as the most important ones by the RFECV approach based on
the random forest classifier training. Similarly, using the 50
most important features to train the random forest decreases
the model’s accuracy from 72% to 66%.

The first ROC curve (7) indicates that both models have
an AUC above 0.8, which denotes good performance. With
a slightly higher AUC (0.83) compared to the logistic re-
gression model (0.82), the random forest has a marginally
greater ability to distinguish between positive and negative
classes. In the second ROC curve (8), both models have an
AUC close to 0.9, showcasing a good performance for both
classifiers. The blue curve (logistic regression) generally lies
slightly above the orange curve (random forest). This de-
picts an overall better performance in terms of TPR at various
thresholds of FPR.

The nested cross-validation provides higher accuracy
scores for most of the feature subsets obtained along the se-
lection pipeline that are used to fit both classifiers. This pro-
cedure considerably increases the performance of the ran-
dom forest classifier. For example, when train/test split is
used to evaluate the model’s performance, the random for-
est scores a 68% accuracy when trained with the feature
subset derived after the t-test and correlation-based filter-
ing. In the same scenario, nested cross-validation provides
a 79% accuracy score. The big advantage of nested cross-
validation compared to the classic k-fold cross-validation ap-
proach is that the hyperparameter optimization is performed
in a separate cross-validation, within the cross-validation
used to evaluate the model’s performance. Using the same
cross-validation for both tuning the parameters and assess-
ing the model’s performance can lead to an optimistically

biased evaluation of the model’s performance. Nested cross-
validation overcomes this bias.

Analyzing Figure 6 can offer insights into which chromo-
somes contain more important bins towards the classification
task. Since the plot’s peaks show genomic bins with a sta-
tistically significant difference between cancer and healthy
samples, looking at the chromosomes containing high peaks
can lead to the bins that contributed most to the classifica-
tion task. Although most chromosomes contain peaks, inter-
pretations can still be derived. Some genomic bins within
chromosome 1 form the highest peak throughout the entire
genome. Similarly, chromosomes 7 and 8 contain groups of
high bins. Looking further into these chromosomes, Figures
9 and 10 reinforce these observations. Within the top 20 fea-
tures that contributed the most to both classifiers, chromo-
some 1 has the most bins (five). This is followed by four bins
from chromosome 7 and three bins from chromosome 8 in
the logistic regression case. For the random forest model, the
second-most bins come from chromosome 8 (four), followed
by the number of bins from chromosome 7 (three). Within
these bins, there are seven that coincide and are found in both
groups of features that contributed the most for the two clas-
sifiers. Figure 11 shows these features.

Chr1 bin[40000000-45000000]
Chr1 bin[155000000-160000000]
Chr1 bin[160000000-165000000]
Chr7 bin[35000000-40000000]
Chr7 bin[130000000-135000000]
Chr8 bin[95000000-100000000]
Chr8 bin[125000000-130000000]

Figure 11: Bins whose values are within the 20 most important fea-
tures in both classifiers.

The two numbers within the brackets represent the start and
end position of the bin. The ratio values within these bins can
be considered valuable fragmentomics features for cancer de-
tection. Looking at the chromosomes that do not offer many
significant differences between the healthy and diseased sam-
ples, chromosomes 12, 13 and 20 stand out, as they don’t
show any peaks in the Manhattan plot (6). This is backed up
by the fact that the lists of 20 features that contributed the
most towards the classification tasks do not contain any bin
from these chromosomes (9, 10).

The numbers in Flowcharts 3 and 4 showing the size of
the feature subsets after each filtering step are obtained when
each selection procedure is applied to the training set obtained
from the train/test split on the initial dataset. After each filter-
ing step, the total of selected features differs for every nested
cross-validation procedure fold. This is due to the variance
that differs for each feature when a fold of distinctive features
is established. Thus, this leads to different numbers across all
filtering steps, since the variance thresholding is applied at
the beginning of the feature selection pipeline.



Limitations

The conducted research presents some limitations. The fea-
tures used during the experiments are extracted based on a
single extraction approach. Thus, the analysis of the obtained
results is limited to the extraction process used.

The features are standardized per sample when extracted
from the samples (according to the [3] approach) based on
the implementation used. Another approach could be to stan-
dardize the features per each bin. This would imply the
removal of the variance filtering from the feature selection
pipeline since all the features would have variance 1. This
could lead to different results and a distinctive interpretation
would be needed.

Given this work, a conclusion about the features’ impor-
tance in the context of cancer detection can only be derived
based on manually analysing the plot that shows the statisti-
cal difference between cancer and healthy samples (6) and the
plots that show how much each feature contributes to the clas-
sification tasks (9 and 10). An automated pipeline that evalu-
ates the features’ importance would be a valuable addition to
the field. Nevertheless, the results achieved in this work pro-
vide enough evidence towards a conclusion about the impor-
tance of features in the context of cancer detection. However,
these results are obtained from a purely computer science per-
spective. Thus, one must be cautious about their interpreta-
tion. It is highly recommended that other researchers with a
strong background in bio-informatics validate these results to
confirm their validity.

Future work

The work presented in this paper can be further improved.
The first improvement would represent having a bigger
dataset of samples. At the moment, a total of 248 samples
were used throughout the conducted experiments. A higher
number of samples would ensure more realistic results for
the classification task. A further improvement in this regard
would be balancing the number of samples from each type.
During this research process, 103 control samples, 47 BRCA
samples, 23 CRC samples and 75 LUAD samples were used.
The discrepancy between the amount of samples could lead to
biased results towards the healthy samples, which is not ideal.
Having a similar number of samples for each type would lead
to more fair results and the risk of bias would disappear.

Extracting multiple feature types could potentially lead to
improved results. Different approaches from literature for
gathering features could be considered for this task. Using
these approaches will generate new features. These new fea-
tures can be added to the existing feature set as a feature en-
gineering step. Expanding the feature set with other features
of distinctive types can boost the classification performance.

Finally, using a different classifier than the ones already
proposed (like a Neural Network) could further improve the
obtained results. Combining multiple classifiers and using
them together to classify the data can also be considered as
an option.

6 Responsible Research
The work presented in this paper aims to respect responsible
research and ethical practices.

The study involves real patient data. The available data
samples are anonymous, and no personal information about
the patients is available. The patients have provided informed
consent for their samples to be used for scientific purposes
since their blood samples were collected willingly. The re-
sults of this work will be used responsibly to improve the
diagnostic techniques and not for any discrimination.

The research presented throughout this paper is repro-
ducible since it is based on real data, which can be made
available based on request. Furthermore, multiple other .bam
files are available publicly, if enlarging the dataset is needed.
All the implementations used to obtain the results and run the
experiments explained in this paper are available at [14]. Fol-
lowing the steps mentioned in the methodology Section (3)
can lead to full reproducibility of the experimental setup.

7 Conclusion
This research paper aimed to provide insights into analyzing
the key fragmentomics features used in classifying healthy
and cancer samples. Feature extraction from DNA data ob-
ject representations of cfDNA fragments found in patients’
blood samples was the first step needed in this process. Fea-
ture selection techniques were used to prove that the classi-
fication task can be improved while reducing the number of
features. Finally, extracting the weights of the features used
in the training process of the classifiers helped in deriving
an answer to the initial research question. That is, the fea-
tures with the highest coefficient values represent the most
important fragmentomics features used in cancer detection
using blood.

References
[1] H. Wilson, Fragmentomics – the future of cfdna test-

ing? Accessed: 2024-06-08, 2023. [Online]. Available:
https://www.phgfoundation.org/blog/fragmentomics-
the-future-of-cfdna-testing/.

[2] P. Jiang, K. Sun, W. Peng, et al., “Plasma dna end-
motif profiling as a fragmentomic marker in cancer,
pregnancy, and transplantation,” Cancer Discovery,
vol. 10, no. 5, pp. 664–673, 2020.

[3] S. Cristiano, A. Leal, J. Phallen, et al., “Genome-wide
cell-free dna fragmentation in patients with cancer,”
Nature, vol. 570, no. 7761, pp. 385–389, Jun. 2019,
ISSN: 1476-4687. DOI: 10.1038/s41586-019-1272-6.
[Online]. Available: https://doi.org/10.1038/s41586-
019-1272-6.

[4] G. Renaud, M. Nørgaard, J. Lindberg, et al., “Unsuper-
vised detection of fragment length signatures of circu-
lating tumor dna using non-negative matrix factoriza-
tion,” eLife, vol. 11, D. Weigel and A. Thierry, Eds.,
e71569, Jul. 2022, ISSN: 2050-084X. DOI: 10 .7554 /
eLife.71569. [Online]. Available: https://doi.org/10.
7554/eLife.71569.

https://www.phgfoundation.org/blog/fragmentomics-the-future-of-cfdna-testing/
https://www.phgfoundation.org/blog/fragmentomics-the-future-of-cfdna-testing/
https://doi.org/10.1038/s41586-019-1272-6
https://doi.org/10.1038/s41586-019-1272-6
https://doi.org/10.1038/s41586-019-1272-6
https://doi.org/10.7554/eLife.71569
https://doi.org/10.7554/eLife.71569
https://doi.org/10.7554/eLife.71569
https://doi.org/10.7554/eLife.71569


[5] N. Moldovan, Y. van der Pol, T. van den Ende, et al.,
“Multi-modal cell-free dna genomic and fragmentomic
patterns enhance cancer survival and recurrence anal-
ysis,” Cell Reports Medicine, vol. 5, no. 1, 2024.
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Appendix

Figure 12: Explanation of the nested cross-validation procedure. [15]



Figure 13: Heatmap showing the correlation between features before using correlation-based filtering for selecting a subset of features. The
features are clustered based on their correlations.



Figure 14: Heatmap showing the correlation between features after correlation-based filtering is applied to select the not strongly correlated
features. The features are clustered based on their correlations.
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