
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Raybot
Design and control of an underwater quay wall
inspection robot

Tijmen van Enckevort

Raybot
Design and control of an underwater quay wall

inspection robot

by

Tijmen van Enckevort
Student Name Student Number

Tijmen van Enckevort 4552660

Academic Supervisor: Dr. L. Ferranti
Supervisor: B. Bootsma & R. Bérci-Hajnovics
Project Duration: November, 2021 - December, 2022
Faculty: Faculty of Mechanical, Maritime and Materials Engineering

Preface

My own robot! What a fantastic way to finish my academic life at the TU Delft. Laura, Réka, and Bart,
I want to thank you from the bottom of my heart for all your guidance that has made my last months an
incredible experience. Laura, I would like to thank you for all the insightful meetings and discussions
we have had. Every single one of them has left me astonished, learning more and more about the deep
insights of the wonderful world of model predictive control. I am deeply impressed by the work you and
the researchers in your lab are doing and feel privileged to have had the chance to meet them and
learn from them. Réka, you have made my first introduction with a real robot a blast. It is you who has
translated my academic knowledge into a true understanding of robots. I would like to thank you for all
the fun meetings and sessions we have had, and for all your patience in transmitting your engineering
experience to me. Bart, I would also like to you. You have made the last phase of my thesis a joy, and
I was always looking forward to meetings and office days with you. I have learned a lot from you, both
in an engineering and academic way, and I will never forget your problem breaking-down and solving
technique. I wish all of you the best on your future robotic endeavours!

Tijmen van Enckevort
Delft, December 2022

i

Abstract

Quay walls are important structures that keep the water in harbours and canals within their bounds, and
accommodate large infrastructure like roads or ship-handling structures on top of them. Due to their
importance it is critical that they do not fail or collapse. Inspections are done to prevent this, as a better
knowledge of the state of quay walls can help in predicting future behaviour of the quay walls. However,
current inspection methods are not satisfactory and can be improved upon. This thesis proposes the
Raybot. This is an Autonomous Underwater Vehicle that can move along the quay walls like rays swim
along the walls of their aquariums. The design of the Raybot is presented, which keeps in mind the
requirements that follow logically from the quay wall inspection mission. This resulted in a rectangular
robot with an outward modular frame. The thrusters, on-board computers, and sensors can bemounted
on the inside. Next, a Model Predictive Controller is proposed for the motion control of the Raybot. For
this, the extensive kinematics and kinetics of the Fossen model are explained. The parameters of this
Fossen model are estimated for the Raybot using various methods. A Model Predictive Controller is
formulated for Autonomous Underwater Vehicles and implemented in the Robot Operating System 2.
A physical and visual representative simulation environment is set up, which can simulate the motion
of the Raybot. This is used to assess the path tracking behaviour of the Raybot. The Model Predictive
Controller is compared to a cascaded PID controller by path tracking of a zig-zag path along the quay
wall. An analysis of the tuning parameters of the Model Predictive Controller is presented. The Model
Predictive Controller outperforms the cascaded PID controller on both the Mean Squared Error of the
path tracking error and the completion time of the inspection mission, whilst adhering to constraints
set by the minimum and maximum velocity of the Raybot and the minimum and maximum thruster
inputs. This improved performance leads to a higher quality of the inspections, as they can be done
more up-close, as well as a higher quantity of the inspections, as more inspections can be done in the
same time. For future work it is recommended to estimate some parameters of the model on a real
robot, as well as testing the Model Predictive Controller on a real robot in a tank. This will showcase
the performance of the motion controller in an even more realistic scenario.

ii

Contents

Preface i

Abstract ii

1 Introduction 1
1.1 Collapsing Quay Walls . 1
1.2 Current Inspection Methods . 2
1.3 Inspection with Autonomous Underwater Vehicles . 2

1.3.1 Motion Control . 3
1.3.2 Research Questions . 4

2 Design of the Raybot Proof-of-Concept 5
2.1 Design Requirements . 5
2.2 Design of the Raybot . 6

2.2.1 Sensors . 7
2.2.2 Thrusters . 7
2.2.3 On-Board Computer . 7
2.2.4 Frame . 7

2.3 Prototype . 8

3 Model 9
3.1 The Fossen Model . 9

3.1.1 Kinematics . 10
3.1.2 Kinetics . 10

3.2 Parameter Estimation of the Raybot . 13
3.2.1 Mass/Inertia/Restoring forces . 13
3.2.2 Added Mass . 14
3.2.3 Damping . 15
3.2.4 Thruster Forces . 15
3.2.5 Cable forces . 16

4 Model Predictive Control 17
4.1 Formulation . 17
4.2 Implementation . 19

5 Method 20
5.1 Simulation Environment . 20
5.2 Setup of Simulation Experiments . 21

6 Results 23
6.1 Performance . 23
6.2 MPC Parameters . 25

7 Discussion 28
7.1 Results . 28
7.2 Limitation and Shortcomings . 29
7.3 Future work . 29

8 Conclusion 31

References 32

A Cascaded PID 34
A.1 Cascaded PID control . 34

iii

Contents iv

A.1.1 Formulation . 34
A.1.2 Implementation . 35

B Validation Parameter Estimation Added Mass 37

1
Introduction

1.1. Collapsing Quay Walls
Over the years the human population has used water as a source of drinking water, irrigation and as
a mode of transportation. Due to this development cities have formed around rivers leading to the
construction of harbors and quay walls. Quay walls are large man-made underwater structures build
to keep the water of the canal within the desired bounds of the structure. Also, infrastructure like roads
or various ship handling structures are placed on these quay walls. Both keeping water in place and
facilitating infrastructure make that quay walls are vital structures that must not fail. The impact of a
failure can be enormous, as can be seen in the collapse of the Grimburgwal in Amsterdam in Figure
1.1. This lead to the canal being closed for a long period of time, and need for an emergency repair to
prevent the foundation of closeby buildings from washing away.

Figure 1.1: The collapsed Grimburgwal in Amsterdam [6]

In order to prevent these quay walls from collapsing inspections can be done to gather knowledge
of the state of the quay wall, and act proactively if there is a high risk of a potential collapse. There
are various types of inspection methods, but one import type is the visual inspection. Here, data in the
form of photographs, video’s or descriptions from people looking at the wall is collected and used to
assess if there is any damage on the wall. The formation of large cracks, buckling structures or pillars
that have shifted from the original building plans can be identified this way. These visual methods can
be performed in several ways and are outlined in Section 1.2.

1

1.2. Current Inspection Methods 2

1.2. Current Inspection Methods
At the moment inspections are carried out by diving teams. These consist of multiple highly specialized
divers, safety personnel, and use specialized and costly equipment. The divers have to dive in places
that can have low vision, unknown obstacles and sometimes sudden water currents. Hence, diving
inspections are costly and dangerous. This aspect of being dangerous is also the reason why multiple
divers are needed, so that they can assist each other during possible emergencies. Still, accidents
can happen, even fatal ones. Take for example a diving inspection mission on a lock at Rijn bij Driel,
which led to the death of a diver who was not able withstand the forces of the flow of water due to a
leak in the lock wall [17]. The severe accidents happen mostly in the underwater part of the inspection.
So, by decreasing the human involvement below the water surface, the risk of severe accidents can
be decreased too.

In order to decrease this human involvement below the surface of the water, remote vehicles can
be used. Remotely Operated Vehicles (ROV’s) that can move underwater with the help of fins and/or
thrusters exist. Operators can move these remotely along a quay wall. These ROV’s can be equipped
with different kinds of sensors and actuators, and can thus be used to make photographs or videos of
the quay wall. These can be assessed real-time or offline by a human operator, which can then identify
any damage that might be present on the quay wall. These ROV’s are operated by an operator with a
controller. Usually this operator has a live video feed of the camera’s of the ROV in order to orientate
and send commands to the robot. This way the need of divers underwater is eliminated, as they can
be replaced with ROV’s. This will make the inspection safer. Besides, the use of ROV’s will create pos-
sibilities to perform complex maneuvers that would otherwise be too dangerous for the human divers,
for example in confined spaces or inspections close to moving ships.

A drawback of this method with ROV’s is the need for constant human supervision and operation. The
human operator needs to pay attention to the movements of the ROV at all times, and needs to have
a good understanding of the surroundings and obstacles the ROV might collide with. This makes the
operation of a ROV difficult, and can lead to long inspections times and inaccurate results.

1.3. Inspection with Autonomous Underwater Vehicles
To improve the method with ROV’s from Section 1.2 it is proposed to design an autonomous ROV that
can inspect the quay walls without the need for operation by the human operators, also known as an
Autonomous Underwater Vehicle (AUV). This will speed up the procedure, allowing for more quay walls
to be inspected routinely. Routine inspection can improve the knowledge of the state of the quay walls,
and can possibly be used to predict future behavior of the quay walls.

The AUV will be a robot that can autonomously follow a path along a quay wall. In order to do this
it needs to adhere to certain requirements. First and foremost the AUV will need to take pictures of
the quay wall. These pictures can then be used in photogrammetry software to create a 3D model
of the quay wall, upon which a detailed assessment on the state of the quay wall can be made. The
AUV may also house other sensors, like depth sensors, Inertial Measurement Units, and eddy current
sensors. In essence, it will be a set of sensors that are moved along the quay wall to inspect it. In
order to move the AUV will need thrusters. These thrusters need to be controlled with an onboard
computer and motor controller. The sensors, thrusters, and computer need to be mounted on a frame
so that they stay rigidly together. In order for the AUV to have an extended battery life, and also to
get a working GPS signal for localization (GPS signals cannot be received under water) an Unmanned
Surface Vehicle (USV) should be floating above the AUV. They will be connected to each other via a
tether. This proposed solution can be seen in Figure 1.2.

1.3. Inspection with Autonomous Underwater Vehicles 3

Figure 1.2: The proposed solution with an AUV and USV connected to each other by a tether. The USV can house extra
batteries, a GPS, and on-board computers which can help the AUV with its inspection mission.

In order to complete the inspection autonomously the ROV needs to be able to follow a path along
the quay wall. This path can be preprogrammed, commanded by a human operator or planned au-
tonomously by a path planning algorithm on the ROV. Irrespective of how the path is computed, the
ROV will need a control algorithm to make a translation between the desired positions of the path and
the thruster inputs that will actually move the ROV along that path. There are several types of control
algorithms, and each comes with its advantages and disadvantages. This thesis will focus on these
control algorithms and their implementation in underwater robotics.

1.3.1. Motion Control
There aremultiple motion control algorithms suitable to be used on a ROV. One division that canmake is
to classify them based on whether they need a model of the ROV or not. Classical control techniques,
that do not need a model of the ROV, include Bang-Bang types of controllers, as well as the widely
used Proportional Integral Derivative (PID) control algorithms. Model-based controllers include Linear
Quadratic Regulator (LQR) control, and Model Predictive Control (MPC). Previous literature research
has shown that MPC is the best suited control algorithm, due to its ability to handle Multi-input Multi-
output (MIMO) systems, its ability to handle constraints and it has better performance compared to the
other control techniques. This thesis will focus on the implementation of such a MPC controller for an
AUV that can perform quay wall inspection missions, and will analyse its performance by comparing it
with other existing controllers.

1.3. Inspection with Autonomous Underwater Vehicles 4

1.3.2. Research Questions
In order to implement and analyse the performance of the MPC controller for the AUV methodically a
research question and several sub-research questions have been set up:

Research Question
• How can Model Predictive Control be used for an Autonomous Underwater Vehicle to improve
the performance of quay wall inspection missions?

Sub-Research Questions:
– How can the inspection requirements be translated to a proof-of-concept AUV?
– How can the proof-of-concept AUV be modelled dynamically?
– How can the MPC controller of the AUV be tested in a simulation environment?
– How does the MPC controller compare to the baseline controller?

This thesis aims to answer these research questions. The structure of the thesis report is as fol-
lows. Chapter 2 explains the translation of the inspection requirements into a proof-of-concept AUV
design that will be used as an use-case scenario for the remainder of the thesis. A model of the AUV
dynamics is needed for the simulation environment and the model-based controller. This thesis uses
the Fossen model for underwater vehicles [11]. The theory of the Fossen model and its corresponding
parameter estimation will be outlined in Chapter 3. Chapter 4 outlines the MPC control algorithm and
its implementation for the AUV. Chapter 5 explains the simulation environment that is used to test the
AUV, and the setup of the simulation experiments. A simulation environment is used, as tuning and
testing the controller in a real environment is expensive and will take long. A comparison between the
performance of a cascaded PID and the MPC controller is presented in Chapter 6, where Chapter 7
contains an analysis and conclusion on these performance results, answering the main research ques-
tion. Chapter 7 will also explain limitations and shortcomings of the thesis, as well as recommendations
for future research. As a conclusion Chapter 8 answers the research questions concisely. The code for
this thesis can be found on the open Github repository, where also the literature research mentioned
in Section 1.3.1 can be found.

This thesis was done as a graduation project for the track BioMechanical Design of the MScMechanical
Engineering at the Delft University of Technology, in collaboration with the company Dobots. Dobots
provided the use-case scenario of the AUV.

https://github.com/dobots/tijmen_graduation

2
Design of the Raybot Proof-of-Concept

This chapter aims to answer the first sub-research question as presented in Section 1.3.2: How can the
inspection requirements be translated to a proof-of-concept AUV? The design requirements as given
by Section 1.3 are further detailed in Section 2.1. These are translated into a proof-of-concept AUV
called the Raybot, which is further explained in Section 2.2.

2.1. Design Requirements
The ultimate goal of the AUV is to take pictures of the quay wall, which can then be used in photogram-
metry software to make a 3D model of the quay wall. For this it needs to take a picture of each section
of the quay wall, with a certain minimum amount of overlap for the photogrammetry software to work
properly. However, when it takes too many pictures the photogrammetry software will take longer to
process its model, and the path along the quay will take longer to complete. For this reason the AUV
needs to move vertically up and down the quay wall, with a distance in between each stroke to allow
for the proper overlap. This zigzag path can be seen in Figure 2.1. As the planning of this zig-zag path
is outside the scope of this thesis, it is assumed that this path is given to the AUV as an array of points
containing desired positions and rotations, spaced a distance apart from each other. For now, it can
be inputted by a human operator, but future prototypes can make use of a motion planning algorithm.

Figure 2.1: The zig zag path along the quay wall. The Raybot in the upper left corner will attempt to follow the green path,
which will allow it to inspect the wall thoroughly. This path will be used in the simulation experiments.

5

2.2. Design of the Raybot 6

The main design requirements follow from this mission path. It is desired for the AUV to move in all
6 degrees of freedom (DoF). Although the path only shows a translation in 2 degrees of freedom, the
other 4 degrees of freedom are not constrained. The AUV will also operate closely to the quay wall.
Hence, in order to avoid colliding into the wall or other obstacles full control over the other 4 degrees of
freedom is required. To avoid collisions with the wall it is also desired to have an accurate control of the
movements in the direction of the wall. The AUV needs to house a set of sensors in the middle of its
frame, where the frame protects it from possible collisions. The dimensions of this set of sensors are
0.33m in x-direction, 0.94m in y-direction, 0.31m in z-direction and cannot extend out of the frame. The
thrusters, and on-board computer and motor controllers to be used are the T200 thruster and control
tube with electronics of Bluerobotics. These are open-source and are used extensively in previous
projects of the company, which make them a desirable choice. The frame of the AUV needs to be
modular and easily adjustable, with sufficient mounting places for all the components. This allows for
easy adjusting of the layout of the AUV which speeds up prototyping for the first proof-of-concept.

Besides these requirements for the inspection mission there are also some requirements from a hy-
drodynamical point-of-view. First of all it is desired for the AUV to be neutrally buoyant. This means
the buoyant forces due to volumetric displacement of water, due to the submerged AUV, are equal but
opposite to the gravitational forces acting on the mass of the AUV, when the AUV is in upright posi-
tion. Due to this there are no resultant forces acting on the AUV when the thrusters are not active. This
makes controlling the AUV easier as no force is required to keep the AUV at a static position. Secondly,
it is desired for the AUV to be passively stable. Although the buoyant forces and gravitational forces
are equal and opposite they do not act on the same point on the AUV. The buoyant forces act on the
centre of buoyancy (CoB), which is the volumetric centre of the AUV, whereas the gravitational forces
act on the centre of gravity (CoG), which is the centre of mass of the AUV. This difference can be used
to make the AUV passively stable. By placing the CoG directly below the CoB the force couple will
always move the AUV into an upright position. Third, it is desired for the AUV to be fully symmetrical.
This way the movements of the AUV are uncoupled. That is to say, a movement in one degree of free-
dom does not create any force or moment in any other DoF. This will make modelling and controlling
the AUV more straightforward, as will also be explained in Chapter 3.

2.2. Design of the Raybot
The design requirements need to be translated into a design for a proof-of-concept AUV. This proof-of-
concept AUV will be called Raybot hereafter, inspired by the way rays swim smoothly and closely to
surfaces like walls of aquariums. The final Computer Aided Design (CAD) of the Raybot can be seen
in Figure 2.2.

2.2. Design of the Raybot 7

Figure 2.2: A CAD drawing of the Raybot design

2.2.1. Sensors
As stated in the Section 2.1 the Raybot should house a set of sensors with dimensions 0.33m in x-
direction, 0.94m in y-direction, 0.31m in z-direction. This set of sensors is to be fitted inside of the
frame, in order to protect it. However, this set of sensors is not yet fully defined, and thus their actual
shape cannot be taken into account for the dynamical modelling and control. For this reason it was
decided to leave an open space in the middle of the frame. The set of sensors can then be mounted
inside this open space at a later moment.

2.2.2. Thrusters
The raybot needs to be able to move underwater. In order to do this it makes use of the aforementioned
underwater thrusters of the type T200 by Bluerobotics. These thrusters can exert a force on the AUV by
propelling a flow of water through it. This force is bounded by the current supplied to the thruster. In the
backwards direction it is bounded by -28N at 12v, in the forward direction it is bounded by +36N at 12v.
In order for the AUV to move in 6 degrees of freedom it needs to have a mimimum of 6 independent
thrusters, with a couple of thrusters acting in each plane of the Raybot. Due to tight constraints in the
x-direction of the AUV, the direction where it faces the wall, it is decided to use 2 extra thrusters. This
means there will be 4 thrusters in the x-direction, one in each corner. This over actuation can help
prevent a collision with the quay wall. The placement of these thrusters can be seen in Figure 2.2.

2.2.3. On-Board Computer
These thrusters and sensors need to be controlled and computed. For this, two modules with an on-
board computer and an array of motor controllers are placed on the AUV. The on-board computer is
an Raspberry Pi 4 model B. These Bluerov 2 electronics enclosures are placed at the top of the frame,
due to its high buoyancy. This creates the desired passive stability. Also, because there are 8 thrusters
present, two modules are needed to be able to drive all the 8 thrusters, as one module only goes up to
6 thrusters.

2.2.4. Frame
The main function of the frame of the AUV is to mount the set of sensors, thrusters and modules onto
it. It also has to be rigid in order to protect all the expensive equipment whenever a collision occurs.
For this reason it was chosen to use aluminium profiles. These aluminium profiles are easy to assem-

2.3. Prototype 8

ble, are easily adjusted in case a different layout is needed, and it is straightforward to assemble the
components onto them. Another benefit is that they will not rust as easily as steel frames. Because
they are slightly heavier than water, the combination with the modules, which are buoyant, will result in
a robot that is almost perfectly buoyant. This means a relatively low amount of adjusting with weight-
s/buoyancy foam needs to be done. The dimensions of the frame are given by the layout of the set of
sensors and the thrusters. It was chosen to place the thrusters around the set of sensors. This way the
dimensions of the frame turn out to be 0.33m in x-direction, 1.29m in y-direction, 0.59m in z-direction.

2.3. Prototype
A first prototype of the Raybot can be seen in Figure 2.3. It was built according to the design from
Section 2.2.

Figure 2.3: A prototype of the Raybot

3
Model

A model of the Raybot is needed in order to use a simulation environment and control the Raybot with
a model-based controller. The model used in this thesis report is the Fossen model [11], and is used
in both the simulator and in the prediction step of the MPC algorithm. This chapter will explore this
model in more detail by both explaining the theory behind it, and a parameter estimation of the model
on the Raybot use-case. This will give an answer to the second sub-research question as presented
in Section 1.3.2: How can the proof-of-concept AUV be modelled dynamically?

3.1. The Fossen Model

v (sway)

u (surge) w (heave)

p (roll)
r (yaw)

Ob

Oi

z

x

y

q (pitch)

Figure 3.1: Motion of an underwater robot. Oi is the reference or inertial frame NED and Ob is the local robot frame BODY.

The underwater environment that the robot operates in is a 3D environment with 6 Degrees of Freedom
(DOF), which can be seen in Figure 3.1. For consistency this thesis report uses the Society of Naval
Architects and Marine Engineers (SNAME) notations to express the physical states of the robot, which
can also be found in Table 3.1 [11]. Note that the position and orientation of the robot is expressed in
the North East Down (NED) inertial frame of the robot whereas the velocities, and forces and moments
of the robot are expressed in the Body frame of the robot.

9

3.1. The Fossen Model 10

Degree of Freedom Position and orientation in
Euler angles in NED frame

Linear and angular
velocities in Body frame

Forces and moments
in Body frame

surge x u X
sway y v Y
heave z w Z
roll ϕ p K
pitch θ q M
yaw ψ r N

Table 3.1: The SNAME notation which is used in the Fossen model.

3.1.1. Kinematics
The kinematic model describes the motion of the body of the robot without considering the forces and
moments that are causing or resulting from those motions, see also Figure 3.1. The kinematics in Euler
angles that describe the motion of the underwater vehicle can be found in Equation 3.1 [11].[

ṗ

Φ̇

]
= Je(ϕ)

[
ν
ω

]
=

[
Ri

b(Φ) 03x3

03x3 T i
b(Φ)

] [
ν
ω

]
(3.1)

Here:

p =

xy
z

 ∈ R3, Φ =

ϕθ
ψ

 ∈ S3, ν =

uv
w

 ∈ R3, ω =

pq
r

 ∈ R3 (3.2)

Ri
b(Φ) is the linear velocity transformation matrix from the body frame BODY to the inertial frame

NED given by:

Ri
b(Φ) =

cψcθ −sψcϕ+ cψsθsϕ sψsϕ+ cψcϕsθ
sψcθ cψcϕ+ sψsθsϕ −cψsϕ+ sψsθcϕ
−sθ cθsϕ cθcϕ

 (3.3)

Where s = sin, c = cos, and t = tan.
T i
b(Φ) is the angular velocity transformation matrix from the body frame BODY to the inertial frame

NED given by:

T i
b(Φ) =

1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ

cθ
cϕ
cθ

 (3.4)

Note that this kinematic model is given in the Euler representation and only holds when θ ̸= 90. If
this does not hold a quaternion representation can be used instead.

3.1.2. Kinetics
In order to describe the motion of the robot body whilst taking into account the forces and moments that
are acting on the body a kinematic model of the robot can be used. The equations of motion (EOM) of a
kinetic robot model are given in Equation 3.5. Here, six different parts can be identified which together
describe the motion of the robot. These six parts are further explained in the following sections.

MRBv̇ + CRB(v)v︸ ︷︷ ︸
Rigid−Body

+MAv̇r + CA(vr)vr + D(vr)vr︸ ︷︷ ︸
hydrodynamics

+ b(Ri
b)︸ ︷︷ ︸

restoring

= τthrusters︸ ︷︷ ︸
actuation

+ τcable︸ ︷︷ ︸
tether

+ τdist︸ ︷︷ ︸
disturbances

(3.5)

Rigid Body Motions
The rigid body kinetics of an underwater robot can be described by [11]:

MRBv̇ + CRB(v)v = τRB (3.6)

3.1. The Fossen Model 11

Here, the v is the generalized velocity vector in the body frame, where v = [u, v, w, p, q, r]T and the
MRB is the rigid body mass matrix. It is defined as:

MRB =

[
mI3×3 −mS(rbg)
mS(rbg) Ib

]
=

m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz
−myg mxg 0 −Izx −Izx Iz

 (3.7)

S(rbg) is a skew-symmetric matrix, where rbg is the location of the Centre of Gravity (CoG) with respect
to the center of origin. It is defined as:

S(rbg) =

 0 −zg yg
zg 0 −xg
−yg xg 0

 (3.8)

Note that when the CoG is the same as the centre of origin: S(rbg) = 03×3 and

MRB =

[
mI3×3 03×3

03×3 Ib

]
(3.9)

CRB(v) is the Coriolis and centripetal matrix. If it is noted that v1 := νb
b/n = [u, v, w]T , and v2 :=

ωb
b/n = [p, q, r]T , CRB(v) can be written in the following lagrangian parametrization:

CRB(v) =

[
03×3 −mS(v1)−mS(S(v2)rbg)

−mS(v1)−mS(rbg)S(v2) −S(Ibv2)

]
(3.10)

Hydrodynamics
To accurately model the forces of the surrounding fluid on the body moving under the water surface
one has to solve the Navier-Stokes equations. However, these are computationally expensive and are
not feasible in a real-time setting. Another approach is the use of a so-called added mass matrix. This
added mass matrix can be seen as a virtual mass added to the inertia of the body that is caused by the
accelerating of the surrounding fluid due to the motion of the body.

The added mass matrix is defined as:

MA =

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

 =

[
A11 A12

A21 A22

]
(3.11)

The hydrodynamic Coriolis and centripetal matrix is defined as:

CA =

[
03×3 −S(A11v1 + A12v2)

−S(A11v1 + A12v2) −S(A21v1 + A22v2)

]
(3.12)

Also, the relative velocity vr, which is caused by water currents, is given by vr = v − vc, where
vc = [uc, vc, wc, 0, 0, 0] and consists of the velocity components of the water current.

The coefficients of the added mass matrix MA can be found numerically or empirically.

Damping
Besides the added mass to the body, there is also a damping effect due to the body moving in a fluid.
The damping effects are highly complex and not fully understood yet. This makes them hard to model.
An approach to model the damping is by defining:

D(vr) = Dl + Dnl(vr) (3.13)

3.1. The Fossen Model 12

It is composed of the linear dampingmatrixDl and the nonlinear dampingmatrixDnl(vr). In the assump-
tion that the symmetric robot moves at low velocities and below the water surface the linear damping
matrix is due to viscous skin friction, whereas the nonlinear damping matrix is due to vortex shedding.
[10].

Dl = diag(Xu, Yv, Zw,Kp,Mq, Nr)
Dnl = diag(Xu|u|, Yv|v|, Zw|w|,Kp|p|,Mq|q|, Nr|r|)

(3.14)

The coefficients of the nonlinear damping matrix Dnl(νr) can be described by one of the terms of
the Morison equation [10]:

FD =
1

2
ρCDAp|u|u (3.15)

Here, ρ is the water density, CD is the drag coefficient, Ap is the projected cross-sectional area and u
is the velocity of the robot body. The drag coefficients CD are to be determined empirically, as are the
coefficients of the linear damping matrix Dnl.

Restoring Forces
The hydrostatic or restoring forces acting on the robot are caused by both gravitational forces, and buoy-
ancy forces due to the robot being submerged in water. The gravitational force is defined as W = mg,
where it acts on the CoG of the robot in the positive direction along the heave axis.

The buoyancy force is the force is caused by the displacement of water due to the robot being sub-
merged under water. It is defined as B = ρ▽g where it acts on the Centre of Buoyancy (CoB). This is
the volumetric centre of the body. It acts in the negative direction along the heave axis. Both gravita-
tional and buoyancy forces are expressed in the inertial frame i as:

fiG =W

00
1

 , fiB = B

 0
0
−1

 (3.16)

In the body frame b the restoring forces and moments are given by:

b(Ri
b) =

[
Ri

b
T
(fiG + fiB)

rbG × Ri
bfiG + rbB × Ri

b
T fiB

]
(3.17)

These are the two forces acting on the robot in hydrostatic conditions, i.e. when there is no relative
flow of water across the robot body (vr = 0).

Actuation
The body of the robot is being actuated with underwater thrusters. For a fully actuated system the
amount of independently orientated thrusters r should be equal to the number of DoF n the robot is
planning to move in. In the case that r > n the system is over actuated and the thruster inputs have to
be allocated using an optimization algorithm. One way to model the individual thruster output is:

f = kf2 (3.18)

Here, u is the thruster force, k is the thruster coefficient, and f is the input in rotations per minute. The
thruster coefficient can be determined from the relationship between the thruster force and the rotations
per minute of the thruster.

The sum of the force and moments from the thrusters τthrusters are expressed as:

τ thrusters = Tu (3.19)
= TfTKf (3.20)

Here, T is the Thruster Allocation Matrix, u = [u1, u2, ..., un] is the thruster force vector with n thrusters,
K is a matrix with thruster coefficients, and f is the vector with thruster inputs.

3.2. Parameter Estimation of the Raybot 13

Cable Forces
This section is about the forces that are present due to the tether that is coming from the USV to the
AUV. This tether can exert forces acting on its attachment point on the robot. These forces are caused
by drag due to water currents, and/or a nonzero robot vehicle velocity in the tangential direction of the
tether, and hydrostatic forces due to gravity or buoyancy.

According to [2] the cable forces can be modelled as:

τcable =

− 1

4ρdCd

∫ h

0
|ur|urdz

− 1
4ρdCd

∫ h

0
|vr|vrdz

1.2wcableh
rzτcable(1)
rzτcable(2)

0

 (3.21)

Here, the ρ is the density of the water, d is the diameter of the cable, Cd is the drag coefficient of the
cable, h is the depth of the AUV relative to the USV, wcable is the weight of the cable submerged in
water, and ur and vr are the velocities in the u and v direction of the current relative to the tether. The
ur and vr can be caused by both the water current velocity as the velocity of the AUV in the horizontal
plane.

3.2. Parameter Estimation of the Raybot
The Fossen model describes the motion of the underwater vehicle on a more abstract and generalised
level, but the parameters still need to be determined in order for the model to be usable in simulation
or for a control algorithm. The following sections explain how these parameters are determined and
estimated for the Raybot for each of the terms of the Fossen model.

3.2.1. Mass/Inertia/Restoring forces
In order to determine the mass and the moments of inertia of the Raybot a 3D cad model is made,
see Figure 2.2. This model included all the parts and components, including their mass and mass
distribution properties. From this model it is possible to let Solidworks calculate the total mass and the
total mass distribution, which can be used to calculate the moments of inertia in each of the axes of the
robot [23]. The mass matrix for the Raybot is given by.

MRB =

26.33 0 0 0 0 0
0 26.33 0 0 0 0
0 0 26.33 0 0 0
0 0 0 6.28 0 0
0 0 0 0 1.96 0
0 0 0 0 0 5.32

 (3.22)

The restoring forces consist of the gravitational and buoyancy forces. The scalar force component
of the gravity vector can be calculated by: F = m ∗ g, where F is the gravitational force component,
m = 26.33 is the mass of the robot and g = 9.81 is the gravitational pull of the earth. The point of applica-
tion of the gravitational force is the centre of mass of the robot, and it acts in the downwards z-direction.

The scalar force component of the buoyancy forces can be calculated by determining the volumet-
ric displacement of the robot. For the Raybot it is equal to: 0.02633m3. The point of application is the
volumetric center of the Raybot which has been determined via Blender to be (x = 0, y = 0, z = −0.2).

3.2. Parameter Estimation of the Raybot 14

3.2.2. Added Mass
The added mass components of the Raybot can be determined via a numerical simulation in a wave
energy numerical simulator. This thesis chooses to use the open-source Nemoh simulator to do this
[1].
A simplified version of the 3D CAD model of the Raybot is needed to compute the added mass terms.
This is useful in order to decrease the computational time due to the large amount of vertices in the
original 3D model. This model can be seen in figure 3.2. This 3D model has to be converted to a
Nemoh.dat file. This was done by using the open-source software BEM-rosetta and Blender [zabala],
[7]. First the Solidworks model was converted to a .stl file which can be loaded into Blender. Here,
it is important to scale the mesh back to the correct sizes, and to place the robot at a z-location of
-50m. This last step is important as to the best of the authors knowledge it was not possible to use
Nemoh without any wave interactions, while an assumption that there are no wave interactions were
made in the model. At a depth of -50m the wave interactions calculated by Nemoh can be neglected.
This .stl file can be imported into BEM-rosetta. Here, the edges and nodes are cleaned up, and a
Nemoh.cal file is set up. Afterwards a Nemoh mesh file can be created. This mesh file can then be
used to run the numerical simulations via a Matlab script. The results of these numerical simulations
can then be loaded back into BEM-Rosetta, via the hydrodynamic parameters tab. This method has
been validated, as can be seen in Appendix B. Now the added mass properties are given by the A∞
matrix in BEM-rosetta, which is the MA and given by:

MA =

27.96 0 0 0 0 0
0 20.35 0 0 0 0
0 0 29.58 0 0 0
0 0 0 3.90 0 0
0 0 0 0 1.48 0
0 0 0 0 0 4.06

 (3.23)

6
1

2

3

4

5 7

8

Figure 3.2: A simplified CAD model of the Raybot which is used in the Added Mass simulations

3.2. Parameter Estimation of the Raybot 15

3.2.3. Damping
The damping terms of the model can not be determined via software. Therefore, it was chosen to build
a small model of the robot and to use this in towing tests in a small tank of water, see Figure 3.3a. The
scaling factor λ = 4.44. The experimental setup can be seen figure 3.3b, and is similar to the one used
in [18]. By applying a constant force or moment to each of the degrees of freedom and measuring
the linear and angular velocities, the linear and quadratic components of the damping terms can be
determined for the small model, by superimposing them. These can then be scaled up to the damping
terms of the real robot via the correct damping scaling factors. These damping scaling factors are the
scaling factor λ2 for the quadratic components, and the scaling factor λ2 for the linear components.
These follow from the following equation [2]:

Fr =
ρr
ρm

λ3Fm (3.24)

Here, Fr are the quadratic damping forces of the Raybot, Fm are the quadratic damping forces of the
scaled model, ρr is the water density of the Raybot, ρm is the water density of the scaled model and
λ is the scaling factor. The damping scaling factor for the linear damping terms can best be estimated
by applying a scaling factor of λ2

The damping terms that follow from these small mockup model tests are given as:

Dl = diag(24.65, 56.70, 47.01, 0.0312, 0.07, 0.2956)
Dnl = diag(747.06, 181.73, 681.28, 1.9088, 1, 1.33)

(3.25)

As the tank was not large enough accommodate a measurement on theMq andMq|q| terms these were
estimated based on values of another robot, the Bluerov robot [25].

(a) Scaled model version of the Raybot (b) Test-setup for the damping parameter estimation

3.2.4. Thruster Forces
The thruster forces are determined via the datasheet on the Bluerobotics website. Here, the RPM of
the thrusters is given against the force. This shows a quadratic relationship for the force outputted by
the thrusters given a certain RPM. A different relationship is shown for the backwards force compared
to the forward force of the thruster. Following the force-RPM curves as given in [3] the coefficient of
the T200 thrusters is determined as k = 0.000033

The thruster allocation matrix T is the contribution per thruster (the 8 columns) to that specific force
or moment per principal axis (the 6 rows). Following the thruster layout as seen in Figure 3.2, the
thruster allocation matrix for the Raybot is given as:

T =

1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 −0.20 0.20 0.51 −0.51

0.20 0.20 −0.20 −0.20 0 0 0 0
0.51 −0.51 −0.51 0.51 0 0 0 0

 (3.26)

3.2. Parameter Estimation of the Raybot 16

3.2.5. Cable forces
The Raybot will follow a zig-zag path where the longest direction of travel will be in the vertical z direc-
tion. This makes that the ur and vr will generally be small which causes that the cable forces in the X
and Y direction of the AUV can be neglected as they are scaling quadratically with their corresponding
velocity directions. Furthermore it can be assumed the tether is neutrally buoyant, with its center of
gravity and center of buoyancy being in the same position. This causes the underwater weight of the
tether wcable to be approximately equal to 0. Taking also in account that the Raybot is not expected to
operate at very deep depths, the length h of the tether cord will be relatively small. This diminishes all
the elements in the cable force vector even further. Following these arguments it can be argued that
the cable forces acting on the Raybot can be assumed to be negligible.

τcable =

0
0
0
0
0
0

 (3.27)

4
Model Predictive Control

Amodel predictive controller is a controller that uses a model of the system to make a finite time horizon
prediction on the future states of the system and computes optimal control outputs by minimizing a cost
function [20], [13]. Over the last years it has proven to be a popular choice for controlling systems. This
is mainly due to its ability to handle constraints on the system, it is able to handle MIMO systems, it
is able to take into account future reference information, and it generally has a good performance. A
MPC controller works in three stages: prediction, optimization, and the receding horizon principle.

In the first stage, the prediction stage, the MPC controller uses the model of the system to compute
the system states based on possible control actions. It does this on a finite future time horizon, starting
from an initial state.

In the optimization stage the MPC controller computes the optimal control input sequence by minimis-
ing a cost function J while obeying to the state or control constraints of the system.

In the receding horizon principle stage the MPC controller applies the first input of the optimal con-
trol sequence to the system, and then moves one timestep forward. Then it iterates and goes back
to the prediction stage. This way, the controller applies the optimal input every timestep which makes
that the MPC controller generally has a good performance.

This chapter will give a partial answer to the third sub-research question as presented in Section 1.3.2:
How can the MPC controller of the AUV be tested in a simulation environment?. It does so by explaining
both the formulation and the implementation of the MPC controller for an AUV.

4.1. Formulation
The Fossen model from Chapter 3 can be written in a more shorthand notation as [22]:

ẋ =

[
R(ψ)v

M−1(Tu − Dv − b))

]
= f(x, u) (4.1)

Here, x is the state of the system and defined as x = [x, y, z, ϕ, θ, ψ, u, v, w, p, q, r]. The velocity of the
AUV is given as v = [u, v, w, p, q, r], M is the mass matrix including the added mass and is given as
M = MRB+MA, T is the thruster allocationmatrix, the control vectoru = [u1, u2, u3, u4, u5, u6, u7, u8],
the damping terms are D = Dl + Dnl, and b are the restoring forces.

R(ψ) is a rotation matrix around the yaw-axis ψ and is given as:

R(ψ) =

cosψ −sinψ 0
sinψ cosψ 0
0 0 1

 (4.2)

17

4.1. Formulation 18

Note that this is different from the full rotation matrix around the 3 yaw, pitch, roll axis ϕ, θ, ψ. Due to
small roll and pitch angles, ϕ ≈ 0, θ ≈ 0, this assumption can be made and will decrease the computa-
tional effort needed to compute the dynamics. Due to small angular velocities p ≈ 0, q ≈ 0, r ≈ 0 the
coriolis term in the Fossen model can be assumed to be zero.

The system has both input and state constraints. The state constraints are composed of the con-
straints on linear and angular velocities of the AUV, see Equation 4.3. These constraints are present
to ensure that the robot does not move underwater too fast. This is desirable as the camera has to
take pictures which will otherwise be blurry, and because in a test setup it is desirable to move at low
speeds for safety reasons. The input constraints are composed of the minimum and maximum force
output bounds of the thrusters, see Equation 4.4. As the maximum force output of the thrusters is differ-
ent in the direction of movement of the thrusters, this bound value is different in the negative direction
compared to the positive direction.

x =

−0.5 [m/s]
−0.5 [m/s]
−0.5 [m/s]
−0.5 [rad/s]
−0.5 [rad/s]
−0.5 [rad/s]

 ≤

u
v
w
p
q
r

 ≤

0.5 [m/s]
0.5 [m/s]
0.5 [m/s]
0.5 [rad/s]
0.5 [rad/s]
0.5 [rad/s]

 = x (4.3)

ui =
[
−28 [N]

]
≤

[
ui
]
≤

[
36 [N]

]
= ui (4.4)

These continuous-time dynamics are discretized to f(x, u) = fd(xk,uk) and integrated using an
implicit Runge-Kutta integrator of 4th order. The discrete-time cost function J is then given as:

min
xτ ,uτ

J =

N−1∑
k=0

((xk−xref)
⊤Q(xk−xref)+u⊤

k Ruk)+((xN −xref,N)⊤QN (xN −xref,N)+u⊤
NRNuN)

(4.5)
Here, xτ is the state trajectory xτ = x0,x1, ...,xN , uτ is the control trajectory uτ = u0,u1, ...,uN , xk

is the state at timestep k, xref is the reference state, uk is the control input at timestep k, xN is the
terminal state and uN is the terminal control input. Q is the weight matrix on the state and R is the
weight matrix on the control input. QN is the weight matrix on the terminal state and RN is the weight
matrix on the terminal control input. Costpos is the cost parameter for state errors on position, Costrot is
the cost parameter for state errors on rotation, Costthrust is the cost parameter for the thruster inputs.

Q = diag([Costpos, Costpos, Costpos, Costrot, Costrot, Costrot, 0, 0, 0, 0, 0, 0])
QN = 2 ∗Q

R = diag([Costthrust, Costthrust, Costthrust, Costthrust, Costthrust, Costthrust, Costthrust, Costthrust])
RN = 2 ∗R

(4.6)
When the cost function, dynamical model, and the state and input constraints are combined the

MPC controller can be formulated as:

min
xτ ,uτ

J

s.t.

xk+1 = fd(xk,uk)

x0 = xinit

x ≤ xk ≤ x
u ≤ uk ≤ u

(4.7)

4.2. Implementation 19

Figure 4.1 shows the MPC controller architecture for the AUV [16]. Here, i is the global time and x̂
is the predicted state x.

Optimizer (sqp nl)

ConstraintsCost function J

AUV
(simulation or real)

AUV model

Reference path
+

-

Model Predictive Controller

x(i)u(i+1)

x̂(i+k)

(xref(i+k)-x̂(i+k))

xref(i+k)

u(i+k)

Figure 4.1: MPC controller structure that is used in the Raybot

4.2. Implementation
The implementation of the MPC controller in Robot Operating System 2 (ROS2) can be seen in Figure
4.2 [24], [15]. The pose of the AUV is published on a topic /raybot/pose_gt. The /raybot/mpc_controller
node subscribes to this topic and uses the pose together with the reference path to compute the error
on the state of the AUV. To compute the optimal control inputs the /raybot/mpc_controller uses the
ForcesPro solver [26], [8]. Then it sends the first control inputs of the optimal control input sequence
to the /raybot/thrusters/id_<x>/input topic. The code for this implementation can be found in [9]
in the uuv_mpc_control package.

Figure 4.2: MPC controller structure in ROS2, with the ForcesPro solver

The /raybot/mpc_controller node receives a pose message at 50 Hz. Once received, it will use
the ForcesPro solver to compute the optimal input sequence via a Sequential Quadratic Programming
(SQP) method, and send it immediately to the thrusters. Afterwards it will wait till 0.5 seconds have
passed since the pose was received, and then iterates. This way the solver will always send a command
to the thrusters every 0.5 seconds, given that the time it takes to compute and send the thruster inputs
does not exceed 0.5 seconds. For this reason the ForcesPro integrator stepsize is also set to 0.5
seconds.

https://github.com/dobots/tijmen_graduation/tree/main/Plankton/uuv_control/uuv_mpc_control

5
Method

The behaviour of the Raybot and performance of the control algorithms will be tested in a simulation
environment. This Chapter will first explain the simulation environment in Section 5.1, by explaining
the setup in the Gazebo simulator, and the necessary plugins and setup required to get an accurate
physical simulation of the Raybot. Section 5.2 describes the setup and method of the experiments
that have been performed in the simulation environment. This will give an answer to the second sub-
research question as presented in Section 1.3.2: How can the MPC controller of the AUV be tested in
a simulation environment

5.1. Simulation Environment
In order to test the AUV without having to do real tests, which are expensive, time consuming and
can lead to damage to the robot, it was decided to do simulation tests. For this a physically accurate
simulator was needed. Gazebo Classic is a simulation environment that is able do this. Also, because
of its easy integration with the Robot Operating System 2 (ROS 2) it allows for easy testing of the AUV.
In order to simulate the underwater environment and model of the AUV as explained in Section 3 a
plugin can be used. This plugin uses the same Fossen model to compute the forces present on the
AUV. This plugin is the uuv_simulator package. This is a package developed by the SWARMs project
and works with Gazebo classic and ROS 1 [14], [19]. In order to use it with ROS 2 a fork of the pack-
age called Plankton is needed [12]. With Plankton and Gazebo a simulation environment that works
together seamlessly with ROS 2 is created that can accurately simulate the behavior or the AUV. Be-
cause of the integration with ROS 2 the algorithms used can be directly implemented on the real robot,
decreasing the effort needed to translate between simulation and the real world. For an overview of
the simulation environment see Figure 5.1.

As the AUV makes use of cameras to do its inspection it is also required for the simulation environ-
ment to be visually similar to the real inspection environment with the quay wall. To do this a model
of a quay wall that has been inspected manually is used. This way the simulation environment of the
AUV is very similar to the real operating environment.

20

5.2. Setup of Simulation Experiments 21

Figure 5.1: A snapshot of the Gazebo simulation environment with the Raybot. The green points depict the reference zig-zag
path

5.2. Setup of Simulation Experiments
The goal of the simulation experiments is to assess the performance of the MPC controller compared
to the PID controller. To do this a path has been designed, that moves along the quay wall in a zig-zag
path, see also Figure 2.1. Both the errors on the path as well as the completion time need to be mea-
sured in order to assess them. The errors on the path can be measured as the Mean Squared Error
(MSE) of the path, by adding the positional errors (x, y, z) and the rotational errors (ϕ, θ, ψ) together.
The completion time is measured as the time needed from the first inputs sent to the thrusters till the
Raybot has reached the final point on the path. This will be done both with an experiment using a
MPC controller, as well as a PID controller. The method to perform a single simulation experiment is
described below.

The tests to be performed in the simulation environment are composed of several steps and have
to be carried out the same way every time to ensure the most accurate results. First, the simula-
tion environment has to be spawned. This can be done by launching a world file in Gazebo. After-
wards the Raybot can be launched, as well as the solver node. In order to make the solver faster the
codeoptions.optlevel = 2 has been set, which makes the solver try to optimize for speed. This is
done before the solver is computing the robot inputs, but it does take some time, and it has to be done
every time the solver settings are changed. For this reason it is recommended to perform this step by
running the node once before commencing the experiment with new solver settings. Afterwards the
solver already knows its settings optimized for speed and will not need to compute them again. This
way the uploading of the solver node is much faster. The Raybot has a very small downward restoring
force that cannot be removed unfortunately. Due to this the Raybot will very slowly move downwards.
For this reason it is important to launch the Raybot and the solver node at the same time, so that the
solver will begin with computing the thruster inputs when the Raybot is still at its initial position. The
Raybot will then start following the path that has been set in the solver node. Upon reaching the end
of the path the solver will terminate and save all the thruster inputs and states for further analysis.

5.2. Setup of Simulation Experiments 22

It should be noted that the simulation environment and solver are different and cannot exactly be
launched at the same time, but are dependent on each other. This can create small errors due to
clock differences, human errors and integration errors. These errors will be small, but do make that the
simulation experiment is not deterministic. Due to this 3 experiments have been run for each setting
setup, and their average is used in Chapter 6.

Besides a comparison between a MPC and PID controller simulation experiments have also been car-
ried out while changing the parameters of the MPC solver. To do this one must follow the procedure as
described before, and change the parameters as described by Table 6.2. By changing these parame-
ters their influence on the performance can be assessed. This can then be used to tune the parameters
in such a way that the best performance is achieved. Also, it can be used when a different use-case is
desired, for example when completion time is more important than path tracking performance the pa-
rameters can be tuned to gain a lower completion time, at the cost of a lower path tracking performance.

Next to the path following attempts of a zig zag path along a quay wall there has also been an at-
tempt to validate the controller on a downward helical path, while facing inwards all the time. This can
demonstrate the rotating behaviour of the Raybot, as it is able to move in all 6 DoF. The use-case
for such a type of path would be a large pillar-like structure that needs to be inspected from all sides.
Unfortunately there was not enough time in this thesis project to properly implement the following of
a helical path in combination with Gazebo. Therefore it was chosen not to showcase this ability, as a
correct maneuver was not achieved.

Figure 5.2: A snapshot of the Gazebo simulation environment with the Raybot. The green points depict the reference helical
path

6
Results

This chapter presents the results of this thesis. A comparison is presented between the baseline cas-
caded PID and the MPC controller in Section 6.1, as well as an analysis on the influence of various
tuning parameters on the MPC performance are presented in Section 6.2. This will give an answer to
the fourth sub-research question as presented in Section 1.3.2: How does the MPC controller compare
to the baseline controller?

6.1. Performance
During this experiment the MPC and a Cascaded PID were compared, where more information on the
cascaded PID controller can be found in Appendix A. Figures 6.1, 6.2, and 6.3 and Table 6.1 show the
results of the comparison between the cascaded PID and the MPC controllers on the zigzag path in
the simulation environment. Figure 6.1 shows the position on the zy-plane of the trajectory, 6.2 shows
the position and velocity states over the trajectory, and Figure 6.3 their corresponding control inputs.
It can be seen that the velocities and thruster inputs stay within their bounds. Table 6.1 shows the
Mean Squared Error (MSE) on the error between the path and the actual trajectory of the cascaded
PID and MPC controller, on both the positions and the orientations. It also shows the completion time
to complete one zigzag path. The tuning settings of the MPC controller are the same as simulation
2 of Table 6.2, however do note that the starting positions are different. This causes the difference in
results on the MSE and the completion time.

23

6.1. Performance 24

0 1 2 3 4 5 6
y [m]

4.5

4.0

3.5

3.0

2.5

2.0

1.5
z [

m
]

PID
MPC
start
goal
path

Figure 6.1: The position of the Raybot on the zy-plane of the PID and the MPC controller on the zig-zag path

0.1

0.0

0.1

x
[m

]

0

5

y
[m

]

5

0

z [
m

]

0.1

0.0

0.1

 [r
ad

]

0.1

0.0

0.1

 [r
ad

]

0 25 50 75 100 125 150 175
t [s]

0.1

0.0

0.1

 [r
ad

]

0.5

0.0

0.5

u
[m

/s
] PID MPC bounds

0.5

0.0

0.5

v
[m

/s
]

0.5

0.0

0.5

w
[m

/s
]

0.5

0.0

0.5

p
[ra

d/
s]

0.5

0.0

0.5

q
[ra

d/
s]

0 25 50 75 100 125 150 175
t [s]

0.5

0.0

0.5

r [
ra

d/
s]

Figure 6.2: The states of the Raybot using the cascaded PID and MPC controller on the zig-zag path

6.2. MPC Parameters 25

25

0

25
U

1
[N

]

PID MPC bounds

25

0

25

U
2

[N
]

25

0

25

U
3

[N
]

0 25 50 75 100 125 150 175
t [s]

25

0

25

U
4

[N
]

25

0

25

U
5

[N
]

25

0

25

U
6

[N
]

25

0

25

U
7

[N
]

0 25 50 75 100 125 150 175
t [s]

25

0

25

U
8

[N
]

Figure 6.3: The thrusters inputs of the Raybot using the PID and MPC controller on the zig-zag path

MSE pos [*10^-3] MSE rot [*10^-6] Completion time [s]
Cascaded PID 1.208 1.931 183.70
MPC 0.0469 1.19 105.44

Table 6.1: Results of the cascaded PID and MPC controllers

6.2. MPC Parameters
Table 6.2 shows the results of the MPC controller with different tuning settings. Here,N is the prediction
(and control) horizon, num is the spacing between the path points, where num = 100 is a distance of
0.01m, and num = 20 is a distance of 0.05m. Cost thrust is the cost on the thruster inputs, Cost pos
is the cost on the position errors, and Cost rot is the cost on the rotation errors, see also Equation 4.5
and 4.6.

Sim N num Cost thrust Cost pos Cost rot MSE pos
[*10^-3]

MSE rot
[*10^-5]

Time
[s]

1 15 10 0.06 10000 1000 0.587 0.078 79.563
2 15 15 0.06 10000 1000 0.315 0.119 106.72
3 15 20 0.06 10000 1000 0.226 0.075 142.69
4 15 30 0.06 10000 1000 0.179 0.035 205.30
5 10 15 0.06 10000 1000 0.226 0.129 106.36
6 20 15 0.06 10000 1000 0.327 0.321 106.29
7 25 15 0.06 10000 1000 0.586 0.280 106.73
8 50 15 0.06 10000 1000 5.487 23.005 106.67
9 20 25 0.06 10000 1000 0.255 0.386 175.38
10 20 20 0.06 10000 1000 0.268 0.171 142.18
11 15 15 0.6 10000 1000 0.343 0.095 129.02
12 15 15 0.006 10000 1000 0.959 47.32 89.19

Table 6.2: Results of the MPC simulation. Results shown are an average over 3 simulations.

Figure 6.4,6.5,6.6 and 6.7 show the results for simulation 2. It starts with an initial position of y =

6.2. MPC Parameters 26

0.1m, z = −1.9m, which lies outside of the path. It can be seen that the velocities, thruster inputs, and
computation times stay within their bounds.

0 1 2 3 4 5 6
y [m]

4.5

4.0

3.5

3.0

2.5

2.0

1.5

z [
m

]

MPC
start
goal
path

Figure 6.4: The position of the Raybot on the zy-plane of the MPC controller on the zig-zag path with simulation 2

0.1

0.0

0.1

x
[m

]

0

5

y
[m

]

5

0

z [
m

]

0.1

0.0

0.1

 [r
ad

]

0.1

0.0

0.1

 [r
ad

]

0 20 40 60 80 100
t [s]

0.1

0.0

0.1

 [r
ad

]

0.5

0.0

0.5

u
[m

/s
] MPC bounds

0.5

0.0

0.5

v
[m

/s
]

0.5

0.0

0.5

w
[m

/s
]

0.5

0.0

0.5

p
[ra

d/
s]

0.5

0.0

0.5

q
[ra

d/
s]

0 20 40 60 80 100
t [s]

0.5

0.0

0.5

r[r
ad

/s
]

Figure 6.5: The states of the Raybot with the MPC controller on the zig-zag path with simulation 2

6.2. MPC Parameters 27

25

0

25
U

1
[N

]

MPC bounds

25

0

25

U
2

[N
]

25

0

25

U
3

[N
]

0 20 40 60 80 100
t [s]

25

0

25

U
4

[N
]

25

0

25

U
5

[N
]

25

0

25

U
6

[N
]

25

0

25

U
7

[N
]

0 20 40 60 80 100
t [s]

25

0

25

U
8

[N
]

Figure 6.6: The thrusters of the Raybot with the MPC controller on the zig-zag path with simulation 2

0 20 40 60 80 100
t [s]

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Co
m

pu
ta

tio
n

tim
e

[s
]

MPC
bounds

Figure 6.7: The computation time of the solver of the MPC controller on the zig-zag path with simulation 2

7
Discussion

This Chapter will analyze the results found in Chapter 6 in Section 7.1, and present any limitations
and shortcomings it might have in Section 7.2. This will give an answer to the research question as
presented in Section 1.3.2: How can Model Predictive Control be used for an Autonomous Underwater
Vehicle to improve the performance of quay wall inspection missions?. It will then present recommen-
dations for future research to look into in Section 7.3.

7.1. Results
This section will explore how MPC can be used on an AUV to improve the performance of quay wall
inspection missions. The results discussed here are presented in Chapter 6.

As seen in Figures 6.1, 6.2, and 6.3 and Table 6.1 the MPC controller outperforms the baseline cas-
caded PID controller. It can be seen that the MPC controller follows the path more closely, which is also
proven by the MSE on both the position and orientation. They are both significantly lower compared
to their PID counterparts. This improved path tracking ability makes that the Raybot is able to operate
closer to the wall, as it needs less bounds to prevent collisions. By operating closer to the wall the
Raybot can inspect it in more detail if needed. This can be especially useful if the water conditions
are murky, and visual inspection by camera is hard. This leads to an improved quality of the quay wall
inspection.

Next to this the completion time is also significantly lower for the MPC controller compared to the PID
controller. A lower completion time of the path is desired as this will ultimately lower the completion
time of the whole inspection mission. This leads to a lower cost per meter of quay wall inspected, and
assuming limited materials and man-hours, to more quay walls being able to be inspected.

In order to select the best tuning settings for the MPC controller several simulations have been run,
see table 6.2. By varying the prediction horizon N it can be seen that the MSE on the position and
orientation vary. A low prediction horizon leads to larger errors, as less future reference information
is taken into account. This can lead to a decreased anticipation on changing reference points, for ex-
ample in the half-circle corners of the path, or the starting point with a small offset. Large prediction
horizons also show an increased MSE. This is caused by too much future reference information being
taken into account. This will lead to longer solving times, which causes a larger time delay between
the time the current pose of the Raybot is attained and the thruster inputs have been executed.

By varying the parameters of the cost function the completion time can be changed. By setting a
higher cost on the thruster inputs the optimization algorithm is less likely to compute high thruster in-
puts, as these will cost more. In turn, this leads to a decreased velocity of the Raybot, which leads to
a higher completion time. The reverse is true for a lower cost on the thruster inputs. As the Raybot
aims to decrease the error on the next N path points the Raybot will now have an increased velocity
if the thruster cost is lower, but only if the next path point would otherwise not have been reached at

28

7.2. Limitation and Shortcomings 29

each timestep. This leads to a more aggressive behaviour in minimizing the position and orientation
error. This paradoxically leads to a higher MSE on those, as the Raybot now operates on the bounds
of the thruster constraints, leading to a decrease in path tracking performance. This does explain why
varying the num parameter can lower the completion time more. By varying this parameter the dis-
tance between the path points is changed. In essence, it is the number of points per meter of path, so
a higher num means a lower distance between the path points. Thus, by decreasing num the Raybot
will aim to cover more distance per timestep. This decreases the completion time of the path. The level
of regularization of the hessian approximation hes was also decreased to check if this would result in
lower MSE, but this was not the case.

7.2. Limitation and Shortcomings
The model predictive control algorithm and simulation environment are both reliant on the model of
the AUV in order to control or simulate the real AUV. This is why it is important for the model, and its
corresponding parameter estimation, to be accurate. The parameter estimation on the damping terms
is flawed however. It uses a scaled model of the Raybot, but it was not possible to get all the dimen-
sions correct, especially because mounting brackets were needed. Furthermore it was not possible
to test the damping terms on the pitch movement, as the water tanks was not deep enough for this
test. This parameter has thus been estimated, based on similar robots, and the other damping terms.
Furthermore the test setup had some friction, especially in the rotational test setup. These causes may
add up to large errors in the damping terms, which may not represent the damping physics of the real
Raybot. It should be noted however that they have been compared to similar smaller and larger AUV’s,
and that the damping terms do fit in somewhere between those.

Besides model-mismatches another factor is the rotation matrix issue as explained in Section 5. This
issue causes limitations in the movement of the Raybot besides its quay wall mission path. It does
not present any issues under normal operation, but when the Raybot is needed for other inspections,
where a rotational movement is needed, this may present issues.

Furthermore, the SQP algorithm of the ForcesPro solver has been set to solve 4 Quadratic Program-
ming iterations at each timestep. This was to ensure a low computation time. This does mean however
that it does not stop until convergence of the KKT conditions has been met so optimality can be guar-
anteed. This implies that it cannot be guaranteed that an optimal control input has been applied to the
AUV. As the SQP algorithm also does not guarantee feasible iterations this can result in non-optimal
or even infeasible control inputs being applied to the AUV. However, during all the simulations this has
not seemed to be the case.

7.3. Future work
Future work of this thesis should focus on several issues, partly as presented in Section 7.2. The
model-mismatches caused by inaccurate damping terms can be solved by performing the same ex-
periment on the true Raybot. This will solve any issues with the scale-model, and when using a large
enough tank allows for full damping term estimation. Also, the friction in the test setup can be linearly
superimposed and thus removed from the estimation. This will lead to a more accurate estimation.

Future work should also look into the issues with the rotation around the yaw-axis. Unfortunately there
was not enough time to implement and tune the solver in such a way that a yaw-rotation could be
performed reliably. In use-case outside of quay wall inspection of the Raybot this yaw-rotation can
be important, take for example the helical path around a pillar that was attempted. This issue can be
solved by more testing and tuning with the solver, and possibly also with an underwater robot that is
not overactuated, as this might lead to less possible solutions the solver will try to explore.

Previous works have shown the advantages of a Lyapunov-based Model Predictive Controller [21]
[22]. This controller proves closed-loop stability and recursive feasibility, as well as model parameter
errors of up to 30%. These are very desirable traits for the Raybot and should thus be looked into in

7.3. Future work 30

future work.

It is also recommended to perform real tests on the Raybot instead of only in simulation. This way
the performance of the controller and the model estimation can truly be validated. For this a large
water tank and some form of localization algorithm is needed. When budgetary issues are present it is
recommended to look into a localization algorithm using fiducial markers, as also seen in [5], [4].

At the moment the simulator and the solver are using the same model, although they are working
asynchronously. However, in real-life settings there will be disturbances present on the system. Take
for example water currents that might have not been accounted for, or perhaps disturbances on the
localization of the AUV that might alter the state. Future research should look into the behaviour of
the controller when disturbances are present to research if similar or a least satisfactory results can be
achieved. Else, the use-case will be limited to environments with very little disturbances, which might
cause that not all quays are able to be inspected.

8
Conclusion

Quay walls are vital structures in water-based infrastructure. For this reason they need be inspected
regularly in order to gain knowledge of the state of the quay wall, and prevent any future damage or
collapse. To perform these missions an Autonomous Underwater Vehicle is designed and presented
in a use-case named the Raybot. This Raybot consists of a frame and thrusters, and is able to carry
a set of sensors. This way, it can inspect the quay wall by following a path. In order to follow this
path a Model Predictive Control approach is proposed. For this MPC controller the Fossen model
is used, where the theory and parameter estimation are explained. This model is also used in the
simulation environment based on the Plankton package for a Gazebo simulation environment. The
performance of the MPC controller is compared to a baseline cascaded PID controller. The MPC
controller outperforms the cascaded PID controller both on completion time and the tracking error of
the path. The improved tracking performance leads to the ability to inspect more accurately, which
leads to higher quality inspections. The lower completion time leads to the ability to inspect more quay
walls. For future work it is recommended to test the MPC controller on a real robot in a tank, as this can
truly prove the performance of the controller. Also, it is recommended to further look into path tracking
performance on rotations, as this can make the Raybot suited for more versatile inspection missions.

31

References

[1] Aurélien Babarit andGérard Delhommeau. “Theoretical and numerical aspects of the open source
BEM solver NEMOH”. In: 11th European wave and tidal energy conference (EWTEC2015). 2015.

[2] Viktor Berg. “Development and Commissioning of a DP system for ROV SF 30k”. MA thesis.
Institutt for marin teknikk, 2012.

[3] Bluerobotics. T200 Thruster. URL: https://bluerobotics.com/store/thrusters/t100-t200-thrusters/
t200-thruster-r2-rp/. (accessed: 05.12.2022).

[4] João Britto et al. “Model identification of an unmanned underwater vehicle via an adaptive tech-
nique and artificial fiducial markers”. In: OCEANS 2015-MTS/IEEE Washington. IEEE. 2015,
pp. 1–6.

[5] Juan Chen, Caiming Sun, and Aidong Zhang. “Autonomous Navigation for Adaptive Unmanned
Underwater Vehicles Using Fiducial Markers”. In: 2021 IEEE International Conference onRobotics
and Automation (ICRA). IEEE. 2021, pp. 9298–9304.

[6] WEBREDACTIE COMMUNICATION. Grimburgwal provides lessons for quay wall renovations
Amsterdam. URL: https://www.tudelft.nl/en/2021/tu-delft/grimburgwal-provides- lessons- for-
quay-wall-renovations-amsterdam. (accessed: 11.05.2022).

[7] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Founda-
tion. Stichting Blender Foundation, Amsterdam, 2018. URL: http://www.blender.org.

[8] Alexander Domahidi and Juan Jerez. FORCESProfessional. Embotech AG, url=https://embotech.com/FORCES-
Pro. 2014–2019.

[9] Tijmen van Enckevort. Tijmen Graduation. URL: https://github.com/dobots/tijmen_graduation.
(accessed: 01.11.2022).

[10] Odd Faltinsen. Sea loads on ships and offshore structures. Vol. 1. Cambridge university press,
1993.

[11] Thor I Fossen. Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons,
2011.

[12] Liquid-AI. Plankton. URL: https://github.com/Liquid-ai/Plankton. (accessed: 07.12.2022).
[13] Jan Marian Maciejowski. Predictive control: with constraints. Pearson education, 2002.
[14] Musa Morena Marcusso Manhães et al. “UUV Simulator: A Gazebo-based package for underwa-

ter intervention and multi-robot simulation”. In: OCEANS 2016 MTS/IEEE Monterey. IEEE, Sept.
2016. DOI: 10.1109/oceans.2016.7761080. URL: https://doi.org/10.1109%2Foceans.2016.
7761080.

[15] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. “Exploring the performance of ROS2”. In: Pro-
ceedings of the 13th ACM SIGBED International Conference on Embedded Software (EMSOFT).
2016, pp. 1–10.

[16] Wasif Naeem. “Model predictive control of an autonomous underwater vehicle”. In: Proceedings
of UKACC 2002 Postgraduate Symposium, Sheffield, UK, September. Citeseer. 2002, pp. 19–
23.

[17] NOS. Duiker verdronken tijdens zijn werk in Driel. URL: https://nos.nl/artikel/2191985-duiker-
verdronken-tijdens-zijn-werk-in-driel. (accessed: 24.10.2022).

[18] Simon Pedersen et al. “Stabilization of a rov in three-dimensional space using an underwater
acoustic positioning system”. In: IFAC-PapersOnLine 52.17 (2019), pp. 117–122.

[19] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA workshop on
open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

32

https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/
https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/
https://www.tudelft.nl/en/2021/tu-delft/grimburgwal-provides-lessons-for-quay-wall-renovations-amsterdam
https://www.tudelft.nl/en/2021/tu-delft/grimburgwal-provides-lessons-for-quay-wall-renovations-amsterdam
http://www.blender.org
https://github.com/dobots/tijmen_graduation
https://github.com/Liquid-ai/Plankton
https://doi.org/10.1109/oceans.2016.7761080
https://doi.org/10.1109%2Foceans.2016.7761080
https://doi.org/10.1109%2Foceans.2016.7761080
https://nos.nl/artikel/2191985-duiker-verdronken-tijdens-zijn-werk-in-driel
https://nos.nl/artikel/2191985-duiker-verdronken-tijdens-zijn-werk-in-driel

References 33

[20] James Blake Rawlings, David Q Mayne, and Moritz Diehl. Model predictive control: theory, com-
putation, and design. Vol. 2. Nob Hill Publishing Madison, WI, 2017.

[21] Chao Shen, Yang Shi, and Brad Buckham. “Lyapunov-based model predictive control for dy-
namic positioning of autonomous underwater vehicles”. In: 2017 IEEE International Conference
on Unmanned Systems (ICUS). IEEE. 2017, pp. 588–593.

[22] Chao Shen, Yang Shi, and Brad Buckham. “Trajectory tracking control of an autonomous under-
water vehicle using Lyapunov-basedmodel predictive control”. In: IEEE Transactions on Industrial
Electronics 65.7 (2017), pp. 5796–5805.

[23] Dassault Systèmes SolidWorks. “SolidWorks®”. In: Version Solidworks 2020 1 (2020).
[24] Dirk Thomas, WilliamWoodall, and Esteve Fernandez. “Next-generation ROS: Building on DDS”.

In: ROSCon Chicago 2014. Mountain View, CA: Open Robotics, Sept. 2014. DOI: 10.36288/
ROSCon2014-900183. URL: https://vimeo.com/106992622.

[25] Chu-Jou Wu. “6-dof modelling and control of a remotely operated vehicle”. PhD thesis. Flinders
University, College of Science and Engineering., 2018.

[26] A. Zanelli et al. “FORCES NLP: an efficient implementation of interior-point... methods for multi-
stage nonlinear nonconvex programs”. In: International Journal of Control (2017), pp. 1–17.

https://doi.org/10.36288/ROSCon2014-900183
https://doi.org/10.36288/ROSCon2014-900183
https://vimeo.com/106992622

A
Cascaded PID

A.1. Cascaded PID control
The baseline control algorithm is a cascaded PID controller. This is two PID controllers placed in
series over the plant, see also Figure A.1. The first PID controller acts on the pose error of the AUV
compared to the path. This position error is split into a position error (x, y, z) and an orientation error
(ϕ, θ, ψ). These errors are fed through the P, I and D gains of the position controllers and combined
together to form a ’Twist’ command. This is the desired velocity composed of the linear and angular
velocities of the AUV. Again, this error is split up into the linear (u, v, w) and angular velocities (p, q, r.
These errors are fed through the P,I,D gains of the velocity controllers and this results in the force that
the AUV needs to apply in order to follow the reference path.

Figure A.1: Cascaded PID controller structure

A.1.1. Formulation
Table A.1 shows the PID gains for the cascaded controller for the raybot AUV.

34

A.1. Cascaded PID control 35

PID Gains Position Velocity
linear P 3 8
Linear I 0.3 2
Linear D 0.5 0.2
Angular P 3 5
Angular I 0.3 2
Angular D 0.5 0.2

Table A.1: The gains of the cascaded PID controller

A.1.2. Implementation

Figure A.2: Cascaded PID controller structure in ROS

Figure A.2 shows the pipeline in the ROS environment for the cascaded PID controller. It starts with
the position of the AUV: the /raybot/pose_gt message. The /raybot/pose_gt message consists
of the position and velocity state of the AUV. This position is then used by the first PID controller,
the position_control node. The path with the reference points is defined in this position_control
node. The error on the position is calculated and used to compute a reference velocity message, the
/raybot/cmd_vel message. The /raybot/velocity_control node then uses the /raybot/cmd_vel
and /raybot/pose_gt messages to compute the error on the velocity of the AUV, and the control
actions necessary to get to the reference velocity. This /raybot/cmd_accel command is then pub-
lished and picked up by the /raybot/acceleration_control node. This node only multiplies desired
/raybot/cmd_accel command with the mass matrix of the AUV, so that a force vector can be com-
puted. This force vector /raybot/thruster_manager_input is published and subscribed to by the
/raybot/thruster_allocator node. Because the AUV can be over- or underactuated the force vector

A.1. Cascaded PID control 36

cannot be directly applied to the thrusters. For this reason the /raybot/thruster_allocator computes
the force that is needed per thruster. This force is published on the /raybot/thrusters/id_<x>/input
topic, where <x> is the id-number of the thruster. In the case of the raybot x = [0, ..., 7].

B
Validation Parameter Estimation

Added Mass

The method to estimate the addes mass components of the Raybot has been validated on a Bluerov
Heavy configuration [25]. A simplified model of the Bluerov Heavy was made in Solidworks, and the
added mass matrix was estimated in the same way as for the Raybot. This resulted in the following
addes mass matrix:

MA =

8.262 0 0 0 0 0
0 19.43 0 0 0 0
0 0 19.97 0 0 0
0 0 0 0.28 0 0
0 0 0 0 0.20 0
0 0 0 0 0 0.23

 (B.1)

This is slightly different than the added mass matrix that has been reported in [25]

MA =

5.5 0 0 0 0 0
0 12.7 0 0 0 0
0 0 14.57 0 0 0
0 0 0 0.12 0 0
0 0 0 0 0.12 0
0 0 0 0 0 0.12

 (B.2)

This difference can be explained by the fact that the simplifiedmodel of the Bluerov Heavy does not have
any rounded edges and contains only sharp edges and corners. This makes it less hydrodynamically
efficient, and this can explain why the parameters by the Nemoh estimations are slightly higher. Still,
it can be considered as a suitable method to estimate the parameters for the Raybot as the values do
make sense.

37

	Preface
	Abstract
	Introduction
	Collapsing Quay Walls
	Current Inspection Methods
	Inspection with Autonomous Underwater Vehicles
	Motion Control
	Research Questions

	Design of the Raybot Proof-of-Concept
	Design Requirements
	Design of the Raybot
	Sensors
	Thrusters
	On-Board Computer
	Frame

	Prototype

	Model
	The Fossen Model
	Kinematics
	Kinetics

	Parameter Estimation of the Raybot
	Mass/Inertia/Restoring forces
	Added Mass
	Damping
	Thruster Forces
	Cable forces

	Model Predictive Control
	Formulation
	Implementation

	Method
	Simulation Environment
	Setup of Simulation Experiments

	Results
	Performance
	MPC Parameters

	Discussion
	Results
	Limitation and Shortcomings
	Future work

	Conclusion
	References
	Cascaded PID
	Cascaded PID control
	Formulation
	Implementation

	Validation Parameter Estimation Added Mass

