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A B S T R A C T

In multiscale modeling methods (MMM), the integration of atomistic to continuum coupling is a common
practice, where two regions have their own distinct length scales. The equilibrium configurations of such mul-
tiscale systems under given conditions are typically obtained through energy minimization algorithms (EMA).
However, traditional EMAs, such as the conjugate gradient (CG) and limited-memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) algorithms, are unable to discern the diverse scales inherent in such systems. In this work, it is
found that the convergence rate of energy minimization in multiscale simulations is significantly slower than that
in full atomistic simulations, regardless of using CG, LBFGS algorithms or the latest fast inertial relaxation engine
(FIRE). The lower efficiency emerges due to the coexistence of atoms and nodes with distinct length scales within
the multiscale framework, yet the current EMAs fail to differentiate between them. It results in disparate
convergence rates across different scales, which undermines both computational accuracy and efficiency. To
address the issue, a multiscale FIRE algorithm which updates positions of atoms and nodes synchronously by
employing appropriate effective mass is proposed. The optimal effective mass is determined by synchronizing the
vibration of harmonic oscillators across different scales. By employing the multiscale FIRE algorithm, the
computational efficiency increased by 24.4 and 23.7 times compared to the CG and LBFGS algorithms when used
for multiscale nanoindentation simulations. These findings and the proposed algorithm provide valuable insights
for structural relaxations of multiscale physical problems and are promising to further improve the computa-
tional accuracy and efficiency of MMMs.

1. Introduction

The past few decades have witnessed numerous research progress
made on the concurrent multiscale modeling methods (MMM) with
atomistic to continuum coupling [1,2], which can significantly enhance
computational efficiency while preserving accuracy. The simulation
methods at the micro-scale, represented by molecular dynamics (MD)
and molecular statics (MS), can predict the behavior of materials at
atomic level, yet they are limited to small spatial and temporal scales,
typically ~ 100 nm and ~ 10 ns, because of their high computational
consumption [3]. On the other hand, the computational methods at the
macro-scale, such as finite element method (FEM) and phase-field
method, can deal with large-scale systems but struggle with simulating
inhomogeneous deformation at atomic level. Therefore, MMMs are
proposed to integrate atomistic and continuum representations within
the same system in order to balance accuracy and efficiency [4,5].
Among the proposed MMMs, the quasicontinuum (QC) method

developed by Tadmor et al. [6] is one of the representative methods. By
introducing representative atoms for mesh interpolation in non-critical
regions, QC significantly reduces the degrees of freedom (DOF).
Cauchy-Born rule is applied to approximate the energy of the system,
which further improves the computational efficiency. On this basis,
extensive research efforts have been dedicated to improving QC, for
instance, by introducing adaptivity [7,8], correcting ghost force at in-
terfaces [9,10], and considering finite temperature effect [11,12]. So far,
QC has been used to solve many mechanical problems, such as nano-
voids [8], interfacial motion of crystals and crack propagations
[13,14]. The coupled atomistic and discrete dislocation (CADD) method
[15,16] is an extension of QC, where the discrete dislocation lines are
introduced to represent dislocations in elements, and it is not required to
conduct transformation between atomistic and continuum regions in
CADD. With the decomposition of the displacement field, the bridging
scale method (BSM) [17–19] establishes the coupling of macro-scale and
micro-scale, and is suitable for both static and dynamic problems, such
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as deformation of carbon nanotubes and 2D wave conduction. Budarapu
et al. [20] has put forward a multiscale method for quasi-static crack
propagation simulations. In this method, the classical MS and a coarse-
grained model with virtual atom clusters are used for atomistic and
continuum regions respectively, and the phantom node method is
adopted when an element is cut by a crack. With the coupling of MD and
smoothed molecular dynamics (SMD), Liu et al. [21] put forward a
concurrent multiscale method to solve the problem of limited temporal
and spatial scales in MD simulations at finite temperature. With a two-
level description of the lattice structure and the extended transport
equations, Chen et al. [22] proposed the concurrent atomistic-
continuum (CAC) method, which allows the propagations of disloca-
tions through coarse-grained elements without switching them into
atomic representations. Notably, Wang et al. [23] proposed the mole-
cule/cluster statistical thermodynamics (MCST) multiscale framework,
which solves the equilibrium configuration of the finite temperature
system by minimizing its Helmholtz free energy. In this framework, the
molecule statistical thermodynamics (MST) [24], cluster statistical
thermodynamics (CST) [25] and hybrid molecule/cluster statistical
thermodynamics (HMCST) methods can be used to calculate the quasi-
static mechanical behaviors and have been applied to mechanical
analysis of both 2D and 3D systems at finite temperature [26].

For these MMMs, it is an important issue to achieve high computa-
tional efficiency while maintaining accuracy. Previous studies have
examined the efficiency of some MMMs, demonstrating their superior
performance compared with full atomistic simulations. For example,
Biyikli et al. [27] put forward the multiresolution molecular mechanics
used for a nanoindentation problem, which shows 6.3 ~ 8.5 times
higher than MD in efficiency. The variable node multiscale method [28],
coupling FEM and classical MS with decomposition of displacement into
coarse and fine scales, reduces 4.4 times of computational time than
pure MS in simulating a 2D edge crack problem. A coupling extended
multiscale finite element and peridynamic method proposed by Zhang
et al. [29] was used for simulations of the quasi-static crack propaga-
tions, and its calculation time for each loading step was 119.2 s, while
that of the peridynamic method was 876.7 s.

Generally speaking, the efficiency of an MMM for quasi-static sim-
ulations is related to two aspects: the coupling algorithm across different
scales and the efficiency of the energy minimization algorithm (EMA).
Since the coupling algorithm varies across different MMMs for specific
applications, developing efficient EAMs for multiscale simulations can
benefit all MMMs. Currently, classical EMAs, such as the conjugate
gradient (CG) and limited-memory Broyden-Fletcher-Goldfarb-Shanno
(LBFGS) algorithms, have been widely used. These EMAs are renowned
for their reliability and efficiency in tackling a wide range of minimi-
zation problems, owing to extensive studies in the mathematical opti-
mization community [30]. In order to further improve the efficiency of
energy minimization for atomic systems, Bitzek et al. [31] proposed the
fast inertial relaxation engine (FIRE) algorithm which shows great effi-
ciency improvement than CG. However, the original FIRE has several
aspects that could be further improved. For example, based on structural
relaxation in the microcanonical (NVE) ensemble, Lin et al. [32] pro-
posed a new EMA applied to indentation on monolayer graphene,
consuming less computational time than CG and FIRE algorithms. Zhou
et al. [33] put forward a mass-weighted FIRE algorithm for the Green’s
function molecular dynamics, which shows about 3 times higher than
CG and the initial FIRE in computational efficiency when applied to the
problem of Hertzian contact. Guénolé et al. [34] proposed the FIRE 2.0
algorithm with corrected iterations and uphill motion, which shows
better robustness than the initial FIRE and higher efficiency than CG
when used for numerical examples such as dislocation relaxation and
energy barrier calculations. Currently, the FIRE algorithm has been in-
tegrated into most popular atomic/molecular simulation packages, such
as LAMMPS [35], VASP [36], IMD [37] and GROMACS [38].

However, the convergence behavior of the FIRE algorithm in mul-
tiscale simulations remains unclear. In a full atomistic system, the

existing EMAs determine proper magnitudes and directions for all DOFs
for the next move based on the current state of energy and force. For the
atomistic to continuum coupling MMMs, atoms and nodes are usually
treated equally by current EMAs, such that their step sizes are taken as
the same value at each iteration step. However, it may prove inefficient
in practice because the convergence rates of atomistic and continuum
regions could differ significantly due to their different characteristic
length scales, as observed in the current study. If the same step size is
adopted for atoms and nodes, the converged rates of atomistic and
continuum regions may not be consistent, thereby compromising
computational efficiency. Despite some previous research [39]
comparing the computational efficiency of different EMAs for MMMs,
little literature has addressed the underlying reasons for this problem of
efficiency and put forward corresponding solutions.

In this work, typical EMAs will be applied to an MMM to investigate
the effects of atomistic to continuum coupling on the efficiency and
accuracy for energy minimization. Subsequently, an improved FIRE al-
gorithm will be proposed to achieve higher efficiency for MMMs and
offer insights for improving the optimization of other multiscale models.
The multiscale framework MCST [23] will be used to validate the effi-
ciency of EMAs. In Section 2, the MCST will be briefly reviewed at first,
and the essentials of FIRE algorithm will be discussed. In Section 3, the
3D nanoindentation will be used as numerical examples to indicate the
efficiency problems of EMAs involved in the energy minimization of
multi-scale simulations. On this issue, the multiscale FIRE algorithm is
proposed in Section 4 and its efficiency and accuracy will be verified in
Section 5. Finally we will summarize our work and its significance to
general multiscale problems in Section 6 and 7.

2. MCST multiscale framework and energy minimization

In previous studies, Wang et al. [23] proposed the MCST framework
for simulations with atomistic to continuum coupling. Depending on
different representation styles, MCST can be used in three computational
modes: the MST method [24] with atomistic representation, the CST
method [25] with continuum representation, and the HMCST method
which combines both representations, as shown in Fig. 1. In all the
computational modes, mechanical behavior of a solid system can be
obtained by minimization of the total energy.

The MST method was developed for quasi-static simulations of finite
temperature systems. By incorporating the local harmonic approxima-
tion [40] into the Helmholtz free energy, the temperature effect could be
considered without calculating atomic thermal vibrations. MST can
accurately capture inhomogeneous deformation such as cracks and
dislocations, yet its computational cost is huge because the motion of
each atom should be traced. The CST method was put forward as a
“coarse-grained” version of MST to reduce the DOFs. CST divides the
system into several clusters, where the atoms are evenly distributed, and
their positions could be determined by nodes. While CST offers signifi-
cantly higher efficiency than MST, it is difficult to model atomic motions
in regions with local defects. In order to balance both computational
accuracy and efficiency, the HMCSTmethod was designed by combining
MST and CST. As illustrated in Fig. 1, a system is divided into the
molecule and cluster regions, where energy calculations are performed
using the MST and CST methods respectively. Additionally, padding
atoms are introduced in the cluster regions to compute the interatomic
interactions with adjacent molecule regions. As a result, the total free
energy of the system comprises the following three parts:

Etot = EM({xatom} )+ EC({Xnode} )+EI({xatom}, {Xnode} ) (1)

where EM, EC, EI are the free energy of molecule, cluster and interfaces
respectively; {xatom} and {Xnode} represent the sets of coordinates of
atoms and nodes. Moreover, the adaptive HMCST has the ability to
switch cluster regions to molecule regions adaptively when defects in
the molecule region are going to propagate across the interface of the
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two regions.
In both MST and HMCST methods, the quasi-static mechanical

response of the system is determined by the energy minimization. For
this purpose, CG, LBFGS and FIRE algorithms are three of most
commonly used EMAs as introduced in Section 1. This study mainly
focus on the FIRE algorithm, while the results obtained with CG and
LBFGS will be used for comparison in Section 3.

Unlike CG and LBFGS where the step size is determined by the line
search, the FIRE algorithm proposed by Bitzek et al. [31] updates the
coordinates of DOFs by means of an MD-like integration method with a
damping coefficient. In this study, we employ the semi-implicit Euler
integration method, in which the velocity and coordinates are updated
as follows:

v(k+1) = v(k) +
f(k)

m
Δt, x(k+1) = x(k) +v(k+1)Δt (2)

where Δt represents the time step and m denotes the mass of particles.
To enhance the robustness of FIRE, we adopt the FIRE 2.0 algorithm

[34] mentioned in Section 1, and its computational process for the
HMCST method which couples atomistic and continuum representations
is detailed in Appendix A.

For the FIRE algorithm, achieving convergence mainly relies on two
essential parameters in Eq. (2): the initial time step and masses of par-
ticles. Typically, the time step is set to be equal for atoms and nodes.
Regarding the masses of atoms and nodes, there are two common stra-
tegies: (1) both the masses of atoms and nodes are set to the physical
mass of the atoms; (2) the mass of nodes is set to be the summation of the
mass of their representative atoms according to the approach of coarse-
graining [41]. Compared with the first strategy, it makes more sense in
terms of dynamics when aligning the mass of nodes to their represen-
tative atoms. However, the numerical simulations in Sections 3 and 5
will indicate that neither approach achieves the optimal convergence
rate.

3. Efficiency analysis of multiscale simulations with different
EMAs

As a typical multiscale problem in computational mechanics, nano-
indentation has been commonly used to validate the feasibility and ef-
ficiency of MMMs [27,42,43]. The nanoindentation system is consisted
with an indenter and substrate, made from a specific material to be
tested. In practice, the indenter is pressed into the substrate with a
displacement load, establishing the relationship between the indenta-
tion depth and reaction force that reflects the mechanical properties of

the substrate. In crystalline materials, dislocations will nucleate beneath
the indenter as the applied load increases and gradually propagate into
the substrate. Therefore, in the multiscale simulation of the nano-
indentation system, atomistic representation regions are used to capture
the nucleation and propagation of dislocations, while the continuum
representation regions describe the elastic deformation away from dis-
locations in order to reduce computational DOFs.

In this Section, the MST and adaptive HMCST methods with the CG,
LBFGS and FIRE algorithms are used to simulate a nanoindentation
system as illustrated in Fig. 2. The substrate is consisted of a single
crystal copper with a dimension of 39.0 × 39.0 × 27.5 nm, containing
3,602,309 Cu atoms. The lattice structure of the substrate is face-
centered cubic (FCC), with the lattice constant of 3.615 Å and the
indented surface is (001). The conical diamond indenter contains
25,984C atoms, with the lattice constant of 3.567 Å and the cone angle
of 120 degrees. During the quasi-static loading process, the indenter
moves downward to amaximum depth of 3.6 nmwith 200 loading steps.
In the system for MST simulations as shown in Fig. 2 (a), 348,074 atoms
are fixed at the bottom of the substrate, while periodic boundary con-
ditions are applied to the x and y directions. The embedded-atom
method (EAM) potential [44] is adopted to describe the interactions of
Cu atoms. While the potential energy between C and Cu atoms are

calculated by the Morse potential ϕC− Cu(r) = D0
[(
1 − e− α(r− ro)

)2
− 1

]
,

where the parametersD0 = 0.087 eV, α= 5.14 Å− 1 andr0 = 2.05 Å [24]
are used, and the cutoff radius is set to 7.0 Å for the C-Cu atomic in-
teractions. Here the temperature effect is not considered in the simula-
tions, and the Helmholtz free energy is equal to the interatomic potential
energy. Therefore, the MST method is equivalent to the classical MS in
this case, which will be used as the benchmark in the comparison with
the adaptive HMCST method.

In the initial configuration for the adaptive HMCST simulations as
shown in Fig. 2 (b), the top surface of the substrate with a thickness of
1.1 nm containing 117,723 atoms is set as the molecule region used for
the generation of initial defects. The initial cluster region consists of
2,916 tetrahedral elements with 700 nodes. Its boundary condition is
similar to that of MST, except that 100 nodes are fixed at the bottom.

The same convergence criterion of force is adopted for CG, LBFGS
and FIRE algorithms in order to compare their computational efficiency
and accuracy. Specifically, the magnitude of the forces of all atoms in the
system is employed as a measure to check the convergence state, which
is defined as:

Fig. 1. Schematic illustration of the HMCST method.
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f =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Ntotal atoms

(
∑

atom
fatom⋅fatom +

∑

node

Fnode⋅Fnode

)√
√
√
√ < εf (3)

where fatom, Fnode represent the force vectors of atoms and nodes;
Ntotal atoms refers to the total number of atoms in the simulated system,
including the virtual atoms in cluster regions; εf is the converged
threshold, which is set as 5.0e-4 eV/Å for all the considered methods. In
addition, for the adaptive HMCST simulations with the FIRE algorithm,
two different masses of nodes as mentioned in Section 2 are both tested:
(1)mnode=matom; (2)mnode = 4978matom, where 4978 refers to the average
number of representative atoms of nodes in the cluster regions of the
multiscale system.

Fig. 3 shows the dislocation pattern of the nanoindentation systems
at the last loading step from the MST and adaptive HMCST methods,
rendered with the centrosymmetric parameters (CSP) [45] ranging be-
tween 1.0 and 6.5 Å2. Here the results are computed with the FIRE al-
gorithm. It can be observed that both the calculated results of MST and
HMCST have significant dislocations generated around the indenter. In
the case when mnode=matom, there are few dislocation loops extend into
the interior of the substrate as shown in Fig. 3 (b) compared with the
MST. Fig. 3 (c) corresponds to the results whenmnode = 4978 matom,
showing that some dislocation loops extend towards the boundary of the
substrate, which are closer to the results of MST in Fig. 3 (a). On this
issue, we will further analyze from the aspects of the force-depth curves
and the iteration processes of forces in molecule and cluster regions.

Fig. 4 shows the force-depth curves obtained from the MST and

adaptive HMCST simulations with three different EMAs. For the same
method, the curves obtained by CG, LBFGS and FIRE algorithms are
similar, where some differences are due to the random development of
dislocations. the To make quantitative comparison, quadratic functions
were employed for fitting these force-depth curves, and the fitting co-
efficients obtained from the MST and HMCST with CG, LBFGS and FIRE
(mnode=matom) algorithms are 114.1, 106.7, 114.9 and 129.8, 128.2,
134.0 nN/nm2 respectively. HMCST produces results that exhibit a
slightly higher stiffness of the system compared to MST. For the FIRE
algorithm, the fitting coefficients from the results of MST and HMCST
whenmnode = matomandmnode = 4978 matom are 114.9, 134.0 and 102.4
nN/nm2 respectively. It is indicated that the results of adaptive HMCST
exhibit discrepancies compared to the MST used as the benchmark.
Notably, the stiffness of the force-depth curve by HMCST-FIRE
whenmnode = 4978 matom is significantly lower than other HMCST re-
sults but comparable to MST results. These comparisons indicate that
FIRE withmnode = 4978 matom is the most physical EMA by considering
the coarse-grained mass of nodes and has the best accuracy.

The computational efficiency of the MST and adaptive HMCST
methods employing three EMAs are presented in Table 1. Here we
compare the number of force and energy evaluations nFE for different
computational conditions. Several distinct characteristics can be
observed from these results.

The computational time of MST and HMCST simulations is not
directly compared here, primarily because the calculation cost of
each force/energy evaluation differs significantly between full

Fig. 2. Nanoindentation configurations for the (a) MST and (b) adaptive HMCST simulations.

Fig. 3. Dislocation distributions in the nanoindentation systems at the maximum indentation depth obtained from the (a) MST and adaptive HMCST simulations with
the FIRE algorithm when (b)mnode = matomand (c)mnode = 4978 matom in a semi-sectional style.
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atomistic and multiscale models. The discrepancy arises from vary-
ing DOFs and parallel implementation, making it difficult to conduct
fair comparison for the wall time of two systems. Moreover, the
model of 3D nanoindentation is relatively small, diminishing the
potential advantages of multiscale simulations. Therefore, we opt to
compare the numbers of force evaluations, as this metric better
demonstrates the convergence rate of the energy minimization
process.
In both MST and HMCST simulations, different minimization algo-
rithms exhibit similar characteristics of efficiency. The computa-
tional time for the CG algorithm is the longest, followed by the
LBFGS algorithm, while the FIRE algorithm is the fastest. The result
is consistent with the findings of the FIRE algorithm in other simu-
lations as well [34,39]. To be more specific, considering the total
number of force evaluations in the MST simulations, the LBFGS al-
gorithm costs 89.1 % of the CG algorithm, and the FIRE algorithm is
4.5 times faster than the CG algorithm. In the adaptive HMCST
simulations, the efficiency of the CG and LBFGS algorithms is close,
and the FIRE algorithm withmnode = matomandmnode = 4978 matom is
2.4 and 9.2 times faster than the CG algorithm respectively.
For the same minimization algorithm, both the total computation
time and the number of force evaluations in HMCST simulations are
higher than that in MST simulations. Specifically, the number of
force evaluations in HMCST with the CG algorithm is 5.0 times that
of the MST method, while with the LBFGS algorithm, it is 5.2 times
that of the MST method. The number of force evaluations in HMCST
using the FIRE algorithm in the cases ofmnode = matomandmnode =

4978 matom is 9.3 and 2.4 times that of the MST method respectively.
These results indicate that although the HMCST method effectively
reduces the DOFs by introducing clusters, the convergence rate is
lower than the MST method with full atomistic representation.

In order to explain the underlying reason for the different accuracy in
Fig. 4 (b) as well as low efficiency of multiscale simulations in Table 1,
the forces of atoms and nodes in the molecule and cluster regions are
recorded during the iteration process. Fig. 5 (a) and (b) show the
average forces of atoms and nodes for the HMCST simulations at the
indented depth of 2.2 nm and the FIRE algorithm whenmnode =

matomandmnode = 4978matom. Here the average forces of atoms and nodes

are calculated as fatom =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

Natom

∑
atomfatom⋅fatom

√
, Fnode =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

Nnode

∑
nodeFnode⋅Fnode

√
, where Natom and Nnode represent the number of

atoms molecule regions and nodes in the cluster regions, respectively. In
the case thatmnode =matomas shown in Fig. 5 (a), Fnode fluctuates violently
during the energy minimization. However, the lowest Fnode is one order
magnitude smaller than fatom. In contrast, Fig. 5 (b) shows the iteration
process of forces whenmnode = 4978matom. Due to a larger mass of nodes,
the fluctuations of Fnode in Fig. 5 (b) are not considerable as that in Fig. 5
(a). Nevertheless, the value of Fnode during iterations remain 10-1 nN,
which is much higher than fatom with a converged value of nearly 10-4

nN.
From Fig. 5, the following reasons can be inferred for the different

accuracy and efficiency of HMCST simulations:

For FIRE with mnode=matom, Fig. 5 (a) indicates that the molecular
regions are under-converged, while the cluster regions are over-
converged. Although the criterion in Eq. (3) is satisfied at the end
of minimization, this convergence is fake, and the energy of the
multiscale system is not truly minimized. Since the molecule regions
directly contact the indenter, the non-zero forces in these regions
exert a high force on the indenter, leading to increased stiffness in the
force-depth curve in Fig. 4 (b). This fake convergence also explains
the high stiffness observed in the force-depth curves for HMCST-CG
and HMCST-LBFGS in Fig. 4 (b).
On the contrary, Fig. 5 (b) suggests that the molecule regions are
over-converged, while the cluster regions are not fully relaxed
eventually whenmnode = 4978 matom. As a consequence, the corre-
sponding force-depth curve has lower stiffness, mainly due to the
non-converged cluster regions, which are more “soft” compared with
other curves. Nevertheless, the highly converged molecule regions
enable the accurate dislocation evolution and force-depth curve, as
shown in Fig. 3 (c) and Fig. 4 (b).
The convergence rates of molecule and cluster regions are distinct in
both Fig. 5 (a) and (b). The different convergence rates of two regions
lead to twists and turns in the energy minimization process, resulting
in low efficiency of multiscale simulations.

Fig. 4. Force-depth curves obtained by the (a) MST and (b) adaptive HMCST methods with CG, LBFGS and FIRE algorithms.

Table 1
Number of force evaluations of MST and adaptive HMCST by CG, LBFGS, orig-
inal and multiscale FIRE algorithms.

Method Number of force evaluations

Full atomistic MST-CG 134,373
MST-LBFGS 119,680
MST-FIRE 30,109

Multiscale HMCST-CG 666,151
HMCST-LBFGS 628,096
HMCST-FIRE (mnode=matom) 281,390
HMCST-FIRE (mnode=4978 matom) 72,346
HMCST-Multiscale FIRE 27,160

M. Tang et al.
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4. FIRE algorithm for multiscale simulations

According to the results in Section 3, the computational efficiency of
EMAs in HMCST is lower than that for MST, primarily due to the
different convergence rates of molecule and cluster regions. Compared
with the CG and LBFGS, the FIRE algorithm not only exhibits higher
efficiency, but also offers clearer physical and dynamic interpretations.
Therefore, a multiscale FIRE algorithm will be proposed to address this
issue. Specifically, we will discuss the relationship between system’s
energy and masses and oscillation frequencies during energy minimi-
zation, and analyze the effective mass of nodes in physical systems.

4.1. Relationship of masses and oscillation frequencies in energy
minimization

The potential energy of a system with a total number of atoms and
nodes as Ntotal can be calculated through the Taylor’s expansion near the
equilibrium state:

Φ = Φ0 +
∑Ntotal

i=1

∑3

α=1

∂Φ
∂riα

⃒
⃒
⃒
⃒
r0

Δriα +
1
2
∑Ntotal

i,j=1

∑3

α,β=1

∂2Φ
∂riα∂rjβ

⃒
⃒
⃒
⃒
r0

ΔriαΔrjβ +⋯ (4)

where Φ0 corresponds to the potential energy at the reference point; riα
represents the coordinate of ith atom or node on the αth direction; r0
refers to the coordinates of DOFs at the equilibrium state. Due to the fact
that the force of DOFs equals zero at the equilibrium state, and by
neglecting higher-order terms, the potential energy in Eq. (4) only re-
tains Φ0 and the terms with the second-order gradient. According to the
dynamical theory of lattice, the second-order gradient of Φ can be
expressed by the lattice dynamical matrix D[46–48]. As a result, the
potential energy can be written as:

Φ = Φ0 +
1
2
∑Ntotal

i,j=1

∑3

α,β=1

̅̅̅̅̅̅̅̅̅̅mimj
√ Dαβ

ij ΔriαΔrjβ (5)

wheremi represents the mass of ith atom or node. In order to simplify the
analysis, both the local harmonic and decoupled approximations are
applied, where the couplings of oscillations among and on different di-
rections of atoms and nodes are neglected. Based on the relationship
between oscillation frequencies and the lattice dynamical matrix, the
potential energy could be calculated as follows:

Φ ≈ Φ0 +
1
2
∑Ntotal

i=1

∑3

α=1
miω2

iαΔr2iα

= Φ0 +
1
2
∑Natom

i=1

∑3

α=1
matom,iω2

atom,iαΔr2atom,iα +
1
2
∑Nnode

i=1

∑3

α=1
mnode,iω2

node,iαΔr2node,iα

(6)

where ωiα(α = 1, 2, 3) represent oscillating frequencies of ith atom or
node. Eq. (6) indicates that the system’s energy can be divided into three
contributions: ground state energy, vibrational energy of all atoms, and
vibrational energy of all nodes. To achieve the optimal convergence rate
when relaxing the system, atoms and nodes should move synchronously.
Since vibrational frequency is an intrinsic property of the system
determined by the predefined potential energy, matom and mnode can be
adjusted accordingly.

To illustrate this point, the energy minimization of a 2D quadratic
potential function Φ(x1, x2) = 1

2k1x
2
1+

1
2k2x

2
2 is calculated, where the

resilience factorsk1 = 2 eV/Å2, k2= 20 eV/ Å2, and the initial value is (1
Å, 1 Å). Besides, the parametersm= 10 eV•fs2/Å2, Δt0= 0.7 fs are set for
both x1 and x2 when using the FIRE algorithm. The whole minimization
process is shown in Fig. 6 (a) and (b).

It is indicated from the results that the iteration process with the
original FIRE algorithm encounters twists and turns. Obviously, the
particle fluctuates violently on the direction of x2 especially on the
beginning few steps, while the convergence rate is relatively slow on the
direction of x1. Additionally, the DOF with a larger curvature of the
potential well has larger oscillation frequencies than the one with a
smaller curvature. When minimizing the energy of this system, it could
be difficult for two DOFs to reach the equilibrium state simultaneously if
their oscillation frequencies are distinct. As a result, it is difficult for the
original FIRE to search a reasonable minimization path for the multi-
scale system.

Since the resilience factors for the ith atom or node defined as kiα =

miω2
iα could be obtained from the concrete potential function, and its

oscillation frequencies are calculated by ωiα =
̅̅̅̅̅̅̅̅̅̅̅̅̅
kiα/mi

√
. Now the results

after synchronizing the oscillations of x1, x2 will be calculated. For this
purpose, we setm2 = 10m1, to make sure that the oscillation frequencies
of two DOFs are the same. The FIRE algorithm with corrected masses of
DOFs based on synchronizing their oscillation frequencies is referred to
as the “multiscale FIRE algorithm”. With the same parameters and initial
value used above except form2 = 10 eV•fs2/Å2 andm1 = 1 eV•fs2/Å2, the
minimization process of Φ(x1, x2) with the multiscale FIRE algorithm is
shown in Fig. 6 (c) and (d). It is observed that the results with multiscale
FIRE could converge directly to the location nearby the exact solution (0
Å, 0 Å) without any twist or turn on one direction shown in Fig. 6 (b).
Notably, the number of iteration steps that the multiscale FIRE

Fig. 5. Average forces of atoms and nodes for the adaptive HMCST simulations with the original FIRE algorithm when (a) mnode=matom, (b)mnode = 4978 matom during
the iteration process at the indented depth of 2.2 nm.
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consumes for the minimization of Φ(x1, x2) is 27, while the original FIRE
costs 52 iteration steps. These results indicate that synchronizing the
oscillation frequencies of DOFs across different scales can effectively
accelerate the convergence rate of the minimization process.

4.2. Corrected effective mass of nodes

In this Subsection, we will determine the effective mass of nodes for
the atomistic to continuum coupling MMMs by synchronizing the
oscillation frequencies of atoms and nodes in Eq. (6).To simplify the
analysis, the following three assumptions are introduced: (i) the inter-
atomic interactions will occur only among the nearest neighbors of
atoms instead of a larger range within a cut-off radius; (ii) the motion of
atoms in the whole system could be approximated to the harmonic os-
cillators, so the interatomic forces are proportional to the distance from
the equilibrium state; (iii) the length of elements in cluster regions is
significantly larger than the interatomic distance. Based on these as-
sumptions, we will analyze the effective mass of nodes for a practical 3D
multiscale system.

As shown in Fig. 7, the lattice structure is FCC, with the cluster re-
gions divided by tetrahedral elements. Notably, we take the directions
parallel to the boundaries of the coupling interface as the x and y co-
ordinates, while the vertical direction of the interface is regarded as the z
coordinate. According to our assumptions, an effective spring oscillator
model with a stiffness of k could be built between every two adjacent
atoms. Suppose a disturbanceΔx on the x direction is given to an atom in
molecule regions, and the increase of energy could be calculated as
follows:

ΔE(x)atom− 3D = 4×
1
2
k

(

l0 +
̅̅̅
2

√

2
Δx

)2

+4×
1
2
k

(

l0 −
̅̅̅
2

√

2
Δx

)2

− 4×
1
2
kl20

= 2kΔx2

(7)

where l0 corresponds to the interatomic distance at the equilibrium
state.

Since the FCC structure is symmetrical on the x, y and z directions,
the oscillation frequencies of an atom on three directions are the same
and can be obtained according to the result of Eq. (7):

Fig. 6. Minimization process of a 2D quadratic potential function using the (a) (b) original FIRE and, (c) (d) multiscale FIRE algorithm.

Fig. 7. Configuration of the 3D multiscale system.

M. Tang et al.



Computational Materials Science 244 (2024) 113234

8

ω(x)
atom− 3D = ω(y)

atom− 3D = ω(z)
atom− 3D =

̅̅̅̅̅̅̅̅̅̅̅

4k
matom

√

(8)

For active atoms in molecule regions, their oscillation frequencies
are consistent, since the interactions with neighbored atoms should al-
ways be considered whether inside the regions or on the interface.
However, the oscillation frequencies of nodes inside the mesh and on the
coupling interface are distinct on account of the extra interatomic in-
teractions. Due to the fact that the coordinates of nodes on the interface
directly affect the distribution of neighbored atoms in molecule regions,
the oscillation frequency of nodes on the interface are considered
fundamental for synchronizing the convergence rates.

For the oscillations of the node C on the interface, the energy vari-
ation should be considered from two aspects: (i) changes in the inter-
atomic distance among the atoms in the cluster containing node C; (ii)
changes in the interatomic distance of neighbored atoms on the interface
between molecule and cluster regions. To simplify the expressions, it is
assumed that the number of FCC cells that can fit to a leg of a tetrahedral
element is n = Le/δc, where Le is the length of the legs of each tetra-
hedral elements, and δc represents the distance of two cells of FCC
structure. If a node is disturbed by Δz on the z direction, the distance
between two neighbored atoms in the element will increase or decrease
by Δz/2n. Further, considering the mesh division shown in Fig. 7, node C
belongs to 12 tetrahedral elements, which contain 8n3 atoms in total. As
a result, we can calculate the increase of energy in cluster regions:

ΔE(z,1)node− 3D = 8n3 ×
1
2
× 8×

1
2
k

( ̅̅̅
2

√

4n
Δz

)2

= 4nkΔz2 (9)

For each atom on the interface whose coordinates variate, the inter-
atomic interactions should be recalculated, and then summarized to
obtain a new energy. Here we use the integration in place of summation,
since Le is much larger than δc according to our assumptions. In 3D cases,
all atoms in triangles that include the node should be considered, thus a
surface integral is required. On the interface, all the triangles that
contain node C form a hexagon, and the energy variation of atoms on the
hexagon should be integrated. Besides, for each atom on the hexagon,
the increase of energy is equal to kΔz2 when the interatomic distance
increases or decreases by Δz on the z direction. And the linear interpo-
lation functions of atomic displacements are 1 − |x|/Le − |y|/Le, 1 − |x|/Le
and 1 − |y|/Le, with node C as the origin and right angle as the axis. By
integrating with respect to the hexagon, we can calculate the increase of
energy as follows:

ΔE(z,2)node− 3D = kΔz2 ×
1
δ2c

[

2×

∫ Le

0

∫ x

0

(

1 −
x
Le

−
y
Le

)2

dxdy+ 2×

∫ Le

0

×

∫ Le

x

(

1 −
x
Le

)2

dxdy+ 2×

∫ Le

0

∫ Le

y

(

1 −
y
Le

)2

dxdy

]

=
1
2
n2kΔz2

(10)

Similarly, one could calculate the energy variation on the x and y di-
rections. As a consequence, the oscillation frequencies of nodes on three
directions can be obtained:

ω(x)
node− 3D = ω(y)

node− 3D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

4n+
1
2
n2
)

k
mnode− 3D

√

,ω(z)
node− 3D

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(4n+ n2)
k

mnode− 3D

√

(11)

where mnode− 3D represents the effective mass of nodes in 3D cases.
From Eq. (8) and Eq. (11), it is evident that the oscillation fre-

quencies of atoms and nodes differ across three directions. Here, we

consider the product of oscillation frequencies on different directions,
which corresponds to the determinant of the lattice dynamical matrix
[46–48]. Therefore, the relationship of effective masses between atoms
and nodes is given through synchronizing their oscillation frequencies:

mnode− 3D = 3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

n+
1
8
n2
)2(

n+
1
4
n2
)

√

matom (12)

Similarly, the relationship of effective masses could be analyzed for 1D
or 2D multiscale cases with different lattice configurations, and the re-
sults are detailed in Appendix B.

5. Numerical validation

5.1. Structural relaxation of 2D plates

Firstly, the structural relaxation of a 2D sample is validated for the
multiscale FIRE algorithm. As shown in Fig. 8 (a), a 2D plate consisted of
250,751 Cu atoms is used for energy minimization in the full atomistic
simulation. The lattice structure is hexagonal close-packed (HCP), with
the lattice constant of 2.588 Å. In the multiscale system, the molecule
regions contain 49,550 atoms, while the cluster regions are divided into
48 triangular elements. The division of two regions is fixed throughout
the process of structural relaxation without adaptive transformation.

The Lennard-Jones potential ϕCu− Cu(r) = 4εCu− Cu
[
(σCu− Cu/r)12 −

(σCu− Cu/r)6
]
is adopted for the atomic interactions, where the parame-

tersεCu− Cu = 0.4912 eV andσCu− Cu = 2.3276 Å are used [49]. At the very
beginning, a random displacement perturbation ranging from − 0.005 to
0.005 Å is applied to each DOFs. Subsequently, the two systems are
relaxed through the FIRE algorithm.

As a comparison of efficiency, Table 2 shows the number of force
evaluations and computational time by MST and HMCST methods using
the original FIRE (mnode=matom) and multiscale FIRE algorithms. For the
multiscale FIRE, the relationship of effective mass between atoms and
nodes ismnode = 14.4 matom according to Eq. (14) in Appendix B.

It is observed that HMCST-Original FIRE consumes 4.6 times more
iterations than MST, thus costing longer computational time. However,
with the multiscale FIRE, the efficiency of HMCST improves by 3.5 times
than using the original FIRE, which is also 2.9 times higher than MST.
These results indicate the great efficiency improvement for multiscale
simulations with the proposed multiscale FIRE algorithm.

5.2. 3D nanoindentation

Here the same 3D nanoindentation configuration in Section 3 is used
to further validate the multiscale FIRE algorithm. For the nano-
indentation system, the effective node mass can be evaluated asmnode =
35.1 matom according to Eq. (12). Firstly, the dislocation distribution
obtained from adaptive HMCST with multiscale FIRE are illustrated in
Fig. 9 (a), which are compared with the results of MST and adaptive
HMCST with two original FIRE algorithms in Fig. 3. It can be observed
from Fig. 9 (a) that dislocation loops generate and propagate to the
boundary of the substrate, which is close to the results of MST. The re-
sults indicate the fidelity and reliability of HMCST simulations with the
multiscale FIRE algorithm.

Further, the force-depth curves obtained by four different methods
are shown in Fig. 9 (b). With the same convergence criterion and
threshold, two curves obtained by adaptive HMCST simulations with the
original FIRE algorithm show distinctions compared with the MST, and
the reasons have been analyzed in Section 3. However, the force-depth
curve of HMCST-Multiscale FIRE is more close to that of MST. As a
quantitative comparison, the coefficients of quadratic fittings for the
MST and adaptive HMCST-Multiscale FIRE are 114.9 and 115.3 nN/nm2

respectively, indicating the fidelity of the proposed multiscale FIRE

M. Tang et al.



Computational Materials Science 244 (2024) 113234

9

algorithm.
To further demonstrate the computational accuracy of HMCST based

on the multiscale FIRE, Fig. 9 (c) shows the average forces of atoms and
nodes during the iteration process at the indented depth of 2.2 nm,
compared with previous results obtained from two original FIRE algo-
rithms. It is evident that no violent fluctuation occurs in Fig. 9 (c) as in
Fig. 5 (a). More importantly, the magnitude of two forces in the results of
multiscale FIRE are comparable, thus the molecule and cluster regions
could converge with similar accuracy, while the convergence rate of
cluster regions in Fig. 5 (b) is obviously slower than that of molecule
regions. Therefore, the multiscale FIRE algorithm performs better after
synchronizing the convergence rates of molecule and cluster regions.

The computational efficiency of different methods is shown in
Table 1. It is obvious that the multiscale FIRE algorithm converges much
faster and save a large amount of computational cost compared with
other EMAs on adaptive HMCST simulations. The total number of force
evaluations of the multiscale FIRE algorithm for HMCST is approxi-
mately 4.1 % of CG, 4.3 % of LBFGS and 9.7 %, 37.5 % of the two
original FIRE algorithms, and its number of iteration steps for HMCST is
compared to that of MST. Attributing to the proper effective mass of
nodes by synchronizing the oscillations of atoms and nodes in Section
4.2, the multiscale FIRE algorithm shows much higher efficiency in the
adaptive HMCST simulations.

6. Significance of the multiscale FIRE on general multiscale
simulations

In Section 5, the proposed multiscale FIRE algorithm has been
applied to different multiscale systems to verify its accuracy and effi-
ciency. It is worth noting that the multiscale FIRE algorithm holds sig-
nificant potential for broader applications within the field of MMMs
which are based on energy minimizations, such as QC [6], CADD [16]
and CAC [22] methods. Similar to the discussions in Section 4.2, users
can perform specific analysis to determine the proper corrected effective
mass of nodes based on the practical methods and problems at hand.
This step is crucial for ensuring that the multiscale interactions are
accurately represented, leading to more reliable simulation outcomes
and higher computational efficiency. Furthermore, leveraging the
advanced capability of the FIRE method in transition state calculations,
especially when integrated with the nudged elastic band (NEB) method,
the proposed multiscale FIRE algorithm holds the potential to revolu-
tionize NEB calculations in multiscale methods like QC, CADD, and CAC.
This pivotal advancement could catalyze a transformative shift within
the computational modeling community, effectively bridging the gaps in
different length scales inherent in traditional methods.

In addition, the algorithm could also be served as reference for
accelerating simulations on general multiscale problems. When a
physical system involves coupling of multiple scales, the problem of
inconsistency in convergence may occur, which can be improved by
synchronizing the oscillations of DOFs on different scales. As a result, the
multiscale FIRE algorithm could be used to not only quasi-static calcu-
lations of atomic systems, but also transferred to nano-contact and other
types of multiscale problems.

Fig. 8. Configurations of 2D plates for the (a) MST and (b) HMCST methods.

Table 2
Number of force evaluations and computational time of MST and HMCST by
different FIRE algorithms.

Method Number of force evaluations Computational time (s)

MST-FIRE 137 67.5
HMCST-Original FIRE 633 81.6
HMCST-Multiscale FIRE 168 23.5

Fig. 9. (a) Dislocation distribution in the nanoindentation systems at the maximum indentation depth obtained from the HMCST-Multiscale FIRE; (b) force-depth
curves obtained by the MST, HMCST-Original FIRE and HMCST-Multiscale FIRE methods; (c) average forces of atoms and nodes for the adaptive HMCST simulations
with multiscale FIRE algorithm.
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7. Summary

In this work, energy minimization algorithms for multiscale simu-
lations with atomistic to continuum coupling are investigated in order to
improve the computational efficiency, and a multiscale FIRE algorithm
is proposed. The main results and conclusions include:

The use of traditional EMAs in multiscale simulations leads to
diminished accuracy and low convergence rate. We simulated the
classical nano-indentation process using the HMCST method with
coupled atoms and nodes and the MST method with full atoms. The
results show that regardless of using traditional CG and LBFGS al-
gorithms or the new FIRE algorithm, the total iteration steps of
HMCST is at least 6 times larger than that of MST. This is primarily
due to the different length scales of atoms and nodes.
Analysis on the force states of atoms and nodes during the energy
minimization process reveals discrepancies in convergence rates of
different regions, mainly attributed to the improper step sizes.
Further, a 2D quadratic potential function is used to illustrate the
importance of synchronizing oscillations of DOFs across different
scales. On this basis, we analyze effective mass of nodes to correct the
step sizes of atoms and nodes in MMMs. With this key strategy, the
convergence rates of regions at different length scales could keep
consistent, thus optimal for computational efficiency in energy
minimizations of multiscale simulations.
The HMCST using the proposed multiscale FIRE algorithm are
applied to the structural relaxation of 2D plates and calculations of
3D nanoindentation systems. The results of 2D simulations indicate
the effectiveness of multiscale FIRE for general multiscale optimi-
zation problems. The results of 3D nanoindentation show that the
computational efficiency of the multiscale FIRE algorithm is 24 times
higher than traditional CG and LBFGS algorithms, and 10 times
higher than the original FIRE algorithm. In addition, the force states

show good consistency of convergence rates between molecule and
cluster regions.

In general, the multiscale FIRE algorithm can be not only applied to
the computation of MMMs with atomistic to continuum coupling, but
also served as a reference for developing novel and efficient minimiza-
tion algorithms adapted to other types of multiscale simulations.
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Appendix A. Computational process of the FIRE 2.0 algorithm for the HMCST method

1: Initialize xatom, Xnode, vatom = 0, Vnode = 0, NP>0 = 0, NP≤0 = 0.
2: Define parameters Ndelay, NP≤0,max, finc, fdec, fα, α = α0, Δt, matom, mnode.
3: for k = 0, 1, 2, …, do
4: P = fatom • vatom + Fnode • Vnode.
5: if P > 0, then
6: NP>0 = NP>0 + 1, NP≤0 = 0.
7: if NP>0 > Ndelay, then
8: Δt = min

{
fincΔt,Δtmax

}
, α = fα • α.

9: end if
10: else
11: NP≤0 = NP≤0 + 1, NP>0 = 0.
12: if k ≥ Ndelay and fdecΔt ≥ Δtmin, then
13: Δt = fdecΔt.
14: end if
15: if NP≤0 > NP≤0,max, then
16: break.
17: end if
18: xatom = xatom − 0.5vatomΔt, Xnode = Xnode − 0.5VnodeΔt, α = α0, vatom = 0, Vnode = 0.
19: end if

20: vatom = vatom +
fatom
matom

Δt, Vnode = Vnode +
Fnode
mnode

Δt.

21: if P > 0, then

22: vatom = (1 − α)vatom + α‖vatom‖•
fatom
‖fatom‖

, Vnode = (1 − α)Vnode + α‖Vnode‖ •
Fnode

‖Fnode‖
.

23: end if
24: xatom = xatom + vatomΔt, Xnode = Xnode + VnodeΔt.
25: Calculate E(xatom,Xnode) and fatom , Fnode
26: Check the criterion of energy or force. If converged, then break.
27: end for
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Appendix B. Relationships of effective masses of atom and nodes for 1D and 2D cases

B.1. 1D multiscale cases

In a 1D multiscale system, the atoms are tightly packed in molecule regions, while the cluster regions are divided into several bar elements. Based
on the assumptions in Section 4.2, the relationship of effective masses could be obtained as follows after synchronizing the oscillation frequencies:

mnode− 1D = (0.5+ 1/n)matom (13)

where n corresponds to the number of atoms in a 1D element.

B.2. 2D multiscale cases

For the 2D multiscale system, we assume that the atomic configuration is HCP, and the cluster regions are divided into several triangular elements.
The relationship of effective masses could be obtained as follows:

mnode− 2D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
3
̅̅̅
3

√

8
+
n
12

)(
3
̅̅̅
3

√

8
+
n
3

)
√

matom (14)

where n corresponds to the number of atoms that can fit to a leg of a triangle element.
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