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Abstract

Event cameras are bio-inspired sensors with high
dynamic range, high temporal resolution, and low
power consumption. These features enable precise
motion detection even in challenging lighting con-
ditions and fast-changing scenes, rendering them
well-suited for optical flow estimation. However,
event camera output is sparse and unstructured,
making it challenging to process. Transformer ar-
chitectures have shown to be effective in capturing
long-term temporal dependencies and processing
sparse input, hence they might be better suited to
processing this output by leveraging the fine time
granularity inherent to event camera data. We in-
troduce E-GMFlow, an approach for event-based
optical flow inspired by the recent success in terms
of accuracy of transformer-based models for frame-
based optical flow. We explore the effect of tempo-
ral details on the accuracy of this transformer archi-
tecture by changing the number of temporal bins in
which events are discretized. We observe that the
increase in the number of temporal bins generally
causes higher accuracy and comment on the limita-
tions of this study.

1 Introduction

Optical flow estimation is a fundamental task in computer vi-
sion, for motion analysis of objects in a scene. It is formulated
as estimating per-pixel correspondences between two consec-
utive video frames, in the form of a 2D displacement field.
Optical flow estimation is pivotal in various applications, in-
cluding object tracking [1], video stabilization [2], and video
restoration [3]. Event cameras, a novel type of vision sensor,
can offer significant improvements in accuracy, latency, and
power consumption for optical flow estimation compared to
standard cameras. These advantages stem from their unique
characteristics: high temporal resolution (> 10K fps), high
dynamic range (140 dB versus 60 dB), low power consump-
tion (< 10 mW) and high pixel bandwidth [4]. Given the
well-established field of optical flow estimation with standard
cameras, it is advantageous to adapt frame-based methods to
event cameras to leverage their unique capabilities.

The output of event cameras is unconventional, making it
unclear how to adapt frame-based optical flow approaches.
Unlike conventional cameras that capture entire frames at
fixed time intervals, event cameras asynchronously capture
per-pixel brightness changes, mimicking the functionality of
the human eye’s retina. This results in a stream of events
that are challenging to process because of their sparse and
unstructured nature. Since event streams are not structured
in a 2D grid, like frames, they need to be pre-processed be-
fore being passed through models inspired by frame-based
approaches such as convolutional neural networks (CNN).
Thus, several event representations have been proposed to
convert streams to a frame-like structure [5; 6].

Transformer-based architectures are achieving state-of-
the-art (SOTA) performance for standard camera optical flow

estimation [7; 8], but fewer such architectures are yet used for
event-based optical flow. Given their ability to capture long-
term dependencies, transformers could improve the process-
ing of the sparse output of event cameras. This leads to the
question, does a higher time granularity in the event rep-
resentation for a transformer-based model improve accu-
racy for event-based optical flow? We measure accuracy us-
ing three metrics: N-Point Error (NPE), Angular Error (AE)
and End-Point-Error (EPE).

In this paper, we will explore event representations suited
for a transformer-based approach inspired by standard cam-
eras and the role that time discretization plays in such a rep-
resentation. We will be focusing on adapting GMFlow [7],
due to its high accuracy for standard camera optical flow esti-
mation and the availability and usability of its code. We use a
voxel-grid event representation [9] and compare the accuracy
of the model between different numbers of bins for discretiz-
ing the time domain.

The paper is organized as follows: Section 2 will dis-
cuss the background and related literature; Section 3 provides
some background and notation for the concepts used in the
rest of the paper; Section 4 details the proposed algorithm as
well as a more in-depth explanation of the standard camera
approach it is based upon; The experimental setup along with
the results of the experiments are shown in Section 5; Section
6 contains a reflection upon the ethical implications of this
work and its reproducibility; A discussion and analysis of the
results can be found in Section 7 and Section 8 concludes and
proposes possible avenues for future work.

2 Related work

Traditionally, for standard cameras, optical flow methods
were treated as an energy minimization problem. In this
case, image brightness constancy and spatial smoothness be-
tween frames are assumed, resulting in a trade-off between
a data term enforcing brightness constancy and a regular-
ization term promoting spatial smoothness [10]. In recent
years, deep learning techniques have made significant strides
in computer vision, including the realm of optical flow es-
timation, especially methods using convolutional neural net-
works (CNN) [11; 12; 13]. Yet, CNN-based models cannot
capture long-range dependencies, primarily because convo-
lution operations prioritize local information. Methods have
been proposed to account for this such as iterative refinement
[14] or coarse-to-fine pyramids [15]. Transformer-based ar-
chitectures are more suited to capturing long-range dependen-
cies and have recently garnered attention, achieving state-of-
the-art performance [7; 8; 16; 17].

Frame-based optical flow transformer architectures:
GMA [18] was among the first works to incorporate a trans-
former into optical flow methods, to better account for oc-
cluded areas. It uses self-attention to propagate motion fea-
tures from non-occluded areas to occluded areas and estimate
optical flow for these areas. GMFlow [7] reformulates optical
flow as a global matching problem to address the challenge
of large displacements. To account for mutual relationships
between frames it uses a transformer architecture for feature
enhancement after constructing a 4D-correlation volume.



Event-based optical flow transformer architectures:
Recently, some methods using transformer designs have been
proposed for event-based architectures as well. For example,
E-FlowFormer [17] proposes a method based on E-RAFT [6]
using a transformer design to enhance the event feature en-
coding, before constructing a 4D-correlation volume.

Event representation for transformer architectures:
Due to the unstructured nature of an event stream, it is not
immediately clear how to best represent events to exploit
the advantages offered by a transformer-based model in the
context of optical flow. Common approaches to represent-
ing events for various computer vision tasks include frame-
based approaches [19], voxel-based approaches [9] or spike-
based approaches [20]. A relatively common voxel-based ap-
proach to representing events in both transformer designs [17;
21] and Artificial Neural Networks (ANN) [6] is a volumetric
voxel grid representation [9]. This works by discretizing the
time domain of a batch of events and using temporal bilinear
interpolation to improve the resolution.

Some approaches have also been proposed to take advan-
tage of the high temporal resolution of event cameras. For
example, a novel transformer-based encoder that directly pro-
cesses an event sequence without accumulating events in a
2D or 3D space is proposed in [22] and obtains SOTA results
for classification tasks. Similarly, Peng et al. [23] first group
events asynchronously based on their timestamps and polar-
ities, which are then passed through a novel self-attention
mechanism and two aggregation modules to generate event
features.

3 Background

In this section, we will provide some necessary background
into the working principles of event cameras, CNNs, and
transformers.

Event camera: Event-based cameras track the changes in
log intensity at each pixel and only generate events when this
change exceeds a certain threshold. Each event generated can
be understood as a 4-tuple containing the location of the pixel,
the timestamp, and the polarity of the brightness change (pos-
itive change or negative change):

€:($;y7tap) (1)

This results in a stream of events E = {¢;|i € [1, N]}.

CNN: A convolutional neural network is a type of deep
learning model that is effective at processing grid-like data,
such as images. It utilizes convolutional layers to extract and
learn features hierarchically.

Transformer: Transformers are a type of deep learning
model introduced by Vaswani et al. [24] centered on the
mechanism of self-attention, designed to process sequential
data.

4 Proposed method

In this section, we propose an approach that uses the voxel
grid representation to adapt GMFlow [7] for an event camera
input stream.

4.1 Event representation

As explored in Section 2, there are multiple ways of encod-
ing events and it is not immediately clear which would be
preferable. Due to its flexibility in choosing the amount of
time information retained, we have decided to focus on the
commonly used voxel grid approach [9] that has proved suc-
cessful in other works that use a CNN feature extractor.
Given a batch of NV events {e;|i € [1, N]}, this represen-
tation discretizes the time domain into B bins. A simple ap-
proach to creating a voxel grid from an event stream would
be to add up the polarities of the events inside each voxel.
However, this representation treats all events inside one voxel
as equally relevant. To improve the amount of encoded time
information beyond the number of bins, events are inserted
into this volume using the bilinear interpolation function:

ti =B =1t —t)/(ty —t1) 2)

V(z,y,t) =Y pi-ko(z— i) ky(y — i) - k(t—17) (3)

where ky(a) = max(0,1 — |a|) is the bilinear sampling
kernel. With this kernel, we make sure that for computing the
value at a voxel V(x,y,t), only the polarities of events that
are inside the 2 x 2 x 2 space around the point (z,y,t) are
taken into account. The polarities are summed up, weighed
by how close they are to this point, making events with a
timestamp closer to ¢ more relevant for voxel V (x,y, t) than
events that are temporally farther away.

Hence, for a batch of N events considering B bins, we
would get a volume of size H x W x B using this representa-
tion, where H and W are the height and width of the image.
This can be visualized in Figure 1.

Figure 1: Visual representation of the event stream before (left) and
after (right) converting it to a 3x3x3 volumetric voxel grid.

4.2 Original GMFlow algorithm

GMFlow [7] is a frame-based optical flow algorithm with
a global matching approach that is effective at dealing with
large displacements.

For computing the optical flow between two frames I; and
I of size H x W, first, each of the frames gets passed through
a CNN to extract relevant features downsampled by 1/8. This
results in two temporary feature vectors F; € REXWXD and
F2 c RH XW x D .

The CNN layer can only extract individual features of each
frame. Hence, for enhancing this feature extraction process, a
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Figure 2: Overview of the GMFlow framework [7]

transformer architecture is used to account for the mutual re-
lationships between the already extracted features F; and F5.
To account for the spatial position of each pixel, 2D sine and
cosine positional encodings are added. This is followed by
six stacked self-attention, cross-attention, and feed-forward
network layers, resulting in two feature vectors of length D
for each pixel: Fl and Fg.

Similar to E-RAFT [6], a 4D-correlation volume is con-
structed out of these feature vectors:

ERHXWXHXW (4)

where the element C} ;i represents the correlation coefficient
between coordinates (i, j) in Fy and (k,1) in F5. Now, for
each pixel in I;, we would like to find a matching pixel in
I5 such the pair has a high correlation value. To do this in a
differentiable manner, Xu et al. [7], use a softmax layer on
the correlation volume:

M = softmaz(C) € REXWXHXW Q)

To get a flow prediction for a certain pixel (i,7), the
weighted average coordinates of the 2D map M;; from that
pixel are computed. Finally, to better account for occluded
pixels, GMFlow propagates flow predictions from matched
pixels to unmatched pixels using a self-attention layer. For
refinement, Xu et al. [7] propose a further improvement to
this framework by introducing a higher resolution feature of
1/4.

An overview of the architecture of GMFlow can be seen in
Figure 2.

4.3 E-GMFlow

To compute the optical flow from time ¢; to time ¢;41, we
choose two short consecutive event sequences from time
(ti—1,t;) and (t;,t;+1) and process each of these batches of
events into a B-dimensional voxel grid (with B bins) as de-
scribed in Section 4.1.

These two processed event batches get further sent to a
slightly modified version of the original GMFlow algorithm.
We keep the structure of the algorithm as described in Section

4.2 using the feature matching, flow propagation, and refine-
ment layers. Since the GMFlow is a frame-based approach,
its CNN encoder was initially only capable of processing im-
ages with 3 channels. In order to be able to test our model
with multiple time bin sizes, we adapted the first layer of the
CNN feature extractor to be capable of processing more than
3 channels.

5 Experimental Setup and Results

This section presents the experiments conducted to evaluate
the accuracy of the proposed optical flow estimation model
and their results.

Datasets Two datasets are relevant to our experimental
setup: DSEC [25] and KITTI [26]. DSEC is a dataset
for event-based vision containing 53 driving sequences cap-
tured at various times of day with optical flow ground truth
data. Compared to MVSEC [27], another commonly used
dataset for event-based optical flow estimation, DSEC pro-
vides scenes with larger pixel displacements (up to 210 pix-
els) and 3 times higher camera resolution. KITTI is a dataset
for mobile robotics and autonomous driving research contain-
ing 6 hours of traffic scenarios captured with a variety of sen-
sor modalities which can be used for standard camera optical
flow prediction.

Training and Testing Due to time constraints and the
computational resources required to train a transformer-based
model, a pre-trained model was used and fine-tuned. The
model was fine-tuned on the entirety of the training split of
the DSEC dataset and tested on the testing split of the DSEC
dataset. The GMFlow pre-trained model with refinement
trained on the KITTI dataset was chosen as a starting point,
due to the fact that both the KITTI and DSEC datasets are
made up of driving sequences. We fixed the trained weights
for the transformer layers and only fine-tuned the weights re-
quired for the CNN encoder. The model was fine-tuned for
only 7200 iterations. Note that, due to time constraints, the
number of iterations used is significantly lower compared to
the training of the original GMFlow algorithm which used
100000 iterations. The batch size was also reduced to 6 from
the original 16 to fit in GPU memory. For this process, two
V100 GPU cards with 32GB were used, which made the



training take up approximately 24 hours per model.

Metrics To measure the performance, we compute three
metrics: N-Point Error (NPE) for N = 1, 2 or 3, Angular Er-
ror (AE), and End-Point Error (EPE). The N-Point Error mea-
sures the percentage of pixels with an optical flow magnitude
error larger than N. The Angular Error between a flow vector
(u,v) and the ground truth flow (ugT,veT) represents the
angle in space between (u,v,1) and (ugr,ver,1) and can
be computed with the formula:

1+uXugr +v Xuvar
V1 2 12 2 2 ) (6)
+u® 4w \/1.0+uGT—|—vGT
The End-Point Error is simply the L2 norm of the error of the
optical flow prediction:

AE = cos™t (

EPE = \/(u —ugr)? + (v — vgr)? @)
For all three metrics, a lower value represents higher accu-
racy.
Experimental setup The model was fine-tuned and tested
for 5 bin sizes (3, 5, 10, 15, 20, 25) and compared with the
baseline E-Flowformer.

5.1 Convergence

The EPE calculated after every 100 iterations during training
can be seen in Figure 3. It can be seen that, although the
EPE fluctuates during training, it generally decreases. How-
ever, the difference between consecutive evaluations is still
relatively large at the moment the training of the model is
stopped, suggesting the EPE might continue to significantly
decrease if the model is trained longer.

Convergence of E-GMFlow with varying number of bins

—— E-GMFlow (3 bins)
E-GMFlow (5 bins)
E-GMFlow (10 bins)
E-GMFlow (15 bins)
E-GMFlow (20 bins)

0 1000 2000 3000 4000 5000 6000 7000
Iteration number

Figure 3: Training EPE for E-GMFlow with 3, 5, 10, 15 and 20 bins.
The EPE is calculated during training every 100 iterations on a batch
size of 6 samples and averaged.

5.2 Accuracy comparison

Excluding E-GMFlow with 3 time bins, increasing the num-
ber of bins causes an increase in all accuracy metrics that we
considered. E-GMFlow with 3 time bins performs slightly
better than E-GMFlow with 5 bins, but worse than the rest
of the models with a higher number of time bins in all met-
rics. Table 1 shows a comparison between E-GMflow with 3,
5, 10, 15, and 20 bin sizes and the baseline E-FlowFormer.
Our model performs worse than the baseline on all metrics,
which is to be expected given the small amount of training
iterations.

6 Responsible Research

This section will discuss the ethical implications of our work
focusing on the reproducibility of the proposed method and
the quality of the data used.

6.1 Reproducibility

Reproducibility is a key part of scientific integrity, ensuring
that research findings are credible, reliable, and verifiable by
others in the field. To ensure the reproducibility of the exper-
iments run in this work, the code used has been made avail-
able!, including testing and training scripts. Both the DSEC
and KITTI datasets used during the experiments are publicly
available. The method and experimental setup have also been
detailed in the paper, ensuring that other researchers can ac-
curately replicate this work.

6.2 Data

An essential component for efficient, ethical, and repro-
ducible research is high-quality data and proper data man-
agement. We will discuss how our research adheres to the
FAIR (Findable, Accessible, Interoperable, Reusable) princi-
ples [28] for scientific data management:

* Findability: Both datasets used during the experiments
are publicly available.

* Accessibility: The KITTI dataset and the training split
for the DSEC dataset with optical flow ground truth are
fully accessible without authorization. The ground truth
for the test split of the DSEC dataset cannot be directly
accessed, however, the optical flow predictions can be
benchmarked on the official DSEC website 2.

* Interoperability: The data format is well-described and
easy to use in both cases.

* Reusability: The structure of the data is well-explained
in both datasets making them easy to reuse for other re-
search purposes.

7 Discussion and Limitations

The experiments were performed on only one specific type
of transformer model making it unclear whether the effect is
caused by the use of this architecture and would thus gener-
alize to other transformer-based architectures.

The small amount of iterations used for training also puts
into question the validity of the results. Since the models
have not fully converged, the difference in accuracy between
the proposed models using various bin sizes may indicate that
transformer-based models using more time bins simply con-
verge faster than models with fewer time bins and do not nec-
essarily perform better in terms of accuracy.

The model was trained and tested on only one dataset
(DSEC) consisting of driving scenarios, hence the findings
might not generalize for a different type of input data.

"https://github.com/ancabd2/rp
*https://dsec.ifi.uzh.ch
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1PE

2PE  3PE AE EPE
410 245 2.68 0.76
14.14 7.80 527 149
15.80 870 557 1.57
1270 692 5.18 1.38
1143 641 489 131
10.68 6.03 4.76 1.26

E-Flowformer 11.23
E-GMflow (3 bins)* 37.21
E-GMflow (5 bins)* 39.25
E-GMflow (10 bins)*  34.33
E-GMflow (15 bins)*  31.32
E-GMflow (20 bins)* 29.28

Table 1: Accuracy comparison between E-GMFlow with 5 different numbers of time bins (3, 5, 10, 15 and 20). Here we show the N-PE (for
N =1, 2, and 3), AE, and EPE on the DSEC testing split. Algorithms marked with * represent our proposed models.

8 Conclusions and Future Work

In this paper, we propose E-GMFlow, a transformer model for
event-based optical flow estimation. We studied the effect of
increasing the number of time bins in its event representation
on its accuracy.

The analysis suggests that the increase in the number of
time bins for E-GMFlow corresponds to an increase in accu-
racy. However, due to the low number of iterations, it is not
entirely clear whether this effect would still be observable if
the model was trained for a longer amount of time.

Given the quality of the results for such a low number of
iterations, it is likely that E-GMFlow would perform signif-
icantly better if trained for a longer time. Future research
could investigate this potential by training the model for a
longer duration. Since in this work, we focused on using one
specific type of event representation, it would be interesting
to explore the effect on the performance of other event repre-
sentation strategies as well. This research has been performed
on one specific dataset, but it would be interesting to see how
this new method performs in different scenarios.
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