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Fractional Boundary Value Problems with Parameter-Dependent
and Asymptotic Conditions
Kateryna Marynets * and Dona Pantova

Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands; d.h.pantova@tudelft.nl
* Correspondence: k.marynets@tudelft.nl

Abstract

We study a nonlinear fractional differential equation, defined on a finite and infinite interval.
In the finite interval setting, we attach initial conditions and parameter-dependent boundary
conditions to the problem. We apply a dichotomy approach, coupled with the numerical-
analytic method, to analyze the problem and to construct a sequence of approximations.
Additionally, we study the existence of bounded solutions in the case when the fractional
differential equation is defined on the half-axis and is subject to asymptotic conditions.
Our theoretical results are applied to the Arctic gyre equation in the fractional setting on a
finite interval.

Keywords: fractional differential equations; parameter-dependent boundary conditions;
constructive approximations; asymptotic conditions; Arctic gyre

1. Introduction
In recent years, fractional initial boundary value problems (FIBVPs) have attracted

attention in the field of mathematical modeling due to the ability of fractional operators to
capture nonlocal and memory effects. Such effects are relevant in many physical processes,
thus making fractional differential equations (FDEs) a suitable modeling tool (see, for
instance, [1–5] and the references therein). Examples of applications of fractional calculus
include viscoelasticity, wave propagation through inhomogeneous media, porous media
flow, and anomalous diffusion. In viscoelasticity, fractional models have been employed to
describe the behavior of polymers and elastomers (see discussions in [6,7]), to analyze the
vibrations of materials with viscoelastic damping [8], and to characterize the mechanical
response of magneto-sensitive rubbers [9]. In the context of wave propagation, fractional
derivatives are used to model power-law attenuation phenomena, such as those observed
in acoustic wave transmission through inhomogeneous media [10] and in the attenuation
of seismic waves traveling through the Earth’s interior [11]. Applications in porous me-
dia include modeling groundwater flow [12], the dynamics of unsaturated aquifers [13],
nonlinear infiltration processes [14], and viscoplastic soil compression [15]. Furthermore,
fractional calculus has been instrumental in advancing the understanding of anomalous
diffusion, with applications ranging from modeling random walks on fractal structures [16],
to describing diffusion in complex systems [17], hydrodynamic transport through fracture
networks [18], and anomalous transport processes in porous and fractured media [19].
However, the nonlocal nature of fractional calculus operators poses some challenges. Exact
solutions to FDEs, especially those arising in modeling and engineering applications, are
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rarely obtainable, in particular when they contain nonlinearities. Classical analytical tech-
niques often have limited applicability or require substantial modification for the fractional
setting. Moreover, the computational complexity of numerically solving FDEs is generally
higher than that of their integer-order counterparts. This has prompted the development
of approximation methods that avoid discretization and can be used in the analysis of
FBVPs. One such technique, applicable to FIBVPs, is the numerical–analytic technique. It
has been extensively applied to the investigation of boundary value problems (BVPs) for
ordinary differential equations (see [20–22]), and has subsequently been adapted for the
study of BVPs of fractional order, subject to various types of boundary conditions [23–26].
It combines the construction of closed-form approximations of the solution of the FIBVP
with the numerical solution of a system of algebraic equations.

FBVPs, defined on domains of unknown length arise when both non-local effects and
moving interfaces are present. Some examples include the fractional Stefan problem, which
models phase changes in materials with memory [27], fractional models of American pric-
ing options [28,29], and fluid dynamics in porous media [30,31]. These problems present
significant challenges due to the coupling between the unknown boundary position and
the solution itself, which requires the development of approaches capable of effectively
handling these interactions. The numerical-analytic method has previously been applied to
first-order ODEs with non-fixed right boundaries under two-point conditions [20], but, to
our knowledge, has not yet been extended to FDEs with unknown domain length. This
paper aims to generalize the method to FDEs of order p ∈ (1, 2] with three-point boundary
conditions. The novelty in the problem setting consists of the fractional derivative and
the three-point condition. Moreover, the interval-splitting method applied here, which
extends the applicability of the numerical-analytic method and improves its convergence,
has not previously been applied to an FDE with non-fixed boundary. A key advantage of
the method is that it can accommodate various types of boundary conditions and does not
require complete knowledge of the initial data. Additionally, it avoids discretization, reduc-
ing the problem to solving an algebraic equation, which simplifies implementation. It is
worth noting that there exist other techniques for constructing closed-form approximations
to FIBVPs, subject to different types of boundary constraints. Two well-known approaches
are the Variational Iteration Method (VIM) which uses correction functionals and vari-
ational theory [32], and the Homotopy Perturbation Method (HPM) which constructs a
homotopy with an embedding parameter to build an approximating series [33]. Unlike
these semi-analytical approaches, the numerical-analytic method not only constructs ap-
proximate solutions but also serves as a framework for rigorous analysis of FBVPs, allowing
for the derivation of existence, uniqueness, and solvability results.

In addition to studying FIBVPs, restricted to finite intervals, one may be interested
in the existence and behavior of solutions to FDEs, where the fractional derivatives are
defined on the half or whole real axis. BVPs for integer order differential equations on
infinite domains arise naturally from the modeling of various physical processes [34–36].
There are also some results for nonlinear FBVPs on infinite intervals [37–40] with fractional
boundary conditions.

In the present paper, we address an FIBVP of the Caputo type on a semi-finite domain.
In particular, we study a nonlinear FDE of the general form

C
0 Dp

t u(t) = f (t, u(t)), t ∈ [t0, ∞), p ∈ (1, 2],

defined on the half-axis, and subject to asymptotic conditions of the form

lim
t→∞

u(t) = ϕ0, lim
t→∞

{etu′(t)} = 0.
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We use the fixed-point theory to give some conditions for the existence of bounded
solutions. Furthermore, we consider the case when the FDE is restricted to a finite interval of
unknown length λ, and coupled with initial and parameter-dependent boundary conditions:

u(0) = ψ, u′(0) = χ, Au(0) + Bu(λ) + Cu′(λ) = d.

We use an interval-splitting method and the numerical-analytic technique to analyze
the problem, and to construct a sequence of functions that converges to its exact solution.
Finally, our method is applied to the Arctic gyre equation in the fractional setting to
illustrate the validity of our results.

Note that the choice of the Caputo operator in the differential equation of our interest
is motivated by its ability to incorporate boundary conditions of integer order, which
are typically of physical relevance. However, the method presented in this work is not
limited to a specific type of fractional operator and can be extended to a broader class of
operators. Notable examples include the two-scale fractal derivative, which is particularly
effective in modeling multiscale phenomena [41]; He’s fractional derivative, designed for
systems exhibiting weak memory effects [42]; and the Atangana-Baleanu derivative, which
is capable of capturing both short-term dynamics and long-range memory behaviors [43].

The present paper consists of seven sections. Section 2 deals with the existence of
bounded solutions to FDEs with asymptotic conditions. In Section 3, we consider an FDE
defined on an interval of unknown finite length, subject to initial and three-point boundary
conditions. We describe the interval-splitting method used to reduce the original problem
to “model-type” problems and the derivation of the approximating sequence. We show the
uniform convergence of the sequence to the unique solution of the “model-type” problems
and their relation to the original FBVP. In Section 4, the solvability of the FBVP is analyzed.
In Section 5, the numerical-analytic method is applied to the Arctic gyre equation in the
fractional setting. In Section 6, we discuss the presented method and its advantages, and
outline directions for future work. Section 7 gives a summary of the present work.

2. Bounded Solutions of FDEs with Asymptotic Conditions
In this section, we give the problem setting for an FDE on a semi-infinite domain,

subject to asymptotic conditions. We study the existence of bounded solutions to the FDE,
satisfying the given conditions.
Consider a FDE of the form

CDp
−u(t) = f (t, u(t)), t ≥ t0 (1)

with the asymptotic conditions

lim
t→∞

u(t) = ϕ0, lim
t→∞

{etu′(t)} = 0, (2)

where p ∈ (1, 2], and CDp
− denotes the Caputo fractional derivative on the half-axis (see [3],

2.4.48).
First, we state the following lemma, which gives the relationship between the fractional

integral and the Caputo fractional derivative on the half-axis.

Lemma 1. Let u(t) ∈ Cn(R+) and p ∈ (n − 1, n). Then,

(Ip
−

CDp
−u)(t) = u(t) +

n−1

∑
k=0

(−1)k+1

k!
lim

ζ→∞
u(k)(ζ)(ζ − t)k. (3)
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The next lemma shows the equivalence between Problems (1) and (2) and the corre-
sponding integral equation.

Lemma 2. Let there exist positive constants k and c > 1, such that

| f (t, u(t))| ≤ ke−ct. (4)

Then, Problems (1) and (2) are equivalent to the integral equation

u(t) = ϕ0 +
1

Γ(p)

∫ ∞

t
(s − t)p−1 f (s, u(s))ds. (5)

Lemmas 1 and 2 can be proved easily, thus, their proofs are left to the reader.

Let us now prove conditions that assure existence of a unique solution of the integral
Equation (5), which also satisfies the asymptotic constraints (2).

Theorem 1. Assume that there exists a function a : [t0, ∞] → R+, such that∫ ∞

t0

sp−1a(s)ds < ∞, (6)

| f (t, u)− f (t, v)| ≤ a(t)|u − v|, t ≥ t0, u, v,∈ R, (7)

and the condition in (4) holds. Then, for all ϕ0 ∈ R, integral Equation (5) has a unique continuous
solution u : [t0, ∞] → R satisfying limt→∞ u(t) = ϕ0.

Proof. Since the improper integral of the positive function a(s) is finite, i.e., (6), for any
positive constant c > 0, there exists a sufficiently large T0, such that the integral from T0 is
bounded by c. Thus, we can choose c = Γ(p) and find a T0 ≥ t0, such that∫ ∞

T0

sp−1a(s)ds < Γ(p).

On the Banach space X of continuous and bounded functions u : [T0, ∞) → R, endowed
with the norm ||u(t)|| := supt≥T0

|u(t)|, define the operator

[F(u)](t) := ϕ0 +
1

Γ(p)

∫ ∞

t
(s − t)p−1 f (s, u(s))ds (8)

for t ≥ T0. Then, for u ∈ X, we have

|[F(u)](t)| ≤ |ϕ0|+
∣∣∣∣ 1
Γ(p)

∫ ∞

t
(s − t)p−1 f (s, u(s))ds

∣∣∣∣
≤ |ϕ0|+

∫ ∞

t
|Iq
− f (s, u(s))|ds < ∞,

that is, F : X → X. Now, let u, v ∈ X and consider

||[F(u)]− [F(v)]|| ≤ sup
t≥T0

1
Γ(p)

∫ ∞

t
(s − t)p−1| f (s, u)− f (s, v)|ds

≤ sup
t≥T0

1
Γ(p)

∫ ∞

t
sp−1a(s)|u − v|ds ≤ ||u − v|| sup

t≥T0

1
Γ(p)

∫ ∞

t
sp−1a(s)ds

≤ ||u − v|| 1
Γ(p)

∫ ∞

T0

sp−1a(s)ds < ||u − v||,
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which implies that the operator F is a contraction on X, hence it has a unique fixed point in
X by the contraction principle, and this fixed point is the unique solution to Equation (5)
on t ∈ [T0, ∞) [44].

If T0 = t0, we are done. If t0 < T0, u(T0), and u′(T0) are determined and the solution
of (1) can be extended from [T0, ∞) to [t0, ∞). This is because, since a(t) is positive and (6)
holds, a(t) is bounded for t ≥ t0, which implies that f (t, u(t)) is Lipschitz continuous in u.
Hence (1) has a unique solution on [T0, ∞), which can be continued to [t0, ∞). Moreover,
condition (4) on f (t, u(t)) prevents the blow up of solutions in finite time. Therefore, the
solutions on [T0, ∞) can be extended to [t0, ∞).

3. Analysis of the Parameter-Dependent FIBVP on a Finite Interval
In this section, we consider an FDE on a finite interval whose length is denoted by

the unknown parameter λ, and can in principle be extended indefinitely, that is, we can
let λ → ∞. We attach parameter-dependent boundary conditions to the FDE and use an
interval-splitting method to redefine the original problem as a system of “model” type
problems on smaller domains. The numerical-analytic technique is applied to construct
approximations to the solution of each problem. We establish a connection between the
solutions to the “model” problems and the original FIBVP, and give necessary and sufficient
conditions for the existence of solutions (for details of the technique, see [20]).

3.1. Problem Setting and Interval Splitting

We consider the FIBVP for the FDE of the form:

C
0 Dp

t u(t) = f (t, u(t)), t ∈ J := [0, λ] (9)

for some p ∈ (1, 2], subjected to the parameter-dependent boundary conditions

Au(0) + Bu(λ) + Cu′(λ) = d (10)

and the initial conditions

u(0) = α0, u′(0) = χ0. (11)

Here, C
0 Dp

t is the Caputo derivative with lower limit at 0 (see [3], 2.4.15),
u : J → D ⊂ R ∈ C2(J,R), f : G → R, G = J × D, and D is a closed and bounded do-
main. The constants in the boundary and initial conditions A, B, C, d, α0, χ0 ∈ R are given
scalars, and the end point of the interval J is an unknown parameter λ ∈ R.

We aim to find a solution u : J → D of the FDE (9), which satisfies the parameter-dependent
boundary conditions (10), and the given initial conditions (11) in the space C2(J,R).

For this purpose, we will construct a sequence of approximate solutions, and as it will
be seen in Theorem 2, the convergence of this sequence is contingent upon the function
f (t, u(t)) satisfying a Lipschitz condition on J. If this fails to hold, the uniform convergence
of the sequence cannot be guaranteed. To deal with this difficulty, we will use a dichotomy-
type approach, similar to [26], but for a more general setting. The interval-splitting method
can also be applied to speed up the convergence of the iterative sequence, and in the case
when the interval of definition of the FBVP (9)–(11) needs to be extended.

Let us decompose the interval J = [0, λ] into N subintervals. Without loss of gen-
erality, let each subinterval have length λ/N, and denote them by Jj = [λj−1, λj] :=
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[
(j − 1)λ/N, jλ/N

]
for j = 1, ..., N. We denote the solution on each Jj by uj(t), and the

values of uj(t) and u′
j(t) at the end point of the subintervals in the following way:

uj(λj) = uj+1(λj) = αj, u′
j(λj) = u′

j+1(λj) = χj, j = 1, ..., N − 1. (12)

The solution u(t) to FBVP (9)–(11) on the whole interval t ∈ [0, λ] is defined by uj(t)
piece-wise on each Jj. Thus, the boundary conditions (12) are chosen in such a way that
they ensure that u(t) is a smooth function. Here, αj and χj are unknown parameters to
be calculated. Note that the boundary condition at the value of u′

N(λN = λ) is given by
χN = C−1(d − Aα0 − BαN).

With this, we split the FBVP (9)–(11) into N “model-type” problems, which read

C
λj−1

Dp
t uj(t) = f (t, uj(t))−

1
Γ(n − p)

j−1

∑
i=0

∫ λj+1

λj

(t − s)n−p−1u(n)
i (s)ds

:= f j(t, u1(t), ..., uj(t)) = f j(t, u(t)), t ∈ Jj,

(13)

uj(λj−1) =αj−1, uj(λj) = αj,

u′
j(λj−1) =χj−1, u′

j(λj) = χj, j = 1, ..., N.
(14)

The functions uj : Jj → Dj are continuous on Dj, and the domains Dj are such that
∪N

j=1Dj = D.

Remark 1. Due to the nonlocality of the Caputo fractional derivative, after defining a new BVP
(13), (14) on each subinterval, the right-hand side function had to be adjusted accordingly, since
now the Caputo derivative is taken with lower limit λj−1 on each Jj.

In the following subsection, we give the form of the sequence of successive approxima-
tions to the solution of FBVP (13), (14) and a theorem on the convergence of the sequence.
The proof of Theorem 2 follows the lines of Theorem 1 in [26], so we omit it.

3.2. Successive Approximations

Let us consider FBVP (13), (14) for a fixed j ∈ {1, ..., N}. We connect it with a sequence
{um

j }, m ∈ Z+
0 , for t ∈ Jj, u0

j (t; α, χ, λ) ∈ Dj, given by

u0
j (t; α, χ, λ) = αj−1 + χj−1(t − λj−1) +

( t − λj−1

λ1

)p(
αj − αj−1 − χj−1

λ

N

)
,

um
j (t; α, χ, λ) = u0

j (t; α, χ, λ) +
1

Γ(p)

[ ∫ t

λj−1

(t − s)p−1 f j(s, um−1(s; α, χ, λ))ds

−
( t − λj−1

λ1

)p ∫ λj

λj−1

(λj − s)p−1 f j(s, um−1(s; α, χ, λ))ds

]
.

(15)

Here, λ1 denotes the length of each subinterval. The sequence above is derived by
integrating the modified equation given in (13) and enforcing the boundary conditions (14).

Note that the approximating function um(t; α, χ, λ) on the whole interval t ∈ J is
piece-wise given by

um(t; α, χ, λ) = um
j (t; α, χ, λ), t ∈ Jj. (16)

Assume that for the BVP (13), (14), the following conditions are satisfied:
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(i) The function f j(t, u(t)) is bounded:

| f j(t, u(t))| ≤ Mj, (17)

for all t ∈ Jj, uj ∈ Dj and some non-negative integer Mj.

(ii) The function f j(t, u(t)) is Lipschitz continuous in uj(t), i.e.

| f j(t, u1(t), ..., u1
j (t))− f j(t, u1(t), ..., u2

j (t))| ≤ Kj|u1
j (t)− u2

j (t)| (18)

for all t ∈ Jj, u1
j , u2

j ∈ Dj, and a non-negative Lipschitz constant Kj.

(iii) The set

Dβ j :={αj−1 ∈ Dj : B(u0
j (t; α, χ, λ)), β j

)
⊂ Dj ∀(t, αj, χj, λ) ∈ Jj × Ωj} (19)

is nonempty, where Ωj = Dj × Xj × Λ, χj ∈ Xj, λ ∈ Λ, and

β j =
Mjλ

p
1

22p−1Γ(p + 1)
. (20)

(iv) The inequality Qj < 1 holds for Qj, which is defined as

Qj =
Kjλ

p
1

22p−1Γ(p + 1)
. (21)

The following theorem ensures that if conditions (i)–(iv) hold, for all j ∈ {1, . . . , N}
there exists a limit function u∞

j (t; α, χ, λ) : Jj × Ωj → Dj, which is well defined for all
artificially introduced parameters (αj, χj) ∈ Dj × Xj, and is the unique solution to the FBVP
(13), (14) with corresponding index j. Moreover, letting

u∞(t; α, χ, λ) := u∞
j (t; α, χ, λ), t ∈ Jj (22)

yields the well-defined smooth function u∞(t; α, χ, λ), which satisfies the boundary and
initial conditions in the original FIBVP (9)–(11):

u∞(0; α, χ, λ) =u∞
1 (0; α, χ, λ) = α0,

(u∞)′(0; α, χ, λ) =(u∞
1 )′(0; α, χ, λ) = χ0,

(u∞)′(λ; α, χ, λ) =(u∞
N)

′(λ; α, χ, λ) = C−1(d − Aα0 − BαN).

Theorem 2. Assume that the FBVP (13), (14) satisfies Conditions (17)–(21). Then, for all fixed
(αj, χj, λ) ∈ Ωj, it holds:
1. Functions of the sequence (15) are continuous and satisfy the boundary condition

um
j (λj−1; α, χ, λ) =αj−1, um

j (λj; α, χ, λ) = αj,

(um
j )

′(λj−1; α, χ, λ) =χj−1, (um
j )

′(λj; α, χ, λ) = χj.

2. The sequence of functions (15) for t ∈ Jj converges uniformly as m → ∞ to the limit function

u∞
j (t; α, χ, λ) = lim

m→∞
um

j (t; α, χ, λ). (23)



Fractal Fract. 2025, 9, 462 8 of 23

3. The limit function satisfies the boundary conditions

u∞
j (λj−1; α, χ, λ) =αj−1, u∞

j (λj; α, χ, λ) = αj,

(u∞
j )

′(λj−1; α, χ, λ) =χj−1, (u∞
j )

′(λj; α, χ, λ) = χj.

4. The limit function (23) is a unique solution to the integral equation

uj(t) = αj−1 + χj−1(t − λj−1) +
( t − λj−1

λ1

)p
(αj − αj−1 − χj−1λ1)

+
1

Γ(p)

[ ∫ t

λj−1

(t − s)p−1 f j(s, u(s))ds −
( t − λj−1

λ1

)p ∫ λj

λj−1

(λj − s)p−1 f j(s, u(s))ds

]
.

(24)

i.e., it is a unique solution on t ∈ Jj of the Cauchy problem for the modified FDE:

C
λj−1

Dp
t uj(t) = f j(t, u(t)) + ∆j(α, χ, λ),

uj(λj−1) = αj−1, u′
j(λj−1) = χj−1,

(25)

where ∆j(α, χ, λ) : Ω → R is a mapping defined by

∆j(α, χ, λ) =
Γ(p + 1)

λ
p
1

(αj − αj−1 − χj−1λ1)−
p

λ
p
1

∫ λj

λj−1

( jλ
N

− s
)p−1

f j(s, u(s))ds. (26)

5. The following error estimate holds:

|u∞
j (t; α, χ, λ)− um

j (t; α, χ, λ)| ≤
λ

p
1

22p−1Γ(p + 1)

Qm
j

1 − Qj
Mj, (27)

where t ∈ Jj, and Mj and Qj are defined by (17) and (21).

Next, we state two theorems that establish the connection between the solution to the
Cauchy problem (25) and the original FBVP (9)–(11). We show the connection between (25)
and the FBVP (13), (14), and the connection between the limit function, defined in (22), and
the solution to the original FBVP (9)–(11).

3.3. Connection of the Limit Function to the FIBVP

Consider the Cauchy problem:

C
λj−1

Dp
t uj(t) = f j(t, u(t)) + µj, t ∈ Jj,

uj(λj−1) = αj−1, u′
j(λj−1) = χj−1,

(28)

where µj ∈ R is referred to as a control parameter.

The following result holds.

Theorem 3. Suppose αj−1 ∈ Dβ j , (αj, χj, λ) ∈ Ωj and assume the conditions of Theorem 1 hold.
Then, the solution uj(·, α, χ, λ; µj) of the Cauchy problem (28) also satisfies the boundary conditions
in (14) if and only if

µj = ∆j(α, χ, λ), (29)
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where ∆j(α, χ, λ) is given by (26), and in this case

uj(t, α, χ, λ; µj) = u∞
j (t; α, χ, λ). (30)

For a proof of Theorem 3, we refer to [26].

Theorem 4. Let the FBVP (13), (14) satisfy Conditions (17)–(21). Then, u∞
j (t; α∗, χ∗, λ∗) is a

solution to (13), (14) if and only if the triple (α∗, χ∗, λ∗) is a solution to the determining system∆j(α
∗, χ∗, λ∗) = 0,

Vj(α
∗, χ∗, λ∗) = 0,

(31)

where ∆j(α, χ, λ) is given in (26) and Vj : Ω → R is a mapping, defined by

Vj(α, χ, λ) =
d
dt

uj(λj; α, χ, λ)− χj, for j = 1, ..., N. (32)

Proof. First, we note that the second equation in the determining system (31) is derived
from the smoothness of the solution u(t) on J. The boundary conditions in (14) prescribe
the derivative value of each uj(t) at the left-end point of the subinterval Jj. Equation (32)
requires the derivative of uj(t) at the right end of the interval Jj to be equal to the derivative
of uj+1(t) at the same point, therefore ensuring that the solution u(t) is smooth.

Now, since the conditions of Theorem 2 hold, we can apply Theorem 3 and note that
the perturbed equation in (25) coincides with the original FDE in (13), and the solution
u∞(t; α∗, χ∗, λ∗) satisfies the parameter-dependent boundary conditions in (14) if and only
if the pair (α∗, χ∗, λ∗) satisfies (31). That is, u∞(t; α∗, χ∗, λ∗) is a solution to FIBVP (13), (14)
if and only if (31) holds.

Remark 2. Theorem 4 gives necessary and sufficient conditions for the solvability of the FBVP (13),
(14) and the construction of its solutions. However, a difficulty in its application arises from the fact
that explicit forms of the exact functions ∆(α, χ, λ) and V(α, χ, λ) are unknown. To overcome this
difficulty, in practice, we solve an approximate determining system∆m

j (α, χ, λ) = 0,

Vm
j (α, χ, λ) = 0,

(33)

which depends only on the (m − 1)-th and m-th terms of the sequence (15), and can thus be
constructed explicitly. In particular, the approximate functions ∆m

j : Ω → R and Vm
j : Ω → R are

given by

∆m
j (α, χ, λ) =

Γ(p + 1)
λ

p
1

(αj − αj−1 − χj−1λ1)

− p
λ

p
1

∫ λj

λj−1

(λj − s)p−1 f j(s, um(s; α, χ, λ))ds
(34)

and
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V0
j (α, χ, λ) =

d
dt

u0
j (λj; α, χ, λ)− χj = λjχj−1 +

p
λ

p
1
(αj − αj−1 − χj−1λ1),

Vm
j (α, χ, λ) =

d
dt

um
j (λj; α, χ, λ)− χj = λjχj−1 +

p
λ

p
1
(αj − αj−1 − χj−1λ1),

+
1

Γ(p)

[
(p − 1)

∫ λj

λj−1

(λj − s)p−2 f j(s, um(s; α, χ, λ))ds

− p
λ1

∫ λj

λj−1

(λj − s)p−1 f j(s, um(s; α, χ, λ))ds

]
.

(35)

In the following section, we analyze the solvability of the “model-type” problems (13),
(14). In particular, we use topological degree theory to show the existence of parameters
(α, χ, λ) ∈ Ω, which determine the solution to each FBVP “model” problem (13) and (14)
(Lemma 3, Theorem 5). We establish bounds on the approximate determining functions (34)
and (35), which are required for the solvability of our problem (Lemma 5, Theorem 6). This
provides the basis for a search algorithm for the parameters (α, χ, λ) ∈ Ω, see Remark 3. In
addition, we prove two results which estimate the distance between two limit functions
u∞

j (t; α′, χ′, λ′) and u∞
j (t; α′′, χ′′, λ′′) for two different vectors (α′, χ′, λ′), (α′′, χ′′, λ′′) ∈ Ω

(Lemma 4) and the deviation between the approximate and exact solutions of each “model”
FBVP (13), (14) (Theorem 7).

4. Solvability Analysis
We begin by estimating the difference between the exact and approximate determining

functions, (26) and (34), and (32) and (35). This will be used along with the Brouwer
topological degree theory in order to show the existence of (α, χ, λ) ∈ Ω, which defines the
solution of each (13), (14).

4.1. Sufficient Conditions

Lemma 3. Suppose the conditions of Theorem 2 are satisfied. Then, for arbitrary m ≥ 1 and
(α, χ, λ) ∈ Ω for the exact and approximate determining functions ∆j : Ω → R, ∆m

j : Ω → R,
Vj : Ω → R, and Vm

j : Ω → R, defined by (26), (34), (32), and (35), respectively, the following
inequalities hold:

|∆j(α, χ, λ)− ∆m
j (α, χ, λ)| ≤

Qm
j Mj

1 − Qj
,

|Vj(α, χ, λ)− Vm
j (α, χ, λ)| ≤ 2

Qm
j

1 − Qj
Mjλ

p−1
1 ,

(36)

where Mj, Kj, and Qj are given in (17), (18), and (21).

Proof. Fix an arbitrary pair (α, χ, λ) ∈ Ω. Then, by virtue of the Lipschitz condition (18)
and the estimates (21) and (27), we have

|∆j(α, χ, λ)− ∆m
j (α, χ, λ)|

≤
Kj

λ
p
1

∫ λj

λj−1

(λj − s)p−1|um
j (s; α, χ, λ)− u∞

j (s; α, χ, λ)|ds

≤
Kj p

λ
p
1

λ
p
1

22p−1Γ(p + 1)

Qm
j

1 − Qj
Mj

∫ λj

λj−1

(λj − s)p−1ds ≤
Qm

j

1 − Qj
Mj.
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Similarly,

|Vj(α, χ, λ)− Vm
j (α, χ, λ)|

≤
Kj

Γ(p)

[
(p − 1)

∫ λj

λj−1

(λj − s))p−1|um
j (s; α, χ, λ)− u∞

j (s; α, χ, λ)|ds

+
p

λ1

∫ λj

λj−1

(λj − s)p−1|um
j (s; α, χ, λ)− u∞

j (s; α, χ, λ)|ds

]

≤
Kj

Γ(p)
λ

p
1

22p−1Γ(p + 1)

Qm
j

1 − Qj
Mj

[
(p − 1)

∫ λj

λj−1

(λj − s)p−1ds

+
p

λ1

∫ λj

λj−1

(λj − s)p−1ds

]
≤ 2

Qm
j

1 − Qj
Mjλ

p−1
1 .

This proves the lemma.

On the basis of the exact and approximate determining functions (26), (34), (32), and (35),
we introduce the mappings Φ : R → R and Φm : R → R, defined by

Φj(α, χ, λ) :=

(
Φ1

j (α, χ, λ)

Φ2
j (α, χ, λ)

)
, (37)

Φm
j (α, χ, λ) :=

(
Φ1,m

j (α, χ, λ)

Φ2,m
j (α, χ, λ)

)
, (38)

with Φ1
j (α, χ, λ), Φ2

j (α, χ, λ), Φ1,m
j (α, χ, λ), and Φ2,m(α, χ, λ), defined as

∆j(α, χ, λ), Vj(α, χ, λ), ∆m
j (α, χ, λ), and Vm

j (α, χ, λ), respectively.
The following results hold.

Theorem 5. Suppose the conditions of Theorem 2 hold, and one can find an m ≥ 1 and a set
Ω ⊂ R, such that the following relation is true:

|Φm
j | ▷∂Ωj

(
Qm

j Mj(1 − Qj)
−1

2Qm
j Mj(1 − Qj)

−1λ
p
1

)
, (39)

where ∂Ωj is the boundary of the set Ωj, and the definition of the relation ▷ is given in [22]. If the
Brouwer degree of the mapping Φm satisfies

deg(Φm
j , Ωj, 0) ̸= 0, (40)

then there exists a triple (α∗j , χ∗
j , λ∗) ∈ Ωj, such that

u∗
j (t) = u∗

j (t; α∗j , χ∗
j , λ∗) = lim

m→∞
um

j (t; α∗j , χ∗
j , λ∗) (41)

is the solution to the nonlinear FIBVP (13), (14), defined on J∗ := [λ∗
j−1, λ∗

j ], which satisfies

u∗
j (λ

∗
j ) =α∗j . (42)
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Proof. We first show that the vector fields Φ and Φm are homotopic. Let us introduce the
family of vector mappings for θ ∈ [0, 1]

P(θ, α, χ, λ) = Φm
j (α, χ, λ) + θ[Φj(α, χ, λ)− Φm

j (α, χ, λ)], (α, χ, λ) ∈ ∂Ω, (43)

Then, P(θ, α, χ, λ) is continuous for all (α, χ, λ) ∈ ∂Ω, θ ∈ [0, 1]. We have

P(0, α, χ, λ) = Φm
j (α, χ, λ), P(1, α, χ, λ) = Φj(α, χ, λ)

and for any (α, χ, λ) ∈ ∂Ω,

|P(θ, α, χ, λ)| =|Φm
j (α, χ, λ) + θ[Φj(α, χ, λ)− Φm

j (α, χ, λ)]|

≥|Φm
j (α, χ, λ)| − |Φj(α, χ, λ)− Φm

j (α, χ, λ)|.
(44)

From the other side, by virtue of (37), (38), and the relations in (36), we have

|Φj(α, χ, λ)− Φm
j (α, χ, λ)| ≤

(
Qm

j Mj(1 − Qj)
−1

2Qm
j Mj(1 − Qj)

−1λ
p
1 ,

)
. (45)

From (39), (44), and (45), it follows that

|P(θ, α, χ, λ)| ▷∂Ω 0, θ ∈ [0, 1],

which means that P(θ, α, χ, λ) ̸= 0 for all θ ∈ [0, 1] and (α, χ, λ) ∈ Ω, i.e., the mappings (43)
are nondegenerate, and thus the vector fields Φj and Φm

j are homotopic. Since relation (40)
holds and the Brouwer degree is preserved under homotopies, it follows that

deg(Φj, Ω, 0) = deg(Φm
j , Ω, 0) ̸= 0,

which implies that there exists (α∗j , χ∗
j , λ∗) ∈ Ω such that Φj(α

∗
j , χ∗

j , λ∗) = 0 by the classical
topological result in [45].

Hence, the triple (α∗j , χ∗
j , λ∗) satisfies the determining system (31).

By Theorem 4, it follows that the function defined in (41) is a solution to the FBVP (13),
(14) and satisfies (42).

The following lemma gives the “closeness” of the limit functions u∞
j (t; α′, χ′, λ′) and

u∞
j (t; λ′′, χ′′, λ′′) for two different sets of parameters (α′, χ′, λ′), (α′′, χ′′, λ′′) ∈ Ω.

Lemma 4. Suppose that the conditions of Theorem 2 are satisfied for an FIBVP (13), (14) with
parameter-dependent boundary conditions. Then, for arbitrary pairs

(α′, χ′, λ′), (α′′, χ′′, λ′′) ∈ Ω,

the limit functions u∞
j (t; α′, χ′, λ′) and u∞

j (t; α′′, χ′′, λ′′) of the sequences
um

j (t; α′, χ′, λ′) and um
j (t; α′′, χ′′, λ′′) of the form (15) satisfy the inequality

|u∞
j (t; α′, χ′, λ′)− u∞

j (t; α′′, χ′′, λ′′)| ≤ 1
1 − Qj

(
Lj +

4Mj(λ
′
1)

p

Γ(p + 1)

)
, (46)
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where Q is defined in (21), and

Lj :=Lj(α
′
j−1,j, χ′

j−1, λ′, α′′j−1,j, χ′′
j−1, λ′′)

=|α′j−1 − α′′j−1|+ λ′|χ′
j−1 − χ′′

j−1|+ γp(|α′j − α′j−1 − χ′
j−1λ′

1|+ |α′′j − α′′j−1 − χ′′
j−1λ′′

1 |),

λmax :=max (λ′, λ′′).

Proof. Let us first estimate the difference |um
j (t; α′, χ′, λ′) − um

j (t; α′′, χ′′, λ′′)|. Consider
first m = 0:

|u0
j (t; α′, χ′, λ′)− u0

j (t; α′, χ′, λ′′)| ≤ |α′j−1 − α′′j−1|+ t|χ′
j−1 − χ′′

j−1|

+
( t

λ′λ′′
1

)p
[|α′j − α′j−1 − χ′

j−1λ′
1|(λ′′)p + |α′′j − α′′j−1 − χ′′

j−1λ′′
1 |(λ′)p]

Assume without loss of generality that λmax = λ′. Then,

|u0
j (t; α′, χ′, λ′)− u0

j (t; α′′, χ′′, λ′′)| ≤ |α′j−1 − α′′j−1|+ λ′|χ′
j−1 − χ′′

j−1|

+
( λ′

λ′′
1

)p
(|α′j − α′j−1 − χ′

j−1λ′
1|+ |α′′j − α′′j−1 − χ′′

j−1λ′′
1 |) = Lj

(47)

Next, using (17), (18), (47), and the results of Lemmas 1 and 2 in [23], we obtain for m = 1:

|u1
j (t; α′, χ′, λ′)− u1

j (t; α′′, χ′′, λ′′)| ≤ |u0
j (t; α′, χ′, λ′)− u0

j (t; α′′, χ′′, λ′′)|

+
Kj

Γ(p)

∫ t

λ′
j−1

(t − s)p−1|u0(s; α′, χ′, λ′)− u0(s; α′′, χ′′, λ′′)|ds

−
( t − λ′

j−1

λ′
1

)p ∫ λ′
j−1

λ′
j−1

(λ′
j − s)p−1|u0(s; α′, χ′, λ′)− u0(s; α′′, χ′′, λ′′)|ds

+
Mj

Γ(p)

[( t − λ′
j−1

λ′′
1

)p ∫ λ′′
j

λ′′
j−1

(λ′′
j − s)p−1ds

+

(
λ′′

j−1 − t

λ′
1

)p ∫ λ′
j

λ′
j−1

(λ′
j − s)p−1ds +

∫ λ′
j−1

λ′′
j−1

(t − s)p−1ds

]

≤ Lj + LjKj
(λ′

1)
p

22p−1Γ(p + 1)
+

4Mj(λ
′
1)

p

Γ(p + 1)
= Lj + LjQj +

4Mj(λ
′
1)

p

Γ(p + 1)
.

We will use induction to show that the following estimate holds for m:

|um
j (t; α′, χ′, λ′)−um

j (t; α′′, χ′′, λ′′)| ≤ Lj

m

∑
i=0

Qi
j +

4Mj(λ
′
1)

p

Γ(p + 1)

m−1

∑
i=0

Qi
j. (48)

Assume that (48) holds for m − 1, i.e.

|um−1
j (t; α′, χ′, λ′)−um−1

j (t; α′′, χ′′, λ′′)| ≤ Lj

m−1

∑
i=0

Qi
j +

4Mj(λ
′
1)

p

Γ(p + 1)

m−2

∑
i=0

Qi
j,
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and consider

|um
j (t; α′, χ′, λ′)− um

j (t; α′′, χ′′, λ′′)| ≤ |u0
j (t; α′, χ′, λ′)− u0

j (t; α′′, χ′′, λ′′)|

+
Kj

Γ(p)

∫ t

λ′
j−1

(t − s)p−1|um−1(s; α′, χ′, λ′)− um−1(s; α′′, χ′′, λ′′)|ds

−
( t − λ′

j−1

λ′
1

)p ∫ λ′
j

λ′
j−1

(λ′
j − s)p−1|um−1(s; α′, χ′, λ′)− um−1(s; α′′, χ′′, λ′′)|ds

+
Mj

Γ(p)

[( t − λ′′
j−1

λ′′
1

)p ∫ λ′′
j

λ′′
j−1

(λ′′
j − s)p−1ds

+
( t − λ′

j−1

λ′
1

)p ∫ λ′
j

λ′
j−1

(λ′
j − s)p−1ds +

∫ λ′
j−1

λ′′
j−1

(t − s)p−1ds

]

≤ Lj +

[
Lj

m−1

∑
i=0

Qi
j +

4Mj(λ
′
1)

p)

Γ(p + 1)

m−2

∑
i=0

Qi
j

]
Kj

(λ′
1)

p

22p−1Γ(p + 1)
+

4Mj(λ
′)p)

Γ(p + 1)Np

= Lj

m

∑
i=0

Qi
j +

4Mj(λ
′
1)

p

Γ(p + 1)

m−1

∑
i=0

Qi
j,

that is, (48) holds. Passing to the limit m → ∞ in (48) and using (21) yields (46), as required.

4.2. Necessary Conditions

Next, we prove the following Lemma which will be used to establish an upper bound
for (26) and (32), required for the existence of parameters (α, χ, λ) ∈ Ω, which determines
the solution uj(t; α, χ, λ) of each of the problems (13), (14).

Lemma 5. Suppose the conditions of Theorem 2 are satisfied. Then, the functions ∆ : Ω → R and
V : Ω → R satisfy the following estimates for arbitrary pairs (α′, χ′, λ′), (α′′, χ′′, λ′′) ∈ Ω:

|∆j(α
′, χ′, λ′)− ∆j(α

′′, χ′′, λ′′)| ≤ Γ(p + 1)
(λ′′

1 )
p (|α′j−1 − α′j − χ′

j−1λ′
1|

+|α′′j−1 − α′′j − χ′′
j−1λ′′

1 |) +
2Kj

1 − Qj

(
Lj +

4Mj(λ
′
1)

p

Γ(p + 1)

)
+ 2Mj

(49)

and
|Vj(α

′, χ′, λ′))− Vj(α
′′, χ′′, λ′′)| ≤ j

N
|λ′χ′

j−1 − λ′′χ′′
j−1|

+
p

λ′′
1
(|α′j − α′j−1 − χ′

j−1λ′
1|+ |α′′j − α′′j−1 − χ′′

j−1λ′′
1 |)

+
4Kj(λ

′
1)

p−1

1 − Qj

(
Lj +

4Mj(λ
′
1)

p

Γ(p + 1)

)
+ 4(λ′

1)
p−1Mj

(50)

Proof. By virtue of the definition of ∆(z, λ) in (26), the boundedness and Lipschitz-
continuity of f (t, u(t)) (17), (18), and the estimate in Lemma 4, we obtain

|∆j(α
′, χ′, λ′)− ∆j(α

′′, χ′′, λ′′)|

≤ Γ(p + 1)

[
|α′j−1 − α′j − χ′

j−1λ′
1|

(λ′
1)

p +
|α′′j−1 − α′′j − χ′′

j−1λ′′
1 |

(λ′′
1 )

p

]

+p

[∣∣∣∣∣ 1
(λ′

1)
p

∫ λ′
j

λ′
j−1

(λ′
j − s)p−1[ f j(s, u∞

j (s; α′, χ′, λ′))− f j(s, u∞
j (s; α′′, χ′′, λ′′))]ds

∣∣∣∣∣
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+

∣∣∣∣∣ 1
(λ′′

1 )
p

∫ λ′′
j

λ′′
j−1

(λ′′
j − s)p−1[ f j(s, u∞

j (s; α′′, χ′′, λ′′))− f j(s, u∞
j (s; α′′, χ′′, λ′′))]ds

∣∣∣∣∣
+

∣∣∣∣∣ 1
(λ′

1)
p

∫ λ′
j

λ′
j−1

(λ′
j − s)p−1 f j(s, u∞

j (s; α′′, χ′′, λ′′))ds

∣∣∣∣∣
+

∣∣∣∣∣ 1
(λ′

1)
p

∫ λ′′
j

λ′′
j−1

(λ′′
j − s)p−1 f j(s, u∞

j (s; α′′, χ′′, λ′′))ds

∣∣∣∣∣
]

≤ Γ(p + 1)
(λ′′

1 )
p (|α′j−1 − α′j − χ′

j−1λ′
1|+ |α′′j−1 − α′′j − χ′′

j−1λ′′
1 |)

+
2Kj

1 − Qj

(
Lj +

4Mj(λ
′
1)

p

Γ(p + 1)

)
+ 2Mj,

as required in (49).

Now, from the definition of V(α, χ, λ), (32), we derive:

|Vj(α
′, χ′, λ′)− Vj(α

′′, χ′′, λ′′)| ≤ |jλ′
1χ′

j−1 +
p

λ′
1
(α′j − α′j−1 − χ′

j−1λ′
1)

−jλ′′
2 χ′′

j−1 −
p

λ′′
1
(α′′j − α′′j−1 − χ′′

j−1λ′′
1 )|

+
1

Γ(p)

[
(p − 1)

∣∣∣∣∣
∫ λ′

j

λ′
j−1

(λ′
j − s)p−2[ f j(s, u∞

j (s; α′, χ′, λ′))− f j(s, u∞
j (s; α′′, χ′′, λ′′))]

∣∣∣∣∣
+

p
λ′

1

∣∣∣∣∣
∫ λ′

j

λ′
j−1

(λ′
j − s)p−2[ f j(s, u∞

j (s; α′, χ′, λ′))− f j(s, u∞
j (s; α′′, χ′′, λ′′))]

∣∣∣∣∣
+(p − 1)

∣∣∣∣∣
∫ λ′′

j

λ′′
j−1

(λ′′
j − s)p−2[ f j(s, u∞

j (s; α′′, χ′′, λ′′))− f j(s, u∞
j (s; α′, χ′, λ′))]

∣∣∣∣∣
+

p
λ′′

1

∣∣∣∣∣
∫ λ′′

j

λ′′
j−1

(λ′′
j − s)p−2[ f j(s, u∞

j (s; α′′, χ′′, λ′′))− f j(s, u∞
j (s; α′, χ′, λ′))]

∣∣∣∣∣
+(p − 1)

∣∣∣∣∣
∫ λ′

j

λ′
j−1

(λ′
j − s)p−2 f j(s, u∞

j (s; α′, χ′, λ′))ds

∣∣∣∣∣
+

p
λ′

1

∣∣∣∣∣
∫ λ′

j

λ′
j−1

(λ′
j − s)p−2[ f j(s, u∞

j (s; α′, χ′, λ′))ds

∣∣∣∣∣
+(p − 1)

∣∣∣∣∣
∫ λ′′

j

λ′′
j−1

(λ′′
j − s)p−2 f j(s, u∞

j (s; α′′, χ′′, λ′′))ds

∣∣∣∣∣
+

p
λ′′

1

∣∣∣∣∣
∫ λ′′

j

λ′′
j−1

(λ′′
j − s)p−2[ f j(s, u∞

j (s; α′′, χ′′, λ′′))ds

∣∣∣∣∣
]

≤ j
N
|λ′χ′

j−1 − λ′′χ′′
j−1|+

p
λ′′

1
(|α′j − α′j−1 − χ′

j−1λ′
1|+ |α′′j − α′′j−1 − χ′′

j−1λ′′
1 |)

+
4Kj(λ

′
1)

p−1

1 − Qj

(
Lj +

4Mj(λ
′
1)

p

Γ(p + 1)

)
+ 4(λ′

1)
p−1Mj

This proves the lemma.

Theorem 6. Suppose the conditions of Theorem 2 are satisfied. Then, in order for the domain Ω
to contain a pair of parameters (α∗, χ∗, λ∗), it is necessary that for all m ≥ 1, (α̃, χ̃, λ̃) ∈ Ω. the
following inequalities hold:
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|∆m
j (α̃, χ̃, λ̃)| ≤ sup

(α,χ,λ)∈Ω

{
Γ(p + 1)

λ
p
1

(|α̃j − α̃j−1 − χ̃j−1λ̃1|

+|αj − αj−1 − χj−1λ1|) +
2Kj

1 − Qj

(
L̃j,2 +

4Mj(λ̃1)
p

Γ(p + 1)

)}
+ 2Mj +

Qm
j Mj

1 − Qj
, (51)

|Vm
j (α̃, χ̃, λ̃)| ≤ sup

(α,χ,λ)∈Ω

{
j

N
|λ̃χ̃j−1 − λχj−1|

+
p

λ1
(|α̃j − α̃j−1 − χ̃j−1λ̃1|+ |αj − αj−1 − χj−1λ1|)

+
4Kj(λ̃1)

p−1

1 − Qj

(
L̃j +

4Mj(λ̃1)
p

Γ(p + 1)

)
+ 4(λ̃1)

p−1Mj

}
+ 2

Qm
j

1 − Qj
Mj(λ̃1)

p−1 (52)

where

L̃j :=Lj(α̃j−1,j, χ̃j−1, λ̃, α∗j−1,j, χ∗
j−1, λ∗),

L̃j,2 :=Lj(α̃j−1,j, χ̃j−1, λ̃, αj−1,j, χj−1, λ).

Proof. Assume that the determining functions vanish at α = α∗, χ = χ∗, λ = λ∗, that is,
∆j(α

∗, χ∗, λ∗) = 0 and Vj(α
∗, χ∗, λ∗) = 0. Applying Lemma 5 with (α′, χ′, λ′) = (α̃, χ̃, λ̃)

and (α′′, χ′′, λ′′) = (α∗, χ∗, λ∗) yields

|∆j(α̃, χ̃, λ̃)− ∆j(α
∗, χ∗, λ∗)| = |∆j(α̃, χ̃, λ̃)|

≤ Γ(p + 1)
(λ∗

1)
p (|α̃j − α̃j−1 − χ̃j−1λ̃1|+ |α∗j − α∗j−1 −χ∗

j−1λ∗
1 |)+

2Kj

1 − Qj

(
L̃j +

4Mj(λ̃1)
p

Γ(p + 1)

)
+ 2Mj.

From Lemma 3, we know that

|∆j(α̃, χ̃, λ̃)− ∆m
j (α̃, χ̃, λ̃)| ≤

Qm
j Mj

1 − Qj
.

Hence,
|∆m

j (α̃, χ̃, λ̃)| ≤ |∆j(α̃, χ̃, λ̃)|+ |∆m
j (α̃, χ̃, λ̃)− ∆j(α̃, χ̃, λ̃)|

≤ Γ(p + 1)
(λ∗

1)
p (|α̃j − α̃j−1 − χ̃j−1λ̃1|+ |α∗j − α∗j−1 − χ∗

j−1λ∗
1 |)

+
2Kj

1 − Qj

(
L̃j +

4Mj(λ̃1)
p

Γ(p + 1)

)
+ 2Mj +

Qm
j Mj

1 − Qj

≤ sup
(α,χ,λ)∈Ω

{
Γ(p + 1)

λ1
(|α̃j − α̃j−1 − χ̃j−1λ̃1|+ |αj − αj−1 − χj−1λ1|)

+
2Kj

1 − Qj

(
L̃j,2 +

4Mj(λ̃1)
p

Γ(p + 1)

)}
+ 2Mj +

Qm
j Mj

1 − Qj
,

as stated in (51). Applying again Lemma 5, now to Vj(α, χ, λ), we have
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|Vj(α̃, χ̃, λ̃)− Vj(α
∗, χ∗, λ∗)| = |Vj(α̃, χ̃λ̃)|

≤ j
N
|λ̃χ̃j−1 − λ∗χ∗

j−1|+
p

λ∗
1
(|α̃j − α̃j−1 − χ̃j−1λ̃1|+ |α∗j − α∗j−1 − χ∗

j−1λ∗
1 |)

+
4Kj(λ̃1)

p−1

1 − Qj

(
L̃j +

4Mj(λ̃1)
p

Γ(p + 1)

)
+ 4(λ̃)p−1Mj

From Lemma 3, we know that

|Vj(α̃, χ̃, λ̃)− Vm
j (α̃, χ̃, λ̃)| ≤ 2

Qm
j

1 − Qj
Mj(λ̃)

p−1,

thus, combining the two yields

|Vm
j (α̃, χ̃, λ̃)| ≤ |Vj(α̃, χ̃, λ̃)|+ |Vm

j (α̃, χ̃, λ̃)− Vj(α̃, χ̃, λ̃)|

≤ j
N
|λ̃χ̃j−1 − λ∗χ∗

j−1|+
p

λ∗
1
(|α̃j − α̃j−1 − χ̃j−1λ̃1|+ |α∗j − α∗j−1 − χ∗

j−1λ∗
1 |)

+
4Kj(λ̃1)

p−1

1 − Qj

(
L̃j +

4Mj(λ̃1)
p

Γ(p + 1)

)
+ 4(λ̃1)

p−1Mj + 2
Qm

j

1 − Qj
Mj(λ̃1)

p−1

≤ sup
(α,χ,λ)∈Ω

{
j

N
|λ̃χ̃j−1 − λχj−1|+

p
λ1

(|α̃j − α̃j−1 − χ̃j−1λ̃1|

+|αj − αj−1 − χj−1λ1|) +
4Kj(λ̃1)

p−1

1 − Qj

(
L̃j +

4Mj(λ̃1)
p

Γ(p + 1)

)
+ 4(λ̃1)

p−1Mj

}

+2
Qm

j

1 − Qj
Mj(λ̃1)

p−1.

This proves the theorem.

Remark 3. On the basis of Theorem 6, we can establish an algorithm of approximate search for
the set of 2N parameters (α∗1 , ..., α∗N , χ∗

1 , ..., χ∗
N−1, λ∗), which define the solution u(·) of the FBVP

(9)–(11). Let Ω = ∪N
j=1Ωj and let us represent the product of open sets Ω ⊂ R×R×R as the

finite union of subsets Ωi (Ωi = Di × Xi × Λi):

Ω = ∪N
i=1Ωi. (53)

In each subset Ωi, we pick a set (αi
1, ..., αi

N , χi
1, ..., χi

N−1, λi) and calculate the approximate
solution um

j (t; αi
1, ..., αi

j, χi
1, ..., χi

j, λi) on each subinterval Jj using the recurrence Formula

(15). Then, we find the values of the determining functions ∆m
j (α

i
1, ..., αi

j, χi
1, ..., χi

j, λi) and

Vm
j (αi

1, ..., αi
j, χi

1, ..., χi
j, λi), according to (34) and (35), and exclude from (53) subsets Ωi for

which the inequality does not hold. According to Theorem 6, these subsets cannot contain a set
(αi

1, ..., αi
N , χi

1, ..., χi
N−1, λi) that determines the solution u(·). The remaining subsets Ωi1 , ..., Ωis

form a set Ωm,k, such that only (α̃1, ..., α̃N , χ̃1, ..., χ̃N−1, λ̃) ∈ Ωm,k can determine u(·). As
k, m → ∞, the set Ωm,k “follows” the set Ω, which may contain a set (α∗1 , ..., α∗N , χ∗

1 , ..., χ∗
N−1, λ∗)

and defines a solution to (13), (14). Each set (α̃1, ..., α̃N , χ̃1, ..., χ̃N−1, λ̃) can be seen as an approx-
imation of (α∗1 , ..., α∗N , χ∗

1 , ..., χ∗
N−1, λ∗), which determines solution of the FBVP (13), (14). It is

clear that

|α̃j − α∗j | ≤ sup
α∈Dm,k

|α̃j − αj|, |χ̃j − χ∗
j | ≤ sup

χ∈Xm,k
|χ̃j − χj|, |λ̃ − λ∗| ≤ sup

λ∈Λm,k
|λ̃ − λ|,
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and the function um(t; α̃, χ̃, λ̃), given by (16), where each um
j (t; α̃, χ̃, λ̃) is calculated using the

iterative formula (15), can be seen as an approximate solution to the FIBVP (9)–(11).

Finally, we estimate the deviation between the exact solution to the FBVP (13), (14),
u∞

j (t; α∗, χ∗, λ∗), and its approximate solution um
j (t; α̃, χ̃, λ̃).

Theorem 7. Suppose the conditions of Theorem 2 hold, and the pair (α∗, χ∗, λ∗) ∈ Ω is a solution
to the exact determining system (31), and (α̃, χ̃, λ̃) is an arbitrary point in Ωm,N . Then, the
following estimate holds

|u∞
j (t; α∗, χ∗, λ∗)−um

j (t; α̃, χ̃, λ̃)| ≤
(λ∗

1)
p

22p−1Γ(p + 1)

Qm
j

1 − Qj
Mj

+ sup
(α,χ,λ)∈Ωm,N

[
L̃j

m

∑
i=0

Qi
j +

4Mj(λ1)
p)

Γ(p + 1)

m−1

∑
i=0

Qi
j

]
.

(54)

Proof. From the estimates in (27) and (48), we have

|u∞
j (t; α∗, χ∗, λ∗)− um

j (t; α̃, χ̃, λ̃)| ≤ |u∞
j (t; α∗, χ∗, λ∗)− um

j (t; α∗, χ∗, λ∗)|

+|um
j (t; α∗, χ∗, λ∗)− um

j (t; α̃, χ̃, λ̃)|

≤
(λ∗

1)
p

22p−1Γ(p + 1)

Qm
j

1 − Qj
Mj + Lj

m

∑
i=0

Qi
j +

4Mj(λ
′
1)

p

Γ(p + 1)

m−1

∑
i=0

Qi
j

≤
(λ∗

1)
p

22p−1Γ(p + 1)

Qm
j

1 − Qj
Mj + sup

(α,χ,λ)∈Ωm,N

[
L̃j

m

∑
i=0

Qi
j +

4Mj(λ1)
p

Γ(p + 1)

m−1

∑
i=0

Qi
j

]
.

This proves the theorem.

5. Example
In this section, we apply the numerical-analytic method from Section 3 to a model

example in a finite interval setting.

Let us consider the differential equation

C
0 Dp

t u(t) =
1

(cosh t)2 F(u(t))− 2ω sinh t
(cosh t)3 (:= f (t, u(t))), t ∈ [0, λ], (55)

for two values of p, p = 2, 3/2, and subject to parameter-dependent boundary conditions

u(0) = 1000, u′(0) = 1500,

u(0) + u(λ) + u′(λ) = 1000,
(56)

i.e., A = B = C = 1, d = 1000, α0 = 1000, χ0 = 1500, and ω is given.

Remark 4. The function f (t, u(t)) in Equation (55) is an example of a nonlinear function satisfying
the conditions of Theorem 1.

Let the nonlinearity in Equation (55) be F(u(t)) = sin(u(t))/10. For simplicity of
computations, we construct an approximating sequence directly on the entire interval [0, λ].
However, it is possible to apply the interval-splitting method.

When p = 2, Equation (55), coupled with asymptotic conditions of the type (2), is
derived as a mathematical model of Arctic gyres with a vanishing azimuthal velocity
and oceanic vorticity F(u(t)). Then, ω = 4649.56 is taken as the dimensionless Coriolis
parameter [36], and u(t) is a stream function representing radially symmetric solutions.
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The first boundary condition in (2) can be interpreted as assigning some constant ϕ0 to the
stream function at the North Pole, and the second boundary condition means that the flow
is stagnant at the North Pole, see [46,47] for details.

In this case, the FIBVP (55), (56) is considered on the domain

D := {530 ≤ u(t) ≤ 1952}, t ∈ [0, λ].

The right-hand side function f (t, u(t)) satisfies the Lipschitz condition (18) with constant
K = 0.1.

Implementing (15) and solving the corresponding system of approximate determining
equations for six iterations yields the parameter values shown in Table 1.

Table 1. Computed parameter values of αm
1 and λm for m = 0, ..., 5, p = 2.

m αm
1 λm

0 1182.4028437371185 1.148642801991218

1 1331.576257823826 1.0473603198657913

2 1331.5762578223805 1.0473603198648302

3 1331.57625782238 1.0473603198648305

4 1331.5762578223798 1.0473603198648311

5 1331.57625782238 1.0473603198648307

It is clear from these calculations that the values we obtain for αm
1 and λm converge to

the exact parameter values. With the computed value of λ ≈ 1.05, we find that Q ≈ 0.01, i.e.,
the inequality in (21) is satisfied, which guarantees the convergence of the approximating
sequence. Plots of the first 6 terms of the sequence are shown in the left panel of Figure 1.

The right panel of the same figure shows a comparison between the left- and right-
hand sides of Equation (55) with u5(t; α1, λ) plugged in. From this comparison we see that
the left- and right-hand sides of Equation (55) are in good agreement for m = 5. The error
between the last two iterations, defined as

E = |u5(t; α1, λ)− u4(t; α1, λ)|, (57)

is E = 5.2 × 10−12. If necessary, the iteration process can be continued until the desired
precision of computation is obtained.

Figure 1. Plots of the first 6 terms of the sequence in (15) (left panel) and of the left- and right-hand
sides of Equation (55) with the last term u5(t; α1, λ) plugged in (right panel) for p = 2.
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When p = 3/2, we consider the FIBVP (55), (56) on the domain

D := {−29073.12 ≤ u(t) ≤ 33187.76}, t ∈ [0, λ].

As before, the sequence (15) is implemented and the corresponding system of approximate
determining equations is solved for six iterations. The obtained parameter values shown in
Table 2, from which it is clear that αm

1 and λm converge to the exact values.

Table 2. Computed parameter values of αm
1 and λm for m = 0, ..., 5, p = 3/2.

m αm
1 λm

0 909.1619919658109 0.8560901404160095
1 −546.1015115169015 8.602557635546512
2 −546.101514252212 8.60255774462411
3 −546.1015142479218 8.602557744453811
4 −546.1015142479329 8.602557744454153
5 −546.1015142479316 8.602557744454158

Plots of the first six terms of the sequence are shown in the left panel of Figure 2 and
the right panel of the same figure shows a comparison between the left- and right-hand
sides of Equation (55) with u5(t; α1, λ) plugged in. From this, we see that the left- and
right-hand sides of Equation (55) are in good agreement for m = 5. The error between the
last two iterations, defined as

E = |u5(t; α1, λ)− u4(t; α1, λ)|, (58)

is E = 1.7 × 10−9.

Figure 2. Plots of the first 6 terms of the sequence in (15) (left panel) and of the left- and right-hand
sides of Equation (55), with the last term u5(t; α1, λ) plugged in (right panel) for p = 3/2.

6. Discussion
The numerical–analytic method discussed in this paper facilitates the analysis of

the existence of solutions to FBVPs with parameter-dependent boundary conditions over
intervals of arbitrary length. It also provides a practical framework for the construction
of approximations to their solutions, enabling their visualization, which is valuable for
gaining qualitative insights. Compared to numerical methods and other approximation
approaches, such as, for instance, series expansion and Grünwald-Lentikov methods
(see [1,48]), the technique presented here has several advantages. While purely numerical
methods rely on discretizations that introduce numerical errors, the numerical–analytic
scheme uses a closed-form approximating sequence. This eliminates the discretization error,
thus improving accuracy. In addition, the numerical–analytic method serves as a tool for
analyzing FBVPs, addressing the existence and uniqueness of solutions and the solvability
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of the problem. Moreover, the method is computationally efficient since it only requires
the numerical solution of a system of algebraic equations. Another advantage is its ability
to accommodate various types of boundary constraints. In contrast to classical numerical
approaches, the numerical–analytic does not require explicit knowledge or estimation of
the initial conditions. When such data is unavailable, it is instead determined as the root
of an algebraic equation at each iteration. Furthermore, the method’s applicability can be
extended beyond the three-point parameter-dependent boundary conditions considered
here, encompassing Dirichlet, multipoint, nonlinear, and integral boundary conditions
through a suitable parametrization.

The generalized dichotomy-based approach discussed here allows for the extension
of the interval of definition of the problem and broadens the applicability of the numeri-
cal–analytic technique. While Lipschitz continuity of the right-hand side function in the
FDE is required for convergence, the ability to split the interval of definition enables the
method to be applied to problems where the convergence conditions are not satisfied on
the entire domain. Furthermore, the interval-splitting technique can be used to enhance the
speed of convergence, which depends on the length of the interval, as evidenced by the
estimate in (27). This interval partitioning method also allows for extending the interval
of definition of the BVP, making it well-suited for studying the long-term or asymptotic
behavior of solutions to fractional-order boundary value problems, which are crucial in
modeling complex physical, biological, and engineering systems.

Future work will focus on conducting a detailed comparative study of classical nu-
merical and numerical–analytic techniques applied to differential equations involving
generalized fractional-order operators. This investigation aims to assess the accuracy,
efficiency, and robustness of the methods. A comprehensive report on this comparative
analysis is ongoing work. For further details, the reader is referred to [49].

7. Conclusions
In this paper, we study FIBVPs in two different settings. First, we consider an FDE

defined on a semi-infinite domain, subject to asymptotic conditions, in order to establish
conditions for the existence of bounded solutions to the problem. In the second problem
setting, we consider an FDE defined on a domain of unknown finite length, subject to
initial and three-point boundary conditions. We use the numerical–analytic method in
combination with an interval splitting technique to construct a sequence of approximations
and prove the existence and uniqueness of solutions to the FIBVP. Furthermore, we give a
detailed analysis of the solvability of the problem.

The method presented in this paper is well-suited for the analysis and approxima-
tion of solutions to nonlinear fractional boundary value problems (FBVPs) with nonfixed
boundaries, which arise in various applied contexts. It is adaptable to a range of fractional
operators and can accommodate various types of boundary conditions. The BVP under
consideration is inherently complex due to the nonlinearity in the right-hand side function,
the unknown domain length, and the parameter-dependent boundary conditions—even
when classical derivatives are used. Given that the numerical–analytic technique is also
applicable to the integer-order case, and that the system’s behavior can vary depending on
the order of the derivative, it is therefore natural to to compare the method’s performance
across different orders, such as p ∈ (0, 1] and p ∈ (1, 2] in future works.
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