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ABSTRACT
Motivation: When a cancer grows, it progresses from one stage to
another, which can been seen as a sequence of ordered phases.
Current research on multi-class molecular classification typically
treats the classes on a nominal scale and thus does not take any
relation between classes into account. The ordering is however
valuable information which may be used to improve the predictive
power of a classifier. A few ordinal classifiers have been published,
but they have not been applied in the analysis of molecular data,
where there are only a limited number of samples in comparison to
the number of features. This paper describes a comparative study
in which current ordinal classifiers are benchmarked in a molecular
analysis of gene expression. This helps to determine whether using
the relation between classes can help to improve the prediction
results.
Results: The results of the comparison study shows that there is
not a lot of difference in performance between nominal and ordinal
classifiers evaluated on real datasets. Several experiments were
executed to further investigate any difference between both types
of classifiers. It seems that by selecting monotonous features (i.e.
features that correlate linearly with the class labels), the performance
of nominal classifiers can be significantly improved. This allows for the
usage of well-known and less complex classifiers, which is beneficial
in p > n problems.
Contact: o.p.pfeiffer@student.tudelft.nl

1 INTRODUCTION
When dealing with cancers it is important to know the
severity to correctly determine the diagnosis and exact
treatment for a patient. The severity is based on factors such
as the location of the primary tumor, certain histological
features and the presence of metastasis. The TNM system [1]
is a general staging system which can be used for any type of
cancer and is most commonly used. It specifies the current
state of the cancer and how it has spread. More specific
systems were also developed such as the Dukes’ score [2] for
colorectal cancer. To help identify how the cancer is growing,
a grading system can be used. These systems are specific to
the type of cancer, so there is no general system available.
An example of a grading system is the Gleason’s score [3] for
prostate cancer. See Section 1.1 of the Supplementary Material
for more details on the different staging and grading systems.

Currently the stage and grade of a cancer is determined
by a specialist, which has as a disadvantage that diagnosis
is limited to for example, the morphological appearance. In

other words, not all information available is used. With the
development of technology such as microarrays and mass
spectrometry, classification algorithms from other research
fields are being used to relate molecular profiles to diseases
like cancer.

This study focuses on classification problems in which
either the grades or stages of a cancer are used as classes,
which means that there are more than two classes, with an
ordinal relation between them. These class labels can take
values such as ”small”, ”medium” and ”large” or numbers
like 1, 2, 3 as long as the ordinal relation between them holds
(i.e. ”small” < ”medium” < ”large” and 1 < 2 < 3,
respectively).

Research on multi-class molecular classification usually
treats these classes nominally and ignores the ordinal relation.
By discarding the ordinal relation, information is being
omitted which could help to improve the performance of
classification algorithms. The goal of this study is to test this
hypothesis.

Datasets of prostate [4], breast [5] and ovarian [6] cancer
are studied for which three different types of staging/grading
systems were used. In addition, synthetic datasets were
included to help to identify properties specific to ordinal
classification.

2 METHODS
In multi-class classification problems there are K classes and
the goal is to estimate the function f : X → Y that maps
instances from the feature space X to a set of discrete labels
Y = {ω1, ..., ωK}.

A classifier is an estimator f̂ of the function f , which is
estimated using samples X = [x1, x2, ..., xn] ∈ X and their
labels y = [y1, y2, ..., yn] ∈ Y . Once the f̂ has been estimated,
a new sample x ∈ X can be classified by determining f̂(x).

To evaluate the performance of the classifiers included in
this study, an adapted version of the protocol proposed by
Wessels et al. [7] is used to minimize bias that could occur.
The protocol involves two nested cross-validation [8] loops of
which the inner loop is used to optimize any parameters used
(for example a threshold used by a classifier, or the number of
features used to train a classifier), and the outer loop is used
to validate the resulting classifier. These two nested cross-
validation steps are permuted a number of times to ensure
the results are not biased on the data was split in a training
and validation set. The process is depicted in Figure 1.

Delft University of Technology & Philips Research 1
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Figure 1: Evaluation Protocol. The preprocessed data is split up in a training and validation set in the outer cross-validation
loop using stratified sampling. The training set is used to find the optimal feature subset by applying another cross-validation
loop. This inner cross-validation loop results in an optimal trained classifier which is evaluated against the untouched validation
set from the outer loop. This ensures that the performance is not biased because of how the dataset has been split. The samples
and their predicted labels from each outer fold are aggregated into one big pool to create a confusion matrix for the whole data
set. Any evaluation measure can then be applied on the confusion matrix to obtain the performance for that evaluation. This
whole process is permuted 50 times and averaging the performance of all permutations results in the final performance. In the
outer cross-validation loop the data is split in 3 folds, while in the inner cross-validation loop 10 folds are used. The numbers
displayed in some of the boxes refer to their corresponding section numbers.

2.1 Evaluation Measures
In the case of nominal classification it is quite common
to assess the performance of a classifier by evaluating the
number of true positives and negatives. In this study the
balanced accuracy will be used, which is the average of the
accuracy rate for each class. When using such a measure, the
way a sample was misclassified does not matter. In the case
of ordinal classification this plays a far more important role.

When a sample is misclassified, one would want the
predicted label to be as close as possible to the true label. In
other words, the risk as a result of misclassifying a sample
should be minimized since the consequences can be quite
undesirable (e.g. the dose for radiotherapy can depend on
the predicted severity of the cancer [9], thus overclassifying
can lead to a more risky dosage than required). To assess the
samples that are misclassified, two different measures will be
used: a cost-based distance measure mcd and a rank-based
measure rint. When a sample is misclassified, one would want
the predicted label to be as close as possible to the true label.
In other words, the risk as a result of misclassifying a sample
should be minimized since the consequences can be quite
undesirable (e.g. the dose for radiotherapy can depend on
the predicted severity of the cancer [9], thus overclassifying
can lead to a more risky dosage than required). To assess the
samples that are misclassified, two different measures will be
used: a cost-based distance measure mcd and rint coefficient.

To help compare performances, each evaluation measure
was transformed into the interval [0, 1] if necessary (where a
higher value means a better performance).

Cost-based Distance Measure mcd
This measure assigns costs based on the distance between
the predicted and true label, where the distance is defined
as the number of classes going from the predicted to the
true label on the ordinal scale. By doing an element-wise
multiplication between the cost matrix and the prediction’s
confusion matrix, the costs of that prediction is determined.
By dividing these costs by the costs of the worst-case scenario
(i.e. when all samples are classified as the class furthest away
from the true class), a quotient is obtained that indicates how
good the classifier performed.

More formally, given a confusion matrixA and a cost matrix
M the mcd can be defined as:

mcd(M,A) = 1− c

t
(1)

where c the actual total misclassification cost and t the
maximal misclassification cost:

c =
K∑

i=1

K∑
j=1

MijAij

t =

K∑
i=1

( max
j=1,..,K

Mij

K∑
j=1

Aij)

(2)

Here Aij is the number of samples of class i that were
predicted as class j and Mij is the cost of misclassifying a
sample as class j while the true class is i. By default M is a
linear cost matrix where the diagonal is equal to zero and the
costs for misclassifying increases linearly with the distance to
the true class; Mij = |i− j| for i, j = 1, 2, ...,K. See Equation
3 as an example of a linear cost matrix for K = 4.
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M =


0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0

 (3)

When mcd is equal to 0 then the classifier classified the
samples in the worst possible way; a value of 1 indicates that
the samples were classified perfectly. The definition of mcd
given in Equation 2 just looks at the overall situation, but the
same can be done on a per-class basis similar to the balanced
accuracy rate. The definition of a balanced version of mcd can
be found in Section 3.4.2 of the Supplementary Material.

Rank-based measure rint
This ordinal measure [10] looks at how the predicted labels
are ordered and compares it with the order of the true labels.
Let O be the set of samples that needs to be validated, then
any pair i, j for which the relation between the true labels
f(oi) ≤ f(oj) holds, is added to the set St. Let Sp be a
similar set but with the relations between the predicted labels
f̂(oi) ≤ f̂(oj) instead. The measure rint can then be defined
as:

rint(St, Sp) = −1 + 2
|St ∩ Sp|√
|St||Sp|

(4)

Where |S| is the cardinality of a set S. More details and
examples are given in Section 3.4.1 of the Supplementary
Material.

2.2 Feature Selection
As the datasets contain a large number of features in
comparison to the number of samples, it is important to
reduce the number of features to ensure that the classes can
be separated correctly [11]. To this end, a feature selection
procedure takes place in the inner cross-validation loop (see
Figure 1). There are several ways to achieve this goal, but for
this study a fairly simple procedure is followed consisting of
three steps.

Feature filtering is the first step, which removes any
feature that is not significant enough (i.e. when it does not
show enough difference over variance between the different
classes). For this purpose the F-test with significance level
α = 0.05 was used, which is a special case of the one-way
analysis of variance (ANOVA) [12, 13]. See Section 3.3.1 of the
Supplementary Material for more information on ANOVA.
All features that do not pass the F -test are discarded.

After the insignificant features have been filtered, the
remaining ones are ranked based on their F-statistic.

The final step, unlike the previous two, depends on the
classifier in question as it is used to evaluate the performance
of possible feature subsets. For i = 1, ..., n − 1 the topmost
i features of the filtered and ranked set are used to construct
a classifier using the training subset. The n − 1 classifiers are
then evaluated using the test subset to create a performance
curve.

Each fold in the inner loop will result in a performance
curve. After averaging the performance curves from all folds
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Figure 2: Monotonous Features. This synthetic dataset has 5
different classes which are ordered w1 to w5 when looking at
only feature f1 on the X-axis, while some classes overlap and
disobey the ordinal relationship when looking at feature f2 on
the Y-axis. As a result the ordinal relation between the classes
can not be found when looking only at feature f2, while this
is possible in the case of feature f1. In this given example f1
is a monotonous feature while f2 is not.

in the inner loop, the number of features for which the
performance is highest will determine the size of the final
subset of features (in case of ties the classifier is picked
at random). This whole process of obtaining the optimal
feature subset will be referred to as the basic feature selection
method.

A disadvantage of such a simple procedure is that the
true optimal subset of features will typically not be obtained.
This is less of an issue here, as the purpose of this study is
to compare the relative performance between the different
classifiers and not to find the absolute performance of a
classifier which might only be optimal in specific situations.

Monotonous Features
Ordinal classification requires the relationship between the
classes to be included. Such information can be included
a-priori by using expert knowledge [14]. Assuming expert
knowledge is not available, the ordinal relation has to be
estimated from the training set’s features. Thus the features
should correlate with the class labels as much as possible
(See Figure 2 for an example) and ideally increase or decrease
monotonously in relation to the class labels.

To help investigate the effect of having features that contain
the ordinal relation between classes, a variation on the
previously described feature selection procedure has been
included in this study. This variation will be referred to as
the monotonous feature selection method and is similar to the
basic one, although the ranking is done differently.

Instead of ranking the filtered genes based on their F-
statistic, they are ordered based on the Pearson’s correlation
coefficient [15] between each feature and the class labels.
The definition of the Pearson’s correlation coefficient is given
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in Section 3.3.2 of the Supplementary Material. The filtered
genes are then ranked based on the absolute value of their
correlation coefficients.

2.3 Classification
In Table 1 an overview is given of all the classification
methods included in this study.

Classifier Abbr. Type
Naı̈ve Bayes NB Nominal
Support Vector Machine SVM Nominal
One-vs-One Pseudo-Classification OVO Nominal
One-vs-All Pseudo-Classification OVA Nominal
Ordered Pseudo-Classification OPC Ordinal
Ordinal Support Vector Machine OSVM Ordinal
Cost-Based NB CNB Ordinal
Cost-Based OVO COVO Ordinal
Proportional Odds Log Regression POLR Ordinal

Table 1. A list of classifiers included in this study.

Nominal Classifiers
The naı̈ve Bayes classifier (NB) [16] uses the Bayes’ rule while
assuming that all features are class-conditionally independent
of each other. As a result, the classifier only needs to estimate
the probability distribution of each feature individually, for
which in this study the Gaussian model is used. It is a simple
method which works surprisingly well on n > p problems
considering the strong assumptions on the independence.

The multi-class support vector machine (SVM) is a
generalized version of the original SVM formulation [17].
Several generalizations are available, but in this study the one
by Crammer et al. [18] was used.

One-vs-one pseudo-classification (OVO) [19] constructs
binary classifiers for each pair of classes. So in case there are
K classes, then there are

(
K
2

)
= K(K−1)

2
classifiers needed. To

classify an unknown sample, the output of all classifiers needs
to be combined and one way to do that is by voting. The most
typical example of a voting scheme, and the one used in this
study is majority voting [20].

In One-vs-all pseudo-classification (OVA) [21] K classifiers
are constructed, one for each of the available classes. For
the training of the ith classifier, the samples that belong to
class i are used as positives and all other samples are used
as negatives. Each classifier outputs the posterior probability
of its class being the correct one. The classifier that is most
confident in the prediction of its own class, will determine
the label assigned to the unknown sample.

A more detailed description on these methods is given in
the Supplementary Material in Section 3.1.

Ordered Pseudo-Classification
Ordered pseudo-classification (OPC) [22] is a method which
constructs the binary classifiers in such way, that the ordinal
relationship between classes can be enforced. As a result

this approach can be applied independent of the binary
classifiers being used as long as they return posterior class
probabilities.K−1 binary classifiers are created which return
the conditional probability P (ωT > ωi|x) where i = 1, ...,K−
1 and ωT is the true class of the unknown sample x (i.e. f̂(x)
if the function f is known). In other words, each classifier i
determines the chance that the class of the unknown sample
is higher than the class ωi given x. The corresponding
probabilities for each class can then be calculated as indicated
in Equation 5.

P (ωk|x) =P (ωT > ωk−1|x)− P (ωT > ωk|x)

for k = 1, ...,K
(5)

Here P (ωT > ω0|x) = 1 and P (ωT > ωK |x) = 0 as
y ∈ {ω1, ω2, ..., ωK}. For an unknown sample the label
is determined by the class with the highest probability
P (ωk|x). A naı̈ve Bayes classifier is used to determine the
conditional probabilities P (ωT > ωk|x). See Section 3.2.1 in
the Supplementary Material for more details.

Ordinal Support Vector Machine
OSVM [23] tries to solve the original multi-class problem as
a binary problem while preserving the ordinal relationship
between the classes. The advantage is that well-developed
binary SVMs can be used for multi-class classification
problems. The idea is based on a regular multi-class SVM
formulation in which K − 1 hyperplanes are constructed.
However, instead of creating multiple hyperplanes, OSVM
replicates the samples so it can solve the optimization
problem in one go. This is done by adding K − 2 dimensions
to the feature space, which allows for the ordinal relation to
be included into the problem. This process of replicating data
is shown in Equation 6.

[
x

ωj

i

eq−1

]
∈

{
ω̄1 j = max(1, q − s+ 1), ..., q

ω̄2 j = q + 1, ...,min(K, q + s)

for q = 1, ...,K − 1

(6)

Here xωj

i are the samples that belong to class ωj . If q = 1, eq−1

is a sequence of K − 2 zeros, otherwise eq−1 is a sequence
of K − 2 symbols 0, ..., 0, h, 0, ..., 0 with h at position q − 1.
The parameter s specifies the number of classes on both sides
of the boundary that should be included. The h parameter is
used as a trade-off between the objectives of maximizing the
margin of separation and minimizing the distance between
the hyperplanes.

Once the data has been replicated, it can be used to train
a regular binary SVM. If an unknown sample needs to be
classified, then that sample will be replicated once in all
K − 2 dimensions similarly as done in Equation 6, but
without assigning a label. Each replica is then classified using
the trained binary classifier, resulting in K − 1 predictions
∈ {ω̄1, ω̄2}. Based on the ordinality assumption, the final
prediction is then equal to the number of replicas classified as
ω̄2 plus one. See Section 3.2.2 in the Supplementary Material
for a more detailed description of OSVM.
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Cost-based Ordinal Classification
It is also possible to enforce the ordinal relation by assigning
costs to the probability of misclassifying. By multiplying
the costs with the posterior class probabilities, the risk for
assigning a label to the unknown sample can obtained.
The advantage of this approach is that any well-developed
classifier can be used as long as it returns the class posteriors.

Using a constructed K×K-cost matrix M , the risk of
choosing class i can be determined using the following
equation [24]:

Rj(x) =

K∑
i=1

MijP (ωi|x) (7)

Here Mij is the corresponding entry in the cost matrix M .
To classify a new sample the risk Rj is calculated for each
class j and the one with the lowest risk is the winner. In other
words by selecting the class with the lowest risk, the costs of
misclassifying that sample is minimized. By default a linear
cost matrix is used (see Equation 3 for an example of such a
cost matrix for K = 4), but other cost matrices can be used as
well.

In the case of a cost-based approach of the naı̈ve Bayes
classifier (CNB) this is straightforward as it returns the
needed posteriors for each class. The pseudo-classification
methods (OVO and OVA) and the methods based on support
vector machines (SVM and OSVM) on the other hand do not
return probabilities. Although it is not uncommon to estimate
the class posteriors, it would be less suitable in the context of
determining the risk.

A cost-based approach of one-vs-one pseudo-classification
(COVO) can be constructed by determining the risk for each
individual classifier instead of using a voting-like scheme.
By adding the risk from each classifier, the total risk for
each class is obtained. The advantage of this approach over
voting is that confidence of each individual classifier is taken
into account, instead of giving each classifier an equal vote
as is the case in majority voting. A similar approach is not
possible for the one-vs-all pseudo classification as each binary
classifier groups the remaining classes together. As a result
the samples will be pushed to the center of the ordinal scale,
which is not desirable. See Section 3.2.3 in the Supplementary
Material for more details.

Proportional Odds Logistic Regression
The proportional odds logistic regression model [25] uses
a continuous function f̃ , which is discretized to obtain the
estimator f̂ . It uses thresholds as defined in Equation 8 for
this purpose.

f̂(x) = ωk if αk−1 ≤ f̃(x) < αk for k = 1, ...,K (8)

Here α0, ..., αK are the thresholds separating f̃(x) into K
different classes. The two classes at both ends of the ordinal
scale are defined by open-ended intervals where α0 = −∞
and αK =∞.

It is assumed, that the ratio of the odds of the event yi ≤ ωk

for any pair of sets of explanatory variables is independent

of the choice of values for y. The model formulates the
cumulative probabilities P (yi ≤ ωk|xi) as a latent variable
ỹ as summarized in Equation 9.

logit(P (yi ≤ ωk|xi)) = logit(ỹ) = αk + xiβ (9)

Each logit(P (yi ≤ ωk|xi)) has its own threshold αk but shares
the same regression coefficients β. After estimating these
parameters, the cumulative probabilities can then be used to
determine the probabilities of each class (see Equation 10).

P (yi = ωk|xi) = P (yi ≤ ωk|xi)− P (yi ≤ ωk−1|xi)

for k = 1, ...,K
(10)

The class with the highest probability will be assigned to the
unknown sample. More details can be found in Section 3.2.4
of the Supplementary Material.

3 RESULTS
The classification methods included in this study were
evaluated on several datasets; see Table 2 for a brief overview.
These datasets are publicly available on-line through the
Gene Expression Omnibus offered by the NCBI (http://
www.ncbi.nlm.nih.gov/geo/).

Dataset # Features Class # Samples
Prostate [4] 11476 Gleason 3

Gleason 4
Gleason 5

11
12
8

Breast [5] 10704 Elston I
Elston II
Elston III

68
126
55

Ovarian [6] 11533 TNM I
TNM II
TNM III
TNM IV

35
11
44
9

Synthetic I & II 2 1
2
3
4
5

500
500
500
500
500

Table 2. Properties of the different datasets used. Gleason [3] and
Elston [26] are both grading system which specifies the growth rate
of the cancer, while TNM [1] is a staging system which specifies the
spread of the cancer. See Section 2 in the Supplementary Material for
more information on each dataset and how they were preprocessed.

Besides the real datasets, two synthetic datasets have been
constructed as shown in Figure 3.

The purpose of the synthetic I dataset (see Figure 3a) is
to distinguish between the results of nominal and ordinal
classifiers. The balanced accuracy should not show much
difference for both types of classifiers. A ’perfect’ nominal
classifier would mistake classes 1 and 5 half of the time.
A ’perfect’ ordinal classifier would be influenced by the
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neighboring classes and thus would prefer class 1 over 5
or even classify the samples of both classes as class 3. That
way it can ensure that a sample, if misclassified, lies as close
to its true class as possible. The difference in both types of
classifier should only become apparent when looking at how
the samples were misclassified using an ordinal evaluation
measure.

The dataset synthetic II consists of a monotonous feature
on the X-axis and a non-monotonous feature on the Y -
axis (see Figure 3b). The non-monotonous feature has
some overlapping classes, so both the nominal and ordinal
classifiers should use the monotonous feature as much as
possible. This dataset was created to see how well both types
of classifiers are able to use the ordinal information to their
advantage.

Feature f1

F
e
a
tu
re
f 2

ω4

ω3

ω2

ω1 & ω5

(a) Synthetic I
Feature f1

F
e
a
tu
re
f 2

ω1

ω3

ω5

ω4ω2

(b) Synthetic II

Figure 3: Synthetic Datasets. The synthetic datasets (a) I
and (b) II. Each set has 5 classes, labeled ω1, ..., ω5, and 500
samples which are normally distributed. Both datasets only
have 2 features, which are both monotonous in the synthetic
I dataset. In the case of synthetic II, only feature f1 on the X-
axis is monotonous. More information on the datasets can be
found in Section 2.4 of the Supplementary Material.

3.1 Comparison study
The comparison study consists of all classifiers listed in
Table 1, using the balanced accuracy for the feature selection
process and evaluated on all datasets. This was done
using both the basic and monotonous feature selection. The
evaluation protocol discussed in Table 1 was used and the
results of this experiment are listed in Figure 4.

The box plots for POLR are not shown for the real datasets,
as the implemented system was not able to fit the regression
model for most of the permutations. This is a result of the
limited amount of samples available for training in each
permutation.

Looking at the real datasets there does not seem to be much
difference from one classifier to another, not even between
the nominal and ordinal classifiers. The ovarian dataset does
show a little of variation between the classifiers, because it
has one class more than the prostate and breast datasets. The

high variance of the prostate dataset can be accounted to the
limited number of samples.

When evaluated on the synthetic datasets, the classifiers
show a lot more difference in performance. Especially for
synthetic I there seems to be a distinction between the
nominal and ordinal methods. To confirm this conjecture, a
one-sided paired t-test was applied between the performance
of each classifier with that of all other classifiers. The
corresponding t- and p-values are listed in Table 3.

From the paired t-test of synthetic I it can be concluded,
that the nominal classifiers outperform the ordinal ones based
on the balanced accuracy, while they perform worse than
ordinal classifiers based on mcd. This behavior corresponds
to the purpose of the synthetic I dataset, where the ordinal
classifiers treat the classes ω1 and ω5 (see Figure 3) differently
than the nominal classifiers would.

In the case of the synthetic II dataset, the nominal classifiers
again outperform the ordinal ones based on the balanced
accuracy. Formcd however, both ordinal as nominal classifiers
seem to perform well. This can be accounted to the way the
features are used by each classifier. For example, NB assumes
that the features are class-conditionally independent of each
other and as a result is able to use feature f1 (see Figure 3)
to its advantage. A classifier like SVM on the other hand,
uses both features at the same time and seems to have more
difficulty to discriminate between the classes.

From all ordinal classifiers, only CNB seems to perform
well based on mcd in the synthetic II dataset. This can be a
result of the classifier being able to exploit feature f1, while
at the same time use the cost matrix to enforce the ordinal
relationship. It should be noted though, that some bias might
have occurred as a linear cost matrix was used by CNB to
predict samples and to evaluate them at the same time.

A downside of POLR becomes apparent when looking at
its performance for both synthetic datasets. As the regression
model uses the same regression coefficients, but different
thresholds for each class, it is not very suitable for non-
linear datasets. This would indicate that selecting strictly
monotonous features might help improve the performance of
POLR. This has not been verified however, as POLR was not
able to fit the regression model on the real datasets.

3.2 Evaluation
The classifiers in the previous section were trained with
the balanced accuracy rate. In the evaluation protocol,
the evaluation measure is however used in two different
situations. First during feature selection it is used to evaluate
the classifier for the different number of features (see the
box ’Evaluate’ in the inner cross-validation loop in Figure 1)
and as a result determines the final optimal set of features.
Later on it is used to evaluate the trained classifier on the
test set which leads to the final performance measure after
averaging the permutations (see the box ’Evaluate’ outside of
the cross-validation loops in Figure 1).

To help determine the overall effect on the performance
when using different evaluation measures, all classifiers
where trained and evaluated with the any combination of
the measures included in this study. Table 4 lists the most
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(b) Cost-based Distance Measure (mcd)
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Figure 4: Comparison Study Results. Box plots of the performance using (a) balanced accuracy, (b) cost-based distance measure
and (c) rint coefficient as evaluation measure. See Tables 4.1-4.3 in the Supplementary Material for the mean and standard
deviations of these results.
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NB SVM OVO OVA OPC OSVM CNB COVO POLR

ba
la

nc
ed

ac
cu

ra
cy

NB - 29.62 ( 0.000) 0.00 ( 0.500) -3.62 ( 1.000) 18.18 ( 0.000) 65.13 ( 0.000) 65.81 ( 0.000) 193.00 ( 0.000) 247.14 ( 0.000)
SVM -29.62 ( 1.000) - -29.52 ( 1.000) -29.75 ( 1.000) -21.75 ( 1.000) 12.29 ( 0.000) 6.77 ( 0.000) 57.99 ( 0.000) 88.37 ( 0.000)
OVO 0.00 ( 0.500) 29.52 ( 0.000) - -3.63 ( 1.000) 18.12 ( 0.000) 64.95 ( 0.000) 65.68 ( 0.000) 192.47 ( 0.000) 246.63 ( 0.000)
OVA 3.62 ( 0.000) 29.75 ( 0.000) 3.63 ( 0.000) - 27.26 ( 0.000) 65.99 ( 0.000) 69.74 ( 0.000) 192.10 ( 0.000) 252.95 ( 0.000)
OPC -18.18 ( 1.000) 21.75 ( 0.000) -18.12 ( 1.000) -27.26 ( 1.000) - 59.32 ( 0.000) 60.06 ( 0.000) 198.36 ( 0.000) 263.99 ( 0.000)
OSVM -65.13 ( 1.000) -12.29 ( 1.000) -64.95 ( 1.000) -65.99 ( 1.000) -59.32 ( 1.000) - -21.07 ( 1.000) 96.51 ( 0.000) 160.99 ( 0.000)
CNB -65.81 ( 1.000) -6.77 ( 1.000) -65.68 ( 1.000) -69.74 ( 1.000) -60.06 ( 1.000) 21.07 ( 0.000) - 214.65 ( 0.000) 345.42 ( 0.000)
COVO -193.00 ( 1.000) -57.99 ( 1.000) -192.47 ( 1.000) -192.10 ( 1.000) -198.36 ( 1.000) -96.51 ( 1.000) -214.65 ( 1.000) - 174.79 ( 0.000)
POLR -247.14 ( 1.000) -88.37 ( 1.000) -246.63 ( 1.000) -252.95 ( 1.000) -263.99 ( 1.000) -160.99 ( 1.000) -345.42 ( 1.000) -174.79 ( 1.000) -

m
cd

NB - 6.70 ( 0.000) -0.00 ( 0.500) 8.56 ( 0.000) -37.76 ( 1.000) -67.11 ( 1.000) -86.64 ( 1.000) -68.13 ( 1.000) -50.11 ( 1.000)
SVM -6.70 ( 1.000) - -6.69 ( 1.000) -5.30 ( 1.000) -15.07 ( 1.000) -27.80 ( 1.000) -31.20 ( 1.000) -25.35 ( 1.000) -20.35 ( 1.000)
OVO 0.00 ( 0.500) 6.69 ( 0.000) - 8.58 ( 0.000) -37.74 ( 1.000) -66.91 ( 1.000) -86.33 ( 1.000) -67.90 ( 1.000) -49.96 ( 1.000)
OVA -8.56 ( 1.000) 5.30 ( 0.000) -8.58 ( 1.000) - -55.30 ( 1.000) -67.86 ( 1.000) -84.31 ( 1.000) -67.67 ( 1.000) -51.51 ( 1.000)
OPC 37.76 ( 0.000) 15.07 ( 0.000) 37.74 ( 0.000) 55.30 ( 0.000) - -47.26 ( 1.000) -58.65 ( 1.000) -39.10 ( 1.000) -21.11 ( 1.000)
OSVM 67.11 ( 0.000) 27.80 ( 0.000) 66.91 ( 0.000) 67.86 ( 0.000) 47.26 ( 0.000) - -4.77 ( 1.000) 36.81 ( 0.000) 73.63 ( 0.000)
CNB 86.64 ( 0.000) 31.20 ( 0.000) 86.33 ( 0.000) 84.31 ( 0.000) 58.65 ( 0.000) 4.77 ( 0.000) - 60.74 ( 0.000) 113.32 ( 0.000)
COVO 68.13 ( 0.000) 25.35 ( 0.000) 67.90 ( 0.000) 67.67 ( 0.000) 39.10 ( 0.000) -36.81 ( 1.000) -60.74 ( 1.000) - 123.08 ( 0.000)
POLR 50.11 ( 0.000) 20.35 ( 0.000) 49.96 ( 0.000) 51.51 ( 0.000) 21.11 ( 0.000) -73.63 ( 1.000) -113.32 ( 1.000) -123.08 ( 1.000) -

(a) Synthetic I

NB SVM OVO OVA OPC OSVM CNB COVO POLR

ba
la

nc
ed

ac
cu

ra
cy

NB - 6.60 ( 0.000) -Inf ( 1.000) 1.85 ( 0.036) 46.85 ( 0.000) 35.31 ( 0.000) 45.59 ( 0.000) 803.35 ( 0.000) 608.87 ( 0.000)
SVM -6.60 ( 1.000) - -6.60 ( 1.000) -5.79 ( 1.000) 19.83 ( 0.000) 21.75 ( 0.000) 13.28 ( 0.000) 471.36 ( 0.000) 371.27 ( 0.000)
OVO -Inf ( 1.000) 6.60 ( 0.000) - 1.85 ( 0.036) 46.85 ( 0.000) 35.31 ( 0.000) 45.59 ( 0.000) 803.35 ( 0.000) 608.87 ( 0.000)
OVA -1.85 ( 0.964) 5.79 ( 0.000) -1.85 ( 0.964) - 57.58 ( 0.000) 32.86 ( 0.000) 37.75 ( 0.000) 904.90 ( 0.000) 711.04 ( 0.000)
OPC -46.85 ( 1.000) -19.83 ( 1.000) -46.85 ( 1.000) -57.58 ( 1.000) - 9.53 ( 0.000) -17.38 ( 1.000) 865.29 ( 0.000) 642.44 ( 0.000)
OSVM -35.31 ( 1.000) -21.75 ( 1.000) -35.31 ( 1.000) -32.86 ( 1.000) -9.53 ( 1.000) - -18.40 ( 1.000) 373.85 ( 0.000) 306.36 ( 0.000)
CNB -45.59 ( 1.000) -13.28 ( 1.000) -45.59 ( 1.000) -37.75 ( 1.000) 17.38 ( 0.000) 18.40 ( 0.000) - 792.90 ( 0.000) 721.26 ( 0.000)
COVO -803.35 ( 1.000) -471.36 ( 1.000) -803.35 ( 1.000) -904.90 ( 1.000) -865.29 ( 1.000) -373.85 ( 1.000) -792.90 ( 1.000) - -137.26 ( 1.000)
POLR -608.87 ( 1.000) -371.27 ( 1.000) -608.87 ( 1.000) -711.04 ( 1.000) -642.44 ( 1.000) -306.36 ( 1.000) -721.26 ( 1.000) 137.26 ( 0.000) -

m
cd

NB - 13.76 ( 0.000) -Inf ( 1.000) 4.06 ( 0.000) 8.10 ( 0.000) 3.23 ( 0.001) -7.83 ( 1.000) 406.09 ( 0.000) 248.43 ( 0.000)
SVM -13.76 ( 1.000) - -13.76 ( 1.000) -12.42 ( 1.000) -7.60 ( 1.000) -9.15 ( 1.000) -16.95 ( 1.000) 197.52 ( 0.000) 119.38 ( 0.000)
OVO -Inf ( 1.000) 13.76 ( 0.000) - 4.06 ( 0.000) 8.10 ( 0.000) 3.23 ( 0.001) -7.83 ( 1.000) 406.09 ( 0.000) 248.43 ( 0.000)
OVA -4.06 ( 1.000) 12.42 ( 0.000) -4.06 ( 1.000) - 5.70 ( 0.000) 0.55 ( 0.293) -10.04 ( 1.000) 415.70 ( 0.000) 269.18 ( 0.000)
OPC -8.10 ( 1.000) 7.60 ( 0.000) -8.10 ( 1.000) -5.70 ( 1.000) - -3.36 ( 0.999) -14.45 ( 1.000) 444.29 ( 0.000) 290.36 ( 0.000)
OSVM -3.23 ( 0.999) 9.15 ( 0.000) -3.23 ( 0.999) -0.55 ( 0.707) 3.36 ( 0.001) - -7.18 ( 1.000) 327.30 ( 0.000) 186.43 ( 0.000)
CNB 7.83 ( 0.000) 16.95 ( 0.000) 7.83 ( 0.000) 10.04 ( 0.000) 14.45 ( 0.000) 7.18 ( 0.000) - 426.30 ( 0.000) 318.63 ( 0.000)
COVO -406.09 ( 1.000) -197.52 ( 1.000) -406.09 ( 1.000) -415.70 ( 1.000) -444.29 ( 1.000) -327.30 ( 1.000) -426.30 ( 1.000) - -183.65 ( 1.000)
POLR -248.43 ( 1.000) -119.38 ( 1.000) -248.43 ( 1.000) -269.18 ( 1.000) -290.36 ( 1.000) -186.43 ( 1.000) -318.63 ( 1.000) 183.65 ( 0.000) -

(b) Synthetic II
Table 3. The t-values of a one-sided paired t-test between the performance of each classifier and all other classifiers on the datasets (a) synthetic
I and (b) synthetic II. The corresponding p-values are shown between parentheses and those less than the significance level α = 0.05 are in
bold. When a p-value is in bold, the classifier listed in the row performs significantly better than the classifier listed in the column. See Table 4.5
of the Supplementary Material for the results of rint.

interesting results of this comparison when using the ovarian
dataset.

It seems that using a different evaluation measure to train
a classifier with regard to testing does not have a big effect.
The same experiment was applied to the other datasets giving
similar results. It seemed that for a lot of permutations, the
feature selection process often resulted in almost the same
set of features, independent of the evaluation measure used.
The feature selection process used in this study is simple and
using a different evaluation measure might have more effect
when using a more advanced feature selection process.

3.3 Monotonicity
Ordinal methods like OSVM and POLR require the feature
data to be correlated with the class labels, while for
others, like OPC, CNB and COVO, it could help to
improve performance. When features increase or decrease
monotonously, they include information of the ordinal
relation between the classes in comparison to features that
just show high variance between classes.

To determine the effect of using monotonous features, all
classifiers have been trained and evaluated using the two
different feature selection methods discussed in Section 2.2.

Acc
.

m
cd

r in
t

Acc. 39.43%± 2.13% 76.59%± 1.81% 82.33%± 1.18%
SVM mcd 39.29%± 1.81% 76.45%± 1.56% 82.23%± 1.06%

rint 39.27%± 1.82% 76.44%± 1.61% 82.22%± 1.09%
Acc. 38.85%± 2.36% 76.59%± 2.03% 82.35%± 1.42%

OSVM mcd 39.29%± 2.27% 76.51%± 1.89% 82.28%± 1.31%
rint 39.31%± 2.09% 76.72%± 1.82% 82.44%± 1.25%

Table 4. The mean ± standard deviation of both SVM and OSVM
trained on the ovarian dataset using different evaluation measures
(Balanced accuracy, mcd, rint). The measures used to train the
classifiers are listed in the rows, while the measures in the columns
were used for evaluation.

Figure 4 shows the results when using either the basic (red)
or monotonous (blue) feature selection method.

There seems to be a very slight improvement in
performance of the nominal classifiers when using
monotonous feature selection over that when using basic
feature selection. To confirm this difference, a one-sided
paired t-test was applied where the performance of the
monotonous results is matched with those of the basic results
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for each permutation. The t-values with the corresponding
p-values are shown in Table 5.

t (p)
Prostate Breast Ovarian

Ba
la

nc
ed

A
cc

ur
ac

y NB 0.740 (0.231) 1.629 (0.055) 0.777 (0.221)
SVM -2.721 (0.996) 1.588 (0.059) 2.239 (0.015)
OVO 1.550 (0.064) 0.701 (0.243) 2.964 (0.002)
OVA 0.662 (0.255) 0.897 (0.187) 2.712 (0.005)
OPC 1.398 (0.084) -0.162 (0.564) 3.037 (0.002)
OSVM 0.367 (0.358) 0.031 (0.488) 1.055 (0.148)
CNB -0.770 (0.777) 3.028 (0.002) 0.626 (0.267)
COVO 1.691 (0.049) 2.862 (0.003) 3.223 (0.001)

m
cd

NB 1.960 (0.028) 1.377 (0.087) 2.123 (0.019)
SVM 0.102 (0.459) 1.092 (0.140) 4.675 (0.000)
OVO 3.106 (0.002) 0.652 (0.259) 1.976 (0.027)
OVA 0.122 (0.452) 1.895 (0.032) 2.969 (0.002)
OPC 0.035 (0.486) -0.070 (0.528) -2.251 (0.986)
OSVM 0.045 (0.482) 0.096 (0.462) 1.461 (0.075)
CNB 1.291 (0.101) 2.745 (0.004) 1.145 (0.129)
COVO 2.835 (0.003) 3.068 (0.002) 2.835 (0.003)

r i
nt

NB 2.019 (0.025) 0.650 (0.259) 2.157 (0.018)
SVM -0.606 (0.726) 1.292 (0.101) 6.012 (0.000)
OVO 2.332 (0.012) 0.774 (0.221) 1.833 (0.036)
OVA -0.803 (0.787) 1.657 (0.052) 3.049 (0.002)
OPC -0.649 (0.740) -1.128 (0.868) 0.873 (0.193)
OSVM -0.890 (0.811) -0.188 (0.574) 1.631 (0.055)
CNB 1.439 (0.078) 1.748 (0.043) 1.035 (0.153)
COVO 2.104 (0.020) 2.974 (0.002) 4.773 (0.000)

Table 5. The t-values of a one-sided paired t-test between the
performance using the monotonous feature selection method and
that from the basic feature selection method. The corresponding
p-values are shown between parentheses and those less than the
significance level α = 0.05 are in bold. When a p-value is in bold, the
classifier for that dataset performs significantly better when using the
monotonous feature selection than when using the basic one.

With a significance level α = 0.05, selecting monotonous
features seems to be advantageous mostly in the ovarian
dataset. This can be accounted to the fact that the ovarian
dataset has 4 classes in comparison to only 3 in the other
datasets. In other words, the ordering is not so much present
and consequently does not have enough effect to influence the
performance in the case of the prostate and breast datasets.

Looking at just the ovarian dataset, all nominal classifiers
perform significantly better based on the ordinal measures
mcd and rint when using monotonous feature selection.
The ordinal methods on the other hand, do not seem to
have this improvement, with the exception of COVO. By
selecting strong monotonous features, the nominal classifiers
automatically adopt the ordinal relation from the feature
space. When not specifically selecting monotonous features,
the ordinal classification methods are however able to enforce
the ordinal relations between classes. As a result the ordinal
classification methods show less improvement than the
nominal ones from using monotonous features.
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Figure 5: Difference in confusion matrix for COVO
evaluated on the prostate dataset. For each permutation the
confusion matrix from the results using basic feature selection
was subtracted element-wise from the confusion matrix when
using monotonous feature selection. With n permutations,
this results in n matrices that represent the difference in the
confusion of samples between both types of feature selection
methods. Each element in the colored matrix in this figure
shows the mean ± standard deviation of that element over
the n permutations. An element i, j with a positive mean
(blue) would indicate that samples of class i are more often
predicted as class j when using monotonous feature selection,
than with basic feature selection. See Figure 4.2 of the
Supplementary Material for the average confusion matrices
of the prediction results for both basic as monotonous feature
selection.

As a positive side effect, the nominal classifiers SVM, OVO
and OVA also seem to perform significantly better when
looking at the balanced accuracy. This could be a result of
those classifiers, being able to discriminate better between the
classes when using the selected monotonous features. There
is not enough supporting evidence, indicating that this a
structural improvement from using monotonous features.

In all three datasets and for all evaluation measures, COVO
performs significantly better when using monotonous feature
selection than when using basic feature selection. Confusion
matrices of the prediction results were inspected to determine
the cause of the better performance. See Figure 5 for a
matrix that shows the difference in confusion between both
types of feature selection methods. From this figure it can be
concluded that for class Gleason 5, it does not matter whether
monotonous features were selected or not. The samples from
the other two classes are influenced by the feature selection
method, where more samples are pushed to class Gleason 4
when using monotonous features. This means more samples
from class 4 are classified as 4 and less samples from class
3 are classified as 5, resulting in an increase in the balanced
accuracy, mcd and rint.

In Figure 4.1 of the Supplementary Material the differences
in confusion matrices is displayed as well but for all real
datasets.
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3.4 Learning Curves
The number of available training samples can have a large
influence on the performance of a classifier. To measure
this influence, learning curves [27] can be used, which plot
the evaluation measure (for example accuracy) against the
number of training samples. In other words, a classifier is
trained using an increasing number of samples and evaluated
against the same test set. The resulting plot can give some
indication of the minimum amount of training samples
needed to reach a certain result.

There are some drawbacks to this approach as it originates
from a research area where the number of samples are
abundant and the number of classes are typically limited to
one or two. In the problems discussed here, the number of
samples is limited, so after splitting the data set into both
a training and test set there are not many samples left to
generate the learning curve. In addition there are multiple
classes, which leads to the question on how to increase the
number of samples as the results can be biased by the class
of the sample picked. Consequently the learning curves were
only generated for the synthetic datasets as the number of
samples are not limited. The number of training samples
used, is increased each time by picking an additional sample
from each class.

Additional samples were generated for the synthetic
datasets from Figure 3 totaling up to 10.000 samples in
each class. A learning curve was created using 90% of the
samples for training while using the remainder for validation
purposes. This process was permuted 100 times and the
resulting curves were averaged to obtain the final curves.
Three learning curves of the Synthetic II dataset are displayed
in Figure 6 and the remaining curves can be found in the
Supplementary Material in Figures 4.3-4.4.

The curve of OSVM starts before the others which can be
accounted to the fact that it replicates the samples and thus
has more samples to work with from the beginning. As seen
in the comparative study COVO does not perform well on
the Synthetic II dataset, where it has a very low balanced
accuracy rate while having both ordinal evaluation measures
more up to par with the other classifiers.

The ordinal methods OSVM and OPC have a less steepmcd
learning curve and seem to require fewer samples than the
other classifiers.

The classifiers do not improve a lot once above 20 samples
per class. Each curve still improves slowly, but it is apparent
that the limits of the dataset has been reached.

4 DISCUSSION
When using ordinal classification on real datasets, there are
several issues to keep in mind. Depending of the type of
tumor, a specific staging or grading system is used to assign
one of the classes along the ordinal scale. Most of these
systems require specialists to determine the label of each
sample, but only after the patient is deceased the true label
can be determined. This may lead to a rather subjective
labeling of the dataset which can drastically influence the use
of such data.
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(b) Synthetic II (Balanced Accuracy)
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Figure 6: Synthetic II Learning Curves.The learning curves
of the classifiers trained on Synthetic II dataset using (a)
balanced accuracy, (b) cost-based distance measure and (c)
rint.

In addition, some systems like Elston grading (breast) only
have three classes, which minimizes the possible benefits
ordinal classification might have. Other systems like the
Gleason score (prostate) have more classes, but only have a
limited amount of samples of the lowest and highest class
and for some classes even none. This can be accounted to the
time of diagnosis, as the patient often already is past the first
few stages or deceased before the final stage of the tumor.
As a result, datasets can have fewer usable classes than the
grading or staging system would allow as some classes have
to be merged or omitted.
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The balanced accuracy scores of the classifiers are a lot
better on the breast dataset in comparison to the other real
datasets, which seems to indicate that the classes are easier
to separate. Taking the averaged confusion matrix of NB
as an example (see Figure 7a); it seems that most samples
can be found either on or right next to the diagonal of the
confusion matrix, suggesting it is only difficult to separate
each class from its neighboring classes. Consequently, the
improvement an ordinal classifier could offer will be limited,
as the predicted labels of most samples are next to their true
label.

The ovarian dataset consists of classes 1 to 4 which
have 35, 11, 44, 9 samples respectively. Classes 2 and 4 are
underrepresented in comparison to the other classes. Most
of the classifiers are not very good at dealing with such
imbalance as can be seen for OSVM in Figure 7b. Because
of the imbalance, the classifier prefers classes 1 and 3 over
the other two most of the times, explaining the two white
columns. OSVM was however able to force most of the
samples close to the true class and thus still achieves a
performance comparable to the other classifiers. OPC seems
to be the least affected by the class imbalance, although it is
still noticeable as can be seen in Figure 7c.

Another issue comes into play, as a result of the selected
parameters used for the evaluation protocol. The data has
to be split up two times; first into 3 folds in the outer loop
and then into 10 folds in the inner loop. In other words
during the feature selection process in the evaluation protocol
only 60% of the available samples can be used for training.
When dealing with datasets such as the ones included in this
study, it might be better to use fewer folds in the inner cross-
validation loop instead of the 10-folds used in this study.
Leave-one-out cross-validation would be an option, as it
would ensure more samples for training but at the cost of
more variance in the results.

POLR has been successfully applied to ordinal classification
in other fields of research. It is however used in a setting
where samples are abundant and only a few variables come
into play (and usually those variables are on a ordinal
scale such as ratings given in a questionnaire). In molecular
analysis however, POLR cannot always be applied directly,
as there are typically not enough samples to base the model
on.

5 CONCLUSION
At first sight, the results of this comparison study do not
show much difference in performance between the studied
classification methods. Using two synthetic datasets, it was
possible to show the advantage of using an ordinal classifier.
This advantage however, is rather limited for real datasets,
which typically only have a small number of samples and
classes. The limited number of samples is a common problem
in molecular classification, as it makes it more difficult
to separate the classes with the huge amount of features
available. Over the years more effort is put into creating
larger datasets, which would help minimize this limitation.
The limited number of classes is on the other hand a more
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(a) NB evaluated on the breast dataset using monotonous feature selection
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(c) OPC evaluated on the ovarian dataset using monotonous
feature selection

Figure 7: Averaged confusion matrices. The displayed
confusion matrices are averaged over all permutations. The
element i, j shows the average percentage of samples from
class i that were predicted as class j, and the number between
parentheses is the average number of samples.

fundamental problem. For example, when using a staging or
grading systems for cancers, there are effectively only three
to five classes available. Ideally, there should be ten or more
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classes, before the benefits of ordinal classification can be fully
used.

From this study it can be concluded that a more simple
approach is sufficient in comparison to a more experimental
method specifically geared towards ordinal classification. By
selecting features that correlate with the class labels, it was
possible to improve the performance based on the ordinal
evaluation measure. This would allow one to use a well
known classifier such as the Naı̈ve Bayes classifier and still
perform well based on all evaluation measures. A rather
simple feature selection procedure was used in this study,
but future work could help in improving the selection of
monotonous features.

CONTRIBUTION
In this paper a comparison study is presented, which
benchmarks current ordinal classification methods in a
molecular analysis setting. In general, previous work on
this topic only studied ordinal classification methods on
non-biological or synthetic datasets which do not correctly
represent the kind of data found in molecular analysis.

These studies typically focus on the true and false positives
and do not use a criterion with regards to the way samples
were misclassified. For this purpose the cost-based distance
measure was introduced, which helps to better identify the
advantage of using ordinal classification.

The effect of selecting certain types of features in the
context of ordinal classification is typically ignored. Using
the cost-based distance measure, the potential benefit of using
monotonous features was investigated. Based on experiments
in this study, there does seem to be a benefit in selecting such
features for both ordinal and nominal classifiers.
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1.1. Severity of Cancers

Chapter 1

Background Information

1.1 Severity of Cancers

When looking at the severity of cancers doctors look at two different aspects: its current spread
and growth. The spread is specified by the stage of a cancer and indicates whether the cancer is
confined to its organ of origin or has already spread to other organs. The growth is specified by
the grade of a cancer and indicates how the likelihood of the cancer growing.

1.1.1 Staging Systems

Tumor, Node, Metastasis (TNM)

The TNM system uses three different criteria to help determine the severity of the cancer. For
each criterion a score is assigned and when combined they describe the state of the cancer, see
Table 1.1 for a brief description.

Score Description
The degree of invasion of the intestinal wall
T0 No evidence of tumor
Tis Cancer in situ (tumor present, but no invasion)
T1-T4 Tumor size and the extent of spread.
The degree of lymphatic node involvement
N0 No regional lymph nodes involved
N1-N4 The extent to which lymph nodes are involved.
The degree of metastasis
M0 Metastasis absent
M1 Metastasis present

Table 1.1: Tumor, Node, Metastasis (TNM) system which can be applied to any type of cancer,
although scores T1-T4 and N1-N4 depend on the type.

Ordinal Multi-Class Molecular Classification - Supplementary Material 2



1.1. Severity of Cancers

TNM Grouping

The American Joint Committee for Cancer Classification commonly groups the scores from the
TNM system [1] into several stages (0-IV). See Table 1.2 for an overview of how the different
scores are grouped together.

Stage TNM equivalent
0 Tis, N0, M0
I T1-T2, N0, M0
IIA T3, N0, M0
IIB T4, N0, M0
IIIA T1-T2, N1, M0
IIIB T3-T4, N1, M0
IIIC Any T, N2, M0
IV Any T, Any N, M1

Table 1.2: Grouping of the different TNM scores.

Dukes

Dukes’ system [2] originally consisted of only three stages (A,B,C), but over the years several
adaptations have been suggested. Turnbull et al.[3] adds a fourth stage so distant metastasis could
be included (A,B,C,D), while Astler-Coller [4] separates both stage B and C into three different
stages (A,B1-B3,C1-C3,D). The system for the colorectal dataset in this study uses the four stage
system by Turnbull et al., see Table 1.3 for a brief description of the different stages.

Stage Description TNM equivalent
A Tumor confined to the intestinal wall Tis-T2, N0, M0
B Tumor invading through the intestinal wall T3, N0, M0
C Tumor has spread outside the colon to one or

more lymph nodes
T1-T4,N1,M0

D Tumor with distant metastasis Any T, Any N, M1

Table 1.3: Dukes’ system.

1.1.2 Grading Systems

Grading is usually done by a pathologist who looks at the histological features of a tumor sample
taken from a biopsy. The histological features include for example the degree of differentiation
(i.e. how closely do the cancer cell look like the original ones), but also the size, shape and number
of nuclei in the cancer cells. These features are highly dependent on the type of cancer so specific
systems are needed for each type.

Gleason

The Gleason score [5] was developed to determine the grade of prostate cancer. The original sys-
tem assigns a score between 1 and 5 based on the architectural patterns in the tissue sample, see

3 O.P.Pfeiffer.



1.2. Elston

Table 1.4 for a brief description. Later on it appeared that the prostate cancer typically shows sev-
eral patterns so now it is more common to assign the Gleason score to the primary and secondary
pattern (i.e. the most common and second most common pattern seen in the tissue sample) and
sum these values. As a result the combined Gleason score will range between 2 and 10.

Score Description
1 Cells in tissue resemble original cells and the glands are still

small and closely packed
2 Tissue still has well-formed glands although there is more space

between them
3 Tissue still has recognizable glands and some cells have started

invading surrounding tissue
4 Some glands in tissue are still recognizable and many cells are

invading surrounding tissue
5 Glands in tissue are not recognizable

Table 1.4: Gleason’s score.

1.2 Elston

The Elston system [6] is used to assess the histological grade of breast cancer. It uses three different
parameters to obtain a final grade of either I,II or III. A short description of each of the parameters
is given in Table 1.5. A pathologist assigns each property either 1, 2 or 3 points, which are then
summed. A total of 3− 5 points results in an Elston grade of I, 6− 7 points a grade of II and 8− 9
points a grade of III.

Parameter Description
Tubules Indicates how bad the tissue looks, by determining the cellular

organization.
Nuclear Variation Indicates how bad the cells look, by describing the state of the

cells based on cytological properties.
Mitotic Activity Describes the growth rate, by looking at the number of mitotic

cells.

Table 1.5: The three different parameters used for the Elston grade.
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2. Datasets

Chapter 2

Datasets

2.1 Prostate (True et al.)

The dataset used by True et al. [7] was created using cDNA microarrays which compared tumor
samples with normal samples. For each spot in each channel, the median background intensity
was subtracted from the median foreground intensity. Afterwards the background-subtracted
intensities of both channels were divided and log2 taken. Spots were removed when the median
background intensity was greater than the median foreground intensity. Printtip-specific lowess
curve [8] was used to normalize the log-ratio data over the different microarrays. The data set
consist of 31 samples with 15488 features in total of which only 9491 features are present in all
microarrays slides. The class labels can be summarized as:

Gleason’s Grade # samples
3 11
4 12
5 8

Total 31

URL: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5132

2.2 Breast (Miller et al.)

This dataset of breast tumors were created using two Affymetrix GeneChips (U133A/U133B) [9].
The data of both chips were normalized using the global mean method MAS5. The resulting
values were ln transformed and scaled around the mean value of log(500). There are 253 samples
with an Elston grade label and there are 44792 features. The class labels of the tumor samples can
be summarized as:

Elston’s Grade # samples
I 68
II 128
III 55

Total 249

URL: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4922
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2.3 Ovarian (Hendrix et al.)

This dataset was published by Hendrix et al. [10] and constructed using oligonucleotide microar-
rays. A quantile normalization procedure was performed to adjust for differences in the probe
intensity distribution across different chips and finally the data was transformed by taking log2.
The total dataset consists of 103 samples of which 99 are tumor samples and the other are nor-
mal. Of all available oligonucleotides the expression levels of 22283 genes are available. The class
labels of the 99 tumor samples can be summarized as:

TNM Stage # samples Stage Group # samples Grade # Samples
1 5 I 35 1 25

1A 15 II 11 2 26
1C 15 III 44 2 or 3 5
2 1 IV 9 3 43

2A 4 Total 99 Total 99
2B 1
2C 5
3 8

3B 1
3C 34
3D 1
4 9

Total 99

URL: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6008

2.4 Synthetic I & II

Both datasets consist of 500 samples in each class, totaling up to 2500 samples for the 5 classes
generated. In the case of learning curves the number of samples per class was 10000. The samples
are distributed normallyN (µ, σ2); the means and standard deviations for each class can be found
in the following list:

Class Synthetic I Synthetic II
µf1 µf2 σ µf1 µf2 σ

1 5 5 1.5 2 5 0.5
2 6 6 1.5 2.5 4 0.5
3 7 7 1.5 3 5.5 0.5
4 8 8 1.5 3.5 4 0.5
5 5 5 1.5 4 5 0.5

Figure 2.1 shows the visual representation of the classes for both datasets. As there are only
two features, no feature selection is required.
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Figure 2.1: The datasets (a) Synthetic I and (b) Synthetic II. In each dataset the 5 classes have the
same standard deviation: σ = 1.5 and σ = 0.5 for Synthetic I and Synthetic II respectively.
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3.1. Nominal Classification Methods

Chapter 3

Methods

3.1 Nominal Classification Methods

3.1.1 Naı̈ve Bayes

The Naı̈ve Bayes classifier uses a decision rule based on the Bayes’ theorem with the additional as-
sumption that all features are class-conditionally independent of each other. It is a simple method
which works surprisingly well considering the strong assumptions on the independence. Because
of this independence assumption only the samples of class k are needed to train the kth model
(instead of using the whole training set), making the computation faster.

Using the Bayes’ theorem the conditional probability ωk given a set of p features v1, v2, ...vp
can be written as shown in Equation 3.1.

P (ωk|v1, v2, ..., vp) =
P (ωk)P (v1, v2, ..., vp|ωk)

P (v1, v2, ..., vp)
for k = 1, ...K (3.1)

The probability P (v1, v2, ..., vp) is independent on the class labels and will be constant for each
class label ωk. As a result, it can be disregarded as only the numerator is important. The con-
ditional probability P (v1, v2, ..., vp|ωk) is more difficult to estimate, but using the independence
assumption it can be rewritten as in Equation 3.2:

P (v1, v2, ..., vp|ωk) =
p∏
i=1

P (vi|ωk) (3.2)

By substituting the previous equation into Equation 3.1, the decision rule in Equation 3.3 can
be obtained:

C(x) = arg max
k

P (ωk|v1, v2, ..., vp) = arg max
k

P (ωk)
p∏
i=1

P (vi|ωk) (3.3)

The probability P (ωk) and conditional probabilities P (vi|ωk) can be estimated by computing
the relative frequency of each class from the training set.

3.1.2 Support Vector Machine

Support vector machines (SVM) [11] try to fit a hyperplane, defined bywTx+b = 0, that optimally
separates between classes. This is done by maximizing the distance between the hyperplane and
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3.1. Nominal Classification Methods

the support vectors of each class, where the support vectors are the samples that lie on the edge of
the class distributions. By maximizing these distances, the support vector machine are expected
to generalize better and thus should be able to more accurately classify any new unseen samples.
Only the support vectors are needed, so constructing a support vector machine does not require
the usage of all data samples to train an accurate classifier.

The support vector machines were originally developed for binary classification problems,
which can be written as an optimization problem which needs to be maximized [12](written in
quadratic form using Lagrange multipliers):

L(α) =
n∑
i=1

αi −
1
2

n∑
i,j=1

yiyjαiαjK(xi, xj) (3.4)

subject to
n∑
i=1

αiyi = 0

αi ≥ 0 (i = 1, ..., n)

Here K(xi, xj) is a kernel function (for example linear, polynomial or Guassian) which is used
to transform the data into a higher dimensional space (allowing the hyperplane to be fit between
more complex class boundaries). α is the variable being optimized which is used to fit the hyper-
plane. The classification rule can then be defined as:

C(x) =

{
ω1 if f(x) > 0
ω2 if f(x) < 0

(3.5)

where f(x) = (
n∑
i=1

αiyiK(x, xi)) + b (3.6)

If f(x) is equal to 0, then the class label is undefined and either class label can be assigned to
the unknown sample arbitrarily.

The original SVM can also be generalized to multi-class classification problems. One way
of generalizing involves creating a hyperplane for each class [12]. It is similar to the one-vs-all
method discussed in Section 3.1.4 in the sense that there are K decision functions, but the opti-
mization problem is adjusted to consider all decision functions at once. The SVM formulation in
Equation 3.4 can be re-derived as the following optimization problem which needs to be mini-
mized:

∑
i,j

[
1
2
cyi

j AiAj −
K∑
k=1

αki α
yi

j +
1
2

K∑
k=1

αki α
k
j

]
K(xi, xj)− 2

∑
i,k

αki (3.7)

subject to
n∑
i=1

αki =
n∑
i=1

ckiAi

0 ≤ αmi ≤ C
αyi

i = 0
k = 1, ...,K
m ∈ 1, ..., k\yi
i = 1, ..., n
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3.1. Nominal Classification Methods

Here cyi

j is 1 if yi = yj and 0 otherwise. The minimization in Equation 3.7 will result in the
optimal α which can be used to determine w of each hyperplane wTx+ bk. When classifying, the
hyperplane that is furthest away from the sample determines the class label:

C(x) = arg max
k

(
n∑
i=1

(ckiAi − αki )K(xi, x) + bk) (3.8)

A disadvantage of SVMs is the fact they do not output posterior probabilities, but only return
class labels instead. The posterior probabilities are needed for several purposes such as deter-
mining the confidence in the predicted class or combining several SVMs. There are a number of
possible ways to calculate the posterior probabilities and one way in doing that is calculating the
distance from the sample to the hyperplane [13]. The further a sample if from the hyperplane, the
more confident a classifier is in whether the sample belongs to a certain assigned class.

3.1.3 One-vs-One

This approach, also known as all-vs-all or pairwise, constructs binary classifiers for each pair of
classes. So in case there are K classes, then there are

(
K
2

)
= K(K−1)

2 classifiers needed. To classify
an unknown sample, the output of all classifiers need to be combined and one way to do that is by
voting. The most typical example of such method is majority voting, where the predicted classes
from each classifier are counted. The class that is most represented, is the winner:

C(x) = arg max
k

∑
i6=k

I
(
Pki(λ = k|x) ≥ 0.5

)
(3.9)

Here Pki is the posterior probability output of the classifier that was trained to classify class k
against class i. I(b) is 1 if b is true, and 0 otherwise.

The one-against-one approach can require some computation when the number of classes is
high, as the number of classifiers needed is K(K−1)

2 . However it has the advantage that on average
fewer samples are required to train each classifier. So depending on which type of classifier is
used, the increase in computation is compensated by the time that is needed to train each classifier.

Another type of voting is the winner-takes-all[14], also known as max-wins voting. In this
case the posterior probabilities need to available, as the class with the highest probability from
any classifier is the winner. This approach can result in bias towards specific classes when some
classifiers are over-confident compared to the others. The corresponding classification rule is:

C(x) = arg max
k

∑
i 6=k

I
(

pk
pk + pi

>
pi

pk + pi

)
(3.10)

Where pi is the class posterior probabilities P (λ = i|x) (pk is the same probability but then for
class k). I(b) is 1 if b is true, and 0 otherwise.

3.1.4 One-vs-All

In this approach, also known as one-vs-rest, K classifiers are constructed for each of the available
classes. For the training of the ith classifier, the samples that belong to class i are used as positives
and while all other samples are used as negatives. Each classifier outputs the posterior proba-
bility of its class being the correct one. The classifier that is most confident in its prediction will
determine the label assigned to the unknown sample:
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C(x) = arg max
k

Pk(λ = k|x) (3.11)

Where Pk is the posterior probability output of the classifier that was trained to classify class k.
One disadvantage of this setup strategy is the high imbalance in the class sizes when training a
classifier[15]. Although it is a rather simple approach, it seems to perform just as well as more
advanced multi-class classifiers, making it a good alternative[16, 17].

3.2 Ordinal Classification Methods

3.2.1 Ordered Pseudo-Classification

In an article by Frank et al. [18] a method is proposed which tries to enforce the ordering by
constructing the binary classifiers in a specific way. As a result this approach can be applied
independent of the binary classifiers being used. K− 1 binary classifiers are created which return
the conditional probability P (ωT > ωi|X) where i = 1, ...,K − 1 and ωT is the true class of the
unknown sample i. In other words classifier i determines the chance that the class of the unknown
sample is higher than the class ωi given X . In the case of four classes the following three binary
classifiers will be constructed:

{ω1} vs {ω2, ω3, ω4}
{ω1, ω2} vs {ω3, ω4}
{ω1, ω2, ω3} vs {ω4}

The corresponding probabilities for each class can then be calculated as indicated in Equation
3.12.

P (ωk) = P (ωT > ωk−1|X)− P (ωT > ωk|X) for k = 1, ...,K (3.12)

Here P (ωT > ω0|X) = 1 and P (ωT > ωK |X) = 0 as y ∈ {ω1, ω2, ..., ωK}. To determine the
remaining conditional probabilities P (ωT > ω0|X) the Bayes’ rule will be applied to Equation
3.12 which leads to the equation shown in Equation 3.13.

P (ωk) = P (ωT > ωk−1|X)− P (ωT > ωk|X)

=
P (ωT > ωk−1)P (X|ωT > ωk−1)

P (X)
− P (ωT > ωk)P (X|ωT > ωk)

P (X)

=
P (ωT > ωk−1)P (X|ωT > ωk−1)− P (ωT > ωk)P (X|ωT > ωk)

P (X)

(3.13)

Here k = 1, ...,K, while the prior probability and the likelihood should be estimated. The prior
can be estimated using P (ωY > ωk) = nk

n , where nk is the number of samples belonging to
class ωk and n is the total number of samples. The likelihood will be estimated by assuming
a Gaussian distribution for each feature per each possible value of Y , which will result in pK
different Gaussian distributions. The evidence P (X) is the same for all P (ωk) as it does not
depend on the ωk, as a result Equation 3.13 can be simplified to the naı̈ve Bayes approach where:

arg max
k
P (ωk) =

arg max
k
P (ωT > ωk−1)P (X|ωT > ωk−1)− P (ωT > ωk)P (X|ωT > ωk)

(3.14)
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Modified Probability

Equation 3.12 assumes that the conditional probabilities are ordered (i.e. P (ωT > ω1|X) ≤ P (ωT >
ω2|X) ≤ ... ≤ P (ωT > ωK |X)). Another approach would be to assume that P (ωk) = P (ωT >
ωk−1 ∩ ωT <= ωk|X). In that case the class probabilities can be obtained by determining the
intersection of two binary classifiers:

P (ωk) = P (ωT > ωk−1 ∩ ωT ≤ ωk|X)
= P (ωT > ωk−1|X)P (ωT ≤ ωk|X) for k = 1, ...,K
= P (ωT > ωk−1|X)(1− P (ωT > ωk|X))

(3.15)

Where P (ωT > ω0|X) = 1 and P (ωT > ωK |X) = 0 as y ∈ {ω1, ω2, ..., ωK} still hold. In this case
there’s an independence assumption which might not be very accurate in an ordinal setting.

3.2.2 Ordered-SVM

An article by Cardoso et al. [19] discusses a method in which the data is replicated so that the
original multi-class problem can be solved as a binary problem. The advantage is that the well-
developed binary SVM’s can be used for multi-class classification problems.

The idea is based on the regular multi-class SVM methods in which K − 1 hyperplanes are
constructed. These hyperplanes can be seen as K − 1 hyperplanes, but by replicating the samples
this algorithm tries to solve this problem in one go. This is done by adding K − 2 dimensions to
the feature space, so that the ordinal relation can be included into the problem. Figure 3.1 visually
gives an example in the case of K = 3.

The data is replicated using Equation 3.16. Instead of creatingK−1 hyperplanes, this equation
replicates the data K − 1 times while adding the additional K − 2 dimensions.

[
x
ωj

i

eq−1

]
∈

{
ω̄1 j = max(1, q − s+ 1), ..., q
ω̄2 j = q + 1, ...,min(K, q + s)

for q = 1, ...,K − 1 (3.16)

Here xωj

i are the samples that belong to class ωj . e0 is a sequence of K − 2 zeros, while eq−1 is a
sequence of K − 2 symbols 0, ..., 0, h, 0, ..., 0 with h in the position q− 1. The parameter s specifies
the number of classes on both ways of the boundary that should be taken included (see Figure
3.2). The h parameter is used as a trade-off between the objectives of maximizing the margin of
separation and minimizing the distance between the hyperplanes. It’s not really clear whether
the h parameter really has the stated effect, as it should not influence the results when all data is
scaled with the same h.

Using K = 4 and s = 2 as an example, the data is replicated as shown in Equation 3.17.
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-1 0 2 31

1.5

1

0.5

0

-0.5

ω1 ω2 ω2 ω3

(a)

-1 0 2 31

1.5

1

0.5

0

-0.5

ωpos ωneg ωneg ωneg

ωpos ωpos ωpos ωneg

(b)

-1 0 2 31

1.5

1

0.5

0

-0.5

ωpos ωneg ωneg ωneg

ωpos ωpos ωpos ωneg

A B C

(c)

Figure 3.1: (a) 1 dimensional example with the original data for K = 3 in (a). The replicated
data is shown as a binary problem in (b). In (c) the resulting solution to the original multi-class
problem is shown. The dashed lines represent the class boundaries, where area A,B,C result in
classes ω1, ω2, ω3 respectively.

{ω1} {ω2,ω3}

{ω1,ω2} {ω3,ω4}

{ω2,ω3} {ω4}

ω1 ω2                                    ω3                                 ω4

Figure 3.2: This figure shows how the original four classes can be divided using three different
hyperplanes. The parameter s is used specify the number of classes on each side of the boundary.
If s = K − 1 then all classes will be taken into account for each hyperplane. In the case of the
example used in this figure K = 4 and s = 2.
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q = 1 :

ω̄1 :

xω1
i

0
0


ω̄2 :

xω2
i

0
0

xω3
i

0
0



q = 2 :

ω̄1 :

xω1
i

h
0

xω2
i

h
0


ω̄2 :

xω3
i

h
0

xω4
i

h
0



q = 3

ω̄1 :

xω2
i

0
h

xω3
i

0
h


ω̄2 :

xω4
i

0
h



(3.17)

These samples can be combined to create the binary problem with the classes ω̄1 and ω̄2:

ω̄1 :

xω1
i

0
0

xω1
i

h
0

xω2
i

h
0

xω2
i

0
h

xω3
i

0
h


ω̄2 :

xω2
i

0
0

xω3
i

0
0

xω3
i

h
0

xω4
i

h
0

xω4
i

0
h

 (3.18)

Using the replicated data, the original multi-class problem can be solved using equation 3.19:

min
w,bi,ξi

1
2
w′w +

1
h2

K−1∑
i=2

(bi − b1)2

2
+ C

K−1∑
q=1

min(K,q+s)∑
j=max(1,q−s+1

nj∑
i=1

ξ
(j)
i,q (3.19)

s.t.

−(w′x(j)
i + b1) ≥ 1− ξ(j)i,1 j = 1

(w′x(j)
i + b1) ≥ 1− ξ(j)i,1 j = 2, ...,min(k, 1 + s)

...

−(w′x(j)
i + bq) ≥ 1− ξ(j)i,q j = max(1, q − s+ 1), ..., q

(w′x(j)
i + bq) ≥ 1− ξ(j)i,q j = q + 1, ...,min(k, q + s)

...

−(w′x(j)
i + bK−1) ≥ 1− ξ(j)i,K−1 j = max(1,K − s), ...,K − 1

(w′x(j)
i + bK−1) ≥ 1− ξ(j)i,K−1 j = K

ξ
(j)
i,q ≥ 0

(3.20)
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The boundary of the binary problem can then be mapped to the original space into K − 1
boundaries:

bi =

{
b if i = 1
hwp+i−1 + b if i > 1

(3.21)

Once the data has been replicated it can be used to train regular binary SVM. If an unknown
sample needs to be classified, then that sample will be replicated as well (similarly as done in
Equation 3.16). Each replica is then classified using the trained binary classifier, resulting in K−1
predictions ∈ {ω̄1, ω̄2}. It can be assumed that when the classes are truly ordered, the boundaries
are ordered as well: 0 ≥ hwp+1 ≥ hwp+2 ≥ ... ≥ hwp+K−2. That means that the final prediction is
equal to the number of replicas classified as ω̄2 + 1.

One thing to consider with this method is that the used features should correlate with the
increase of classes on the ordinal scale as much as possible. If not, the boundaries might not be
ordered as assumed and could result in poor performance. A non-linear SVM might also help to
make the classifier more robust.

3.2.3 Cost-based Methods

A different approach from developing a native ordinal classifier, is one which tries to use (mis)
classification costs to include the ordinal relations when using nominal classifiers. The advantage
of this approach that any well-developed classifier that returns posteriors can be used, although
having to select the correct costs for each (mis) classification requires an additional configuration
step as the optimal costs differ from one problem to another.

To create a cost-based version of classifier, a cost-matrix needs to be defined which will be
used to assign costs to a misclassification based on distance between the predicted classes and
the true class. In other words the bigger the distance, the higher the costs should be. The matrix
below on the left side is the definition of a linear K×K-cost-matrix being used and the one on the
right is an example of such matrix for K = 4. 0 · · · k − 1

...
. . .

...
k − 1 · · · 0




0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0

 (3.22)

Using the constructed cost-matrix M the risk of choosing class i can be determined using the
following equation [20]:

Rj(x) =
K∑
i=1

mijP (ωi|x) (3.23)

Here mij is the corresponding entry in the cost-matrix M . To classify a new sample the risk Rj
is calculated for each class j and the one with the lowest risk is the winner. In other words by
selecting the class with the lowest risk, the costs of misclassifying that sample is minimized. The
way of constructing the cost matrix can be done several ways, but the matrix proposed in the
original article was defined as shown in Equation 3.22.

3.2.4 Proportional Odds Logistic Regression

Regression methods return a response ŷ on a continuous interval, where in the case of binary
classification ŷ is split into two discrete outputs using a specified threshold. This can be extended
to the multi-class case by adding additional thresholds as indicated in Equation 3.24.
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Figure 3.3: This figure illustrates a model trained for an example where K = 4. The β-coefficients
are the same for each logit curve, although they have been shift to right by their α-threshold.

yi → ωk if αk−1 ≤ ŷi < αk for k = 1, ...,K (3.24)

Here yi is the class label of sample i and α0, ..., αK are the thresholds separating the response ŷ
into K different classes. The two classes at both ends of the ordinal scale are defined by open-
ended intervals where α0 = −∞ and αK =∞.

The model is known as the proportional odds logistic regression model [21], because the ratio
of the odds of the event yi ≤ ωk for any pair of sets of explanatory variables is independent of
the choice of values for y. The model formulates the cumulative probabilities P (yi ≤ ωk|xi) as a
latent variable ŷ as summarized in Equation 3.25.

logit(ŷ) = logit(P (yi ≤ ωk|xi)) = log
P (yi ≤ ωk|xi)

1− P (yi ≤ ωk|xi)
= αk + xiβ (3.25)

Each logit(P (yi ≤ ωk|xi)) has its own threshold αk but shares the same coefficients β. Both
the thresholds α1, ..., αk and coefficients β can be estimated by using for example maximum
likelihood estimation or a more numerical approach like Newton’s method. In this study the
Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method [22] is used for parameters estimation.

Once the parameters for the regression model have been estimated, the cumulative probabil-
ities of an unknown sample xi can then be calculated using Equation 3.26. See Figure 3.3 for an
example where the cumulative probabilities are plotted.

ŷ = P (yi ≤ ωk|xi) =
1

1 + e−(αk−xiβ)
for k = 1, ...,K (3.26)

These cumulative probabilities can be used to determine the probabilities of each class (see
Equation 3.27).

P (yi = ωk|xi) = P (yi ≤ ωk|xi)− P (yi ≤ ωk−1|xi) for k = 1, ...,K (3.27)

The class with the highest probability will be assigned to the unknown sample. The advantage
of the proportional odds model is that the classes are separated without having to specify the
thresholds a priori, but it requires the classes to be ordered in the feature space.
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3.3 Feature Selection Methods

3.3.1 Analysis of Variance (ANOVA)

The one-way analysis of variance (ANOVA) [23, 24] can be used to test the equality of two or
more classes. It is based on a couple of assumptions; the classes are a normally distributed, the
variances of the class are equal and the samples are independent.

ANOVA tries to estimate the variance between the different classes and the variance within
each class. The ratio of both variances has an F -distribution and can be used to determine how
similar the different classes are.

The sum of squares between groups (SSb) and within groups (SSw) are used to describe the
variance between the different classes and the variance within each class respectively. The defini-
tion of both sums of squares is given in Equation 3.28

Let the weighted average of the sample means be , then the sums of squares can be defined as:

SSb =
K∑
i=1

ni(x̄i − X̄)2

SSw =
K∑
i=1

(n−K)σ2
i

(3.28)

where

X̄ =
∑K
i=1 nix̄i∑
ni

(3.29)

Here ni is the number of samples in class i, while x̄i and σi are respectively the sample mean
and standard deviation of that class. The ratio between both variances is referred to as the F -
statistic and can be determined using the definition listed in Equation 3.30:

F =
n−K
K − 1

SSb
SSw

(3.30)

The larger the F -statistic is, the more separated the classes are. Once the F -statistic has been
determined, the corresponding p-value can be obtained from the F -distribution. If the p-value is
less than the significance level α, then the classes are separated from each other significantly.

3.3.2 Pearson’s Correlation Coefficient

The Pearson’s correlation coefficient [25], also referred to as Pearson product-moment correlation
coefficient, is used to measure the linear correlation between two variables. The coefficient ranges
from−1 to 1, where−1 would indicates that the variables are negatively correlated, while 1 would
indicate a positive correlation. A value of 0 on the other hand would mean that there’s no relation
between both variables.

The Pearson’s correlation coefficient can be defined as follows:

ρ(X,Y ) =
∑n
i=1(Xi − X̄)(Yi − Ȳ )

nσXσY
(3.31)

Where X̄ and σX are the mean and standard deviation of the variable X respectively. The same
definitions are used for Ȳ and σY but the variable Y . Using a feature as one variable and the
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class labels as the other, the Pearson’s correlation can be used to determine which features are
monotonous or not. The higher the absolute value of the coefficient is for a certain feature, the
more correlated it is.

3.4 Evaluation Methods

3.4.1 rint rank coefficient

The article by La Costa et al. [26] also discusses ways to measure the performance of ordinal data
classifiers. The Spearman’s coefficient and Kendal’s coefficient are mentioned and they propose
their own measure rint. The defined measure int tries compare any two ordinal variables. For
each variable a set of ordered relations between each of the elements is constructed (i.e. the re-
lations define which elements are higher than or equal to the others on the ordinal scale). In the
case of two ordinal variables a = o1, o2, o3, o4 = 1, 1, 2, 3 and b = o1, o2, o3, o4 = 2, 1, 2, 3 their
corresponding sets of ordered relations would be defined as follows:

Sa = {(o1, o2), (o1, o3), (o1, o4), (o2, o1), (o2, o3), (o2, o4), (o3, o4)} (3.32)
Sb = {(o1, o3), (o1, o4), (o2, o1), (o2, o3), (o2, o4), (o3, o1), (o3, o4)} (3.33)

To determine the similarity between both variables the subsets are used in the following equa-
tion:

rint = −1 + 2
ς(S1 ∩ S2)√
ς(S1)ς(S2)

(3.34)

Here S1 and S2 are the subsets of both ordinal variables and ς(X) is the function that returns the
cardinality of the set X . The resulting rint lies in the range [−1, 1] where -1 would mean that both
vectors are complete opposite and 1 would mean that they are identical. For the two example
variables listed earlier, the intersection of both subsets consists of all pairs except (o1, o2), (o3, o1)
which would result in: rint = −1+2 6√

7·7 = 5
7 . This measure can be used where one ordinal vectors

consists of the true class labels of all test samples and the other vector consists of the predicted
class labels.

In the article a quicker way of computing rint using the confusion matrix is discussed. This
approach will be used to implement the rint measure. One thing to note is that using rint as a
measure on its own can have some drawbacks. For example if the two ordinal vectors are 1, 2, 3, 4
and 2, 3, 4, 5 the resulting rint will be 1. This would mean that the order within the elements of
each vector are identical, however it does not mean that the samples were correctly classified.

3.4.2 Cost-Based Distance Measure

This method uses a cost matrix in combination with a confusion matrix to evaluate how close the
classes of the predicted samples lie to their true classes. This is done by dividing the costs of the
misclassified samples by the costs in case all samples were classified in the worst possible way.
In the most general case a cost matrix that increases quadratically with the distance can be used.
If a more conservative classifiers needs to constructed, an asymmetric cost matrix can be used
instead.

The cost-based distance measure can be determined in two different ways: overall and bal-
anced. It can be integrated into the evaluation protocol by calculating the cost-based distance
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measure for each fold and averaging them. To illustrate both approaches an example is given in
Equation 3.35 with the confusion matrix A of a trained classifier and M a cost matrix.

M =


0 1 4 9
1 0 1 4
4 1 0 1
9 4 1 0

 , A =


3 5 1 0
2 2 3 1
0 4 1 2
1 2 1 0

 (3.35)

Overall

To determine the costs of the misclassifications, the confusion matrix A multiplied by the cost
matrix M is summed. This would lead to the mislcassification costs c = 42. The worst case
scenario can then determined by multiplying the maximum of each row in the cost matrix by the
number of samples in each class. The sum of these values are the total worst-case costs t = 177.
By dividing the misclassification costs c by the total cost b the overall cost-based distance mcd
is obtained. The overall cost-based distance measure can be defined as shown in Equation 3.37,
which would result in mcd = 1− 42

177 = 76.27% for the given example.
More formally, given a confusion matrix A and a cost matrix M the mcd can be defined as:

mcd(M,A) = 1− c

t
(3.36)

where c the actual total misclassification cost and t the maximal misclassification cost:

c =
K∑
i=1

K∑
j=1

MijAij

t =
K∑
i=1

( max
j=1,..,K

Mij

K∑
j=1

Aij)

(3.37)

Here Aij is the number of samples of class i that were predicted as class j and Mij is the cost of
misclassifying a sample as class j while the true class is j. By default M is a linear cost matrix
where the diagonal is equal to zero and the costs for misclassifying increases linearly with the
distance to the true class; Mij = |i − j| for i, j = 1, 2, ...,K. When mcd is equal to 0 then the
classifier classified the samples in the worst way possible, while a value of 1 would indicate that
the samples were classified perfectly.

Balanced

The balanced cost-based distance measure is quite similar, although the costs are determined for
each class. In the case of the misclassification costs, the confusion matrix A is also multiplied
by the cost matrix M . Although now the rows of the resulting matrix are summed which leads
to the costs for each class. In the given example this would result in the misclassification costs
c = {8, 7, 6, 8}. The worst case scenario can then determined by multiplying the maximum of
each row in the cost matrix by the number of samples in each class. The resulting vector can be
seen as the maximum possible cost for each class. In the given example this would result in the
total costs t = {3, 2, 2, 3}{9, 8, 7, 4} = {27, 16, 14, 12}.

By dividing the misclassification costs c by the total cost b the balanced cost-based distances
are obtained for each class. By averaging the class costs the overall costs of the classifier is given.
The balanced cost-based distance measure m̄cd can be defined as shown in Equations 3.38 and
3.39, which would result in m̄cd = 1− 1

4 ( 8
27 + 7

16 + 6
14 + 8

12 ) = 54.27% for the given example.
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First determine the actual total misclassification cost c and the maximal misclassification cost
t:

ci =
K∑
j=1

MijAij

ti = ( max
j=1,..,K

Mij)
K∑
j=1

Aij

for i = 1, ...,K

(3.38)

After that the balanced cost-based distance measure m̄cd can be calculated as follows:

m̄cd(M,A) = 1− 1
K

K∑
i=1

(
ci
ti

) (3.39)

WhereM is a pre-defined cost matrix andA the confusion matrix of the classifier being evaluated.
When m̄cd is equal to 0 then the classifier classified the samples in the worst way possible, while
a value of 1 would indicate that the samples were classified perfectly.
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Chapter 4

Results

Additional figures and tables, which are referred to in the article, are listed here:

Figure 4.1 Difference in confusion matrices between basic and monotonous feature selection for COVO.

Figure 4.2 The confusion matrices averaged over all permutations for COVO evaluated on all datasets.

Figure 4.3 The learning curves of the classifiers trained on Synthetic I dataset using all evaluation mea-
sures.

Figure 4.4 The learning curves of the classifiers trained on Synthetic II dataset using all evaluation
measures.

Table 4.1 The mean and standard deviation of the performance of all classifiers evaluated using bal-
anced accuracy.

Table 4.2 The mean and standard deviation of the performance for all classifiers evaluated using mcd.

Table 4.3 The mean and standard deviation of the performance for all classifiers evaluated using rint.

Table 4.4 A one-sided paired t-test between the performance of each classifier and all other classifiers
on the ovarian dataset.

Table 4.5 A one-sided paired t-test between the performance of each classifier and all other classifiers
on the synthetic datasets.
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Figure 4.1: Difference in confusion matrices between basic and monotonous feature selection for
COVO. Each colored matrix represents this difference in confusion matrices for the (a) prostate,
(b) breast and (c) ovarian dataset. For each element, the mean and standard deviation over all
permutations is shown. A positive mean (blue) for element i, j indicates more samples from class
iwere classified as class j when using monotonous feature selection. The same goes for a negative
mean (red), but then for the basic feature selection.
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Figure 4.2: The confusion matrices averaged over all permutations for COVO evaluated on the
(a) prostate, (b) breast and (c) ovarian dataset. On the left side the average confusion matrix is
shown for the results using basic feature selection, while on the right side the matrix is shown
when monotonous feature selection was used instead. Each element i, j shows the percentage of
samples from class i that were classified as class j, while the number in parenthesis is the actual
number of samples.
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Figure 4.3: The learning curves of the classifiers trained on Synthetic I dataset using balanced
accuracy (a), cost-based distance measure (b) and the rint (c).
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Figure 4.4: The learning curves of the classifiers trained on Synthetic II dataset using balanced
accuracy (a), cost-based distance measure (b) and the rint (c).
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4. Results

Monotonous Features

Pro
sta

te

Brea
st

Ovar
ian

N
om

in
al NB 43.88% ± 7.45% 66.33% ± 1.51% 39.40% ± 3.08%

SVM 41.69% ± 7.14% 61.78% ± 2.43% 39.43% ± 2.13%
OVO 43.22% ± 7.10% 65.63% ± 1.90% 39.62% ± 3.17%
OVA 43.31% ± 7.06% 62.90% ± 2.61% 40.46% ± 2.69%

O
rd

in
al OPC 45.28% ± 8.53% 65.54% ± 1.13% 40.00% ± 3.64%

OSVM 43.70% ± 7.42% 64.67% ± 2.51% 38.85% ± 2.36%
CNB 43.51% ± 6.91% 66.25% ± 1.51% 39.60% ± 3.66%

COVO 43.19% ± 7.04% 65.68% ± 2.05% 35.46% ± 3.38%
(a) Balanced accuracy (monotonous features)

Non-Monotonous Features

Pro
sta

te

Brea
st

Ovar
ian

N
om

in
al NB 42.85% ± 7.31% 65.93% ± 1.13% 39.02% ± 2.87%

SVM 44.32% ± 6.77% 61.00% ± 2.55% 38.42% ± 2.83%
OVO 41.43% ± 7.52% 65.35% ± 2.02% 38.14% ± 3.08%
OVA 42.57% ± 7.25% 62.47% ± 2.76% 39.15% ± 2.44%

O
rd

in
al OPC 43.30% ± 7.36% 65.58% ± 1.40% 38.03% ± 3.86%

OSVM 43.25% ± 6.60% 64.65% ± 2.03% 38.45% ± 2.20%
CNB 44.37% ± 6.88% 65.51% ± 1.53% 39.16% ± 2.93%

COVO 41.42% ± 6.47% 64.57% ± 2.00% 34.04% ± 2.70%
(b) Balanced accuracy (Non-monotonous features)

No feature selection

Sy
nth

eti
c 1

Sy
nth

eti
c 2

N
om

in
al NB 39.51% ± 0.48% 71.45% ± 0.19%

SVM 34.79% ± 1.06% 71.10% ± 0.39%
OVO 39.51% ± 0.48% 71.45% ± 0.19%
OVA 39.70% ± 0.49% 71.41% ± 0.16%

O
rd

in
al OPC 38.36% ± 0.42% 69.88% ± 0.14%

OSVM 32.41% ± 0.41% 69.22% ± 0.46%
CNB 33.73% ± 0.25% 70.41% ± 0.15%

COVO 25.92% ± 0.12% 43.65% ± 0.16%
(c) Balanced accuracy (no feature selection)

Table 4.1: The mean and standard deviations of the performance of all classifiers evaluated using
the balanced accuracy rate
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4. Results

Monotonous Features

Pro
sta

te

Brea
st

Ovar
ian

N
om

in
al NB 63.52% ± 5.49% 71.12% ± 0.99% 76.17% ± 2.18%

SVM 62.68% ± 5.06% 72.02% ± 1.51% 76.59% ± 1.81%
OVO 62.84% ± 5.39% 71.28% ± 1.13% 75.30% ± 2.46%
OVA 60.68% ± 5.77% 71.13% ± 1.51% 77.02% ± 1.71%

O
rd

in
al OPC 63.16% ± 6.92% 68.85% ± 0.76% 72.74% ± 2.41%

OSVM 62.00% ± 5.47% 72.05% ± 1.39% 76.59% ± 2.03%
CNB 63.68% ± 5.53% 71.11% ± 1.04% 75.95% ± 2.12%

COVO 63.00% ± 5.44% 71.43% ± 1.22% 73.41% ± 1.60%
(a) cdm (monotonous features)

Non-Monotonous Features

Pro
sta

te

Brea
st

Ovar
ian

N
om

in
al NB 61.40% ± 5.72% 70.88% ± 0.89% 75.32% ± 2.26%

SVM 62.60% ± 5.27% 71.67% ± 1.70% 74.95% ± 2.25%
OVO 59.68% ± 6.12% 71.14% ± 1.10% 74.64% ± 2.43%
OVA 60.56% ± 5.60% 70.63% ± 1.25% 76.07% ± 1.60%

O
rd

in
al OPC 63.12% ± 6.10% 68.87% ± 0.98% 73.73% ± 2.86%

OSVM 61.96% ± 4.79% 72.03% ± 1.15% 76.16% ± 2.00%
CNB 62.52% ± 5.88% 70.64% ± 1.00% 75.41% ± 2.23%

COVO 60.32% ± 5.50% 70.84% ± 0.97% 72.79% ± 1.61%
(b) cdm (Non-monotonous features)

No feature selection

Sy
nth

eti
c 1

Sy
nth

eti
c 2

N
om

in
al NB 59.01% ± 0.54% 85.87% ± 0.10%

SVM 56.97% ± 2.05% 85.50% ± 0.20%
OVO 59.01% ± 0.55% 85.87% ± 0.10%
OVA 58.55% ± 0.60% 85.82% ± 0.09%

O
rd

in
al OPC 61.35% ± 0.51% 85.74% ± 0.07%

OSVM 65.63% ± 0.24% 85.81% ± 0.14%
CNB 65.82% ± 0.18% 85.95% ± 0.08%

COVO 64.24% ± 0.06% 79.68% ± 0.07%
(c) Balanced accuracy (no feature selection)

Table 4.2: The mean and standard deviations of the performance for all classifiers evaluated using
the cost-distance measure mcd
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4. Results

Monotonous Features

Pro
sta

te

Brea
st

Ovar
ian

N
om

in
al NB 76.13% ± 2.95% 83.25% ± 0.47% 81.38% ± 1.55%

SVM 76.25% ± 2.58% 82.00% ± 0.73% 82.33% ± 1.18%
OVO 75.62% ± 3.14% 83.06% ± 0.61% 80.73% ± 1.88%
OVA 74.87% ± 3.27% 82.35% ± 0.77% 82.31% ± 1.22%

O
rd

in
al OPC 75.76% ± 3.87% 83.65% ± 0.42% 80.07% ± 1.24%

OSVM 75.66% ± 3.17% 82.63% ± 0.78% 82.35% ± 1.42%
CNB 76.30% ± 3.29% 83.21% ± 0.46% 81.12% ± 1.59%

COVO 75.74% ± 3.24% 83.08% ± 0.62% 82.75% ± 1.30%
(a) cdm (monotonous features)

Non-Monotonous Features

Pro
sta

te

Brea
st

Ovar
ian

N
om

in
al NB 74.87% ± 3.36% 83.20% ± 0.35% 80.75% ± 1.67%

SVM 76.57% ± 3.19% 81.79% ± 0.82% 80.84% ± 1.62%
OVO 74.10% ± 3.68% 82.96% ± 0.63% 80.26% ± 1.77%
OVA 75.37% ± 3.00% 82.11% ± 0.75% 81.59% ± 1.17%

O
rd

in
al OPC 76.20% ± 3.60% 83.73% ± 0.42% 79.84% ± 1.84%

OSVM 76.12% ± 2.90% 82.65% ± 0.61% 82.02% ± 1.38%
CNB 75.47% ± 3.62% 83.07% ± 0.49% 80.76% ± 1.70%

COVO 74.41% ± 3.44% 82.72% ± 0.63% 81.74% ± 1.67%
(b) cdm (Non-monotonous features)

No feature selection

Sy
nth

eti
c 1

Sy
nth

eti
c 2

N
om

in
al NB 62.58% ± 0.51% 86.79% ± 0.08%

SVM 62.86% ± 1.00% 86.55% ± 0.16%
OVO 62.58% ± 0.51% 86.79% ± 0.08%
OVA 62.60% ± 0.54% 86.83% ± 0.07%

O
rd

in
al OPC 63.56% ± 0.49% 86.82% ± 0.06%

OSVM 69.89% ± 0.38% 86.68% ± 0.10%
CNB 69.89% ± 0.30% 86.78% ± 0.06%

COVO 71.21% ± 0.10% 85.78% ± 0.08%
(c) Balanced accuracy (no feature selection)

Table 4.3: The mean and standard deviations of the performance for all classifiers evaluated using
the rint coefficient.
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4. Results

N
B

SV
M

O
V

O
O

VA
O

PC
O

SV
M

C
N

B
C

O
V

O
PO

LR

Synthetic I

Balanced Accuracy

N
B

-
29.62

(0.000)
0.00

(0.500)
-3.62

(1.000)
18.18

(0.000)
65.13

(0.000)
65.81

(0.000)
193.00

(0.000)
247.14

(0.000)
SV

M
-29.62

(1.000)
-

-29.52
(1.000)

-29.75
(1.000)

-21.75
(1.000)

12.29
(0.000)

6.77
(0.000)

57.99
(0.000)

88.37
(0.000)

O
V

O
0.00

(0.500)
29.52

(0.000)
-

-3.63
(1.000)

18.12
(0.000)

64.95
(0.000)

65.68
(0.000)

192.47
(0.000)

246.63
(0.000)

O
VA

3.62
(0.000)

29.75
(0.000)

3.63
(0.000)

-
27.26

(0.000)
65.99

(0.000)
69.74

(0.000)
192.10

(0.000)
252.95

(0.000)
O

PC
-18.18

(1.000)
21.75

(0.000)
-18.12

(1.000)
-27.26

(1.000)
-

59.32
(0.000)

60.06
(0.000)

198.36
(0.000)

263.99
(0.000)

O
SV

M
-65.13

(1.000)
-12.29

(1.000)
-64.95

(1.000)
-65.99

(1.000)
-59.32

(1.000)
-

-21.07
(1.000)

96.51
(0.000)

160.99
(0.000)

C
N

B:L
-65.81

(1.000)
-6.77

(1.000)
-65.68

(1.000)
-69.74

(1.000)
-60.06

(1.000)
21.07

(0.000)
-

214.65
(0.000)

345.42
(0.000)

C
O

V
O

:L
-193.00

(1.000)
-57.99

(1.000)
-192.47

(1.000)
-192.10

(1.000)
-198.36

(1.000)
-96.51

(1.000)
-214.65

(1.000)
-

174.79
(0.000)

PO
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-247.14
(1.000)

-88.37
(1.000)

-246.63
(1.000)

-252.95
(1.000)

-263.99
(1.000)

-160.99
(1.000)

-345.42
(1.000)

-174.79
(1.000)

-

mcd

N
B

-
6.70

(0.000)
-0.00

(0.500)
8.56

(0.000)
-37.76

(1.000)
-67.11

(1.000)
-86.64

(1.000)
-68.13

(1.000)
-50.11

(1.000)
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M
-6.70

(1.000)
-

-6.69
(1.000)

-5.30
(1.000)

-15.07
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(1.000)
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(1.000)
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(1.000)

O
V

O
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(0.500)
6.69

(0.000)
-

8.58
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(1.000)

-66.91
(1.000)

-86.33
(1.000)

-67.90
(1.000)

-49.96
(1.000)

O
VA

-8.56
(1.000)

5.30
(0.000)

-8.58
(1.000)

-
-55.30

(1.000)
-67.86

(1.000)
-84.31

(1.000)
-67.67

(1.000)
-51.51

(1.000)
O

PC
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(0.000)
15.07

(0.000)
37.74

(0.000)
55.30

(0.000)
-
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(1.000)

-58.65
(1.000)
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(1.000)

-21.11
(1.000)

O
SV

M
67.11

(0.000)
27.80

(0.000)
66.91

(0.000)
67.86

(0.000)
47.26

(0.000)
-

-4.77
(1.000)

36.81
(0.000)

73.63
(0.000)

C
N

B:L
86.64

(0.000)
31.20

(0.000)
86.33

(0.000)
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(0.000)
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(0.000)
-
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68.13
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(0.496)
-1.78

(0.960)
-

-0.32
(0.624)

-17.70
(1.000)

-73.71
(1.000)
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Synthetic II

Balanced Accuracy

N
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-
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(0.000)
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35.31
(0.000)
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M

-6.60
(1.000)

-
-6.60

(1.000)
-5.79

(1.000)
19.83

(0.000)
21.75

(0.000)
13.28

(0.000)
471.36

(0.000)
371.27

(0.000)
O

V
O

-Inf(1.000)
6.60

(0.000)
-

1.85
(0.036)

46.85
(0.000)

35.31
(0.000)

45.59
(0.000)

803.35
(0.000)

608.87
(0.000)

O
VA

-1.85
(0.964)

5.79
(0.000)

-1.85
(0.964)

-
57.58

(0.000)
32.86

(0.000)
37.75

(0.000)
904.90

(0.000)
711.04

(0.000)
O

PC
-46.85

(1.000)
-19.83

(1.000)
-46.85

(1.000)
-57.58

(1.000)
-

9.53
(0.000)

-17.38
(1.000)

865.29
(0.000)

642.44
(0.000)
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M
-35.31

(1.000)
-21.75

(1.000)
-35.31

(1.000)
-32.86

(1.000)
-9.53

(1.000)
-

-18.40
(1.000)

373.85
(0.000)

306.36
(0.000)

C
N

B:L
-45.59

(1.000)
-13.28

(1.000)
-45.59

(1.000)
-37.75

(1.000)
17.38

(0.000)
18.40

(0.000)
-

792.90
(0.000)

721.26
(0.000)

C
O

V
O

:L
-803.35

(1.000)
-471.36

(1.000)
-803.35

(1.000)
-904.90

(1.000)
-865.29

(1.000)
-373.85

(1.000)
-792.90

(1.000)
-

-137.26
(1.000)

PO
LR

-608.87
(1.000)

-371.27
(1.000)

-608.87
(1.000)

-711.04
(1.000)

-642.44
(1.000)

-306.36
(1.000)

-721.26
(1.000)

137.26
(0.000)

-

mcd

N
B

-
13.76

(0.000)
-Inf(1.000)

4.06
(0.000)

8.10
(0.000)

3.23
(0.001)

-7.83
(1.000)

406.09
(0.000)

248.43
(0.000)

SV
M

-13.76
(1.000)

-
-13.76

(1.000)
-12.42

(1.000)
-7.60

(1.000)
-9.15

(1.000)
-16.95

(1.000)
197.52

(0.000)
119.38

(0.000)
O

V
O

-Inf(1.000)
13.76

(0.000)
-

4.06
(0.000)

8.10
(0.000)

3.23
(0.001)

-7.83
(1.000)

406.09
(0.000)

248.43
(0.000)

O
VA

-4.06
(1.000)

12.42
(0.000)

-4.06
(1.000)

-
5.70

(0.000)
0.55

(0.293)
-10.04

(1.000)
415.70

(0.000)
269.18

(0.000)
O

PC
-8.10

(1.000)
7.60

(0.000)
-8.10

(1.000)
-5.70

(1.000)
-

-3.36
(0.999)

-14.45
(1.000)

444.29
(0.000)

290.36
(0.000)

O
SV

M
-3.23

(0.999)
9.15

(0.000)
-3.23

(0.999)
-0.55

(0.707)
3.36

(0.001)
-

-7.18
(1.000)

327.30
(0.000)

186.43
(0.000)

C
N

B:L
7.83

(0.000)
16.95

(0.000)
7.83

(0.000)
10.04

(0.000)
14.45

(0.000)
7.18

(0.000)
-

426.30
(0.000)

318.63
(0.000)

C
O

V
O

:L
-406.09

(1.000)
-197.52

(1.000)
-406.09

(1.000)
-415.70

(1.000)
-444.29

(1.000)
-327.30

(1.000)
-426.30

(1.000)
-

-183.65
(1.000)

PO
LR

-248.43
(1.000)

-119.38
(1.000)

-248.43
(1.000)

-269.18
(1.000)

-290.36
(1.000)

-186.43
(1.000)

-318.63
(1.000)

183.65
(0.000)

-

rrint

N
B

-
10.87

(0.000)
-Inf(1.000)

-4.70
(1.000)

-2.32
(0.988)

8.37
(0.000)

0.88
(0.191)

75.05
(0.000)

136.08
(0.000)

SV
M

-10.87
(1.000)

-
-10.87

(1.000)
-13.46

(1.000)
-10.65

(1.000)
-5.09

(1.000)
-10.86

(1.000)
31.49

(0.000)
59.65

(0.000)
O

V
O

-Inf(1.000)
10.87

(0.000)
-

-4.70
(1.000)

-2.32
(0.988)

8.37
(0.000)

0.88
(0.191)

75.05
(0.000)

136.08
(0.000)

O
VA

4.70
(0.000)

13.46
(0.000)

4.70
(0.000)

-
1.14

(0.130)
9.74

(0.000)
5.04

(0.000)
74.14

(0.000)
155.32

(0.000)
O

PC
2.32

(0.012)
10.65

(0.000)
2.32

(0.012)
-1.14

(0.870)
-

8.84
(0.000)

3.27
(0.001)

74.23
(0.000)

178.30
(0.000)

O
SV

M
-8.37

(1.000)
5.09

(0.000)
-8.37

(1.000)
-9.74

(1.000)
-8.84

(1.000)
-

-7.36
(1.000)

60.70
(0.000)

101.13
(0.000)

C
N

B:L
-0.88

(0.809)
10.86

(0.000)
-0.88

(0.809)
-5.04

(1.000)
-3.27

(0.999)
7.36

(0.000)
-

73.51
(0.000)

170.80
(0.000)

C
O

V
O

:L
-75.05

(1.000)
-31.49

(1.000)
-75.05

(1.000)
-74.14

(1.000)
-74.23

(1.000)
-60.70

(1.000)
-73.51

(1.000)
-

56.92
(0.000)

PO
LR

-136.08
(1.000)

-59.65
(1.000)

-136.08
(1.000)

-155.32
(1.000)

-178.30
(1.000)

-101.13
(1.000)

-170.80
(1.000)

-56.92
(1.000)

-

Table
4.5:

T
he

t-values
ofa

one-sided
paired

t-testbetw
een

the
perform

ance
ofeach

classifier
and

allother
classifiers

on
the

synthetic
I

and
II

datasets.
The

corresponding
p-values

are
show

n
betw

een
parentheses

and
those

less
than

the
significance

level
α

=
0.05

are
in

bold.W
hen

a
p-value

is
in

bold,the
classifier

listed
in

the
row

perform
s

significantly
better

then
the

classifier
listed

in
the

colum
n.
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1. Problem Statement

Chapter 1

Problem Statement

1.1 Goal

In the standard approach of multi-class classification the classes are assumed to be distinct. If one
would want to classify the progression of a disease, such as prostate cancer, the classes do how-
ever show order among the classes as the tumor progresses from a benign to a malignant stage.
This thesis looks into which key properties characterize ordinal multi-class molecular classifica-
tion problems and presents a comparison study of classification algorithms that can be used for
this purpose.

1.2 Research Questions

Based on the goal several research questions were posed. This section covers each of those ques-
tions and the corresponding answers based on the results of this study:

- Which objectives can be used to evaluate ordinal classifiers?
Two different criteria were identified to evaluate ordinal classifiers. The first criterion is the
same as the one used for nominal classifiers, where the number of true positives and negatives
is used to evaluate the performance. The balanced accuracy rate was used for this purpose.
The second criterion is based on the distance between the true and predicted labels on the or-
dinal scale. For most general purposes this scale can be linear, but others can be used as well
depending on the problem at hand. Two different measures were included in this study: rint
by Costa et al. [1] and mcd, a new measure proposed in this study.

- Which types of classifiers are most suitable for ordinal classification problems?
Based on the results of the synthetic datasets included in the comparison study, there seems
to be a difference between nominal and ordinal classifiers. Nominal classifiers outperform
the ordinal classifiers based on the balanced accuracy. Ordinal classifiers on the other hand
perform better based on a measure like mcd.
In the case of the real datasets, this difference between both types of classifiers is however not
significant. As a result, there is no specific type of classifiers that would be suitable for ordinal
classification in molecular analysis. Instead more focus should be put into the feature selection
process, to ensure that information of the ordinal relationship between classes is present in the
feature data.

- Which types of feature selection methods would be suitable for such classifiers?
There is a wide range of feature selection methods available, with each one having its

pro’s and con’s. The comparison study did not focus on how the optimal subset of features
needs to be selected, but rather what kind of features to select. In the case of ordinal classi-

1 O.P.Pfeiffer



1.2. Research Questions

fication selecting features that are correlated with the class labels, can positively influence
the performance results. In other words, any feature selection method that is able to select
features based on this correlation would be most suitable for ordinal classification.

- Does taking the order of classes into account improve the results significantly in comparison to
nominal classification methods?

The benefit of taking the ordinal relation between classes into account is minimal when the
number of available samples and classes is limited. Typically, this is the case in the kind of
biological datasets that this study focused on (i.e. only 3-5 classes with some of them having
less than 10 samples). Using synthetic datasets, it was possible to show the improvement in
results when using ordinal methods instead of nominal ones. This difference was however
insignificant in the case of the real datasets used.

- And in comparison to regression methods?
The proportional odds logistic regression used in this comparison study had problems

fitting the regression model on the real datasets. As a result, it was not possible to assess
the performance of this type of regression and thus comparison was not possible.
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2. Planning

Chapter 2

Planning

Five different milestones were used as a framework for the original planning shown in Figure 2.1.
A short description of each milestone is given here:

Milestone 1 - Research Proposal During this phase publicly available datasets with ordinal
labels will be collected. The data will be preprocessed using unlabeled filtering methods so that
they can be directly used for feature selection and classification. Additionally literature on current
ordinal multi-class classification methods will be gathered so they can be used as a basis for this
thesis. At the end of this milestone the problem statement document will be written.
Deliverables: Problem statement, data sets, literature.

Milestone 2 - Develop Comparison Study The feature selection / classification / evaluation
methods found in the previous phase will be designed and implemented during this phase. Ad-
ditionally, preliminary comparison results will be generated during development.
Deliverables: Source code of implemented functions and preliminary comparison results.

Milestone 3 - Execute Comparison Study During this phase the available methods will be ap-
plied on the chosen datasets. With the interpretation and visualization of the comparison results
several research questions (see Section 1) can be answered and will also help identify any possible
improvements.
Deliverables: Present results of comparison study and possible improvement, source code of
implemented functions.

Milestone 4 - Develop Improvements During this phase the proposed improvements will be
validated.
Deliverables: Draft report.

Milestone 5 - Finish Report The last phase will include rounding up the project and finishing
the final report.
Deliverables: Final report.

3 O.P.Pfeiffer



2. Planning
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Fig. 2.1: The planning of the project.
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3. Implementation

Chapter 3

Implementation

The open-source statistical program R1 was used for the comparison study and the implemen-
tation of the studied algorithms. It is a scripting like system similar to Matlab in which queries
can be executed in a shell-environment. The reason for choosing this platform is that it is freely
available and a wide range of 3rd-party packages specific for the field of bioinformatics have been
developed for the Bioconductor project2.

The R platform supports classes through the use of S4-objects, although it is not always as
straightforward to implement an object-oriented design, like one would with programming lan-
guages like C# or Java. However, an object-oriented system was developed as shown in the class
diagram found in Figure 3.1, as it will allow for adding additional classification, feature selection
or evaluation methods in the future. In addition, R is not a strict language when looking at evalu-
ation or type casting, but by applying the object-oriented design this could be enforced (ensuring
that variables do not change when least expected).

3.1 Classification Methods

NB - Naı̈ve Bayes The klaR-package3 available in R contains an implementation of the naı̈ve
bayes classifier. When using default parameters, the classifier assumes independence of the pre-
dictor variables and a Gaussian distribution for these variables.

SVM - Support Vector Machine The kernlab-package4 in R contains the method ksvm which
includes several implementations of SVM’s. The one used in this study is the multi-clas SVM by
Crammer et al. [2].

OVO - One-vs-One The one-vs-one trains binary classifiers for every possible pair of classes. In
this implementation the naı̈ve Bayes classifier was used for this purpose. Majority voting is used
to combine the output of the different classifiers into a final prediction.

OVA - One-vs-All The one-vs-all constructs binary classifiers by training each class against all
other classes. In this implementation the naı̈ve Bayes classifier was used for this purpose as well.
The binary classifier with the highest probability determines the winning class.

OPC - Ordered Pseudo-Classification This method splits the original multi-class problem into
K − 1 binary problems. The binary problem can be solved using any classifier that returns poste-
rior probabilities and the naı̈ve bayes classifier from the klaR-package was used for this purpose.

1http://cran.r-project.org/
2http://www.bioconductor.org/
3http://cran.r-project.org/web/packages/klaR/index.html
4http://cran.r-project.org/web/packages/kernlab/index.html
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3.3. Pseudo-code

OSVM - Ordered SVM The main principle of this method consists of replicating the data into
K − 2 additional dimensions (see pseudo-code of this process in Algorithm 2). Once replicated
the data consists of samples from classes C1 and C2 which can be used to a binary SVM. The same
implementation of SVM will be used as the one used for the multi-class SVM discussed earlier
(kernlab-package in R).

Once the binary SVM has been trained any unknown sample can be classified by replicating it
in all K−2 additional dimensions and predicting their class labels. The prediction of the sample in
the original multi-class problem can be determined by counting the number of replicas labeled as
C2 and adding 1 to it. See the pseudo-code listed in Algorithm 3 for a description of the prediction
process.

CNB - Cost-based method The cost-based version of NB determines the risk of labeling an
unknown sample as class i, by multiplying column i with the class posteriors and summing the
result. Once the risk for each class has been calculated, the class with the lowest risk will be the
winner. The pseudo-code of this procedure is listed in Algorithm 4.

COVO - Cost-based method The cost-based version of OVO determines the risk for each in-
dividual binary classifier. By summing these risks, the total risk of each class is obtained. The
class with the lowest total risk will be the winner. The pseudo-code of this procedure is listed in
Algorithm 5.

POLR - Proportional Odds Logistic Regression The MASS-package5 available in R contains an
implementation of proportional odds logistic regression. It is based on the model by Agresti [3]
and uses a quasi-Newton method to estimate its parameters.

3.2 Evaluation Measures

mcd - Cost-based Distance Measure The measure mcd is calculated using the confusion matrix
from the results and a predefined cost matrix. See Algorithm 6 for the pseudo-code of this process.

rint - Rank-based Measure The rint measure can be calculated in a quicker way by using a
confusion matrix instead [1]. If C is the confusion matrix and Ci• and C•j are row i and column j
of the matrix C respectively, then the cardinalities can be calculated as follows:

|S1| =
K∑

i=1

Ci•

( K∑
j=1

Cj• − 1
)

(3.1)

|S2| =
K∑

i=1

C•i

( K∑
j=1

C•j − 1
)

(3.2)

|S1∩2| =
K∑

i=1

K∑
j=1

Ci,j

( K∑
i′=i

K∑
j′=j

Ci′,j′ − 1
)

(3.3)

3.3 Pseudo-code

5http://cran.r-project.org/web/packages/VR/index.html
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3.3. Pseudo-code

Algorithm 1 Ordered Pseudo Classification

Output: Index of the winning class
1: # Construct the binary classifiers C1 to CK−1

2: K ← number of classes
3: for i = 1 to K − 1 do
4: spos ← samples from class 1 to i
5: sneg ← samples from class i + 1 to K
6: train classifier Ci using spos as positive samples and sneg as negative samples
7: end for
8: # Predict an unknown sample x using the individual classifiers
9: for i = 1 to K − 1 do

10: bi ← determine posterior probabilities using classifier Ci

11: end for
12: # Determine the combined probability for each class
13: # Class 1
14: p1 ← 1− b1

15: # Class 2 to K − 1
16: for i = 2 to K − 1 do
17: pi ← bi−1 − bi

18: end for
19: # Class K
20: pK ← bK−1

21: # Determine winner and return it
22: return arg max(p)

Algorithm 2 Ordered SVM - Train

Input: s: parameter to control the number of neighboring classes
Output: Returns the replicated data

1: # First replicate the training set X
2: C1 ← C2 ← NULL
3: K ← number of classes
4: for q = 1 to K − 1 do
5: v ← 0-vector of length K − 2
6: v[q − 1]← 1
7: # Replicate positive samples
8: for j = max(1, q − s + 1) to q do
9: r ← All samples from class j

10: Append v to each sample in r
11: Add r to C1

12: end for
13: # Replicate negative samples
14: for j = (q + 1) to min(K, q + s) do
15: r ← All samples from class j
16: Append v to each sample in r
17: Add r to C2

18: end for
19: end for
20: # Train the SVM using the replicated data
21: C ← Train binary SVM using the replicas from C1 and C2
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3.3. Pseudo-code

Algorithm 3 Ordered SVM - Predict

Input: Trained classifier C
Output: Index of the winning class

1: # Replicate the unknown sample x
2: r ← empty vector
3: K ← number of classes
4: for q = 0 to K − 1 do
5: v ← 0-vector of length K − 2
6: if q > 0 then
7: v[q − 1]← 1
8: end if
9: Append v to unknown sample x and add to r

10: end for
11: # Predict replicas
12: Predict classes of the replicas in r using trained classifier C
13: return Number of replicas in r predicted as C2 + 1

Algorithm 4 Cost-based version of NB (CNB)

Output: Index to the winning class
1: K ← number of classes
2: # Construct NB
3: Train NB classifier C
4: for i = 1 to K do
5: pi ← use C to determine the probability of class i given sample x
6: end for
7: # Define the cost matrix
8: M ← a KxK-cost matrix
9: # Calculate the risk for each class

10: for j = 1 to K do
11: Rj ← sum(M [, j] ∗ p)
12: end for
13: # Determine winner and return it
14: return arg min(R)

Algorithm 5 Cost-based version of OVO (COVO)

Output: Index to the winning class
1: K ← number of classes
2: # Construct OVO
3: Train OVO classifier C
4: # Define the cost matrix
5: M ← a KxK-cost matrix
6: # Calculate the risk for each binary classifier
7: R← 0-vector of length K
8: for each binary classifier in C do
9: p← determine the posterior probabilities given sample x

10: for j = 1 to K do
11: Rj ← Rj+ sum(M [, j] ∗ p)
12: end for
13: end for
14: # Determine winner and return it
15: return arg min(R)
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3.3. Pseudo-code

Algorithm 6 Cost-based Distance Measure mcd

Output: A numeric value in the range [0, 1]
1: A← determine the confusion matrix from the prediction results
2: K ← number of classes
3: # Construct a cost-matrix
4: M ← create linear K×K-cost matrix
5: # Determine the actual total misclassification cost C
6: c← sum the element-wise multiplication of M and A
7: # Determine the maximum misclassification cost t
8: m← the maximum of each row in the cost matrix M
9: p← the sum of each column in the confusion matrix A

10: t← m·p
11: # Determine winner and return it
12: return 1− c

t

Algorithm 7 rint

Output: A numeric value in the range [0, 1]
1: A← determine the confusion matrix from the prediction results
2: K ← number of classes
3: # Determine the cardinality of S1

4: for i = 1 to K do
5: S1 ← S1+ sum(A[i, ]) * (sum(A[i to K, ]) - 1)
6: end for
7: # Determine the cardinality of S2

8: for j = 1 to K do
9: S2 ← S2+ sum(A[, j]) * (sum(A[, j to K]) - 1)

10: end for
11: # Determine the cardinality of S1∩2

12: for i = 1 to K do
13: for j = 1 to K do
14: S1∩2 ← S1∩2+ A[i, j] * ((sum(A[i to K, j to K]) - 1)
15: end for
16: end for
17: return S1∩2 / sqrt(S1 * S2)

9 O.P.Pfeiffer



3.3. Pseudo-code

+
e
v
a
lu
a
te

()

+
o
p
tim

iz
e
fs
()

+
p
re

d
ic
t()

+
s
h
o
w
()

+
tra

in
()

-c
rite

rio
n
 : o

m
c
.m

e
a
s
u
re

-fe
a
tu

re
s
e
l : o

m
c
.fe

a
tu

re
s
e
l.lis

t

-m
e
th

o
d
 : c

h
a
ra

c
te

r

-p
a
ra

m
e
te

rs
 : v

e
c
to

r

o
m
c
.c
la
s
s
ifie
r

+
g
e
n
e
ra

te
s
u
b
s
e
ts
()

+
s
h
o
w
()

+
c
la
s
s
ifie

rm
a
trix

()

-c
la
s
s
ifie

rm
a
trix

 : m
a
trix

-s
u
b
s
e
ts
 : lis

t

-k
e
rn

e
lp
a
ra

m
e
te

rs
 : c

h
a
ra

c
te

r

o
m
c
.p
s
e
u
d
o
.c
la
s
s
ifie
r

o
m
c
.n
a
iv
e
b
a
y
e
s

-b
a
s
e
c
la
s
s
ifie

r : o
m

c
.c
la
s
s
ifie

r

-c
o
s
tm

a
trix

 : m
a
trix

o
m
c
.c
o
s
tb
a
s
e
d

o
m
c
.s
v
m

o
m
c
.o
s
v
m

o
m
c
.p
o
lr

o
m
c
.o
n
e
v
s
a
ll

o
m
c
.o
n
e
v
s
o
n
e

o
m
c
.o
rd
e
re
d
p
c

+
s
h
o
w
()

-c
la

s
s
ifie

r : o
m

c
.c
la
s
s
ifie

r

-c
o
n
fu

s
io

n
m

a
trix

 : ta
b
le

-c
rite

rio
n
 : n

u
m

e
ric

-la
b
e
ls
 : fa

c
to

r

-p
re

d
ic
tio

n
 : fa

c
to

r

-p
v
a
lu
e
s
 : m

a
trix

o
m
c
.p
re
d
ic
tio
n

1*

+
s
e
le

c
t()

+
s
h
o
w
()

-fe
a
tu

re
s
 : v

e
c
to

r

-c
rite

ria
 : n

u
m

e
ric

-m
e
th

o
d
 : c

h
a
ra

c
te

r

-p
a
ra

m
e
te

rs
 : v

e
c
to

r

o
m
c
.fe
a
tu
re
s
e
l

o
m
c
.fe
a
tu
re
s
e
l.n
o
n
e

o
m
c
.fe
a
tu
re
s
e
l.b
a
s
ic

o
m
c
.fe
a
tu
re
s
e
l.c
o
rre
la
tio
n

o
m
c
.fe
a
tu
re
s
e
l.lis

t

1*

-c
o
s
tm

a
trix

 : ta
b
le

-ris
k
 : ta

b
le

o
m
c
.c
o
s
tb
a
s
e
d
.p
re
d
ic
tio
n

+
a
c
c
u
ra

c
y
()

+
d
is
ta

n
c
e
()

+
rin

t()

+
s
h
o
w
()

o
m
c
.re
s
u
lts

o
m
c
.m
e
a
s
u
re

o
m
c
.b
a
la
n
c
e
d
a
c
c
u
ra
c
y

o
m
c
.d
is
ta
n
c
e

o
m
c
.rin

t

s
ta
n
d
a
rd
G
e
n
e
ric

Fig.3.1:C
lass

diagram

Ordinal Multi-Class Molecular Classification - Work Document 10



4. Additional Experiments

Chapter 4

Additional Experiments

4.1 Synthetic Datasets

Several additional synthetic datasets were experimented with; see Figure 4.1 for a graphical rep-
resentation of each one of them. The preliminary results of these synthetic datasets were not
promising, as there did not seem to be a distinction between the results of the nominal and ordi-
nal classifiers. These datasets were dropped in the end and replaced by the ones included in the
comparison study.

4.2 Cost Matrices

A number of different cost matrices were used to investigate, the effect they might have on the
prediction results. Depending on the dataset it might be important to have either really high or
low costs. In other cases, it might be important to have an asymmetric cost matrix to make the
classifier more conservative in its predictions.

Figures 4.3 to 4.5 show the class boundaries of CNB using the different cost matrices. As
expected, the choice of the used cost matrix has noticable effect on the result.

When using the linear cost matrix class 1 is still present, but that’s not the case when using
either the quadratic or exponential cost matrix. By using a cost matrix with higher costs, like the
quadratic cost matrix, the classifier gives preference to classes 2, 3 or 4 as the costs of misclassify-
ing a sample as class 1 has become too high.

Similar effects can be seen in the asymmetric cost matrices, where the classifier will give pref-
erence to misclassifying either up or down the ordinal scale.

4.3 Ordered Pseudo-Classification Variants

The original OPC has a disadvantage as it assumes that the conditional probability P (ωT >
ωk−1|x) is always larger than P (ωT > ωk|x) (see Equation 5 of the thesis). This is not always
the case, as it depends on the distribution of the classes and can lead to negative probabilities if
the assumption does not hold. In the implementation used in this comparison study, any negative
class posteriors were set to 0. See Figure 4.6c where the curves of all classes are cut off at 0.

Another approach would be to assume that P (ωk) = P (ωT > ωk−1∩ωT <= ωk|X). In that case
the class probabilities can be obtained by determining the intersection of two binary classifiers:
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4.3. Ordered Pseudo-Classification Variants
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Fig. 4.1: Five different synthetic datasets: (a) Ordered circle (b) Unorderd circle (c) Low/High
grade (d) Subtypes (e) Outlier.
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4.4. Class Boundaries

Fig. 4.2: The predecessor of the synthetic I dataset from the comparison study, consisting of 2
features with 5 ordered classes.

P (ωk) = P (ωT > ωk−1 ∩ ωT ≤ ωk|X)
= P (ωT > ωk−1|X)P (ωT ≤ ωk|X) for k = 1, ...,K

= P (ωT > ωk−1|X)(1− P (ωT > ωk|X))
(4.1)

Where P (ωT > ω0|X) = 1 and P (ωT > ωK |X) = 0 as y ∈ {ω1, ω2, ..., ωK} still hold. In this case
there’s an independence assumption which might not be very accurate.

Figure 4.7 shows how a test set of 50 samples performed. As expected the samples of the
classes on both ends of the ordinal scale (in this case C1 and C5) are classified the same for OPC
and OPC with modified posteriors. Looking at the middle classes, the OPC with modified poste-
riors gives more preference to the lower classes, which would represent the original dataset better
in comparison to the original OPC that classified most of those samples as C4.

4.4 Class Boundaries

To help understand the working of each classifier, the class boundaries were generated to see how
all classes are separated. Figures 4.8 and 4.9 show the boundaries of the classifiers evaluated on
the synthetic I dataset.

When looking at the class boundaries of an ordinal classifier, one would expect them to tran-
sition from one class to a neighboring class on the ordinal scale. For a nominal classifier on the
other hand, the class boundaries could switch from one class to any other class. In the case of
OSVM, COVO, COVA and POLR this expectation seems to hold true, while for OPC not. This can
be accounted to the way OPC determines the class posteriors, as they do not sum up to 1 (which
is a result of the way it splits the original problem into several binary problems).
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(a) Linear
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(b) Quadratic
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(c) Exponential

Fig. 4.3: Each sub figure shows a different symmetric cost matrix (left) with its corresponding
class boundaries (middle) and confusion matrix (right). Half of the samples were used to train
CNB, while the remaining were used to determine the confusion matrix.



4.4. Class Boundaries
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(a) Linear/Quadratic
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(b) Quadratic/Linear

Fig. 4.4: Each sub figure shows a different asymmetric cost matrix (left) with its corresponding
class boundaries (middle) and confusion matrix (right). Half of the samples were used to train
CNB, while the remaining were used to determine the confusion matrix. The upper and lower
triangle of the cost matrices are different, which makes it possible to prefer either a higher or a
lower class when the classifier is in doubt.
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4.4. Class Boundaries
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(a) Constant/Quadratic
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(b) Quadratic/Constant

Fig. 4.5: Each sub figure shows a different asymmetric cost matrix (left) with its corresponding
class boundaries (middle) and confusion matrix (right). Half of the samples were used to train
CNB, while the remaining were used to determine the confusion matrix. The upper and lower
triangle of the cost matrices are different, which makes it possible to prefer either a higher or a
lower class when the classifier is in doubt.
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4.4. Class Boundaries
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(a) Original Dataset
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(b) NB
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(c) OPC
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(d) OPC (Modified)

Fig. 4.6: A 1 dimensional version of the synthetic I dataset, see (a) for the distribution of the classes
(note that classes C1 and C5 overlap). The class posteriors of three different classifiers are shown:
(b) NB, (c) OPC and (d) OPC with modified posteriors (see Equation 4.1)
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4.4. Class Boundaries

Test samples

OPC (Modifed)
OPC
NB

Class 1
Class 2
Class 3
Class 4
Class 5

Fig. 4.7: 50 test samples predicted using the three different classifiers (b) NB, (c) OPC and (d) OPC
with modified posteriors (see Equation 4.1). Each sample is color coded with their labels, where
in (a) they represent the true labels and in (b),(c) and (d) the predicted labels.
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(a) NB
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(b) SVM
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(c) OVO
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(d) OVA

Fig. 4.8: The class boundaries of the nominal classifiers evaluated on the synthetic I dataset.
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(a) OPC
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(b) OSVM
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(c) CNB
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(d) COVO
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(e) POLR

Fig. 4.9: The class boundaries of the ordinal classifiers evaluated on the synthetic II dataset.
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