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Impact of Network Topology on the Resilience
of Vehicle Platoons

Mohammad Pirani , Simone Baldi , Senior Member, IEEE, and Karl Henrik Johansson , Fellow, IEEE

Abstract— This paper presents a comprehensive study on
the impact of information flow topologies on the resilience of
distributed algorithms that are widely used for estimation and
control in vehicle platoons. In the state of the art, the influence
of information flow topology on both internal and string stability
of vehicle platoons has been well studied. However, understand-
ing the impact of information flow topology on cyber-security
tasks, e.g., attack detection, resilient estimation and formation
algorithms, is largely open. By means of a general graph theory
framework, we study connectivity measures of several platoon
topologies and we reveal how these measures affect the ability
of distributed algorithms to reject communication disturbances,
to detect cyber-attacks, and to be resilient against them. We show
that the traditional platoon topologies relying on interaction with
the nearest neighbor are very fragile with respect to perfor-
mance and security criteria. On the other hand, appropriate
platoon topologies, namely k-nearest neighbor topologies, are
shown to fulfill desired security and performance levels. The
framework we study covers undirected and directed topologies,
ungrounded and grounded topologies, or topologies on a line
and on a ring. We show that there is a trade-off in the network
design between the robustness to disturbances and the resilience
to adversarial actions. Theoretical results are validated via
simulations.

Index Terms— Resilience of vehicle platoons, graph theory,
network connectivity, distributed algorithms.

I. INTRODUCTION

CONNECTED vehicles are vehicles that use a number
of different communication technologies to communicate

with other vehicles on the road, e.g., vehicle-to-vehicle (V2V),
vehicle-to-infrastructure (V2I), or with the driver. A typical
connected vehicle test case often studied in the literature is
platooning. Platooning is a method for driving a group of
vehicles in a queue which is meant to increase the capacity of
roads via an automated highway system.
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A. Motivation
Due to the need to operate autonomously and in a wide

range of situations, notions of robustness and resilience of
connected vehicles naturally arise. An accepted definition of
the robustness of control systems is their ability to withstand
perturbation without the need for adaptation. On the other
hand, resilience is referred to the ability of the system to
respond to perturbation and restore full functionality (or a
certain level of functionality). As compared to robustness,
guaranteeing resilience demands larger complexity and com-
putation. In large-scale systems, both notions of robustness
and resilience highly depend on the structure of the underlying
communication network and on the type of distributed algo-
rithms operating in the large-scale system.

Distributed estimation and/or control algorithms are com-
monly operated in large-scale systems with interconnected
processors. The algorithm is broken into parts and each
part is operated concurrently and independently with a lim-
ited amount of information. These features make distributed
algorithms suitable to operate connected vehicles. Distributed
estimation and control algorithms, including consensus-based
algorithms and distributed resource allocation, are pivotal in
improving connected vehicles’ safety, improving the traffic
throughput, and optimizing the energy consumption [1]–[3].
In those problems, system-theoretic conditions are sought
which ensure the effectiveness of the proposed algorithms.
However, by increasing the scale of the vehicular network and
the complexity of the interactions, cyber-security issues must
be also taken into account. In this paper, we investigate the
impact of the topology of vehicle platoons on the robustness
and resilience of certain distributed estimation and control
algorithms which are applicable in cooperative control of
vehicle platoons.

B. Related Work
Concerns about the performance and resilience of dis-

tributed platooning algorithms against faults and adversar-
ial behaviours have been an avenue of research in recent
years [4]–[7]. In addition to systems and control tools,
networks and graph theory have been also used to model
various structures of connected vehicles. While these modeling
tools have been in general studied independently, it is recog-
nized that intelligent platoons require a tight relation between
system-theoretic and network-theoretic approaches.

The relation between the network science and systems and
control, which are entangled in networked control systems,
has been an active line of research [8], [9]. This has been
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done by advancing interdisciplinary fields in applied mathe-
matics and systems theory, e.g., algebraic graph theory and
structured systems theory. There is a body of research on
redefining system-theoretic notions from the network’s per-
spective. In this direction, there are newly introduced notions
such as network coherence [9], [10], which is a system-norm
interpretation of a networked control system, and network
robustness [11], which defines the ability of a network to
bypass the adversaries during the operation of distributed algo-
rithms. Moreover, resilient and secure estimation and control
in networked systems have been studied from a graph-theoretic
perspective in [12], [13]. Such an interplay between the two
areas finds diverse applications in mobile ad-hoc networks
and connected vehicles. Some works have investigated the
impact of platoon topologies on the performance of coop-
erative adaptive cruise control algorithms: [14], [15] studied
the impact of the platoon topology on the stability and string
stability of a vehicle platoon formation; in [16], the influence
of directed and bidirectional topologies on the robustness of
platoon to communication disturbances was discussed; meth-
ods to compensate communication delay in a homogeneous
cooperative adaptive cruise control systems were proposed
in [17]; discussions on the impact of the topology on the
robustness to time delay can be found in [1], showing a
trade-off between making the platoon robust to time delay
and to disturbances or additive faults.

C. Contribution
The current paper is among the few studies about the impact

of the platoon topology on the resilience and security of
distributed estimation and control algorithms [18], [19]. The
contributions of this paper are:

• We discuss the resilience of several platoon topologies to
the adversarial actions in different distributed estimation
and control algorithms. We show that for every distrib-
uted algorithm, a certain network connectivity measure
represents the resilience of that algorithm to adversaries.

• We show that traditional platoon topologies based on
the interaction with the nearest neighbor are fragile with
respect to performance and security criteria. On the other
hand, appropriate platoon topologies, namely k-nearest
neighbor topologies, are shown to fulfill desired security
and performance levels.

• We show that there is a trade-off in the topology design
between the robustness of vehicle platoons to distur-
bances and their resilience against attacks.

This work extend the preliminary study [20] in various
directions: First, we investigate the resilience of a wider range
of platoon topologies (Propositions 1, 2, 4 and 5, Lemma 1).
Second, graph-theoretic conditions for anomaly detection in
platoons are studied here (Section IV-D). Third, the trade-off
between resilience and performance is presented. Finally, this
work gives a proof for the network robustness in k-nearest
neighbor platoons (Theorem 1).

D. Notations and Definitions
In this paper, a directed network (graph) is denoted by G =

(V, E), where V = {v1, v2, . . . , vn} is the set of nodes (or

vertices) and E ⊂ V × V is the set of edges. In particular,
(vi , v j ) ∈ E if and only if there exists a directed edge from
vi to v j . When (vi , v j ) ∈ E implies (v j , vi ) ∈ E , the graph
is called undirected. Neighbors of node vi ∈ V are indicated
by the set Ni = {v j ∈ V | (v j , vi ) ∈ E}. The degree of
each node vi is denoted by di = |Ni | and the minimum and
maximum degrees in graph G are denoted by dmin and dmax,
respectively. The adjacency matrix of the graph is a binary
n × n matrix A, where element Aij = 1 if (v j , vi ) ∈ E and
Aij = 0 otherwise. The Laplacian matrix of the graph is L �
D − A, where D = diag(d1, d2, . . . , dn). The eigenvalues of
a symmetric Laplacian are nonnegative and are denoted by
0 = λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L) and λ2(L) is called the
algebraic connectivity of the network [21]. For graph G with
m edges, numbered as e1, e2, . . . , em , its node-edge incidence
matrix B(G) ∈ Rn×m is defined as [21]

[B(G)]kl =

⎧⎨⎨
⎨⎩

1 if node k is the head of edge l,

−1 if node k is the tail of edge l,

0 otherwise.

The graph Laplacian satisfies L = B(G)B(G)T [21]. For a
given subset S ⊂ V of nodes (which we term grounded nodes),
the grounded Laplacian induced by S is denoted by Lg(S) or
simply Lg , and is obtained by removing the rows and columns
of L corresponding to the nodes in S. Given two subsets
X1,X2 ⊂ V , a set of r vertex disjoint paths, each with start
vertex in X1 and end vertex in X2, is called an r -linking from
X1 to X2 and is denoted by Lr (X1,X2). The largest integer
less than a is denoted by �a�.

II. GRAPH CONNECTIVITY MEASURES

In this section, we introduce a set of connectivity measures
that will be useful to quantify the resilience of various distrib-
uted algorithms performed on vehicle platoons.

A. Vertex and Edge Connectivity

A vertex-cut in a graph G = (V, E) is a subset S ⊂ V of
vertices such that removing the vertices in S (and any resulting
dangling edges) from the graph causes the remaining graph to
be disconnected. A ( j, i)-cut in a graph is a subset Si j ⊂ V
such that if the nodes Si j are removed, the resulting graph
contains no path from vertex v j to vertex vi . Let κi j denote the
size of the smallest ( j, i)-cut between any two vertices v j and
vi . The graph G is said to have vertex connectivity κ(G) = κ
(or to be κ-vertex-connected) if κi j = κ for all i, j ∈ V . The
edge connectivity e(G) of a graph G is the minimum number of
edges whose deletion disconnects the graph. For the vertex and
edge connectivity and graph’s minimum degree the following
inequalities hold [22]

κ(G) ≤ e(G) ≤ dmin(G). (1)

Due to inequality (1), in this paper we will focus on vertex
connectivity, since it gives the minimum degree of connectivity
in a network. From now, we simply use k-connected to indicate
a k-vertex connected graph.
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Fig. 1. (a) A graph with a large connectivity (n-vertex connected) but small
robustness (1-robust), (b) Schematic set diagram of graph connectivities [23].

B. Graph Robustness

Let r ∈ N. A subset S ⊂ V of nodes in the graph G = (V, E)
is said to be r-reachable if there exists a node v j ∈ S such
that |N j \ S| ≥ r . A graph G = (V, E) is said to be r-robust
if for every pair of nonempty, disjoint subsets of V , at least
one of them is r -reachable.

Note that r -robustness is a stronger notion than
r -connectivity [11], as shown in the following example.

Example 1: The graph shown in Fig. 1 (a) is comprised
of two complete graphs (i.e., there is an edge between each
pair of nodes) on n nodes (S1 and S2) and each node in S1
has exactly one neighbor in S2 and vice-versa. The minimum
degree and the vertex connectivity are both n; however, the
network is only 1-robust.

C. Algebraic Connectivity
For a subset of nodes X ⊂ V , its edge-boundary is ∂X �

{(vi , v j ) ∈ E | vi ∈ X , v j ∈ V\X }. The isoperimetric constant
of G is defined as [24]

i(G) � min
S⊂V ,|S|≤ n

2

|∂S|
|S| , (2)

where ∂S is the edge-boundary of a set of nodes S ⊂ V .
For an undirected graph, the algebraic connectivity is

related to the isoperimetric constant by the following
bounds [24]

i(G)2

2dmax(G)
≤ λ2(L) ≤ 2i(G). (3)

Fig. 1 (b) schematically shows the strength of the connec-
tivity measures in general graphs [23]. One can include the
algebraic connectivity in (1) and get [21]

λ2(L) ≤ κ(G) ≤ e(G) ≤ dmin(G).

This shows that the algebraic connectivity is the strongest
notion of connectivity, compared to the edge and vertex
connectivity. For the relation between robustness and algebraic
connectivity, we have λ2(L) ≤ 2i(G) [24]. Based on this,
if λ2(L) > r − 1, then the network is at least � r

2�-robust [23].
However, � r

2� provides a loose lower bound for the network
robustness. An example is a star graph which is 1-robust with
λ2(L) = 1. Further research is needed to be done in this
direction.

III. PLATOON TOPOLOGIES

In this section, we discuss classes of topologies popularly
used in vehicle platoon problems and summarized in Fig. 2.
Graph connectivity measures of these topologies are also dis-
cussed, whereas their resilience properties will be investigated
later in the paper (Sect. IV).

A. Nearest Neighbor Topologies

The simplest and most well-known vehicle platoon topology
is the nearest neighbor topology, in which every vehicle
communicates with its immediate neighbors. There are two
kinds of nearest neighbor topology: predecessor following
(also called directed) and bidirectional (also called undirected).
In bidirectional topology, every vehicle can send and receive
information from the immediate vehicles in its front and
back, Fig. 2(a), while in predecessor following topology, each
vehicle receives information from the vehicle in its front,
Fig. 2(b). Note that the notions of graph connectivity do
not give much information in platoons with directed line
topologies. Because in directed acyclic graphs, since there
is always a pair (vi , v j ) in which there is no path from vi

to v j (which consequently implies zero connectivity). Hence,
in this paper, we either study the connectivity measures of
directed platoons on a ring (Proposition 4) or talk about
vertex cuts between subsets of nodes in directed platoons on a
line (Section IV-D).

An undirected nearest neighbor topology is clearly a
1-connected and 1-robust network. The isoperimetric constant
of the platoon is i(G) = 2

n and, based on (3), the algebraic
connectivity of the graph is upper bounded by λ2(L) ≤ 4

n .
We will see in Section IV that these connectivity measures
imply a low level of resilience of the nearest neighbor platoon
against failures and adversarial behaviours.

B. Leader-to-All Topologies

A leader-to-all topology is a nearest neighbor topology
where every vehicle is also connected to the leading vehicle
in the head of the platoon. An advantage of this topology,
compared to the nearest neighbor topology, is that each
vehicle is able to receive information of the leading vehicle
directly. Due to the peculiarity of this topology, it can appear
in three forms: undirected leader-to-all; undirected leader-
to-all leader-tracking; directed leader-to-all leader-tracking,
as shown in Fig. 2(c)-(d)-(e), respectively. The term leader
tracking refers to the fact that the communication between
the leader and the other vehicles is unidirectional (i.e. the
leader does not receive any communication and thus its control
strategy is not affected by other vehicles in the platoon): then,
as in Fig. 2(d)-(e), the vertex connectivity is the same as the
nearest neighbor topology. When the communication between
the leader and other vehicles is bidirectional, as in Fig. 2(c),
it is intuitive that the connectivity is larger compared to the
nearest neighbor platoons, as clarified below.

Proposition 1: An undirected leader-to-all topology is
2-connected and 2-robust.

Proof: We first show 2-robustness. Suppose that we
remove the leader and its incident edges. The remaining graph
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Fig. 2. (a) Undirected nearest neighbor, (b) Directed nearest neighbor, (c) Undirected leader-to-all, (d) Undirected leader-to-all leader tracking, (e) Directed
leader-to-all leader tracking, (f) Undirected 2-nearest neighbor, (g) Directed 2-nearest neighbor, (h) Directed nearest neighbor ring, (i) Undirected nearest
neighbor ring, (j) Directed 2-nearest neighbor ring, (k) Undirected 2-nearest neighbor ring.

is a nearest neighbor platoon which is 1-connected. Hence,
based on Proposition 1 in [25], by adding the leader and
connect it to all other vehicles the platoon with n ≥ 3 vehicles
is 2-robust. Increasing the length of the platoon, by adding
vehicle n + 1 to the end of the line with degree 2 (i.e.,
connected to vehicle n and the leader) maintains the robustness
of the graph, based on Theorem 6 in [26]. Since robustness is
stronger than connectivity, the platoon is at least 2-connected.
Moreover, as the smallest degree of the graph is 2, according
to (1), it is exactly 2-connected.

The following proposition provides bounds on the algebraic
connectivity of the undirected leader-to-all topology.

Proposition 2: For the undirected leader-to-all topology we
have 1 ≤ λ2(L) ≤ 2.

Proof: The lower bound comes from the fact that a star
topology, i.e., the topology that all nodes are connected to a
single node, is a subgraph of the leader-to-all topology. For
the star graph we have λ2(L) = 1. Hence, since the algebraic
connectivity is an increasing function of edge addition, the
lower bound is obtained. The upper bound is due to λ2(L) ≤
dmin(G) = 2.

As shown in Proposition 1, the leader-to-all topology with
bidirectional communication exhibits a higher connectivity
level than the nearest neighbor topology. However, this con-
nectivity is not scalable since it is always 2 for any platoon.
In order to reach to larger connectivity levels, a scalable
platoon topology is discussed in the following subsection.

C. k-Nearest Neighbor Topologies
The k-nearest neighbor platoon is a generalization of nearest

neighbor topology. For positive integers n, k ≥ 1 with n > k, a
k-nearest neighbor topology, denoted by P(n, k), is a network
comprised of n vehicles where each vehicle can communicate

with its k nearest neighbors. In bidirectional topology, each
vehicle communicates with its front k nearest neighbors and
its back and k nearest neighbors (k = 2 in Fig. 2(f)). In the
predecessor following topology, each vehicle receives data
only from its front k nearest neighbors (k = 2 in Fig. 2(g)).
Inspired from sensor networks, the value of k might depend
on the limited sensing and communication range for each
vehicle and the distance with the consecutive vehicles [1].
To formalize this point, it is convenient to look at P(n, k)
as a geometric graph [27], as discussed below.

Undirected k-Nearest Neighbor Topology as a Geometric
Graph: A one dimensional geometric graph Gn,ρ,l = (V, E)
is an undirected graph which is formed by placing n nodes
(based on some procedure) in a 1-dimensional region � =
[0, l]. The position of node vi ∈ V is denoted by x(i) ∈ �.
Nodes vi , v j ∈ V are connected by an edge if and only if
||xi − x j || ≤ ρ for some threshold ρ, where || · || is some
vector norm (usually the standard Euclidean norm).

Based on the above definition, a bidirectional k-nearest
neighbor topology can be seen as a geometric graph Gn,ρ,l with
ρ = lk

n−1 and placing the nodes as follows: the first node, v1,
is placed on one end of the line and the i -th node is placed
in distance (i−1)l

n−1 from v1.
Lemma 1: A k-nearest neighbor platoon P(n, k) with n ≥

2k−1 is a k-vertex and a k-edge connected graph, i.e., κ(G) =
e(G) = k.

Proof: We prove using contradiction. Suppose that the
k-nearest neighbor platoon is a �-vertex connected graph, with
� < k. Then, a minimum vertex cut Si j exists between two
vertices vi and v j in which |Si j | = �. We label the vertices
from vi to v j as vi , vi+1, . . . , v j . Since � < k, there is a vertex
v̄ among vi+1, . . . , vi+k (which are directly connected to vi )
which does not belong to Si j . By replacing vi with v̄ in the
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above discussion, we will find a path from vi to v j which
does not include vertices in Si j and this contradicts the claim
that Si j is a vertex cut. Hence P(n, k) is a k-vertex connected
graph. For the edge connectivity, we use (1) and considering
that for P(n, k) we have dmin = k. This completes the
proof.

Theorem 1: A k-nearest neighbor platoon P(n, k) with n ≥
2k − 1 is k-robust.

Proof: First, based on [26], we know that if n < 2k−1 the
graph is not k-robust even if it is a complete graph. Moreover,
for k ≤ 4 the graph with n = 2k − 1 nodes, if we label the
nodes as in Fig. 2, nodes k − 1, k, and k + 1 are connected
to all other nodes in the graph. We collect these three nodes
in set S. If we remove the nodes in set S and their incident
edges, the resulting graph remains connected. Hence, based
on Proposition 1 in [25], the graph with n = 2k − 1 nodes
is k-robust. Increasing the length of the platoon happens by
adding nodes, each with degree k, to the end of P(2k − 1, k).
Thus, based on Theorem 6 in [26], the graph remains k-robust.

For k, we use complete (strong) induction. We use k ≤ 4 as
the base of induction, i.e., P(n, k) with n = 2k − 1 nodes is
k-robust for k ≤ 4. We assume that for any k ≤ k̄, P(n, k) with
n ≥ 2k − 1 nodes is k-robust. We must show that P(n, k̄ + 1)
with n ≥ 2k̄ +1 nodes is k̄ +1-robust. We prove for n = 2(k̄ +
1)−1 = 2k̄ +1 and for n > 2k̄ +1, adding nodes with degree
k̄+1 just preserves the robustness. Similar to the case of k ≤ 4,
there exists set S = {vk−1, vk, vk+1} where each of these three
nodes is connected to all nodes in the graph. We choose (any)
two nodes from S, denoted by S̄ ⊂ S. We remove nodes in S̄
and their incident edges from P(2k̄ + 1, k̄ + 1) and introduce
P̄ = P \ S̄ as the graph of size 2k̄ − 1. Clearly, we can see P̄
as a (k̄ −1)-nearest neighbor platoon of size 2k̄ −1 with some
additional edges. If we remove nodes v1 and v2k̄−1 and their
incident edges from P̄ , it becomes P(2k̄ − 3, k̄ − 1) which
is, by induction assumption, (k̄ − 1)-robust. Hence, bringing
back the nodes v1 and v2k̄−1 preserves (k̄ − 1)-robustness of
P̄ . We use (k̄ −1)-robustness of P̄ to prove (k̄ +1)-robustness
of P(2k̄ + 1, k̄ + 1). Let S1 and S2 be two non-empty disjoint
subsets of nodes in P and |S1| < |S2|. We consider two cases:
(i) S1 ∩ S̄ 	= ∅: In this case, there exists v ∈ S1 ∩ S̄ and
we have |Nv \ S1| = 2k̄ − (|S1| − 1). Since 1 ≤ |S1| ≤ k̄,
we have |Nv \ S1| ≥ k̄ + 1. Thus, S1 is (k̄ + 1)-reachable.
(ii) S1 ∩ S̄ = ∅: In this case, S1 ⊂ P̄ . By design, each node
in P̄ , and consequently S1, is connected to both nodes in S̄.
Moreover, since P̄ is (k̄−1)-robust, then there is a node v ∈ S1
for which |Nv \ S1| = k̄ − 1 + 2 = k̄ + 1 which shows that S1
is (k̄ + 1)-reachable in P . This completes the proof.

Using (3), we present the following bounds on the algebraic
connectivity of bidirectional k-nearest neighbor platoons.

Proposition 3: Given a k-nearest neighbor platoon P(n, k)
its algebraic connectivity is bounded by

max

�
2k − n + 2,

k(k + 1)2

4n2

�
≤ λ2(L) ≤ 2k(k + 1)

n
. (4)

Proof: First we use bounds given in (3). For this,
we should calculate the isoperimetric constant in P(n, k) by
finding a set in P(n, k) which minimizes |∂S|

|S| with |S| ≤ n
2 .

A set which contains consecutive � n
2 � nodes, starting from

the head of the platoon, minimizes this function. Hence, the
isoperimetric constant will be i(G) = 1+2+...+k

� n
2 � = k(k+1)

2� n
2 � .

Substituting this value into (3) and considering the fact that
dmax ≤ 2k provides the upper bound and the lower bound
k(k+1)2

4n2 . The second lower bound comes from bound 2dmin −
n + 2 ≤ λ2(L) proposed in [28] and considering the fact that
dmin = k. The maximum over two lower bounds in (5) is due
to the fact that for certain values of k one of the lower bounds
is tighter than the other. For instance, for k ≤ n−2

2 the left
lower bound is zero or negative and the right lower bound
is tighter. However, for k = n − 1 the left lower bound is
tighter.

D. Ring Topologies

The topologies in Sects. III-A-III-C refer to vehicles running
on a line. In recent years, vehicle platoons running on a ring
have been studied, mostly motivated by the fact that perform-
ing experimental tests on a ring is easier than experiments on
a line [29], [30]. From the theoretical point of view, this poses
the interesting question on the generalizability of the results
obtained on ring topologies to line topologies. With this in
mind, in this paper we investigate the resilience of different
platoon topologies on a ring and compare the results with
the line topology. Similar to line topologies, we consider both
directed and undirected ring topologies, and their k-nearest
neighbor versions (Fig. 2(h)-(k)). According to [31], along
with Theorem 1, we have the following result.

Proposition 4: A bidirectional k-nearest neighbor ring
topology is 2k-connected and k-robust. Moreover, a directed
k-nearest neighbor ring is k-connected and at least
� k+2

4 �-robust.
As a counterpart of k-nearest neighbor platoon topology,

we have the following result for the algebraic connectivity of
k-nearest neighbor ring topology. The proof is the same as
that of Proposition 3 considering that for the ring topology
we have dmin = dmax = 2k and i(G) = 2k(k+1)

n .
Proposition 5: The algebraic connectivity of a k-nearest

neighbor ring platoon is bounded by

max

�
4k − n + 2,

k(k + 1)2

n2

�
≤ λ2(L) ≤ 4k(k + 1)

n
. (5)

The connectivity measures for different vehicle platoons
with bidirectional communication are summarized in Table I.

Remark 1 (Trade-Off Between Connectivity Measures):
According to the values in Table I, if k is sufficiently small,
i.e., k(k + 1) ≤ n

2 , the leader-to-all platoon has a larger
algebraic connectivity than k-nearest neighbor platoon. On the
other hand, for k > 2, the vertex connectivity of k-nearest
neighbor platoon is always larger than the leader-to-all
topology. Hence, there exists a trade-off in topology design
between vertex and algebraic connectivity. We will revisit
this trade-off later in Section IV.

IV. DISTRIBUTED ALGORITHMS ON PLATOONS

In this section, we show how the resilience properties
of distributed estimation and control algorithms for vehicle
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TABLE I

CONNECTIVITY MEASURES FOR DIFFERENT PLATOON TOPOLOGIES WITH BIDIRECTIONAL COMMUNICATIONS

platoons are intrinsically related to the connectivity measures
discussed in Section II.

A. H∞ Norm Approach to Resilient Network Formation

In formation control, each agent (vehicle) tries to keep
a safe distance from its neighbors. We denote the position
and velocity of vehicle vi by pi and ui , respectively. The
desired safe distance between two vehicles vi and v j is �i j

which should satisfy �i j = �ik + �kj for every triple
{vi , v j , vk} ⊂ V . Considering the fact that each vehicle vi has
access to its own position and velocity, as well as the positions
and velocities of its neighbors, and the desired inter-vehicular
distances �i j , the control law for vehicle vi is [16]

p̈i(t) =
�
j∈Ni

k p
	

p j (t) − pi(t) + �i j



+ ku
	
u j (t) − ui (t)


 + wi (t), (6)

where kp, ku > 0 are control gains and wi (t) models commu-
nication disturbances.1 Dynamics (6) in matrix form become

ẋ(t) =
�

0n In

−k p L −ku L

�

 �� �

A

x(t) +
�

0n×1

k p�

�

 �� �

B

+
�

0n

I

�

 �� �

F

w(t), (7)

where x = [P Ṗ]T = [p1, p2, . . . , pn, ṗ1, ṗ2, . . . , ṗn]T,
w(t) = [w1, w2, . . . , wn]T � = [�1,�2, . . . ,�n]T in which
�i = �

j∈Ni
�i j . The objective is to quantify the impact of

the external disturbances w on the distances between consec-
utive vehicles. To do this, an appropriate output measurement
y = BTP is chosen, where B ∈ Rn×|E | is the incidence matrix
associated with the network and P = [p1, p2, . . . , pn]T. With
this output, we have the distance between neighbor vehicles,
i.e., yi j = pi − p j , as a measurement. The sensitivity of this
measured output to disturbances is captured by an appropriate
system norm. We choose the system H∞ norm which repre-
sents the worst case amplification of the disturbances over all
frequencies. This system norm is widely used in disturbance
rejection in vehicle platoons [32].

Theorem 2: The system H∞ norm of (7) from the external
disturbances w(t) to y = BTP is

||G||∞ =

⎧⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎩

2

kuλ2(L)
�

4k p − k2
uλ2(L)

, if
λ2(L)k2

u

2k p
≤ 1,

1

k pλ
1
2
2 (L)

otherwise,
(8)

1It can also be a model of a failure or intrusion in inter-vehicular
communication.

where λ2(L) is the algebraic connectivity of the underlying
platoon topology.

Proof: First we show that the system H∞ norms of (7)
from disturbance w to performance outputs y = BTP and

y = L
1
2 P are the same. For the output measurement y = BTP

we have G∗G = FT(s∗ I−A)−TBBT(s I−A)−1 F = FT(s∗ I−
A)−TL(s I − A)−1 F . As system H∞ norm is a function of the
spectrum of G∗G, identical results will be obtained as if one
used y = L

1
2 P instead of y = BTP. Hence, it is sufficient to

find the system H∞ norm of (7) from disturbances to y =
L

1
2 P. Let 	 = V T LV be the eigendecomposition of L, where

V may be taken to be orthogonal. Consider the invertible
change of states x̃ = (V Tx, V T ẋ). Then, a straightforward
computation shows that

˙̃x =
�

0 In

−k p	 −ku	

�
x̃ +

�
0

V T

�
w

y =
�

L
1
2 V 0

�
x̃ . (9)

The model (9) has the same transfer function as (7), and hence
the same system norm. Now consider an input/output transfor-
mation on (9), where ȳ = V Ty and w̄ = V Tw , knowing the
fact that such input/output transformation preserves the system
H∞ norm [33]. Hence, the transformed system

˙̃x =
�

0 In

−k p	 −ku	

�
x̃ +

⎡
⎣ 0

V TV
 �� �
=In

⎤
⎦ w̄

ȳ =
�

V T L
1
2 V 0

�

 �� �

=
�
	

1
2 0

�
x̃ (10)

has the same system norm as (9). The system (10) is comprised
of n decoupled subsystems, each of the form

˙̃xi =
�

0 1
−k pλi −kuλi

�
x̃i +

�
0
1

�
w̄i

ȳi =
�

λ
1
2
i 0

�
x̃i , (11)

with transfer functions

G̃i (s) = λ
1
2
i

s2 + kuλi s + k pλi
, i ∈ {1, . . . , n} ,

which gives G̃1(s) = 0. For i ∈ {2, . . . , n}, we have

|G̃i ( jω)|2 = G̃i (− jω)G̃i( jω) = λi

(k pλi − ω2)2 + k2
uλ2

i ω
2
 �� �

f (ω)

.
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Maximizing |G̃i ( jω)|2 with respect to ω is equivalent to

minimizing f (ω). By setting d f (ω)
dω = 0 we get ω̄1 = 0

and ω̄2 = (k pλi − 1
2 k2

uλ2
i )

1
2 as critical points. Here ω̄2 is the

global minimizer of f (ω), unless k2
uλi

2kp
> 1. Substituting these

critical values back into the formula for |G̃i ( jω)|2, we find
for i ∈ {2, . . . , n} that

||G̃i ||∞ =

⎧⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎩

2

kuλi

�
4k p − k2

uλi

, if
λi k2

u

2k p
≤ 1,

1

k pλ
1
2
i

otherwise.
(12)

Since 0 < λ2 ≤ λ3 ≤ · · · ≤ λn and ||G̃i ||∞ is a monotonically
decreasing function of λi , the result follows.

In leader-tracking situations, in addition to keeping safe
distance from neighbor vehicles, each vehicle should follow
the speed ṗ1(t) of the leading vehicle in the platoon, which is
unaffected by the other vehicles. Hence, the graph Laplacian
matrix L in (7) must be replaced by the grounded Laplacian
matrix Lg in which the row and the column corresponding to
the leader is removed. This matrix is positive definite [34] and
the resulting H∞ norm (13) turns out to be

||G||∞ =

⎧⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎩

2

kuλ1(Lg)
�

4k p−k2
uλ1(Lg)

, if
λ1(Lg)k2

u

2k p
≤1,

1

k pλ1(Lg)
1
2

otherwise.

(13)

The smallest eigenvalue of the grounded Laplacian matrix is
an indicator of how well-connected the leader is to the rest
of the network [9]. It is shown that λ1(Lg) ≤ d�

n−1 , where
d� is the degree of the leader vehicle. Similar to λ2(L), the
eigenvalue λ1(Lg) is an increasing function of edge addition,
i.e. it increases by increasing the network connectivity. The
upper bound is attained for the leader-to-all platoon.

Discussion of the Results: Based on the graph-theoretic
bounds presented in (5), undirected nearest neighbor platoon
topologies (k = 1) do not perform well in disturbance
rejection. However, as the network connectivity increases,
e.g., k-nearest neighbor platoons for k > 1, the H∞ norm
decreases and the system becomes more robust. In Fig. 3 (a)
the H∞ norm for leader-to-all topology is shown and in
Fig. 3 (b) the system norms for 1 and 2-nearest neighbor
platoon are depicted (for k p = 5 and ku = 10). Based on these
simulations, the leader-to-all topology is more robust than
k-nearest neighbor, because each vehicle is directly connected
to the leader and uses the information from the leader directly.
This is what we expect to see based on Remark 1 which
indicated that the leader-to-all topology has a larger algebraic
connectivity compared to the k-nearest neighbor topology.

As mentioned before, for platoons with directed com-
munications a closed form expression for H∞ norms does
not exist. Fig. 4 shows the positive impact of the network
connectivity on the robustness of the platoon with directed
communications. As shown in Fig. 4(a), the H∞ norm of the

Fig. 3. H∞ norms of platoons with bidirectional links: (a) leader-to-all
topology and (b) k-nearest neighbor topology.

Fig. 4. H∞ norms of platoons with directed links: (a) leader-to-all topology
and (b) k-nearest neighbor topology.

leader-to-all topology with directed communication is larger
than the nearest neighbor (k = 1), Fig. 4(b). This is because,
unlike bidirectional communications, increasing the connectiv-
ity of directed communications does not always increase the
robustness. This phenomenon was observed for the first time
in [35], which also gives conditions under which increasing the
connectivity in directed networks yields increased robustness.

Remark 2 (Convergence Rate): The network topology also
has a direct impact on the convergence rate of the distributed
algorithms. In particular, for the control policy (7), the
convergence rate is determined by the eigenvalue of A with
the largest real part (i.e., smallest in magnitude). It can be
easily shown that this eigenvalue is a function of the algebraic
connectivity, i.e., λ2(L) [36]. Hence, our results on the influ-
ence of platoon topology on λ2(L) can be readily applied to
the convergence rate of the distributed control algorithm.

B. Resilient Distributed Calculation

In distributed calculation, each agent (here vehicle) in the
network tries to retrieve (unavailable) quantities of all other
agents via incomplete local measurements and cooperation
with nearby agents. It has applications to multi-agent robotics
and vehicular networks, specifically in fault detection [37].

The quantity that each vehicle tries to calculate from all
other vehicles in the network can be a kinematic state (e.g.,
speed of other vehicles) or some spatial parameter, (e.g., road
condition). For vehicle v j , this quantity is denoted by the
scalar state x j [0]. The objective is to enable any vehicle vi

(which is not necessarily a neighbor of v j ) to calculate this
value. To do this, vehicle vi follows an updating rule (using
its own and its neighbors’ states) as

xi [k + 1] = wii xi [k] +
�
j∈Ni

wi j x j [k] , (14)
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where wii , wi j > 0 are some communication weights. Along
with (14), vi has direct access to its own state and those of
its neighbors, i.e.,

yi [k] = Ci x[k]. (15)

Here, Ci is a (di + 1) × n matrix with a single 1 in each row
that denotes the elements of the state x[k] available to vi (i.e.,
positions correspond to vehicles that are neighbors of vi , along
with vehicle vi itself). Let us now consider the faulty case
when some vehicles fail to communicate with their neighbors
in the prescribed way, i.e., they do not follow dynamics (14) to
update their value. These faults are modeled by additive terms
in the updating rule. Specifically, at some time step k, vehicle
vi updates its state different from (14) and adds an arbitrary
value φi [k] to its updating policy. Hence, (14) becomes

xi [k + 1] = wii xi [k] +
�
j∈Ni

wi j x j [k] + φi [k]. (16)

If there are f of those faulty vehicles, for some f ∈ N, the
update (16) takes the following vector form

x[k + 1] = Wx[k] + [ei1 ei2 . . . ei f ]
 �� �
A

φ[k], (17)

where x = (x1, . . . , xn)T, W ∈ Rn×n is the matrix of commu-
nication weights wi j , and φ[k] = [φ1[k], φ2[k], . . . , φ f [k]]T.
Here, ei is the i th unit vector of the canonical basis. However,
as the j -th faulty vehicle is not necessarily the j -th vehicle in
the network, we use ei j to denote its vector in A. The exact
number and the arrangement of faulty vehicles in the network
is unknown to all vehicles (hence, matrix A is unknown).
However, each vehicle knows an upper bound f for the
number of faulty vehicles.

The following theorem provides a condition which ensures
each vehicle to calculate the true quantity x j [0] of all other
vehicles in the network, despite of the presence of a limited
number of faulty vehicles. The algorithm design procedure is
known in the literature and omitted here. See [38] for details.

Theorem 3 ([38]): Let G be a network and let f denote the
maximum number of faulty vehicles. Then, regardless of the
actions of the faulty vehicles, vi can determine all of the initial
values of linear iterative strategy (17) for almost2 any choice
of weights in the matrix W if G is at least (2 f + 1)-vertex
connected.

Discussion of the Results: Based on the above theorem,
in case of a single failure, the platoon must be at least
3-connected to be able to perform the distributed calculation
properly. Such a level of connectivity can not be found in near-
est neighbor topologies and leader-to-all topologies. However,
via using k-nearest neighbor platoons, one can perform the
distributed calculation despite the existence of up to � k−1

2 �
faulty vehicles. For the k-nearest neighbor platoon on a ring,
as the connectivity is twice of the k-nearest neighbor on a
line, one can perform the distributed calculation despite the
existence of up to k faulty vehicles.

2The almost in Theorem 3 is due to the fact that the set of parameters for
which the system is not observable has Lebesgue measure zero [39].

C. Resilient Distributed Consensus

In distributed consensus, vehicles try to reach to an agree-
ment on a value, e.g., velocity or some spatio-temporal
parameter, e.g., the road condition. Similar to distributed
calculation algorithm, we expect the distributed consensus
to operate reliably despite the existence of some fault or
an adversarial action. The adversary’s objective is usually to
deviate the steady-state value from the consensus. With this in
mind, the objective of the resilient consensus algorithm is to
filter out the extreme values generated by adversaries such that
the states of the vehicles remain in a safe region, i.e., inside
the convex hull of initial conditions. We denote the state of
vehicle vi by xi [k]. To yield this goal, an iteration policy,
called Mean-Subsequence-Reduced (MSR) [11], is proposed.
The details of MSR algorithm are discussed below.

MSR Algorithm: At each time step, every node knows an
upper bound of the number of faulty vehicles, f ∈ N, and
ignores the largest and smallest f values in its neighborhood
(2 f in total) and updates its state to be a weighted average of
the remaining values. More formally, this yields

x j [k + 1] = w j j x j [k] +
�

p∈N j [k]
w j px p[k], (18)

where N j [k] is the set of vehicles which are the neighbors of
vehicle j and are not ignored at time step k.

In particular, if there exist f faulty vehicles, the dynamics is
similar to (14), except the following two additional restrictions
on matrix W :

• w j p > 0, ∀v p ∈ N j [k] ∪ {v j }, v j ∈ V ,
•

�
p∈N j [k]∪{v j } w j p = 1, ∀v j ∈ V .

Denoting the maximum and minimum values of the normal
vehicles at time-step k as M[k] and m[k], respectively, we have
the following definition.

Definition 1 ( f -Local Safe): The MSR algorithm is
f -local safe if the states of all normal (not-faulty) nodes are
always in the range

�
m[0], M[0]� despite the actions of f

faulty (or adversarial) nodes.
Compared to the distributed calculation discussed in

Section IV-B, distributed consensus requires r-robustness
which a stronger notion of network connectivity as discussed
in Section II. The following theorem provides necessary and
sufficient conditions for MSR algorithm (18) to be f -local
safe despite of the actions of faulty vehicles in the network.

Theorem 4: The MSR algorithm is f -local safe if the net-
work G is (2 f + 1)-robust. Furthermore, for any f > 0, there
exists a 2 f -robust network which fails to reach consensus
using the MSR algorithm with parameter 2 f .

Remark 3 Distributed Calculation vs. Distributed Consen-
sus: In the distributed calculation algorithm discussed in
Sect. IV-B, the objective is to find the initial state of all
vehicles in the platoon. These initial conditions can be used
to calculate the exact consensus (average) value. However,
the algorithm is combinatorial and hard to solve in general.
The resilient distributed consensus provides a simpler and
computationally efficient algorithm to reach to agreement.
However, the cost to be payed is that the exact average value

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 13:56:16 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PIRANI et al.: IMPACT OF NETWORK TOPOLOGY ON RESILIENCE OF VEHICLE PLATOONS 9

Fig. 5. A 3-nearest neighbor platoon of five vehicles with one faulty vehicle,
plot (a), and two faulty vehicles, plot (b). The value of x[k] here is the speed
of each vehicle.

may not be reached and the consensus value is only guaranteed
to be in the convex hull of initial conditions.

Discussion of the Results: According to Theorem 4, the
platoon must be at least 3-robust in order to tolerate a
single faulty vehicle in distributed consensus. Such a level of
robustness does not exists in nearest neighbor and leader-to-
all topologies. However, for k-nearest neighbor platoons (for
both line and ring topologies) the network structure allows
us to perform the distributed consensus, even if there are up
to � k−1

2 � faulty vehicles. A simulation example is shown in
Fig. 5, where a platoon of 5 vehicles is trying to reach a
distributed consensus on the velocity. The platoon is connected
according to a 3-nearest neighbor topology. In Fig. 5(a) there is
only a single faulty vehicle. The normal (non-faulty) vehicles
can calculate the consensus velocity despite the existence of
the faulty vehicle. For the same topology, when we increase
the number of faulty vehicles to 2 (Fig. 5(b)), the vehicles can
no longer calculate the consensus value correctly.

D. Anomaly Detection

Let xi [k] be the state of each vehicle which is used in a
certain distributed algorithm, e.g., distributed calculation or
consensus discussed in the previous sections. As discussed
before, the attack or fault is modeled as an additive term
to the updating rule of each vehicle. Note that we consider
attacks in the application layer in this study. Attacks in the
network layer require considering probabilistic packet losses.
The objective of anomaly detection is to detect faults or
attacks applied to some distributed algorithm. In order to
detect the attacks, a centralized detector works using sensor

measurements. There are few vehicles which are equipped
with some sensors dedicated to detect anomalies.3 We assume
that centralized detector observes sensor measurements y[k]
and is aware of matrices W in (17) and the output matrix
C which is a binary matrix with single 1 in its i -th column
if state xi is measured. However, the detector is unaware of
A in (17), i.e., the attacker’s strategy. The detector uses the
following linear filter [12]

x̂[k + 1] = (W − K CW)x̂[k] + K y[k + 1],
z[k] = y[k] − CW x̂[k − 1], (19)

where z[k] is called the residue. The gain K is designed such
that W − K CW is Schur stable. This residue signal is an
indicator of an anomaly in the system. If the residues under
normal operation and during an attack are the same, then an
attack is called perfect. In this case, the centralized detector
can not distinguish an attack from normal operation. In the
coming result, we provide an algebraic interpretation of perfect
attacks.

Definition 2: The generic normal rank of the matrix pencil

P(z) =
�

A−zIn BF

C 0

�
,

is the maximum rank of the matrix over all choices of free
(nonzero) parameters in (A, BF , C) and z ∈ C.
It is shown in that for a set of f attacked nodes, a perfect
attack is equivalent to having rank P(z) < n + f [40]. The
following result characterizes the generic normal rank of P(z)
in terms of the graph G.

Theorem 5 ([12], [41]): The generic normal rank of the
matrix pencil P(z) is equal to n + r , where r is the size of
the largest linking in G from the attacked nodes (vehicles) to
the nodes with sensors.

Theorem 5 implies that to prevent perfect attacks, parameter
r has to be equal to the number of attacks f . Due to the fact
that the attacked set is not known to the detector, there must be
an f -linking from the set of vehicles with dedicated sensors
to any other set of size f in the network. This is equivalent to
have an f -connected graph. This fact is formally stated below.

Corollary 1: If the underlying graph is f -connected, then
the linear filter (19) can detect any set of f attacks on the
vehicle platoon.

Discussion of the Results: Consider a k-nearest neighbor
platoon with bidirectional communications. As the graph is
k-connected, by placing sensors on any set of k vehicles in
the network, there exists a linking of size k from any set of
attacked vehicles to the sensors. Thus, any set of k attacks
can be detected. Now consider k-nearest neighbor platoon with
directed communications. This graph is no longer k-connected.
However, by placing sensors on the last k vehicles in the
platoon, as shown in Fig. 6 (bottom), there exists a linking
of size k which connects any set of attacked vehicles to the
sensors, i.e., any combination of k attacks can be detected.

3They are different from sensors used for the state estimation, i.e. (15).
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Fig. 6. Sensor placement on bidirectional (top) and directed (bottom)
2-nearest neighbor platoons for attach detection.

Fig. 7. H∞ norm for bidirectional ring and line topologies.

V. SIMULATIONS

In this section, we present additional simulations to validate
the theoretical results in the paper. In particular, we show
how different platoon topologies exhibit different levels of
resilience against adversaries.

According to Table I, k-nearest neighbor ring topology
has a larger algebraic connectivity compared to k-nearest
neighbor topology. Thus, it is expected that the k-nearest
neighbor platoon on a ring shows a better H∞ performance in
formation control algorithms. Fig. 7 shows the H∞ norm for
k-nearest neighbor ring and line topologies with bidirectional
communication and for different values of k. The feedback
gains used are kp = 15 and ku = 20. According to this
figure, by increasing the connectivity, k, the system H∞
norm decreases, i.e., the platoon becomes more robust to
disturbances. Moreover, since the ring topology has larger
algebraic connectivity, it exhibits a better H∞ performance,
compared to the line.

Remark 4 (Considerations in Using Ring Topologies): In
many experimental tests it is claimed that platoons on a ring
can represent an approximation of line platoons. However,
from the above observations we conclude that the H∞
performance of the ring topology is an over-estimation of
that of the line topology. Hence, extending the results on the
H∞ performance from the platoons on a ring to platoons on
a line requires further subtleties.

Fig. 8 shows the H∞ performance of the formation control
on unidirectional k-nearest neighbor ring and line platoons.
An important observation is that, unlike bidirectional topolo-
gies, the unidirectional line topology exhibits smaller H∞
norm, i.e., better performance, compared to the ring topology.
The above observation confirms the theoretical result in [35]
in which directed cycles deteriorate the H∞ performance in

Fig. 8. H∞ norm for unidirectional ring and line topologies.

Fig. 9. State trajectories of a 3-nearest neighbor platoon on a ring with a
single faulty vehicle (top) and two faulty vehicles (bottom).

consensus dynamics. Physically, this phenomenon is explained
by the fact that a disturbance can circulate continuously along
directed cycles which results in its propagation in the network,
while in a directed line this phenomenon does not happen.

Next simulations show the resilience of the consensus
dynamics on ring topology. As shown in Fig. 9, the resilience
of a 3-nearest neighbor platoon on a ring is similar to that
of the line topology, i.e., Fig. 5. This supports the results of
Table I, showing that despite the ring topology has a larger
vertex connectivity and algebraic connectivity compared to the
line topology, they have identical network robustness. Hence,
a takeaway message is that ring and line topologies show the
same levels of resilience to attacks in distributed consensus.

VI. CONCLUSION

This paper presented a comprehensive study on the impact
of platoon topologies on the resilience of classes of distributed
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algorithms. We studied connectivity measures of various pla-
toon topologies and showed how these measures affect the
ability of distributed algorithms to reject communication dis-
turbances, to detect cyber-attacks, and to be resilient against
them. We showed that traditional platoon topologies relying
on interaction with the nearest neighbor are very fragile with
respect to performance and security criteria. We analyzed the
ability of k-nearest neighbor platoons to fulfill desired security
and performance levels. The framework we studied covers
undirected and directed topologies, ungrounded and grounded
topologies, line and ring topologies. We also discussed the
trade-off in the network design between the robustness to
disturbances and the resilience to adversarial actions.

Most of the graph-theoretic conditions discussed in this
paper to overcome faulty vehicles in distributed algorithms
demand higher network connectivity. However, in real-world
ad-hoc networks, it is desired the topology to be sparse,
with low connectivity. Modifying the distributed algorithms
mentioned in the paper to be resilient against failures on sparse
networks is therefore a relevant future research line.

Most results in the paper are independent on the vehicle
model and on the control strategy since they are based on
connectivity measures. The exception is the H∞ control
part. With respect to the vehicle model, we notice that the
analysis done for second-order vehicle dynamics is amenable
to higher-order vehicle models. For instance, we can treat
the third-order vehicle model (a double integrator with a first
order filter representing the driveline dynamics) as a perturbed
version of the double integrator. The rationale is that the
driveline time constant is in practice uncertain. By doing this,
the proposed H∞ performance can be intended as robustness
to uncertain driveline dynamics. With respect to control strate-
gies, we notice that the use of a linear control law allow
us to derive an analytic form of the robustness bounds. The
use of alternative control laws proposed in the literature, e.g.
model predictive control (MPC), sliding mode or adaptive
control, will usually require to evaluate such robustness bounds
numerically, rather than analytically. Therefore, extensions of
our robustness bounds to other control algorithms, specifically
decentralized MPC [42], is another relevant future direction.
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