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a b s t r a c t

In this work, a model was developed to predict the performance of a bubble column reactor for syngas
fermentation and the subsequent recovery of anhydrous ethanol. The model was embedded in an opti-
mization framework which employs surrogate models (artificial neural networks) and multi-objective
genetic algorithm to optimize different process conditions and design variables with objectives related
to investment, minimum selling price, energy efficiency and bioreactor productivity. The results indicate
the optimal trade-offs between these objectives while providing a range of solutions such that, if desired,
a single solution can be picked, depending on the priority conferred to different process targets. The
Pareto-optimal values of the decision variables were discussed for different case studies with and without
the recovery unit. It was shown that enhancing the gas-liquid mass transfer coefficient is a key strategy
toward sustainability improvement.
� 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Biofuels are one of the possible means to reduce CO2 emissions
in transportation, a sector responsible for roughly 25% of global
greenhouse gas (GHG) emissions in 2016 (IEA, 2019). However,
the rapid expansion of 1st generation biofuels (i.e. those produced
from food crops) has also been associated with impacts that were
initially neglected or unforeseen, such as deforestation, indirect
land use change, and significant GHG emissions during agricultural
stages (Goldemberg et al., 2008). Lignocellulosic or 2nd generation
biofuels have the potential to minimize these impacts by using
waste carbon materials such as agricultural residues, forestry
waste and marginal land (energy) crops. Yet, despite large efforts
towards commercialization, most of these production pathways
face technical challenges that are inherent to emerging technolo-
gies. An alternative path to biofuels and the object of this work is
syngas fermentation, the microbial conversion of CO/H2/CO2 to
ethanol and potentially other chemicals using facultative auto-
trophic bacteria called acetogens. Since syngas can be produced
via gasification of multiple types of feedstocks – including even
municipal solid waste –, this process is considered a promising
and flexible alternative to biochemical routes that rely on the lib-
eration of sugars from lignocellulosic biomass. Moreover, it also
constitutes a valorization pathway for works arising gases (WAG)
from steel production containing large amounts of CO, as demon-
strated by the increasing number of commercial projects led by
LanzaTech and partners in the past years (ArcelorMittal, 2019;
Biofuels Digest, 2019; Renewables Now, 2018).

In order to upgrade the technology readiness level (TRL) and
achieve full commercialization, not only scaling-up technical
issues need to be resolved, but the process also needs to be boosted
at different levels, for example: improving gas-liquid mass transfer
through better reactor design; genetically engineering bacteria;
adjusting the gasification process to deliver syngas with favorable
composition; reducing energy use in the product recovery unit;
and tuning the process conditions at all units simultaneously to
approach overall optimal operation. Most published research about
syngas fermentation has focused on running experiments to test
the capabilities of different strains and reactor configurations,
and to study the effects of changing nutritional composition of
the liquid medium as well as the pH, such as done by Abubackar
et al. (2015). Many studies have also tried to elucidate the metabo-
lism of these microbes so that yield and selectivity of the desired
product (usually ethanol) can be improved (Richter et al., 2016).
On the other hand, studies about modeling, simulation and opti-
mization are still limited, despite being of paramount importance
for the evaluation of feasibility and comprehension of these sys-
tems. A few recent works have discussed results obtained with
simulations using Aspen plus, such as de Medeiros et al. (2017),
of eco-
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Nomenclature

Greek symbols
c liquid phase activity coefficient
eG gas hold-up
g thermodynamic efficiency
l biomass growth rate [h�1]
mi consumption or production rate of component i

[mol�g�1�h�1]
qL mass density of liquid [kg�m�3]

Roman symbols
a bubble column operation mode (1 for concurrent, �1

countercurrent)
AE anhydrous ethanol
ANN artificial neural network
AR vessel aspect ratio (BCR)
BCR bubble column reactor
CG,i, CL,i concentration of component i (gas or liquid phase)

[mol�m�3 or g�L�1]
C*G,i, C*L,i Saturation concentration of component i (gas or liquid

phase) [mol�m�3]
CL,X concentration of cells in the broth [g�L�1]
COL, CRM, CUT, CWT costs of operating labor, raw materials, utilities

and waste treatment [$/year]
CBM, CTM mare module cost, total module cost [$]
COMd manufacturing costs excluding depreciation costs
C0
p purchase cost of equipment at base conditions

dC vessel diameter (BCR) [m]
D:F mass ratio distillate stream to feed stream
Dfi diffusivity coefficient of component i in water [cm2�s�1]
DL axial dispersion coefficient [m2�h�1]
Drate dilution rate in the BCR [h�1]
DV decision variable

EtOH ethanol
FBM bare module cost factor
FST feed stage (T-01 or T-02)
GRR gas recycle ratio (BCR)
GRT gas residence time at the bottom of the reactor [min]
Hi Henry’s law constant of component i in water [Pa]
HAc acetic acid
HMT high mass transfer (case study)
kd cell death rate [h�1]
kLa volumetric mass transfer coefficient [h�1]
KT temperature adjustment coefficient for kLa
L length of vessel (BCR) [m]
LHV lower heating value [MJ�kg�1 or MJ�kmol�1]
ṁ mass flow rate [kg�h�1 or kg�year�1]
MESP minimum ethanol selling price [$�L�1]
MML million liters
MML molar mass liquid phase [g�mol�1]
MOGA multi-objective genetic algorithm
ṅMT mass transfer rate [mol�m�3�h�1]
NST number of stages (T-01 or T-02)
OF objective function
Psat,i vapor pressure of component i [Pa]
QG, QL volumetric flow rate of gas or liquid in the BCR [m3�h�1]
R gas constant = 8.314 J�mol�1�K�1

RR molar reflux ratio (T-01 or T-02)
S:F mass ratio side stream to feed stream
T temperature [�C or K]
uG, uL gas or liquid superficial velocity [m�h�1]
VL volume of liquid (BCR) [m3]
VR volume of reactor vessel (BCR) [m3]
Xi gas conversion (BCR), i = CO, H2

XP cell purge fraction (BCR)
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Benalcázar et al. (2017), Pardo-Planas et al. (2017) and Roy et al.
(2015). Though these studies look at the whole process from feed-
stock (biomass) to ethanol and provide meaningful estimates of
process performance in different domains (technical, economic
and environmental), the process conditions were mostly fixed or
in some cases changed through univariate sensitivity analysis,
and simulation of the bioreactor was based on strong assumptions
and simplifications with limited connection to the operating condi-
tions. In a previous study (de Medeiros et al., 2019), we discussed
the contributions of more elaborate bioreactor models developed
by other authors and presented the model of a dynamic continuous
stirred tank (CSTR), demonstrating its application for sensitivity
analysis and technical optimization. In the present work, we
extended the CSTR model to a bubble column reactor model
(BCR) with distribution of key process variables in time and space,
and employed it in the optimization of operating (e.g. dilution rate)
and design (e.g. reactor size) variables considering different objec-
tives in parallel, both technical and economic. The BCR model was
first considered standalone and subsequently integrated with the
distillation unit, whose input was concurrently optimized. The
contributions of this paper can be summarized as follows:

(i) Development of a spatial dynamic model of a bubble column
reactor (BCR) for syngas fermentation considering kinetics of
cell growth and death, mixed product formation and acetic
acid re-assimilation.

(ii) Application of artificial neural networks as surrogate models
for two types of intricate models: BCR model and distillation
model (nonlinear system of MESH equations – material-equi
librium-summation-enthalpy – solved in Aspen Plus).
Please cite this article as: E. M. de Medeiros, H. Noorman, R. Maciel Filho et al.
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(iii) Development of a multi-objective optimization framework
for the integrated process of anhydrous ethanol production
from syngas via fermentation and distillation.

(iv) Evaluation of Pareto-optimal solutions for the most impor-
tant input variables of the system, in terms of economic per-
formance, thermodynamic efficiency and productivity.

2. Methodology

2.1. Process overview

Fig. 1 presents the conceptual process flowsheet to produce
anhydrous ethanol from syngas, which consists of three main unit
operations: (i) the syngas bioreactor (R-01); ethanol distillation (T-
01 and T-02) to achieve azeotropic composition (also called
hydrous ethanol); (iii) ethanol dehydration in molecular sieves
(T-04 and T-05) to achieve 99.5% ethanol. There is also a vent
scrubber (T-03) to recover any ethanol present in CO2 off-gases.
Three main types of stream are recycled to the bioreactor: (i) water
from the distillation bottoms and the scrubber; (ii) unconverted
syngas; and (iii) microbial cells. Sections 2.2 and 2.3 lay out the
methodology for process design and modeling of the two main
blocks of the process: fermentation and product recovery.

2.2. Model of syngas fermentation in bubble column reactor (BCR)

The syngas bioreactor consists of a bubble column where syn-
gas enters at the bottom and off-gas leaves from the top, a fraction
of it being recycled back to the bottom after compression and cool-
ing. Liquid flows continually in and out of the reactor and a fraction
, Production of ethanol fuel via syngas fermentation: Optimization of eco-
tps://doi.org/10.1016/j.cesx.2020.100056
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Fig. 1. Simplified PFD of anhydrous ethanol production from syngas. C-01: gas compressor; E-01 to E-09: heat exchangers; MF-01: microfiltration membrane; R-01: syngas
bubble column reactor; T-01 and T-02: distillation columns; T-03: vent scrubber; T-04 and T-05: adsorption and regeneration columns.
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of bacterial cells are recycled after separation from the products in
a microfiltration membrane. In the reactor, cells are dispersed in
the liquid phase, where they consume CO, H2 and CO2 and produce
ethanol, acetic acid and CO2. The latter is both a product from the
oxidation of CO and a source of carbon in the reaction with H2,
therefore its consumption or production rate will depend on the
availability of the other two molecules.

Similar models for this process with spatiotemporal distribu-
tion have been presented by Chen et al. (2018) and Li et al.
(2019), the main difference being the method to calculate the con-
sumption/production rates of components which in their works
was done via Flux Balance Analysis (FBA) while in the present
study we employ the microbial kinetics developed in our previous
work (de Medeiros et al., 2019). Moreover, the procedure to esti-
mate the gas velocity profile and hydrodynamic parameters (as-
sumed constant by Chen et al. (2018)) is different. FBA is a
powerful tool for the comprehension of cell metabolism, enabling
for example in silico simulations about the effects of gene deletion
and knockout; however, it also adds a significant amount of com-
plexity to the model with the inclusion of a linear programming
problem that must be solved during the integration of the ODEs.
Furthermore it requires the definition of an objective function
(e.g. maximizing the biomass growth rate) and flux bounds which
are not always known and might not be constant during the pro-
cess. The kinetic model used in this work, on the other hand, is
based on global reactions for the consumption of gases and forma-
tion of products, embedding parameters that were previously esti-
mated with experimental data.

The BCR was described here with the axial dispersion model of
Deckwer (1992), considering the following assumptions: (i)
isothermal operation at T = 37 �C; (ii) axial dispersion considered
in the liquid phase but neglected in the gas phase; (iii) the pressure
profile is calculated from the liquid head; (iv) biochemical reac-
tions occur in the liquid phase with rates depending on the concen-
trations of the components; (v) gas velocity changes along the
column as the gas shrinks due to microbial conversion or expands
due to pressure reduction; (vi) hydrodynamic parameters are a
function of the gas superficial velocity assuming heterogeneous
flow in air-water systems. In total 13 state variables are distributed
in space: the concentrations [mol�m�3] of six chemical species in
Please cite this article as: E. M. de Medeiros, H. Noorman, R. Maciel Filho et al.
nomic performance and energy efficiency, Chemical Engineering Science: X, ht
the gas and in the liquid, i.e. CG,i and CL,i where i = CO, H2, CO2, etha-
nol (EtOH), acid acid (HAc), and H2O; and the concentration of cells
in the liquid CL,X [g�m�3]. Eqs. (1)–(3) summarize the governing
partial differential equations (PDEs) which are completed by the
algebraic equations for the calculation of mass transfer rates (Eq.
(4)) and cell kinetics. For the latter, the variables mi (production/-
consumption rates), l (cell growth rate) and kd (cell death rate)
are calculated or specified as explained in de Medeiros et al.
(2019), at each discrete point of the system. The physical proper-
ties Hi, Psat,i and ci can also be found in de Medeiros et al. (2019).
In Eqs. (2) and (3), a = 1 if the column is operating concurrently
and a = �1 otherwise. For the optimizations in the present work,
the latter is adopted.

@CG;i

@t
¼ �uG

eG
� @CG;i

@x
� CG;i

eG
� @uG

@x
� _nMT

eG
ð1Þ
@CL;i

@t
¼ � auL

1� eGð Þ �
@CL;i

@x
þ DL

@2CL;i

@x2
þ _nMT

1� eGð Þ þ miCL;X ð2Þ
@CL;X

@t
¼ � auL

1� eGð Þ �
@CL;i

@x
þ DL

@2CL;i

@x2
þ l� kdð ÞCL;X ð3Þ
_nMT ¼ kLai C�
L;i � CL;i

� �
; C�

L;i ¼
CG;i

mi
; mi ¼ Hi �MML

R � T � qL
; i

¼ CO;H2;CO2 ð4aÞ
_nMT ¼ �kLai C�
G;i � CG;i

� �
; C�

G;i ¼
CL;i

mi
; mi ¼ qL � R � T

MML � ci � Psat;i
i

¼ EtOH;HAc;H2O ð4bÞ
The gas hold-up eG and the volumetric mass transfer coefficient

kLa [h�1] were calculated from the correlations by Heijnen and
van’t Riet (1984), adapted in Eqs. (5) and (6), where uG [m�h�1] is
the gas superficial velocity. In Eq. (6), the first term between brack-
ets is the kLa for air in water at 20 �C, which is adjusted to compo-
nent i using the diffusivity coefficient Dfi, and to the reactor
temperature by means of the coefficient KT = (1.024)(T�20) = 1.5
, Production of ethanol fuel via syngas fermentation: Optimization of eco-
tps://doi.org/10.1016/j.cesx.2020.100056

https://doi.org/10.1016/j.cesx.2020.100056


4 E.M. de Medeiros et al. / Chemical Engineering Science: X xxx (xxxx) xxx
(Heijnen and van’t Riet, 1984). The axial dispersion coefficient DL

[m2�h�1] (Eq. (7)) is calculated with the correlation provided by
Deckwer et al. (1974).

eG ¼ 0:6 uG=3600ð Þ0:7 ð5Þ

kLa ¼ 3600ð Þ 0:32 � uG=3600ð Þ0:7
� �h i

� Df i=Df O2 ;air

� �1=2
� KT ð6Þ

DL ¼ 0:36ð Þ 2:7 � dC � 100ð Þ1:4 � uG=36ð Þ0:3
� �

ð7Þ

Finite differences were used to transform the system of partial
differential algebraic equations (PDAE) to a system of ordinary dif-
ferential algebraic equations (DAE). This stiff problem was solved
in MATLAB R2015b using ode15s, which is usually the first recom-
mended option before trying other stiff solvers such as ode23s. The
state vector contained thus 13∙N variables where N = 15 is the
number of discretization points. The boundary conditions for both
phases at the bottom (x = 0) and at the top (x = L), considering
counter-current operation, are shown in Eqs. (8) and (9).

CG;i

��
x¼0 � Cin

G;i ¼ 0 ;
@CL;i

@x

����
x¼0

¼ 0 ð8Þ

@ CG;i � uG
� �

@x

����
x¼L

¼ 0 ; CL;i

��
x¼L � Cin

L;i þ
1� eGð ÞDL

uL
� @CL;i

@x

����
x¼L

¼ 0 ð9Þ

The gas velocity uG was calculated along the reactor by applying
a mole balance in the gas phase of each compartment starting from
the bottom. If the gas recycle ratio (GRR) is greater than zero
(where GRR is the ratio between the gas flow rate recycled to the
bottom of the bioreactor and the total gas flow rate at the top),
then the flow rate and composition of the inlet are different from
those of the fresh syngas. In these cases an iterative procedure
was applied to find the correct properties of the inlet stream and
the gas velocity profile: first an initial guess is assumed at the bot-
tom and used for the calculation of the velocity along the column,
the new properties calculated at the top are then used to re-
calculate the properties at the bottom, which replace the initial
guess in the next iteration; the velocity profile is calculated again
and this procedure is repeated until the differences are negligible
between two consecutive iterations. Though this subroutine makes
the model more intricate, neglecting the change in gas velocity is
an unrealistic assumption (Deckwer, 1976) and substantial differ-
ences (>50%) between the velocity at the inlet and outlet have been
observed not only with the model developed here but also by Li
et al. (2018).

2.3. Product recovery unit

Anhydrous ethanol is recovered using distillation and molecular
sieve adsorption. In the present work, the design of these
operations was based on the flowsheet described by Humbird
et al. (2011) for purification of ethanol produced via 2nd-
generation biochemical route (dilute-acid pretreatment and enzy-
matic hydrolysis). First, the dilute broth (1–4% w/w ethanol) is fed
to a beer column (T-01), from which water is removed at the bot-
tom and CO2 at the top, while concentrated ethanol is removed as a
vapor-side stream and fed to the rectification column (T-02). The
design choices adopted by Humbird et al. (2011) were considered
as starting point and a preliminary analysis was done to evaluate
the effects of different parameters (results not shown here). In
the first column it was observed that the mass ratio of side stream
to feed stream (S:F) had significantly stronger effects on the out-
come (reboiler duty, ethanol recovery and concentration) than
other parameters, therefore this was chosen as the only decision
variable in this column. The other parameters were fixed in accor-
Please cite this article as: E. M. de Medeiros, H. Noorman, R. Maciel Filho et al.
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dance with the abovementioned design, though with minor modi-
fications: 25 stages, feed stream on the 5th stage from the top,
vapor-side stream removed from the 7th stage, top pressure of
2 bar, and molar reflux ratio (RR) of 3:1. Though in the design pre-
sented by Humbird et al. (2011) the fermentation broth had a
higher ethanol concentration (5.4% w/w), increasing RR beyond
3:1, even for lower ethanol concentrations, was found to have mar-
ginal effects on the separation performance, especially if consider-
ing the increased reboiler duty. The mass flow rate of the top
stream, which is rich in CO2, was defined so as to ensure that most
of the dissolved CO2 is removed, therefore it was fixed at 1.1 times
the mass flow rate of CO2 present in the feed stream.

The hot bottom stream from T-01, which contains most of the
acetic acid from the feed, is used to pre-heat the latter (in E-02),
whereas the CO2 stream, together with off-gas from the BCR, is
fed to the vent scrubber (T-03) to recover any ethanol that is pre-
sent in these streams. The outlet liquid stream from T-03 is then
mixed with bottoms from both distillation columns and part of
the resulting stream is recycled to the bioreactor while the rest is
sent to wastewater treatment. The concentrated ethanol stream
from T-01, which contains between 20 and 40% w/w depending
on the case, is sent to the rectification column (T-02) where it is
further concentrated to near-azeotropic composition (92.5% w/
w). The only fixed parameter in T-02 is the pressure (atmospheric);
all the other inputs are decision variables, as explained further in
Section 2.5. The distillate from T-02 is removed as saturated vapor
and superheated to 116 �C before being sent to dehydration with
molecular sieves (columns T-04 and T-05). This unit was not mod-
elled but instead the outcomes were fixed considering two output
streams: (i) the product (anhydrous ethanol, 99.5% w/w) which is
then cooled to 38 �C (E-08); and (ii) a low-purity ethanol stream
(72% w/w) produced during the regeneration step, which is recy-
cled back to the rectifier.

The distillation columns were simulated in Aspen plus using the
RadFrac model which solves the system of MESH equations with
the Inside-Out algorithm. Four components were considered:
water, ethanol, acetic acid and CO2. The property methods were:
for the liquid phase, the activity coefficient model NRTL, due to
the non-ideal ethanol-water mixture; and for the gas phase,
Hayden-O’Connell equation-of-state with Henry’s law, due to low
pressure, presence of acetic acid which may cause vapor phase
association, and presence of dissolved gases (CO2).

2.4. Artificial neural network (ANN) surrogate models

Surrogate modeling techniques have been applied by many
authors in the past years with the goal of reducing the complexity
of computationally expensive models. Throughout this paper we
refer to the latter as ‘‘rigorous” models, although they also incorpo-
rate some level of simplification (e.g. equilibrium equations in the
calculation of distillation columns).

Recent works, such as Ibrahim et al. (2018) and Ye et al. (2019)
have demonstrated the efficacy of this methodology for separation
processes, specifically for distillation and adsorption. In the present
work, ANNs were trained with input from the two types of models
laid out in Sections 2.2 and 2.3: (i) the PDAE system describing the
BCR; and (ii) the RadFrac models in Aspen plus describing the dis-
tillation columns. In both cases, multi-layer feedforward networks
were trained with Bayesian regularization backpropagation using
the ANN Toolbox in MATLAB R2015b. The networks contained
one input layer, one output layer and two hidden layers, with the
number of neurons per hidden layer being chosen after a few tests
(in all cases between 5 and 25). For some responses, an ensemble
of networks was used to reduce the error of a single network by
averaging the predictions of the individual networks and removing
outliers. For all trained ANNs the correlation coefficient (R value)
, Production of ethanol fuel via syngas fermentation: Optimization of eco-
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between network output and original response was higher than
0.99.
2.4.1. Bubble column reactor ANNs
Data was generated with the BCR model by varying the input

vector and exporting the steady-state responses obtained after
integration of the ODE system over a sufficiently long time span.
Around 2000 points were used to train the ANNs. The input vector
comprises in total 12 variables which are needed to define the DAE
system, though not all of them are used as decision variables in the
optimization: (i) dilution rate (Drate), defined as the liquid volumet-
ric flow rate (QL) divided by the liquid volume (VL) in the bioreac-
tor; (ii) the volume of liquid divided by the gas volumetric flowrate
at the bottom of the reactor (VL/Qg,bot) which we refer to here as gas
residence time (GRT); (iii) gas recycle ratio (GRR) defined in Sec-
tion 2.2; (iv) cell purge fraction (XP), which is the fraction of bio-
mass cells that are not recycled to the bioreactor; (v) vessel
length (L); (vi) vessel aspect ratio (AR); (vii) and (viii) concentra-
tions of acetic acid and ethanol in the inlet liquid stream; (ix) to
(xii) molar fractions of CO, H2, CO2 and H2O in the fresh syngas
(note: for the optimization studies the syngas composition was
fixed at 50% CO and 50% H2). It should be noted that although
the liquid inlet composition (items vii and viii) is an input of the
bioreactor, it is not an input of the integrated process (and even
less a decision variable in the optimization), because it depends
on the properties of the recycle streams from the distillation unit.

The input matrix was generated using Latin hypercube sam-
pling (LHS) to ensure good coverage of the input domain, which
considers realistic ranges of these variables (presented together
with optimization results in Tables 1 and 2). ANNs were trained
to predict ten responses that are needed in the calculation of the
objective functions or as input for the distillation unit. These
responses belong to five categories: (i) concentrations of ethanol,
acetic acid, cell biomass and dissolved CO2 at the liquid outlet;
(ii) gas superficial velocities at the bottom and at the top; (iii)
gas conversions of CO and H2; (iv) pressure at the bottom (this
Table 1
Multi-objective optimization of the bubble column reactor: ranges of decision
variables and process outcomes at the Pareto-optimal solutions.

Search space base HMT

Drate [h�1] 0.01–0.15 0.088–0.14 0.11–0.15
GRT [min] 5–50 6.41–36.9 5.15–35.8
GRR 0–0.5 0.032–0.43 0.017–0.32
XP 0.05–0.2 0.035–0.049 0.025–0.056
L [m] 25–50 35.6–47.3 35.5–42.5
VR [m3] 500–900 502–572 500–548
CL,EtOH [g�L�1] – 6.21–34.1 12.5–39.5
CL,HAc [g�L�1] – 1.35–2.75 2.17–2.98
XCO – 0.56–0.74 0.81–0.93
XH2 – 0.42–0.66 0.56–0.87

Table 2
Multi-objective and single-objective optimization of the integrated process: ranges of dec

Search space CAPEX � g CAPEX � g (HMT)

Drate (BCR) [h�1] 0.01–0.15 0.044–0.092 0.1022–0.1025
GRT (BCR) [min] 5–50 8.95–44.4 15.7–17.7
GRR (BCR) 0–0.5 0.062–0.43 0.489–0.493
XP (BCR) 0.05–0.2 0.084–0.19 0.0553–0.0639
L (BCR) [m] 25–50 44.9–49.9 41.3–43.4
VR (BCR) [m3] 500–900 710–853 630–645
S:F (T-01) 0.04–0.3 0.094–0.106 0.0796–0.0818
NST (T-02) 40–50 40–46 43–45
FST,V (T-02) 0.6–0.9 0.62–0.76 0.755–0.773
FST,L (T-02) 0.2–0.5 0.26–0.47 0.336–0.359
RR (T-02) 3–6 4.4–5.80 3.78–3.89
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response is not straightforward because it depends on the gas
hold-up which is not fixed); (v) total cooling duty to keep the reac-
tor isothermal.

2.4.2. Distillation columns
Data for the distillation columns was generated using Aspen

plus and Aspen Simulation Workbook, which was used to launch
the simulations automatically (roughly 2000 points for each
column). The main aspects of the simulations were detailed in
Section 2.3; and the following variables were considered inputs
for the ANNs, some of them being outputs of the bioreactor and
others being key parameters related to the design and operation
of the distillation column: (i) inlet mass fractions of ethanol, acetic
acid and CO2; (ii) number of stages (NST); (iii) feed stages (FST); (iv)
molar reflux ratio (RR); (v) mass ratio of side to feed stream (S:F),
only for T-01; (vi) mass ratio of distillate to feed stream (D:F), only
for T-02; (vii) pressure at the top; (viii) feed stream mass flow rate.
It should be noted that NST and FST are continuous variables when
provided to the ANNs and for their training, but they are trans-
formed to integer values before running the Aspen simulations.
FST is written as a fraction of the number of stages, such that
FST = 0 when the feed stage is the first after the reboiler and
FST = 1 when it is the last before the condenser.

The following outputs were considered: (i) mass fractions of
ethanol and acetic acid at the bottom, at the top, and at the side
stream (only for T-01); (ii) same for temperatures; (iii) column
diameter; (iv) reboiler and condenser duties.

Multilayer feedforward neural networks were trained for both
pattern recognition and function approximation. In the first case,
the ANNs were trained to classify the input vector as feasible or
infeasible according to the convergence status of the Aspen simu-
lations. The results of the successful simulations were then used to
train the ANNs as explained previously in Section 2.4.

2.5. Optimization framework

Multi-objective genetic algorithm (MOGA) was employed to
first optimize the standalone BCR and later the integrated process,
with regard to the following objectives: (i) in the BCR, maximiza-
tion of ethanol productivity and minimization of CAPEX; and (ii)
in the whole process (shown in Fig. 1), minimization of CAPEX
per annual production of anhydrous ethanol (ṁAE), minimization
of minimum ethanol selling price (MESP) and maximization of
thermodynamic efficiency (g). MOGA aims at finding a set of
non-dominated (i.e. optimal) solutions approaching the true Pareto
front of the system, i.e. those feasible points for which one objec-
tive function can only be reduced if other objective functions are
increased. It’s worth noting that MOGA does not use weighted
functions to transform multiple objectives into one, therefore it
ensures that objectives of different natures are considered fairly.
Though other methods exist for multi-objective optimization,
ision variables at the Pareto-optimal or optimal solutions.

MESP � g MESP � g (HMT) MESP MESP (HMT)

0.050–0.087 0.101–0.103 0.099 0.106
15.9–39.1 18.3–18.9 14.5 21.3
0.092–0.45 0.478–0.496 0.0086 0.061
0.12–0.17 0.044–0.054 0.198 0.0902
48.3–49.9 42.6–42.8 49.9 47.2
713–811 645–654 633 595
0.096–0.10 0.079–0.080 0.0963 0.0824
43–47 44 41 40
0.61– 0.80 0.76–0.78 0.67 0.724
0.297–0.496 0.34–0.36 0.22 0.456
5.14–5.83 3.95–4.02 5.25 4.17

, Production of ethanol fuel via syngas fermentation: Optimization of eco-
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MOGA was chosen due to its robustness and easy implementation
using the gamultiobj function in MATLAB R2015b, which employs a
variant of the NSGA-II method (non-dominated sorting genetic
algorithm).

For the standalone BCR, a population of 100 individuals was
considered, while for the whole process populations ranging from
250 to 1000 were tested at multiple runs.

The objectives were always defined as minimization functions,
hence in the first case (standalone BCR), the two objectives were:
OF1 ¼ �productivity ¼ �Drate � CL;EtOH and OF2 ¼ CAPEXBCR. In the
second case (whole process), two pairs of objectives were evalu-
ated: (i) OF1 ¼ CAPEX= _mAE, OF2 ¼ �g; and (ii) OF1 ¼ MESP,
OF2 ¼ �g. All the optimizations were performed for two case stud-
ies regarding mass transfer capacity: a base case and a high mass
transfer case (HMT) in which the kLa calculated with Eq. (6) was
multiplied by a factor of 3, representing thus a hypothetical case
where process intensification methods are employed to increase
mass transfer (this is further discussed in Section 3.3). A summary
of the steps required to compute the objective functions is given
next, along with the definition of the decision variables (DVs) (note
that for the standalone BCR, the procedure stops after the 1st step):

1. DVs related to the BCR (Drate, GRT, GRR, XP, L, VR) and fixed
inputs (e.g. gas composition) are provided to the BCR model,
which employs ANNs to calculate multiple responses (broth
composition, gas conversions, cooling requirements). The
design variables and some of the responses are also used to cal-
culate economic variables (investment, cost of raw materials
and utilities), as explained in Section 2.5.1. Pure water is consid-
ered as initial guess for the liquid feed of the bioreactor (this is
later adjusted as explained in step 4). Power consumption and
cooling requirements associated with the gas compressor
(C-01) are also calculated in this step.

2. Applicable responses from step 1 (e.g. broth composition), DVs
related to T-01 (S:F) and fixed inputs are provided to the ANNs
that calculate the outputs of T-01 (compositions of the streams,
reboiler and condenser duties, column diameter). Similarly,
some of the outputs (e.g. reboiler duty) and inputs (e.g. number
of stages) are used to calculate economic responses.

3. Applicable responses from step 2, DVs related to T-02 (NST, FST,V,
FST,L and RR) and fixed inputs are provided to the model of T-02.
In this step, the distillate to feed ratio (D:F) in T-02 is determined
through a minor optimization routine to guarantee an ethanol
mass fraction of 0.925 in the distillate. The ANNs are employed
again with the complete input vector (including D:F) to generate
the relevant responses; other outputs and inputs are used to
compute economic results, and heating/cooling requirements
are also calculated for the adsorption unit.

4. With the outputs from steps 2 and 3, the composition of the liq-
uid recycle stream is calculated and compared with the initial
guess. If required, an iterative procedure is followed to match
both streams.

5. If the ethanol mass fraction in the distillate from T-02 is 0.925
and other requirements are met (no negative mass flows, ANN
inputs inside their training ranges, equipment capacities inside
feasible ranges), then the outputs from steps 1–4 are combined
to generate the objective functions, as further explained in
Sections 2.5.1 and 2.5.2.

2.5.1. Computation of economic performance
Economic performance was evaluated in terms of total capital

investment (CAPEX) and minimum ethanol selling price (MESP).
The total investment was estimated using the module costing tech-
nique described by Turton et al. (2009), in which all the costs
derive from the individual purchase cost of equipment at base con-
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ditions (C0
p), estimated for each equipment of capacity A using Eq.

(10). The total module cost (CTM), which considers total direct
and indirect costs, as well as contingencies and fees, is calculated
as shown in Eq. (11). In the present work, CAPEX is considered
the same as CTM. The bare module cost of equipment i, CBM,i, is cal-
culated from C0

p;i applying bare module cost factors FBM,i which
account for pressure, materials and other items such as installation
and engineering. The coefficients K1 and K2 and the procedures to
calculate FBM for each type of equipment can be consulted in
Turton et al. (2009).

log10C
0
p ¼ K1 þ K2log10 Að Þ þ K2 log10 Að Þ½ �2 ð10Þ
CTM ¼ 1:18 �
X
i

CBM;i; CBM;i ¼ C0
p;i � FBM;i ð11Þ

The manufacturing costs COMd (also called operating expenses or
OPEX) comprise direct costs (e.g. raw materials [CRM], utilities
[CUT], waste treatment [CWT], maintenance, operating labor [COL]),
fixed costs (e.g. overhead, depreciation, insurance) and general
expenses (e.g. administration, R&D). The different components of
the manufacturing costs can be estimated using multiplication fac-
tors based on historical data; adding up all these costs leads to an
expression such as Eq. (12), used in the present work, which con-
siders midpoint values from the ranges reported in Turton et al.
(2009).

COMd ¼ 0:18 � CTM þ 2:73 � COL þ 1:23 � CUT þ CWT þ CRMð Þ ð12Þ
The purchase price of syngas was considered 1 US$/kmol for the

optimization runs, but its impact on MESP was later evaluated
along with other economic parameters. The assumption was based
on the ranges estimated with techno-economic modeling studies
performed by Yao et al. (2018) and Martinez-Gomez et al. (2017)
for syngas production from biomass and shale gas. Fuel for steam
generation was considered to be sugarcane bagasse in Brazil,
assuming a price of 2 US$/GJ which is inside the reported range
from the last years (CanaOnline, 2016). The costs of utilities and
waste treatment/disposal were calculated according to the
methodology of Ulrich and Vasudevan (2006), also assuming an
electricity price in accordance with the Brazilian context, at 0.12
US$/kWh (CPFL Energia, 2019). The cost of operating labor (COL)
was assumed to be 3% of CAPEX.

With CAPEX (CTM) and OPEX, the discounted cash flows can be
calculated and the minimum ethanol selling price (MESP) can be
found with a subordinate optimization routine to achieve
NPV = 0, where NPV (Net Present Value) is the cumulative dis-
counted cash flow at the end of the project. For this calculation a
few considerations were made: (i) 15 years of project life and
2 years of construction; (ii) land cost = 7.5% CTM; (iii) taxation
rate = 35%; (iv) interest rate = 10%; (v) straight-line depreciation;
(vi) project salvage value = 0; (vii) Chemical Engineering Plant Cost
Index (CEPCI) = 615.9 as of December 2018 and CEPCI = 397 in base
year (2001) (Chemical Engineering Magazine, 2019); and (viii)
350 days of operation per year.
2.5.2. Computation of thermodynamic performance
The thermodynamic performance was evaluated with the

energy efficiency (g) as calculated in Eq. (13). The energy output
is given by the lower heating value of ethanol fuel (LHVAE = 26.5
MJ�kg�1) multiplied by its production rate, and the total energy
input is given by the LHV of syngas containing 50% CO and 50%
H2 (LHVsyngas = 252.4 MJ�kmol�1) plus heat provided by steam at
multiple parts of the process and the equivalent heat associated
with the production of electricity consumed in compressors and
pumps. For the latter, work-related energy was translated to heat
, Production of ethanol fuel via syngas fermentation: Optimization of eco-
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by applying an electric generation efficiency of gCC = 60% for com-
bined cycles operating with natural gas (Siemens AG, 2019).

g ¼ LHVAE � _mAE

LHVsyngas � _msyngas þ _Ein

; _Ein

¼
X

DĤv � _msteam þ
X

_Win=gCC ð13Þ
3. Results and discussion

3.1. Techno-economic optimization of the bubble column reactor (BCR)

Fig. 2 presents the main results of the optimization conducted
for maximization of ethanol productivity and minimization of cap-
ital cost considering the standalone BCR. The goal of this study was
to analyze the trends in Pareto-optimal points before connecting
the BCR to the purification unit. Firstly, there is a clear trade-off
between the two objectives, as shown with the Pareto fronts
Fig. 2. Bi-objective optimization of the BCR for maximization of ethanol productivity an
Pareto-optimal solutions (dilution rate (b), reactor length (c), and gas residence time (d))
(e), gas conversions (f)).
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depicted in Fig. 2a for both case studies (normal and high mass
transfer – HMT), meaning that, as expected, higher productivities
can be achieved at the cost of higher investments. The Pareto fronts
also seem to comprise at least two convex sub-sets of solutions. For
example, for the base case, one subset lies in the region with pro-
ductivities �3.15, after which there is a clear change of pattern in
the Pareto front, which nonetheless continues to be convex. It’s
worth recalling that the 1st objective function is the minimization
of –productivity, so it is not the objective function itself that is plot-
ted in the x-axis, but its opposite value. For both cases there is a
threshold after which the capital costs continue to increase
without significant improvement in the productivity (e.g. after
4.5 g�L�1�h�1 for the base case, as seen in Fig. 2a). These optimal
solutions are associated with larger reactor volumes (hence higher
capital costs) obtained by decreasing the vessel aspect ratio (the
length remains constant, as seen in Fig. 2c); but since the gains
in productivity are only marginal, these are solutions without
interest to the decision-making process. It is also verified that
d minimization of capital costs: Pareto fronts (a); selected decision variables at the
; selected process outcomes at the Pareto-optimal solutions (ethanol concentration
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increasing the mass transfer coefficient leads to higher productiv-
ities with the same investment, at some points being almost twice
the value of the base case.

The different Pareto subsets are produced by different combina-
tions of the decision variables, as shown in Fig. 2b–d. Both case
studies show one subset of solutions characterized by large and
nearly constant values of dilution rate and reactor length. In this
subset, the productivity continues to increase due to decreasing
GRT (Fig. 2d) and increasing gas recycle ratio (not shown). In the
preceding subset, the increase in productivity is not only due to
decreasing GRT but also to increasing reactor length, in combina-
tion with changes in Drate and GRR. These variations, of course, also
have effects on the capital costs (as seen in Fig. 2a): for example,
increasing the reactor length has a direct effect on the bioreactor
cost; on the other hand, decreasing GRT implies increasing the
gas flow rate, which brings higher costs associated with larger
gas compressor capacities.

As presented in Table 1, the decision variables at the optimal
solutions are constrained to similar ranges for both study cases
(e.g. optimal vessel volumes are close to the lower bound of the
stipulated search space), but the process outcomes are mostly
improved when mass transfer is enhanced. Higher conversions
are achieved for both CO and H2 (shown in Fig. 2f), as well as higher
ethanol concentrations (Fig. 2e), though in this case the HMT
results also show lower concentrations for a wide range of
productivities.

3.2. Thermo-economic optimization of the integrated process

Integrating the BCR to the purification unit brought several dif-
ficulties due to the high non-linearity of the MESH equations,
which often leads to infeasible solutions, and the inclusion of a
recycle stream of distillate bottoms containing traces of ethanol
and acetic acid. This was observed by the much longer time
required to run the optimization (from 5 min to over 3 h), despite
the use of reduced (surrogate) models. Another reason for the
higher complexity of the integrated model is that the input vari-
ables of the distillation columns must be set to guarantee an etha-
nol mass fraction of 0.925 in the distillate stream of the second
column.

The generated Pareto fronts are depicted in Fig. 3, where again
the opposite of an objective function is shown: for all fronts in
Fig. 3, the 2nd objective function was to minimize �g, but g itself
is plotted in the y-axis. As explained in Section 2.5, the optimiza-
tion was performed for two mass transfer cases (base and HMT)
and two pairs of objective functions. The difference between these
pairs is the formulation of the 1st objective function, which is
either to minimize CAPEX/ṁAE (Fig. 3a–b) or MESP (Fig. 3c–d). It’s
worth mentioning that the results presented here are the best
found approximations of the Pareto fronts, which were selected
after multiple runs of the multi-objective genetic algorithm.

The first observation is that the thermodynamic efficiency was
bounded to around 0.42 in the base model and 0.72 in the HMT
case, also with lower CAPEX and MESP achieved in the latter. The
trade-off is visible for all cases, although the optimization of the
g-MESP pair with HMT (Fig. 3d) led to a small set of non-
dominated solutions distributed between 0.707 � MESP (US$/L)
� 0.713. As explained by Goh and Tan (2009), finding a diverse
set of solutions is specially challenging in the presence of multi-
modality (i.e. multiple local Pareto fronts), discontinuity and
non-uniformity. Moreover, balancing diversity of solutions and
proximity to the true Pareto front is a multi-objective problem in
itself, since these two qualities are both desirable and conflicting
(Bosman and Thierens, 2003). Despite the lack of diversity in the
solutions presented in Fig. 3d, the results are deemed sufficient
for the purposes of the present work, and testing different algo-
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rithms to improve this aspect is left as recommendation for a
future work.

To support the interpretation of the Pareto fronts, the Pareto-
optimal values of two selected decision variables are shown in
Fig. 4 along with process outcomes. In this figure, optimization A
(OptA, circles) refers to the objective pair (CAPEX,g) and B (OptB,
diamonds) to the pair (MESP,g). For both mass transfer cases, the
increase in g (accompanied by increase in CAPEX and MESP) was
associated with a decrease in Drate (Fig. 4a) and increase in GRT
(Fig. 4b), though in the HMT case the range spanned by these vari-
ables was very narrow. Other DVs (not shown here) that had pre-
dominant increasing trends with gwere the gas recycle ratio (GRR),
the number of stages in T-02 and its reflux ratio. Fig. 4 also sug-
gests that in the base case the OptB Pareto front (MESPxg) consti-
tutes a subset of OptA (CAPEXxg), with decision variables and
process outcomes following similar trends and ranges. This also
happens to a lesser extent with HMT.

The minimum and maximum values of the optimal DVs are pre-
sented in Table 2, where it can be observed that for all case studies
and optimization pairs the ranges were significantly reduced from
the search space. For comparison, the ranges obtained by minimiz-
ingMESP as a single objective are also shown. The minimum values
of MESP in this case were 0.958 US$/L (base) and 0.705 US$/L
(HMT), but the energy efficiencies at these points were far from
their highest values, at 0.31 and 0.50 respectively, indicating that
inefficiencies are compensated by low price of resources. An
intriguing outcome is that when optimizing a single objective
many DVs had optimal values outside the ranges of the Pareto-
optimal solutions; in fact, this was observed for all the DVs in
the HMT case. For the gas recycle ratio (GRR) specially, the
single-objective optimum was close to zero while being almost
at the search space upper bound for Pareto-optimal points with
higher g.

This illustrates the importance of using multi-objective as
opposed to single-objective optimization: as technology progress
is driven by multiple values other than economic profit, it is inevi-
table that industries will seek to optimize conflicting objectives;
and not only bi-objective but many-objective problems will need
to be tackled. In fact, even if the goals are kept within the economic
sphere, it is still challenging to reduce them to a single variable,
since different indicators can be used to evaluate the profitability
of a process: CAPEX, MESP, OPEX, NPV, payback time, ROI (return
on investment), etc.

It’s worth noting that the optimization of the BCR alone is not
enough for meaningful decision-making, since the operating and
design variables of the purification unit must be adapted to the
outcomes of the bioreactor and optimized accordingly. When ana-
lyzing the whole process, the possible choices for the operating
conditions and design variables were optimized to give a range
of solutions from which a single one can be picked. If both energy
efficiency and MESP are considered equally important, an illustra-
tive example for the base case is to take the solution at g � 0.4 fol-
lowing the notably steep increase in Fig. 3c, since after this point
the gains in efficiency are relatively slow with respect to MESP.
This solutiongives the followingdecisionvariables:Drate=0.052h�1,
GRT = 34.1 min, GRR = 0.37, XP = 0.13, L = 49.5 m, VR = 772 m3,
S:F = 0.10, NST = 45, FST,V = 0.65, FST,L = 0.4, and RR = 5.55. For the
high mass transfer case, a similar solution can be drawn out at
g � 0.714: Drate = 0.10 h�1, GRT = 18.6 min, GRR = 0.49, XP = 0.05,
L = 42.7 m, VR = 652 m3, S:F = 0.08, NST = 44, FST,V = 0.76,
FST,L = 0.34, and RR = 3.95.

Relevant process outcomes are presented in Table 3. The aver-
age ethanol concentration in the broth was around 29 g�L�1 for
the base case and 36 g�L�1 for the HMT case, with the acetic acid
concentration staying under 4 g�L�1. As consequence, lower energy
consumption in the distillation unit (roughly 7.2 MJ/L ethanol)
, Production of ethanol fuel via syngas fermentation: Optimization of eco-
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could be obtained with HMT, while the base case spans a range
from 7.4 to 9.4 MJ/L, mostly increasing with g. The results also
show that high CO conversions (Fig. 4c) of up to 97% can be
achieved with increased mass transfer and 83% for the base case,
while the H2 conversions (Fig. 4d) were bounded to lower values
(74%) in both cases, due to the CO inhibition as considered in the
kinetic model. For comparison purposes, LanzaTech’s process is
able to achieve high and stable CO conversions above 90% and
ethanol selectivity of 95% (LanzaTech, 2018). Though their process
configuration might be similar to the one considered here, employ-
ing gas-liquid column reactors, distillation to purify ethanol, and
water recycle, the exact design and conditions of their process
are not reported. Another point worth mentioning is that in the
present work the gas composition was fixed at 50% CO and 50%
H2, but the proportions of CO/H2/CO2 are also expected to have sig-
nificant impacts on the gas conversion and ethanol productivity in
the bioreactor (de Medeiros et al., 2019). Since the syngas compo-
sition is a result of design choices in upstream stages, which in turn
also affect prices and energy efficiency, another study is currently
under development for the impact analysis and optimization of the
whole process including syngas production via gasification.

The Pareto-optimal solutions of the integrated process span
smaller ranges of ethanol productivity in the bioreactor than the
BCR optimization, indicating that higher productivities are not nec-
essarily advantageous when taking into account the whole process,
due to much higher capital costs (also corroborated by the steep
increase in the Pareto fronts from Fig. 2a) and losses in gas conver-
sion (thus lower energy efficiency). With regard to the annual pro-
duction of anhydrous ethanol (Fig. 4e), in the base case the trends
are opposite to the energy efficiency, but with HMT there doesn’t
seem to be a correlation between the two, with the optimal pro-
duction rate in this case being between 121 and 133 MML/year.
However, if MESP is used as single objective both cases lead to sim-
ilar production rates of around 121–124 MML/year (Table 3).
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3.3. Effects and prospects of mass transfer enhancement

It can also be observed in Fig. 4 and Table 2 that the optimal val-
ues of the decision variables differ significantly between the base
case and the HMT case, demonstrating the importance of accurate
kLa estimations for the effective application of model-based opti-
mization results. Several factors could compel the real kLa to devi-
ate from the predictions of empirical correlations such as Eq. (6),
for example the presence of salts and alcohols in low concentra-
tion, which have been shown to increase kLa by factors up to 2
(van de Donk, 1981). Heijnen and van’t Riet (1984) have also noted
that, in non-coalescing media, fine bubble systems can present a
six-fold increase in kLa as compared to coarse bubble systems mea-
sured at the same gas superficial velocity, although in strongly coa-
lescing media the difference is modest. Therefore the results
presented here suggest that great improvements can be achieved
with ingenious tuning of kLa via enhancement techniques. Ulti-
mately, such ‘‘mass transfer enhancement” can be included as a
factor in the optimization framework in order to find the optimal
amount of efforts and costs that should be spent into increasing
mass transfer capacity in the bioreactor. Examples of process
intensification (PI) strategies for this purpose are given next.

Groen et al. (2005) presented a method to increase the oxygen
transfer capacity in aerobic fermentation which consisted of inject-
ing a second gas stream (pure oxygen) via a special nozzle config-
uration to achieve supersonic velocities and a non-uniform bubble
size distribution. With a ratio of 6:1 between the two gas flows
(air/pure oxygen) the authors were able to increase the mass trans-
fer rate 3.6 times. Along the lines of reducing bubble size to
increase the surface to volume ratio, the generation of micron size
(<1 mm) bubbles is generally considered an efficient way of
enhancing gas-liquid mass transfer while requiring low power
inputs: Bredwell and Worden (1998), for example, obtained a
six-times higher kLa using a spinning-disk microbubble generator
, Production of ethanol fuel via syngas fermentation: Optimization of eco-
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Fig. 4. Bi-objective optimization of the integrated units: selected decision variables at the Pareto-optimal solutions (dilution rate (a) and gas residence time (b)); selected
process outcomes at the Pareto-optimal solutions (CO conversion (c), H2 conversion (d), production rate (e), and energy consumption (f)).

Table 3
Multi-objective optimization of the integrated process: ranges of process outcomes at the Pareto-optimal solutions.

CAPEX � g CAPEX � g (HMT) MESP � g MESP � g (HMT) MESP MESP (HMT)

CL,EtOH (BCR) [g�L�1] 26.3–34.7 36.6–38.3 26.0–30.1 35.5–36.7 28.4 34.6
CL,HAc (BCR) [g�L�1] 1.61–3.74 2.33–2.43 1.97–3.44 2.33–2.46 4.20 3.0
Heat consumption [MJ�L�1 AE] 7.42–9.35 6.93–7.11 8.41–9.41 7.18–7.30 8.71 7.45
Electricity consumption [kWh�L�1 AE] 0.40–0.58 0.37–0.41 0.40–0.53 0.36–0.37 0.43 0.25
XCO(BCR) 0.63–0.82 0.95–0.96 0.71–0.83 0.97 0.68 0.97
XH2 (BCR) 0.40–0.74 0.52–0.69 0.50–0.71 0.70–0.74 0.40 0.78
ṁAE [MML�year�1] 63.5–158 123–133 68.8–146 125–127 124 121
EtOH Productivity (BCR) [g�L�1�h�1] 1.17–3.19 3.74–3.93 1.33–2.63 3.66–3.73 2.81 3.67
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as compared to the conventional sparging system in a stirred tank
for syngas fermentation. Moreover, while micro-porous diffusers
can be used to generate microbubbles in a passing gas stream, sev-
eral works have demonstrated even further size reduction by oscil-
lating this stream, with the oscillation frequency in this case being
a central optimization variable (Brittle et al., 2015). A myriad of
other methods have also been reported for the formation of
Please cite this article as: E. M. de Medeiros, H. Noorman, R. Maciel Filho et al.
nomic performance and energy efficiency, Chemical Engineering Science: X, ht
microbubbles, relying on different aspects: with or without accom-
panying liquid flows, using polymers or with very low power con-
sumption such as microchannel techniques and ultrasonic systems
(Parmar and Majumder, 2013).

Finally, nanoparticles have also been shown to improve mass
transfer, though only limited work has been developed for syngas
fermentation. Kim and Lee (2016), for example, observed substan-
, Production of ethanol fuel via syngas fermentation: Optimization of eco-
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Fig. 5. Sensitivity of MESP to economic parameters: base (a) and high mass transfer model (b).
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tial increase in the dissolved concentrations of CO, H2 and CO2

when using functionalized nanoparticles, and they also reported
that adding a magnetic layer to the particles enabled their reuse
up to five times, thereby improving their economic feasibility.

3.4. Sensitivity of MESP

The Pareto-optimal MESP was in the range 1.0–1.3 US$/L (base)
and 0.707–0.713 US$/L (HMT), while in a previous work by our
group the estimatedMESP for a process including biomass gasifica-
tion and heat/power generation was in the range 0.63–0.93 US$/L
hydrous ethanol (i.e. before dehydration) (de Medeiros et al.,
2017). In another study about syngas fermentation, even higher
values between 1.58 and 1.93 US$/L were found (Benalcázar
et al., 2017). Not only technical considerations and process model-
ing methods lead to these disparities, but also economic consider-
ations such as the prices of utilities and raw materials. With that in
mind, Fig. 5 shows the sensitivity of MESP to several economic
parameters, where the midpoint is one of the Pareto-optimal solu-
tions from Fig. 3c and 3d. In this analysis the parameters were var-
ied each at a time, with the other parameters being fixed at the
values used in the optimization. For both cases the highest impacts
on MESP (around 15% of its original value) were caused by a 30%
change in the capital investment, which might also explain why
the optimizations with CAPEX and MESP have similar results. A
forthcoming work by our group suggests that in other cases MESP
can decrease with higher g, probably because the contributions of
raw materials and utilities are more significant than in the present
study.

4. Conclusions

Different process systems engineering (PSE) tools (modeling,
simulation, neural networks, genetic algorithm) were applied in
this work to develop an optimization framework through which
ranges of operating conditions and design variables can be selected
for optimal production of ethanol fuel from syngas via fermenta-
tion, taking into account objectives of distinct natures. When opti-
mizing a standalone bioreactor (BCR) in terms of ethanol
productivity and capital costs, it was observed that Pareto-
optimal values of productivity ranged between 0.75–4.5 g�L�h�1

for the base model and 1.5–5.4 g�L1�h�1 for an optimistic case with
higher mass transfer capacity (HMT), with the productivity
increasing at the cost of higher investment due to larger reactor
vessel and gas compressor. In the second part of this work, the
BCR model was coupled to the purification unit including water
recycle, and the integrated process was optimized in terms of eco-
nomic variables (CAPEX and MESP) and energy efficiency (g). It was
observed that, with the assumptions used here, MESP and CAPEX
Please cite this article as: E. M. de Medeiros, H. Noorman, R. Maciel Filho et al.
nomic performance and energy efficiency, Chemical Engineering Science: X, ht
increase with g, which nonetheless was restricted to maximum
values of 0.42 (base case) and 0.72 (HMT). The trends of the deci-
sion variables along the Pareto fronts were discussed and it was
seen that optimization results are greatly affected by the mass
transfer calculations, thus corroborating that kLa enhancement is
a promising strategy for global process improvement. The results
presented here provide information about key process conditions
and design variables, as well as sustainability targets and limita-
tions in syngas fermentation. This work can be further extended
to evaluate and optimize the whole process from biomass waste
to ethanol or other chemicals, and its reliability can be increased
with the development of new models for syngas fermentation.
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