

The Roadmap Towards Circular Cruise Ships

Preventing waste discharge into the environment

Deirdre van Gameren 08-07-2020

Research Framework

Possible Future Cruise Ship

Figure 1: City-zen energy transition methodology.

ANALYSIS: Step 1: Basic energy analysis, Step 2: Present planning and trends, Step 3: Stakeholder analysis.

ENERGY MASTER PLANNING: Step 4: Scenario for the future, Step 5: Energy vision, Step 6: Roadmap.

Research Framework

"Waste streams from cruise ships come back into nature which negatively influences the environment."

Gas Air Fluid Water Sea

"To contribute to the development of sustainable, circular cruise ships. Specifically, the gas-, fluid- and solid waste streams."

The **final product** is a **roadmap**, based on waste stream analyses, towards a set of targets and goals.

Component
(partly) Removed
Ammonia Nitrogen mg/L as N
BOD5 mg/L
COD mg/L
Faecal Coliform
Hexane Extractable Material (Oil and Grease) mg/L
Nitrate mg/L
Nitrite mg/L
Total Kjeldahl Nitrogen mg/L
(Nitrogen contained in organic substances and inorganic compounds)
Properties that must be met
Alkalinity mg/L
(capacity to resist pH changes)
Conductivity uS/cm
(capability to pass electrical flow)
Temperature °C
pH
Turbidity mg/L
Not verified "
Chloride mg/L
Settable Residue mg/L
Sulfate mg/L
Total Dissolved solids mg/L
(Organic and inorganic substances)
Total organic carbon mg/L
(Acids, fats, sugars, proteins, enzymes, and hydrocarbon fuels)
Total phosphorous mg/L
Total Residual Chlorine mg/L
TSS mg/L
Total suspended solids

OWS + a Polishing treatment process

Polishing treatment processes:

- Absorption and Adsorption
- Biological Treatment
- Coagulation and Flocculation
- Flotation
- Membrane Technologies (ultrafiltration).

Non-hazardous Solid Waste	Used for	Treatment	Ends up	
Glass	Food and beverage jars & bottles.	Crushed	Land	
Plastic	ropes, containers, bags,	Incinerated,	Land, Air, (Sea)	
	biodegradable plastics,	recycled		
	poly-ethylene terephthalate			
	plastics, high-density			
	polyethylene plastics			
Aluminium &	Soft drink cans, tin cans (food),	Crushed,	Land	
Metal Cans	steel cans ship maintenance	recycled		
Paper	Paper and packing	Incinerated,	Land, Air, (Sea)	
		recycled		
Cardboard	Dunnage, packing	Incinerated,	Land, Air, (Sea)	
		recycled		
Food waste	Food scraps, table refuse, galley	Pulped,	Land, Air, (Sea)	
	refuse, food wrappers	compressed,		
	contaminated with food.	incinerated		
Wood	Pallets, waste wood	Incinerated	Land, Air, (Sea)	
Incinerator ash	Ash from packing material, paper,	-	Sea	
	cardboard, etc.			

Hazardous waste	Hazardous waste Substances
Paints waste	Perchlorethylene
Incinerator ash	Hydrocarbons
Fluorescent and mercury vapour light bulbs	Chlorinated hydrocarbons
Batteries	Heavy metals
Medical waste	Solvents
Photo waste	Silver
Explosives	Aerosol liquids
Chemical	

Taken measures by Royal Caribbean

Research Framework

• A. Fully Circular

• B. Collaboration Cruise Ship & Harbour

C. Positive effect on the Environment

A. Fully Circular

• B. Collaboration Cruise Ship & Harbour

• C. Positive effect on the Environment

A. Fully Circular

• B. Collaboration Cruise Ship & Harbour

• C. Positive effect on the Environment

A. Fully Circular

• B. Collaboration Cruise Ship & Harbour

• C. Positive effect on the Environment

Roadmap A

Roadmap B

Roadmap C

Roadmap A

Roadmap B

Roadmap C

	Hydrogen	Methanol	Bio- diesel	Dimethyl ether	Biogas	Renewable Energy Ship	Renewable Energy Island
Fuel Cell							
Dual Fuel							
Engine							
Combustion							
Engine							
Now	Near future	Late future		•		•	•

Retrofit

Combustion engine -> Biodiesel/Dimethyl ether

-> Methanol

Dual Fuel engine -> Methanol

Newly Build

Fuel Cell

-> Hydrogen

Combustion engine

Dual Fuel engine

63

Retrofit

- Heat recovery black and grey water
- Recycling biosolids and sludge

Newly Build

- Heat recovery black and grey water
- Recycling biosolids and sludge
- Heat exchanger shower
- Anaerobic digester
- Struvite recovery
- Algae system

Retrofit

 Treated black and grey water as ballast water

Newly Build

 Treated black and grey water as ballast water

Non-hazardous solid waste

Newly Build

- Eliminate explosive use for pleasure
- Prohibit the burning of hazardous waste
- Install wet cleaning facilities

Retrofit

- Eliminate single use plastic
- Give a reusable plastic bottle to every passenger onboard
- Eliminated all the paper information, show everything on screens.
- Reuse packaging and pallets multiple times
- Recycle the products instead of incineration.
- Dispose waste to land where it can be recycled.

Newly Build

 Receive all the drinks in liquid form and store it in tanks. This eliminates the need for single used glass, plastic and aluminium bottles.

Hazardous solid waste

- Eliminate explosive use for pleasure
- Prohibit the burning of hazardous waste

Hazardous solid waste

Newly Build

- Eliminate explosive use for pleasure
- Prohibit the burning of hazardous waste
- Install wet cleaning facilities

Retrofit

- Replace the paints, lights, and batteries with sustainable alternatives.
- Only buy the needed amount of pharmaceuticals
- Only print when a hardcopy is needed and pictures are bought.
- Dispose of paint waste, lights, batteries and photo, and printing waste to land where it can be recycled.

Newly Build

Recycling of medical waste

Combination - Retrofit

Combination - Retrofit

Combination - Retrofit

Combination - Newly build

Combination - Newly build

Combination - Newly build

Research Framework

Possible Future Cruise Ship

00 Standard Building

O3a Renewable energy production for remaining demand O3b waste = food

The sustainable Cruise Ship

Newly build

Warm Climate

Warm Climate

Warm Climate

NSS 2

