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Classification of covert vowels 1in Spanish and
Dutch: what do brain signals say about inner
speech?

Ioannis Kyriazis
Department of Biomedical Engineering
Faculty of Mechanical, Maritime & Materials Engineering
Delft University of Technology

Abstract—Patients with neuromuscular diseases that are un-
able to speak, but whose cognitive ability has been maintained,
can be benefited from Brain Computer Interfaces (BCIs). The
decoding of inner (covert) speech from EEGs consists of one of
the state of the art methods that aim to tackle this issue. High
variability between subjects, as well as low signal to noise ratio
(SNR) undermine the methods used, and introduce the need for
computer assisted solutions. Thus, machine learning models as
well as large amounts of recorded data are required to design
effective algorithms and produce substantial results. In this study,
covert vowel classification was performed in a systematic way, by
making use of two openly shared databases from literature; the
Coretto database, that contains EEG recordings of native Spanish
speakers, and the DAIS dataset, which includes EEG recordings
of native Dutch speakers. Six classifiers were initially selected to
perform 5-class classification: a Random Forest (RF), a k Nearest
Neighbours (kNN), a Gaussian Naive Bayers (GNB), a Deep
Convolutional Neural Network (DCNN), a Shallow Convolutional
Neural Network (SCNN) and a Long Short Term Memory
Recurrent Neural Network (LSTM). The DCNN outperformed
the other methods, with average intra-subject accuracies of 35%
for Coretto and 39 % for DAIS (chance level 20%). Afterwards, an
Overt versus Covert trials experiment was implemented, to test
the limits of overt speech decoding from EEGs. The overt result
was slightly higher than covert, with an intra-subject average
value of 37.8% for Coretto and 40.5% for DAIS (chance level
20%). Finally, binary classification was performed to identify
those pairs of vowels that can be classified more efficiently. Vowels
/a/ and /u/ seemed to perform better in average in both datasets
(average of 64.8% for Coretto and 64.4% for DAIS with a chance
accuracy of 50%). Future work should focus on identifying the
useful parts of the EEG recordings, increasing the SNR and the
resolution of the electrodes, and defining the most appropriate
dictionaries of words/vowels for a BCI. Also, more studies should
follow systematic ways of comparisons between datasets, to obtain
less ambiguous insights and lead this field to improvements.

Index Terms—brain computer interface (BCI), Dutch covert
speech, Spanish covert speech, electroencephalography (EEG).

I. INTRODUCTION

The decoding of covert speech from electroencephalograms
(EEGs) is widely used to attempt the translation of thoughts
into words. The application of this method could assist
tremendously in cases of patients afflicted by neuromuscular
disorders, whose cognitive ability still remains; such as those
suffering from locked-in syndrome [1] [2]. Brain Computer

Interfaces (BCIs) are able to provide the necessary human-
machine interaction to achieve this objective [3].

Modern BCIs used for the purpose of covert speech de-
coding make use of the recorded brain activity from surface
electrodes located around the healthy volunteer’s head. The
recorded EEGs are then processed and given as input to a
computational setup. This method is low-cost, non-invasive
and achieves high temporal resolution [4]. For those reasons,
it is considered the state-of-the-art standard for such applica-
tions.

Decoding of covert speech is a complicated task, hindered
by the limitations of the recording method itself as well
as the variability of results per subject [S]. Multiple studies
have attempted to provide high accuracy solutions, but results
are often close to chance level [6]. In addition, the lack of
a common protocol for result presentation introduces a lot
of ambiguity on result interpretation, as it is unclear which
dataset, processing method, or which classifier achieves the
best results. Furthermore, even though similar brain cortex
areas are activated during speech in healthy individuals, there
is high variability per subject, which makes the generalization
of insights more difficult.

Deep Learning (DL) Algorithms, and especially Convolu-
tional Neural Networks (CNNs), are observed to produce the
highest accuracy in literature [7]. However, unless the same
architecture is tested for different groups of covert inputs, gen-
eralization is difficult. Furthermore, almost all DL algorithms
suffer from overfitting, a factor that is also bothersome to
judge, unless all the specific parameters of segmentation are
known, and that is often omitted in literature.

The input prompts of any given covert speech dataset are
also shown to be important for classification accuracy. Some
articles assess that vowels achieve higher results than complete
words [8], whereas others support the opposite view [9].
The number of prompts is also important, because a smaller
number leads to higher chance level accuracy, meaning that
even if the algorithm classifies randomly, a higher result
might be obtained [6]. Thirdly, the language of the prompts
is assumed to be of importance. Several studies choose to use
English prompts, even though English does not consist the



native language of the subjects. Those studies usually state
that the subjects have had sufficient English education [10].
However, even in the cases that the native language of the
subjects is used, comparisons between articles with the same
prompts, but in different language, are difficult to make [11].

In terms of classification methods, an additional level of
ambiguity is added, with a multitude of used features and
classifiers. Some of the most used features are: statistical
ones (e.g. mean, standard deviation, variance, kurtosis, skew-
ness, higher order moments, energy, zero-crossings), frequency
features (e.g. Fourier Transform coefficients, Wavelet De-
composition coefficients, Spectral Densities, Gabor transform,
Hilbert transform), coherence, Common Spatial Patterns, and
covariance matrices [12], [13], [14], [15], [16], [17], [18].
Those techniques seem to be beneficial for some studies
but without consistency, while other studies argue about the
higher significance of separated frequency bands instead of
just features (e.g. gamma band in [14], or theta band in [16]).

Machine Learning algorithms require large amounts of data.
To this end, several datasets of covert speech EEG recordings
have been introduced in literature, although just a few are
openly shared (e.g. Coretto et al. [19], DaSalla [20], Nguyen
et al. [21], DAIS dataset [22]). Typically, results obtained
from different datasets are not easy to compare, because of
differences in the acquisition setup and pre-processing steps.
However, if treated correctly, comparisons between given
datasets could be possible.

This research implements a systematic comparison between
two openly shared datasets of covert vowels. The Coretto
dataset contains native Spanish vowel recordings, while the
DAIS dataset native Dutch vowel recordings. Comparisons
between the two datasets were possible, as the vowels from
one correspond to the other in a one to one way.

Any comparison between experimental setups is difficult, as
recording protocols are often differentiated between articles.
When it comes to dictionaries of similar prompts, only datasets
that are used broadly in literature can be utilized, because
there is a large pool of similar studies to compare results with.
Comparisons between completely different datasets are also
possible, but identical pre-processing of the data of each one
cannot be made most of the times, because of the inherent
characteristics of the datasets, or due to lack of comparison
protocols. For example, an attempt for classification of vowels
in English and Bengali was made [11], but it was never stated
within the protocol that the goal was a comparison between
the two to offer joined insights, nor it was mentioned if similar
treatment was applied for the acquisition of the two datasets.

This study attempts to create a common ground for the gen-
eralization of results between the two covert vowel datasets.
Using the same protocol when comparing datasets could prove
to be useful, especially if future studies also follow a similar
protocol to introduce or compare datasets.

II. METHODS
A. Datasets

Two datasets were used in this study. The first one was
the Coretto dataset [19], which contained EEG recordings of
overt and covert vowels for 15 subjects, 8 male and 7 female,
with an mean age of 25, whose native language was Spanish.
Each trial was 4 seconds long. Six electrodes were used in
total, placed on the F3, F4, C3, C4, P3, P4 locations of the
10-20 international system (figure 1). The sampling rate was
1024Hz. The number of trials per subject was variable, but
ranged between 200 and 274. The vowel prompts were /a/,
lel, 1/, /o/ and /u/. The second dataset was the DAIS dataset
[22], that contained EEG recordings of overt and covert vowels
for 20 subjects, 6 male and 14 female (mean age of 24.6
years, range 23-26 years), whose native language was Dutch.
Each trial was 2 seconds long. The number of electrodes
was 62, placed according to the 10-20 international system
(figure 1). A sampling frequency of 1024Hz was used. There
were 20 trials per vowel, resulting in 100 trials per subject.
The vowel prompts were /aa/, /ee/, /ie/, /oo/, /oe/, which
correspond phonologically to the phonemes /a/, /e/, /i/, lo/ and
/u/ respectively [23], [24], [25], [26]. The prompts of each
dataset can be positioned on the vowel quadrilateral of each
language (figure 2).
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Fig. 1: 10-20 international system for EEG electrode place-
ment. Each circle contains a letter that corresponds to head
location (Frontal, Parietal, Central, Occipital, Temporal) and
a number (odd numbers correspond to the left and even to
the right hemisphere). The same 6 locations were selected for
both datasets (F3, F4, C3, C4, P3, P4).

B. Pre-processing

Several pre-processing steps were implemented, to ensure
similar conditions for both datasets and reinforce meaningful
comparisons. First, only the data of right handed subjects were
selected, as speech is a dominant hemisphere function, and the
brain architecture of a subject due to handiness is considered
to influence results [27]. Thus, subject 5 was excluded from
Coretto, and subjects 9 and 13 from DAIS. Second, trials with
artefacts were excluded from both datasets. In Coretto dataset,
those trials were marked, so they were excluded explicitly. In
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Fig. 2: Vowel quadrilaterals for Spanish (left) & Dutch (right)
language. The vertical axis corresponds to mouth openness
and the horizontal one corresponds to the position of tongue
elevation. The red circles pinpoint the 5 vowels that correspond
to those used in DAIS dataset.

DAIS dataset, subjects with marked trials were excluded (2, 7
and 17), similarly to the method followed in the initial article.

After the removal of trials with artefacts, further pre-
processing was applied. The same 6 electrodes were chosen
from DAIS dataset as in Coretto. Although a larger number of
electrodes is considered more beneficial to cover adequately
the speech related areas (e.g. Wernicke’s and Broca’s cortical
areas), the low number of electrodes in Coretto introduced
a hard upper limit. To this end, importance was given to
making meaningful comparisons between the 2 datasets, which
could only be possible if recordings were taken from the
same brain regions. Tests were also performed with 62 and
16 electrodes only for DAIS dataset, to assess the possibilities
of high electrode number classification(see Appendix C), but
those results are omitted here. No downsampling was applied,
but signals were filtered for both datasets in the range of 2 to
40Hz with 2 filters as in the original Coretto study [19]. Also,
a robust scaler was applied per electrode, to ensure adequate
normalization. The formula for the robust scaler is given in
equation 1. The denominator consists of a subtraction between
the 75th and the 25th percentile value of the data.

X - Xmedian
Xscaled X75 — X25 (1)

Then, the data was segmented. Windows with a duration
of 250 ms (256 samples) were selected, with a 50% overlap,
similar to literature . For both Coretto and DAIS, 2 seconds of
recording were selected (the initial 2 for Coretto and the whole
recording for DAIS). The reason for this was so that signals
of the same duration would be chosen for all participants.
Different parts of the 2 second windows were further tested,
but no major differences were highlighted (see Appendix A),
resulting in the choice of the whole 2 second period.

After segmentation, 34342 segments were obtained from
Coretto and 21000 from DAIS. Those 2D representations
were used as input for the Deep Learning Models. Since
traditional Machine Learning (ML) classifiers were to be tested
as well, further statistical features were calculated for every 2D
segment too, to create 1D input vectors. The mean, standard
deviation, median, kurtosis, skewness and third order moment
were calculated per electrode per segment, resulting in 1D

vectors of length 6x6 = 36. Mel coefficients were also tested,
but because of poor results due to low resolution in the
frequency domain, this method was not further implemented.

C. Choice of Classifiers

Six classifiers were chosen to be trained on the covert
speech recordings. Three of them were traditional ML classi-
fiers, whereas the other three were DL models. All of them are
used broadly in literature. This choice was made to provide
comparisons between ML and DL classification performance.

1) ML classifiers: A Random Forest (RF), a k Nearest
Neighbor (k-NN) and a Guassian Naive Bayes (GNB) clas-
sifier were chosen as traditional ML methods. For Random
Forest, a maximum depth of 7 was chosen. A number of 7
neighbors was selected for the k-NN one. In this case, the 1D
feature vectors were used as input. 75% of data were chosen
for training and 25% for testing.

2) DL models: A Shallow Convolutional Neural Network
(SCNN), a Deep Convolutional Neural Network (DCNN)
and a Long Short Term Memory Recurrent Neural Network
(LSTM) were chosen as the DL models. The strategy followed
for defining the architectures of the SCNN and DCNN was
inspired by previous studies that gave emphasis on layer
selection for EEG classification problems [28] [29].

The SCNN consisted of 8 layers. Two Convolutional layers
were responsible for spatial and temporal filtering, followed
by an Average Pooling layer to reduce dimensionality and
filter noise. A batch normalization layer was added, to ensure
calibration of the data, and a Leaky Rectified Linear Unit
(ReLLU) was chosen as the activation function. Then, the 2D
output was reorganized to be 1D via a Reshape layer. Finally, a
Dense layer of size 5 and an Softmwax activation layer were
included, to create the necessary output vector, and limit it
between 0 and 1.

The DCNN consisted of 28 layers. Two initial convolutional
layers performed spatial and temporal filtering of the data,
in the same fashion as the SCNN. After those, max pooling,
and batch normalization with Leaky ReLU as the activation
function were applied. Then, three similar blocks were added,
consisting of a convolutional layer, max pooling, batch nor-
malization, Leaky ReLU and dropout layers. Following that,
a fully connected layer was added, with Leaky ReLU as
activation and dropout. At the end, a final dense layer of size
5 was introduced, followed by a final dropout layer. Lastly, a
softmax activation function was used again, to make the output
probabilistic and restrain it between 0 and 1. The filters of
the convolutional layers were increasing in number the deeper
they were in the network, to ensure that multiple high-level
features would be identified within the data. Dropout was
used to decrease overfitting, but the dropout rate in all cases
was kept low (a value of 0.1), to also avoid underfitting, as
data were limited. Regarding the activation functions, Leaky
ReLU was chosen for the hidden layers, as it is considered
more suitable for such classification problems [8]. However,
Softmax was used for the final layer, to provide the necessary
output in a probability range. As a note, max pooling was



preferred instead of average pooling in the DCNN case, so
that low-level noise can be filtered faster.

The architecture for the LSTM was inspired in a similar
way too, by articles that attempted to develop Recurrent
Neural Network architectures [28] [30]. The LSTM classifier
had 5 layers. First, three consecutive LSTM layers were
defined, with sizes of 32, 16 and 8 units respectively. Then,
a dense layer of size 5 was added followed by a Softmax
activation function. Finally, a Reshape layer was responsible
for giving the output vector the necessary size of (1,1,5) to
avoid dimensionality coding errors.

The described architectures can be seen in figures 3a and
3b. The 2D segments of size 256x6 were used as input. In this
case, both intra-subject classification and 5-fold Nested Cross
Validation (NCV) were applied, to also test the feasibility of
generalization between subjects. For intra-subject, 70% of data
was used as input, 10% as validation and 20% as testing. For
5-fold NCV, 5 folds were defined per dataset. For each fold,
the data of 2 subjects were used as validation data, and the
data of 3 subjects as test data.

Regarding the hyperparameters, they were selected based
on the requirements of each classifier. For the DCNN, the
Adam optimizer was selected, with a learning rate of 0.01.
categorical crossentropy for chosen for loss, 75 as the number
of epochs, and 64 as the batch size. For the SCNN, the Adam
optimizer with a learning rate of 0.001 was chosen, categorical
crossentropy for loss, 75 as the number of epochs, and 64 as
the batch size. Finally, for the LSTM, after a limited grid
search, Adam with categorical crossentropy was used as well,
with a learning rate of 0.01 and a batch size of 64. However,
the number of epochs was reduced to 30, to avoid overfitting.

D. Evaluation Metrics

For comprehension of the results, the average accuracy
plus standard deviation, range of accuracy, specificity and
sensitivity of the classification objectives were selected as
metrics. The confusion matrix of each training experiment
was also extracted by interpolating the predicted with the
true labels. From each confusion matrix, the specificity and
sensitivity were calculated. Specificity is known as the True
Negative Rate, in other words the trials that did not belong in
a specific class, and were indeed classified as not belonging
to that class. Specificity was calculated using equation (2).
Sensitivity is referred to as the True Positive Rate, in other
words the proportion of the data that were classified correctly
per class. Sensitivity was obtained using equation (3). As
a note, for the RF classifier, graphs that represented the
importance of each feature in classification were also obtained
(see Appendix D), but are not included in the coming results
section.

True Negative

Specificity = )

True Negative + False Positive

. True Positive
Sensitivity = — . 3)
True Positive + False Negative

E. Overt versus Covert Trials

To test the potential of covert vowel classification, the
accuracy of covert trials was compared to the accuracy of overt
trials. Both datasets also contained several EEG recordings of
overt trials, which were pre-processed in the same manner.
After pre-processing 7840 segments (of 256 samples) were
obtained for Coretto and 20902 (of 256 samples) for DAIS.
Since overt speech is associated with the direct excitation of
muscles and the effect is clearly distinguished by human ears,
an assumption was made, that between the two cases, overt
speech would result in higher accuracy, and the difference
between the two would give an estimate of an upper limit
for the covert case. For this experiment, the so far best
performing ML method and the best performing DL method
were chosen. Five-class classification was performed for each
subject separately for the overt and covert case for both
datasets. Then, the average for each dataset was calculated
for both speech scenarios.

F. Binary classification of covert vowels

To test if certain vowels can be distinguished from one
another easier from the EEG activity that produces them, intra-
subject 2-class classification was also implemented for all the
10 possible pairs (/a/-/el, /al-/il, /al-lol, lal-hul, lel-il, lel-lof,
lel-lu/, fil-/ol, li/-/u/, /o/-/u/) for both datasets. In this case, the
DCNN model was chosen as the classification method, under
the assumption that DCNNs usually perform better in literature
for this task [8], [15], [33]. The architecture was updated
accordingly, to include a Dense layer of size 2 instead of 5
at the final stage of the classification. No further architectural
changes were implemented during this step.

G. Additional Experiment

As a note, an additional experiment took place, testing the
feasibility of subject identification through EEGs. The results
are not discussed here, but the confusion matrices and model
training history curves can be seen in Appendix B.

ITI. RESULTS
A. Classifier performance

The results of the 6 classifiers for the 5-class classification
were compared with those of literature. Figure 4 shows several
reported average accuracies from other articles as well as re-
sults of this study for the Coretto dataset by order of increasing
magnitude. A comparison between the average performance
of the 6 classifiers for both datasets can be seen in figure 5.
The highest reported average accuracy for the ML methods
was encountered for the RF classifier (24.3% for Coretto and
24.5% for DAIS). The highest reported average accuracy for
the DL methods was observed for the DCNN classifier (36.0%
for Coretto and 39.0% for DAIS). The remaining results can
be seen in Table 1.

Confusion matrices as well as model accuracy history curves
of the best performing method (the DCNN) are provided for
6 subjects of the Coretto and 6 subjects of the DAIS dataset.
Those can be seen in figures 6 - 9. Some confusion matrices
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of 5 layers. Each type of layer is represented with a different color scheme.

for the DL methods can be seen in Appendix E, but are not
discussed in this part.

As a note, confusion matrices depict the percentage of trials
that were classified in every label, with the vertical axis being
the true label and the horizontal one being the predicted label.
In the ideal case, the diagonal of the matrix would contain
percentages of 100%, meaning that all the predicted labels
would be indeed the right ones. The rest of the spaces would
be 0%. The subjects included span a range from fairly accurate
to less successful predictions. The model accuracy history

curves, on the other hand, show the accuracy of the model
for the training and validation data for every single epoch of
the training procedure. Typically, a positive slope is observed
in the beginning stages of training, reaching a plateau towards
its end.

In addition, the confusion matrix and model accuracy train-
ing curve is provided for one fold of the Coretto dataset
(figures 10, 11). All the folds scored close to chance level
during nested cross-validation (from 19.4% to 21.4%) and
the resulting confusion matrices and model accuracy history
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Fig. 4: Reported average performance of different classifiers from literature, including this study, by order of increasing accuracy

(chance level 20%) [8], [15], [19], [29], [33].

m Coretto Dataset m DAIS Dataset

Average Test Accuracy (%)

RF

GNB

KNN

DCNN SCNN LSTM

Fig. 5: Average intra-subject classification accuracy for the 6 classifiers (confidence level 95%, chance level 20%).

curves were almost identical. The specificity and sensitivity
values were also identical to the average accuracy per subject.

B. Overt versus covert trials accuracy

The average accuracy for the two datasets in the case of
overt versus covert speech can be seen in figures 12 and 13.
The DCNN scored an average accuracy of 40.5% for DAIS
and an average accuracy of 37.8% for Coretto, whereas the
RF classifier scored an average of 25.3% for DAIS and an
average of 29.4% for the two datasets respectively. In all
cases, the overt speech training scored slightly higher than
the covert equivalent. The best recorded accuracy during this
experiment was 50.0%, and it was achieved from subject 3
of DAIS. Despite the minor fluctuations in accuracy achieved
by different subjects, both datasets reached similar scores, as
can be seen by the range of results in table 2. In addition, the

10

values of the standard deviation were lower in the case of the
RF and higher in the case of the DCNN for the same data.

C. Binary classification results

The ten binary combinations of vowels were classified per
subject and per dataset and the results can be seen in figures
14 and 15. For DAIS, the lowest pairs were /a/ versus /i/ and
/al versus /e/ with accuracies of 57.9% and 58.2% respectively.
The rest of the pairs followed a slightly increasing trend
starting from /i/ versus /o/ and ending with /i/ versus /u/.
Finally, the best performing pair was /a/ versus /u/, with an
average accuracy of 64.4%. Standard deviation ranged from
5.8% (/al - Iu/) to 8.0% (/a/ - /i/).

Regarding the behavior of Coretto dataset, the combinations
/ol versus /u/ and /e/ versus /o/ performed the worst, scoring
60.4% and 60.0% respectively. A similar increasing trend was
observed for the rest of the pairs. Finally, the best performing
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TABLE I: Comparison of mean, std and range for all classifiers
for both datasets.

TABLE II: Comparison of mean, std and range for the overt
VErsus covert case.

Classifier Dataset Metrics (%) Classifier Dataset Speech type Metrics (%)
mean std min max mean std min max
RF Coretto 24.3 1.9 21.3 28.6 RF Coretto Overt 294 4.1 22.3 353
DAIS 24.5 2.5 18.7 27.5 Covert 23.3 2.5 18.7 27.5
DAIS Overt 25.3 1.4 232 29.6
GNB Coretto 21.7 1.7 18.9 24.5 Covert 24.3 1.9 21.3 28.6
DAIS 214 1.6 19.1 24.5
DCNN Coretto Overt 37.8 4.6 26.6 459
kNN Coretto 22.7 1.9 20.0 26.7 Covert 36.0 5.5 21.3 40.0
DAIS 24.0 1.8 21.5 27.8 DAIS Overt 40.5 6.4 28.5 50.0
Covert 39.0 2.6 34.1 433
DCNN Coretto 36.0 5.5 21.3 40.0
DAIS 39.0 2.6 34.1 433
SCNN Coretto 23.5 2.3 20.2 28.5
DAIS 25.8 2.6 20.0 304 . ) )
Coretto dataset than DAIS. Also, intra-subject accuracies were
LSTM Coretto 21.8 1.9 20.1 25.6 : _
DAIS 500 27 167 5% between 44.7% for subject 1 of DAIS dataset (/o/ - /u/) and

pair was /a/ - /u/, with an average accuracy of 64.8%. Standard
deviation ranged from 3.2% (/e/ - /u/) to 6.0% (/a/ - /o).
Overall, the standard deviation values were lower for

11

76.3% for subject 15 of DAIS dataset (again /o/ - /u/). Finally,
the sensitivity and specificity values were almost identical as
the average classification accuracy per subject per vowel pair
(with a maximum difference of 5%). The average accuracies

and standard deviations in arithmetical form can be seen in
Table 3.
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IV. DISCUSSION

A. 5-class Classification

None of the classifiers for covert vowels achieved average
accuracy levels higher than 40%. This suggests that, despite
the different methods used, the SNR of the data was sig-
nificantly low. Among the traditional ML methods, the RF
classifier performed slightly better overall (about 1% differ-
ence with kNN), but still limited below 25%, given a chance
level of 20%. On the other hand, between the DL models,
the Convolutional Neural Networks managed to surpass the
25% limit. More specifically, the SCNN achieved an average
accuracy of 25.8% for the DAIS dataset, and the DCNN, which
outperformed all the other methods by far, scored 36.0% for
Coretto and 39.0% for DAIS respectively.

The CNNs, in general, focus on identifying spatial and
temporal features in their initial layers, whereas in the primary
focus of the other classifiers is the temporal flow of infor-
mation. Given the level of accuracy that was achieved, this
might suggest that, to solve the problem, a spatial component
is also necessary. Also, the hidden layers of the DCNN were
responsible for the acquisition of high level features, that might
be able to detect small important discrepancies in the data.
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The possibility of overfitting is also necessary to be as-
sessed. However, many dropout layers were used, especially
towards the final layers of the model, where the dense con-
nections easily result to the emergence of this issue. The
percentage of dropout was chosen to be kept at 0.1, given
the small size of the datasets. A larger ratio could result
in less successful training conditions. Secondly, by looking
at figures 8 and 9, it is visible that the training accuracy
reaches a plateau towards the very end of the training for
most subjects - but not earlier - while the validation accuracy
keeps increasing at a low but steady rate. This suggests that
the model is found at the early stages of overfitting, but not
deep enough to be considered biased. The difference between
training and validation accuracy is substantially large, which
is evidence pinpointing to the data having a low SNR. As a
note, accuracy history curves are almost never displayed in
articles - according to the author’s extent of knowledge - so
comparisons about overfitting are difficult to be made between
articles.

The model accuracy history curves highlight another fact.
While the training accuracy follows a pretty smooth trend
in most cases, the same is not true for validation accuracy.
Instead, rough fluctuations can be observed, which suggest
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that chunks of trials are classified randomly every time,
despite the average accuracy increasing as epochs go by.
Since the classification was intra-subject, meaning that no data
from multiple subjects was used for training, those randomly
classified segments either represent the cases where SNR
is really low, or contain data that is not relevant to the
classification problem. This introduces the question: which
exact parts of an EEG recording contain important information
for classification? An additional experiment took place, where
the 2 second windows for each dataset were separated in 4
500ms subwindows and training occurred for each category
(see Appendix A).

The confusion matrices span a range of types. For both
datasets, several subjects produce the diagonal form of the
matrix. However, most of the times, one or two vowels are
classified the best, with the rest hardly rising above chance
level. In addition, a specific behavior emerges, where really
high values are located in a single column of the matrix (e.g.
subject 14 of DAIS in figure 6). This shows that the network
becomes biased in favor of the vowel that is classified the best,
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TABLE III: Comparison of mean, std and range for all 2-class
classification vowel pairs for both datasets. The DCNN was
used as the classification method.

Vowel pair Dataset Metrics (%)
mean std min max
lal-lel Coretto 62.8 4.3 47.0 69.7
DAIS 58.2 7.1 56.2 71.4
lal-1i/ Coretto 62.4 53 49.8 71.2
DAIS 57.9 8.0 45.2 72.8
/al-lo/ Coretto 63.0 6.0 47.7 69.2
DAIS 61.9 6.6 49.9 72.0
/al-// Coretto 64.8 3.8 55.1 70.5
DAIS 64.4 5.8 48.6 73.0
lel-1i/ Coretto 63.1 35 56.9 70.0
DAIS 61.5 5.9 50.0 74.0
lel-lo/ Coretto 60.0 4.8 51.8 69.0
DAIS 62.3 6.4 50.5 70.6
lel-l/ Coretto 62.0 32 55.3 69.2
DAIS 62.2 6.3 55.1 74.8
fil-lo/ Coretto 61.1 6.3 48.5 73.5
DAIS 60.0 6.6 474 70.2
fil-lu/ Coretto 62.5 7.1 57.8 70.2
DAIS 62.8 34 46.2 72.1
lol-ha/ Coretto 61.1 7.6 55.5 66,7
DAIS 60.4 35 447 76.3

showing an inclination to label data from different prompts as
that one. Also, there are subjects whose confusion matrices
follow a random pattern (e.g. subject 6 of Coretto in figure
7). This suggests that several trials from different labels look
similar. For example, in the case of subject 6, /o/ and /u/
seem to be confused with one another. Finally, in the case
of nested cross-validation, almost all elements of the matrices
are close to chance levels, with the column behavior emerging
again (figure 10). In this case, no pattern can be learned, as
variability between subjects is high. This is also evident from
the model accuracy history curve (figure 11), where validation
accuracy never rises above the chance level throughout the
training session (even though the training accuracy increases).

Overall, the average accuracy results were consistent be-
tween the two datasets, with only minor differences, especially
visible in the SCNN and DCNN experiments. Since only 6
electrodes were used for the experiments, two observations
can be made. First, given the same number of electrodes
(and the same prompts - 5 vowels) both datasets seem to
perform similarly. Second, even with a small number of
electrodes, accuracy levels up to 40% could be obtained. Those
numbers are only slightly lower than other studies that used
more electrodes, that were even targeting the cortical areas
responsible for speech processing (e.g. [33]). In this case,
the electrodes were distributed evenly, not focusing on spatial
resolution, but rather covering as much volume as possible.
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B. Overt vs. Covert vowel classification

Classification of overt trials resulted in higher accuracy than
that of the covert ones. However, this increase was small,
suggesting that, even in the case of loud speech, where it
is clear which vowel the subject is pronouncing at a given
point in time, decoding speech from the EEGs is challenging.
Possible reasons for this might be the low SNR of the data,
the small number of electrodes used, or the fact that all
vowels require the activation of similar neural paths, the
location of which lies really close together in the cortical brain
areas, making differences hard to distinguish. Furthermore, the
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fact that a subject is able to hear their own voice during
articulation, might create a feedback loop, responsible for
sound correction through the whole duration of speech [34].
The same condition is not satisfied when subjects perform
covert speech.

In addition, the gap between the two classifiers (RF and
DCNN) remained large, even in the case of overt trials. The
advantage of the DCNN for calculation of spatial features
was evident. Overall, RF results showed smaller variance than
DCNN. Also, in the case of the RF classifier, Coretto dataset
achieved higher results than DAIS. The opposite is true,
however, for the DCNN model, where DAIS scored better than
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Coretto. Additionally, the variance of results between subjects
was overall higher when using the DCNN. Even in the case
of overt speech, however, average results did not exceed 45%
with only a single subject of DAIS dataset crossing the 50%
mark. Again, the two datasets behaved in a similar fashion.

C. 2-class Classification

Regarding the classification of vowel pairs, results were
significantly higher than in the case of 5-class classification.
However, this is mainly because of the smaller number of
classes, as the chance level now increased to 50%. Coretto
and DAIS datasets performed similarly again. Almost all the
average accuracies fluctuated around 60%, with significant
variances. Again, the variance of Coretto dataset is smaller
than that of DAIS. Second, several vowel-pairs are observed
to have a similar place in the order of increasing accuracy.
The classification between /a/ and /u/, for example, seems to
be performing the best in both cases. On the other hand, /o/
versus /u/ and /i/ versus /o/ seem to be performing poorly in
both datasets.

These observations might be explained, if the vowel quadri-
lateral for each language is taken into consideration. Vowels
that tend to be placed further away in the quadrilateral are also
far away in terms of the position of the articulators (e.g. how
open the mouth is). This could explain why /a/ is classified
more accurately when it is grouped with /u/, as the two vowels
are found the far away in the quadrilateral. This observation is
linked to literature, as another broadly used and openly shared
dataset - the DaSalla dataset - contains recordings of /a/,/u/
and rest [20]. Comments have been made before regarding
the higher degree of variability between /a/ and /u/ [20].

If this observation is valid for one vowel combination, all
that remains is to be extended for all vowel combinations.
However, no significant evidence exists or stems from this
study, regarding the relation of EEGs from the vowel pairs to
anatomy and physiology. As the average values for each pair
are really close together, and the variances really large, this
observation remains an assumption.

Overall, the accuracy of the DCNN in this experiment,
is again comparable to literature. For example, in [18] an
average accuracy of 50% was achieved for an SVM-R, and an
average accuracy of 65% was scored for an Extreme Learning
Machine (ELM). In [13], all methods used scored average
accuracy between 50% and 70%. In those articles, a vowel
versus the resting state results in higher accuracy than the
training between two different vowels. This often results in
scores around 90%, but was not implemented in this study.

D. Comparison to literature

Results obtained from this study lead to several important
points regarding previous published articles. First, as seen
from figure 5, the accuracy levels of all classifiers are on par
with other studies. Traditional ML solutions produced results
really close to chance levels. This showcases that the statis-
tical features chosen for this study show high spatiotemporal
variability between subjects, as well as for a single subject
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between segments. The DL models, on the other hand, achieve
a performance of around 30% for 5-class classification, which
can be considered statistically significant. Among the studies
that have made use of neural networks for the Coretto Dataset,
several cases have been tested. For example, the best choice of
hyperparameters [8], the possibility of transfer learning [15],
or the use of a powerful network made for image recognition
called EEGNet [33].

The last one of those studies also introduced a binary
pair CNN, an architecture that classifies vowels based on the
majority outcome after a series of binary classifications, in
order to extract the most possible label, scoring around 60%.
This is the only reported result for Coretto dataset with such
a high accuracy. However, there is ambiguity regarding the
chance level in this case, as the network only needs to choose
between 2 vowels every time, and in some cases it is forced
to even choose between 2 wrong answers (e.g. a true label of
/al needs to be classified as /e/ or /i/). In the same study, when
a second dataset was introduced, results were significantly
higher, ranging from 50% to 90%. This brings about a point
regarding the efficiency of a dataset, as the reasons why such
differences were observed between the two are unknown.

Leaving behind the Coretto dataset, other studies have per-
formed multiclass covert vowel classification, making sole use
of their own recorded datasets. In those cases, all the subjects
were chosen to be right-handed. In [30], Japanese vowels were
classified, and accuracies above 60% were reported. In [13],
Japanese vowels were classified again, this time with adaptive
collection, bringing about similar results. However, the amount
of test trials per subject was only 2. In [11], classification on
English and Bengali vowels was performed, using a stacked
autoencoder, again achieving similar results. There were 5
trials per subject. In this case, however, inter-subject training is
implied, which is notorious for results close to chance level.
In addition, the features used as input were kurtosis, band
power, entropy, peak to peak amplitude, Hjorth parameters
and relative wavelet energy. These statistical features have
been used in other studies as well, but due to the EEGs
being non-stationary signals, results are often close to chance
accuracy. However in that study, the reported accuracy was
around 70%. It is unknown, whether the native language of
the subjects, or the differences between the methods used in
the aforementioned studies are responsible for the differences
in results.

E. Future work

Future work could entail the extension of this protocol to
more covert vowel datasets, so that an assessment can be made
regarding the generalization of the results. Also, next steps of
development should focus on pinpointing the most important
characteristics of the EEGs, or to try and increase the signal to
noise ratio through filtering. Additionally, different placements
and numbers of electrodes should be tested, to assess if
locations next to the cortical areas close to speech result
consistently in higher accuracy, or if just a bigger volume
coverage can be as successful. After all, due to limitations,



the number of electrodes in this study was small and their
location was not focused around those areas, and yet results
were comparable to literature.

When it comes to the EEGs themselves, the useful part
of the whole recording in time is crucial to be identified.
There is no substantial evidence, except some arguments when
the event related potentials begin, of which part is associated
with covert speech, and which is just noise. Additionally,
experiments need to be made, to comprehend why multi
subject classification performs close to chance level. Even
though a similar brain structure is defined in every human,
there is still uncertainty regarding the extent of that similarity.
Therefore, a higher level of understanding of the brain function
is necessary to improve this field.

Since different pairs of vowels seem to be classified with
slightly different levels of accuracy, the effect of different
dictionaries, or prompts, that will be used in a specific BCI is
important to be studied. To do that, however, most other pa-
rameters, like identity of subjects, language, or electrode num-
ber, must be kept constant, to decrease uncertainty. Datasets
have been compared before, but due to constant parameters,
the outcome is always ambiguous (e.g. [Lee] 5-class versus
6-class classification).

Future work should also entail the extension of datasets
to contain information from patients, since the purpose of
the BCIs is to assist those, and not healthy subjects. Then,
similarities and differences between the two groups can also
be researched.

Finally, although a systematic comparison between 2 covert
vowel datasets is useful, it needs to be extended to more, so
that the same hypotheses can be tested repeatedly. Only then
the most efficient methods for covert speech classification will
be determined.

V. CONCLUSION

In this study, a systematic comparison between two openly
shared covert vowel datasets was performed. The methods
used suggested similarities through several experiments, from
5-class and 2-class classification to the comparison of accu-
racy between overt and covert trials. The DCNN model was
observed to be the best performing method for covert speech
decoding, compared to other DL and ML classifiers.

All in all, EEG covert speech classification is a method
that could provide a solution to the communication problems
of people with neuromuscular disorders. However, current
methods and available data only go that far. Deep learning
models - and especially DCNNs - are a step towards the
right direction, and their use in the future will be crucial in
tackling this complicated objective. Results, as demonstrated
by both the 5-class as well as the 2-class classification, show
that statistically significant and above chance level accuracy is
possible. Also, several observations indicate that the obtained
data are not just noise, but rather meaningful information
affected by noise. If the SNR of the data is also improved
in the future, EEG classification could reach its full potential.
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APPENDIX

A. Testing different time windows
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Fig. 16: Average intra-subject accuracy when training took place with a subset of data, for different parts of the initial 2 second
window. DAIS dataset with an RF classifier (upper left), DAIS dataset with a DCNN classifier (upper right), Coretto dataset
with an RF classifier (bottom left), Coretto dataset with a DCNN classifier (bottom right). Chance level is 20%.
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B. Classification per subject
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Fig. 17: Normalized confusion matrices of multi-class classification to identify the subject from the EEG signals. All data from
the 5 vowels were used for this experiment. Subjects 1 through 15 correspond to Coretto (left), whereas subject 16 to 35 to
DAIS dataset (right).
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Fig. 18: Model accuracy history curves for multi-class classification for subject identification. The blue lines corresponds to
training accuracy and the orange ones to validation accuracy. Coretto dataset to the left, DAIS dataset to the right.
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C. Different number of electrodes

TABLE IV: Classification accuracy for the subjects of DAIS dataset, for different numbers of electrodes (62 - all the electrodes
of the EEG cap used, 16 - electrodes covering the Wernicke and Broca’s areas, 6 - electrode locations used in the Coretto
dataset.

Subject Number of Electrodes
62 16 6

1 324 25.0 34.1
3 34.8 349 433
4 28.8 38.1 37.7
5 443 36.2 40.4
6 39.3 33.6 40.7
8 33.6 315 39.7
10 42.0 33.8 36.1
11 434 27.5 40.0
12 41.7 37.1 433
14 34.8 34.1 37.8
15 333 384 39.0
16 28.7 30.3 41.0
18 33.1 22.6 36.6
19 315 36.7 535.1
20 413 33.1 40.1
Average 34.2+9.7% 32.9 +4.6% 39.0 +2.6%
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D. Order of feature importance - Random Forest
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Fig. 19: Feature importance curves obtained via the Random Forest classifier for DAIS dataset. Upper left: subject 15, upper
middle: subject 8, upper right: subject 5, bottom left: subject 12, bottom middle: subject 14, bottom right: subject 19. There

are 6 features per electrode (6 electrodes in total), leading to 36 features. The sum of the importance of all features equals to
1.
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Fig. 20: Feature importance curves obtained via the Random Forest classifier for Coretto dataset.. Upper left: subject 1, upper
middle: subject 2, upper right: subject 8, bottom left: subject 6, bottom middle: subject 7, bottom right: subject 12.
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E. Confusion matrices of other methods
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Fig. 21: DAIS Subject normalized confusion matrices for the RF classifier. Upper left: subject 15, upper middle: subject 8,
upper right: subject 5. Numbers correspond to the 5 vowels: 1 - /a/, 2 - fe/, 3 - /i/, 4 - /o/, 5 - lu/.
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Fig. 22: DAIS Subject normalized confusion matrices for the NB classifier. Upper left: subject 15, upper middle: subject 8,
upper right: subject 5. Numbers correspond to the 5 vowels: 1 - /a/, 2 - /e/, 3 - /i/, 4 - /o/, 5 - /ul/.
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Fig. 23: DAIS Subject normalized confusion matrices for the k-NN classifier. Upper left: subject 15, upper middle: subject 8§,
upper right: subject 5. Numbers correspond to the 5 vowels: 1 - /a/, 2 - /e/, 3 - /i/, 4 - [o/, 5 - /ul.
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