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Spin transfer in diffusive ferromagnet–normal metal systems with spin-flip scattering
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The spin transfer in biased disordered ferromagnet~F!–normal metal~N! systems is calculated by the
diffusion equation. For F1-N2-F2 and N1-F1-N2-F2-N3 spin valves, the effect of spin-flip processes in the
normal metal and ferromagnet parts are obtained analytically. Spin-flip in the center metal N2 reduces the
spin-transfer, whereas spin-flip in the outer normal metals N1 and N3 can increase it by effectively enhancing
the spin polarization of the device.
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I. INTRODUCTION

A spin-polarized electric current flowing through ma
netic multilayers with canted magnetizations produc
torques on the magnetic moments of the ferromagnets.1,2 The
effect is inverse to the giant magnetoresistance, in whic
current is affected by the relative orientation of the magn
zation directions. The spin-current-induced magnetizat
torque arises from an interaction between conduction e
tron spins and the magnetic order parameter, transferring
gular momentum between ferromagnetic layers, hence
name ‘‘spin transfer.’’ The observed asymmetry of t
switching with respect to the direction of current flow in th
magnetization switching in cobalt layers3–6 is strong evi-
dence that spin transfer dominates charge current-indu
Oersted magnetic fields in mesoscopic small structu
Spin-transfer devices are promising for applications by
ability to excite and probe the dynamics of magnetic m
ments at small length scales. Reversing magnetizations
little power consumption can be utilized in current-controll
magnetic memory elements. As a result the spin-transfer
fect has already been the subject of several theore
studies.7–15

The torque can be formulated by scattering theory
terms of the spin dependence of the reflection coefficient
the interface and the incoherence of spin-up and -down st
inside the ferromagnet. This leads to a destructive inter
ence of the component of the spin current perpendicula
the magnetization over the ferromagnetic decohere
length, which is smaller than the mean free path for not
weak ferromagnets.8–14 In this paper we solve the spin
dependent diffusion equation for a multilayer system cons
ing of two reservoirs, three normal metal layers, and t
ferromagnetic layers~see Fig. 1!, generalizing the approac
of Valet and Fert16 to noncollinear systems.

Here we present an approach based on a diffusion e
tion that reveals the main physical effects of spin-flip sc
tering in different parts of the multilayer on the spin transf
Spin-flip scattering in the middle normal metal N2 reduc
the spin transfer, whereas spin-flip scattering in the ou
normal metals N1 and N3 can enhance the spin trans
Spin-flip at interfaces is not considered analytically, althou
in Appendix B we include it into our approach. Since inte
face spin-flip is again a smaller correction to most~but not
0163-1829/2002/66~22!/224424~8!/$20.00 66 2244
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all17! interfaces, the present analytic results are theref
quite generally valid. We mainly focus on relatively larg
systems in which the bulk resistance dominates. Interfa
play an essential role in transferring the torques, but are
sumed to not significantly increase the total as well as
mixing resistance~the inverse mixing conductance! in the
limit of large systems. The inverse mixing conductance o
bulk ~normal metal! layer with an interface is simply the sum
of the inverse interface mixing conductance and the conv
tional bulk layer resistance.18 When the layer is sufficiently
thick, the former can be disregarded. Physically this me
that potential and spin-accumulation drops at the interfa
are so small that their contribution can be disregarded
typical interface resistance for, e.g., Co/Cu, isARsurface
;fVm2. The corresponding typical bulk resistance for cle
and dirty Co/Cu layer varies betweenARbulk
50.01L@nm# fVm2 and 0.1L@nm# fVm2 ~see, for example,
Refs. 19 and 20! where L is the length of the layers ex
pressed in nm. In the presence of spin-flip the analytic
pressions derived below are valid when the layers are thic
than 100 nm for pure samples and 10 nm for alloys, which
reasonable for experimental fabrication, and furthermore
veal qualitative effects of spin-flip relaxation processes
the spin torques for thinner layers. In the absence of spin-
scattering our analytic results also hold for general structu
~Appendix B!. Related calculations of the torque and t
magnetoresistance for submicron Co/Cu multilayers us
the Boltzmann equation were presented in Ref. 13.

The paper is organized as follows: in Sec. II we expla

FIG. 1. N1-F1-N2-F2-N3 multilayer system with noncolline
magnetizations.
©2002 The American Physical Society24-1
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the averaging mechanisms of spin transfer and the boun
conditions for the diffusion equation. The latter are form
lated for a N1-F1-N2-F2-N3 multilayer system and solv
analytically in the presence of spin-flip processes in the b
layers in Secs. III and IV. In Sec. V we summarize our co
clusion. In Appendix A, magnetoelectronic circuit theory8,10

is shown to be consistent with the results from the diffus
equation in the absence of spin-flip scattering. Interfaces
considered in Appendix B, where we also discuss the po
bility to take into account spin-flip at interfaces.

II. DIFFUSIVE APPROACH TO MULTILAYER SYSTEMS

Electron states with spins that are not collinear to
magnetization direction are not eigenstates of a ferromag
but precess around the magnetization vector. In three dim
sions, a noncollinear spin current is composed of many st
with different Larmor frequencies which average out quick
in a ferromagnet as a function of penetration depth. The
ficient relaxation of the nondiagonal terms in the sp
density matrix is equivalent to the suppression of spin ac
mulation noncollinear to the magnetization in th
ferromagnet.8,10,13,14 This spin-dephasing mechanism do
not exist in normal metals, in which the spin-wave functio
remain coherent on the length scale of the spin-diffus
length, which can be of the order of microns. In ballis
systems, the spin transfer occurs over the ferromagnetic
coherence lengthlc51/ukF

↑ 2kF
↓ u. In conventional ferromag-

nets the exchange energy is of the same order of magni
as the Fermi energy, andlc is of the order of the lattice
constant. The strongly localized regime in which the me
free path is smaller than the inverse Fermi wave vectol
,1/kF , is not relevant for elemental metals. In convention
metallic ferromagnetsl @1/kF , and the length scale of th
spin transferlc is necessarily smaller than the mean fr
path l, and therefore is not affected by disorder~this argu-
ment does not hold for gradual interfaces and domain wa!.
The opposite limit was considered in Ref. 21~although the
authors intend to address the situation considered here
forthcoming publication!, wherelc5A2hD0 /J (lJ in Ref.
21!, or with D0; l 2/t,lc; lA2h/Jt. The limit considered in
Ref. 21 implies 2h/Jt.1 or lc. l and therefore does no
hold for ferromagnetic conductors like Fe, Co, Ni and
alloys.

Semiclassical methods cannot describe processes
length scales smaller than the mean free path, and thus
not properly describe abrupt interfaces. It is possible, ho
ever, to express boundary conditions in terms of transmis
and reflection probabilities which connect the distributi
functions on both sides of an interface, and have to be c
puted quantum mechanically.22 For transport, these boundar
conditions translate into interface resistances, which a
from discontinuities in the electronic structure and disor
at the interface. This phenomenon was also extensively s
ied in the quasiclassical theory of superconductivity,23 where
a generalized diffusion approach can be used in the bul
the superconductor, provided that proper boundary co
tions are employed at the interfaces.

Sharp boundaries can be taken into account by fi
22442
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principles band-structure calculations.22 In collinear systems
it is possible to circumvent the problem by replacing t
interfaces by regions of a fictitious bulk material, the res
tances of which can be fitted to experiments. This seems
longer possible when the magnetizations are noncollin
because potential steps are essential for a description o
dephasing of the noncollinear spin current and the torq
However, in the case of a small imaginary part of the mixi
interface conductance~which holds for intermetallic inter-
faces! this again becomes the correct procedure, as show
Appendix B.

We wish to model the multilayer system~Fig. 1! by the
diffusion equation and interface boundary conditions. L
f̂ («) be the 232 distribution matrix at a given energy« and
Î the 232 current matrix in spin space. It is convenient
expand these matrices into scalar particle and vector
contributions f̂ 51̂ f 01ŝ•fs , Î 5(1̂I 01ŝ•I s)/2. For normal
metals f̂ N51̂ f 0

N1ŝ•s, where f 0
N is the local charge-related

chemical potential and the spin distribution function h
magnitudef s

N and directions. In the ferromagnetf̂ F51̂ f 0
F

1ŝ•mf s
F51̂( f ↑1 f ↓)/21ŝ•m( f ↑2 f ↓)/2, where f ↑ and f ↓

are the diagonal elements of the distribution matrix when
spin-quantization axis is parallel to the magnetization in
ferromagnetm.

The diffusion equation describes transport in both the n
mal metal and the ferromagnet. We first consider a sin
interface and disregard spin-flip scattering. The particle a
spin currents in the normal metal with diffusion constantD
are j 5D]xf 0

N and j s
N5D]xfs

N , respectively. The particle an
spin currents are then conserved:

D]x
2f 0

N50, D
]2

]x2
fs
N50. ~1!

In the ferromagnet the particle and spin currents arej
5D↑]xf ↑1D↓]xf ↓ andj s

F5m]x(D↑ f ↑2D↓ f ↓) @see Ref. 10,
Eqs. ~38!–~39!#, where D↑ and D↓ are the diffusion con-
stants for spin-up and -down electrons. Current conserva
of the spin components parallel and antiparallel to the m
netization direction in the ferromagnet read

D↑]x
2f ↑50, D↓]x

2f ↓50. ~2!

Equations~1! and ~2! are applicable only inside the bul
layers. The boundary conditions at the interface arise fr
the continuity of the particle and spin distribution functio
on the normal and the ferromagnetic metal sides8,10:

f s
NuN-surface5~ f ↑1 f ↓!/2uF-surface, ~3!

fs
NuN-surface5m~ f ↑2 f ↓!/2uF-surface. ~4!

Furthermore, particle current is conserved8,10:

@D]xf 0
N#uN-surface5]x~D↑ f ↑1D↓ f ↓!uF-surface. ~5!

We have discussed above why the noncollinear compon
of the spin-accumulation decays on the length scale of
order of the lattice spacing. This leads to the third bound
4-2
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SPIN TRANSFER IN DIFFUSIVE . . . PHYSICAL REVIEW B 66, 224424 ~2002!
condition at the F-N interface, namely, that the spin curren
conserved only for the spin component parallel to the m
netization direction,8,10

@D]xfs
N#uN-surface5m]x~D↑ f ↑2D↓ f ↓!uF-surface1tW , ~6!

where tW'm is the nonconserved part of the spin curre
leading to torques acting on the magnetization in the fe
magnet.

Solving these equations, we recover Eq.~A3! with a mix-
ing conductance as found by the magnetoelectric cir
theory ~Appendix A!.8,10 The magnetoelectronic circu
theory is thus equivalent to the diffusion approach when
system size is larger than the mean free path. Note tha
boundary conditions above do not contain explicit refere
to interface conductance parameters and are therefore
only when bulk resistances are sufficiently larger than
interface resistances. The advantage of using the diffu
equation is that we can now easily derive simple analyt
results, also in the presence of spin-flip relaxation. In norm
as well as ferromagnetic metals, spin-flip scattering lead

]xj 050,
]

]x
j s5fs /ts f , ~7!

where the spin-flip relaxation timets f is a material depen
dent parameter.

III. RESULTS FOR SYSTEMS WITHOUT SPIN-FLIP

Let us now apply this method to the spin transfer in
N1-F1-N2-F2-N3 system~Fig. 1! to obtain explicit results
for the figure of merit,viz. the ratio of the spin torque to th
charge current through~or voltage bias across! the system.
t
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The layers are characterized by the lengthsLN1 , LF1 , LN2 ,
LF2, and LN3 and by diffusion constantsDN1 , DF1,↑(↓) ,
DN2 , DF2,↑(↓) , andDN3 for each normal and ferromagnet
metal layer, respectively. The resistances of the system
RN1 , RF1,↑ , RF1,↓ , RN2 , RF2,↑ , RF2,↓ , and RN3 with, for
example,RN15LN1 /(AN1DN1) andRF1,↑5LF1 /(AF1DF1,↑)
(L andA are the length and cross section of a layer resp
tively!. Let us initially disregard spin-flip scattering.

The continuity of the spin-current at the interface N1-
can easily be shown from Eqs.~1!, ~4!, and~6!. As a result
the two layers N1-F1 behave effectively like a single ferr
magnetic layer with renormalized resistances:

R̃F1,↑5RF1,↑12RN1 , ~8a!

R̃F1,↓5RF1,↓12RN1 . ~8b!

The same is true for the interface F2-N3. As a result it
sufficient to treat only the F1-N-F2 system. In general, th
are spin-current discontinuities at the interfaces F1-N a
N-F2 which, due to momentum conservation, lead to torq
acting on the magnetic moments in the ferromagnetic lay
Taking into account all diffusion equations~1! and ~2! and
boundary conditions~3!–~6!, and also introducing the pa
rametersR5RN2 ,Ri 65(R̃Fi ,↑6R̃Fi ,↓)/4, wherei 51,2, the
torques can be written as

tW15I 0R22

~R1R112aR12R21 /R22!

~R1R21!~R1R11!2a2R11R21

~am12m2!,

~9a!

tW25I 0R12

R1R212aR22R11 /R12

~R1R21!~R1R11!2a2R11R21

~m12am2!,

~9b!

wheret1 andt2 are torques acting on the magnetizations
the first and second ferromagnet respectively,a5(m1•m2)
5cosu, u being the angle between the magnetizations. T
resistance becomes
R~u!5R1R111R212
R12

2 12aR12R221R22
2 1~12a2!~R12

2 R211R22
2 R11!/R

R1R111R211R11R21~12a2!/R
. ~10!
ar-
e
-
ne
ent
It is worthwhile to rewrite Eq.~9! using the effective polar-
ization P5R2 /R1 ~which is the polarization of a curren
flowing through F or N-F layers connected to reservoirs! and
the ferromagnet charge current resistanceRi5Ri 1 . The~ab-
solute values of the! torques are then

ut1u5
u11R/R12aP1 /P2u

~11R/R2!~11R/R1!2a2
I 0P2usinuu, ~11a!
ut2u5
u11R/R22aP2 /P1u

~11R/R1!~11R/R2!2a2
I 0P1usinuu. ~11b!

As one can see from Eqs.~9! there is an asymmetry with
respect to current inversion. For example, if only one pol
ization can rotate~one ferromagnet is much wider than th
other or exchange biased!, domains in the two magnetic lay
ers can be aligned antiparallel by currents flowing in o
direction, and reoriented parallel by reversing the curr
4-3
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KOVALEV, BRATAAS, AND BAUER PHYSICAL REVIEW B 66, 224424 ~2002!
flow. This happens because only one state~parallel or anti-
parallel! is at equilibrium for a fixed direction of the curren
If the currents are large enough~depending on other source
of torques such as external fields, magnetocrystalline an
ropy and damping! the magnetization will flip, which can be
monitored by a change in the total resistance of

R~↑↓ !2R~↑↑ !

R~↑↓ !
5

4R12R22

R21~R111R21!22~R121R22!2
.

~12!

In the case of unit polarization andR'0 the relative resis-
tance change@Eq. ~12!# can be 100%. This asymmetry wa
predicted by spin-transfer theory,1 and was observed
experimentally.3–5 Note, however, that in these experimen
the mean free path is comparable to the size of the syste
and the present theory cannot be directly applied.

From Eq.~11! follows that the torques are equal to ze
for parallel and antiparallel alignments. When the numera
of Eq. ~11! 11R/R1(2)2aP1(2) /P2(1) never vanishes, the
torque increases withu from zero to a maximal value which
corresponds to an angle larger thanp/2 and vanishes agai
when configurations become antiparallel. When the nom
tor of Eq. ~9! does vanish for some angleu0, the absolute
value of torque has a local maximum beforeu0 ~see Fig. 2!.
In principle, it is possible to have an equilibrium magnetiz
tion angleu5u0 for one current direction, whereas the ma
netization angleu50 or p for the opposite current directio
~this can lead to asymmetry for the transition from the an
aligned state to the aligned state in comparison with the t
sition from aligned to antialigned state, as observ
experimentally6!.

We propose a setup in which only one magnetization
rotate ~usually it is achieved by taking one ferromagne
layer much wider than the other or by exchange biasing!. If
one ferromagnetic layer~for example the first one! has a
resistanceR1!R and the otherR2.R, the torquet2 van-
ishes whereas the other torque can be simplified to

ut1u5I 0P2usinuu . ~13!

FIG. 2. Torque acting on the first ferromagnet as a function
the relative angle between the two magnetizations for different n
mal metal resistances~the resistances are expressed in unitsR1

5R2 , P150.5, andP250.2).
22442
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The maximal torque in this setup occurs when the magn
zations of ferromagnet F1 and ferromagnet F2 are perp
dicular.

In general, the spin torque is maximal when the resista
R of the normal metal vanishes, as could have been expe
since this also gives the maximum magnetoresistance ef
In Eqs.~9! and ~11! the size of the magnets does not play
dominant role for small normal metal resistances. In this c
the torques depend mainly on the polarizations.

IV. RESULTS FOR SYSTEMS WITH SPIN-FLIP

So far, we have disregarded spin-flip scattering, which
be included readily, however. Here the system N1-F1-N
F2-N3 is analyzed, and spin-flip in each normal metal par
considered separately. Introducing spin-flip in N1 and
leads to a simple result: Eq.~8! without spin-flip remains
valid, but with modified spin-flip resistances,

RN1(N3)
s f 5RN1(N3)

tanh~LN1(N3) / l sd!

~LN1(N3) / l sd!
, ~14!

where l sd is the normal metal spin-flip diffusion length
When L@ l sd , the resistance is governed by the spin-fl
diffusion lengthl sd , which means that only part of the met
takes part in the spin transfer whereas the rest plays the
of the reservoir. This reduction of the active thickness of
device can lead to an effective polarization increase by
creasing the effect ofRN in Eq. ~8!. Spin-flips in the middle
normal metal have a larger impact. The torques in the p
ence of spin-flips in N2 read

ut1u5
b1Rs f/R12aP1 /P2

~b1Rs f/R2!~b1Rs f/R1!2a2
I 0P2usinuu,

~15a!

ut2u5
b1Rs f/R22aP2 /P1

~b1Rs f/R1!~b1Rs f/R2!2a2
I 0P1usinuu,

~15b!

whereb5cosh(L/lsd) and P1(2) andR1(2) are given by Eqs.
~8! and ~14!. Rs f is an effective normal metal resistance:

Rs f5R
sinh~L/ l sd!

L/ l sd
. ~16!

For L> l sd the torque is significantly reduced by spin-flip
becoming exponentially small for longer samples.

Let us now consider spin-flips in the ferromagnet. T
treatment of the N1-F1-N2-F2-N3 system is cumbersome
let us concentrate on the simple case of an F-N-F system
that case formulas remain unchanged, providedR1 andR2

are renormalized as

R1(2)2
s f 5R1(2)2

tanh~LF1(F2) / l sd
F !

LF1(F2) / l sd
F

, ~17a!

f
r-
4-4
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R1(2)1
s f 5R1(2)1

tanh~LF1(F2) / l sd
F !

LF1(F2) / l sd
F

. ~17b!

wherel sd
F is the ferromagnet spin-flip diffusion length. The

resistances should be used in Eqs.~9! for the torques in
F-N-F systems. If spin-flip in the normal metal exists, th
formulas ~15! should be used. Equations~17! imply that
there is no polarization change@as defined below Eqs.~9!#
and only the ferromagnet resistancesR1(2) are affected. For
L@ l sd

F the bulk of the ferromagnet behaves like a reserv
~just like the normal metal in the same limit! and only a slice
with thicknessl sd

F is active. In general, spin-flip in the ferro
magnet leads to reduced torques asR1(2) becomes smaller
The effect may be quite small as long as the resistance o
ferromagnet is sufficiently larger than that of the norm
metal @this can also be seen from Eqs.~8! and ~11!#, so that
the polarization of the current is maintained.

Finally we would like to discuss magnetoresistance a
torque for the symmetricR115R21 andR125R22 . For the
angular magnetoresistance we extract from~10! the formula
observed by Pratt24 and also shown to be universal for an
disordered F-N-F perpendicular spin valves in Ref. 18,

R~u!2R~0!

R~p!2R~0!
5

12cosu

x~11cosu!12
, ~18!

with one parameterx that is given by circuit theory,

x5
1

12p2

uhu2

Reh
21, ~19!

in terms of the normalized mixing conductanceh
52g↑↓ /g, the polarizationp5(g↑2g↓)/g, and the average
conductanceg5g↑1g↓ . As we do not take interface resis
tances into account, in our case the parameters can be
pressed only via bulk resistances:g51/(R↑1R)11/(R↓
1R),h52/(Rg),p52R2 /(2R11R). From Eqs.~11! and
~10! the analytical expressions of the spin torque on eit
ferromagnet for current and voltage biased systems read

utu5
p~x11!usinuu

x~cosu11!12
I 0 , ~20!

utu5
pg

2

husinuu
~h21!cosu111h

um l2m r u
2p

, ~21!

wherem l (r ) is the chemical potential in the left~right! ferro-
magnet. In the presence of spin-flip for the angular mag
toresistance we can write~restricting ourself to F-N-F cas
again!

R~u!2R~0!

R~p!2R~0!
5

@11x~b21!/2#~12cosu!

x~b1cosu!12
, ~22!

where all parameters should be calculated according to
~16! and ~17!. The dependences of the torque on angle n
read
22442
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utu5
p~x11!usinuu

@x~cosu1b!12#
I 0 , ~23!

utu5
pg

2

husinuu
A1cosu1A2

um l2m r u
2p

, ~24!

where we introduced four parameters

A152
p2

11
x

2

b21

x11

S 11
xb1x

2 D

1xS 11
~k11xk2!

x11
2k2pD , ~25!

A25
p2

11
x

2

b21

x11

S 12
xb12

2
~b11! D

1S 11
~k11xk2!

x11
2k2pD ~xb12!, ~26!

and

k15
LN / l N,sd

sinh~LN / l N,sd!
21, k25

LF / l F,sd

tanh~LF / l F,sd!
21.

An interesting result can be drawn from Eqs.~22! and
~23! by comparison with the Eqs.~18! and ~20!. In order to
fit the torque and the magnetoresistance in the presenc
spin-flip we need an additional parameterb @defined in Eqs.
~15!#, which depends only on the spin-flip diffusion length
the normal metal spacer. The general form of Eqs.~22! and
~23! with only two parameters seems to be valid even in
presence of interfaces, but this has to be confirmed by fu
studies. Equation~24! is cumbersome, depending explicitl
on the diffusion length in the ferromagnets. In Fig. 3 we p
results of Eq.~23! for different spin-diffusion lengths in the

FIG. 3. Torque on each ferromagnet as a function of the rela
angle between the two magnetizations for different spin-flip dif
sion lengths in the normal metal~the resistanceR50.2 is expressed
in unitsR15R2 , P15P250.4, andL/ l sd50, 1, 1.5, and 3, and the
lower plot corresponds to the higher ratio!. With the dashed line we
plot Slonczewski’s result~Ref. 1! for the same polarization.
4-5
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normal metal. The smaller diffusion length corresponds
smaller torques. The curves only qualitatively resemble Sl
czewski’s result for ballistic systems, but it should be poin
out that for the limitp51 andh52, both approaches resu
in the same formula.

V. CONCLUSION

We investigated transport in multilayer systems in the d
fusive limit with arbitrary magnetizations in the ferroma
netic layers. The boundary conditions for diffusion equatio
including spin transfer were discussed, and analytic exp
sions for the magnetization torques and the angular ma
toresistance were obtained. The torque can be engineere
only via the geometry of the samples~such as the layer thick
nesses!, but also via the materials, the ferromagnetic pol
ization being an important parameter. The asymmetry w
respect to the current flow direction has been addressed
the resistance change under magnetization reversal was
culated for different current directions. The effect of spin-fl
in the normal metal and ferromagnet was studied ana
cally. Spin-flip in the center normal metal suppresses the s
transfer, whereas spin-flip in the outer normal metals
effectively increase the polarization and spin transfer. T
spin-flip processes in the ferromagnet also diminish the s
transfer, but not as drastically as long as the resistance o
ferromagnet is larger than the normal metal resistance.
nally we show in Appendix A that the diffusive approac
with carefully chosen boundary conditions leads to res
which coincide with those from circuit theory.
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APPENDIX A: CIRCUIT THEORY APPROACH TO
DIFFUSIVE SYSTEMS

Here we show that the diffusion approach is equivalen
circuit theory and that the mixing conductance is also a va
concept in systems which are dominated by bulk transpo25

We consider an F1-N2-F2 system Fig. 1~N1 and N3 can also
be included! connected to two reservoirs R1 and R2 w
negligible interface resistances. Note that this does not m
that the interface is neglected, because it plays an esse
role in the boundary conditions as mentioned in the m
text. Since the system is diffusive, a thin slice of a ferrom
net or a normal metal can be considered as a node.
mixing conductance can be written in terms of the reflect
and transmission coefficients, and incorporates any kind
contacts, e.g., tunnel, diffusive, and ballistic contacts. We
free to define interface resistors via the location of the nod
Here it is chosen such that the interface width is larger t
the ferromagnetic decoherence length but smaller than
mean free path. We introduce six nodes: r1 is in R1 j
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before the interface, r2 and r3 are before and after the F1
interface, r4 and r5 are before and after the N2-F3 interfa
and r6 is in R2 just after the interface~Fig. 1!.

Let us first find the charge and the spin current in F1~F2!
at the interface where the spin transfer takes place. The
rents read

I 05~G↓1G↑!~ f 0
F2 f 0

N!1~G↓2G↑! f s
F , ~A1a!

I s5m@~G↓2G↑!~ f 0
F2 f 0

N!1~G↓1G↑! f s
F#, ~A1b!

wheref 0
N is the particle distribution function in r1~r6! and f 0

F

is the spin distribution function in r2~r5!. The distribution
function at r2 and r3~r4 and r5! is identical due to the con
tinuity boundary condition. The spin-current between the f
romagnet reservoir r2~r5! and the normal metal reservoir r
~r3! driven by the nonequilibrium distributions can be foun
by using circuit theory,

I1(2)5m2GN~ f s
F2s•mf s

N!22 ReG↑↓ f s
N@s2~s•m!m#

1~s3m!2 ImG↑↓ f s
N , ~A2!

where the spin accumulation in the normal metal reservoi
~r3! is given by the unit vectors and the spin distribution
function f s

N . Use was made ofG↓5G↑5GN because r2~r5!
is close to the interface. The component of the current p
pendicular to the magnetizationm is transferred to the mag
netization at the interface whereas the parallel componen
conserved. The torque acting on the magnetization in F1~F2!
therefore becomes

tW1(2)522 ReG↑↓ f s
N@sN2~sN

•m!m#

1~sN3m!2 ImG↑↓ f s
N . ~A3!

The mixing conductance is related to the reflection coe
cients of an electron from the normal metal to the ferrom
net:

G↑↓5(
nm

@dnm2~r nm
↑ !* r nm

↓ #. ~A4!

Let us now evaluate the mixing conductance for a disorde
system. We assume that the junction consists of two c
nected parts. The normal metal section is described b
single scattering matrix for both spin-↑ and spin-↓ electrons.
The ferromagnetic section requires two independent sca
ing matrices, one for spin-↑ and one for spin-↓ electrons.
Scattering at the F-N boundary is disregarded here since
assumed that the total resistance is dominated by the dif
normal metal and ferromagnetic metal parts of the juncti
The total reflection matrixr a for spin-a electrons can then
be found by concatenating the normal metal and ferrom
netic parts as

r a5r N1tN8 r F
a (

n50

`

~r N8 r F
a!ntN[r N1xa. ~A5!
4-6



th
a
r

-
c

m
em
c
th

e
d

p

all,
ial.
e of

d

s.
s

nd
r-
ent

at-

s
nk
in-

is
qs.

for

ty

A.

C.

et

er,

ett.

s.

d

ys.

W.

SPIN TRANSFER IN DIFFUSIVE . . . PHYSICAL REVIEW B 66, 224424 ~2002!
By inserting Eq.~A5! into the definition for the mixing con-
ductance we find that it can be expressed asG↑↓5GN
1dG↑↓ , where

dG↑↓5(
nm

@~r N!nm* xnm
↓ #1@xnm

↑ ~r N!nm#* 1~xnm
↑ !* xnm

↓ .

~A6!

Equation~A6! depends on the phase difference between
scattering paths of spin-up and -down electrons. It is
sumed that there are no correlations between the scatte
matrices of the spin-↑ and spin-↓ electrons in the ferromag
netic part, which is consistent with the small coheren
length. Consequently, in a diffusive systemsdG↑↓50. How-
ever, the up- and down-spin parts of the total scattering
trix of the combined normal metal and ferromagnetic syst
are correlated since both spin directions see the same s
tering centers in the normal metal part. This leads to
conclusion that, for a diffusive hybrid system,

G↑↓
D 5GN . ~A7!

From Eqs.~A1!–~A3! and taking into account Eq.~A7!, and
noting that 2GN51/R andG↓51/R↓,G↑51/R↑ one can eas-
ily find Eq. ~11!.

APPENDIX B: TREATMENT OF INTERFACES

We show in this Appendix how interfaces can be includ
into our approach. The general form of the boundary con
tions at an FuN interface can be written

f s
NuN2 inter f ace5~ f ↑1 f ↓!uF2 inter f ace1D f , ~B1!

fs
NuN2 inter f ace5m~ f ↑1 f ↓!uF2 inter f ace1Dfs . ~B2!

In the absence of spin-flip scattering at the interface the
tential D f and spin-accumulationDfs drops can be found
from the magnetoelectronic circuit theory as follows:

I 05~G↑1G↓!D f 1~G↑2G↓!~Dfs•m!, ~B3!

I s5m@~G↑2G↓!D f 1~G↑1G↓!~Dfs•m!#12 ReG↑↓fs
N

12 ImG↑↓~ fs
N3m!. ~B4!

*Present address: Department of Physics, Norwegian Universi
Science and Technology, N-7491 Trondheim, Norway.
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