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Abstract

Cardiac output (CO), a vital hemodynamic parameter that reflects
the blood volume pumped by the heart per minute, is crucial for
determining tissue oxygen delivery and the heart’s ability to meet
the body’s demands. Researchers have developed various methods to
measure cardiac output, including thermodilution using pulmonary
artery catheters (PAC), also called Swan-Ganz catheters, the gold
standard for cardiac output measurements. Such an approach in-
volves an invasive procedure associated with complications, and it
requires specialized equipment and expertise, limiting its use to criti-
cally ill patients undergoing operations in intensive care units (ICUs).
An alternative, less invasive way to estimate CO is by analyzing ar-
terial blood pressure (ABP) waveforms. However, the relationship
between cardiac output and blood pressure is unknown. This study
uses machine learning and feature engineering techniques to discover
the relationship between CO and ABP. We applied the sparse identi-
fication non-linear dynamics (SINDy) algorithm to discover features
that significantly contribute to the relationship between CO and ABP.
Additionally, we investigated the optimum number of cardiac cycles
required for feature extraction to achieve the best performance provid-
ing insights into the temporal dynamics of CO estimation. The pro-
posed approach achieved clinically acceptable performance regarding
radial limits of agreement and bias. Further, the proposed approach
was validated on an external dataset and achieved comparable per-
formance. Finally, the learned model was interpreted as a differen-
tial equation describing the blood flow where CO acts as an external
force to the system. All materials used in this study, including code,
model, raw data, processed data, and extracted features, are available
on GitHub to facilitate further development.
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Abstract

Cardiac output (CO), a vital hemodynamic parameter that reflects the blood volume
pumped by the heart per minute, is crucial for determining tissue oxygen delivery and
the heart’s ability to meet the body’s demands. Researchers have developed various
methods to measure cardiac output, including thermodilution using pulmonary artery
catheters (PAC), also called Swan-Ganz catheters, the gold standard for cardiac out-
put measurements. Such an approach involves an invasive procedure associated with
complications, and it requires specialized equipment and expertise, limiting its use to
critically ill patients undergoing operations in intensive care units (ICUs). An alterna-
tive, less invasive way to estimate CO is by analyzing arterial blood pressure (ABP)
waveforms. However, the relationship between cardiac output and blood pressure is un-
known. This study uses machine learning and feature engineering techniques to discover
the relationship between CO and ABP. We applied the sparse identification non-linear
dynamics (SINDy) algorithm to discover features that significantly contribute to the
relationship between CO and ABP. Additionally, we investigated the optimum num-
ber of cardiac cycles required for feature extraction to achieve the best performance
providing insights into the temporal dynamics of CO estimation. The proposed ap-
proach achieved clinically acceptable performance regarding radial limits of agreement
and bias. Further, the proposed approach was validated on an external dataset and
achieved comparable performance. Finally, the learned model was interpreted as a dif-
ferential equation describing the blood flow where CO acts as an external force to the
system. All materials used in this study, including code, model, raw data, processed
data, and extracted features, are available on GitHub to facilitate further development.
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Introduction 1
Hemodynamic optimization is critical in reducing postoperative complications that be-
long to the leading causes of death worldwide [37]. The key to such optimization is early
interventions, where research shows that early interventions for hemodynamic control
decrease mortality rates by over 20% in high-risk patients [23]. Such an improvement
can be achieved by maintaining cardiac output (CO) or stroke volume (SV) within
specific ranges [11]. CO, a vital hemodynamic parameter, reflects the volume of blood
pumped by the heart per minute from a single ventricle. On the other hand, stroke
volume (SV) represents the volume of blood pumped by the heart per heartbeat. The
relationship between CO and SV can be expressed mathematically:

CO[L/min] = SV[L/beat]× HR[beats/min]. (1.1)

Figure 1.1:
Invasive measure-
ments Swan-Ganz
catheter.[54]

Here HR is the heart rate. Cardiac output is crucial for determin-
ing tissue oxygen delivery and indicates the heart’s ability to meet
the body’s demands. Furthermore, it plays a fundamental role in
understanding the causes of high blood pressure. Consequently,
measuring CO has been a topic of interest to researchers and clini-
cians [47]. Researchers have developed various methods to measure
cardiac output, including thermodilution using pulmonary artery
catheters (PAC), also called Swan-Ganz catheters. This technique,
illustrated in Figure 1.1, involves injecting a cold saline solution
into the proximal port of the catheter and measuring the resulting
temperature change using a thermistor [9, 36]. Therefore, such an
approach involves an invasive procedure associated with complica-
tions, and it requires specialized equipment and expertise, limiting
its use to critically ill patients undergoing operations in intensive
care units (ICUs). Although thermodilution is considered the gold
standard for CO measurements, it only provides an approximation since measuring the
actual CO is extremely hard in clinical practices.

Figure 1.2:
Alternative
method for mea-
suring ABP using
arterial line.[53]

Researchers have explored less invasive alternatives for estimat-
ing cardiac output throughout the past century, focusing on utiliz-
ing arterial blood pressure ABP waveforms. Various techniques for
estimating CO from arterial blood pressure were developed. These
techniques are called arterial pressure cardiac output (APCO) and
utilize the continuous arterial pressure waveform obtained from an
arterial line (shown in Figure 1.2) to estimate CO. Pressure-based
techniques APCO can estimate CO and uncover hidden information
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about CO by analyzing the arterial waveform during one cardiac cycle (beat-to-beat
analysis) and using hemodynamic features (pressure information). Many models were
developed over the years based on arterial blood pressure, including models based on
solid physical principles called classical models throughout this thesis and models based
on data-driven approaches [21, 46].

The classical models are simplified versions of the actual model and rely on the sys-
tematic circulation in blood flow where the heart models the generator (for example,
a current source). Furthermore, capacitors and resistors model the arterial system.
These models could provide a physical interpretation of the estimated value. However,
such models must be more accurate and are associated with many assumptions that
simplify the model. Some commercially available devices, like FloTrac/Vigileo, em-
ploy an APCO technique, offering a more straightforward and less invasive approach.
However, these devices have limitations, as their algorithms are only partially released.
Hence no improvement is possible [55].

Data-driven techniques such as machine learning and deep learning have been increas-
ingly applied in medical research and clinical practice to improve patient outcomes and
have demonstrated promising results. In the last decade, there has been growing inter-
est in leveraging machine learning algorithms to estimate cardiac output from arterial
pressure waveform, and this was shown in many studies to provide improvements. Such
an approach estimates the CO by analyzing 10 to 20 seconds of ABP waveform. Such an
analysis includes utilizing hemodynamic, waveform, and demographic features and ex-
pressing complex relationships between these features. However, no algorithm results
in a clinically acceptable algorithm regarding accuracy and precision. Additionally,
one drawback of the advanced data-driven techniques is their black-box nature, which
makes them not readily accepted in clinical practice as they need more explanation of
the results.

1.1 Problem statement

This study, conducted in collaboration with the Erasmus Medical Center in Rotterdam,
the Netherlands, aims to design a system for the less invasive estimation of cardiac out-
put. This estimation will be based on continuous arterial blood pressure measurements
obtained through an arterial line, specifically for anesthesia patients. The proposed
algorithm should have performance comparable to the gold standard method, namely
the Swan-Ganz catheter. This study will utilize real-world ABP waveforms obtained
from publically available datasets, and the Erasmus MC will provide their expertise in
the field.

Figure 1.3 summarizes the main ideas behind this thesis. The gold standard is the
Swan-Gans catheter, and the assignment is to develop a new algorithm that uses less
invasive measurements to estimate cardiac output.
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Figure 1.3: Summary of the idea behind the project

Developing accurate and precise predictive models for estimating CO from ABP
can significantly enhance cardiovascular healthcare, improve patient outcomes, and em-
power clinicians to make well-informed decisions. One key advantage of this approach
is its less invasive nature, enabling cardiac output estimation for a broader range of
patients.

In the classical approach, the features (pressure information) are simplistic and must
fully capture the complex model that links CO with ABP. Nonetheless, the underlying
concept was to represent the dynamics of the arterial system as an electrical circuit us-
ing capacitors and resistors. It was believed that there is a covering differential equation
that describes the system’s behavior. However, during that period, the limited com-
putational power of computing machines hindered the ability to test various settings,
resulting in a reliance on assumptions.

In contrast, the data-driven approach incorporates more features and builds complex
models to capture better the relationship between CO and ABP. Advanced learning
techniques can capture non-linear relationships empowered by modern computing ca-
pabilities. However, despite achieving superior performance compared to classical es-
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timators, data-driven approaches often need more interpretability inherent in classical
models.

To address these challenges, this study proposes using machine learning techniques
and feature engineering to develop an explainable algorithm for estimating cardiac
output from arterial blood pressure measurements. We combine the core idea of the
classical approach, which suggests the presence of a differential equation governing the
system’s behavior, with the power of advanced techniques to discover these equations.
To this end, we aim to explore a novel set of features that have not been previously
investigated, offering a fresh perspective on the problem. This approach enables us
to uncover new insights and provide an understanding of the problem from a different
perspective.

Furthermore, this study will examine the optimal duration of the algorithm’s input.
Classical approaches typically analyze data beat-to-beat, considering only one cardiac
cycle. On the other hand, data-driven approaches often utilize input data spanning
10 to 20 seconds of the arterial waveform, equivalent to approximately 8 to 20 cardiac
cycles. However, the rationale behind these specific input lengths remains to be de-
termined, and their selection varies across different studies. To address this knowledge
gap, we will investigate the ideal number of cardiac cycles for the input, aiming to
reconcile the disparities between studies and provide valuable insights into determining
the appropriate input duration for the algorithm.

By leveraging the capabilities of machine learning and feature engineering capabili-
ties, this study will contribute to the progress of less invasive CO estimation by con-
necting the missing dots between classical and data-driven models. Specifically, this
study aims to:

Design a machine learning algorithm to estimate cardiac output from continuous
arterial blood pressure waveform features for patients undergoing anesthesia such
that the learned model is as explainable as possible and achieves a clinically accepted
level regarding accuracy and precision compared to the gold standard, the Swan-
Ganz catheter.

In this study, the following research question will be addressed:

RQ 1: Which arterial blood pressure features should be used as input for the algo-
rithm?

RQ 2: What is the optimal number of cardiac cycles required for extracting features
that yield the best performance?
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RQ 3: How does the developed model compare to the traditional invasive method
(Swan-Ganz catheter) regarding accuracy and precision?

1.2 Thesis contribution

This thesis makes a novel contribution to less invasive cardiac output estimation based
on arterial blood pressure waveform. It investigates new features that have not been
utilized before, such as derivatives, time-related, and non-linear features. Considering
these features, the learned model can be expressed as a differential equation, providing
an explainable equation that describes the blood flow and its relation to cardiac output.

Furthermore, the study will investigate the optimal number of cardiac cycles required
to achieve the best performance. Experimenting with different cardiac cycles will pro-
vide valuable insights into the input length and determine how far back in time we need
to go to estimate CO accurately, bridging the gap between classical and data-driven
approaches. Figure 1.4 visualizes the contribution of this study, highlighting its aim to
connect the dots between classical models and data-driven approaches.

Figure 1.4: Visualization of the thesis contribution

1.3 Thesis outlines

This thesis is organized into several chapters. Chapter 2 will review the existing litera-
ture, followed by the methods in Chapter 3. The results will be presented and explained
in Chapter 4. The obtained results will be discussed in chapter 5. Finally, the thesis
will be concluded in Chapter 6, and future work will be elaborated.
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Literature review 2
This chapter will review and summarize the literature on pressure-based cardiac output
estimators. Part of the literature review was performed as a part of the extra project
course ET4399. The literature review of the extra project can be found in the appendix
B. This chapter first explains the cardiac cycle and its relation to blood pressure. A
review of classical models will be followed this. Classical models can be categorized
into lumped parameter models and pressure area models. Finally, the literature on
data-driven approaches will be reviewed; such an approach utilizes machine learning
and deep learning techniques.

2.1 Pressure cardiac cycle

Figure 2.1: Example showing one car-
diac cycle with most important fea-
tures

Before delving into the review of both ap-
proaches, the classical and data-driven. Know-
ing what a cardiac cycle is and how it relates
to blood pressure is essential. During diastole,
the heart relaxes and fills with blood as venous
returns bring blood back to the heart. The end-
diastolic volume EDV represents the maximum
amount of blood filling the heart at the end of
relaxation. The diastole period follows the di-
crotic notch in the arterial blood pressure wave-
form (Figure 2.1). The diastolic blood pressure
DBP corresponds to the pressure at the end of
the diastole period and serves as the starting
pressure for the subsequent cardiac cycle. Sub-
sequently, the heart contracts during systole, ex-
pelling blood from the heart into the arteries.
This contraction is referred to as systole. At
the end of systole, the heart has ejected the maximum amount of blood it can expel,
leaving a residual volume known as the end-systolic volume ESV. The difference be-
tween the EDV and ESV represents the stroke volume SV, the volume of blood ejected
per heartbeat, and is also related to the Frank-Starling mechanism [16], linking stroke
volume to ESV. Cardiac output CO is calculated by multiplying the stroke volume SV
by the heart rate HR, as shown in equation 1.1. In the arterial blood pressure wave-
form, the difference between diastolic blood pressure DBP and systolic blood pressure
SBP is referred to as pulse pressure PP.
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2.2 Lumped parameter models

Lumped parameter models are simplified mathematical representations of the cardio-
vascular system, where the heart acts as the generator for blood flow, and the systematic
circulation is modeled using lumped elements such as resistors and capacitors. Many
models were proposed based on systematic circulations where the cardiac output is
calculated beat-to-beat. Almost all classical estimators calculate the stroke volume
first and then multiply it by the heart rate to get the cardiac output. All these esti-
mators are proportional to the cardiac output and include a proportionality constant
encapsulating non-linear terms.

One of the classical lumped parameter models is the Windkessel model [10]. This
model assumes that the amount of blood entering a blood vessel equals the amount of
blood leaving the vessel during a cardiac cycle. It also assumes a steady hemodynamic
state of blood flow. The systematic circulation is modeled using resistors and capacitors,
and the model suggests that cardiac output is proportional to the pulse pressure:

COWind = k · (SBP−DBP) · HR. (2.1)

Here, SBP represents systolic blood pressure, DBP represents diastolic blood pressure,
and k is the proportionality constant that encapsulates resistance and compliance.
Another variant of the Windkessel model is the Windkessel with RC decay [3, 51],
which calculates cardiac output differently by incorporating the decay constant of the
capacitor:

COWindRC = k · MAP

T
· ln( SBP

DBP
) · HR. (2.2)

Another estimator called the Herd estimator [13] was developed for teaching pur-
poses. Therefore, it was simple and less complicated. This model suggests that cardiac
output is proportional to the difference between mean arterial blood pressure MAP and
diastolic blood pressure DBP:

COHerd = k · (MAP−DBP) · HR. (2.3)

The MAP is calculated based on the systolic blood pressure SBP and diastolic blood
pressure DBP using the following equation:

MAP = DBP +
1

3
(SBP−DBP). (2.4)

In another study, MAP was considered in itself to be proportional to cardiac output[46].

COMAP = k ·MAP · HR. (2.5)

The last lumped parameter model is the Liljestrand-Zender[28]. This model takes into
account the non-linear variation of arterial capacitance and models cardiac output as
follows:

COLZ = k · SBP−DBP

SBP + DBP
· HR. (2.6)
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2.3 Pressure area models

Pressure area models are another approach that utilizes the area under the arterial
pressure curve to estimate cardiac output. This technique involves integrating the ar-
terial blood pressure waveform over time, appropriate calibration, or using proportional
constants to convert the area into volumetric units. One pressure-area estimator is the
systolic area [50] that states that the cardiac output is proportional to the area under
the systole area in an arterial blood pressure waveform:

COSA = k ·
∫
Tsys

ABP(t).dt · HR. (2.7)

Later, a correction factor was proposed for the previous estimator (systolic area), and
the following estimator was proposed [24]:

COSAC = k ·
(
1 +

Tsys

Tdis

)
·
∫
Tsys

ABP(t).dt · HR. (2.8)

Here Tdis and Tsys are the diastolic and systolic duration, respectively. Another correc-
tion to the pressure-area estimators was introduced in [52] where a correction factor to
the impedance was added and hence the name ”systolic area” with corrected impedance:

COSACI = k · (163 + HR− 0.48 ·MAP) ·
∫
Tsys

ABP(t).dt · HR. (2.9)

Another estimator was proposed in [19] where the belief was that cardiac output is
proportional to the root-mean-square of each cardiac cycle, therefore, modeling cardiac
output as the AC power of the cardiac cycle in an arterial blood pressure waveform:

COrms = k ·
√∫

Tsys

(ABP(t)−MAP)2dt · HR. (2.10)

All estimators mentioned above have several limitations, as was discussed in [48]. These
models are a simplified version of the actual model, even the most complex model. In
addition to that, these estimators are patient-dependent, meaning all methods requires
calibration to obtain a CO estimation. Finally, these mods are derived based on solid
physical principles and less physiological models. In [46], all these models were evalu-
ated using the MIMIC dataset [40], as a result, the Liljestrand-Zender model performs
the best, achieving an error of 0.8 L/min at one standard deviation. However, it should
be noted that the proportionality constant was estimated using the ground truth car-
diac output measurements. Table 2.1 summarizes the classical models.
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Table 2.1: Summary of classical models used to estimate cardiac output on beat-to-beat basis
Model Equation
MAP COMAP = k ·MAP ·HR
Windkessel 1904 [10] COWind = k · (SBP−DBP) ·HR

Windkessel with RC 1974,1976 [3],[51] COWindRC = k · MAP
T · ln( SBP

DBP ) ·HR
Herd 1966 [13] COHerd = k · (MAP−DBP) ·HR

Liljestrand-Zender 1928 [28] COLZ = k · SBP−DBP
SBP+DBP ·HR

systolic area 1953 [50] COSA = k ·
∫
Tsys

ABP(t).dt ·HR

systolic area with correction 1970 [24] COSAC = k · (1 + Tsys

Tdis
) ·

∫
Tsys

ABP(t).dt ·HR

systolic area with corrected impedance
1983 [52]

COSACI = k · (163 +HR− 0.48 ·MAP) ·
∫
Tsys

ABP(t).dt ·HR

root-mean-square 2002 [19] COrms = k ·
√∫

Tsys
(ABP(t)−MAP)2dt ·HR

2.4 Data-driven models

The reliability of classical estimators for estimating cardiac output from arterial blood
pressure is limited due to their simplifying linear assumptions, which may only hold
across a narrow range of hemodynamic conditions. Researchers have explored data-
driven techniques as an alternative approach to overcome this limitation. One of the
earliest attempts in this direction was proposed in 1994, where pattern recognition
and image processing techniques were employed to derive cardiac output from arterial
blood pressure waveforms [32]. The study aimed to utilize the Typical Shape Function
(TSF) algorithm for waveform classification and recognition. Two sets of features were
utilized: physiological and waveform. The physiological features included mean values,
minimum and maximum values, initial values, final values, and maximum slopes of the
arterial blood pressure waveform.

On the other hand, the waveform features encompass Fourier coefficients, statistical
moments, and beat-spline values derived from the waveform. The study utilized an-
imal models to evaluate the performance of their approach and compared the results
with those obtained from three classical estimators. It used an ultrasonic probe as a
reference, achieving 2.8 as the mean error and 9.8 standard deviations. The findings of
this study demonstrated the feasibility and potential of using data-driven techniques
for estimating cardiac output from arterial blood pressure, providing a proof-of-concept
for this approach.

In a subsequent study conducted 17 years later, in 2011 [8], the performance of two
neural network models, namely multi-layer perception (MLP) and radial basis function
(RBF), was evaluated for estimating cardiac output. The performance of these neu-
ral network models was compared with three classical estimators: Liljestrand-Zender,
Herd, and Wesseling. Diastolic, systolic, pulse, and pressure area during systole fea-
tures were extracted to calculate the classical estimators. To assess the performance of
the models, data from the Multi Parameter Intelligent Patient Monitoring for Intensive
Care (MIMIC) database [5] were utilized. From 121 patients, 27 were selected, and
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data were split randomly for training and testing. The findings of this study revealed
a reduction in the mean absolute error between the cardiac output derived from the
Swan-Ganz catheter and the cardiac output estimated by the neural network models
compared to classical models.

Four years later, an application of data-driven techniques emerged to address the
challenge of estimating cardiac output from arterial blood pressure [29] proposed using
machine learning techniques to develop a rule for determining when the calibration of
classical estimators is required. In their study, two classical estimators, specifically the
mean arterial pressure and Windkessel, were combined through a fusion approach. The
aim was to leverage the strengths of each estimator and improve overall performance.
This approach was evaluated on a dataset comprising ten sheep records. The study’s
findings demonstrated that incorporating machine learning techniques enhanced perfor-
mance compared to the standalone classical estimators. The fusion of the mean arterial
pressure and Windkessel estimators, guided by the developed rule, yielded improved
accuracy in estimating cardiac output from arterial blood pressure waveforms. The
reference method in this study was the pulmonary arterial blood flow which is not the
gold standard for cardiac output measurement. The agreement was -0.13%, and the
concordance rate CR was 92% with a 12% exclusion zone.

In recent years, several studies have utilized deep learning techniques to address
the problem of estimating cardiac output from arterial blood pressure. In 2019, a
study was conducted where a Convolutional Neural Network CNN was employed to
predict stroke volume [34]. The input to the model consisted of 10.24-second raw
arterial blood pressure waveforms. The data used in this study was collected in their
institution. In this study, patients were divided into training and testing groups. The
CNN model demonstrated superior performance compared to commercially available
devices, achieving a high concordance rate CR of 77.74% and a correlation coefficient
R of 0.840.

Another study, published in 2021, utilized a 1-D Convolutional Neural Network CNN
to estimate stroke volume [25]. The input data for this model consisted of three chan-
nels: the first channel represented the 10-second normalized raw arterial blood pres-
sure waveform, the second channel contained frequency data obtained from the Fourier
transform, and the third channel represented the slope of the arterial blood pressure
waveform. The data used in this study was collected using the vital Recorder in their
institution. Patients were divided into training and testing groups. The model demon-
strated excellent performance, with a concordance rate of 96.26%, a Pearson correlation
R of 0.95, a bias of -0.85, and limits of agreement of -2.88 and 0.71. However, it is
essential to note that these results were compared to a commercially available arte-
rial pressure cardiac output APCO device rather than the gold standard Swan-Ganz
catheter for cardiac output measurement.

Another development in 2021 expanded the deep learning approach by incorporating
additional steps in the system [55]. Firstly, they trained the system using arterial
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pressure cardiac output APCO data, where the input consisted of 20-second raw arterial
blood pressure waveforms to extract features. These extracted features were then fused
with demographic information and used as input to a regressor for predicting stroke
volume. After training the model with APCO data, transfer learning was applied
using Pulmonary Artery Catheter PAC or (Swan-Ganz catheter) data, considered the
gold standard for cardiac output measurement. Data used in this study were obtained
from the publicly available dataset called Vitaldb [26]. The developed model exhibited
superior performance compared to commercially available APCO devices. The model
achieved 0.64 Spearman roh value and 53% concordance rate. It should be noted that
this study estimated stroke volume, and hence the comparison is tough since stroke
volume values should be converted to cardiac output before comparison.

In line with the present master’s thesis, a recent study conducted in 2023 also em-
ployed machine learning techniques to predict cardiac output from arterial blood pres-
sure [21]. The study evaluated 19 machine learning models, including linear regression,
tree, ensemble, and Bayesian models. The data used in this study was obtained from
the MIMIC database. Data was split into train, test, and validation sets. To validate
the model, 10-fold cross-validation was used. However, this was performed in segmen-
tation and not in patients. Therefore, it could be the case that a test was performed on
seen data during training, especially that in this study, gender and age had the highest
F-scores.

The study fused hemodynamic, waveform, and demographic features to enhance the
predictive performance, collectively serving as input to the machine learning models.
Notably, the performance of the proposed approach surpassed that of other models
analyzing arterial pressure waveforms. The study achieved notable results, including
a mean squared error RMS of 1.421, a bias of -0.01, limits of agreement of -2.35 and
2.32, and a percentage error of 39.44%. Specifically, the XGBoost model stood out
by achieving a clinically acceptable level of radial limits of agreement with a value
of +28.89. These results highlight the effectiveness of machine learning techniques in
accurately predicting cardiac output from arterial blood pressure. However, it should
be mentioned that in this study, it could be the case that the patient was used for
training and testing since the splitting was based on the segmentation of samples and
not patients.
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Table 2.2: Summary of data-driven approaches used to estimate cardiac output on beat-to-
beat basis

Paper Technique Input Pos Cons
[32]
1994

pattern
recognition

physiological
and wave-
form features

proved the concept of
using data-driven tech-
niques

Evaluated on Animal
models and results were
compared to ultrasonic
probe

[8]
2011

Neural net-
works

Hemodynamic
features

Rea-world data set and
achieved better perfor-
mance than classical
models

Did not report the
clinically accepted re-
quirements and results
were compared to classi-
cal models

[29]
2015

Machine
learning

Classical
model fea-
tures

Provided an automated
way when a method needs
calibration

Evaluated on ten sheep
records and compared to
a different reference.

[34]
2019

Convolutional
neural net-
work

10.24ṡ raw
arterial
blood pres-
sure wave-
form

high concordance rate
and correlation

lack of explainable AI,
did not report all the clin-
ically accepted require-
ments, and did not test
on all patients

[25]
2021

1-D convolu-
tional neural
network

three chan-
nels: raw
pressure,
Fourier fre-
quency, and
slope infor-
mation

High accuracy and con-
cordance rate

Was not compared to
the standard gold method
and lack of explainable
AI and did not report all
the clinically accepted re-
quirements

[55]
2021

deep learn-
ing+ transfer
learning

20ṡ raw data High accuracy, found a
smart way to deal with
a small dataset and per-
formed better than com-
mercial devices

lack of explainable AI,
did not report all the clin-
ically accepted require-
ments, and did not test
on all patients

[21]
2023

Machine
learning

Hemodynamic,
waveform,
and de-
mographic
features

High accuracy and fused
waveform, hemodynamic,
and demographic features
in a smart way

lack of explainable AI and
did not split the data
based on patients

2.5 Conclusion

This chapter reviewed the literature on cardiac output estimation based on arterial
blood pressure waveform analysis. The aim was to explore the existing methods for
cardiac output estimation, focusing on the features used and the input length such
that the proposed research questions in section 1.1 can be answered. Table 2.1 and 2.2
summarize the existing methods.

RQ 1: Which arterial blood pressure features should be used as input for the algo-
rithm?

In this literature review, two major categories were found, namely, the classical and
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data-driven approaches. Classical estimators aimed to establish a relationship using
features derived from arterial blood pressure. These features were based on well-
established theories and provided physiological interpretation. In contrast, data-driven
approaches leveraged the capabilities of machine learning and deep learning techniques
but sacrificed the intuitive understanding of the features and their interpretability.

Classical estimators relied on the computational resources available at the time, which
limited their ability to explore and incorporate additional sets of features. The emphasis
was placed on developing models with a clear physiological basis, enabling researchers
to interpret the relationship between the selected features and cardiac output. How-
ever, these constrained computational resources may have overlooked more complex
relationships and interactions within the data.

This study aims to explore and identify a novel set of features that effectively capture
the relationship between cardiac output and arterial blood pressure. To achieve our
goal, we propose incorporating the temporal changes in the features within cardiac
cycles and introducing augmented features that capture different dynamics between
cardiac output and arterial blood pressure. The augmentation of the features will
be based on the classical models. The literature review on classical methods found
that logarithm, quadratic, non-linear (ratio) features, and derivative and time-related
features were used. In this study, we propose augmenting features similar to the classical
approach alongside derivatives and time-related features. We propose using sparse
promoting techniques such as minimizing the l1norm to select the relevant features.
The mentioned approach is called the Sparse Identification of Non-linear Dynamics
or the SINDy algorithm [4]. SINDy has demonstrated its ability to discover sparse
non-linear dynamics representations from measured data. By leveraging the sparsity-
promoting nature of SINDy, we can identify the subset of features that significantly
contribute to the relationship between cardiac output and arterial blood pressure. The
discovery of these informative features will enhance our understanding of the underlying
dynamics and enable a more accurate estimation of cardiac output based on arterial
blood pressure measurements.

RQ 2: What is the optimal number of cardiac cycles required for extracting features
that yield the best performance?

Cardiac output estimation traditionally relies on beat-to-beat estimators, while the
data-driven approach involves analyzing waveforms over a specific time duration in
seconds. This study also aims to investigate the optimal time window or the number
of cardiac cycles required to accurately estimate cardiac output, explicitly addressing
how far back in time we need to go to estimate cardiac output accurately.

By exploring the relationship between the length of the time window and the ac-
curacy of cardiac output estimation, we aim to determine the appropriate duration
for capturing relevant information from the arterial waveforms. This investigation will
provide insights into the temporal dynamics of cardiac output estimation and guide the
selection of an optimal time window for accurate and reliable estimation.
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RQ 3: How does the developed model compare to the traditional invasive method
(Swan-Ganz catheter) regarding accuracy and precision?

Measuring the actual cardiac output is extremely difficult in clinical practice, and the
reference method can only provide an approximation. The precision level of the refer-
ence method is +-20% [39]. Therefore, measuring the correlation could be misleading,
and the agreement between the two methods should be evaluated.

A new algorithm should be accurate and precise compared to the reference method.
To assess these two concepts, two types of analysis with requirements were suggested
in the literature [33, 39], namely, Bland-Altman analysis and Trending ability analy-
sis. Reporting these two types of analysis will help clinicians assess the algorithm’s
acceptability in clinical practices.

Figure 2.2: Summary of the literature review showing the difference in used features between
classical and data-driven approaches.
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Methods 3
In this chapter, the methodologies used throughout this project will be discussed. The
methodology employed in this research encompasses several vital steps. Initially, the
arterial blood pressure signal processing will be discussed. This includes downsampling
the signal and filtering the estimated values. Following this, a signal abnormality
index is presented. This is used to assess the quality of the signal, ensuring that only
reliable data is used in subsequent analyses. After that, features extraction and two
experiments will be explained. The first experiment will involve feature discovery, and
the second will focus on determining the optimum number of cardiac cycles required
for accurate prediction. Finally, the requirements for a clinically accepted algorithm
will be addressed. Figure 3.1 shows the methodologies flow used in this research.

Figure 3.1: Thesis methodology pipeline

3.1 Signal processing

This section focuses on the processing steps in preparing the arterial waveform to serve
as input for the model and post-processing the estimated values. The first step is down-
sampling the arterial blood pressure waveform from 500 Hz to 100 Hz to reduce the
number of data points in the waveform. After that, the signal abnormality index is used
to assess the quality of the arterial blood pressure waveform. Such criteria are based
on physiologic, noise/artifact, and beat-to-beat variation values and were proposed
in [45] to remove waveforms that may result in undesirable results. The criteria are
summarized in the table 3.1.

Another processing step is performed at the end of the methods pipeline. After
training the model, a low-pass filter will be applied to the estimated values to reduce
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the fluctuation. The CO does not change rapidly, mainly during anesthesia when the
patients are at rest. Therefore, a low pass filter will mitigate any fluctuation that does
not correspond to physiological events. This filter will be applied per patient so that
patient trackability is unaffected.

Table 3.1: Summary of signal abnormalities criteria. Any waveform that satisfies these criteria
was deleted

No. Feature Abnormality criteria
1 Systolic pressure Ps > 300mmHg
2 Diastolic pressure Pd < 20mmHg
3 Mean pressure Pm < 30mmHg or Pm > 200mmHg
4 Pulse pressure Pp < 20mmHg
5 Heart rate HR < 20 or HR > 200 bpm
6 Mean of negative slopes ω < -40mmHg/100ms
7 Ps[k]-Ps[k− 1] |∆Ps| > 20 mmHg
8 Pd[k]-Pd[k− 1] |∆Pd| > 20 mmHg
9 T[k]-T[k− 1] (duration of cardiac cycle) |∆T| > 2

3 sec

In this study, the following criteria were used next to the previous ones summarized
in table 3.2:

Table 3.2: Summary of signal abnormalities criteria added in this study. Any waveform that
satisfies these criteria was deleted

No. Feature Abnormality criteria
11 Difference between max and min in the

waveform
max(ABP)-min(ABP)< 30mmHg

12 Abrupt change diff(ABP) > 30

3.2 Feature engineering

In this section, the process of feature extraction is described. Following [21, 32], we
extract hemodynamic and waveform features alongside demographic information. The
feature extraction will be performed on an arterial blood pressure waveform long enough
to capture at least eight cardiac cycles. After extracting the features, a feature matrix
will be constructed for further analysis.

3.2.1 Hemodynamic features extraction

Hemodynamic features provide valuable information about blood pressure characteris-
tics during cardiac cycles as they capture essential indicators of cardiac output, such as
systolic, diastolic, and diacritic peaks. Extracting these three peaks will allow extract-
ing other features related to the duration of each phase, estimation of the heart rate
(using the duration of the cardiac cycle), and calculation of classical estimators. The
extracted hemodynamic features are described in table 3.3, and the most important
hemodynamic features can be seen in figure 3.2.
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Figure 3.2: Example showing one cardiac cycle with most important hemodynamic features

Table 3.3: Summary of extracted hemodynamic features
Feature Description
SBP Systolic Blood Pressure. The maximum pressure reached during systole
DBP Diastolic Blood Pressure. The pressure at the end of diastole
MAP Mean arterial blood pressure
PP Pulse pressure (SBP−DBP)
TSB Duration of the systole period
TSN Duration from systolic pressure to dicrotic notch point
TDP Duration of diastole period
TC Duration of a cardiac cycle
HR Heart rate estimated per cardiac cycle
Classical estimators This includes Windkessel, Windkessel with RC, Herd, Liljestrand-

Zender, systolic area, a systolic area with correction, systolic area with
corrected impedance, and root mean square models.

3.2.2 Waveform features extraction

The second type of feature extracted in this study is waveform features. Waveform
features capture the shape and characteristics of the arterial blood pressure waveform.
They provide additional information about the dynamics and patterns within the car-
diac cycles. The extracted waveform features are summarized in table 3.4.
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Table 3.4: Summary of extracted waveform features
Feature Description
absmax Highest absolute value
aggacc Mean value of aggregation function over the auto-correlation of max lag

40
trendmean Mean of trend function
trendstd Standard deviation of trend function
seasonalmean Mean of seasonal function
seasonalstd Standard deviation of seasonal function
abs-sum-changes Absolute value of consecutive changes

∑
i=1,..,n |xi+1 − xi|

abs-energy Absolute energy: E =
∑

i=1,..,n x
2
i

sum-value The sum over the arterial pressure waveform
media The median of the arterial pressure waveform
mean The mean of the arterial pressure waveform
autocorrelation The value of the first nine lags of the autocorrelation function
Partial-
autocorrelation

The value of the first nine lags of the partial autocorrelation function

Fourier-Entropy Binned entropy of the power spectral density

3.3 Experiment1: Feature discovery

This experiment will be conducted to augment the features and select the relevant ones
based on sparse techniques. Answering the following research question:

RQ 1: Which arterial blood pressure features should be used as input for the algo-
rithm?

After extracting hemodynamics and waveform features, the SINDy algorithm [4] will
be applied to the feature matrix to augment and select relevant features. We apply
the leave-one-patient-out technique to avoid any biases in the feature selection. For
each iteration, one patient will be excluded, the SINDy algorithm will be used, and
the designer will select features manually. A pseudo-algorithm is provided in 1. This
algorithm was repeated twice, once for hemodynamics and once for waveforms features.

The SINDy algorithm

The SINDy algorithm is a powerful technique to discover sparse representations of
dynamical systems based on measured data. Its primary objective is to identify the
governing equations that describe the dynamics of a system by employing sparsity-
promoting techniques.

The algorithm operates by constructing a library of potential candidate functions,
which can be selected based on prior knowledge of the system or systematically gener-
ated. This library contains a set of functions relevant to the system’s dynamics under
investigation.
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Once the library is established, the SINDy algorithm applies sparse regression tech-
niques to identify the active terms within the library matrix that characterize the
system’s dynamics. In other words, it aims to determine the most significant functions
of the library that contribute to the system’s dynamics. To achieve this, the SINDy
algorithm solves the following optimization problem:

arg min
β

∥∥∥∥dxdt − ϕ(x)β

∥∥∥∥+ γ|β|. (3.1)

In this equation, β represents the coefficient vector obtained from solving the con-
strained regression problem. The term dx

dt
denotes the derivative of the features with

respect to time, capturing the system’s dynamics. The matrix ϕ(x) represents the li-
brary of possible functions applied to the feature set. Finally, γ is a hyper-parameter
that needs to be selected by the designer and influences the sparsity of the solution.

By solving the optimization problem, the SINDy algorithm identifies the most rele-
vant terms and their corresponding coefficients in the library matrix, effectively captur-
ing the underlying dynamics of the system. The resulting sparse representation provides
valuable insights into the relationship between variables and enables the discovery of
the governing equations that describe the system’s behavior.

This experiment uses the SINDy algorithm to discover new features that capture the
cardiac output and arterial blood pressure dynamics. We extend the feature set by
including the derivative of the features, representing how these features change over
cardiac cycles.

We adopt a recursive approach to address the curse of dimensionality problem and
facilitate the analysis. Each iteration focuses on three features, where cardiac output is
always one of them, and the goal is to investigate how cardiac output is related to the
other two features. Thus, we construct the following matrix equation for polynomial
features as an example:


∆CO
∆t

∆Feature1
∆t

∆Feature2
∆t

∆CO
∆t

∆Feature1
∆t

∆Feature2
∆t

...
...

...
...

...
...

 =



CO Feature1 CO · Feature1 Feature12 . . .
CO Feature1 CO · Feature1 Feature12 . . .
CO Feature1 CO · Feature1 Feature12 . . .
...

...
...

...
...

...
...

...
...

...




...
...

...
β β β
...

...
...

 .

(3.2)

In each iteration, the values of Feature1 and Feature2 are varied while CO remains
constant. This approach lets us learn the relationship between cardiac output and the
proposed features. Let us consider an example of one iteration:

∆CO

∆t
= CO+ Feature12 + Feature1 · Feature2.

∆Feature1

∆t
= CO + Feature22.

(3.3)
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From the first equation in 3.3, we observe that cardiac output is related quadratically to
Feature1, and a non-linear term exists between cardiac output and Feature1 ·Feature2.
From the second equation, we discover cardiac output is related to the derivative of
Feature1 and the square of Feature2. Finally, these identified features are added to the
original feature set and serve as input to the model.

Algorithm 1 Feature discovery

ϕ(x) = [ϕ(x)Logarithmic, ϕ(x)exponential, ϕ(x)polynominal]
for #patients > patient iterator do
for #feature index > feature iterator do
for #feature index− feature iterator > feature iterator2 do

x = [CO, ffeature iterator, ffeature iterator2]
1) arg min

β
∥dx
dt − ϕ(x)β∥+ γ|β|

2) store the names of non-zero ϕ(x)
3) feature iterator2 = feature iterator2 + 1

end for
feature iterator = feature iterator + 1

end for
patient iterator = patient iterator + 1

end for
Select overlapped features in ϕ(x)

3.4 Experiment 2: The number of cardiac cycles

This experiment aims to investigate the optimal time window or the number of cardiac
cycles required to accurately estimate cardiac output, explicitly addressing how far
back in time we need to go to estimate cardiac output accurately. Answering the posed
research question:

RQ 2: What is the optimal number of cardiac cycles required for extracting features
that yield the best performance?

For each sample, we systematically progressively analyzed cardiac cycles, starting
from the most recent and moving back in time. To estimate cardiac output, we con-
sidered different numbers of cardiac cycles, ranging from one to eight. This approach
allowed us to investigate how including additional cardiac cycles affects the accuracy
and reliability of cardiac output estimation.

After data collection and segmentation (a segment is equivalent to a sample where a
sample is 15 seconds of arterial blood pressure waveform with its corresponding cardiac
output value). After that, features were extracted for eight cardiac cycles for each
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sample, and the feature matrix was formed:

xfeatures =


Feature11 . . . Feature110 . . . Feature21 . . . FeatureN10

Feature11 . . . Feature110 . . . Feature21 . . . FeatureN10
...

...
...

...
...

...
...

...
...

...
...

...
...

...

 .

(3.4)
Only features with subscript 1 of all features are used to investigate the performance
of one cardiac cycle. To examine the performance of two cardiac cycles, the average
was taken. As an example, in the two cardiac cycles test, the first feature becomes
Feature11+Feature12

2
, and for three cardiac cycles: Feature11+Feature12+Feature13

3
, Etc. Only for

the eight cardiac cycle tests the whole matrix is used. Figure 3.3 shows an example of
different numbers of cardiac cycles, namely, 10, 7, 4, and 1.

Figure 3.3: An image showing a different number of cardiac cycles waveforms 10, 7, 4, and 1
cardiac cycles

The estimation performance was assessed using well-established metrics com-
monly employed for evaluating clinically accepted algorithms, including agreement and
trending-ability analysis. The performance of the estimation will be compared with the
gold standard for measuring cardiac output (the Swan-Ganz catheter).

Statistical analysis and visualization techniques will be employed to identify trends
as the number of cardiac cycles increased. The objective is to determine the optimal
number of cardiac cycles at which the incremental improvement in estimation accuracy
and precision becomes negligible or reaches a clear maximum value.

3.5 Models

This section will discuss the machine learning models employed in this study. The
aim is to explore and compare the performance of various algorithms, including linear
regression models such as linear, lasso regression, and ridge regressions. Tree-based
regression models such as decision trees, XGBoost, and random forests will also be
tested.
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Linear models

Linear regression models are simple and easy to understand since they calculate the
weighted sum of the features. Linear models aim to establish a linear relationship be-
tween the dependent variable (cardiac output) and the independent variables (discov-
ered features). This study will use linear regression models to develop a linear equation
that predicts cardiac output based on the input features. The linear regression equation
can be represented as follows:

CO = β0 + β1 ∗ X1 + β2 ∗ X2 + ....+ βf ∗ Xf. (3.5)

Here CO is the estimated cardiac output, X1, X2, X3,...,Xf represent the features used
where f is the total number of features used, and β1, β2, β3, .... βf are the coefficients
to be learned during model training. On the other hand, lasso regression incorporates
a penalty term in the linear regression model by adding an l1 regularization term. The
lasso regression equation can be represented as:

CO = β0 + β1 ∗ X1 + β2 ∗ X2 + ....+ βf ∗ Xf + λ ∗
∑

|β|. (3.6)

Here, λ is the regularization parameter that controls the sparsity of the model. The
last linear model that will be used is the ridge regression. Ridge is a similar tech-
nique to the lasso regression but utilizes a different regularization term, namely, the l2
norm. Ridge regression aims to mitigate multicollinearity/ non-orthogonality between
the input variable. The ridge regression equation is given by:

CO = β0 + β1 ∗ X1 + β2 ∗ X2 + ....+ βf ∗ Xf + λ ∗
∑

|β|2. (3.7)

Tree-based models

On the other hand, tree-based regression models are more advanced techniques that cap-
ture more complex relationships between the features and still provide interpretability
through visualizing the tree. Tree-based models, such as decision trees, are individual
models that use a hierarchical structure of nodes and branches to make predictions.
Each node in the tree represents a decision based on a specific feature, and each leaf
node represents the predicted outcome. Tree-based models can capture complex rela-
tionships and non-linear patterns in the data.

The decision tree recursively partitions the feature space to find the parameter that
minimizes the cost function:

θ∗ = arg min
θ

G(Θm, θ). (3.8)

Here, Θm is the data at node m and θ= (j, tm) is the candidate split consisting of
feature j and threshold tm. For the regression problem, the cost function is either mean
square error RMS or mean absolute error MAE. On the other hand, random forest
and XGBoost are ensemble learning techniques that combine multiple decision trees to
make predictions
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3.6 Evaluation metrics

In this section, the evaluation metrics of a clinically accepted algorithm will be dis-
cussed. The results of the trained model must be compared with a reference method,
such as the Swan-Ganz catheter method, to evaluate a new algorithm that estimates
cardiac output. Such a comparison should investigate the accuracy and precision of
the proposed algorithm. The accuracy of the new algorithm describes how close the
estimated value is to the actual/reference value, and the precision describes the spread
of repeated values due to random error. Evaluating the accuracy and precision of the
model will answer the posed research question:

RQ 3: How does the developed model compare to the traditional invasive method
(Swan-Ganz catheter) regarding accuracy and precision?

In the following subsections, these analyses will be explained, and elaboration on
what parameter to be measured and how will be given.

Bland-Altman analysis

Figure 3.4: Example of Bland-
Altman plot.[17]

The recognized standard statistical method of as-
sessing the agreement between two serial measure-
ments of the same clinical variable is the Bland-
Altman plot [2]. The Bland-Altman analysis de-
termines the bias as a measure of accuracy and the
limits of agreement as a measure of precision. The
Bland-Altman plot is presented as a scatter plot
where the x-axis is the average of the two meth-
ods, and the y-axis is the difference between the
methods. Figure 3.4 shows an example of such a
plot. The limits of the agreement are calculated as
follows:

LOA = (bias)± ta,n−1 · (SD). (3.9)

Here, SD is the standard deviation of the differences, and ta,n−1 is the t-value corre-
sponding to n − 1 degrees of freedom and a type I error a of 0.05. A good algorithm
should have a bias as close as possible to zero and as tight as possible limits of agree-
ments. An acceptable limit of the agreement should be defined beforehand to justify
the acceptance of the new algorithm. However, this is hard to determine. Therefore, it
is suggested that the percentage error of the Bland-Altman analysis should be reported
[39]. The percentage error is calculated as follows:

PE(%) = 100% · tα,n−1 ·
SD

meanCO
. (3.10)

A percentage error PE of ±30 has been suggested as a guide to determine if the
proposed method is a good alternative to the reference method.
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Trending ability analysis

The Bland-Altman analysis shows the agreement between two measurements for the
same variable. However, such an analysis does not provide information about the trend
in the data since a trend analysis should involve the change in the cardiac output
∆CO. To assess the trending ability, it is suggested to use the four-quadrant analysis
to calculate the concordance rate and polar plot analysis to calculate the radial bias
and radial limits of agreement [7, 14]. In the following, an explanation of these two
analyses will be provided, and how they are calculated.

Four-quadrant analysis

Figure 3.5: Example of Four-
Quadrant plot

The Four-quadrant analysis is an analysis to assess
the trending ability of an algorithm compared to a
reference method. In such an analysis, the change
in the tested algorithm ∆COtested is plotted against
the change in the reference method ∆COreference.
Such a plot shows whether the data are randomly
distributed or follow the line of identity y = x. In
figure 3.5, an example of such a plot can be seen.
When both methods change in the same direction,
either positive or negative, this is considered agree-
ment. This is considered disagreement when one
method changes positively and the other changes
negatively or the opposite. Data points around the
origin describe small changes in CO and do not re-
flect any trending ability.

Such changes are randomly distributed, unpre-
dictable, and could be originated from noise or measurement errors [6]. Therefore, an
exclusion zone is defined around the origin to exclude these small changes. From such
analysis, the concordance rate can be calculated. The conventional concordance rate is
defined as follows:

CR =
#agreement−#agreementexclusion

#points−#exclusion
. (3.11)

Concordance rate between 90 ∼ 95 are considered acceptable clinically

Polar plot analysis

One drawback of the Four-quadrant analysis is that it ignores information regarding
the size of the change in CO. In addition, only one property of agreement is tested:
whether the change is positive or negative. As a solution for these drawbacks, the
polar plot analysis is suggested. The idea is to treat each point from the Four-quadrant
analysis as a vector originating from the origin with an angel and magnitude. This
angle and radius (length) are represented as a polar plot. The points are rotated by
a 45◦, making the line of identity at angel 0◦(which is easier for visual inspection).
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Figure 3.6: Example of polar plot
analysis used to assess the trending
ability of the proposed algorithm

Data with negative change are rotated 180◦ since
the change direction is unimportant. The data in
the exclusion zone are also excluded from the polar
plot analysis since they have large random errors.
Finally, the radial limits of agreement and radial
bias are calculated in the same way as in the Bland-
Altman analysis:

RLOA = mean(θ)± 1.96SD(θ). (3.12)

Where RLOA is the radial limits of agreement, SD
is the standard deviation, and θ is the angle of each
point in the polar plot calculated as follows:

angle = arctan(
∆COpredicted

∆COtested

). (3.13)

Bias =
∆COtested +∆COpredicted

2
. (3.14)

Figure 3.6 shows an example of the polar plot analysis where the two red lines are at
angle 30◦ and the blue line is the bias of all points. A RLOA of ≤ 30◦ and RBias
of ≤ 5 is accepted clinically

Table 3.5 summarises the requirements of a clinically acceptable algorithm.

Table 3.5: Summary of the clinically accepted algorithm requirements
Percentage
error

Concordance
rate

Radial bias Radial lim-
its of agree-
ments

30% 90∼95 5◦ 30◦

Additionally, in this study, other metrics are also reported. These additional metrics
are summarised in table 3.6

Table 3.6: Summary of the additional metrics used in this study

Percentage error Concordance rate

Pearson correlation R r =
∑

(y−my)(ŷ−mŷ)√∑
(y−my)2

∑
(ŷ−mŷ)2

coefficient of determination R2 R2 = 1−
∑

(yi−ŷi)
2∑

(yi−ȳi)
2

coefficient of determination R2 R2 = 1−
∑

(yi−ŷi)
2∑

(yi−ȳ)2

Root mean square error RMSE RMSE =
√∑

(ŷi−yi)
2

N

Mean absolute error MAE MAE = 1
nsamples

∑
|yi − ŷi|

In table 3.6, y is the tested variable, ŷ is the estimated value, N is the number of
the samples, and ȳ is the mean of the measured variable.
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Results 4
In this chapter, the implementation results will be presented. The prime objective
of this chapter is to evaluate the performance and effectiveness of the implemented
solution. This chapter starts with an explanation of the dataset used for model de-
velopment. This will be followed by the results of pre-processing, feature extraction,
feature discovery, the number of cardiac cycles, and model evaluation, where results
will be shown, and an explanation will be provided. The evaluation of the models
will be based on clinically accepted metrics and leave-one-patient-out cross-validation.
Finally, the learned model and the proposed approach will be validated on an external
dataset to assess the generalizability of the proposed approach.

4.1 Dataset

The data utilized in this thesis were obtained from the Vital Data Bank, a freely ac-
cessible public database comprising biosignal waveforms and vital signs. The Vital
Recorder program captured time-synchronized, high-resolution data from various anes-
thesia devices [26, 27]. Patients were selected from the Vital Recorder data based on
the following measurements:

• Arterial pressure wave: The arterial pressure waveforms were collected using the
Tram-Rac 4A (SNUADC) device, a patient monitor device manufactured by GE
Healthcare. The waveform was sampled at a rate of 500 Hz.

• Cardiac output and stroke volume: The Vigilance II cardiac output monitor from
Edwards Lifescience collected data on cardiac output and stroke volume. The
data were recorded at intervals of 2 seconds. This monitor utilizes the Swan-Ganz
catheter and pulmonary artery thermodilution technique, widely recognized as
the gold standard for measuring cardiac output and stroke volume.

We used the open-source Python package provided by the dataset called vitaldb 1.4.1
to extract arterial blood pressure waveform, corresponding cardiac output, and demo-
graphic information. Forty-seven cases were identified with cardiac output and arterial
blood pressure measurements.

This study defines a sample as a 15-second waveform extracted from the arterial blood
pressure starting from the time t0 when a cardiac output was received till (t0−15). From
each patient, 350 samples were extracted. Eighteen thousand nine hundred samples
were collected from all patients before any pre-processing or signal quality check. After
pre-processing and signal quality check, the number becomes 15460 samples with 43
cases.
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The dataset comprised 27 females and 16 males with the following demographic
characteristics: a height of 161.59 ± 7.54 cm, a weight of 60.45 ± 12.6 kg, BMI (Body
Mass Index) of 20.07 ± 4.04, and an age of 54.58 ± 14.75 years. Figure 4.1 displays a
box plot visualizing the distribution of the demographic information. A wide range of
patient demographic information is available in the dataset, varying between men and
women.

All patient IDs and surgical operations used in this study are in the appendix C.1.
The reference cardiac output measurements have the following characteristics: mean
of 6.45 L

min
and standard deviation of 2.01 L

min
. Figure 4.2 show the distribution of the

reference cardiac output measurements covering values ranging from 1.6 L
min

to 11.8
L

min
.

Figure 4.1: Patient’s demographic informa-
tion box plots height, weight, BMI (body
mass index), and Age

Figure 4.2: Reference cardiac output distri-
bution

4.2 Pre-processing and feature extraction

As mentioned in section 3.1, the first step for pre-processing the waveform is to down-
sample it from 500 Hz to 100 Hz. To this end, we utilized the Python package vitaldb
1.4.1, which includes a function to load a specific case and allows for downsampling the
waveform.

After down-sampling the waveforms, we conducted a signal abnormality check to
assess the waveform’s quality. The criteria outlined in Tables 3.1 and 3.2 were imple-
mented in Python, and any waveforms that satisfied the criteria were removed. Figure
4.3 and 4.4 show signal distortion where the signal shape changes. Patient movements
likely cause these distortions. Additionally, Figures 4.5 and 4.6 display a different type
of distortion where the signal increases instead of reaching a maximum during systole.
This pattern persists for approximately 6 to 10 seconds before returning to the standard
shape. It occurs when doctors draw blood from the patient, leaving the arterial line
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sensor open. Figure 4.5 also demonstrates that more than one criterion could be met
in one sample, showing two vertical blue lines with a difference between less than 30
mmHg and the waveform exceeding 200 mmHg abnormality criterion. Lastly, Figure 4.7
exhibits a misleading waveform where the signal appears suitable for feature extraction.
However, physiologically, pulse pressure below 30 mmHg should be disregarded.

Figure 4.3: Results of SAI criteria 2 from
table 3.1. Diastolic blood pressure is less
than 20 mmHg, mainly caused by patient
movements

Figure 4.4: Results of SAI criteria 12 from
table 3.2. Absolute change in the waveform
is bigger than 20, mainly caused by patient
movements

Figure 4.5: Results of SAI criteria 11 from
table 3.2 criteria is met between the two ver-
tical blue lines. The difference between min
and max is less than 30 in 2 seconds. mainly
cause when the sensor is open

Figure 4.6: Results of SAI criteria 1 from
table 3.1. Systolic blood pressure is bigger
than 200 mmHg. mainly cause when the
sensor is open

28



Figure 4.7: Results of SAI criteria 11 from
table 3.2. The difference between systolic
and diastolic is less than 30 mmHg.

Figure 4.8: Hemodynamic feature extrac-
tion. The blue waveform is the original
waveform. The Orange one is the processed
one to extract features. Green dots are the
features. The blue waveform is used for fur-
ther processing

After downsampling, and signal abnormality checks, we extracted hemodynamics
and waveform features. For this purpose, we utilized the Neurokit Python package
[31], which includes a function to process electrodermal activity EDA signals. Al-
though this library is not explicitly designed for arterial blood pressure waveforms, the
two waveforms share a similar shape, and the library provides valuable information
about the signal, such as rise time, recovery time, and critical peaks. Figure 4.8 ex-
emplifies an arterial pressure waveform with the detection of essential hemodynamic
peaks, including systolic, diastolic, and dicrotic peaks. These peaks are indicated as
green points. The orange waveform represents the signal after processing by the EDA
algorithm, while the blue waveform represents the original arterial blood pressure wave-
form after filtering. The algorithm introduces attenuation and phase shifts in the signal
and hence can not be used for further processing. Therefore, the peaks are mapped
to the original waveform (blue) by utilizing a window search of 20 samples around the
detected peaks by the algorithm (orange). This allows us to use the original signal
without attenuation or phase shift. Extracting these peaks allowed us to calculate all
other features mentioned in table 3.3. We extracted waveform features listed in Table
3.4 using the open-source package tsfresh, designed for processing time series signals.
All the features were utilized to construct a feature matrix, which will be employed for
further development.

4.3 Feature discovery

As discussed in section 3.3, the SINDy algorithm will be utilized to discover features
related to the dynamics of arterial blood pressure and cardiac output. We manually
constructed the feature matrices and followed a recursive approach to discover these
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features as described in algorithm 1. The Python implementation of the SINDy algo-
rithm [20, 43] was employed for this purpose. We tested polynomial, exponential, and
logarithmic features. Table 4.1 summarizes the 33 discovered features, categorized into
six types: hemodynamic, derivatives (representing changes between cardiac cycles), log-
arithmic, non-linear, waveform, and demographic features. The implementation code
of this procedure can be found on GitHub

Upon closer examination of these features, it can be inferred that they describe
five physical phenomena: velocity, pressure, power, energy, and randomness. Features
related to duration describe the velocity of blood flow. For example, a longer cardiac
cycle duration indicates slower blood movement. These features are indicated with (u)
in table 4.1. Additionally, the features that capture pressure-related characteristics of
the blood flow are denoted with (p). Features that describe the power and energy of
the blood flow are denoted by (w) and (e), respectively. Lastly, features that describe
the randomness are denoted by (r).

Table 4.1: Discovered features using SINDy algorithm
Hemodynamic Derivatives Logarithmic Non-linear Waveform Demographic

Heart rate (u) Heart rate (u) Heart rate (u) 1/systolic pressure (p) Absolute energy (e) Gender

Systolic duration (u) Systolic duration (u) Cardiac cycles duration (u) 1/diastolic pressure (p) Fourier entropy 5 (r)

Systolic notch duration (u) Systolic notch duration (u) Pulse pressure (p) 1/mean pressure (p) Fourier entropy 10 (r)

Diastolic duration (u) Diastolic duration (u) Absolute energy (e) 1/systolic duration (u) Fourier entropy 100 (r)

Cardiac cycles duration (u) Cardiac cycles duration (u) systolic*pulse (pressure) (p)

systolic area model Systolic pressure (p) systolic/diastolic (pressure) (p)

Liljestrand-Zander model (p) systolic/pulse (pressure) (p)

RMS pressure (w) systolic/diastolic (duration) (u)

Area with correction (w) systolic/cardiac cycle (duration) (u)

4.4 The number of cardiac cycles

Before conducting the experiment explained in section 3.4 to determine the optimum
number of cardiac cycles. All regression models were tested using the discovered fea-
tures mentioned in table 4.1 and one cardiac cycle. The aim was to select the best-
performing model to save training time. The evaluation results can be seen in table
4.2. This table shows that ridge regression is the best-performing model regarding all
evaluation metrics except for the concordance rate CR. The best-performing model for
the concordance rate is the lasso regression. This indicates that the lasso regression
is the most precise model. However, it is not accurate as the ridge. Also, linear re-
gression has comparable performance to ridge regression. However, ridge regression
is slightly better than linear regression. Therefore, ridge regression will be used for
further development as it is the most accurate and precise model.
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Table 4.2: Regressors comparison

RMS MAE R R2 Bias LOA PE% CR% RLOA◦ RBias◦

Linear 1.21 1.01 0.76 0.57 -0.05 2.43,-2.51 38.21 50.9 32.96 -2.19

Lasso 1.30 1.13 0.67 0.44 0.02 2.85,-2.81 43.53 53.38 43.93 6.17

Ridge 1.20 1.01 0.76 0.57 -0.04 2.43,-2.50 37.96 50.6 32.94 -2.18

DecisionTree 1.97 1.78 0.36 -0.21 0.02 4.22,-4.17 64.55 49.63 26.85 -6.29

RandomForrest 1.45 1.27 0.61 0.36 -0.06 2.98,-3.10 46.79 50.63 38.35 0.46

XGBoost 1.44 1.25 0.62 0.38 -0.12 2.87,-3.11 45.98 50.36 36.63 2.49

After selecting ridge regression, the experiment described in section 3.4 was con-
ducted using the features discovered through the SINDy algorithm mentioned in table
4.1 and ridge regression. The implementation results can be seen in figures 4.9, 4.10
4.11, 4.12, 4.13, 4.14, 4.15, 4.16,4.17, and 4.18. It can be observed that three cardiac
cycles yield the best results regarding limits of agreement of 2.2 figure 4.11, mean ab-
solute error of 0.96 figure 4.12, percentage error of 35.4 figure 4.13, and radial limits of
agreements of 28.5 figure 4.17 by achieving a minimum. Three cardiac cycles were also
the best number of cardiac cycles regarding root mean square error of 1.12 figure 4.18,
correlation R of 0.8 figure 4.14, and R2 of 0.63 figure 4.15 by achieving a maximum.

Regarding radial bias, the best performing cardiac cycles is at five cardiac cycles by
achieving a minimum, as can be seen in figure 4.16. However, it should be noted that
the radial bias is within the clinically acceptable level for all cardiac cycle numbers.
Regarding the concordance rate, a maximum is achieved at six cardiac cycles, as shown
in figure 4.10, indicating that six cardiac cycles provide the most precise estimation. On
the other hand, three cardiac cycles provide the most accurate solution, as observed
from the other metrics. Therefore, choosing the best number of cardiac cycles is a
trade-off between accuracy (three cardiac cycles)and precision (six cardiac cycles).
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Figure 4.9: #cardiac
cycles vs. bias

Figure 4.10: #cardiac
cycles vs. concordance
rate

Figure 4.11: #cardiac
cycles vs. limits of
agreement

Figure 4.12: #cardiac
cycles vs. mean abso-
lute error

Figure 4.13: #cardiac
cycles vs. percentage
error

Figure 4.14: #cardiac
cycles vs. correlation

Figure 4.15: #cardiac
cycles vs. R2

Figure 4.16: #cardiac
cycles vs. radial bias

Figure 4.17: #cardiac
cycles vs. Radial limits
of agreement
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Figure 4.18: #cardiac
cycles vs. RMS

4.5 Post processing

In this section, we present the results of the post-processing stage, where we applied a
low-pass filter to the estimated values to address fluctuations in the model output. The
input for the filter comprises the CO estimation obtained through discovered features
and ridge regression. Additionally, we investigated the impact of the number of cardiac
cycles on the filtering process. To achieve this, we tested three, four, five, and six cardiac
cycles, each with different cut-off frequencies. The chosen filter was a Butterworth low-
pass filter of order 5, selected based on experimentation and implemented in Python
using the SCIPY library [49].

Figures 4.21, 4.23, 4.24, 4.25, and 4.27,4.22 and 4.28 present the performance of the
ridge regression model using three cardiac cycles with varying cut-off frequencies. The
performance of the ridge regression with four, five, and six cardiac cycles, along with
their respective cut-off frequencies, is available in Appendix A.3, A.4, A.5, andA.6. The
cut-off frequencies tested were: 0.25, 0.20, 0.15, 0.10, 0.05, 0.025, 0.015, and 0.005 Hz.
Upon analyzing the results, it was found that a cut-off frequency of 0.025 Hz yields the
best overall performance, displaying superior results in terms of limits of agreement,
percentage error, correlation, R2, radial limits of agreement, root mean square error,
and mean absolute error, where either a maximum or minimum is achieved. Although
the best cut-off frequency for radial bias and bias is not at 0.025 Hz, it still falls within
clinically acceptable performance levels. Thus, 0.025 Hz was the most appropriate
cut-off frequency for the filtering process.

Table 4.3 provides a numerical comparison of the performance of three cardiac cycles
using different cut-off frequencies. Table 4.4 further showcases the best-performing cut-
off frequency (0.025 Hz) performance for different cardiac cycles. Three cardiac cycles
demonstrate the most accurate results, while six have the best precision. Therefore,
selecting the appropriate number of cardiac cycles represents a trade-off between accu-
racy and precision. Upon closer examination of Table 4.4, five cardiac cycles strike the
best balance between accuracy and precision. As a result, five cardiac cycles will be
utilized for further development.
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To visualize the impact of the filter, Figure 4.29 demonstrates the filter’s application
(in blue) to the estimated values (in orange). Conversely, Figure 4.30 showcases the
model’s performance without the filter. The filter effectively reduces fluctuations in the
estimated values, consequently enhancing the model’s performance.

Figure 4.19: Cut-off
frequency vs. bis

Figure 4.20: Cut-off
frequency vs. concor-
dance rate

Figure 4.21: Cut-off
frequency vs. limits of
agreement

Figure 4.22: Cut-off
frequency vs. mean ab-
solute error

Figure 4.23: Cut-off
frequency vs. percent-
age error

Figure 4.24: Cut-off
frequency vs. correla-
tion

Figure 4.25: Cut-off
frequency vs. R2

Figure 4.26: Cut-off
frequency vs. radial
bias

Figure 4.27: Cut-off
frequency vs. radial
limits of agreement
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Figure 4.28: Cut-off
frequency vs. RMS

Figure 4.29: Estimated CO in blue vs.
tested CO in orange (with filter)

Figure 4.30: Estimated CO in blue vs.
tested CO in orange (without filter)

Table 4.3: Low-pass filter cutt-off frequencies comparison

Ḣz/ RMS MAE R R2 Bias LOA PE% CR% RLOA◦ RBias◦

0.25 1.14 0.98 0.79 0.62 -0.07 2.26,-2.39 35.82 49.30 30.74 -0.88

0.2 1.13 0.98 0.79 0.63 -0.07 2.24,-2.38 35.57 50.63 28.98 -0.69

0.15 1.12 0.97 0.80 0.63 -0.07 2.23,-2.36 35.32 56.50 29.62 0.76

0.1 1.11 0.97 0.80 0.64 -0.07 2.21,-2.35 35.07 65.59 30.90 2.56

0.05 1.10 0.96 0.80 0.64 -0.07 2.19,-2.33 34.77 72.36 28.36 2.63

0.025 1.03 0.92 0.82 0.68 -0.05 2.08,-2.18 32.77 77.61 27.23 3.89

0.015 1.06 0.92 0.81 0.67 0.02 2.2,-2.16 33.57 76.11 37.21 5.20

0.005 1.23 1.03 0.76 0.52 0.27 2.85,-2.31 39.71 65.67 33.13 -0.42
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Table 4.4: Ridge regression performance w.o.f (without filter) compared to w.f.x (with filter
number of cardiac cycles)

RMS MAE R R2 Bias LOA PE% CR% RLOA◦ RBias◦

w.o.f 1.13 0.96 0.80 0.63 -0.06 2.22,-2.35 35.38 52.30 28.54 -0.88

w.f.3 1.03 0.92 0.82 0.68 -0.05 2.08,-2.18 32.77 77.61 27.23 1.00

w.f.4 1.04 0.93 0.82 0.68 -0.07 2.07,-2.21 32.98 79.10 28.83 5.13

w.f.5 1.04 0.94 0.81 0.67 -0.07 2.10,-2.23 33.34 79.10 25.49 3.23

w.f.6 1.05 0.95 0.81 0.66 -0.07 2.12,-2.27 33.84% 82.08% 29.15 4.44

4.6 Models evaluation

Upon finalizing the system design, the regression models were subjected to an evaluation
process. This involved utilizing the discovered features, five cardiac cycles, and applying
a low pass filter with a cut-off frequency of 0.025 Hz. This evaluation aimed to assess
whether the proposed approach enhances the performance of all regression models. The
evaluation results are presented in Table 4.5. A comparison with the results from Table
4.2 reveals a significant improvement in the performance of all models, particularly in
the case of linear and ridge regression. These models now achieve a clinically acceptable
level of performance concerning radial limits of agreement and bias.

On the other hand, concordance rate and percentage error still fall short of clinically
acceptable performance. The specified requirements were a percentage error of less than
30% and a concordance rate higher than 90%. Nevertheless, it is worth mentioning that
these parameters can be enhanced by considering various factors, such as adjusting the
number of cardiac cycles or employing different cut-off frequencies, depending on the
specific application of the algorithm. However, the best possible concordance rate with
this model was 82.06%, and the best possible percentage error was 32.77%.

Figure 4.31 presents a visual representation of the performance of the six regression
models through bar graphs. It is evident from this figure that both linear and ridge
regression outperforms the other models. Furthermore, the tree-based models exhibit
a reduced radial bias compared to the linear models.
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Figure 4.31: Bar-graph showing the results of the re-evaluation of six regression models

Table 4.5: Regressors comparison re-evaluation

RMS MAE R R2 Bias LOA PE% CR% RLOA◦ RBias◦

Linear 1.05 0.95 0.82 0.67 -0.07 2.11,-2.25 33.50 79.10 25.57 3.14

Lasso 1.25 1.09 0.72 0.51 0.03 2.68,-2.62 40.81 67.16 41.28 8.31

Ridge 1.04 0.94 0.82 0.67 -0.07 2.10,-2.23 33.34 79.10 25.49 3 .23

DecisionTree 1.45 1.27 0.59 0.28 -0.05 3.16,-3.26 49.43 63.76 29.29 0.05

RandomForrest 1.30 1.10 0.70 0.48 -0.06 2.66,-2.78 41.84 55.07 34.99 1.47

XGBoost 1.27 1.11 0.70 0.49 -0.13 2.56,-2.82 41.40 62.68 36.26 0.75

Figure 4.6 illustrates the four-quadrant plot of the best-performing model, which
includes ridge regression, five cardiac cycles, and a cut-off frequency of 0.025 Hz. No-
tably, many estimates lie within the agreement region (quadrants 1 and 3), with fewer
points fluctuating around the origin. These points are further visualized in the polar
plot depicted in figure 4.6, where most cluster around the angle zero. This clustering
indicates both low radial limits of agreement and bias.

Moreover, the low percentage error is reflected in the Bland-Altman analysis show-
cased in figure 4.6. The low limits of agreement in this analysis reflect the precision of
the model, while the low bias reflects its accuracy. Lastly, it is essential to note that
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cardiac output values remain relatively constant within each patient, with variations
primarily occurring between patients. As a result, most changes fall within the exclu-
sion zone 12%, 0.624 [L/min]. This explains the limited number of points observed in
the figures. These findings suggest that the presented results demonstrate the model’s
effectiveness in distinguishing between different patients effectively.

Figure 4.32: Best-performing
model: four-quadrant analy-
sis

Figure 4.33: Best-performing
model: Bland-Altman analy-
sis

Figure 4.34: Best-performing
model: polar plot analysis

4.7 Feature contribution

This section shows the results of analyzing the contribution of the features in the
developed model. Evaluating feature importance is crucial for assessing performance
and understanding the model’s effectiveness. The contribution of four feature sets,
namely hemodynamic features, waveform features, and demographic/SINDy features,
is demonstrated in table 4.6. Detailed descriptions of these features can be found in
table 4.1. Analysis of table 4.6 reveals that the discovered features using the SINDy
algorithm have a significant impact, leading to notable improvements in radial limits
of agreement and bias, reaching clinically acceptable levels. Moreover, these features
improve performance regarding percentage error and concordance rate.

Furthermore, we calculated and visualized the mutual information and F-score of the
features with the ground truth in Figures 4.36 and 4.35, respectively. These analyses
provide additional insights into the contributions of individual features to the model’s
performance. The results indicate that heart rate and the logarithm of heart rate have
the highest contribution, as evidenced by their high mutual information and F-scores.
Duration-related features also exhibit a high F-score, while the inverse of systolic and
diastolic pressure demonstrate high mutual information with the ground truth. Ad-
ditionally, non-linear features show robust mutual information with the ground truth
variable, emphasizing their significance. Conversely, derivative-related features demon-
strate lower F-scores and mutual information. In summary, the feature contribution
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analysis provides valuable insights into the relative importance of different features in
the model. The SINDy-discovered features prove to be particularly impactful, signifi-
cantly improving performance metrics.

Figure 4.35: Features F-score with cardiac
output

Figure 4.36: Mutual information between
cardiac output and the features

Table 4.6: Regressors comparison re-evaluation

RMS MAE R R2 Bias LOA PE% CR% RLOA◦ RBias◦

Hemodynamics 1.23 1.05 0.72 0.52 0.02 2.67,-
2.64

40.31 64.17 37.67 3.29

Hemodynamics
+ Waveform

1.22 1.02 0.73 0.54 0.02 2.61,-
2.58

39.71 71.64 42.44 6.02

Hemodynamics
+ Waveform +
SINDy

1.04 0.94 0.82 0.67 -0.03 2.25,-
2.31

33.35 77.61 29.15 5.50

Hemodynamics
+ Waveform
+ SINDy +
gender

1.04 0.94 0.82 0.67 -0.07 2.10,-
2.23

33.34 79.10 25.49 3.23

4.8 Model validation using MIMIC dataset

In this section, we validate the proposed approach utilizing an external dataset, namely,
the MIMIC-II Waveform Database, version 2 dataset [40]. In the previous sections, it
was found that ridge regression is the best model. Five cardiac cycles are the optimum
number, and a cut-off frequency of 0.0025 Hz gives the best performance. In this
section, these findings will be validated using an external dataset.

39



MIMIC II dataset

The MIMIC (Multiparameter Intelligent Monitoring in Intensive Care) dataset contains
de-identified health records from patients admitted to intensive care units. It includes
various clinical data, such as vital signs, laboratory results, medication administration
records, Etc. To validate the model, arterial blood pressure waveforms, corresponding
cardiac output measurements, and the gender of the patients are needed. Patients
were selected based on the availability of the needed measurements. The arterial blood
pressure was sampled at 125 Hz in the MIMIC dataset, and the cardiac output was
measured at one-minute intervals. However, cardiac output measurements were un-
available for each minute and appeared at irregular intervals (from one minute up to
two hours). One hundred three patients were found, with 1112 samples, 64 male and
39 female.

Figure 4.37: Reference cardiac output in
eh MIMIC dataset distribution

Figure 4.38: Patient’s age distribution

Signal processing

Before testing the model, the quality of the waveform was assessed manually to ensure
that only suitable waveforms were used in further processing. The patient’s ID of
the deleted waveform and the used patient’s ID can be found in the appendix C.1.
After the quality assessment check, 737 samples were left for further testing. These
samples are from 87 patients, 56 male and 31 female. Additionally, the waveform was
down-sampled to 100 Hz such that the sampling frequency of both datasets matched.
However, nothing could be done regarding the measurement interval of the cardiac
output as it was measured at irregular intervals in the MIMIC dataset. In contrast,
it was measured at two seconds intervals in the Vitaldb dataset. After cleaning, the
waveforms, hemodynamics, and waveform features were extracted similarly for the
Vitaldb dataset in section 4.2.

After that, the features were standardized using the mean and variance obtained from
the Vitaldb. This differed from the standard procedure, where the features should be
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standardized using mean and variance from the MIMIC dataset using k-fold cross-
validation. However, the MIMIC dataset is 20 times smaller than the Vitalddb, and
certain hemodynamic situations were not measured in the MIMIC dataset. While in the
Vitaldb, a wider range of hemodynamic situations was captured. For example, before
standardization, the heart rate in the Vitaldb is between 41.5 and 145.7, with a mean
value of 76.4, as shown in figure 4.39, the orange distribution. After standardization,
this mean value will be mapped to zero, as seen in figure 4.40, the orange distribution.

On the other hand, before standardization, the heart rate in the MIMIC dataset is
between 53.2 and 205.4, with a mean of 95.5 as seen in figure 4.39, the blue distri-
bution. Therefore, when standardizing using the mean and variance from the MIMIC
dataset, the heart rate below 95.5 will be negative relative to the mean. However,
after standardization, the model learned from the Vitaldb that a heart rate less than
76.4 gets a negative value. Therefore, since the features have a physiological meaning,
keeping the features’ range relative to Vitaldb’s mean makes more sense as a heart rate
of 200 should be mapped into an extremely high heart rate that was not learned in the
Vitaldb and not to a region of high heart rate that Vitaldb had learned.

Figure 4.39: Heart rate feature distribu-
tion before standardization

Figure 4.40: Heart rate feature distribu-
tion before standardization

Validation results

This section will present the validation results of testing the learned model from the
Vitaldb dataset on the MIMIC dataset. The validation test results are summarized
in table 4.7. The model achieved good results regarding RMS, MAE, and RLOA.
Remarkably, the model achieves a clinically acceptable level regarding radial bias RBias.
This means that the results are accurate and precise when the model can track the
changes in the reference values. This can be seen in figure 4.43 when most points are
distributed between 30◦ and - 30◦. The model’s ability to track changes is reflected
by the concordance rate of 54.74 %. This can be seen in figure 4.41 where half of the
points are in the agreement region (quarters 1 and 3). From the figure 4.42, it can be
seen that the model underestimates high cardiac output values as the maximum mean
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of methods is around 8.1 and overestimate the low cardiac output values leading to a
high percentage error of 45.41% as most of the estimation distributed between 4 and 7
[L/min].

The reference cardiac output was measured at irregular intervals ranging from one
measurement per ten minutes to one measurement per two hours. Therefore, the ground
truth cardiac output fluctuates a lot such that no two sequential measurements are close
to each other, as seen in figure 4.45. This has led to a negative R2 of -0.15, meaning that
an estimator that always predicts the mean value is almost similar to the learned model.
However, this is not the case, as seen in figure 4.45, where the estimated values (orange
signal) do not only predict the mean but, on average, have almost similar performance
to an estimator that always predicts the mean. From figure 4.44, it can be seen that
the error distribution is centered around 0.21, and most of the errors made are around
that low error region. However, fewer values have large errors leading to high limits of
agreements of 2.49,-2.91. These errors are mainly due to new hemodynamic situations
that appeared in the MIMIC dataset and were not in the Vitalddb dataset. Therefore,
the model will be re-trained using the MIMIC dataset in the next section to test if the
proposed approach can learn different hemodynamic situations.

Figure 4.41: Linear
regression: Four-
quadrant analysis

Figure 4.42: Linear
regression: Bland-
Altman analysis

Figure 4.43: Linear re-
gression: Polar plot
analysis

Table 4.7: Validation results: the model was trained on Vitaldb and tested on MIMIC datases

RMS MAE R R2 Bias LOA PE% CR% RLOA◦ RBias◦

MIMIC 1.39 1.09 0.29 -0.15 -0.21 2.49,-2.91 45.41 54.74 30.07 3.15

Vitaldb 1.04 0.94 0.82 0.67 -0.07 2.10,-2.23 33.34 79.10 25.49 3.23
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Figure 4.44: Estimation error distribution
Figure 4.45: Image showing the fluctua-
tion in the ground-truth CO. Test CO in
blue .vs estimated value in orange

Re-train on MIMIC

This section presents the results of re-training the model on the MIMIc dataset. The
procedure of this test is similar to the previous section 4.8 except that the model will be
trained on the MIMIC dataset instead of the Vitaldb to assess the proposed approach’s
ability to learn different hemodynamic situations. Additionally, different models were
tested, including linear models such as linear, lasso, and ridge regression and tree-based
regression models such as decision tree, random forest, and XGBoost.

Using leave-one-patient-out cross-validation, six models were trained and tested. The
results are summarized in table 4.8. Using the same approach, ridge regression is again
the best-performing model alongside linear regression, as it was found using the Vitaldb.
However, the performance is not as good as the training on the Vitaldb. This is mainly
due to the limited amount of data in the MIMIC dataset.

Figures 4.46. 4.47, and 4.48 show the performance of the ridge regression re-trained
on the MIMIC dataset, including Bland-Altman analysis, four-quadrant analysis, and
polar plot analysis, respectively. As can be seen from the results, the model achieved
better performance when re-trained using the MIMIC, indicating that the proposed
approach can learn different hemodynamic situations.
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Figure 4.46: Linear
regression: Four-
quadrant analysis

Figure 4.47: Linear
regression: Bland-
Altman analysis

Figure 4.48: Linear re-
gression: Polar plot
analysis

Table 4.8: Regressors comparison re-train using MIMIC dataset

RMS MAE R R2 Bias LOA PE% CR% RLOA◦ RBias◦

Linear 1.13 0.89 0.60 0.35 -0.02 2.21,-2.26 44.77 67.49 31.54 5.47

Ridge 1.13 0.89 0.60 0.35 -0.04 2.20,-2.27 44.77 67.08 31.51 5.43

Lasso 1.16 0.89 0.57 0.33 -0.02 2.25,-2.30 45.58 66.47 31.13 5.63

DecisionTree 1.58 1.19 0.40 -0.24 -0.15 2.94,-3.24 61.93 58.08 23.83 -5.62

RandomForrest 1.20 0.93 0.54 0.27 -0.1 2.26,-2.46 47.27 62.04 33.72 7.78

XGBoost 1.23 0.95 0.53 0.23 -0.12 2.29,-2.54 48.40 58.94 31.46 6.11
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Discussion 5
In this chapter, we will present a discussion of the obtained results. This study aimed
to design an algorithm for estimating cardiac output from arterial blood pressure mea-
surements. The study aimed to determine the optimal number of cardiac cycles used
for feature extraction to achieve the highest level of accuracy and precision. Further-
more, the study employed the SINDy algorithm to discover new features. Finally, the
proposed method was validated using the MIMIC II dataset. The findings of this study
offer valuable insights into the system’s dynamics, considering the optimal number of
cardiac cycles and the newly identified features.

5.1 Evaluation

Using the optimum number of cardiac cycles (five) alongside the discovered features
mentioned in table 4.1, the proposed solution achieved remarkable results outperform-
ing other literature in terms of RMS (root means square error), MAE (mean absolute
error), R2, LOA (limits of agreement), PE (percentage error), RLOA (radial limits
of agreement), and RBias (radial bias) when training and testing using the Vitlaldb
dataset. Additionally, our model is the best-performing model regarding MAE, LOA,
RLOA, and RBias when training and testing on the MIMIC II dataset. Finally, the
model achieved the best-performing model regarding RLOA and RBias when trained on
the Vitaldb and tested on the MIMIC dataset. Table 5.1 compares this study’s perfor-
mance with other studies. Regarding Bias, CR (concordance rate), and R (correlation),
the proposed solution in this study was close to the best literature.

It should be noted that in [21], the data was split into training and test datasets
based on samples. This implies that some of the test patients were seen during train-
ing. Especially that age and gender were essential features in their study and model.
Additionally, it should be mentioned that the dataset used in [21] is twice as big as
the MIMIC data used in this study. They used versions II and III, while we used only
version II due to data accessibility issues.

It is also important to highlight that the results achieved in [25] are in comparison
to a commercially available cardiac output device. Such devices utilize arterial blood
pressure, hence less invasive measurements, to estimate cardiac output. Inaccuracies
were reported for such devices. Data was split into training and testing datasets; hence,
the test was not performed on all patients. A more proper way to evaluate the system
was using leave-one-patient-out cross-validation, as we did in this study.
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As a result of this comparison with the literature, this is the only study that has
used proper leave-one-patient-out cross-validation and reported all clinically acceptable
metrics. Additionally, this study is the only study that validated the learned model
on an external dataset. Finally, this study is the only study that achieved a clinically
acceptable level regarding radial limits of agreements (RLOA) and radial bias (RBias).

Table 5.1: Comparison with literature. Cells with (-) indicate that the study did not report
the metric. * The study estimated stroke volume instead of cardiac output. Therefore, the
comparison is complex since stroke volume should first be converted to cardiac output. **
reference CO was not the gold standard.

Vitaldb MIMIC II MIMIC II
validation

[21]
(MIMIC
II+III)

[55]
(Vitaldb)

[25]**
(Vitaldb)

[34]

RMS 1.04 1.13 1.39 1.192 - 1.45 -

MAE 0.94 0.89 1.03 0.94 - 1.01 -

R 0.82 0.60 0.29 - 0.64 0.95** 0.84

R2 0.67 0.35 -0.15 0.49 - - -

Bias -0.07 -0.04 -0.21 -0.01 * -0.85 *

LOA 2.10,-2.23 2.20,-2.27 2.49,-2.91 2.32,-2.35 * 0.72,-2.88 *

PE 33.34% 44.77 45.41 39.44% - - -

CR 79.10% 67.08 54.74 79.91% 53% 96.26% ** 77.74

RLOA 25.49 31.51 30.07 31.6 - - -

RBias 3.23 5.43 3.15 16.3 - - -

5.2 Explanation

In this section, an interpretation of the achieved results will be addressed. This sec-
tion explains why the five cardiac cycles yield the best performance. After that, the
interpretation of the learned features and elaboration on the learned model will be
provided.

Upon investigation, it was revealed that three cardiac cycles yielded the most accu-
rate results, while six cardiac cycles provided the highest precision. Further analysis
indicated that five cardiac cycles struck the best balance between accuracy and pre-
cision. The average duration of a cardiac cycle is approximately 0.8 seconds. On the
other hand, cardiac output measurements were taken at 2-second intervals, as illus-
trated in figure 5.1. Based on this figure, we can conclude that three cardiac cycles
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align most closely with the 2-second intervals. Similarly, six cardiac cycles align with
the two cardiac output measurements taken within a 4-second interval. This finding
suggests that the model utilizes the data from the last two seconds, equivalent to the
previous three cardiac cycles that were used to measure the ground truth for the most
accurate results. Additionally, to provide the most precise results, the model considers
the average of the last two cardiac output measurements, equivalent to the previous
six cardiac cycles. Finally, five cardiac cycles aim to strike the best balance between
accuracy and precision by relying more on the last cardiac output measurement than
the one before.

Figure 5.1: Arterial blood pressure waveform with arrows indicating cardiac output measure-
ment moments (2 seconds interval)

Furthermore, applying the SINDy algorithm allowed us to discover new features for
cardiac output estimation. The algorithm effectively identified 33 features that offer
insight into the underlying dynamics and relationships between arterial blood pressure
and cardiac output. These features were related to five physical phenomena: veloc-
ity, pressure, power, energy, and randomness. A linear combination of these features
describes the learned model.

To write the leaned model in a symbolic equation, a vector u is defined that contains
velocity-related features: heart rate, systolic duration, systolic notch duration, diastolic
duration, and duration of the cardiac cycle. Upon closely examining the feature set, it
can be observed that the vector u also defines the derivative or change-related features
as ∆u.

u = [HR, systolic duration, systolic notch duration,diastolic duration, cardiac cycle duration]. (5.1)

Another vector x is also defined to include logarithm-related features such as heart
rate, cardiac cycle duration, pulse pressure, and absolute energy. It should be noted
that x and u share heart rate and cardiac cycle duration. Therefore, the logarithmic
features can be written as x + log(x) since the features defined in x are also included
with their logarithm in the feature matrix. Finally, R and v vectors are defined to
include randomness-related features and all other non-linear features, respectively.

x = [HR, systolic duration, pulse pressure, absolute energy]. (5.2)
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R = [Fourier entropy5,Fourier entropy10,Fourier entropy100]. (5.3)

Using the defined vectors, the learned model can be written in short notation as a linear
combination of these vectors.

CO = (u + ∆u + p +∆p + x + log(x) + R + v)W. (5.4)

Here W is the learned weights from training the model W = [w1,w2, ...wn]. Upon closer
look at the learned equation, similarity to the Navier-Stokes equation is observed. The
term u + ∆u + p + ∆p holds information about the velocity and pressure terms with
their derivatives similar to the Navier-stokes equations that describe the flow of a fluid.
The Navier-Stokes equations also have other terms related to the density and deviatoric
stress tensor. These terms describe turbulence and viscosity in the flow of a fluid. This
study suggests that the other terms in the learned model x+ log(x)+R+v are related
to turbulence and viscosity phenomenons similar to the Navier-Stokes equations.

Therefore, the learned model is interpreted as a differential equation that shares
similarities with the Navier-Stokes equations, where cardiac output acts as an external
force to the system. Modeling the cardiac output as an external force is connected to
the classical approach, where cardiac output is modeled as a current source delivering
power to a circuit consisting of resistors and capacitors. However, modeling the problem
as fluid flow does make more sense than modeling the problem from a circuit theory
perspective, as the nature of the problem at hand is fluid (volume of blood).

Additionally, the fact that ridge regression was the best-performing model also says
something about the nature of the problem. Originally, ridge regression was designed
to solve non-orthogonal systems of equations where ATA ̸= AAT [15]. Where A is the
features matrix in this study. This was verified to be the case by multiplying ATA
and AAT . Systems that obey non-orthogonal systems of equations are well known in
fluid dynamics as non-normal/degenerate systems. The more significant the difference
between ATA and AAT , the more non-normal the system is. Non-normal systems are
described by te−tλ where such a system seems to be unstable at the beginning; however,
after a certain time, the system goes back to a stable state. Such behavior is shown
in figure 5.2. Similarities were also observed in the behavior of such a system and the
continuous blood pressure waveform shown in figure 5.3. Therefore, we suggest that
part of the arterial blood pressure system in a non-orthogonal system was captured by
the terms x+ log(x) in the feature matrix. Having the cardiac output as a power of an
exponent has a solid connection to the classical approach for cardiac output estimation.
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Figure 5.2: Simulation of 100 points of tetλ
Figure 5.3: One cardiac cycle of arterial
blood pressure

5.3 Limitations

In this section, the limitations associated with this study are highlighted. Although
the model achieved clinically acceptable performance, it should be noted that the study
was conducted within a specific population and clinical settings where a limited range
of hemodynamic situations was captured. This was evident when the model was tested
on the external dataset leading to performance degradation.

Furthermore, our anesthesiologists from the Erasmus MC told us that the model’s
velocity and pressure-related features are logical. Additionally, having non-linear terms
is understandable because the relation between cardiac output and blood pressure is
not linear. Therefore, having logarithmic or rational features is acceptable. However,
it was unexpected that demographic information such as age and body mass index
(BMI) would play no role in the model. In the learned model, only gender was used
as a demographic feature, as there is a difference between men and women regarding
cardiac output. However, the relationship between age and BMI with cardiac output
seems non-linear; therefore, a linear combination of age and BMI will not be a solution.
Further investigation is needed to determine how to add these features to the system.

It should also be mentioned that the quality of the waveform hindered the feature
extraction process. This was evident when the quality of the MIMIC waveforms was
assessed manually. It was noticed that feature extraction does not work well in certain
situations. For example, when the dicrotic notch disappears from the waveform. Such
a phenomenon has a physiological interpretation, meaning the heart did not relax well.
We did not have any method to detect such a situation, which led to false pressure and
time-related feature calculation. However, since the waveforms in the MIMIC dataset
were assessed manually, a labeled dataset is now available to design an algorithm that
can detect such situations.
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Additionally, the interpretability of the model should be further investigated to de-
scribe the similarity between the model and the Navier-Stokes equation, as the connec-
tion is still not fully clear. Also, perhaps, an expert in differential equations and fluid
dynamics can help understand the model more.

Finally, the hyper-parameter of the ridge regression was hard to determine as by tun-
ing this parameter, an assumption is made about the prior distribution of the weights,
which may not be true. From a Bayesian perspective, ridge regression is the solution
of the Bayesian linear regression when the prior of the weights is Guissian.
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Conclusion and future work 6
In this study, our primary objective was to design an algorithm for less invasive estima-
tion of cardiac output based on continuous arterial blood pressure measurement. We
aimed to develop a method that could offer comparable performance to the standard
gold method for measuring cardiac output, namely the Swan-Ganz catheter, and to be
as explainable as possible. Using machine learning techniques and feature engineering,
we successfully designed an algorithm that achieved clinically accepted performance
regarding radial limits of agreements and angular bias. The learned model was vali-
dated on an external dataset and achieved comparable performance. Furthermore, the
developed model was interpreted as a differential equation related to the Navier-Stokes
equations.

The core focus of our system design revolved around identifying the input features
and determining the optimum number of cardiac cycles for accurate estimation of car-
diac output. These factors play a crucial role in the overall performance and reliability
of the system. We captured essential information necessary for the explainable estima-
tion of cardiac output by engineering relevant features. Additionally, investigating the
optimum number of cardiac cycles allowed us to optimize the efficiency and practicality
of the system.

Furthermore, the interpretability of the developed model is a notable strength of our
system. By providing valuable insights into the system’s interpretation, we enhance
our understanding of the underlying physiological processes involved in cardiac output
estimation. This contributes to the scientific knowledge in the field and facilitates
medical professionals’ acceptance and adoption of the system.

Future work

This research contributes to the ongoing efforts to develop less invasive and accessible
methods for cardiac output estimation, ultimately leading to improved patient care and
enhanced diagnostic capabilities. In this chapter, an elaboration on future work will be
provided.

For future work, it is recommended to design an algorithm to assess the quality of the
arterial blood pressure waveform. Such an algorithm will enhance the model’s perfor-
mance and will allow the model to detect a broader range of hemodynamic situations.
We propose utilizing the manually labeled dataset available in the appendix C.4 to
achieve this.
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An additional area of research could be estimating the time delay between arterial
blood pressure measurements using an arterial line and the corresponding moment when
the heart pumps the blood. In addition to the time delay, the attenuation in the blood
pressure waveform should be estimated to reconstruct the original shape of the blood
pressure as it was pumped by the heart. This valuable information can be extracted
from the ECG signals. When the heart pumps, the ECG signal exhibits a peak, which
may also reflect the strength of the pump.

The underlying concept is to align the blood pressure signal with the heart’s activity.
Achieving this alignment is crucial to accurately capture the relationship between the
heart’s pumping and the corresponding blood pressure variations. We hypothesize that
estimating cardiac output from pressure information measured next to the heart would
give better results.

In cases where the ECG signals alone cannot fully reflect the attenuation in the
blood pressure waveform, an alternative approach could involve leveraging machine
learning techniques to learn this relationship from invasively measured data. The Vi-
taldb dataset presents an opportunity for this, as it provides measurements of SPB
(Systolic Blood Pressure) and DBP (Diastolic Blood Pressure), which were acquired
invasively, and these measurements can be used as ground truth for the model.

By delving into this area of research and exploring the alignment of ECG and blood
pressure signals, we could unlock a novel method for estimating cardiac output and
potentially improve the understanding of cardiovascular dynamics.

Additionally, diversifying the training approach to encompass distinct models for
estimating cardiac output holds potential advantages. As demonstrated in this study,
cardiac output can be categorized into three ranges: low, mid, and high. The evaluation
of the MIMIC dataset revealed that the model tended to underestimate high values and
overestimate low values, displaying a preference for estimating values in the mid-range.
This discrepancy may indicate that the relationship between high and low values differs
slightly between blood pressure and cardiac output.

Consequently, exploring the development of three separate models could prove fruit-
ful. Each model would be tailored to a specific range (low, mid, and high), allowing
for more accurate estimations across the spectrum. However, it is essential to acknowl-
edge a potential challenge of this approach—the scarcity of data points corresponding
to high and low cardiac output values. Since such instances are infrequent, ensuring
sufficient data for each model could be problematic. However, exploring the creation of
multiple models for cardiac output estimation, each designed for a specific range, could
yield accuracy improvements and enhance the findings’ clinical relevance.

Moreover, it is recommended that the model is applied using data from the Erasmus
MC as part of future work. By fitting the model to the specific data from the Erasmus
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MC and conducting live tests on-site, we can take significant strides toward the practical
implementation of this research. An option worth exploring would be merging the
Vitaldb or MIMIC data with the Erasmus MC data, given that the distributions of the
features are similar. This data fusion would provide a more diverse and comprehensive
dataset, allowing for further fine-tuning and validation of the model.

For future research, we also aim to utilize the time-delay embedding coordinates to
describe the system’s dynamics and its relation to cardiac output. Since we learned
from this study that the system is non-orthogonal, and an orthogonal basis exists that
describes the system enabling linear combination instead of non-linear relationships.
This is also in line with the Koopman operator theory that state that a non-linear sys-
tem could be linearized in a higher dimension (in theory, infinity dimension), assuming
the existence of hidden variables that are not measured.

This operator is extremely hard to find in practice. However, an alternative exists
known as the Henkel alternative that utilizes the eigenvectors of a Henkel matrix ob-
tained from a time-series signal. Therefore, the idea is to construct a Henkel matrix as
shown in the matrix below 6.1, and by each raw shift, the hidden variable will interact.
This interaction could be captured by taking the singular value decomposition of the
matrix.

xABP =



ABP1 . . . ABP10 . . . ABP20 . . . ABPN

ABP2 . . . ABP11 . . . ABP21 . . . ABPN+1

ABP3 . . . ABP12 . . . ABP22 . . . ABPN+2

...
...

...
...

...
...

...

...
...

...
...

...
...

...


. (6.1)

The assumption is that the system’s behavior could be described using a linear com-
bination of these eigenvectors. The SINDy algorithm could be used again to capture
this relationship, and we learned from this study that the cardiac output is an input of
such a system. Therefore, we use the cardiac output as input.

A model based on the eigenvectors of a Henkel matrix and accepting inputs is very
desirable. Since we could also use demographic information as input to the system
and anesthesia drug dosages such as propofol, this could be very helpful in estimating
cardiac output and determining the depth of anesthesia based on arterial blood pressure
waveform.

53



Bibliography

[1] Tatsuya Arai et al. “Estimation of changes in instantaneous aortic blood flow by the
analysis of arterial blood pressure”. In: Journal of Applied Physiology 112.11 (2012),
pp. 1832–1838.

[2] J Martin Bland and DouglasG Altman. “Statistical methods for assessing agreement
between two methods of clinical measurement”. In: The lancet 327.8476 (1986), pp. 307–
310.

[3] Maurice J Bourgeois et al. “Characteristics of aortic diastolic pressure decay with ap-
plication to the continuous monitoring of changes in peripheral vascular resistance”. In:
Circulation research 35.1 (1974), pp. 56–66.

[4] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. “Sparse identification of non-
linear dynamics with control (SINDYc)”. In: IFAC-PapersOnLine 49.18 (2016), pp. 710–
715.

[5] Gari D Clifford, Daniel J Scott, and Mauricio Villarroel. “User guide and documentation
for the MIMIC II database (version 2, release 1)”. In: (2010).

[6] Lester A Critchley, Anna Lee, and Anthony M-H Ho. “A critical review of the ability of
continuous cardiac output monitors to measure trends in cardiac output”. In: Anesthesia
& Analgesia 111.5 (2010), pp. 1180–1192.

[7] Lester A Critchley, Xiao X Yang, and Anna Lee. “Assessment of trending ability of
cardiac output monitors by polar plot methodology”. In: Journal of cardiothoracic and
vascular anesthesia 25.3 (2011), pp. 536–546.

[8] Nader Jafarnia Dabanloo, Fatemeh Adaei, and Ali Motie Nasrabadi. “The performance
of neural network in the estimation of cardiac output using arterial blood pressure
waveforms”. In: 2011 Computing in Cardiology. IEEE. 2011, pp. 145–148.

[9] Kate E Drummond and Edward Murphy. “Minimally invasive cardiac output monitors”.
In: Continuing Education in Anaesthesia, Critical Care & Pain 12.1 (2012), pp. 5–10.

[10] Joseph Erlanger. “An experimental study of blood-pressure and of pulse-pressure in
man”. In: Bull Johns Hopkins Hosp 12 (1904), pp. 145–378.

[11] Qi Guo and Xiaomei Wu. “Measuring cardiac output through thermodilution based
on machine learning”. In: Journal of Mechanics in Medicine and Biology 21.05 (2021),
p. 2140003.

[12] Feras Hatib et al. “Machine-learning algorithm to predict hypotension based on high-
fidelity arterial pressure waveform analysis”. In: Anesthesiology 129.4 (2018), pp. 663–
674.

[13] J Alan Herd, NORMAN R Leclair, and WILLIAM Simon. “Arterial pressure pulse
contours during hemorrhage in anesthetized dogs”. In: Journal of Applied Physiology
21.6 (1966), pp. 1864–1868.

[14] Mayu Hiraishi, Kensuke Tanioka, and Toshio Shimokawa. “Concordance rate of a four-
quadrant plot for repeated measurements”. In: BMC Medical Research Methodology 21
(2021), pp. 1–16.

[15] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Biased estimation for
nonorthogonal problems”. In: Technometrics 12.1 (1970), pp. 55–67.

54



[16] R Jacob, B Dierberger, and G Kissling. “Functional significance of the Frank-Starling
mechanism under physiological and pathophysiological conditions”. In: European heart
journal 13.suppl E (1992), pp. 7–14.

[17] jaketmp and Lee Tirrell. jaketmp/pyCompare: June 2021.
[18] Young-Seob Jeong et al. “Prediction of blood pressure after induction of anesthesia

using deep learning: A feasibility study”. In: Applied Sciences 9.23 (2019), p. 5135.
[19] Max M Jonas and Suzie J Tanser. “Lithium dilution measurement of cardiac output and

arterial pulse waveform analysis: an indicator dilution calibrated beat-by-beat system
for continuous estimation of cardiac output”. In: Current opinion in critical care 8.3
(2002), pp. 257–261.

[20] Alan A. Kaptanoglu et al. “PySINDy: A comprehensive Python package for robust
sparse system identification”. In: Journal of Open Source Software 7.69 (2022), p. 3994.
doi: 10.21105/joss.03994. url: https://doi.org/10.21105/joss.03994.

[21] Liao Ke et al. “Machine Learning Algorithm to Predict Cardiac Output Using Arterial
Pressure Waveform Analysis”. In: 2022 IEEE International Conference on Bioinfor-
matics and Biomedicine (BIBM). IEEE. 2022, pp. 1586–1591.

[22] Samir Kendale et al. “Supervised machine-learning predictive analytics for prediction
of postinduction hypotension”. In: Anesthesiology 129.4 (2018), pp. 675–688.

[23] Jack W Kern and William C Shoemaker. “Meta-analysis of hemodynamic optimization
in high-risk patients”. In: Critical care medicine 30.8 (2002), pp. 1686–1692.

[24] Nicholas T Kouchoukos, Louis C Sheppard, and DONALD AMcDONALD. “Estimation
of stroke volume in the dog by a pulse contour method”. In: Circulation Research 26.5
(1970), pp. 611–623.

[25] Hye-Mee Kwon et al. “Estimation of stroke volume variance from arterial blood pressure:
Using a 1-D convolutional neural network”. In: Sensors 21.15 (2021), p. 5130.

[26] Hyung-Chul Lee and Chul-Woo Jung. “Vital Recorder—a free research tool for auto-
matic recording of high-resolution time-synchronised physiological data from multiple
anaesthesia devices”. In: Scientific reports 8.1 (2018), pp. 1–8.

[27] Hyung-Chul Lee et al. “VitalDB, a high-fidelity multi-parameter vital signs database
in surgical patients”. In: Scientific Data 9.1 (2022), p. 279.

[28] G Liljestrand and E Zander. “Comparative determination of the minute volume of the
heart in humans using the nitric oxide method and blood pressure measurement”. In:
Journal for all experimental medicine 59 (1928), pp. 105–122.

[29] Nehemiah T Liu et al. “Blood pressure and heart rate from the arterial blood pressure
waveform can reliably estimate cardiac output in a conscious sheep model of multi-
ple hemorrhages and resuscitation using computer machine learning approaches”. In:
Journal of Trauma and Acute Care Surgery 79.4 (2015), S85–S92.

[30] S Lorsomradee et al. “Continuous cardiac output measurement: arterial pressure anal-
ysis versus thermodilution technique during cardiac surgery with cardiopulmonary by-
pass”. In: Anaesthesia 62.10 (2007), pp. 979–983.

[31] Dominique Makowski et al. “NeuroKit2: A Python toolbox for neurophysiological signal
processing”. In: Behavior Research Methods 53.4 (Feb. 2021), pp. 1689–1696. doi: 10.
3758/s13428-020-01516-y. url: https://doi.org/10.3758%5C%2Fs13428-020-
01516-y.

[32] James F Martin et al. “Application of pattern recognition and image classification
techniques to determine continuous cardiac output from the arterial pressure waveform”.
In: IEEE transactions on biomedical engineering 41.10 (1994), pp. 913–920.

55

https://doi.org/10.21105/joss.03994
https://doi.org/10.21105/joss.03994
https://doi.org/10.3758/s13428-020-01516-y
https://doi.org/10.3758/s13428-020-01516-y
https://doi.org/10.3758%5C%2Fs13428-020-01516-y
https://doi.org/10.3758%5C%2Fs13428-020-01516-y


[33] LJ Montenij et al. “Methodology of method comparison studies evaluating the validity
of cardiac output monitors: a stepwise approach and checklist”. In: British Journal of
Anaesthesia 116.6 (2016), pp. 750–758.

[34] Young-Jin Moon et al. “Deep learning-based stroke volume estimation outperforms
conventional arterial contour method in patients with hemodynamic instability”. In:
Journal of clinical medicine 8.9 (2019), p. 1419.

[35] Ramakrishna Mukkamala et al. “Continuous cardiac output monitoring by peripheral
blood pressure waveform analysis”. In: IEEE Transactions on Biomedical Engineering
53.3 (2006), pp. 459–467.

[36] Rahul Nanchal and Robert W Taylor. “Hemodynamic monitoring”. In: Chap 41 (2007),
pp. 471–486.

[37] Dmitri Nepogodiev et al. “Global burden of postoperative death”. In: The Lancet
393.10170 (2019), p. 401.

[38] Michael F O’Rourke and Toshio Yaginuma. “Wave reflections and the arterial pulse”.
In: Archives of internal medicine 144.2 (1984), pp. 366–371.

[39] Peter M Odor, Sohail Bampoe, and Maurizio Cecconi. “Cardiac output monitoring:
Validation studies–how results should be presented”. In: Current anesthesiology reports
7 (2017), pp. 410–415.

[40] Mohammed Saeed et al. “MIMIC II: a massive temporal ICU patient database to sup-
port research in intelligent patient monitoring”. In: Computers in cardiology. IEEE.
2002, pp. 641–644.

[41] M Sanders, S Servaas, and C Slagt. “Accuracy and precision of non-invasive cardiac
output monitoring by electrical cardiometry: a systematic review and meta-analysis”.
In: Journal of clinical monitoring and computing 34.3 (2020), pp. 433–460.

[42] B Saugel et al. “Noninvasive continuous cardiac output monitoring in perioperative and
intensive care medicine”. In: British journal of anaesthesia 114.4 (2015), pp. 562–575.

[43] Brian de Silva et al. “PySINDy: A Python package for the sparse identification of
nonlinear dynamical systems from data”. In: Journal of Open Source Software 5.49
(2020), p. 2104. doi: 10.21105/joss.02104. url: https://doi.org/10.21105/joss.
02104.

[44] Non-Invasive Sphygmomanometers—Part. 2: Clinical validation of automated measure-
ment type. Tech. rep. ANSI/AAMI/ISO Standard 81060-2, 2009.

[45] JX Sun, AT Reisner, and RG Mark. “A signal abnormality index for arterial blood
pressure waveforms”. In: 2006 Computers in Cardiology. IEEE. 2006, pp. 13–16.

[46] JX Sun et al. “Estimating cardiac output from arterial blood pressurewaveforms: a
critical evaluation using the MIMIC II database”. In: Computers in Cardiology, 2005.
IEEE. 2005, pp. 295–298.

[47] A Vakily et al. “A system for continuous estimating and monitoring cardiac output via
arterial waveform analysis”. In: Journal of biomedical physics & engineering 7.2 (2017),
p. 181.

[48] JJ Van Lieshout and KH Wesseling. Editorial II: Continuous cardiac output by pulse
contour analysis? 2001.

[49] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592- 019-
0686-2.

[50] Homer R Warner et al. “Quantitation of beat-to-beat changes in stroke volume from the
aortic pulse contour in man”. In: Journal of Applied Physiology 5.9 (1953), pp. 495–507.

56

https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.02104
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2


[51] Thomas B Watt Jr and Charles S Burrus. “Arterial pressure contour analysis for es-
timating human vascular properties”. In: Journal of applied physiology 40.2 (1976),
pp. 171–176.

[52] KH Wesseling. “A simple device for the continuous measurement of cardiac output”.
In: Adv Cardiovasc Phys 5 (1983), pp. 16–52.

[53] Wikipedia contributors. Arterial line. https://en.wikipedia.org/w/index.php?
title=Arterial_line&oldid=1139831322. Accessed: NA-NA-NA. Feb. 2023.

[54] Wikipedia contributors. Pulmonary artery catheter. https://en.wikipedia.org/w/
index.php?title=Pulmonary_artery_catheter&oldid=1153235339. Accessed: May
2023.

[55] Hyun-Lim Yang et al. “Development and validation of an arterial pressure-based cardiac
output algorithm using a convolutional neural network: retrospective study based on
prospective registry data”. In: JMIR medical informatics 9.8 (2021), e24762.

57

https://en.wikipedia.org/w/index.php?title=Arterial_line&oldid=1139831322
https://en.wikipedia.org/w/index.php?title=Arterial_line&oldid=1139831322
https://en.wikipedia.org/w/index.php?title=Pulmonary_artery_catheter&oldid=1153235339
https://en.wikipedia.org/w/index.php?title=Pulmonary_artery_catheter&oldid=1153235339


Results A
A.1 Results of comparison between regressors
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A.2 Results of comparison between regressors (reevaluation)

Linear regression

Lasso regression
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Ridge regression

Decision tree

Random forest
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XGBoost

A.3 Filter design three cardiac cycles

Figure A.1: Cut-off fre-
quency vs. bis

Figure A.2: Cut-off fre-
quency vs. concor-
dance rate

Figure A.3: Cut-off fre-
quency vs. limits of
agreement

Figure A.4: Cut-off fre-
quency vs. mean abso-
lute error

Figure A.5: Cut-off fre-
quency vs. percentage
error

Figure A.6: Cut-off fre-
quency vs. correlation
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Figure A.7: Cut-off fre-
quency vs. R2

Figure A.8: Cut-off fre-
quency vs. radial bias

Figure A.9: Cut-off fre-
quency vs. radial limits
of agreement

Figure A.10: Cut-off
frequency vs. RMS

Table A.1: Regressors comparison

Ḣz/ RMS MAE R R2 Bias LOA PE CR RLOA RBias

0.25 1.148 0.986 0.795 0.625 -0.07 2.26,-2.39 35.82% 49.30% 30.74◦ -0.88◦

0.2 1.137 0.982 0.798 0.630 -0.07 2.24,-2.38 35.57% 50.63% 28.98◦ -0.693◦

0.15 1.126 0.977 0.800 0.635 -0.07 2.23,-2.36 35.32% 56.50% 29.62◦ 0.765◦

0.1 1.115 0.973 0.803 0.640 -0.07 2.21,-2.35 35.07% 65.59% 30.90◦ 2.560◦

0.05 1.103 0.966 0.806 0.646 -0.07 2.19,-2.33 34.77% 72.36% 28.36◦ 2.636◦

0.025 1.036 0.920 0.828 0.686 -0.05 2.08,-2.18 32.77% 77.61% 27.23◦ 3.895◦

0.015 1.065 0.924 0.819 0.671 0.02 2.2,-2.16 33.57% 76.11% 37.21◦ 5.205◦

0.005 1.232 1.034 0.760 0.521 0.27 2.85,-2.31 39.71% 65.67% 33.13◦ -0.420◦
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A.4 Filter design four cardiac cycles

Figure A.11: Cut-off
frequency vs. bis

Figure A.12: Cut-off
frequency vs. concor-
dance rate

Figure A.13: Cut-off
frequency vs. limits of
agreement

Figure A.14: Cut-off
frequency vs. mean ab-
solute error

Figure A.15: Cut-off
frequency vs. percent-
age error

Figure A.16: Cut-off
frequency vs. correla-
tion

Figure A.17: Cut-off
frequency vs. R2

Figure A.18: Cut-off
frequency vs. radial
bias

Figure A.19: Cut-off
frequency vs. radial
limits of agreement
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Figure A.20: Cut-off
frequency vs. RMS

Table A.2: Regressors comparison

Ḣz/ RMS MAE R R2 Bias LOA PE CR RLOA RBias

0.25 1.15 1.00 0.79 0.61 -0.08 2.28,-2.44 36.34% 49.45% 32.53◦ -0.47◦

0.2 1.14 1.00 0.79 0.61 -0.08 2.26,-2.43 36.11% 52.20% 33.55◦ 0.81◦

0.15 1.13 1.00 0.79 0.62 -0.08 2.25,-2.42 35.90% 59.42% 32.00◦ 1.84◦

0.1 1.12 0.99 0.80 0.62 -0.08 2.23,-2.40 35.66% 63.21% 33.03◦ 3.60◦

0.05 1.11 0.99 0.80 0.63 -0.08 2.21,-2.38 35.34% 76.54% 32.68◦ 4.08◦

0.025 1.04 0.93 0.82 0.68 -0.07 2.07,-2.21 32.98% 79.10% 28.83◦ 5.13◦

0.015 1.08 0.94 0.81 0.66 0.01 2.21,-2.19 33.89% 77.61% 36.68◦ 5.98◦

0.005 1.26 1.06 0.75 0.50 0.28 2.91,-2.34 40.36% 64.70% 33.28◦ -0.25◦

A.5 Filter design five cardiac cycles

Figure A.21: Cut-off
frequency vs. bis

Figure A.22: Cut-off
frequency vs. concor-
dance rate

Figure A.23: Cut-off
frequency vs. limits of
agreement
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Figure A.24: Cut-off
frequency vs. mean ab-
solute error

Figure A.25: Cut-off
frequency vs. percent-
age error

Figure A.26: Cut-off
frequency vs. correla-
tion

Figure A.27: Cut-off
frequency vs. R2

Figure A.28: Cut-off
frequency vs. radial
bias

Figure A.29: Cut-off
frequency vs. radial
limits of agreement

Figure A.30: Cut-off
frequency vs. RMS
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Table A.3: Regressors comparison

Ḣz/ RMS MAE R R2 Bias LOA PE CR RLOA RBias

0.25 1.14 1.01 0.79 0.61 -0.09 2.27,-2.44 36.26% 50.61% 28.86◦ -2.41◦

0.2 1.14 1.00 0.79 0.61 -0.09 2.26,-2.43 36.07% 51.29% 29.27◦ -1.76◦

0.15 1.13 1.00 0.79 0.62 -0.09 2.24,-2.42 35.88% 58.82% 28.03◦ -0.88◦

0.1 1.12 1.00 0.80 0.62 -0.09 2.23,-2.40 35.66% 62.57% 31.38◦ 1.70◦

0.05 1.11 0.80 0.79 0.63 -0.09 2.21,-2.38 35.35% 78.08% 28.37◦ 0.73◦

0.025 1.04 0.82 0.81 0.67 -0.07 2.10,-2.23 33.34% 79.10% 25.49◦ 3.23◦

0.015 1.09 0.80 0.80 0.65 0.03 2.27,-2.21 34.47% 77.61% 33.34◦ 3.76◦

0.005 1.28 0.75 0.76 0.49 0.34 2.96,-2.28 40.33% 65.67% 31.60◦ -1.22◦

A.6 Filter design six cardiac cycles

Figure A.31: Cut-off
frequency vs. bis

Figure A.32: Cut-off
frequency vs. concor-
dance rate

Figure A.33: Cut-off
frequency vs. limits of
agreement

Figure A.34: Cut-off
frequency vs. mean ab-
solute error

Figure A.35: Cut-off
frequency vs. percent-
age error

Figure A.36: Cut-off
frequency vs. correla-
tion
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Figure A.37: Cut-off
frequency vs. R2

Figure A.38: Cut-off
frequency vs. radial
bias

Figure A.39: Cut-off
frequency vs. radial
limits of agreement

Figure A.40: Cut-off
frequency vs. RMS

Table A.4: Regressors comparison

Ḣz/ RMS MAE R R2 Bias LOA PE CR RLOA RBias

0.25 1.16 1.02 0.78 0.60 -0.09 2.30,-2.49 36.91% 52.38% 31.45◦ -1.33◦

0.2 1.15 1.02 0.78 0.60 -0.09 2.30,-2.48 36.76% 53.47% 33.66◦ 0.54◦

0.15 1.15 1.01 0.79 0.60 -0.09 2.28,-2.47 36.59% 57.71% 32.81◦ 1.85◦

0.1 1.14 1.01 0.79 0.61 -0.09 2.27,-2.46 36.40% 63.79% 35.51◦ 3.70◦

0.05 1.13 1.01 0.79 0.61 -0.09 2.25,-2.44 36.10% 81.08% 34.55◦ 3.74◦

0.025 1.05 0.95 0.81 0.66 -0.07 2.13,-2.27 33.84% 82.08% 29.15◦ 4.44◦

0.015 1.10 0.96 0.80 0.64 0.02 2.29,-2.24 34.88% 79.10% 36.05◦ 5.21◦

0.005 1.23 1.02 0.76 0.52 0.33 2.88,-2.22 39.27% 71.64% 32.29◦ -0.26◦

A.7 Features weights

/
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Table A.5: Summary of extracted hemodynamic features

No Feature weight

1 Gender 4.16824346e-01

2 Absolute energy 3.76669128e-07

3 Fourier entropy5 -5.64677346e-01

4 Fourier entropy10 8.14264005e-01

5 Fourier entropy100 -1.92112057e+00

6 Heart rate -3.79286509e+00

7 Diff heart rate 5.80360575e-03

8 Systolic duration 4.98815153e+00

9 Diff Systolic duration 2.21602988e+00

10 Systolic notch duration -1.62738187e+00

11 Diff Systolic notch duration 5.51504244e-01

12 Distolic duration -5.17908499e+00

13 Diff Distolic duration -8.50643685e-01

14 Cycle duration -1.07255053e+01

15 Diff Cycle duration -1.04201849e+00

16 Liljestrand− Zender 7.85049739e-01

17 RMSpressure 6.66613057e+00

18 Systolic area 1.13170352e+00

19 Systolic area correction -1.12962825e+00

20 Systolicpressure/Distolicpressure -1.58442166e+00

21 Systolic pressure/pulse pressure 5.94630432e+00

22 Systolic duration/Distolic duration 1.52133793e+00

23 Systolic duration/Cycle duration 7.07841294e+00

24 1 / Systolic pressure 1.16715166e-01

25 1 / Distolic pressure 3.71947205e-01

26 1 / Mean pressure 8.39398828e-01

27 1 / Systolic duration -9.93281845e-01

28 Systolic duration*pressure 1.47326325e+00

29 Diff Systolic pressure/Systolic pressure 1.39106183e+00

30 log Heart rate 4.81241470e+00

31 log Cycle duration 2.04788429e+01

32 log Absolute energy -4.52581060e+00

33 logpulse pressure 1.13162797e+01
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Extra project literature review B
The use of arterial blood pressure to monitor cardiac output was proposed more than
a century ago. Researchers developed models to represent the arterial tree such as the
Windkessel model which was assumed well representative of the arterial tree by two
parameters. According to this model, the arterial blood pressure should decay like a
pure exponential [35]. However, the contour of the arterial pulse changes significantly
in different locations of the arterial tree [38]. To overcome the site dependence issue,
researchers added an improvement to the model such as in [35], and [1] where they
made the model frequency dependent. They estimated the impulse response of the
measured arterial blood pressure waveform and took the average time constant of the
fitted exponential functions over 6 minutes intervals by computing the arithmetic mean
and median in [35], and 17-beat moving window size in [1]. The overall RMSNE was
22.8%. Such an approach provided more accurate results than previous studies, is
less site dependent, and took into account possible distortion involved in the arterial
blood pressure waveform. However, the cardiac output error depends on the heart rate.
And many sources of error were assumed to be negligible such as that the frequency-
dependent parameter may not be constant (non-linear parameter) over the pressure
range considered in the study which may lead to underestimating or overestimating the
cardiac output. Also, the viscous component of the arterial wall was assumed to be
negligible which may potentially affect the Windkessl time constant. The contribution
of peripheral venous pressure (PVP) to the pressure gradient was also assumed to be
negligible. Under most circumstances this could be negligible, however, under extreme
hypertensive conditions, PVP should not be neglected because this will overestimate the
cardiac output measurement. It should also be noticed that this study was conducted
on animals and human testing is still needed.

In the mathematical analysis approach, only one feature was used to analyze the
waveform (the decay rate of pure exponential), and non-linear patterns were challeng-
ing. Data-driven models or learning techniques can provide powerful tools for solving
such problems. One of the first attempts to use learning techniques for cardiac out-
put estimation was to use a machine learning-based conjunctive rule to calculate the
average weights of two models [29]. This study showed that arterial blood pressure
waveform can be used to reliably estimate blood pressure and heart rate and that
such an approach is integrable into decision support systems. However, this study
contained only 10 records, the techniques were tested on animals, and heart rate and
blood pressure were derived from arterial blood pressure rather than vital signs moni-
tors. In another study, [47], the area under the systolic portion of the arterial pressure
waveform from the end-diastole to the end of the ejection phase was used to estimate
the stroke volume. This is an implementation of the theory that suggests that stroke
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volume is related to blood pressure in an artery and vascular resistance. The system
was evaluated using 7 signals of arterial pressure and the corresponding COs. The CO
values were estimated using thermodilution measurements. The system has an average
error of 6.5% in estimating CO. In this study, only the stroke volume was estimated.
However, CO is also related to vascular resistance that varies from patient to patient.
Therefore, an individual calibration was needed for each patient. This parameter was
estimated from the first few seconds of the wave recordings. Recently, in [55], deep
learning and transfer learning techniques were used to develop an algorithm that mim-
icked the commercial APCO algorithm [55]. The model was built using CNN to extract
features from the data and a regressor to predict the stroke volume values. This study
showed more accurate results than a commercial APCO device for estimating cardiac
output. However, more data is needed for further development and implementation
since the data used in this study is from a single-center registry, therefore, there may
be a limited range of CO. In addition, the ground-truth CO used in this data may be
less accurate in certain situations compared with the thermodilution technique. The
data collected in this study were from two different devices and the delay was not fully
revealed. Also, there was a statistical difference in age between the training and testing
sets, and finally, there was no visualization with explainable artificial intelligence that
explains why the proposed model produce the results. The raw data set of this study
was disclosed for any other improvement from other researchers to achieve the global
optimum model.

Other studies used learning techniques to predict cardiac output-related values in the
future such as blood pressure [18] or hypo-tensions[22], [12]. In [12], logistic regression
was used to predict hypo-tension 15 minutes before its occurrence with a sensitivity
of 88% and specificity of 87%. In this study, even though it predicts the hypo-tension
event before its actual occurrence it is not applicable in real-time predictions because
it was assumed that the hypotension event does not occur again within 20 minutes. In
another study, recurrent neural nets RNN were used to predict blood pressure 3 minutes
ahead. The mean blood pressure and the systolic blood pressure errors were 9mmHg
and 11 mmHg respectively. The standard error for automatic arterial pressure moni-
toring should not be greater than 5 mmHg and the standard deviation not greater than
8 mmHg as was defined by the association for the advancement of medical instrumen-
tation [44]. It is clear that the study did not meet the requirements of the acceptable
error, however, data used in this study were obtained from only 102 operations which
is not enough to capture diverse patterns of future blood pressure. Therefore, having
more data may improve the results. Another minor limitation of this study is the first
prediction. To get a prediction, data must be collected and this takes time. Therefore,
data collection should start before the induction of anesthesia. Supervised machine
learning techniques were also used to predict post-induction hypo-tension events [22].
In this study, they tested multiple techniques from which the gradient boosting ma-
chine performs the best 0.76. 10000 cases were incorporated into machine learning in
this study, however, all cases were extracted over six months in a single institution. A
data set over a longer period may improve the results. Also, the lack of transparency
was a limitation in this study where the algorithm is seen as a black box. This may

72



be inadequate if a complete understanding of the clinical implication is needed for any
practice modification.

From this literature review, approaches can be categorised into two. The first one
being predicting blood pressure or hypo-tensions in the future. This approach can
support decision making and is important since it provides the ability for early inter-
ventions. However, practical limitations are associated with this approach such as that
non-practical assumptions should be made or results have bigger error than the stan-
dard acceptable error. Having more data may solve the problem and reduce the error,
however, after predicting the blood pressure in the future, cardiac output still needs
to be estimated from this predictions. This may reduce the accuracy more since the
algorithm for CO estimation will also have some estimation errors. In addition, future
hear rate should also be estimated. In other words, the ground-truth for CO estimation
in the future may be unreliable. Therefore, predicting CO in the future is not feasible in
one project since many steps should be taken: predicting blood pressure and heart rate
in the future, estimating stroke volume from predictions, and calculating the CO. The
second approach in this literature review assumes that blood pressure and hear rate are
available which is the case in current time. This approach is more feasible since only
one algorithm should be developed and is needed in practice since the current methods
are either invasive and complex or non-invasive and inaccurate.

In [55], the second approach was used were learning techniques were used (deep
learning and transfer learning) and they achieved more accurate results than the com-
mercially available APCO devices. However, two major limitations were associated
with this study. The first one being the small amount of data. Having more data
could improve the results even more such that the algorithm achieves the accuracy of
the PAC method (the gold standard). The second limitation was that not all arterial
blood pressure wave-forms had corresponding CO estimation, therefore, they needed
to be estimated rather than getting the values from CO monitor. The model in the
mentioned study is promising and performs the best ,and therefore, it is suitable to be
chosen. However, to add improvement on the study, the associated limitations should
be tackled.

Regarding the first limitation (small data-set), the Erasmus MC hospital will provide
access to their data registry. This data will be added to the data from the study
conducted in [55]. Regarding the second limitation, in this paper, an algorithm will be
implemented to give rough CO estimation for wave-forms without reference CO label
through mathematical analysis of the wave-forms as it was done in [47]. After that,
the model from [55] can be trained and tuned using transfer learning and data labeled
from PAC monitor. Having done these steps, it is expected to achieve more accuracy
and wider range of CO values will be achieved.
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B.1 Design requirements

The most important aspect of designing the requirements is the reference ground truth
that the model is trained with. Although, PAC is considered as the gold standard and
generally accepted as the clinical standard method, there is no consensus that such a
technique is the appropriate comparator when testing less/non-invasive devices. The
frequently used method to compare two methods is correlation analysis. It should be
noted that correlation analysis does not measure agreement between two methods, but
their relationship. Statistical methods to assess a system are accuracy, precision, and
trending ability [42].

Accuracy is defined as the bias between the results from this study and the refer-
ence data (ground truth). Precision is defined as the standard deviation (SD) of the
bias. Limits of agreement (LoA) defined as [bias +/- 1.96*SD]. Mean percentage error
(MPE) is derived from the SD and mean CO [41]. The bland-Altman analysis is the
accepted statistical approach for the evaluation of agreement (accuracy and precision).
When using Bland-Altman analysis, the mean difference (bias), and the limits of the
agreement reflect accuracy and precision. There are no generally accepted cut-off values
for the acceptable mean difference and the corresponding standard deviation assessed
by the Bland-Altman analysis. For the acceptable agreement 30% is usually applied.
However, this can only be applied when the ground truth and the method to be tested
have a precision of +/- 20 % [41], [42].

In addition, the percentage error can be calculated as 2 times the standard deviation
of the mean difference divided by the mean of the measurements. Also, the ability to
accurately follow changes in CO is crucially important, 4-quadrant plot can be used
to assess this. Usually, small changes of CO are excluded from the 4-quadrant plot by
using an exclusion zone (10% or 0.5 L

min
) [42].

To provide improvement to the study conducted in [55], their achieved results will
be used as requirements in this study:

• The error difference between the estimated value and the ground truth should be
less than -0.5 mL with a standard deviation of 2.1 mL.

• The absolute error between the estimated value and the ground truth should be
less than 1.8 mL and a standard deviation of 0.3 mL.

• The percentage error between the estimated value and the ground truth should
be less than 1.2 mL and a standard deviation of 1.7 mL.

• The absolute percentage error between the estimated value and the ground truth
should be less than 2.2 mL and a standard deviation of 0.2.

An additional requirement for the ML system is the estimate update time. Arterial
blood pressure waveform is sampled at 100 Hz frequency over a period of 20 s. There-
fore, the CO values should be estimated and updated at 20 s intervals [30].
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Table B.1: Summary of design requirements

ID Requirement Verification
method

DA.01 The error should be less than -0.5 mL with standard
deviation of 2.1 mL.

Test

DA.02 The absolute error difference should be less than 1.8 mL
and standard deviation of 0.3 mL.

Test

DA.03 The percentage error difference should be less than 1.2
mL and standard deviation of 1.7 mL.

Test

DA.04 The absolute percentage error difference should be less
than 2.2 mL and standard deviation of 0.2.

Test

DA.05 Limits of agreement should be 30 % Test

DA.06 Exclusion zone in 4-quadrant plot is (10%) Test

DA.07 The estimate and update time of the CO measurement
should be done at 20 s intervals

Test
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Dataset C
C.1 Patient’s IDs

4034.0, 349.0, 4959.0, 251.0, 2252.0, 4721.0, 5693.0, 5698.0, 5018.0, 2872.0,
5682.0, 2252.0,5607.0, 5442.0, 3188.0,2185.0, 6227.0, 4800.0, 1083.0, 4573.0, 2700.0,
3719.0, 553.0, 5837.0, 3113.0,6297.0, 1900.0, 1959.0, 3967.0, 3849.0, 2453.0, 985.0,
4398.0,4283.0, 5687.0, 945.0, 1730.0, 397.0, 2326.0,4897.0, 1785.0, 783.0, 1018

C.2 surgical operations

Among these cases, the following surgical operations were performed: 1 Cesarean sec-
tion, 2 Total gastrectomies, 3 Pylorus preserving pancreaticoduodenectomies, 1 Radi-
cal prostatectomy, 2 Excisions, 1 Simple mastectomy, 2 Lung wedge resections, 3 Liver
transplantations, 2 Cholecystectomies, 4 Breast-conserving surgeries, 1 Radical hys-
terectomy, 1 Ovarian cystectomy, 1 Kidney transplantation, 1 Thyroglossal duct cyst
excision, 1 Total thyroidectomy, 1 Hysterectomy, 1 Closure of wound, 2 Metastasec-
tomies, 2 Anterior resections, 1 Bleeding control, 3 Distal gastrectomies, 1 Extended
hemihepatectomy, 3 Hemicolectomies, 2 Exploratory laparotomies, 1 Hemihepatectomy,
1 Thyroid lobectomy, 1 Lung segmentectomy, 1 Spleen preserving distal pancreatec-
tomy, and 1 Proximal gastrectomy.

C.3 MIMIC patients ID

The following patients were deleted because of the low waveform quality:
deleted-patient = [3613920, 3814000, 3299549, 3162867, 3689670, 3654372, 3402722,
3695934, 3911888, 3582566, 3284836, 3632160]

The following IDs are the patient’s IDs from the MIMIC dataset that was used to
train and test:
patient-ID-MIMIC = [3544749, 3689670, 3027112, 3701096, 3162867, 3697467,3767318,
3607858, 3721513,3220385, 3715271, 3790349, 3171184, 3964904, 3255734, 3609675,
3980460, 3548811, 3000126, 3112718, 3600781, 3295369, 3574553, 3458812, 3455496,
3294756, 3299549, 3475959, 3280565, 3628710, 3475592, 3123796, 3676005, 3814000,
3574889, 3613920, 3828483, 3882370, 3161169, 3126479, 3950676, 3079821, 3041277,
3523851, 3722858, 3157770, 3347680, 3548075, 3215863, 3555576, 3145459, 3903980,
3667327, 3367125, 3425244, 3188562, 3326633, 3000105, 3222216, 3573321, 3617554,
3599408, 3345464, 3871964, 3344874, 3072283, 3386452, 3989828, 3599099, 3546834,
3239573, 3057224, 3922725, 3447088, 3676483, 3551695, 3265081, 3046261, 3956395,
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3632160, 3284836, 3318909, 3127390, 3686173, 3043670, 3603259, 3551259, 3769651,
3021157, 3402722, 3654372, 3695934, 3289691, 3911888, 3582566, 3069909, 3803050,
3760748, 3182265, 3926530, 3344926, 3321106, 3702369, 3955830]

C.4 Data for waveform quality assessment

3544749: 2, 4, 6, 11
3027112: 26, 30, 31
3701096: 34, 36, 41, 42
3697467: 60, 61, 63
3607858: 77, 80, 82, 84, 86, 88, 90, 91
3790349: 107, 108, 109, 110
3964904: 119
3609675: 125,126,127,128,129,130,131,132,135,136,137,138,139,140
3548811: 146,147
3000126: 149,154,155
3295369: 175,176,177,178,180,182
3458812: 198,201
3455496: 208,209,210,213,215
3299549: 227,232,236,237
3280565: 247,250
3628710: 252,264,265,266
3123796: 307,316
3676005: 320,321,324,325,326,329
3613920: 342,347
3828483: 351,352,353
3161169: 364,365,368,370,371,373,374,375,377,378
3126479: 379,380,381,384,385
3950676: 389,390
3079821: 396,397,398,399,400
3041277: 404,411
3523851: 414,415,419,420,422,423,424
3157770: 433,436,437,439
3347680: 440,442
3215863: 450,451,452
3903980: 479,482,483,484,487,489
3667327: 495,496,497,498,499,500,501,509
3367125: 513,516,518,521,524,525,526,527,528,529,530,536,539
3326633: 556,561,563,564,565,566
3222216: 569,570,575
3573321: 578,579,580,583,587,588,589
3617554: 592,593
3599408: 600,601,602,603
3871964: 608,609,610,611,612,613,614,615,617,618,620,621
3072283: 627,628,629,630,631,632,633,634,635,637
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3386452: 640,641,643,644,645,646,647,652,654,656,666,668,672,674,661
3989828: 675,676,677,678,679,680,681,682,683,684,685,686,687,688,694,700,701,703
3599099: 704,705
3546834: 711,712,715
3057224: 719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,739
3922725: 742,743,744,745,746,747,748,749,752,753,756,759
3676483: 772,773,775,777,778,781,782,783
3265081: 788,789,790,791
3046261: 793
3956395: 798,799
3632160: 804,805,808
3284836: 812,813,814,819
3127390: 829,830,832,834,836,837,838,839,840
3043670: 848,849,851,852
3021157: 873,874
3402722: 880,881,882,883,884,885,886
3654372: 897,898,899,900,902,903,908,910,911,912,913,915,916
3695934: 922,923,928,929
3289691: 934
3911888: 940,944
3069909: 952,954,955,957
3803050: 959,960,964,965,968,969,970,971,973,974,975,976
3760748: 980,983,989,994,1000
3182265: 1010
3926530: 1013,1015,1017,1020
3344926: 1022,1024,1025,1026,1028,1029,1032
3702369: 1045,1056,1059
delete full: 3689670, 3162867, 3767318, 3220385, 3171184, 3255734, 3980460,
3112718, 3600781, 3574553, 3294756, 3475959, 3475592, 3574889, 3882370, 3188562,
3000105,3239573,3686173,3603259,3769651,3402722,3582566, 3321106, 3955830
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