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Predictable motorway ramp curves are safer

Johan Vos
Department of Transport and Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands

A R T I C L E  I N F O
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A B S T R A C T

Motorway safety depends largely on curve geometry and driver behaviour, a relationship that has implications 
for research and practice. This paper introduces a novel approach to quantifying geometric design consistency, 
defined as the degree to which drivers’ expectations of curve radii match actual road geometries. The hypothesis 
is that if a driver expects a larger curve than that actually present, an accident might occur because of an 
excessively high approach speed. To test this hypothesis, this study uses Dutch motorway data, including ramp 
and curve characteristics, as well as crash frequencies. The data were employed in three steps: 1) constructing a 
Bayesian model that mimics drivers’ expectations, 2) testing the predictions of this model against real curve 
characteristics, and 3) examining the relationship between disparities in expectations, reality, and crash fre
quency. The results indicated a positive correlation between disparities in expectations, reality, and crash fre
quency. This finding suggests that the crash frequency is higher when drivers expect a larger curve than what is 
present. The Tree Augmented Naïve Bayesian Network (TAN) reveals the complexity of curve expectations, 
demonstrating that drivers anticipate larger radii in connector ramps and higher speeds with gentler curve an
gles. Applying this research to motorway design involves using TAN predictions and crash frequency models to 
assess safety in motorway curve design, which could proactively improve road safety.

1. Introduction

Motorway ramp curves pose a significant challenge to driver safety. 
(Davidse and Duijvenvoorde, 2024), with numerous factors influencing 
their level of risk (Ryan et al., 2022; Shalkamy et al., 2021). Safe driving 
behaviour on curves is heavily dependent on the radius of the curve 
itself, with larger radii generally leading to safer driving conditions, 
because less speed reduction is needed (Rondora et al., 2022). Moreover, 
inadequate coordination between geometric elements of horizontal 
curves, particularly the radius, can result in unsafe driving speeds, 
further increasing the risk of accidents (Sil et al., 2020). In addition to 
the curve radius, factors such as the pre-deceleration speed, type of 
roadway, sight distances, and cross-section characteristics all contribute 
to determining the point at which deceleration begins upon entering a 
curve (Vos et al., 2021).

Traditional studies on geometric design consistency – e.g. Lamm 
et al. (1999) – provide guidelines on speed differences in consecutive 
design elements to provide comfortable driving. This is still a behav
ioural approach to driving behaviour, focusing on the correlation be
tween speed and design (Michon, 1985). In contrast, the cognitive 
approach takes a broader perspective and a more comprehensive 
approach by considering how the visual input is translated into 

observable output by the driver. For most environments, it remains 
unknown which mental templates, which are built on experience, are 
used by drivers (Salmon et al., 2014). Accumulated driving experience 
can aid drivers in appropriately adjusting their speed when approaching 
curves (Elvik, 2022). However, it remains unclear whether drivers’ ex
pectations regarding the need to adjust their speed align with the actual 
safety characteristics of curves. This raises the main research question of 
this paper:

Does a mismatch in drivers’ expectations of motorway ramp curves align 
with the safety implications?

Understanding how drivers perceive and anticipate road geometry is 
essential for translating knowledge of driver behaviour into safer road 
design. This study specifically hypothesises that a mismatch between 
drivers’ perceived and actual curve radii may increase crash risk. To 
investigate this, quantification of driver expectations is needed, despite 
the challenge that these expectations cannot be directly measured 
(Walker et al., 2011). However, research shows that people develop 
expectations based on real-world statistical patterns (Griffiths and 
Tenenbaum, 2006; Seriès and Seitz, 2013) and that drivers apply similar 
learning mechanisms in spatial navigation (Chanales et al., 2017; Graves 
et al., 2022).

Building on this, it is assumed that drivers infer safe speeds by 
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statistically learning regularities in the road environment (Theeuwes, 
2021). This form of statistical learning is best described in Bayesian 
terms of probability (Tenenbaum et al., 2011). Accordingly, a Bayesian 
model is developed in this research to represent drivers’ expectations of 
curve geometry and compare its predictions with actual curve charac
teristics. By analysing the relationship between discrepancies in ex
pected and actual radii and crash frequency, this study provides new 
insights into how driver expectations can be integrated into safer road 
design practices.

This paper starts in section 2 with a description of the research 
context and the foundations to position the steps described above. Next, 
section 3 discusses the dataset and methods used in this research. Sec
tion 4 presents the results of this study, and section 5 discusses these 
results. Section 6 provides the main conclusions of this research.

2. Research context and foundation

This section provides the theoretical and contextual background 
required to understand the research presented in this paper. It positions 
the key concepts and methods outlined in the introduction within the 
existing body of knowledge and highlights relevant studies to support 
the steps taken in this research. Although not a comprehensive review of 
all related literature, this overview provides the reader with the foun
dational insights to evaluate the study’s approach and findings inde
pendently. Therefore, it begins by describing why this study is important 
for providing safe road systems. Next, it covers the knowledge of design 
consistency. Next, it covers the driver expectations and how to model 
them. Finally, attention is given to crash frequency analysis because this 
is considered key knowledge in applying human factor knowledge in 
road design processes by identifying critical risk factors and revealing 
the complex relationships between these factors and crashes (Imprialou 
et al., 2016).

2.1. Proactive road design practices

Changing the built environment in the way we design safe road 
systems has a large impact on public health (Ederer et al., 2023). To 
establish a safe road system, it is important to integrate road safety 
knowledge into the design process and pre-empt potential accidents 
(Wegman, 2017). Central to this endeavour is the incorporation of 
human factors knowledge, which not only informs geometric design 
consistency models but also facilitates enhanced evaluations of road 
safety and the development of intelligent driver assistance systems 
(Pérez-Zuriaga et al., 2013). This proactive approach to road design, 
guided by human factors (i.e. the interaction of the driver with the road 
environment) knowledge, extends beyond mere considerations of ge
ometry to encompass factors such as driver information processing, 
expectancy, design consistency, and error reduction (Borsos et al., 2015; 
Han et al., 2023; Lunenfeld and Alexander Gerson, 1984). By integrating 
these factors into the design process, it becomes possible to create road 
designs that not only accommodate the needs of drivers but also pri
oritise safety from the outset.

2.2. Design consistency and driver expectations

Studies suggest that design consistency, including geometric design 
measures and consistency indices, improves the safety of curves by 
reducing crashes and inconsistencies (Montella and Imbriani, 2015) and 
by accounting for human factors in road safety assessment. In a more 
conventional approach, Lamm et al. (1999) classified the consistency 
between successive geometric elements on rural two-lane highways as 
good, fair, or poor depending on the speed differential between these 
elements. Specifically, less than 10 km/h indicates good consistency, 
10–20 km/h suggests fair consistency, and above 20 km/h signifies poor 
consistency. The level of consistency is furthermore influenced by the 
choice of speed (Luque and Castro, 2016) and distances to adjacent 

curves (Findley et al., 2012). A broader perspective defines geometric 
design consistency as the extent to which drivers’ expectations align 
with the geometric features of the road (Malaghan et al., 2021). In this 
sense, motorways are the most cognitively compatible road types and 
are therefore the safest road type (Aarts et al., 2016). This compatibility 
is explained because drivers are familiar with the specific road layout of 
motorways and know what to expect and how to behave, which is 
known as a self-explaining road (Theeuwes, 2021; Walker et al., 2013).

Drivers develop these expectations based on the regularities in the 
road environment (Theeuwes, 2021). They anticipate steering actions 
based on perceived road curvature and their internal estimates of 
vehicle characteristics (Godthelp, 1986). However, road curvature is 
difficult to detect from a distance because the curve transforms into a 
hyperbola or kinks from a driver’s perspective (Brummelaar, 1975; 
Riemersma, 1988). This suggests that drivers use other cues during 
curve approach to safely decelerate. Through repeated experiences, 
drivers form expectations in their memory (Ghosh and Gilboa, 2014) 
and associate specific road layouts with safe and comfortable speeds 
(Charlton and Starkey, 2017). These expectations guide drivers in 
selecting a safe speed during curve approach, often occurring without 
conscious awareness (Charlton and Starkey, 2011). It is assumed that 
drivers statistically infer a safe and comfortable speed given certain road 
elements (Griffiths and Tenenbaum, 2006; Raviv et al., 2012; Theeuwes, 
2021), which is known as statistical learning (Sherman et al., 2020). 
This process is illustrated in Fig. 1.

In this context, drivers’ expectations can be represented by proba
bility distributions of actions to undertake – e.g. braking – given specific 
visual cues of the road environment, to efficiently make judgments and 
guide action (Frost et al., 2015; Knill and Pouget, 2004; Vos et al., 2024). 
This is best understood in Bayesian terms of probability (Lange & 
Haefner, 2022; Tenenbaum et al., 2011).

2.3. Bayesian approach to driver expectations

Drivers constantly form and update their expectations about up
coming roadway conditions by integrating past experiences with new 
sensory information. Recent research (Vos et al., 2024) suggests that 
these expectations can be effectively modelled as probabilistic beliefs 
within a Bayesian framework. In this view, a driver’s prior experiences, 
stored as probability distributions in their long-term memory (Plant & 
Stanton, 2013), inform their initial expectations about safe speeds. For 
instance, on main carriageways designed for high-speed travel, drivers 
typically expect to encounter large curve radii that require little or no 
speed adaptation.

As drivers progress along the road, they continuously receive new 
cues, such as changes in signage, lane markings, or road geometry, 
which provide additional information about upcoming curves. Bayesian 
inference, a fundamental concept in probabilistic reasoning (Feldman, 
2013), offers a formal framework for describing how these cues are in
tegrated with prior beliefs. Specifically, Bayes’ theorem combines the 
likelihood of observing a particular cue with the prior belief about safe 
speeds to compute a posterior belief that more accurately reflects the 
current driving environment.

Fig. 2 illustrates the dynamic process of updating beliefs. This figure 
extends the model presented in Fig. 1 by showing how prior beliefs 
about safe speeds, denoted as P(v), are continuously updated as drivers 
encounter new cues. In the model, a new cue, whose likelihood proba
bilities are stored in long-term memory, is processed in working mem
ory, where it is combined with the existing prior. This integration results 
in a posterior belief about safe speed, which in turn guides the driver’s 
behaviour.

Beyond the integration of individual cues, Bayesian belief networks 
also provide a powerful tool for modelling the conditional dependencies 
among multiple cues (Pearl, 1988), which indicates the presence of a 
curve. These networks treat each cue as a node in a graphical structure 
where the connections represent probabilistic relationships. As drivers 
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observe various pieces of evidence, the network propagates these up
dates, refining the overall expectation of the characteristics of the curve.

This iterative process of belief updating is central to the concept of 
prediction error (Engström et al., 2018). Drivers aim to reduce the 
discrepancy between their anticipated safe speed and the actual speed 
required to negotiate a curve safely (Summala, 2007). Vos et al. (2024)
demonstrated that the measured speed reductions closely align with the 
predictions made using a Bayesian model. Conversely, if drivers form 
inaccurate expectations, for example, underestimating the sharpness of 
the curve, they may choose an excessively high speed, potentially 
leading to loss of control, skidding (Torbic et al., 2014), or even crashes.

2.4. Crash frequency analysis

Modelling crash risk has long been a method for understanding the 
relationship between road design elements, driver behaviour, and crash 
occurrence (Hagenzieker et al., 2014; Montella et al., 2008) and can be 
used to identify hazardous road locations (Al-Marafi and Somasundar
aswaran, 2024). By revealing the complex interactions between drivers’ 
decision-making processes and crash likelihood (Grande et al., 2017; 
Imprialou et al., 2016), these models provide critical insights into how 
expectations of curve geometry influence safety. For example, crash 
frequency models consistently show that the entrance of horizontal 
curves is the most hazardous segment. This is where drivers must 
anticipate the curve radius and adjust their speed accordingly, making 
their expectations of the curve’s sharpness a key factor in safety out
comes (Othman et al., 2014).

Research has further highlighted the importance of geometric design 
in shaping driver behaviour. On two-lane state roads, for instance, 

curves with radii smaller than 200 m are associated with elevated crash 
rates because the demand for lateral friction exceeds what drivers can 
comfortably handle (Maljković and Cvitanić, 2016). These findings 
emphasise the role of both physical design and driver ability to perceive 
and anticipate curve geometry in preventing crashes.

Crash data must be retrieved and linked to geometric information in 
order to explore the relationship between driver expectations and crash 
outcomes. However, crash data often exhibits characteristics that 
require careful handling. Crash occurrence is typically nonlinear and 
better suited to modelling with Poisson or negative binomial distribu
tions. In addition, crash data frequently contains excessive zero counts, 
which can be addressed using zero-inflated models (Abdulhafedh, 2017; 
Pew et al., 2020). These models are particularly useful in identifying 
instances where crashes are unlikely due to low traffic volumes or other 
factors, such as enforcement activities.

Zero-inflated models consist of two components: a binary process 
that predicts the excess zeros and a count process that models the non- 
zero crash counts. The binary process identifies segments with an excess 
of zeros based on factors such as traffic volume or driver familiarity with 
the road. The count process accounts for the non-zero crash frequencies 
by incorporating variables like geometric features, or in this study, 
driver expectations of curves. By integrating crash data with insights 
into driver expectations of curves, this study aims to clarify how mis
matches between expected and actual curve geometry contribute to 
crash frequency.

3. Method

This research consists of three main steps, which are illustrated in 

Fig. 1. the assumed influence of statistical learning on driver behaviour (after Theeuwes (2021)).

Fig. 2. extending Fig. 1 with Bayesian belief updating. The figure shows how driving along a road provides prior beliefs about safe speeds P(v). When a new cue is 
encountered, the driver retrieves the corresponding likelihood probabilities from long-term memory. In working memory, the likelihood and the prior belief are 
combined during the belief-updating process, resulting in a posterior belief about safe speed. Based on this updated belief, drivers adjust their driving behaviour 
accordingly.
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Fig. 3. 

1. Modelling driver expectations: A Bayesian Belief Model is developed 
to estimate drivers’ expected curve radii based on geometric data 
from a database containing all motorway ramps in the Netherlands.

2. Identifying disparities: The modelled expectations are compared to 
the actual geometric characteristics of curves, identifying any dis
parities between drivers’ expectations and reality.

3. Crash frequency analysis: The identified disparities are analysed 
using a crash frequency model, which incorporates additional data 
on annual average daily traffic (AADT) and crash occurrences. This 

step evaluates whether disparities between expectations and reality 
correlate with crash frequency.

This approach identifies correlations between the disparities in ex
pectations and reality and crash frequency.

This section is organised into three parts, explaining the parts shown 
in Fig. 3. First, the data collection is discussed. Second, it outlines the 
development of the Bayesian Belief Network, which mimics drivers’ 
expectations, and how this network is used to identify disparities be
tween expectations and reality. Finally, it addresses the analysis of crash 
frequency to uncover any relationships between expectations, reality, 
and crash occurrence.

Fig. 3. the framework for analysing disparities in driver expectations and crash frequency.

Fig. 4. on and off-ramps are part of intersections to connect lower-level roads to motorways, and connector ramps connect motorways in interchanges.
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3.1. Data collection and preparation

This research uses a dataset retrieved from Rijkswaterstaat, the 
Dutch national road authority. The dataset includes information on all 
available ramps in motorway junctions in the Netherlands, including on- 
ramps, off-ramps, and connector ramps. On and off-ramps are part of 
intersections with lower-level roads, while connector roads are part of 
interchanges between two motorways, see Fig. 4.

Specifically, the dataset includes 1209 on-ramps, 1220 off-ramps, 
and 537 connector ramps, totalling 2972 ramps. All on-ramps are pre
ceded by an intersection (an at-grade crossroads controlled by either a 
roundabout or traffic signals). The off-ramps are preceded by exit lanes 
(dedicated deceleration lanes that split from the through carriageway) 
in 76 % of the cases, forks (diverging branches without a separate 
deceleration lane) in 4 % and by weaving sections (segments in which 
entering and exiting streams must cross) in 20 % of the cases. The 
connector ramps are preceded by exit lanes in 39 % of the cases, by forks 
in 24 %, and by weaving sections in 37 % of the cases. The dataset in
cludes the annual average daily traffic (AADT) and the number of all 
crashes (fatalities, injuries and damage only) in the period from 2014 to 
2018 for all these ramps. Summary statistics can be found in Table 1.

These ramps collectively feature 3940 curves, and their character
istics are detailed in Table 2. A curve is defined as a section that has an 
angle of at least 10 grad in one direction. That is because the curve angle 
is a key variable in speed anticipation in curve approach, and 10 grad is a 
threshold related to the visibility of a curve related to speed reduction 
(Riemersma, 1988). It is furthermore set as a threshold to distinguish 
straight sections from curves based on the available data (Ambros and 
Valentová, 2016).

Since continuous variables can not be combined with categorical 
variables to construct a Bayesian Belief Network, the horizontal radii 
and angles have been organised into groups. The horizontal radii have 
been grouped into intervals representing speed increments of 10 km/h. 
To accomplish this, a speed prediction model based on Dutch mea
surements by Vos and Farah (2022) was used to calculate the horizontal 
radius (Rh) based on a 85th percentile speed (V85). This is presented as 
equation (1): 

Rh = e
v85+62

28.5 (1) 

The angle groups have been classified into three categories, each con
taining right angles, which are assumed to be recognisable by drivers, 
because from a distance, a curve becomes a right kink (Brummelaar, 
1975). The resulting groups are shown in Table 3.

Since preceding elements are assumed to be crucial in setting ex
pectations, a variable was created to contain the element preceding a 
curve. This element can either be a discontinuity (exit lane, fork, 
intersection or weaving section) or a preceding curve, which are gath
ered from the database.

3.2. Modelling expectations

To model drivers’ expectations, a Bayesian Belief Network (BBN) is 
built, as explained in the literature review, using the data of all Dutch 
connector road curves as learning input. BBN’s are essentially acyclic 
graphs, where nodes represent random variables and connections show 
direct probabilistic links between them.

In a BBN, the influence typically flows from parent nodes to child 

nodes. This means that the state of a parent node affects the likelihood of 
the child node being in a certain state. When a node (or variable) is 
observed by a driver, it is called evidence. By observing this evidence, 
the probability distribution can be updated towards certainty and pass 
this updated information through the network. This process modifies the 
probability distribution of other nodes (i.e. the other variables and ex
pected radius).

So, in simpler terms, a BBN can be used to statistically model ex
pectations about radii. This is done by treating them as posterior beliefs 
based on observed evidence of variables on curves. The dataset provides 
the input to learn the BBN, resembling how drivers learn expectations 
through multiple experiences, because the dataset contains available 
cues a driver observes.

The modelling and analysis were executed using the GeNIe Modeler 
(“GeNIe Modeler,” 2022), an interface for the Structural Modelling, 
Inference, and Learning Engine (SMILE) (Druzdzel, 1999). This interface 
enables the dataset to be used for learning and evaluating BBNs.

Since various variables are interconnected, such as the co-occurrence 
of intersections as preceding elements on on-ramps or the tendency for 
forks to have more lanes than deceleration lanes, their interdependence 
needs to be explored. To investigate these interdependencies, the Tree 
Augmented Naïve Bayes (TAN) structure was employed, which learns 
interdependencies from the dataset’s interconnections, using a likeli
hood sampling algorithm – Maximum Likelihood Estimation (MLE). So, 
the generated conditional probability distributions are created purely 
data-driven and provide the estimation of the parameters the TAN uses. 
The TAN algorithm establishes connections between variables to address 
dependence (Friedman et al., 1997), particularly in relation to the ex
pected radius. The strength of influence is measured in the GeNIe 
Modeler by calculating the average Euclidean distance between the 
expected radius and the variables (Koiter, 2006). This measurement 
indicates how much one variable influences the probability of another 
variable.

3.3. Testing the relationship between expectations and crashes

The created TAN is believed to mimic drivers’ expectations regarding 
the horizontal radius of an upcoming curve. The model has learned re
lationships from the dataset, establishing probabilistic links between 
curve radius and available cues. The TAN is used to predict curve radii 
for two situations. First, general cue combinations are provided as evi
dence to the TAN. The predictions of the TAN reflect the expectations 
drivers are assumed to have when faced with these cues. This establishes 
a baseline for road design and safety assessment, to keep the disparity 
between expectations and reality as low as possible.

Next, the TAN uses the specific cues per curve in the database to 
predict the drivers’ expectations per curve approach. This process 
identifies the gaps between the actual and expected curve radii for each 
curve, as illustrated in Fig. 3. The differences are calculated in terms of 
speed, as curve radii are grouped by 10 km/h intervals. Negative values 
indicate that drivers expect lower speeds than what the curve offers, 
while positive values indicate higher speed expectations than what the 
curve supports.

The disparity between expected and actual speed in curves serves as 
an independent variable in a crash frequency model. Given that the data 
includes numerous zeros (as shown in Table 1), a variety of statistical 
distributions, such as Poisson and negative binomial, with and without a 
zero-inflated component, are employed to analyse the relationship 

Table 1 
summary statistics of the ramp data.

Characteristic Minimum 1st quantile Median Mean 3rd quantile Maximum

AADT 100 2800 4800 7369 8900 68,367
Crashes 

(2014 – 2018)
0 0 1 3.1 3 115
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between the disparity in speed and crashes. The average annual daily 
traffic (AADT) is also used as a variable to account for the large number 
of zeros, as depicted in Table 1. By employing different models, the 
results can be cross-validated.

4. Results

The results of this research are presented in two main parts. First, the 
results of the Bayesian Belief Network are presented, followed by the 
results of the crash frequency modelling.

4.1. Bayesian belief network to mimic driver expectations

As a baseline, the database was used to construct a Naïve Bayesian 
Belief Network (NBN) with the horizontal radius serving as the class 
variable. In this configuration, the other variables (roadway type, pre
ceding element, number of lanes, and curve angle) act as child variables 
of the horizontal radius, without any interdependencies among them. 
This network achieved an Expectation-Maximisation (EM) Log Likeli
hood of − 26,121.8.

Next, a Tree Augmented Naïve Bayesian Network (TAN) was learned 
using the same data, which allows for interdependencies among the 
child variables, in line with reality. This approach resulted in the 
network depicted in Fig. 5, with an improved EM Log Likelihood of 
− 24,103.7. This higher log likelihood indicates a better fit compared to 
the NBN, suggesting that the TAN more accurately models driver ex
pectations. Other learning algorithms, such as Bayesian Search and 
Greedy Thick Thinning, all produced networks with inferior fits.

The strength of influence for the nodes in the TAN are presented in 
Table 4.

4.1.1. Modelled driver expectations given certain road layouts
The trained TAN was used to forecast the expected horizontal radius 

given the type of roadway, the preceding element, the number of lanes, 
and the angle of the curve. These are parameters that designers typically 
have access to in the early stages of design, allowing them to anticipate 
what drivers expect of the sharpness of an upcoming curve. The TAN 
assigns a probability to each curve group, essentially reflecting a range 
of beliefs about the curves’ radius. Fig. 6 provides an example of how the 
TAN generates these probabilities given specific cues.

As shown in Fig. 6, the TAN does not predict a single curve group, but 
instead assigns probabilities to a range of groups. To help designers 
anticipate the most likely driver expectations based on specific cues, 
Table 5, Table 6, and Table 7 present typical combinations of cues for 
connector roads, off-ramps, and on-ramps, respectively. The tables 
provide the range of horizontal radii predicted by the TAN as well as the 
corresponding range of 85th percentile speeds, based on equation (1). 
The expected radius range represents the curve group with the highest 
probability, given the cues provided in the table. If the probabilities of 
adjacent curve groups differ by less than 5 %, they are also included in 
the expected curve group. For example, in Fig. 6, the expected curve 
radius group ranges from 205 to 415 m, indicating an expected 85th 

Table 2 
summary statistics of the geometry of the curves in the database.

Characteristic Minimum 1st quantile Median Mean 3rd quantile Maximum

Horizontal radius (m) 12 84 184 303 352 5526
Angle (grad) 10 22 49 81 106 349

Number of lanes 1 1 1 1.2 1 5

Table 3 
summary of horizontal radius groups and curve angle groups.

Horizontal 
radius group 

(m)

Representing 
85th percentile 
speeds (km/h)

N % Curve 
angle 
group 
(grad)

N %

0 – 35 0 – 40 96 2 
%

​ 10 – 100 2882 73 
%

35 – 50 40 – 50 241 6 
%

​ 100 – 
200

562 14 
%

50 – 70 50 – 60 407 10 
%

​ 200 – 
350

485 12 
%

70 – 105 60 – 70 518 13 
%

​

105 – 145 70 – 80 349 9 
%

​

145 – 205 80 – 90 530 13 
%

​

205 – 295 90 – 100 551 14 
%

​

295 – 415 100 – 110 441 11 
%

​

415 – 595 110 – 120 298 8 
%

​

595 – 840 120 – 130 218 6 
%

​

840 – 1200 130 – 140 150 4 
%

​

> 1200 > 140 130 3 
%

​

Fig. 5. the learned Tree Augmented Naive Bayesian Network. The arrows 
(nodes) represent the modelled relations between the variables. The thickness 
of the arrows represents the average strength of the influence, given in Table 4.

Table 4 
Average strength of influence for each node in the TAN.

Parent Child Average strength of 
influence

Preceding element Roadway type 0.342066
Category of horizontal 

curves
Category of curve 

angle
0.304285

Roadway type Number of lanes 0.291780
Category of horizontal 

curves
Roadway type 0.284438

Preceding element Category of curve 
angle

0.179947

Category of horizontal 
curves

Number of lanes 0.106685

Category of horizontal 
curves

Preceding element 0.106455

J. Vos                                                                                                                                                                                                                                              Transportation Research Interdisciplinary Perspectives 32 (2025) 101522 

6 



percentile speed between 90 and 110 km/h. This is represented in the 
first line of Table 5.

4.1.2. Differences between predicted and actual radii
To provide the expected curve radii for each of the available curves 

in the database, the TAN is used to determine the most probable curve 
range, given the available cues. The results of this analysis are presented 
in Table 8 as a confusion matrix.

The confusion matrix shows that 28 % of the curves in the database 
match the expectations that drivers are assumed to have built based on 
all the motorway ramp curves available in the Netherlands exactly, and 
58 % within a range of 10 km/h higher or lower than expected.

Using the outcomes of the TAN, the actual horizontal radius and the 
predicted horizontal radius are both converted to 85th percentile 
speeds, using equation (1). Next, the difference between the predicted (i. 
e. expected) speed and the actual speed related to the curves’ radius is 
calculated, which results in a mean difference of − 2.3 km/h (SD = 21.3 
km/h) for the dataset. A negative value represents a lower expected 
radius (i.e., lower speed) than is available, while a positive value in
dicates a possible misleading situation representing a higher radius and 
higher speed than available. This variable is tested on actual crash data 
in the next paragraph.

4.2. Crash frequency related to expectations and curve radii

Crashes resulting from a mismatch between expected and actual 
curve radii are assumed to be related to speed reduction. Consequently, 
curves that do not require a speed reduction are excluded from the 
dataset. According to equation (1), curves with radii greater than 840 m 
are filtered out because the 85th percentile speed on these curves is 130 

km/h, which matches the legal speed limit on motorways in the 
Netherlands. This filtering process yields a dataset of 3649 curves suit
able for modelling crash frequency.

Table 1 reveals that many road segments in the database have zero 
accidents, suggesting a distribution of accidents that is skewed towards 
zero and potentially over-dispersed. To address this issue, various 
methods discussed in section 2.3 are used to model crash frequency. 
Poisson, negative-binomial (NB) and zero-inflated models are evaluated, 
but the intercept-only zero-inflated negative binomial regression (ZINB) 
did not improve fit over the plain NB (AIC 18119.9 vs 18117.9), indi
cating no zero-inflation beyond what the NB already accommodates. 
The NB model itself predicts 1363 zeros versus 1171 observed (ratio =
0.86), signifying zero-deflation rather than excess zeros. By contrast, the 
Poisson fit predicts only 120.7 zeros (ratio = 9.7), massively under- 
predicting zeros (p < 2.2 × 101⁶) and yielding a much poorer AIC 
(37310.1 vs 18117.9 for NB). Accordingly, Table 9 presents Poisson (to 
illustrate its zero under-fit), NB (to capture overdispersion without 
inflation) and zero-inflated Poisson (ZIP, to accommodate the excess 
zeros that Poisson alone misses).

All the models in Table 9 demonstrate a positive correlation between 
the difference in expected and actual speeds and crash frequency. This 
indicates that when the expected speed is higher than the actual speed, 
crash frequencies tend to increase. Among the five models, the negative- 
binomial model with AADT achieves the best overall fit by information 
criteria and log-likelihood, reflecting its ability to capture over
dispersion without over-penalising complexity. The Poisson model with 
ln(AADT), by contrast, delivers the highest pseudo-R2 (0.368) and 
lowest RMSE (5.80), but at the cost of a larger AIC and BIC, indicating 
substantial under-dispersion penalised in information-criterion terms. 
The ZIP specification sits between them, successfully modelling excess 

Fig. 6. This TAN shows observed cues by setting the probability of these cues to 100%. This example is a roadway which is a connector road with one lane, preceded 
by an exit lane and an angle between 10 and 100 grad. Given these cues, the TAN shows that the probabilities of the expected horizontal radii are mostly between 145 
and 595 m, with a mode in the group of radii between 295 and 415 m.
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zeros but still underperforming in AIC/BIC. As for the main predictor, 
the difference in expected and actual speeds is statistically insignificant 
in both NB models, yet attains significance in the Poisson regressions 
and the ZIP count component. After adjusting for AADT, every 10 km/h 
greater discrepancy between expected and actual speeds is associated 
with a 3.8 % increase in annual crash counts in the Poisson model (β =
0.037, p < 0.001) and a 2.7 % increase in the zero-inflated Poisson 
model (β = 0.027, p < 0.001).

Since the horizontal radius is known to influence crash frequency, a 
sensitivity analysis was performed using the same set of models, this 
time with the horizontal radius as the independent variable instead of 
the speed difference. The results of this analysis are presented in 
Table 10. Note that the positive radius coefficient in models without 
AADT reflects that gentler curves tend to occur on higher-volume roads, 
whereas once AADT is included, the coefficient becomes negative. This 
reveals that, at a given traffic volume, tighter curves (smaller radii) lead 
to higher crash counts, which is in line with literature.

Because large-angle curves are underrepresented, the dataset was 
split into three curve-angle bins − 0–100, 100–200, and 200–350 grad −
to assess how underrepresented, high-angle curves affect model per
formance. For each subset and for the full dataset, the trained TAN was 
used to predict the expected speed, then calculated the Mean Absolute 
Error (MAE) between predicted and actual speeds and accident risk, 
defined as crashes per 1000 AADT. The results appear in Table 11.

There is a clear upward trend in both MAE and accident risk as curve 
angle increases, indicating that sharper, less common curves are pre
dicted less accurately and coincide with higher crash frequencies.

To further test the sensitivity of the bin-sizes, bin sizes of 5 km/h 
were also modelled and compared to the original 10 km/h bins. The EM 
algorithm’s log-likelihood for the 5 km/h–binned TAN (–26 490) is 
substantially lower than for the original 10 km/h version (–24 103), 
indicating that halving the bin width − while doubling the number of 
parameters − actually worsens overall model fit, indicating worse pre
dictability of curve speeds. To further validate this choice, the regression 

Table 5 
cues for curves in connector roads, and the expectations generated by the TAN as 
a range of horizontal radii and 85th percentile speeds.

Cues Expectation

Preceding 
element

Number of 
lanes

Angle 
(grad)

Modal Rh 

(m)
V85 (km/ 

h)

Exit lane 1 0–100 205–415 90–110
Fork 415–595 110–120

Weaving section 205–595 90–120
Rh 205–295 m 205–295 90–100
Rh 295–415 m 295–415 100–110
Rh 415–595 m 205–840 90–130
Rh 595–840 m 415–595 110–595
Rh > 1200 m 295–415 100–110

Exit lane 2 295–415 100–110
Fork 415–595 110–120

Weaving section 205–595 90–120
Rh 205–295 m 205–595 90–120
Rh 295–415 m 295–840 100–130
Rh 415–595 m 205–840 90–130
Rh 595–840 m 415–595 110–120

>1200 m 295–595 100–120

Fork 3 415–595 110–120
Weaving section >1200 140
Rh 415–595 m 595->1200 120–140
Rh 595–840 m 415–1200 110–130
Rh 840–1200 m 415->1200 110–140
Rh > 1200 m >1200 140

Exit lane 1 100–200 70–105 60–70
Fork 70–105 60–70

Weaving section 70–105 60–70
Rh 70–105 m 70–105 60–70
Rh > 1200 m 70–105 60–70

Exit lane 2 70–105 60–70
Fork 205–415 90–110

Weaving section 70–105 60–70
Rh 70–105 m 205–295 90–100
Rh 205–295 m 295–415 100–110
Rh 295–415 m 205–295 90–110
Rh > 1200 m 295–415 100–120

Exit lane 1 200–300 70–105 60–70
Fork 70–105 60–70

Weaving section 70–105 60–70
Rh > 1200 m 50–70 50–60

Table 6 
cues for curves in off-ramps, and the expectations generated by the TAN as a 
range of horizontal radii and 85th percentile speeds.

Cues Expectation

Preceding 
element

Number of 
lanes

Angle 
(grad)

Modal Rh 

(m)
V85 (km/ 

h)

Exit lane 1 0–100 145–295 80–100
Weaving section 145–295 80–100
Rh 145–205 m 105–295 70–100
Rh 205–295 m 70–205 60–90
Rh > 1200 m 145–295 80–100

Exit lane 2 145–295 80–100
Weaving section 145–205 80–90
Rh 145–205 m 145–205 80–90
Rh 205–295 m 145–205 80–90
Rh > 1200 m 145–205 80–90

Exit lane 1 100–200 50–105 50–70
Weaving section 50–70 50–60

Rh 50–70 m 35–50 40–50
Rh 70–105 m 70–105 60–70
Rh > 1200 m 70–105 60–70

Exit lane 2 70–105 60–70
Weaving section 105–145 70–80

Rh 70–105 m 70–105 60–70
Rh 105–145 m 35–50 40–50
Rh > 1200 m 70–105 60–70

Exit lane 1 200–300 70–105 60–70
Weaving section 70–105 60–70

Rh > 1200 m 70–105 60–70

Table 7 
cues for curves in on-ramps, and the expectations generated by the TAN as a 
range of horizontal radii and 85th percentile speeds.

Cues Expectation

Preceding 
element

Number of 
lanes

Angle 
(grad)

Modal Rh 

(m)
V85 (km/ 

h)

Intersection 1 0–100 145–595 80–120
Rh 145–205 m 145–205 80–90
Rh 205–295 m 145–205 80–90
Rh 295–415 m 145–205 80–90
Rh 415–595 m 205–415 90–110
Rh > 1200 m 145–295 80–100

Intersection 2 205–595 90–120
Rh 205–295 m 105–295 70–100
Rh 295–415 m 145–205 80–90
Rh 415–595 m 295–415 100–110

>1200 m 205–295 90–100

Intersection 1 100–200 50–105 50–70
Rh 50–70 m 35–50 40–50
Rh 70–105 m 70–105 60–70
Rh > 1200 m 35–50 40–50

Intersection 2 70–105 60–70
Rh 70–105 m 70–105 60–70
Rh > 1200 m 35–50 40–50

Intersection 1 200–300 50–70 50–60
Rh > 1200 m 35–50 40–50

J. Vos                                                                                                                                                                                                                                              Transportation Research Interdisciplinary Perspectives 32 (2025) 101522 

8 



analysis was re-run using the 5 km/h bins. In the base negative-binomial 
and Poisson models, the finer binning yields only modest improvements 
in AIC and log-likelihood, and in the AADT-augmented versions, it 
produces no gain or even slight deterioration, while RMSE remains 
essentially unchanged across all specifications. Taken together, these 
mixed outcomes − and the fact that the 10 km/h bins deliver compa
rable or better parsimony (fewer parameters) and predictive stability −
reinforce that the original 10 km/h intervals strike a good balance.

Table 8 
confusion matrix for the predicted horizontal radius (Rh) by the TAN and the actual horizontal radius.

Predicted Rh (m)

0–35 35–50 50–70 70–105 105–145 145–205 205–295 295–415 415–595 595–840 840–1200 >1200

Actual Rh (m) 0–35 10 17 15 29 5 2 17 0 1 0 0 0
35–50 0 85 69 29 5 19 32 1 1 0 0 0
50–70 2 48 195 56 10 30 63 3 0 0 0 0
70–105 3 12 104 156 24 79 124 11 3 1 0 1
105–145 0 2 26 53 34 85 135 10 2 2 0 0
145–205 0 2 15 31 21 173 258 23 6 1 0 0
205–295 0 1 2 22 16 131 313 46 16 4 0 0
295–415 0 0 2 6 16 114 191 89 15 8 0 0
415–595 0 0 0 7 6 50 142 51 35 4 0 3
595–840 0 0 0 1 3 43 122 24 9 12 0 4
840–1200 0 0 0 1 2 33 69 28 13 1 0 3
>1200 0 0 0 1 1 23 60 28 9 2 0 6

Table 9 
Results of crash frequency modelling on the difference between expected and actual speeds in curves.

Negative binomial regression Poisson regression Zero-inflated Poisson regression

Constant 1.184*** − 0.729*** 1.184*** − 1.114*** ​
(0.025) (0.047) (0.009) (0.028) ​

Difference between expected and actual speed (10 km/h) 0.012 0.013 0.010* 0.037*** ​ 0.028***
(0.013) (0.011) (0.005) (0.005) ​ (0.005)

ln(AADT) 
(1000 vehicles/day)

0.962*** 1.155*** ​ − 0.271***
(0.024) (0.011) ​ (0.016)

Constant of difference between expected and actual speed (10 km/h) ​ 1.539***
​ (0.009)

Constant of ln(AADT) 
(1000 vehicles/day)

​ 0.678***
​ (0.079)

R2 0.001 0.106 0.001 0.368 ​ 0.075
R2 Adj. 0.000 0.105 0.000 0.368 ​ 0.074

Log-likelihood − 8233 − 7365 − 16410 − 10375 ​ − 13988
AIC 16473.7 14738.1 32824.3 20755.9 ​ 27984.2
BIC 16492.3 14762.9 32836.7 20774.5 ​ 28009.0

RMSE 7.38 6.05 7.38 5.80 ​ 7.14
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 10 
Results of crash frequency modelling on the horizontal radius of curves.

Negative binomial regression Poisson regression Zero inflated Poisson regression

Constant 0.846*** (0.039) − 0.717*** (0.049) 0.893*** (0.015) − 1.096***(0.028) ​
Radius of horizontal curve / 100 (m) 0.140***(0.013) − 0.007(0.011) 0.120***(0.004) − 0.026***(0.005) ​ 0.116***(0.005)

ln(AADT) 0.965*** 1.178*** ​ 1.098***
(1000 vehicles/day) (0.024) (0.012) ​ (0.053)

Constant of radius of horizontal curve /100 (m) ​ 1.254***
​ (0.016)

Constant of ln(AADT) ​ 0.665***
(1000 vehicles/day) ​ (0.079)

R2 0.006 0.105 0.021 0.367 ​ 0.160
R2 Adj. 0.006 0.105 0.021 0.367 ​ 0.160

AIC 16372.1 14790.1 32147.9 20783.0 ​ 27414.7
BIC 16390.7 14814.9 32160.3 20801.6 ​ 27439.5

Log-likelihood − 8183 − 7366 − 16071 − 10388 ​ − 13703
RMSE 7.35 6.07 7.34 5.81 ​ 7.10

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 11 
Mean Absolute Error and Accident Risk by curve angle group.

Curve angle group MAE (km/ 
h)

Accident risk (accidents / AADT / 
1000)

Full set 16.11 0.48
Angle group 010–100 

grad
18.56 0.45

Angle group 100–200 
grad

25.59 0.52

Angle group 200–350 
grad

37.61 0.58
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5. Discussion and limitations

This research demonstrates how incorrect expectations of curve radii 
contribute to higher crash frequencies, providing a broader perspective 
than traditional geometric design consistency studies. It helps to un
derstand the cues which play a role in building the drivers’ expectations 
and how these expectations can contribute to crash risks.

The results suggest that traditional design consistency measures, 
such as speed differentials (Lamm et al., 1999), may not fully capture the 
complexities of driver behaviour. Instead, incorporating probabilistic 
models can improve our understanding of driver expectations (Vos et al., 
2024). The Tree Augmented Naïve Bayesian Network (TAN) shows the 
intricate nature of curve expectations. The strength of the variables’ 
influences indicates the extent to which expectations are shaped by the 
roadway type and preceding elements. This finding aligns with the self- 
explaining road principle, which suggests that road users can immedi
ately understand how to behave and what to expect on roads, based on 
unique road layouts (Theeuwes, 2021). It furthermore underpins that 
drivers have expectations about a suitable speed, based on road features 
and surroundings, as shown by Charlton and Starkey (2017).

Using the TAN model to gain insight into the expectations of drivers, 
Table 5, Table 6, and Table 7 show that drivers expect larger radii in 
connector ramps compared to on and off-ramps. Besides that, drivers 
expect a larger radius – and hence a higher speed – when encountering a 
more gradual curve angle. This observation aligns with insights derived 
from the perspective analysis of curves (Fildes and Triggs, 1985; Rie
mersma, 1988).

The TAN model was trained using the entire dataset to predict the 
expected radii of curves. While this approach deviates from the common 
practice of splitting data into training and testing sets, it aligns with the 
goal of this research, which is to replicate drivers’ expectations. Similar 
to how humans create schemas in their memory (Ghosh and Gilboa, 
2014), drivers form their expectations based on all available experi
ences. Additionally, it is unrealistic to assume that Dutch drivers have 
encountered every Dutch motorway curve, as the TAN model has. The 
TAN model, therefore, does not take into account how familiarity in
fluences driving behaviour (Harms et al., 2021). Nonetheless, the TAN 
model is believed to provide a representative average of Dutch 
motorway curve expectations. So, while the presented data is only 
representative of Dutch motorways, the presented methodology is 
applicable in other regions, assuming that the local data is available. 
Future research should explore how different environmental and 
contextual factors influence Bayesian updating in real-world driving 
conditions.

The results from the crash frequency analysis confirm that disparities 
between expected and actual speeds in curves are associated with 
increased crash frequency, reinforcing the importance of design con
sistency and driver expectations in road safety. These findings align with 
existing literature, which emphasises that unexpected geometric 
changes can disrupt driver anticipation, leading to higher crash risks 
(Montella et al., 2008; Othman et al., 2014). The observed relationship 
between speed disparities and crash occurrences supports the notion 
that driver adaptation to unexpected curve geometries plays a critical 
role in crash outcomes.

Crash data, by nature, are count-based and often display over
dispersion (i.e., the variance exceeds the mean) and an excessive num
ber of zero counts. A Poisson regression was considered due to its 
simplicity and common application in count data analysis. However, the 
Poisson model assumes equality of mean and variance, which is often 
violated in crash data. To address overdispersion, a Negative Binomial 
regression was employed, which introduces an additional parameter to 
model the variance independently of the mean. Furthermore, the high 
incidence of zero crashes motivated the use of a Zero-Inflated Poisson 
(ZIP) model, because the Poisson fit underpredicted zeros in the dataset. 
Zero-Inflated models assume that the zeros in the data arise from a 
separate process (e.g., road segments where crashes are inherently 

unlikely) in addition to the regular count process. However, common 
underreporting of crashes might skew the results of the ZIP. Possible 
improvement of the dataset to overcome this would include police re
ports or insurance data. By comparing all the models using metrics such 
as log-likelihood, AIC, BIC, and RMSE, both the fit and predictive per
formance were evaluated. This multi-model approach not only cross- 
validates the observed associations but also ensures that the chosen 
model aligns well with the underlying data characteristics, as supported 
by previous studies (Abdulhafedh, 2017; Pew et al., 2020).

When analysing the various crash frequency models developed in 
this research, several observations can be made. Only the Poisson 
regression models show a significant correlation between crash fre
quency and the difference in expected and actual speed. However, the 
Poisson regression models have higher AIC and BIC values than the 
negative binomial models, indicating that the Poisson regression is a 
more complex model type. Furthermore, all models indicate that AADT 
has a greater influence on crash frequency than the difference in ex
pected and actual speeds. This could be explained by the relatively high 
self-explanatory characteristics of Dutch motorways (Theeuwes, 2021; 
Walker et al., 2013). As a result, crash risk on Dutch motorways is less 
dependent on driver expectations and more influenced by traffic vol
ume. Possibly even adding other variables like heavy vehicle pro
portions, weather conditions, or driver experience might shift the exact 
correlation, but still, the results show that when deviating from expec
tations, crash risk increases. This makes sense, because when the ex
pected suitable or correct speed (Charlton & Starkey, 2017) is 
overestimated, drivers are prone to loss of vehicle control, such as 
skidding (Torbic et al., 2014), oversteering or running off the road.

In the data of all Dutch motorway ramp curves, an imbalance in 
curve angle groups (with the majority falling within the 10–100 grad 
range) is acknowledged as reflecting real-world conditions, where 
drivers most frequently encounter these curve types. This imbalance 
allows the model to robustly capture general trends in driver expecta
tions for common curve angles, aligning with how drivers form expec
tations based on frequent experiences. The analysis of the specific 
subgroups of curve angles indeed shows that the more uncommon, large- 
angle curves have increased Mean Average Error, indicating worse 
predictability and increased crash risk. This is in line with the crash 
frequency analysis.

It is important to note that while the analysis based on the difference 
between expected and actual speeds provides insights into the role of 
driver behaviour, sensitivity analysis using the horizontal radius − a 
well-established indicator of crash risk − offers additional perspective. 
The results in Table 10 reveal that the horizontal radius of curves is 
significantly related to crash frequency across all model types, when 
controlling for AADT. This finding underscores that inherent road geo
metric features remain a fundamental determinant of safety. Non- 
standard or atypical geometries may be less safe for reasons beyond 
the driver’s expectations alone. In this context, although deviations from 
the expected speed contribute to crash risk, the established influence of 
road geometry as reflected by horizontal radius remains a critical factor 
in crash prediction.

From a practical standpoint, these results highlight the necessity of 
incorporating driver expectations into road design to minimise speed 
discrepancies at curve entries. Proactively addressing such discrepancies 
through improved signage, speed advisories, or geometric modifications 
can enhance safety. Additionally, predictive models can be utilised to 
identify high-risk locations where interventions should be prioritised.

By integrating human factors knowledge, statistical learning princi
ples, and Bayesian inference, road design can shift towards a more 
predictive, driver-centred approach. This aligns with broader efforts to 
create road environments that intuitively guide drivers toward safe 
behaviour, minimising errors and improving overall traffic safety.

Future research could incorporate driving simulator studies or 
naturalistic driving data to directly assess how expectation mismatches 
influence driver behaviour, such as speed adaptation and braking. 
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Additionally, microsimulation models or surrogate safety measures (e. 
g., abrupt decelerations, lane departures) could help validate the rela
tionship between expectation disparities and crash risk.

6. Conclusions and application

This research proposes considering a new variable in the assessment 
of motorway ramp curve safety. It suggests analysing the difference 
between the expected radius and the actual radius. To accomplish this, a 
Bayesian Belief Model (BBN) was learned to mimic drivers’ expectations 
of a curve’s radius using other visual cues than the radius itself, which 
itself is not perceivable by the drivers. The model was trained using data 
from all curves in Dutch motorway ramps, resembling how drivers learn 
their expectations based on multiple experiences.

A key outcome of this research is the positive answer to the research 
question: does a mismatch of drivers’ expectations of motorway ramp 
curves align with safety implications? The findings clearly indicate that 
when drivers expect a larger radius than the actual curve (i.e., when they 
expect the curve to be less sharp than it is), crash frequency increases. 
This relationship substantiates the hypothesis that discrepancies be
tween expected and actual curve geometry are significant predictors of 
safety risks.

The study’s main insights include: 

• Disparity and crash frequency: The analysis shows that as drivers 
expect a curve to be less tight than it actually is, crash frequency 
increases. This is therefore a novel variable for roadway design 
consistency analysis.

• Practical safety metrics: The BBN outputs an expected curve radius 
from upstream visual cues. When compared with the actual design, 
this difference becomes a quantifiable metric for assessing safety. 
Detailed expectations and associated operating speeds are provided 
in Table 5, Table 6 and Table 7, while Table 9 links these disparities 
to crash frequency models.

Based on these insights, two key applications emerge: 

• Proactive Design: Engineers and policymakers can integrate the 
expectation-versus-actual curve disparity into the design phase. 
Adjusting design elements to more closely match driver expectations 
using Table 5, Table 6 and Table 7 can help prevent the risk of 
crashes. Specifically, design guidelines can mention which curve 
radii match the driver’s expectations, given the relations mentioned 
in these tables.

• Reactive Policy: For existing hazardous curves, evaluating these 
discrepancies can pinpoint design features that require improve
ment. Modifying discontinuity types or other upstream cues can 
better align driver expectations with actual geometry, thereby 
mitigating accident risk.

In summary, incorporating the difference between expected and 
actual ramp curve radii into motorway design provides a valuable metric 
for enhancing motorway safety. By aligning design elements more 
closely with driver expectations, it is possible to reduce the likelihood of 
crashes and improve overall road safety. These contributions offer sig
nificant potential for proactive safety interventions and continuous 
improvement in transportation research and practice.
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Ambros, J., Valentová, V., 2016. Identification of road horizontal alignment 
inconsistencies – a pilot study from the Czech Republic. Baltic J. Road Bridge Eng. 11 
(1), 62–69. https://doi.org/10.3846/bjrbe.2016.07.

Borsos, A., Birth, S., Vollpracht, H.-J., 2015. The role of human factors in road design.
Brummelaar, T.T., 1975. Where are the kinks in the alignment? Transp. Res. Rec. 556, 

35–50.
Chanales, A.J.H., Oza, A., Favila, S.E., Kuhl, B.A., 2017. Overlap among spatial memories 

triggers repulsion of hippocampal representations. Curr. Biol. 27 (15), 2307–2317. 
e2305. https://doi.org/10.1016/j.cub.2017.06.057.

Charlton, S.G., Starkey, N.J., 2011. Driving without awareness: the effects of practice and 
automaticity on attention and driving. Transport. Res. F: Traffic Psychol. Behav. 14 
(6), 456–471. https://doi.org/10.1016/j.trf.2011.04.010.

Charlton, S.G., Starkey, N.J., 2017. Driving on urban roads: how we come to expect the 
‘correct’ speed. Accid. Anal. Prev. 108, 251–260. https://doi.org/10.1016/j. 
aap.2017.09.010.

Davidse, R. J., Duijvenvoorde, K. v., & Louwerse, W. J. R. (2024). Fatal road crashes on 
national roads in 2022; Analysis of crash and injury factors and resulting potential 
measures. SWOV, Leidschendam(R-2024-17), 60.

Druzdzel, M.J., 1999. SMILE: Structural Modeling, Inference, and Learning Engine and 
GeNIe: a development environment for graphical decision-theoretic models. Paper 
presented at the Aaai/Iaai.

Ederer, D.J., Panik, R.T., Botchwey, N., Watkins, K., 2023. The Safe Systems Pyramid: a 
new framework for traffic safety. Transp. Res. Interdiscip. Perspect. 21. https://doi. 
org/10.1016/j.trip.2023.100905.

Elvik, R., 2022. Which is the more important for road safety—road design or driver 
behavioural adaptation? Traffic Safety Res. 2, 000009. https://doi.org/10.55329/ 
pvir7839.

Engström, J., Bärgman, J., Nilsson, D., Seppelt, B., Markkula, G., Piccinini, G.B., 
Victor, T., 2018. Great expectations: a predictive processing account of automobile 
driving. Theor. Issues Ergon. Sci. 19 (2), 156–194. https://doi.org/10.1080/ 
1463922X.2017.1306148.

Feldman, J., 2013. Bayesian models of perceptual organization. Handbook of perceptual 
organization, 1008–1026.

Fildes, B.N., Triggs, T.J., 1985. The on effect of changes in curve geometry magnitude 
estimates of road-like perspective curvature. Percept. Psychophys. 37 (3), 218–224.

Findley, D.J., Hummer, J.E., Rasdorf, W., Zegeer, C.V., Fowler, T.J., 2012. Modeling the 
impact of spatial relationships on horizontal curve safety. Accid. Anal. Prev. 45, 
296–304. https://doi.org/10.1016/j.aap.2011.07.018.

Friedman, N., Geiger, D., Goldszmidt, M., 1997. Bayesian network classifiers. Machine 
Learn. 29, 131–163.

J. Vos                                                                                                                                                                                                                                              Transportation Research Interdisciplinary Perspectives 32 (2025) 101522 

11 

https://doi.org/10.4121/ef2fe812-1024-4064-85a9-3853b4cf3462.v1
https://doi.org/10.4121/ef2fe812-1024-4064-85a9-3853b4cf3462.v1
https://repo.bayesfusion.com/network/permalink?net=Small+BNs%2FAggregated+Curves+v85.xdsl
https://repo.bayesfusion.com/network/permalink?net=Small+BNs%2FAggregated+Curves+v85.xdsl
http://refhub.elsevier.com/S2590-1982(25)00201-5/h0005
http://refhub.elsevier.com/S2590-1982(25)00201-5/h0005
http://refhub.elsevier.com/S2590-1982(25)00201-5/h0005
https://doi.org/10.4236/jtts.2017.72014
https://doi.org/10.4236/jtts.2017.72014
https://doi.org/10.1016/j.trip.2024.101196
https://doi.org/10.3846/bjrbe.2016.07
http://refhub.elsevier.com/S2590-1982(25)00201-5/h0030
http://refhub.elsevier.com/S2590-1982(25)00201-5/h0030
https://doi.org/10.1016/j.cub.2017.06.057
https://doi.org/10.1016/j.trf.2011.04.010
https://doi.org/10.1016/j.aap.2017.09.010
https://doi.org/10.1016/j.aap.2017.09.010
https://doi.org/10.1016/j.trip.2023.100905
https://doi.org/10.1016/j.trip.2023.100905
https://doi.org/10.55329/pvir7839
https://doi.org/10.55329/pvir7839
https://doi.org/10.1080/1463922X.2017.1306148
https://doi.org/10.1080/1463922X.2017.1306148
http://refhub.elsevier.com/S2590-1982(25)00201-5/h0080
http://refhub.elsevier.com/S2590-1982(25)00201-5/h0080
https://doi.org/10.1016/j.aap.2011.07.018
http://refhub.elsevier.com/S2590-1982(25)00201-5/h0090
http://refhub.elsevier.com/S2590-1982(25)00201-5/h0090


Frost, R., Armstrong, B.C., Siegelman, N., Christiansen, M.H., 2015. Domain generality 
versus modality specificity: the paradox of statistical learning. Trends Cogn. Sci. 19 
(3), 117–125. https://doi.org/10.1016/j.tics.2014.12.010.

GeNIe Modeler (Version 4.0.R2). (2022): BayesFusion, LLC.
Ghosh, V.E., Gilboa, A., 2014. What is a memory schema? a historical perspective on 

current neuroscience literature. Neuropsychologia 53, 104–114. https://doi.org/ 
10.1016/j.neuropsychologia.2013.11.010.

Godthelp, H., 1986. Vehicle control during curve driving. Hum. Factors 28 (2), 211–221. 
https://doi.org/10.1177/001872088602800209.

Grande, Z., Castillo, E., Mora, E., Lo, H.K., 2017. Highway and road probabilistic safety 
assessment based on Bayesian Network Models. Comput. Aided Civ. Inf. Eng. 32 (5), 
379–396. https://doi.org/10.1111/mice.12248.

Graves, K.N., Sherman, B.E., Huberdeau, D., Damisah, E., Quraishi, I.H., Turk-Browne, N. 
B., 2022. Remembering the pattern: a longitudinal case study on statistical learning 
in spatial navigation and memory consolidation. Neuropsychologia 174, 108341. 
https://doi.org/10.1016/j.neuropsychologia.2022.108341.

Griffiths, T.L., Tenenbaum, J.B., 2006. Optimal predictions in everyday cognition. 
Psychol. Sci. 17 (9), 767–773. https://doi.org/10.1111/j.1467-9280.2006.01780.x.

Hagenzieker, M.P., Commandeur, J.J.F., Bijleveld, F.D., 2014. The history of road safety 
research: a quantitative approach. Transport. Res. F: Traffic Psychol. Behav. 25, 
150–162. https://doi.org/10.1016/j.trf.2013.10.004.

Han, L., Du, Z., Zheng, H., Xu, F., Mei, J., 2023. Reviews and prospects of human factors 
research on curve driving. J. Traffic Transport. Eng. (english Edition) 10 (5), 
808–834. https://doi.org/10.1016/j.jtte.2023.04.007.

Harms, I.M., Burdett, B.R.D., Charlton, S.G., 2021. The role of route familiarity in traffic 
participants’ behaviour and transport psychology research: a systematic review. 
Transp. Res. Interdiscip. Perspect. 9, 100331. https://doi.org/10.1016/j. 
trip.2021.100331.

Imprialou, M.-I.-M., Quddus, M., Pitfield, D.E., Lord, D., 2016. Re-visiting crash–speed 
relationships: a new perspective in crash modelling. Accid. Anal. Prev. 86, 173–185. 
https://doi.org/10.1016/j.aap.2015.10.001.

Knill, D.C., Pouget, A., 2004. The Bayesian brain: the role of uncertainty in neural coding 
and computation. Trends Neurosci. 27 (12), 712–719. https://doi.org/10.1016/j. 
tins.2004.10.007.

Koiter, J.R., 2006. Visualizing Inference in Bayesian Networks. Delft University of 
Technology, p. 855.

Lamm, R., Psarianos, B., Mailaender, T., 1999. Highway Design and Traffic Safety 
Engineering Handbook. McGraw-Hill, New York. 

Lange, R.D., Haefner, R.M., 2022. Task-induced neural covariability as a signature of 
approximate Bayesian learning and inference. PLoS Comput. Biol. 18 (3), e1009557. 
https://doi.org/10.1371/journal.pcbi.1009557.

Lunenfeld, H., Alexander Gerson, J., 1984. Human factors in highway design and 
operations. J. Transp. Eng. 110 (2), 149–158. https://doi.org/10.1061/(ASCE)0733- 
947X(1984)110:2(149).

Luque, R., Castro, M., 2016. Highway geometric design consistency: speed models and 
local or global assessment. Int. J. Civil Eng. 14 (6), 347–355. https://doi.org/ 
10.1007/s40999-016-0025-2.

Malaghan, V., Pawar, D.S., Dia, H., 2021. Modeling acceleration and deceleration rates 
for two-lane rural highways using global positioning system data. J. Adv. Transp. 
2021. https://doi.org/10.1155/2021/6630876.
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