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Abstract
CRDTs are data structures that allow conflict free replication and modification. In theory, CRDTs seem
like a natural fit for open P2P networks, however there are obstacles to overcome. Firstly, many pro-
posed CRDTs are grow-only because (i) CRDTs may track deletions in permanent tombstone values
or (ii) they may gather permanent information on every peer in the system. As such, CRDTs are not
well adapted to open P2P networks. Many peers may come and go over time and persistent accurate
information about all peers will grow too large eventually. Secondly, some types of CRDT (mainly op-
based CmRDT) require causal message delivery which is hard in open P2P networks. Thirdly, CRDTs
are typically built with the assumption that all peers need all data in a replica and thus all data is fully
replicated, even though a client may only be interested in a small subset.

To address these issues a new state-based CvRDT is proposed: BloomCRDT, which is a variation
on the OR-set that replaces its 𝑅 grow-only set with Bloom filters. It does not need knowledge of other
peers or their state and avoids tombstones. This makes BloomCRDT well suited for use in open P2P
networks. The grow-only aspect is vastly reduced compared to the standard OR-set. However, the
BloomCRDT itself is indivisible and can grow to be too large if it stores many elements. This limit is
not high enough to accommodate demanding applications. Scalability can be dramatically improved
by combining multiple BloomCRDTs to form a Conflict Free R-Tree (CFRT). Each node of the R-Tree
is represented by a BloomCRDT. Concurrent modifications are allowed and, due to the characteristics
of the R-tree, this results in a consistent data structure with overlapping ranges. Since an R-Tree’s
efficiency is reduced when ranges overlap, a periodic optimization algorithm can be used to eliminate
the overlapping ranges.

A proof-of-concept implementation was made of BloomCRDT and CFRT using Python and PyIpv8.
Experiments where performed using the Gumby experimental framework and the DAS5 cluster. The
experiments show that BloomCRDT performs as designed: it keeps a smaller state than other solutions
while being invariant to the number of identities that have interacted with a BloomCRDT instance. The
CFRT is shown to be able to balance key/value entries over multiple BloomCRDT instances using
favorable messaging metrics. Moreover the CFRT, and by extension BloomCRDT, tolerate network
faults and can work with up to 90% message loss. A final experiment uses real world data to compare
the CFRT to Tribler’s channels implementation, and shows that even at scale a CFRT can outperform
the current channels implementation by orders of magnitude in terms of user responsiveness.
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Preface
Around 2006 I worked on an application that used an object database. The database would replicate
transactions to its peers as a means of communicating updates. I wondered if I could simply serialize
and send the object state to the other peers, and then use a merge function that would handle conflicts.
Like Git, which can already do a lot automatically, but without the human part. My intuition was that Git
has very little notion of what exactly is going on in the various source files, but perhaps, by annotating
more information it would be possible to fully automate object merging. This extra information could
be: field X is an integer monotonic counter, or field Y is a reference to another object of type Z, etc.
After coding up an example I realized I could come up with merging rules for certain simple things like
counters and references, but not for more complicated data types like strings. But, why is that? What
differentiates them? At the time I didn’t pursue this any further since it was delaying the progress on
the application, but unresolved questions like this tend to stick in my mind.

Fast-forward to the beginning of this thesis, and we investigated past issues that have sparked my
curiosity. During the the next meeting with Martijn, he casually mentioned that my merging objects
problem sounded like CRDTs. When subsequently reading about them, the veil was lifted, heavens
parted and choirs sang. Well ok, perhaps not that dramatic, but suffice it to say that is how I found my
thesis topic. From there on the process has been (mostly) rewarding. In no small part thanks to dr. ir.
Martijn de Vos, who advised me and kept me on track, and to whom I can only express my deepest
gratitude and thanks.

I cannot overstate my gratitude to my wife, Merel. For supporting me and her patience1.

E. M. Bongers
Schijndel, June 2021

1And I promise Merel, to not pursue further academic advancement in the immediate future.

v





Contents

1 Introduction 1
1.1 Local-First Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Central Components and Decentralized Systems . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Tribler as LFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background & State-of-the-Art 5
2.1 Distributed Systems and Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The CAP theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Strong Eventual Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Conflict-free Replicated Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 State-based CRDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Operation-based CRDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Known CRDTs and implementation designs . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Basic CRDT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Applied CRDTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Other work related to CRDTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 CRDTs embedded in Merkle Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Problem Description 15
3.1 Limits and Problems of current CRDTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Data structure Scalability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Metadata Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Forced Convergence Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Applying CRDTs to open P2P systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 System Design 19
4.1 System model and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 BloomCRDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 The Observed-Remove Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Structure of the BloomCRDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Joining two BloomCRDTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 The Conflict Free R-Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 The R-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Structure of CFRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.3 Checking for optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Evaluation 29
5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 BloomCRDT Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 BloomCRDT 𝑑𝑒𝑙𝑒𝑡𝑒() workload storage cost . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 BloomCRDT P2P tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 CFRT Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Practical limits of BloomCRDT and CFRT. . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 Fault tolerance of CFRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 A practical application of CFRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusion and further work 41
6.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 43

vii





1
Introduction

Big Tech (Google, Apple, Facebook, Amazon and Microsoft) offers easy to use services that attract
many users. This in turn attracts developers to create products based on Big Tech’s platforms. Users
are attracted to Big Tech products and services because they offer a one-stop shop: a convenient,
centralized and universally accessible means of working and collaboration. And so it is that Big Tech
not only dictates the technological innovation but also controls the means of production, namely the
data centers and the data stored there [46]. Some even go so far as to use this control to apply
censorship [48] [31] [16].

The move towards Big Tech creates a problem because agency is stripped from users. The control
a user can exert on digital artifacts (modify, copy, delete) is increasingly limited by Big Tech. By placing
data in a data center, the user is also reliant on continued service to access to this data. It is precisely
this shift, away from locally stored data towards centrally stored data, that drives Big Tech’s growth.
However the growth of Big Tech is becoming a problem for open source initiatives. Consider for example
the LibreOffice [19] productivity software suite. It is as functionally complete as Microsoft Office, but it
cannot compete with Google Docs on online collaboration. The disruption that Google Docs caused
has even prompted Microsoft to transition Office to Office365. Most Open Source initiatives are in
danger of missing the boat when it comes to online collaboration, since they can not hope to finance,
deploy and maintain the necessary infrastructure.

1.1. Local-First Software
Literature on Local-First Software [30] (LFS) signals the perils of Big Tech based software, and pro-
poses ideals that should enable software to provide online collaboration without large scale supporting
infrastructure. The main argument against the use of Big Tech online collaborative services is the ques-
tion of data ownership. Not so much in the legal sense (that does not exist [18]) but rather in terms of
the user’s agency. When using online collaborative services the user typically only has a local cache
copy at best, not an authorative or complete copy. This leads to a continued reliance on the online
service and thus the continued existence of said service. If Big Tech decides to discontinue the ser-
vice, the user’s work stalls. LFS proposes to develop software that avoids the dangers of Big Tech by
making each user’s local resources authorative and complete. To this end LFS introduces the ideals
for local-first software. Three of these in particular are of interest in relation to Big Tech:

1. Responsiveness and Availability By having a local authorative copy of data, applications do
not have to wait for round trip calls to remote resources. Through the local authorative copy, LFS
is free from Big Tech vendor lock-in which holds digital artifacts hostage through export controls.

2. Seamless collaboration If (concurrent) modifications cannot generate artifact versions or con-
flicts, then the collaboration is seamless since modifications can always be merged. This is an
important consideration for user adoption. Big Tech services are not always free of this constraint:
their platforms impose rules and workflows that must be followed.

3. Optional network connectivity Global network coverage is not a realistic assumption, as there
will always be instances where machines are offline. By having a local copy and the guaran-
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2 1. Introduction

(a) A centralized network organisation example
(b) A decentralized network organisation exam-
ple

Figure 1.1: Example network organisation for centralized systems and decentralized systems.

tee of error free merging, LFS works just as well offline as online, while maintaining seamless
collaboration. This is a sharp contrast to Big Tech’s online-only service.

A narrative that is not yet described in the context of Local-First Software is that, by embracing
its ideals, open source can stand on equal footing with Big Tech. Not through bulk resources but
through smart software. Applying the LFS ideals can move open source forwards to enable the online
collaboration features and workflows that many users are becoming accustomed to. However applying
ideals is easy in an ideal world, but in practice it requires non-trivial distributed systems. Proponents of
the LFS ideals propose using Conflict-free replicated Data Types (CRDTs), a family of data structures
suitable for use in decentralized systems. CRDTs allow users to work on a local replica of data while
the CRDT merges this replica with work from others. Eventually all replicas reach a globally consistent
state after all modifications stop. Chapter 2 introduces CRDTs and the relevant distributed systems
background to understand CRDTs in the context of this work.

1.2. Central Components and Decentralized Systems
Some networked systems rely on centralized components (such as central servers) to perform some
critical function. Figure 1.1 shows an example network organisation of centralized components (1.1a)
versus decentralized components (Figure 1.1b). Often the central component is used to provide a
controlled environment or to provide authority: a single state that the rest of the network accepts as ab-
solute truth. It is relatively straightforward to design a system with a central authorative truth or process
executing in a controlled and trusted environment. There is no conflict between network participants
since they can rely on the centralized component to resolve these. Using central components in this
way is a hallmark of Big Tech, which takes the role of central authority. Having centralized components
can greatly simplify designs, but centralized components are also a weak point for a distributed system.
An example would be HTTP web pages. Through links it is an interconnected distributed system and it
uses web servers as a central component. However such servers are not able to perform their central
function when they are overloaded, offline or disconnected. Thus the use of central components is
often a design compromise. A good example of this is MMO gaming, a distributed system where the
actual game simulation happens in a controlled environment on a central server cluster. Distributed
gaming without a central component has yet to be perfected. So for some distributed system designs
a central component might be the only practical choice.

Centralized components have three aspects that make them fundamentally undesirable in a dis-
tributed system. Firstly, from a technical point of view central components are a single point of failure,
so the distributed system cannot function (fully) if a centralized component is unreachable or unre-
sponsive. A second weakness is organizational: each instance of a central component is inevitably
controlled by a single entity and, any entity is influencable by private and government action. Finally,
central components also have a financial aspect: there is a real world cost associated with central
components and the distributed system’s user community has to provide for this in some way.
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Figure 1.2: Tribler client showing channel content

Distributed systems that, by design, contain no central components are called decentralized sys-
tems. In decentralized systems there is no central component to wield authority and make decisions.
Such systems must expect that conflicted states can arise, and have mechanisms to resolve these con-
flicts. Contrary to systems that contain a central component, decentralized systems are well aligned
with the LFS ideals. In a decentralized system it is not possible to depend upon a central authority:
every actor has to be its own authority. This leads to a very local view of the system truth, leaving it to
the conflict resolution mechanism to resolve this with the rest of the network.

1.3. Tribler as LFS
Tribler [38] is an excellent example of a decentralized system that embraces the LFS ideals. Tribler
is an open source BitTorrent client created by the Distributed Systems department of the TU Delft and
has been downloaded by over 1.8 million users. For over a decade, Tribler has enabled researchers to
investigate a variety of P2P topics including distributed content indexing and searching, video streaming
and anonymous downloading. What makes Tribler unique as a research vehicle is the fact that it is
used by thousands of real world end users. New features get put to the test in the real world, not just in
academic benchmarks. Tribler already embraces the LFS ideals, most notably Tribler avoids reliance
on centralized components and holds a completely local view on the system as a whole.

The channels feature of Tribler (shown in Figure 1.2) exemplifies how LFS can enable open source
to compete with Big Tech. The channels feature allows users to create and publish content on their
own channel, akin to YouTube. Tribler provides this functionality without global infrastructure. So Tribler
brings Big Tech features, but without Big Tech. However Tribler’s channels have a practical limit on
the number of items they can contain. The current channels implementation cannot accommodate the
scale needed by some of the larger channels. It is a poor user experience when loading a channel
contents can take up to two hours. The LFS go-to solution, a CRDT, could be a natural fit to alleviate
this situation but is not trivial to apply due to the open nature of the Tribler P2P network. This will be
further discussed in Chapter 3.
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1.4. Contributions
This work develops a CRDT primitive, BloomCRDT, with set semantics that has an affordable space
complexity for workloads that include deletes, and that works in open P2P environments. BloomCRDT
is by itself not a data structure capable of directly supporting large channels in Tribler, but it is a nec-
essary first step. Composing multiple instances of BloomCRDT results in the Conflict Free R-Tree
(CFRT), a key/value index structure with favorable scaling characteristics that works in open P2P en-
vironments, and is based on CRDTs. The design of both BloomCRDT and the CFRT is presented in
Chapter 4 and an experimental evaluation of the designs is shown in Chapter 5. The experimental
results validate the design and show that the CFRT scales to the sizes required for Tribler’s Chan-
nels/ Furthermore, the CFRT robustly handles adverse network conditions, and is orders of magnitude
faster than Triblers current Channels implementation. As such, the CFRT is a candidate technology for
integration into Tribler.



2
Background & State-of-the-Art

A Conflict-free Replicated Data Type (CRDT) is an appealing primitive to use in designing scalable and
decentralized applications. To understand the CRDT further Section 2.1 introduces the distributed sys-
tems concepts necessary to understand CRDTs. Section 2.2 explains CRDTs, their formal definitions
and some examples. Section 2.3 lists and discusses some basic and advanced implementations of
CRDTs. Lastly, Section 2.4 discusses further research done on CRDTs and related research.

2.1. Distributed Systems and Consistency
In order to sufficiently comprehend the mechanisms and workings of CRDTs, some understanding of
elementary Distributed Systems concepts is needed. Readers already versed in the core concepts of
the CAP theorem and strong eventual consistency could skip ahead to 2.2.

2.1.1. The CAP theorem
Within distributed systems there is a well-known theorem that bounds the capabilities of any distributed
system: the CAP theorem [20]. The CAP theorem asserts that a distributed system cannot achieve
Consistency, Availability and Partition tolerance at the same time. In this case Consistency should be
taken to mean that the system should behave as if it where a single database 1. Availability means
that (user) operations don’t block or wait until certain conditions are met, so the system should always
be available for work. Partition tolerance means systems can recover from network interruptions. It is
possible for a distributed system to achieve two of these conditions at any time, but not all three. An
example of a system that gives up Consistency is the Domain Name System (DNS). DNS uses timers
and caches when distributing data and thus achieves Availability and Partition tolerance. However it
is possible that different results are returned to users depending on copies in intermediate caches. So
the DNS system does not have strong consistency. Giving up Availability is exemplified by distributed
locking, making some shared resources unavailable to prevent a lapse in Consistency. In addition,
forfeiting Partition tolerance is a trade-off made by classical databases: they cannot recover from a
loss of communication and, if networked, will typically be restricted to redundant locally networked
clusters.

The author in [51] make some interesting observations about distributed systems that operate at
internet scale. First off it is impossible to prevent partitions: links will need maintenance, smartphones
will roam out of coverage, WiFi will be congested in urban areas, etc. So the system must absolutely
be able to recover from partitions. Second, users nowadays have come to expect that systems are al-
ways Available, implying that Consistency should always be forfeited. While the argument for selecting
Partition tolerance is certainly compelling, the argument for selecting either Consistency or Availability
depends more on the application. For example banks might well prefer Consistency over Availability
in order to be safe from financial risks that could occur due to inconsistencies.

1An ACID [24] database that is.
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2.1.2. Strong Eventual Consistency
The CAP Theorem deals with the concept of strong consistency, where all identical queries to the
distributed system as a whole return the same result. This can be thought of as all nodes in the sys-
tem having an equivalent state. However if, in the context of the CAP Theorem, strong consistency
is forfeited it can be replaced with a lesser consistency. Usually this takes the form of eventual con-
sistency [51]: a delay is accepted that allows the consistency to propagate through the distributed
system. If all updates or modifications to the distributed system were stopped, then after some time
every node of the distributed system should respond with the same result. The DNS system is a good
example. After updates have stopped, and all caches expire, each identical request should result in the
same records being returned. Note however that this is not because all nodes of the DNS system have
reached an equivalent internal state. Unfortunately the definition of eventual consistency is somewhat
imprecise and varies among authors. There are many more classes of consistency, interested readers
are referred to [51].

A variation on eventual consistency is that of strong eventual consistency [44]. This definition starts
with a weak form of eventual consistency where all nodes in a distributed system are informed about
all updates, eventually. In addition to that the Strong aspect requires that all nodes apply all updates in
such a way that the final internal state of the nodes is equivalent. Note that this is indeed stronger than
the previous definition of eventual consistency since that placed no restrictions on the internal state of
the nodes.

2.2. Conflict-free Replicated Data Types
In attempts to mitigate the results of selecting both Availability and Partition tolerance from the CAP
theorem some solutions have been proposed. A recent paradigm is that of Conflict-free Replicated
Data Type (CRDT) as described in [44]. The idea of a CRDT is to achieve strong eventual consistency
of a replicated data structure by structuring data and updates in such a way that no conflicts can arise
when combining different versions. This then allows automatic merging of different versions or updates
of the data structure. In terms of the CAP theorem this provides Availability and Partition tolerance, but
with a strong formal guarantee that strong consistency will be reached eventually.

Proponents of Local-First Software envision a central role for Conflict-free Replicated Data Types
(CRDTs) in applications that strive for the Local-First ideals. This is because CRDTs naturally embody
the ideals of Local-First Software. It allows users to directly collaborate, without a centralized infras-
tructure and where any conflict introduced by concurrent updates of users can always be resolved later.
To aid adoption of the Local-First ideals several projects have developed CRDT implementations for
browser environments [29] [22] [32].

The description of CRDT in [44] provides two formal models for reasoning about CRDTs: the state-
based Convergent Replicated Data Type (CvRDT) and Op-based Commutative Replicated Data Type
(CmRDT). The two models are equivalent in expressive power but CvRDTs are more convenient for
mathematical reasoning and CmRDTs are easier to implement. The following subsections present the
two CRDT types in more detail.

2.2.1. State-based CRDT
A Convergent Replicated Data Type (CvRDT), often called a State-based CRDT, exchanges the full
CRDT state between replicas. The CvRDT model is based on a join-semilattice, in this case it means
a partial ordering on the set of all states held by all replicas, and a function (known as ’join’ or ’least
upper bound’) for pairs in the set. The join function produces a state that orders strictly greater than its
two inputs and is commutative, idempotent and associative. This implies that as long as states can be
ordered they can always be joined, and the result monotonically proceeds up the partial ordering chain.
It must therefore converge to a maximal element in the partial ordering, one where all initial states have
been joined, and because of the state equivalence relation of strong eventual consistency any maximal
element will do. Although in practice the maximal element could well be singular, the greatest element
of the partial ordering. The CvRDT definition of a CRDT permits testing of a data type to determine if
it is a CvRDT, but it leaves a lot to the imagination when it comes to designing and implementing one.

To construct an implementation of a CvRDT, nodes send out a copy of their local replica state to
other nodes. These other nodes then check the partial ordering and join states that contain ”new”
information. An example of a CvRDT is shown in Figure 2.1. This figure shows the operation of a
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Figure 2.1: CvRDT operation. Replicas send full state messages to each other

CvRDT that contains a grow-only set. There are three replica nodes each with an initial empty state.
Nodes then send their state to other nodes after an update, in this example nodes take the union of
their local state and a received state. In this way all nodes have reached strong eventual consistency
as defined by the CvRDT definition.

Note that ”taking an union” is a good example of why CvRDTs allow easy mathematical reasoning,
but are not necessarily easy to implement. This requires comparing of two states to determine any
differences and subsequently integrating those differences. Also, sending the entire state can be very
inefficient: if the CvRDT state is large many bytes might be sent needlessly. These problems gave rise
to a variation of the CvRDT, the 𝛿-CRDT [1], where only a difference of state is communicated between
replicas. An example of a 𝛿-CRDT is TrustChain [37]. In this case a nodes state is the database of
blocks that it knows about and new blocks are deltas on this state. Each node only needs to merge
blocks it does not yet know about to advance its state towards a complete global state, so there is an
ordering on states. Blocks can always be merged into the database independent of others, so the state
of two nodes can always be merged. If all blocks where to be communicated to all other nodes, each
node would end up with an equivalent (global) state.

2.2.2. Operation-based CRDT
The Operation-based style of CRDT known as a Commutative Replicated Data Type (CmRDT) is based
around communicating the operations performed on the CRDT and having each replica apply these
operations on their local state. The CmRDT model assumes a reliable causally ordered broadcast
communication protocol and uses that to deliver a sequence of operations to all replicas. To each
operation is bound a side-effect free precondition test that determines if an operation may be applied
to the CmRDT’s state. If at a replica two operations are pending, i.e. their preconditions are satisfied,
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Figure 2.2: CmRDT operation. Replicas send update operations to each other

applying either operation may not invalidate the preconditions of the other. This allows operations to
be applied in any order once their preconditions are met, or put another way: all concurrent operations
must be commutative. This ensures that operations can always be applied eventually, and thus lead to
an equivalent state at each replica. An example of a CmRDT is shown in Figure 2.2. This is similar to
the CvRDT example but instead of sending a full state to other nodes, the operations are sent. Each
node then applies the operations on its local state. This is also distinct from a 𝛿-CRDT which transports
the change in state, that might not reflect the operation that was applied.

The CmRDT model is more suited to actual implementations since operations (e.g.: add, update,
remove) on data occur naturally in programming and thus allow an easy transfer of theoretical concept
to practical implementation. This is a sharp contrast with the CvRDT model where the whole state of a
replica arrives at another node, which then has to be ”merged”.

2.3. Known CRDTs and implementation designs
CRDTs have attracted interest from both the academic community and from software projects. De-
scribed in Section 2.3.1 are some of the academic designs, and similarly Section 2.3.2 presents the
work done on applying CRDTs to practical situations.

2.3.1. Basic CRDT Types
There are several known data structures that meet the definition of a CRDT: such as a vector clock,
monotonic counters and add-only sets. Compositions of these basic data structures develops more
advanced data structures. For example using two monotonic counters P and N it is possible to create a
non-monotonic counter by computing P - N. But more complex compositions allow for sets, dictionaries
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and directed graphs. Some of the basic CRDT data types are summarized in Table 2.1.

Name Description Ref.
G-Counter A monotonic increasing counter. [45]

PN-Counter Two G-Counters, one for positive, one for negative. The
value of the PN counter is calculated as P - N. [45]

G-Set A grow-only set. [45]

2P-Set

Two phase set, akin to the PN-counter this set uses two
G-Sets, one for items added and one for items removed
(the tombstone set). The contents of the 2P-Set are the
elements in the add set that are not also in the tombstone
set

[45]

U-Set
A set that only adds and removes unique items. Com-
bined with causally ordered messaging, this is enough to
ensure no conflicts can arise.

[45]

LWW-element-Set A set where the Last Write Wins in case of conflict. [45]

PN-Set

A set where each element is paired with a PN-counter.
Adding increments the counter, removing decreases the
counter. An element is in the set if it associated counter
value is greater than 0.

[45]

Observed-Remove
Set

A set where elements are paired with a unique identifier.
Before a remove can be issued the identifier needs to be
observed, thus no concurrent add-remove conflicts can
happen.

[45]

2P2P-Graph A graph made up of vertices in a 2P set, and edges in
another 2P set. [45]

Add-only Monotonic
DAG

An add-only graph that uses a simple edge direction fol-
lowing rule such that a DAG is formed. [45]

Add-Remove Partial
Order

A DAG graph that uses a 2P-Set with tombstones for ver-
tices and a G-Set for edges. This combination ensures a
new edge can always be found between two vertices if an
intermediate vertex is removed.

[45]

Replicated Growable
Array (RGA)

List based on linked list. Allows updates to the elements
in the list. Clocks that allow tombstone garbage collec-
tion.

[41] [45]

WOOT List with unique identified elements. Tombstone set to
filter out deletes. [36]

Logoot

List with unique identified elements, insertion by gener-
ating identifier between two others. No tombstones but
potentially unbounded identifier length. Claims that prac-
tical use sees no such unboundedness.

[52]

TreeDoc

List/document based on prefix Trie for element identifiers.
Trie may become unbalanced and requires rebalancing,
which uses 2-phase commit involving all replica’s. Uses
tombstones.

[39]

Table 2.1: An overview of basic CRDT types

In Table 2.1 there are four common design elements that are used frequently when constructing
CRDT data types. Firstly, there are monotonic operations, where the data only has one direction, such
as the G-Counter, G-Set and monotonic DAG. Data only goes towards infinity and is never ”decreased”.
This sidesteps combinations of concurrent add and remove operations that are not commutative. Sec-
ondly there is a frequent use of tombstones, special markers that indicate something used to be there
but should be considered gone. This is frequently used in sets and ordered lists where concurrent
updates could conflict. For example a remove and addAfter operation on the same element would
conflict if the remove is processed first since the addAfter would then reference an invalid item.
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However if the remove operation leaves a tombstone in the place of the element, the addAfter can
still be processed. A third commonality is pairing list or set elements with unique or random identifiers.
This can be an alternative to the use of tombstones in some cases. The principle is that removes must
be causally ordered with respect to adds, since the paired identifier has to be observed first, before
the remove of that particular element can be issued (see OR-set). Conversely a concurrent add of the
same element produces two elements in the CRDT, each paired with an unique identifier. The fourth
and last common design element is the use of clocks to mitigate the unbounded growth of tombstones
in CRDTs. Often a vector clock is used since that allows a node to deduce if all other nodes have seen
a particular tombstone and if so, discard such a tombstone from the CRDT.

2.3.2. Applied CRDTs
In addition to research on basic CRDT structures, some software projects have also applied CRDTs
to real world situations. Table 2.2 lists some of them. Two types of application are typical among the
applied uses of CRDTs. One is no-SQL or key-value store databases, and the second is collaborative
editing.

Name Description Ref.

Redis Redis is an in-memory key-value store that can use
CRDTs to implement multi master replication. [40] [53]

Riak Eventual consistent key-value store based on CRDTs. [5] [12]

Roshi
SoundCloud uses Roshi, a CRDT that uses LWW-set in
combination with garbage collection. Based in part on
Redis.

[47]

Akka Actor based programming language which uses CRDTs
for its replicated data types. [25]

Scalable XML Collab-
orative Editing with
Undo

Applies CRDTs to XML document editing in a collabora-
tive setting. Garbage collection using vector clocks. [32]

Conflict-Free Repli-
cated Relations for
Multi-Synchronous
Database Manage-
ment at Edge

Applies CRDT to traditional RDBMs’. [54]

Designing a Planetary-
Scale IMAP Service
with Conflict-free
Replicated Data Types

Replicated maildirs over IMAP using CRDT to sync geo
replicas. Uses a CRDT map/dictionary internally. [26]

A Study of CRDTs that
do Computations

CRDTs that result in a computation being performed in
the CRDT state. Comparable to the join step in parallel
processing.

[35]

Table 2.2: An overview of CRDT applied uses

2.4. Other work related to CRDTs
There are many interesting works that further explore CRDTs, their limits and ways in which they could
be improved. Such as [7] which aims to ”Constraining the Eventual in Eventual Consistency”. In order
to achieve this leases are added to CRDTs such that operations can timeout and be canceled. This
provides the same consistency but with a bound on the “eventual” part of the consistency, at the cost
that some operations might eventually produce an error. There are also dead ends in CRDT research
as explained in [28]. This work examines a common problem in collaborative editors, moving a range
of characters. This operation turns out to be particularly difficult to capture in CRDTs since some
combinations of concurrent operations are non commutative. In [6] the authors examine the problem of
ever growingmetadata in CRDTs, particularly unbounded growth of tombstones and operation histories.

The field of CRDTs is closely related to the much older field of Operational Transformation (OT).
In OT as proposed by [17], concurrent operations on a replica are serialized to a predictable order,
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and then applied to the state sequentially. After an operation is executed, all pending operations are
adjusted to ensure they reflect an operation against the current state. In other words, the pending
operations are transformed to work against an updated version of the state. The difficult part in the OT
scheme is deciding the order of operations. Popular products that use OT such as Google Docs use
a centralized component, a server in this case, to decide the order of operations. This ensures that all
clients reach the same state. When the internal state is designed properly it is even possible to create
a hybrid OT/CRDT system [33], thus allowing choice about the mechanism to use.

Also closely related to CRDTs are Cloud Types [13]. These are based on a similar idea of always
allowing divergent versions of a value to be be recombined without much conflict. In the case a conflict
does arise Cloud Types defer to a centralized replica (in the cloud somewhere) to handle arbitration.
In contrast to CRDTs the use of a centralized component allows Cloud Types to use non-commutative
concurrent operations. On the other hand this means that the replicas held outside of this master copy
are not authorative. Cloud Types also use a variation of a vector clock to ensure values cannot be
recombined to older versions of themselves. In short, Cloud Types are aimed at enterprise scenarios
with centralized components, which is exactly what Local First Software tries to avoid.

Another slightly more generic branch of research that is closely related is research on anti-entropy
algorithms. The main idea here is to use an algorithm to synchronize peers, and thus reduce entropy
in the distributed system. Conflicts are resolved using Last-Writer-Wins rules or are left unresolved
as multiple versions of a value. The DottedDB [21] is a distributed key-value database that uses a
double clock mechanism to garbage collect causality information that is no longer useful. To avoid
unbounded grow DottedDB introduces a watermark set, a method for detecting what other peers know
and discarding information is accepted by a quorum. This scheme is tolerant of peer churn, but use of
a quorum indicates the peers are a limited set that are well connected.

Lastly there are CRDT designs Vegvisir [27] and Merkle-CRDT [42] which apply to low power IoT
devices and IPFS respectively. Both build on the idea of using a Directed Acyclic Graph (DAG). Each
operation on a CRDT is represented by a node in the DAG, and each such node has an edge directed
at one or more previous operation-nodes. The edges of the DAG thus encode the causal relation of
the updates and are sufficient to allow CRDTs to work on this.

2.5. CRDTs embedded in Merkle Trees
At first glance the Merkle Search Tree (MST) [4] resembles the design presented in this work (see
Section 4.3), but is distinct and designed with a different goal in mind. The MST is a special case
of the more general Merkle Tree. Merkle Trees are data structures that can be used to efficiently
find differences in large sets of elements. The idea begins with hashing each element, then a certain
number of these hashes are concatenated and hashed again forming the leaves of a tree structure
where each level towards the root repeats the concatenation and hashing (as depicted in Figure 2.3a).
The root of a Merkle Tree is a single hash that identifies this particular tree2. With this scheme any
change in an element produces a different hash for all its parents, up to and including the root. This way
a hash can compare subtrees or indeed a whole tree with one message exchange. Notable practical
applications that use Merkle Trees include ZFS, bitcoin, git and Riak. While a Merkle Tree can detect
detect differences in large element sets, it does not provide direction when searching over a key space.
The Merkle Tree is not intended as an indexing structure.

The Merkle Search Tree aims to unify Merkle Trees and indexing structures. Since a Merkle Tree
is indifferent to exactly how the children of each node are selected, the MST can exploit this freedom
and proposes to compose elements into a tree structure similar to a B-Tree [9] (see Figure 2.3b). It
starts by ordering all elements and hashing them. Each element is then assigned a level (height or
distance from leaf layer) based on the number of leading zeros in its hash. This height combined with
the ordering results in a tree structure, to which the Merkle Tree concept can be applied (see Figure
2.3c). Replicas of the MST can be compared using the techniques developed for Merkle Trees, in this
case gossiping of the current root hash and subsequent rounds of obtaining missing nodes/hashes.
Of special note is that the MST is formed deterministically from the set of elements. Given the same
set of elements, each replica will form an identical tree. This ensures there is no infinite variation in
the root hash due to different causal paths, leading to a converging state and an eventually consistent

2The leaf nodes do not need any specific ordering to construct a Merkle Tree. In practice however it is usually favorable to have
an ordering since the Merkle Tree expresses a permutation of elements and ordering reduces that to a combination of elements.
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MST. The MST proposes using key/value pairs as entries and using CRDTs in the leaf values to resolve
concurrent updates, much like Riak and Redis. The paper presenting the MST hints at, but is not clear
on, the mechanism of removing elements from an MST. After inquiry with the first author [3] it is clear
that the MST supports deletes in a limited capacity. Any local delete would be considered a missing
value in any subsequent gossiping round and be restored. Thus the best the MST can offer is a special
tombstone value in the key/value pair, making it a grow-only structure.
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(a) Example of a Merkle Tree. Recursive hashing of the concatenated hashes of child nodes, which terminates in a
single root hash.
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(b) A B-Tree [9] is a generalization of a binary search tree that allows more than one value in each node. Entries are
added to leaf nodes that split when they become full. Because splits propagate up from the leaf layer and creates
only siblings, the tree is kept balanced. Adding a new layer at the root when needed.
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(c) The Merkle Search Tree combines the Merkle Tree with the B-Tree and allows searching, but also efficient com-
parison of (sub)trees.

Figure 2.3: The Merkle Search Tree combines the concepts of a Merkle Tree with those of a regular indexing structure. 𝑛𝑥
indicates a tree node and ℎ(𝑛𝑥) indicates the hash of a node’s contents and pointers.





3
Problem Description

The previous chapter describes the model of a CRDT, and its properties. Sections 2.3.1 and 2.3.2
show there is no significant use of CRDTs in open P2P systems. Most applications are collaborative
editors for users and key/value data stores. These are controlled situations with a limited number of
replicas where new replicas need permission to join and all replicas are informed about each other.
The controlled situation is not found in open P2P systems, and this disparity hinders adoption of the
Local First software ideals and CRDTs in open P2P networks. This chapter describes the problems
that arise when applying CRDTs to open P2P systems. Section 3.1 describes these problems in three
subsections. Next, Section 3.2 describes how these problems would show if open P2P systems did
implement CRDTs and what requirements a solution should meet.

3.1. Limits and Problems of current CRDTs
In the next sections three inherently limiting issues are explained that, at minimum, hinder a wider
adoption of CRDTs in open P2P systems. This section uses Git [14] as an example since this software
is very familiar to most readers and displays many characteristics of CRDTs1.

3.1.1. Data structure Scalability
In theory, the basic definition of a CRDT does not place any hard limits on the memory size of a CRDT.
However, when applying theory to practice there will always be real world considerations. Some authors
have found that the size of the CRDT was a topic for future research [6] [29], as it is a fundamental
limitation on CRDT applicability and adoption. In Git, an example would be many, or large, binaries
being added which leads to a large working copy. In many CRDTs a similar issue occurs with grow-only
structures, and more specifically tombstones inflating the size of the CRDT’s state. In Git it suffices
to delete the binaries to reduce the size of the working copy. However, the grow-only nature of many
CRDTs means it is not possible to simply remove tombstones without introducing conflicts. So CRDTs
that rely on tombstones require other solutions to keep their state manageable. One solution is to
ignore the problem if the CRDT is of an ephemeral nature. Since most existing applications of CRDTs
are in collaborative software, it is reasonable to assume that the collaboration will cease eventually. If
the CRDT’s state has not grown so much that it becomes impractical then there is no problem to solve
in practice.

If the CRDT is not ephemeral, but of a more persistent nature, ignoring a grow-only state or the
CRDT size in general is a strategy that will fail eventually. One solution that has been suggested is
a distributed garbage collection scheme to remove tombstones that no longer serve a purpose. As
briefly discussed in Section 2.3.1, the go-to solution is to use a vector clock and attach a timestamp to
each tombstone. This allows each node to reason about the causality at other nodes. Once it can be

1In fact Git could be considered a CRDT itself. It has states that can be merged towards eventual consistency. However in such
a view of Git the join function is a human that resolves conflicts. Git itself is not aimed at being conflict free, just being able
to resolve the conflicts that happen. Furthermore, the use of a human as an oracle machine that resolves conflicts may be
mathemathematically acceptable, but it runs contrary to the aim of having CRDTs automatically avoid conflicts in practice.
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inferred that all replicas have seen a particular tombstone, it can be removed safely. The vector clock
is not without its problems. Specifically a vector clock:

1. Requires knowledge about the existence of other replicas. When replicas are not know to
each other, they are not included in the vector clocks. This prevents replicas from correct causal
reasoning about operations.

2. Limits the number of replicas in practice. If many replicas join, then a vector clock becomes
unwieldy and timestamps grow in size. A simple calculation shows that a standard Ethernet frame
would overflow with just 94 replicas, assuming 64-bit counters and identities.

3. Grows as replicas come and go. Since it is impossible to tell what replicas are partitioned from
the network and what replicas have left the network, the only safe option is to assume a partition
has happened and thus save all required metadata (see also Section 3.1.2).

To demonstrate how infeasible the standard vector clock is in an open P2P setting consider trying to
impose a vector clock on the Linux kernel git repository. The first step would be to discover, world
wide, all replicas of the Linux kernel repository 2. If there are many, then the clock’s state will become
large and require special consideration in software. If all replicas have been found, the clock must
keep track of the clock states of all replicas, even of replicas that have been removed. Since removal
of replicas is indistinguishable from a network partitioning and there is no limit on the duration of the
network partitioning, their clock states should be held indefinitely. As such a vector clock on the Linux
kernel Git repository would become a grow-only data structure. Recurs to Section 3.1.1 to read about
the problems of grow-only data structures.

The problems the vector clock encounters in the above scenario stem from the openness of Git:
anyone can come along and decide to create a replica without being forced to register this replica.
Previous works on CRDTs have either been theoretical, or have applied CRDTs to controlled settings
where the participants in the distributed system are known, reasonably limited in number and no churn
occurs. This means that CRDTs have not found much application in open P2P distributed systems,
even though CRDTs would seem to be a natural fit for open P2P networks at first glance (some notable
exceptions being Vegvisir [27] and Merkle-CRDT [42]).

3.1.2. Metadata Scalability
CRDTs consist of two types of data: application state is used by the application built on top of the CRDT,
and metadata is needed to make the CRDT function but has no direct value to the using application.
Git also clearly shows this distinction: the working copy can be considered an application state while
the commit history is metadata kept by Git to make the users workflow possible. Just as unbounded
growth of the application state is problematic, so is unbounded growth of a CRDT’smetadata. Op-based
CRDT implementations are a prime example of this unboundedmetadata growth problem because they
require that all operation messages contain causality information. This is not a problem by itself but
usually this causality information is only informative in the context of the complete history of operations
on the op-based CRDT. In other words, operations refer to the operations that came before them. Also,
keeping the full history of a CRDT ensures that a replica recovering from a network partition can be
supplied with the operations it still has to perform.

At first glance state-based CRDTs should not have the issue of grow-only metadata, since state-
based CRDTs do not require a causal ordering. However, implementations may require this anyway
in order to determine the join of two states. The state-based CRDT needs to determine what state is
newer, or has components that have not yet been observed. In terms of Git an example would be a
merge (or rebase), that requires a common ancestor state to determine how two states have diverged.
Changes since such a common ancestor state can then be compared and a joined state emerges. The
definition of the state-based CRDT is much looser than this Git example would suggest. Nonetheless,
it highlights that even state-based CRDTs can be reliant on persisting metadata of previous states.

3.1.3. Forced Convergence Assumption
A fundamental assumption of many CRDT implementations is that they aim for an active full state syn-
chronization among peers. For the small and closed communities that most CRDTs target this works
2GitHub lists 38,400 forks, but that does not include clones that are not on GitHub
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well. However, there is no requirement in the definition of CRDTs that replicas are forced to converge.
Put another way, there is no upper bound on convergence time. CRDTs where initially designed for
applications with the assumption that it is desirable to actively converge all replicas to a globally equiv-
alent state. This is what many projects have implemented and indeed this has so far proven a good
fit for collaborative editor applications and key-value databases. However, this forced convergence
assumption has some disadvantages. Most importantly, a replica might not need the complete data
structure in order to function. For example: looking up a single dns name does not require a full replica
of all dns servers. This is a key design insight that allows for example ConTrib [15] 3 to function ef-
ficiently. ConTrib expressly avoids global operations such as consensus, but this also means no full
replication of all peer blockchains. Secondly, CRDT applications that aim for an actively converged
state assume that all replicas know about each other. This allows CRDT implementations to push new
states or operations to other replicas, forcing them to converge towards a globally equivalent state.
However, as with vector clocks in Section 3.1.1, keeping track of all replicas is not trivial. Lastly, the
forced convergence assumption does not consider replicas on heterogeneous hardware. If a receiving
replica is low-powered, then new updates that are pushed towards this replica force it to use a lot of
power to keep up. That is, if the low-powered device is capable of keeping up at all. Especially in the
case where only a small fraction of the whole data structure is needed, the burden on this replica might
be disproportional compared to the benefit for the user.

3.2. Applying CRDTs to open P2P systems
As was hinted at in Section 1.3, CRDTs do not translate easily to open P2P networks. The previous
section makes clear why this is the case. To get an idea of the infeasibility of using existing CRDT
implementations for Tribler consider the following. Each torrent consists of: a name, a magnet link,
tracker info, thumbnail(s) and other metadata. Lets assume that this amounts to 2KB per torrent.
Since the release of Tribler’s channels feature some channels have grown beyond a million torrents.
An estimate for the application state size of a CRDT supporting such a channel would be 2GB at
minimum. On top of that, any remove operation would leave a tombstone and since the channels are
more permanent than ephemeral, the tombstones would eventually dominate the CRDT. In the case
of a single pure state-based CRDT, this would send the full state to other peers to communicate a
single change. However the alternatives, either an op-based or a 𝛿-CRDT, also have problems. They
require causal message delivery or intricate vector clocks. Both of which are easily susceptible to
infinite growth in a P2P system with dynamic identities over time. Lastly, it is hard to imagine that any
user would have a need for every single torrent in such a channel. Therefore, its reasonable to assume
each user is only interested in a small subset of the full channel. Thus if such a large channel would
be implemented as a CRDT, the forced convergence assumption would force users to acquire the full
application state and metadata of the CRDT and to keep up with any changes. This is a heavy burden
for a user that is only interested in a small subset of the full state. Since all of the problems described
in Section 3.1 apply, it is clear that applying a CRDT to the Tribler open P2P network is not trivial and
warrants further research.

The way Channels are currently implemented in Tribler has a lot of these problems also, without
being designed as a CRDT. In Tribler each channel is modeled as a tree with nodes, akin to a file
system. This allows channel owners to provide some structure to their content. To distribute a channel
the entire node graph is serialized and packaged as a torrent that can be downloaded by other users.
This monolithic torrent is redistributed for each small change, and a user cannot obtain a subset of
the channel. Especially this last problem is incongruent with Triblers responsive and Big-Tech inspired
user experience. Users browsing a newly subscribed channel are presented with a blank screen until
the channel torrent has downloaded its first few pieces. Not until much later do torrents start showing
up. So the current Tribler Channels are all Big-Tech flash, but no Big-Tech bang.

Even though current CRDT implementations are problematic in open P2P systems, the idea remains
that a differently designedCRDT type could be perfectly suited to service Tribler’s channels. In essence,
Tribler’s Channels are collaborative adds and removes on a set. So the natural question would be: does
3The ConTrib structure can be interpreted as a 𝛿-CRDT, on the condition that all nodes behave correctly. The state of a replica in
this case is the local database of blocks that a replica holds. There is only one update function: addBlock. Which translates to
a 𝛿-state message containing the new block. This message is distributed to other replicas andmerged into the state (persisted in
the database). Themerge operation always produces a consistent new state that is further along the path to global convergence.
Thus it has all the attributes of a state-based CRDT and is an example of a CRDT that does not force convergence of replicas.
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a CRDT exist that could work well in an open P2P system and support Tribler’s channels? If such a
CRDT does exist then it should meet these criteria:

1. State-based CRDT Since gathering any causality information is going to be be difficult in an
open P2P setting, causal message delivery and vector clocks are not possible. This directly rules
out op-based CRDTs and 𝛿-CRDTs. Causality information will have to be encoded into the data
structure, which is a natural fit for state-based CRDTs.

2. No unbounded growth In both application state and metadata there should not be unbounded
growth, since this is not compatible with persistent CRDTs.

3. Pull based A peer should be in charge itself about what information to fetch and at what time.
This allows for targeted retrieval for those peers that need just a subset of all information, and
prevents low-powered nodes from being overwhelmed by other peers. Note that this only applies
in the context of information that is non-trivial to process. Trivial messages could still be push
based.

4. No persistent peer knowledge Any solution that permanently stores (meta)data about other
peers will show unbounded growth since P2P networks are subject to a constant influx of new
peer identities. Criterium 2 prohibits unbounded growth, thus it is immediately obvious that any
solution must not keep persistent peer knowledge.



4
System Design

Two concepts are presented that overcome the problems described in the previous chapter. First,
BloomCRDT an innovation on the standard OR-set that uses Bloom Filters to vastly reduces the un-
bounded growth and operates in an open P2P environment. Second, the Conflict Free R-Tree is a
composition of BloomCRDTs into an R-Tree index data structure that scales far beyond what a single
BloomCRDT could practically contain.

4.1. System model and assumptions
The previous chapter describes the problems faced by CRDTs in open P2P systems. These problems
are modeled by the following assumptions:

• Message delivery is imperfect, messages may arrive out of order, duplicated or not at all. This is
because real world IP networking is not perfect and these events happen, so any design should
account for this.

• Peers and network links may fail, even leading to network partitions. This is because hardware
will fail in real world scenarios, again systems should be designed to account for this. Intentional
failues or manipulation of the network are out-of-scope for this work.

• Over time, large numbers of peers may join and leave the network, and interact with a Bloom-
CRDT or CFRT instance. This churn is a natural feature of open P2P systems that has design
implications in the case of CRDTs. As such it is important to explicitly acknowledge this assump-
tion.

• Standard cryptographic assumptions, i.e. cryptographic primitives such as hashes and digital
signatures are considered secure.

Moreover, there are several basic communication features on which BloomCRDT and CFRT are
based. It is assumed that there exists a communication library such that:

• Messages are checked for tampering using cryptographic signatures. For example a system
where a peer’s identity is a public key which is used to verify messages.

• Groups can be resolved from global identifiers. For CFRT it is necessary to form identifiable
groups of peers that exchange messages. Knowing the ID of a group should allow a new peer to
join that group.

• Each peer can message a (small) subset of other peers in joined groups. It is not required to
send messages to all members of a joined group.
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4.2. BloomCRDT
Presented here is BloomCRDT, a novel CRDT that provides set semantics in an open P2P environment.
BloomCRDT is a state-based CRDT that behaves like a set and is based on the traditional OR-set [45].
BloomCRDT does not rely on causal message delivery nor does it need knowledge of other peers or
their state, and finally does not show unbounded growth over time in practice. There appears to be no
CRDT described in related work that matches these characteristics.

4.2.1. The Observed-Remove Set
BloomCRDT is a modification of the Observed-Remove set (OR-set), which should be explained before
presenting the modified version. An OR-set tags each added element with a random number or tag,
this effectively makes each element unique and unpredictable. Internally, the OR-set consists of a
grow-only set of inserted elements (denoted 𝐼) and a grow-only set of removed elements (𝑅). The
contents of the OR-set from the user’s perspective is the relative complement 𝐼 ⧵ 𝑅. New elements (𝑒)
are paired with a tag (𝑡) and added to 𝐼. To remove an element, the (𝑒, 𝑡) pair is added to 𝑅. Since 𝑡 is
unpredictable a replica must first observe a (𝑒, 𝑡) pair in 𝐼 before the pair can be added to 𝑅 to remove it
from the OR-set, hence the name Observed-Remove set. The required observation step ensures any
remove must causally follow the add.
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(a) Traditional set demonstrating the overtaking delete problem.
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Figure 4.1: The overtaking delete problem

To emphasize the problem that the OR-set solves, consider the 𝑎𝑑𝑑() and 𝑑𝑒𝑙𝑒𝑡𝑒() operations on
a traditional set. In the case of state-based CRDTs that have non-causal message delivery, messages
can get reordered as demonstrated in Figure 4.1. So the message that signals the deleted state might
arrive before the message that carries the added state. This is known as the overtaking delete prob-
lem [34]. In this case Replica C observes the delete of an item before it observes the add. As shown in
sub Figure 4.1a a traditional set is not guaranteed to be eventually consistent. Sub Figure 4.1b shows
how the OR-set solves the problem of an overtaking delete. In the last step at Replica C, the 𝑅 set
reveals that the element was already deleted.

Some research has been done to improve upon the OR-set, mostly to address its grow-only na-
ture. The Optimized Conflict-free Replicated Set [10] proposes the OptORSet, a modified OR-set that
includes information about the state of other peers. This allows reasoning about what state has been
propagated globally and thus what state can be discarded. To do this the OptORSet uses causal mes-
sage delivery and keeps a per peer state. As explained in Section 3.2, these concepts are not suited to
an open P2P environment. The Optimized OR-set Without Ordering Constraints [34] improves on this
because it does not require causal message ordering and makes a compelling argument for its interval
version vectors. However, this solution also uses per peer state. In an open P2P environment this will
show unbounded growth over time.

4.2.2. Structure of the BloomCRDT
In an OR-set, 𝐼 does not actually need to be a grow-only set. Once a (𝑒, 𝑡) pair is in 𝑅 it can be removed
from 𝐼. The relative complement 𝐼⧵𝑅 will still compute theOR-set contents. However there is no obvious
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way to remove the grow-only aspect of 𝑅. In a more theoretical sense, 𝑅 provides information for the
join function such that the result state is ordered greater on the join-semilattice than either of the input
states. Or viewed another way, 𝑅 encodes the history of an OR-set such that a join function can move
forward and will not regress. In 𝑅 it is especially the unique tags 𝑡 that are of interest, since those
are what make the elements unique and force the observed relationship. A space efficient method to
encode set membership could replace 𝑅 and significantly reduce the storage cost of an OR-set.

Bloom filters [11] can encode set membership without having to persist the members and are a
suitable replacement of the 𝑅 set in an OR-set. Bloom filters start as a list of bits, each set to 0. When
an element is added to the Bloom filter a number of hashes is computed on the added element, and
each hash function produces an index in the Bloom filter’s bits. At the calculated indices the bit is set
to 1. To test if an element is in the Bloom filter a queried element is hashed with the hash functions
and if the bit at any of the computed indices is zero, then the queried element is not in the Bloom filter.
Else it most likely in the Bloom filter, however it could also be a false positive if other elements flipped
the relevant bits. The idea is to choose the number of bits and number of hash functions in such a way
that the probability of a false-positive is small enough for the application.
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Bn ...
...

B1

(e1, t1) ...

Figure 4.2: Structure of a BloomCRDT. Each entry is tagged with a unique tag. One or more Bloom filters of increasing size are
added as needed.

Using a Bloom filter, it is possible to change the OR-set into a BloomCRDT. To do this 𝑅 is replaced
with a Bloom filter, and coupled with the previous observation that 𝐼 need not be grow-only, the Bloom-
CRDT is constructed (see Figure 4.2). While this is the basic premise of the BloomCRDT, there are
some details that require further explanation.

• False Positives A major problem for Bloom filters is their probabilistic nature: there can be no
false negatives but there is a chance of a false positive. When applied as a replacement of 𝑅,
this means there is a chance that an element is falsely considered as removed. This is only a
problem in exceptional circumstances1. Moreover Bloom filters allow the implementer to select
the probability of false positives which should be customized to fit the risk of the application. The
specific conditions required for a false positive to adversely effect the BloomCRDT coupled with
the low probability of actually creating a false positive in the first place, means this event can
reasonably be excluded during further discussion.

• Parameter selection The only further consideration for Bloom filters is that they require an a priori
estimation of the number of elements that will be added in order to guarantee the probabilistic
bounds. This presents a problem for long lived BloomCRDTs, the number of elements added
to the Bloom filter cannot be fixed in advance. To address this, BloomCRDT actually uses a

1Elements are only checked against the Removed Bloom filter during a join, and only if they are only in one of the two input
states. Thus it requires a removal in one replica that creates an update in the Bloom filter that collides with a concurrent addition
that is still propagating among replicas.
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list of Bloom filters (𝐵𝑖 where 𝑖 is the index in the list of Bloom filters). When it is estimated
that a Bloom filter is nearing saturation, a larger Bloom filter is added to the list of Bloom filters.
This unfortunately reintroduces an unbounded growth in the theoretical sense, albeit with a much
reduced magnitude. Section 4.3.3 discusses the composition of BloomCRDTs into a CFRT and
includes a mitigation strategy for this potentially unbounded growth.

• Bloom Filter alternatives Instead of a Bloom filter there are more recent alternatives to consider
such as Cuckoo filters and XOR filters. However there are specific conditions that the 𝑅 replace-
ment must handle. For example, Cuckoo filters require storing fingerprints of elements in the set
which would not amount to a net savings since the 𝑡 tags are similar to the required fingerprints.
The 𝑅 replacement should result use less space compared to the size of 𝑅 as a grow-only set.
The more recent XOR filters are built from all elements prior to filtering and are not updatable. But
𝑅 is not something that can be computed a priori, it updates over time. This covers the two most
frequent reasons other techniques cannot be used. In addition to this, the 𝑅 replacement must
be able to join efficiently as will be explained in 4.2.3. In the end, Bloom filters are very simple
and can show a net space saving over 𝑅 after adding just a few entries.

4.2.3. Joining two BloomCRDTs
The traditional OR-set has a simple algorithm for the CRDT join function, but for BloomCRDT this is
slightly more complicated. Assume that a join function has two inputs named 𝑙 and 𝑟, and an output
state named 𝑗. The traditional OR-set calculates its new states as 𝐼𝑗 = 𝐼𝑙 ∪ 𝐼𝑟 and 𝑅𝑗 = 𝑅𝑙 ∪ 𝑅𝑟. The
BloomCRDT join is slightly more complex and must consider joining the Bloom filters and a correct
handling of the difference in 𝐼𝑙 and 𝐼𝑟. The Bloom filters of 𝑗 can be computed as 𝐵𝑛,𝑗 = 𝐵𝑛,𝑙 | 𝐵𝑛,𝑟 where
𝐵𝑛,. is considered as all zeros if the index is undefined. Since Bloom filters only change their bits from
0 to 1, a bit wise-or suffices to combine them. Initially 𝐼𝑗 = 𝐼𝑙 ∩ 𝐼𝑟, and each element in 𝐼𝑙 △ 𝐼𝑟 that has a
tag that is not in 𝐵𝑗 is also added to 𝐼𝑗. The idea is that if a (𝑒, 𝑡) pair is in one of 𝐼𝑙 or 𝐼𝑟, then it is either
a new element or it was removed. Since removed elements should be present in 𝐵𝑗, they are omitted
from 𝐼𝑗. The bit wise-or of two Bloom filters implies the condition that both Bloom filters are based on
identical parameters. So when growing the list of Bloom filters, there should be a deterministic process
to set the parameters of the next Bloom filter. This ensures that when two or more replicas concurrently
add a new Bloom filter, the new Bloom filters are compatible for merging. A simple strategy could be to
double the capacity compared to the last Bloom Filter, but depending on the application other growth
factors or curves could be more efficient.
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Figure 4.3: Example of joining two BloomCRDT states.

An example of a BloomCRDT join is shown in Figure 4.3. Here BloomCRDTs 𝑙 and 𝑟 are joined and
result in BloomCRDT 𝑗. The symmetric difference 𝐼𝑙 △𝐼𝑟 reveals that (𝑒2, 𝑡2) and (𝑒3, 𝑡3) are not in both
states and should thus be checked against the Bloom filter. In this case (𝑒3, 𝑡3) is a new element since
its tag is not in the Bloom filters and its pair is thus added to 𝐼𝑗. However 𝑡2 is in the Bloom filter, so its
pair is omitted from 𝐼𝑗. The resulting state 𝑗 captures all information in both input states and is thus a
join in the CRDT semi-lattice sense. The state 𝑗 orders greater on the semi-lattice than both 𝑙 and 𝑟.

With the join algorithm as described, there is a complicating factor that need to be considered when
using BloomCRDT. If many deletes are being processed concurrently it is possible that a subsequent
join pushes a Bloom filter over its designated capacity. Thus each BloomCRDT should have a soft limit
on the number of elements in each of the Bloom filters. The soft limit should be the floor of designed
capacity of the Bloom filter minus the global rate of distinct elements removed multiplied by the time
to global convergence. For example, if a Bloom filter is designed to hold 20 elements, the global
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removal rate is 0.2Hz and the time to global convergence is 17 seconds, then the soft limit would be
⌊20−0.2 ∗ 17⌋ = 16. When reaching this soft limit a BloomCRDT should stop adding to the Bloom filter
and add a new one, with the idea that the remaining space in the Bloom filter could be filled up by deletes
that are still propagating. Estimations of the variables are obviously implementation dependent, and
could be set at design time or set at run-time dynamically. Moreover exceeding the designed capacity
of a Bloom filter is not automatically a problem it only slightly increases the chance of a false positive.

4.3. The Conflict Free R-Tree
The Conflict Free R-Tree (or CFRT) is a novel data structure that is composed of many BloomCRDTs,
allowing it to scale far beyond what a single BloomCRDT could practically contain. The BloomCRDT
behaves much like a typical set with linear computational complexity in insert, lookup and remove
operations. To support larger datasets a lower complexity is required, which implies ordered elements.
For example, a remove operation will need to examine every element if the set is unordered. Ordering
elements guides the operations and reduces computational complexity through this. There are many
possible data structures that use ordering to reduce complexity and that could be formed by composing
several BloomCRDT sets. For example BloomCRDTs could be composed to form a DHT or a skip list.
When composing BloomCRDTs the most difficult part is correctly maintaining the links between the
BloomCRDTs (explained at end of Section 4.3.2). A classic index tree structure provides ordering on
the contained elements and a low number of links compared to other solutions.

4.3.1. The R-Tree
The R-Tree [23] is similar to the well known B-Tree, as used in Merkle Search Tree described in Section
2.5, but has different characteristics. The R-Tree is an index on a key space K such that it can efficiently
𝑎𝑑𝑑(𝑘), 𝑙𝑜𝑜𝑘𝑢𝑝(𝑘) and 𝑟𝑒𝑚𝑜𝑣𝑒(𝑘) where 𝑘 ∈ K. The central idea is to build a tree that labels its edges
with a range on K that indicates the range of keys that can be found in the sub tree that the edge
points to. Walking the tree from root towards leaf nodes should result in an ever narrower range. The
R-Tree nodes typically contain many edges towards children, but the fan-out factor is implementation
dependent. Figure 4.4 shows an example of a R-Tree.

84 9272 65 7637 40 4216 172 5 11

[72, 76] [84, 92][2, 11] [16, 17] [37, 42]

[2, 42] [72, 92]

root

Figure 4.4: A R-Tree where each edge is labeled with a range to indicate the range of keys that are contained in the child .

The R-Tree starts as a single node. Entries get added and at some point the node decides it is too
full and needs to split. So there is a limit on growth after which a node will be considered full. When a
node detects that it is full it splits into two nodes and informs the parent of this change. The parent then
adds an entry to register the new child. This in turn can cause the parent to become too full and split.
This splitting can proceed up the tree all the way to the root node. If the root node splits, it creates a
new node that becomes the new root of the tree and the parent of the old root. The inverse of splitting
can also happen: if a node contains only a few entries, it can be merged with a sibling. A sibling is
selected and the entries are transferred to this sibling. The node is removed and the parent is updated
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to remove the corresponding child entry. If the root node has only one child, that child becomes the
new tree root and the old root is removed. If enough entries are removed, the tree can collapse all the
way down to a single node.

This scheme is very robust. It does not matter how a node is split, its entries could be randomly
distributed over the old and the new node and the R-Tree will still be consistent. Similarly the sibling
selected for merging does not matter, any sibling is valid and results in a consistent tree. The cost of
this imprecise work is efficiency. The random split and merge strategies result in children overlapping
the range of the parent almost fully. This requires a lookup to visit most of the nodes in the R-Tree,
effectively a complicated scheme for sequential scan. The average fraction of overlap between children
is a well known (and studied) performance characteristic of R-Trees. Any overlap that can be avoided
will improve the efficiency of a lookup.

The mechanic of splitting and merging is all very similar to a regular B-Tree so what justifies the
storage cost of ranges on K as opposed to just elements from K? The R-Tree can, in contrast to the
B-Tree, contain children whose ranges overlap without affecting the consistency of the tree as a whole.
In a B-Tree any key in an interior node serves to direct algorithms that traverse the tree to one of the
children at either side of the key. This implicitly bounds the key space range of children, but cannot
express children with overlapping ranges. The R-tree explicitly tracks the range of children and is thus
able to express overlapping children, at a cost in storage since each child requires two bounds from K.

4.3.2. Structure of CFRT
Since the R-Tree is tolerant of overlapping children, this provides a suitable data structure to organize
the linking of BloomCRDTs. Each node of the Conflict Free R-Tree is backed by a BloomCRDT, and
peers only need to replicate BloomCRDTs they are interrested in. It is reminiscent of the MST, but the
MST is not based on a CRDT for the actual tree nodes and is grow-only. Moreover the MST is modeled
after a B-Tree but that is an unsuitable choice in the context of concurrency. If replicas independently
decide to split a tree node then without coordination there is no consensus on how the elements are
divided. Since building consensus is contrary to the idea of CRDTs, the only other solution is to deal
with the conflicting splits that will happen. The B-Tree is not able to express such conflicting splits, but
the R-Tree is uniquely suited to this situation.

In order to use a BloomCRDT for each tree node, there must be a mapping of R-Tree node entries
to BloomCRDT set elements. Entries are be formed as triples of the form 𝑒 = (𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥 , 𝑣). The 𝑘𝑚𝑖𝑛
and 𝑘𝑚𝑎𝑥 indicate a range in K covered by the entry. When 𝑘𝑚𝑖𝑛 = 𝑘𝑚𝑎𝑥 this indicates a leaf value, and
when 𝑘𝑚𝑖𝑛 ≠ 𝑘𝑚𝑎𝑥 this indicated a child reference. In the case of a leaf value, 𝑣 is the value associated
with the key 𝑘𝑚𝑖𝑛. In the case of a child reference, 𝑣 is a global identifier of another BloomCRDT that
can be resolved to produce a local replica. Furthermore, a special entry is added to each BloomCRDT
of the form 𝑒 = (”𝑝𝑎𝑟𝑒𝑛𝑡”, ”𝑝𝑎𝑟𝑒𝑛𝑡”, 𝑝) where 𝑝 is the global identifier of the node’s parent. Figure 4.5
shows an example of R-Tree entries mapped to BloomCRDT set elements for each node.
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Figure 4.5: Example structure of a CFRT, showing the mapping onto BloomCRDTs

In addition to mapping the R-Tree node entries onto BloomCRDT set elements, the CFRT also
needs a specification for its three basic operations: 𝑎𝑑𝑑(𝑘, 𝑣), 𝑙𝑜𝑜𝑘𝑢𝑝(𝑘) and 𝑟𝑒𝑚𝑜𝑣𝑒(𝑘), and for its
internal operations 𝑠𝑝𝑙𝑖𝑡() and 𝑚𝑒𝑟𝑔𝑒().
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• 𝑙𝑜𝑜𝑘𝑢𝑝(𝑘) The lookup function is straightforward. Given a tree node, for each entry (𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥 , 𝑣)
that satisfies 𝑘𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥, return 𝑣 if it is a leaf value and otherwise recurs to the BloomCRDT
identified by 𝑣.

• 𝑎𝑑𝑑(𝑘, 𝑣) The add function descends the CFRT identical to the lookup function, but it can run
into the situation that zero or multiple entries satisfy 𝑘𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥. If zero entries satisfy
the condition the add function could select any child to descend, but to reduce the potential for
overlap and the resulting reduced performance, the child that should be selected has the smallest
increase in range to accommodate 𝑘. If multiple entries satisfy the condition, choose one. When
at a leaf node, add entry (𝑘, 𝑘, 𝑣) to the node. While unwinding the recursion stack, each node
should update its entry in its parent to reflect any changes to the range of the child.

• 𝑟𝑒𝑚𝑜𝑣𝑒(𝑘) The remove function descends the CFRT identical to the lookup function. If in any
node no entry satisfies 𝑘𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥, then 𝑘 is not in the CFRT. When at a leaf node, remove
any entry that satisfies the condition. While unwinding the recursion stack, each node should
update its entry in its parent to reflect any changes to the range of the child.

• 𝑠𝑝𝑙𝑖𝑡() To split a node (𝑛), select the median (𝑚) of all 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 values of all entries in
𝑛. For each entry in 𝑛, decide if it orders less or greater than 𝑚. For entries that overlap 𝑚, so
𝑘𝑚𝑖𝑛 ≤ 𝑚 ≤ 𝑘𝑚𝑎𝑥, if 𝑚 is closer to 𝑘𝑚𝑖𝑛 than to 𝑘𝑚𝑎𝑥 the entry orders less, otherwise it orders
greater. If the distances are equal, choose less or greater at random. Create a new CFRT node
𝑛′ and add to it all entries that ordered greater than 𝑚. Update the parent of 𝑛 with the range and
id of 𝑛′. Remove from 𝑛 all entries that ordered greater than 𝑚. Update the parent of 𝑛 with the
new range of 𝑛. If the transferred entries where not leaf values, update the parent references of
the nodes identified by those entries from 𝑛 to 𝑛′.

• 𝑚𝑒𝑟𝑔𝑒() To merge two sibling nodes (𝑛 and 𝑛′), add all entries from 𝑛′ to 𝑛. Update the parent
of 𝑛 with the new range of 𝑛. From the parent of 𝑛′ remove entries where 𝑣 identifies 𝑛′.

There is however one caveat with the system outlined above. Assume a node splits (or merges)
and moves a portion of its children to a new node, then the children will need to be informed of their
new parent. However there is no way to atomically update all the replicas of each child node, since
the parent reference is stored in a BloomCRDT entry. In fact, in the case that the parent is split by
multiple nodes concurrently the child’s parent pointer is updated concurrently and points to multiple
new parents. There are two solutions to manage the parent/child relationship: one is to work without
parent pointers at all, and the second is to simply allow multiple parents for each node. When working
without a parent pointer, the parent node would need to observe the child for modifications and update
its entries accordingly. However after a node splits, the parent has no way to discover the newly created
siblings and would thus require sibling pointers on each node to aid in discovery. These sibling pointers
have problems similar to the parent pointer. Also without parent pointers the immediate propagation
of information towards the root is interrupted. Suppose a split would propagate all the way up to the
root, then at each layer it has to pass the propagation has to wait for the parent to observe the split.
The second way to manage the parent/child relationship is to simply allow the child to point to multiple
parents. Both mechanisms result in the child being referred to by multiple parents. This type of R-Tree
is called a R+-tree [43], and even though this forms a Directed Acyclic Graph this does not violate any
R-Tree constraints. This does obviously introduce overlap, since all parents must include the range of
the child.

4.3.3. Checking for optimizations
So far the definition of the CFRT had been straightforward, but the observant reader might have already
wondered, what if two replicas concurrently 𝑠𝑝𝑙𝑖𝑡() a node? The parent will contain three or more
entries that represent overlapping child ranges. This is where the R-tree has a clear advantage over
the B-tree, since it can express overlapping ranges of children while remaining consistent. The flow of
events and the resulting state is exemplified in Figure 4.6. A concurrent 𝑎𝑑𝑑() leads to a concurrent
𝑠𝑝𝑙𝑖𝑡(). The adds have introduced entries at different positions in the key space, so the split will not use
the same median. Since the CFRT is composed of BloomCRDTs at each tree node, the BloomCRDTs
will join their states and eventually settle. After the tree nodes have joined their states the CFRT
contains overlapping child ranges in the root node, but the data structure is still consistent.
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Figure 4.6: Example of CFRT concurrent 𝑠𝑝𝑙𝑖𝑡().

The CFRT could be left in this state with the hope that adds/removes will, over time, naturally reduce
the overlap. However reduced overlap can also be actively pursued by means of a periodic 𝑐ℎ𝑒𝑐𝑘()
function. This active restructuring of a R-Tree is the principle behind the R*-tree [8] and can result in
improved efficiency. Active restructuring also means that each BloomCRDT is likely to be removed at
some point, thus preventing the infinite growth of its Bloom filters. Furthermore, the 𝑐ℎ𝑒𝑐𝑘() function
can test for some other structural optimizations that can be applied to the CFRT.

• Check parent-child links As explained in Section 4.3.2, child nodes can have multiple parents.
After the joining process of BloomCRDTs the parent/child links can become outdated. Removing
superfluous parent and child links helps to reduce the overlap between nodes by shrinking ranges.

• Check merge/split threshold R-Tree nodes in traditional databases have a hard limit on their
size, often aligned to a memory or disk page size. Thus an 𝑎𝑑𝑑() that overflows a node imme-
diately triggers a split. For the CFRT there is no such limit, allowing a decoupling of the decision
to split/merge from the add/remove logic. The 𝑐ℎ𝑒𝑐𝑘() function is an excellent place to do this
since its periodic execution allows batching additions and removes.

• Check entry in parent A concurrent split can result in multiple entries in a single parent pointing
to the same child node. During the periodic check, a child node should check for and correct this
condition.

• Check (large) overlapping children If there are entries in a node that have an overlapping range
then these could be merged. This is a natural result of a concurrent split of a child node, that will
likely produce multiple siblings that overlap a lot due to duplicate contents. Merging the siblings
that overlap the most removes duplicated entries. There is however also the situation that the
overlap in range is large, but the number of duplicate items is low. In such cases, the merge can
result in a node that is over the split threshold and will split again, with a more favorable split.

As an example of how the 𝑐ℎ𝑒𝑐𝑘() function fixes inconsistencies consider Figure 4.7. It starts with
the last state from Figure 4.6. This state shows a double reference for node A and shows that ranges
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[2, 11] [37, 42]
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A
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E
11 13 16

[2, 5] [37, 42]
B

[13, 16]

check()

[2, 5]

Figure 4.7: Example of CFRT 𝑐ℎ𝑒𝑐𝑘() function correcting overlap in the ranges spanned by its entries.

[11, 16] and [13, 16] overlap. The only reason that the splits are not identical is that the two concurrent
adds affected the selection of the median. In practical implementations a node contains more than
three entries, where as in this example entries 2 and 16 represent larger sequences of entries. So in
practice, the overlap resulting from concurrent updates would be far more dramatic. The check function
fixes the double pointer andmerges node D into node E. The result is an optimized CFRTwhere overlap
is avoided.





5
Evaluation

This chapter provides implementation details on the BloomCRDT and CFRT data structures, along with
an experimental evaluation of these solutions.

5.1. Implementation
The system model (see Section 4.1) requires the use of a communication middle-ware library that pro-
vides the required features. In this case PyIpv8 [50] was selected because it provides the required
features, is very flexible and works well with the Gumby [49] experimental framework. Gumby allows
developers to quickly setup and run experiments in distributed environments. Since these components
need to be extended, this means the experiments are programmed in the Python programming lan-
guage. To shorten development time, a search was performed for Python compatible CRDT libraries
and off-the-shelf components. Below is a list of existing solutions and their technical characteristics.

• https://github.com/ericmoritz/crdt, up to 2013. Based on Python 2, whereas PyIpv8 is based on
Python 3. The CRDT base class only offers two convenience methods / prototypes for obtaining
a serialized state.

• https://github.com/kishore-narendran/crdt-py, up to 2016. Uses CRDTs in Redis as multi-valued
registers. This is not the intended application domain of BloomCRDT and CFRT.

• https://github.com/anshulahuja98/Python3-crdt, current. Active. No base classes to inherit for
BloomCRDT and CFRT.

• https://github.com/merchise/xotl.crdt, up to 2020 (Dec). Offers a base class that has 3 extra lines
to (un)pickle CRDTs.

All modules that provide Python CRDT implementations are simple implementations of the CRDT
primitives from the original CRDT tech report: the G-Set, Counter, 2P-Set, 2P2P-graph, etc. These
primitives are not directly useful for BloomCRDT nor for CFRT, any further usefulness is a few lines of
code to (un)pickle CRDT state. The evaluated libraries do not provide the needed functionality, and
extending them would be sub-optimal time management. Therefore, BloomCRDT and the CFRT are
implemented from scratch in the Python programming language.

The Python code written for this work consists of several Python modules. Figure 5.1 shows the
architecture and relations between these modules.

• CRDT set primitives This part only implements the algorithm for in-process use.

– BloomCRDT Including an implementation of the classic Bloom filter. The BloomCRDT al-
gorithm is fairly simple and the expressiveness of Python means BloomCRDT uses just 127
Lines-of-Code (LoC), slightly under half of which is the Bloom filter implementation. The
initial implementation was straightforward but inefficient in computing hashes for the Bloom
filter. This became a problem during the experimental phase, since BloomCRDT would
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BloomCRDT

- entries : set<object>
- bloomFilters : list<BloomFilter>

ORSet

- inserted : set<object>
- removed : set<object>

OptORSet

- entries : set<object>
- intervalVersionVector :
    map<str, list<tuple<int, int>>> 

«interface»
CrdtSet

+ add(object) : None
+ remove(object) : None
+ lookup(object) : boolean
+ join(CrdtSet) : None

BloomFilter

- bits : bytearray
- falsePositiveRate : double
- estimatedElementCount : int

CrdtCommunity

- replica : CrdtSet

+ broadcastState() : None
+ receiveState(CrdtSet) : None

pyipv8.community
1..n 1

CfrtNode

- state : CrdtSet
- threshold : int

+ add(key: str, value: str) : None
+ remove(key: str) : None
+ lookup(key: str) : str
+ check() : None

CrdtGumbyModule

- community : CrdtCommunity

... scenario methods ...

CfrtGumbyModule

- treeNodes : CfrtNode
- community : CrdtCommunity

... scenario methods ...

Experiment Modules

Figure 5.1: Diagram of implementation and experimentation architecture.

become CPU-bound much sooner than other algorithms. After profiling, the problem was
identified and a more efficient method of computing hashes was implemented. Instead of
calculating multiple full hashes, a single hash state is incrementally updated and at each
step a hash is produced. Apart from this, no optimization was done. In specific usage sce-
narios there is room for further optimization. For example when a BloomCRDT contains only
key/value pairs, the reliance on Python’s 𝑠𝑒𝑡() primitive to store them is sub-optimal.

– Classic OR-Set Implemented as described in [45] is very simple at just 43 LoC, most of
which is Python boilerplate and convenience methods.

– OptOR-Set Or the Optimized OR-Set Without Ordering Constraints as described in [34]. It
uses 88 LoC, most of which go towards logic for collapsing version ranges.

• CFRT Node Uses one instance of BloomCRDT for each R-Tree node. For 328 LoC the imple-
mentation is significantly more complex than BloomCRDT and the other CRDT set primitives. Of
particular note are the separation of 𝑐ℎ𝑒𝑐𝑘() and the randomized split/merge thresholds. The
𝑐ℎ𝑒𝑐𝑘() method is only directly executed when absolutely necessary. In addition to not being
cheap to execute, it offers the chance to coalesce multiple 𝑠𝑝𝑙𝑖𝑡() and𝑚𝑒𝑟𝑔𝑒() operations. Each
instance of a CFRT node is provided with a randomized threshold for merging and splitting. The
rationale is that this reduces the probability that peers concurrently 𝑠𝑝𝑙𝑖𝑡() or 𝑚𝑒𝑟𝑔𝑒() a node.
While CFRT is tolerant of such an event, it is more efficient to reduce this occurrence. The
ranges for the random thresholds are set such that a split produces two nodes that cannot cross
the merge threshold of another peer and vice versa.

• CRDT PyIpv8 Community This module is responsible for sending a CRDT’s state to other peers.
All CRDT set implementations (BloomCRDT, OR-Set and OptOR-Set) are state-based CRDTs
that expose a common set of methods. This allows the CRDT community to be agnostic as to the
actual type of CRDT being used. The CRDT community thus holds a reference to an instance of
any of the CRDT set implementations. When requested it will serialize (pickle) the local CRDT
instance and send it to up to 10 peers. When a CRDT state message arrives from another peer,
the CRDT community deserializes the CRDT set instance contained in the message and provides
it as an argument to the 𝑗𝑜𝑖𝑛() function of the local replica. During experimentation it was quickly
obvious that the 64KByte limit on UDP packets used by PyIpv8 could be exceeded. To overcome
this limit a very rudimentary fragmentation scheme was added to the CRDT community. This
raises the message size limit enough to allow the experiments to run. This brings the total LoC
for the CRDT community to 110.

• CRDT Gumby Module manages the CRDT PyIpv8 Community based on Gumby scenario di-
rectives. It exposes several methods to control concurrent tasks in a Gumby scenario, 𝑎𝑑𝑑(),
𝑟𝑒𝑚𝑜𝑣𝑒() and 𝑗𝑜𝑖𝑛(), with configurable parameters to simulate different workloads. Note that it
is the 𝑗𝑜𝑖𝑛() task that ultimately initiates the CRDT Community to broadcast its state. An alterna-
tive would be to have the CRDT Community as an observer of its CRDT set, but this precludes
the option of batching several updates in a single state broadcast. A final task 𝑠𝑡𝑎𝑡𝑠() outputs
statistics gathered by the CRDT community that are later plotted in graphs. The CRDT Gumby
module also allows switching the type of CRDT set used by the CRDT Community.
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• CFRT Gumby module leverages the CRDT PyIpv8 Community to synchronize the BloomCRDT
instances contained in CFRT Nodes. It is very similar to the CRDT Gumby module however: it
tracks different statistics, manages the reference to the CFRT root node and modifies the CFRT
with key/value pairs as opposed to random elements like the CRDT Gumby module uses.

The code as used in the experiments is public and is published online1. Unless otherwise noted it is as-
sumed that BloomCRDT initialized the Bloom filter with 𝑝(𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 1−8 and an expectation of
500 elements. The CRDT Community aims to maintain 10 connections to other peers for broadcasting
replica states. These values are suitable to demonstrate the effectiveness of BloomCRDT and CFRT
in an experimental setting. Unless otherwise noted all experiments are run on the DAS5 [2] TU Delft
cluster.

5.2. BloomCRDT Experiments
Section 4.2 predicts two advantages of the BloomCRDT that should be confirmed by experiments.
Specifically, improved space complexity when removing from the set and usability in a P2P setting.

1. Does BloomCRDT provide a reasonable space complexity when the workload includes 𝑑𝑒𝑙𝑒𝑡𝑒()?
The space complexity is very important since, as with all state-based CRDTs, the whole state
has to be communicated to other peers in order for changes to propagate. Thus a lower space
complexity requires less bandwidth and can reduce the need for message fragementation.

2. Does BloomCRDT provide a reasonable space complexity when the network has peer identity
churn? If BloomCRDT is affected by peer identity churn then it could grow to infeasible sizes in
open P2P environments.

To answer these questions, BloomCRDT is compared to the OR-Set and the OptOR-Set under various
conditions. The OR-Set was chosen as a baseline since it is the design that BloomCRDT is derived
from. The OptOR-Set was chosen because: it has set semantics as opposed to the list semantics of
many other CRDTs; it has a state-based CRDT mode of operation; it is an advanced design; it is also a
derivative of the OR-Set; and it shows some algorithmic similarity to BloomCRDT in the 𝑗𝑜𝑖𝑛() function.

5.2.1. BloomCRDT 𝑑𝑒𝑙𝑒𝑡𝑒() workload storage cost
The hypothesis is that BloomCRDT has an acceptable space complexity for a workload that includes
𝑑𝑒𝑙𝑒𝑡𝑒(). Since BloomCRDT does not keep the full elements (nor tags) of deleted elements it should
have a lower space complexity compared to the OR-Set. In fact for the given false positive probability,
a Bloom filter should use ≈38.34 bits per element. An OR-Set would need a pointer to each deleted
element which uses 64-bits on current hardware. This is almost double the bits used by a BloomFil-
ter, and does not include the actual bytes that comprise the element. So the BloomCRDT should be
superior, but by how much? In contrast, the OptOR-Set actively works to reduce the size of its state
and as such its space complexity should be constant with respect to the number of 𝑑𝑒𝑙𝑒𝑡𝑒() operations
performed.

Experiment Setup To test the space complexity of BloomCRDT, the standard OR-Set and the
OptOR-Set with respect to the number of 𝑑𝑒𝑙𝑒𝑡𝑒() operations, an experiment is setup as follows. A
variable number (𝑛) of peers is started. Each peer holds one replica of a BloomCRDT, OR-Set or
OptOR-Set. All sets are preloaded with 512 randomly generated elements, in this case 128-bit integers.
During the whole experiment peers send their state to up to 10 other peers and 𝑗𝑜𝑖𝑛() this state every
two seconds. At the start, the sets are allotted 10 seconds to reach eventual consistency. After that, for
110 seconds, each replica starts two recurring tasks to concurrently add and remove a random element
every second. Subsequently the peers are allotted 10 seconds to join their states and reach eventual
consistency again. During the experiment a record is kept of: the number of bytes used to store a
replica, the time uses to 𝑗𝑜𝑖𝑛() exchanged states and the time used for deserialization of the replicas.

The recurring add and remove tasks aim to keep the number of elements in the set around 512. This
is to ensure that the sizemeasurement onlymeasures the effect of element churn in eachCRDT set type
and not increased or decreased element count. The number of bytes used is measured with Python’s
pickle module. This is because it is difficult to have Python produce an accurate count of memory
1https://github.com/Captain-Coder/gumby/tree/cfrt
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(b) 𝑛 = 64
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(c) 𝑛 = 256

Figure 5.2: Space complexity of BloomCRDT, OR-Set and OptOR-Set
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(b) 𝑛 = 64
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(c) 𝑛 = 256

Figure 5.3: Time complexity (Deserialization) of BloomCRDT, OR-Set and OptOR-Set

bytes used for a given object graph. The pickle methods are not a perfectly accurate measure of the
memory bytes used for an object graph. Pickle will dereference pointers and insert back references
in the byte stream if it encounters a pointer to a previously serialized object. Also pickle does not
include padding that a Python interpreter would use to align object members in memory. This means
the number of bytes produced by pickle will likely be less than actual memory bytes used. However
the pickle methods are also used to serialize replica state when communicating with other peers, so
using the pickle method gives an accurate measure of message space complexity in regards to the
most limiting factor: message size.

Results Figure 5.2 shows the space complexity results of the experiment for various values of 𝑛.
Each graph shows the time into the experiment in seconds progressing on the horizontal axis and
the average measured replica size in KBytes on the vertical axis. Within each graph a distinction is
made between BloomCRDT, the OR-Set and the OptOR-Set. The results clearly show the expected
benefit of BloomCRDT over the OR-Set. In this case the difference in message complexity is around
one order of magnitude. However a practical use of CRDTs might very well use more than 16 bytes
of information per element as was used in this experiment. So this result is indicative of the lower
bound on space complexity improvement of BloomCRDT over the OR-Set. The OptOR-Set shows the
expected behavior and is able to collapse metadata and maintain a constant space complexity with
respect to the number of elements deleted.

In the interval between broadcasting replica states, the CRDT Community can expect to receive
one replica state from each peer it is connected to. As previously described this number is set to 10
in these experiments. The process of receiving and joining a CRDT state should be fast enough to
keep up with the flow of messages. Figure 5.3 shows the deserialization time complexity results of
the experiment for various values of 𝑛. Each graph shows the time into the experiment in seconds
progressing on the horizontal axis and the average time in seconds taken for replica deserialization on
the vertical axis. Within each graph a distinction is made between BloomCRDT, the OR-Set and the
OptOR-Set. The effect of a reduced space complexity of BloomCRDT and the OptOR-Set compared to
the OR-Set is also apparent in the time used to deserialize replica states. This is in part due to to simply
more bytes to process for the OR-Set instances, but also the structure of the OR-Set. It consists almost
entirely of small entities like tuples and (random) integers. Each such entity will add extra overhead to
the deserialization time. In contrast, the BloomCRDT set has a structure where most bytes are in large
arrays that can be efficiently processed. Even though the state is bigger, it still deserializes as fast as
the OptOR-Set. Again, the OptOR-Set is able to collapse its metadata state and therefore is able to
maintain a very small state. Even though its state is also composed of many small entities, it is still
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(b) 𝑛 = 64
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(c) 𝑛 = 256

Figure 5.4: Time complexity (Join) of BloomCRDT, OR-Set and OptOR-Set
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(c) 𝑛 = 256

Figure 5.5: Time complexity total for each message in BloomCRDT, OR-Set and OptOR-Set

very efficient when deserializing.
Figure 5.4 shows the time complexity results of the actual merge algorithm for various values of

𝑛. Each graph shows the time into the experiment in seconds progressing on the horizontal axis and
the average time in seconds taken for the 𝑗𝑜𝑖𝑛() algorithm on the vertical axis. Within each graph
a distinction is made between BloomCRDT, the OR-Set and the OptOR-Set. Clearly the join of two
replica states is more complex to compute for BloomCRDT than for OR-Set and OptOR-Set. This is
because the BloomCRDT has to compute hashes for new elements. The OR-Set also shows some
increase in the time taken to join two states. This is due to the nature of the Python 𝑠𝑒𝑡() primitive
which, for each added element, has to check if the element is already a member of the set.

Figure 5.5 shows the sum of figures 5.4 and 5.3 for various values of 𝑛. Both the deserialization
and join have to be performed once for each message received. After examining the steps separately
this graph shows the combined result. Depending on the situation, BloomCRDT and OR-Set have
a comparable time complexity, with BloomCRDT being more favorable as more deletes happen over
time.

5.2.2. BloomCRDT P2P tolerance
Given the previous experiment, one could conclude that the OptOR-set is a superior solution that per-
forms better than BloomCRDT and the OR-Set. Other solutions, like Redis [40], Riak [5] and Dot-
tedDB [21] should show results similar to the OptOR-Set since they all work to collapse state size
through garbage collection. All these solutions require either a limited number of peers, or keep per-
sistent information about other peers in the network. How does BloomCRDT compare to such systems
when there is peer churn in a P2P network? Peer identities come and go over time, and keeping track
of them all could inflate a replica’s state size. Using the OptOR-Set as an example of systems that keep
per peer state, an experiment was performed to investigate the effect of peer identities over time on the
replica state size. The experimental setup is identical to Section 5.2.1 with the only change being an
additional recurring task that changes the identity of each replica every second to simulate peer churn.
In this experiment 𝑛 is not varied and fixed to 𝑛 = 64.

Figure 5.6 shows the results of the experiment. As can be seen in Figure 5.6a, the OptOR-Set
trades the regular OR-Set’s linear space complexity with respect to the number of deletes for a linear
space complexity with respect to the number of peer identities encountered. In this experiment the
OptOR-Set encounters 7040 identities (1 identity per peer per second ∗ 64 peers ∗ 110 seconds) and
shows a space complexity for this similar to the regular OR-Set. The time complexity of the OptOR-Set
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(b) Deserialization time of CRDTs
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(c) 𝑗𝑜𝑖𝑛() time of CRDTs
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(d) Total time for each CRDT message

Figure 5.6: Experiment comparing BloomCRDT, OR-Set and OptOR-Set with network churn

also shows the same trends as the OR-Set. P2P networks can have millions of identities over the
lifetime of the network. So clearly the OptOR-Set is not well suited to a P2P environment. On the other
hand, Figure 5.6 shows that BloomCRDT is unaffected by the number of encountered peer identities.
So BloomCRDT is suitable for P2P networks with peer churn that require a CRDT with set-semantics
that also supports deletes.

5.3. CFRT Experiments
The motivation for the design of CFRT is that BloomCRDT can only scale linearly with respect to the
number of elements it contains. BloomCRDT is atomic and it can only be distributed as an indivisible
state. So if, for example, a use-case arises where an application wants to store a million torrents and
magnet links in a BloomCRDT, then this would work in theory. In practice users will probably not want
to wait while a gigabyte sized BloomCRDT state is downloaded.

5.3.1. Practical limits of BloomCRDT and CFRT
This experiment explores the practical limits of BloomCRDT and CFRT. Especially how they function
from the perspective of a new peer joining the network with the aim of adding a specific key/value pair.
To complete the 𝑎𝑑𝑑() the new peer will have to fetch a BloomCRDT or several CFRT nodes. The
number of fetched bytes directly translates to the time it takes to execute the operation. As already
found in experiment 5.2.1 a singleton BloomCRDT shows linear growth in state size on both add and
remove, and thus in bytes that new peers will have to exchange for an update. The CFRT, by nature
of most index trees, should show 𝑙𝑜𝑔𝑘 behavior for fetched bytes where 𝑘 is the fan out factor of the
tree nodes.

The setup of this experiment is as follows. A number (𝑛 = 16) of peers is started. Each peer
starts out with a replica of an empty BloomCRDT and an empty root CFRT node. To be able to test
BloomCRDT in an experiment with CFRT, the BloomCRDT replica is represented by a single CFRT
node with a split threshold at infinity. Since a single CFRT node contains a single BloomCRDT, setting
the infinite bound will keep the CFRT node from splitting. The CFRT code provides the necessary logic
to allow key/value pair manipulation in a BloomCRDT. For 110 seconds, each replica runs a recurring
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task to add random key/value pairs. Every two seconds replicas perform a 𝑐ℎ𝑒𝑐𝑘() on CFRT nodes
and subsequently exchange and 𝑗𝑜𝑖𝑛() all BloomCRDTs. During the experiment a record is kept of:
the number of CFRT nodes created, the number and size of CFRT nodes visited during each 𝑎𝑑𝑑(),
and the number of CFRT nodes that required a 𝑐ℎ𝑒𝑐𝑘().
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Figure 5.7: Scaling comparison of BloomCRDT to CFRT

Figure 5.7 shows the results of the experiment. Both figures have the time into experiment in
seconds on the horizontal axis. The first figure, 5.7a shows the counts of CFRT nodes. Note that
the vertical axis of this figure is 𝑙𝑜𝑔10(). The graph shows how many CFRT tree nodes are created
during the experiment. The graph also shows the number of nodes that each 𝑎𝑑𝑑() operation had to
fetch and the number of nodes that required a 𝑐ℎ𝑒𝑐𝑘(). The BloomCRDT is obviously limited to 1 node,
no splits or merges happen. The CFRT shows a linear growth in the total number of nodes created,
as is to be expected when adding at a constant rate and a limited number of entries per node. The
number of nodes fetched is the number of nodes that a new peer with no prior information would have
to retrieve to add a new value to the data structure. In the case of CFRT, it shows a 𝑙𝑜𝑔𝑘 relation to
the number of nodes in the CFRT tree and by extension, to the number of entries in the data structure.
The number of nodes that are checked also seems to show a 𝑙𝑜𝑔 relationship to the number of nodes
in the CFRT tree. The second Figure 5.7b shows the size in bytes of the CFRT nodes fetched and
checked. Again they reflect the 𝑙𝑜𝑔 nature of the CFRT, and the linear nature of the BloomCRDT. It
is clear that just after the first split is made, the CFRT is more efficient with bandwidth usage. In the
long run it should be expected that CFRT bandwidth usage scales much better than BloomCRDT with
respect to the number of entries.

5.3.2. Fault tolerance of CFRT
If the CFRT is to be a practical choice, it must show robustness and continue to function in spite of
faults. In distributed systems these faults can take many forms, but a common is dropped messages
due to network congestion or link failure. The next experiment aims to show that CFRT is indeed robust
against such failures. The experiment starts a number of peers (𝑛 = 10), initiates a CFRT root node and
allows time all peers to reach consistency. Then in 10 batches 200 key/values entries are randomized
and added to the CFRT by a single peer. After this, the 200 entries are removed from the CFRT in 10
batches by the same peer. During the process of adding and removing CFRT entries, all messages
have a uniform probability (𝑝) of being dropped. For each peer a plot is made of the number of entries
reachable in its CFRT replica. The experiment is repeated for different values of 𝑝. The idea is to test
the impulse response of the system. Given a unit of change does the system reach consistency and if
so, how long does it take to reach consistency? This experiment is small and was therefor not executed
on the DAS5.

Figure 5.8 shows the results of the experiment. The left column shows graphs for different values
of 𝑝 that count, for each peer, the number of CFRT key/value entries reachable from the root. The
red line, peer 1, is the peer that adds and removes CFRT entries. When all lines coincide with peer 1,
then the CFRT has distributed all information perfectly and all peers have reached consistency. The
difference of any peer and peer 1 is a measure of inconsistency. The right side column shows the
number of messages dropped and passed by the experimental framework. All figures have the time
into the experiment in seconds on the horizontal axis. Graphs 5.8a and 5.8b show the ideal baseline
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situation when 𝑝 = 0. There are some low dips; this is due to a tree structure change happening
concurrently with counting the number of reachable entries. Graphs 5.8c and 5.8d show the situation
for 𝑝 = 0.25. In this case CFRT manages to almost keep ideal performance, although the time to
convergence is slightly longer in some cases. At 𝑝 = 0.5 (graphs 5.8e and 5.8f) some peers are
noticeably slower to converge, especially when a split happens that is missed. In these cases the
number of entries in the tree appears to reduce temporarily. For practical scenarios the CFRT would
still be usable. Even at 𝑝 = 0.75 (graphs 5.8g and 5.8h) the peers roughly converge and would be able
to respond correctly to the vast majority of all user requests. Noteworthy is the number of messages
sent. For 𝑝 = 0 through 𝑝 = 0.75 the experiment sends around a thousand messages total regardless
of the percentage dropped. There is no increased number of messages to compensate for the dropped
messages. This is because if a message is lost between peers, the message at the next interval will
include all information that the dropped message attempted to send. So the amount of information
that is communicated per message increases as more messages are dropped. This comes at the cost
of time to convergence, as can be seen in the left hand column. It takes slightly longer for peers to
converge their state as 𝑝 becomes larger. At 𝑝 = 0.9 (graphs 5.8i and 5.8j) the CFRT breaks down and
no longer shows any practical level of convergence.

The breakdown at 𝑝 = 0.9 is mostly due to all new information from peer 1 being blocked. Like
a min-flow max-cut situation, the rest of the peers cannot know more than what peer 1 is able to get
through, and even then dissemination though the network is erratic. Another reason for the breakdown
is how the messaging is setup in the experiments. Only CFRT nodes that changed since, or as a result
of, the last 𝑗𝑜𝑖𝑛() interval are broadcast to other peers. Thus there is little redundancy in the sending
side to overcome faults. Even though networks with 90 percent message drop are not realistic, CFRT
can be made to work with them. If the messaging of peer 1 is altered to be more redundant such that
the changed state is ignored and the full state sent each 𝑗𝑜𝑖𝑛() interval, then the result is noticeably
different. Graph 5.9 shows that even with 𝑝 = 0.9 the CFRT can be made to work when given this
slightly altered messaging policy. The cost is more messages being sent, but that is difficult to avoid
given the value of 𝑝.

5.4. A practical application of CFRT
The previous sections have shown experimental results that confirm the theoretical benefits of the
CFRT. These experiments have been synthetic, each exploring how BloomCRDT and the CFRT per-
form in light of the theoretical problems identified in Section 3.1. However, Section 3.2 shows how a
practical application such as Tribler’s channels might experience the theoretical problems. To inves-
tigate if the CFRT retains its benefits when applied in a more realistic setting a further experiment is
needed. This experiment fills a CFRT with a realistic data set from Tribler’s Channels and measures
performance when querying the channel for specific keys. Performance in this context focuses on how
long it takes to display channel content from the time a user subscribes to a channel. This is a relevant
measure since Tribler aims to have a user experience similar to a Big-Tech media website.

A data set of torrents was obtained by starting a clean instance of Tribler and ordering the channels
descending by number of torrents contained. Next, the client was subscribed to subsequent channels
until the total number of torrents exceeded 1 million. Tribler was left to synchronize the subscribed
channels and was shutdown afterwards. The result of this protocol is a SQLite database file meta-
data.db that is filled with torrents. In this case the client was subscribed to the four biggest channels
and after two hours of synchronizing this resulted in a data set containing 1,198,638 torrents. The
database file size is 1,191,514,112 bytes which is about half of the 2GB expected in Section 3.2. How-
ever the selected Tribler channels only include a thumbnail image for the channel, not for every torrent.
The collected database contains a timestamp of the time each torrent was added locally and thus of
the time each torrent became visible to the user.

The experiment determines, for each torrent in the data set, how long it takes a new peer with
no prior knowledge to query for a specific torrent. In the case of Tribler, torrents become available
as the download of each channel’s torrent progresses. To compare this with the CFRT the following
experiment was performed. A peer initializes a new CFRT and loads it, in a random order, with all the
torrents from metadata.db. Then a second peer opens the data set and, again in a random order,
queries the CFRT of the first peer for each torrent. To perform such a query, the second peer first obtains
a replica of the tree root, determines the right child node(s), obtains a replica of said child node(s) and
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recurses until a leaf child node is examined for the queried torrent. A measurement is made of the time
it takes to query each torrent. For each torrent in the metadata.db database, there is a timestamp of
the time it was added. These timestamps are converted to time durations by calculating the difference
of each timestamp to the minimal timestamp. In effect setting the first torrents to 0 for Tribler. The
query timings of both Tribler and the CFRT are ordered from smallest (fastest) to largest (slowest) and
plotted. Due to time constraints this experiment was not performed on the DAS5 but on a workstation
(Intel Xeon E3-1275 v6 @ 3.80GHz with 32Gb ECC DDR4).

The result of this experiment is shown in Figure 5.10. The horizontal axis represents the torrents
in the data set. For each torrent the access time in seconds is plotted on the vertical axis. Note
that this graph has a 𝑙𝑜𝑔() distribution on the vertical axis. The result for Tribler shows some small
discontinuities, or jumps, in the vertical direction. As tribler downloads the channel’s torrent, pieces
may arrive out of order. This causes a stall in the processing of the channel torrent which is a sequential
process. The last torrent becomes available in Tribler in slightly less than two hours after starting the
channel synchronization. The slowest time for any query on the CFRT was 0.4 seconds. This was the
first query performed which had to fetch the root node and many interior nodes. At the fastest end of
the CFRT run there are lookups that are completed in sub-millisecond time. These are mostly in leaf
nodes that have already been replicated, and thus no messages need to be sent. The discontinuities
on the right side of the CFRT graph are harder to explain, but could be the result of python’s GIL
release/aquisition or OS context switching. Due to time constraints this could not be investigated further.
However, for the vast majority of torrents the CFRT implementation is atleas five orders of magnitude
faster than the current Channel implementation in Tribler. Using CFRTs in Tribler to maintain channels
should provide a far more snappy user experience.



38 5. Evaluation

0

50

100

150

200

0 100 200
Time into experiment (Seconds)

N
u

m
b

e
r 

o
f C

F
R

T
 e

n
tr

ie
s

Replica
1
2

3
4

5
6

7
8

9
10

(a) Total number of key/value entries in CFRT (𝑝 = 0)

0

1000

2000

0 100 200
Time into experiment (Seconds)

N
u

m
b

e
r 

o
f m

e
ss

a
g

e
s

Action Dropped Passed Passed+Dropped

(b) Average number of messages CFRT (𝑝 = 0)

0

50

100

150

200

0 100 200
Time into experiment (Seconds)

N
u

m
b

e
r 

o
f C

F
R

T
 e

n
tr

ie
s

Replica
1
2

3
4

5
6

7
8

9
10

(c) Total number of key/value entries in CFRT (𝑝 = 0.25)
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0

50

100

150

200

0 100 200
Time into experiment (Seconds)

N
u

m
b

e
r 

o
f C

F
R

T
 e

n
tr

ie
s

Replica
1
2

3
4

5
6

7
8

9
10

(g) Total number of key/value entries in CFRT (𝑝 = 0.75)
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Figure 5.8: Fault tolerance experiment of CFRT
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Figure 5.9: Fault tolerance experiment of CFRT with improved messaging policy
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6
Conclusion and further work

The CFRT and BloomCRDT have been designed and empirically investigated. Enough evidence has
been gathered to support the first conclusions, especially with respect to the stated problem and solution
criteria of Section 3.2.

6.1. Conclusions
Existing CRDTs have shortcomings that prevent their application in open P2P networks. Existing so-
lutions are grow-only in (meta)data or they require knowledge about the state of other peers. Further-
more, they push the full state to all peers, to the detriment of peers that are only interested in a particular
subset of data or peers that are low-powered. To address this, Section 3.2 introduced the criteria that
should be observed by any CRDT that aims to work in P2P networks. Based on this, the CFRT was
designed that should, together with BloomCRDT, meet the criteria.

The novel CRDT primitive with set semantics, BloomCRDT, has been designed as a state-based
CRDT. Also, it was shown to be invariant to the number of peer identities that have interacted with
it (see Section 5.2.2). BloomCRDT cannot be said to be free from unbounded growth: each deleted
item takes up a fixed number of bits. Fortunately this number of bits is affordable, and the set can be
filled and emptied several times before the deleted items have a big impact on the total state size of
BloomCRDT. However, BloomCRDT doesn’t scale to many entries very well. Since it is indivisible, a
large number of items also means a large state size and thus big network messages.

The CFRT was described as the composition of many BloomCRDT instances. It is structured as
a R-Tree and forms a key/value store. Users only need to fetch on the order of 𝑙𝑜𝑔(𝑘) bytes to add,
lookup or modify an entry, where 𝑘 is the number of entries in the whole CFRT. Since peers using
the CFRT decide in which direction to traverse the tree, the CFRT as a whole is not push based.
Furthermore, the periodic check function of the CFRT continually splits and merges nodes, implying
that the BloomCRDT underlying each node only sees a limited number of deletes before it is not needed
anymore. This means that any BloomCRDT used in CFRT is very unlikely to materialize its potential
unbounded growth in practice.

When used together BloomCRDT and CFRTmeet all the criteria of a CRDT that could work in a P2P
environment. There is potential of applying BloomCRDT and CFRT in a wide variety of applications.
Specifically, Tribler’s channels feature could be based on the CFRT, thereby enabling support for a
responsive user interface in channels with millions of torrents.

6.2. Further Research
Due to scope and time constraints not every aspect of BloomCRDT and the CFRT have been inves-
tigated. There is much more to investigate about the CFRT. Such as what is the lifetime of a CFRT
node/BloomCRDT set, and what is the usage of such a set? If there are outliers, BloomCRDTs that
exist for very long and see many deletes, then it is possible that the growth of BloomCRDT is more than
desirable. This is also very much depends on the type of workload. So another avenue for research is
to investigate the situation seen in Section 5.3.2, during fault conditions the messaging algorithm has
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a huge impact on the results. The decision of when to send the state to peers must strike a balance
between redundancy and efficiency.

On a more theoretical level, research can explore the key space used in the CFRT. R-Trees can
contain multi-dimensional keys, but does that translate to the CFRT without affecting validity? Since
the performance of a regular R-Tree relies heavily on avoiding overlapping child regions, what will
the performance of the CFRT be in such a scenario? Furthermore, what practical uses can multi-
dimensional keys in the CFRT enable?

The BloomCRDT also has some room for further engineering. By keeping a simple list of Bloom
Filters, each check has to pass all bloom filters. If the Bloom Filters could be arranged in a tree structure,
then perhaps this cost can be of a 𝑙𝑜𝑔() order instead of linear.

The last avenue of research that should be mentioned is an investigation into how the CFRT could
be integrated into Tribler to provide the backing storage for the channels feature. This is likely to bring
new insights into real world operation of the CFRT. Also, since BloomCRDT is a CRDT, it is very capable
of supporting new Tribler features like a collaborative metadata editor.
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