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Abstract
We study a generalization of the classic Spanning Tree problem that allows for a non-uniform
failure model. More precisely, edges are either safe or unsafe and we assume that failures only
affect unsafe edges. In Unweighted Flexible Graph Connectivity we are given an undirected
graph G = (V, E) in which the edge set E is partitioned into a set S of safe edges and a set U of unsafe
edges and the task is to find a set T of at most k edges such that T −{u} is connected and spans V for
any unsafe edge u ∈ T . Unweighted Flexible Graph Connectivity generalizes both Spanning
Tree and Hamiltonian Cycle. We study Unweighted Flexible Graph Connectivity in terms
of fixed-parameter tractability (FPT). We show an almost complete dichotomy on which parameters
lead to fixed-parameter tractability and which lead to hardness. To this end, we obtain FPT-time
algorithms with respect to the vertex deletion distance to cluster graphs and with respect to the
treewidth. By exploiting the close relationship to Hamiltonian Cycle, we show that FPT-time
algorithms for many smaller parameters are unlikely under standard parameterized complexity
assumptions. Regarding problem-specific parameters, we observe that Unweighted Flexible
Graph Connectivity admits an FPT-time algorithm when parameterized by the number of unsafe
edges. Furthermore, we investigate a below-upper-bound parameter for the number of edges of a
solution. We show that this parameter also leads to an FPT-time algorithm.
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4:2 Finding a Sparse Connected Spanning Subgraph in a Non-Uniform Failure Model

1 Introduction

Computing a spanning tree is a fundamental task in computer science with a huge variety of
applications in network design [14] and clustering problems [29]. In Spanning Tree, one is
given a graph G, and the aim is to find a set T ⊆ E(G) of minimal size such that each pair
of vertices in G is connected via edges in T . It is well known that Spanning Tree can be
solved in polynomial time [22, 25]. This classic spanning tree model has, however, a major
drawback: all edges are seen as equal. In many scenarios, for example in the construction of
supply chains [27], this is not sufficient: some connections might be more fragile than others.
To overcome this issue, several different network-design and connectivity problems are studied
with additional robustness constraints [13, 26]. In this work, we continue this line of research
and investigate a graph model in which the edge set is partitioned into safe edges S and
unsafe edges U [1, 2, 8]. In contrast to several other variants of robust connectivity, these
two edge types enable us to model a non-uniform failure scenario [1]. With these types at
hand, we can relax the model of a spanning tree in the sense that one unsafe edge may fail.
An edge set T of a graph G = (V, S, U) is an unsafe spanning connected subgraph if a) T is
spanning for V , and b) T − {e} is connected for each unsafe edge e ∈ T [1]. This leads to the
following problem:

Unweighted Flexible Graph Connectivity (UFGC)
Input: A graph G = (V, S, U) and an integer k.
Question: Is there an unsafe spanning connected subgraph T of G with |T | ≤ k?

In the following, we refer to T as a solution. UFGC generalizes several well-studied classic
graph problems. Examples include 2-Edge Connected Spanning Subgraph [20, 26]
(S = ∅) and Hamiltonian Cycle [3, 19] (S = ∅ and k = |V (G)|). Thus, in sharp contrast
to the classic Spanning tree problem, UFGC is NP-hard.

Related Work. If the graph is additionally equipped with an edge-cost function, the
corresponding problem, in which one aims to find a solution of minimum total weight, is
known as Flexible Graph Connectivity [1, 8]. Flexible Graph Connectivity is
mainly studied in terms of approximation: Adjiashvili et al. [1] provided a polynomial-time
2.527-approximation algorithm which was improved by Boyd et al. [8] to a polynomial-time
2-approximation. Recently, a generalization (p, q)-Flexible Graph Connectivity was
introduced [8] and studied in terms of approximation. In this model, up to p unsafe edges
may fail and the result shall be q-edge connected. Clearly, Flexible Graph Connectivity
is the special case where p = 1 and q = 1. Boyd et al. [8] provided a (q + 1)-approximation
for the case p = 1 and a O(q log(n)) approximation for the general case. For the special case
of p = 2, an improved approximation of O(q) was provided by Chekuri and Jain [9], and for
the special case of q = 1 a O(1) approximation was shown by Bansal et al. [6].

Our model with safe and unsafe edges is based on prior work by e.g. Adjiashvili et al.,
who studied the approximability of the classic (s, t)-Path and (s, t)-Flow problems in this
model [2]. Even previous to Adjiashvili et al. [2], some studies already indirectly investigated
problems in this setting: There have been some studies of classic graph-connectivity problems
where one wishes for the stronger requirement of 2-edge connectivity. In terms of our
setting, this corresponds to the case that all edges are unsafe. One prominent example is
the aforementioned 2-Edge Connected Spanning Subgraph [10, 21, 26]. There exists a
4/3-approximation [10, 21, 26], and an 6/5-approximation in cubic graphs [10]. Furthermore,
for its generalization q-Edge Connected Spanning Subgraph approximation algorithms
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of ratio 1+1/(2q)+O(1/(q2)) are known [17]. q-Edge Connected Spanning Subgraph is
also studied in terms of parameterized complexity: Basavaraju et al. [4] provided an FPT-time
algorithm with respect to the number of edges deleted from G to obtain a solution. A variant
of 2-Edge Connected Spanning Subgraph in digraphs was studied by Bang-Jensen and
Yeo [5]. They provided an FPT-time algorithm for a solution-size related parameter below
an upper bound.

Our Results. We study the parameterized complexity of UFGC with respect to many
natural parameters. We investigate problem specific and also structural graph parameters.
A first idea to solve UFGC might be the following: merge each safe component into a single
vertex by computing an arbitrary spanning tree of this component and then use existing
algorithms for 2-Edge Connected Spanning Subgraph to solve the remaining instance.
This approach, however, does not yield a minimal solution: Consider a C4 on unsafe edges
where we add one safe edge. Then, the unique minimal solution consists of all four unsafe
edges. Hence, we need new techniques to solve UFGC optimally.

In terms of problem specific parameters, we first study parameterization by the number |U |
of unsafe edges. We provide an FPT-time algorithm for |U | (Proposition 3.1), by exploiting
the fact that Disjoint Subgraphs admits an FPT-time algorithm. Second, we investigate
parameterizations above a lower bound and below an upper bound for the solution size. For
the former parameterization, we obtain hardness due to the connection to Hamiltonian
Cycle and for the latter we obtain an FPT-time algorithm (Theorem 3.2). Our algorithm
is inspired by an algorithm of Bang-Jensen and Yeo [5] for Minimum Spanning Strong
Subgraph. In this problem one is given a digraph D and one wants to find a minimum
spanning strong digraph of D. The main technical hurdle in our adaption is that in UFGC
we have two different edge types which have to be treated differently compared with the
problem studied by Bang-Jensen and Yeo [5].

We also study parameterization by structural graph parameters; see Figure 1 towards
a dichotomy for UFGC. For many parameters such as maximum degree and domination
number we obtain para-NP-hardness, due to the connection to Hamiltonian Cycle. For
other parameters, we obtain FPT-time algorithms. For example, for the treewidth tw of the
input graph and the (vertex) deletion distance to cluster graphs. With these two algorithms
at hand, we obtain an almost complete border between parameters which allow for FPT-time
algorithms and those that do not.

For the treewidth tw, we present an FPT-time algorithm based on dynamic programming
with running time n · 2O(tw log(tw)) (Proposition 4.1). In order to achieve this running time,
we define and exploit an encoding of size twtw to check all possibilities on how the current
bag of the tree decomposition is connected with the already considered vertices. Finally, we
show our main technical result: UFGC parameterized by the vertex-deletion distance to
cluster graphs admits an FPT-time algorithm (Theorem 4.2). Therein, we use a combination
of the following two main ingredients: First, given a modulator K, that is, a set of vertices
such that G′ = G − K is a cluster graph, we can safely connect all vertices in K using
vertices from O(|K|) cliques in G′ in any solution. We call these cliques the backbone of the
solution and we can guess in FPT time the structure of the backbone. Second, we show
how to compute the size of a smallest solution that implements a backbone in FPT time
using algorithms for both Maximum Bipartite Matching and Disjoint Subgraphs in
the process. Due to lack of space, several proofs (marked with (⋆)) are deferred to the full
version.

IPEC 2023
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Figure 1 The relations between structural graph parameters and our respective results for UFGC.
A parameter k is marked green ( ) if UFGC admits an FPT-time algorithm for k, yellow ( ) if it is
W[1]-hard with respect to k, and red ( ) if it is NP-hard for constant k (para-NP-hard). We do not
know the status for parameters with white boxes. An edge from a parameter α to a parameter β

below α means that there is a function f such that β ≤ f(α) in every graph. Hardness results
for α imply the same hardness results for β and an FPT-time algorithm for β implies an FPT-time
algorithm for α.

Preliminaries. For n ∈ N, by [n] we denote the set {1, . . . , n}. Throughout this work, all loga-
rithms have 2 as their base. For a graph G = (V, S, U), we denote by V (G) and E(G) := S ∪ U

its vertex set and edge set, respectively. Furthermore, by n := |V (G)| we denote the number
of vertices. Let Z ⊆ V (G) be a vertex set. By G[Z] we denote the subgraph induced by Z,
and by G − Z := G[V (G) \ Z] we denote the graph obtained by removing the vertices of Z.
We denote by NG(Z) := {y ∈ V (G) \ Z : {y, z} ∈ E(G), z ∈ Z} and NG[Z] := NG(Z) ∪ Z,
the open and closed neighborhood of Z, respectively. For all these notations, whenever Z is a
singleton {z} we may write z instead of {z}. We may drop the subscript ·G when it is clear
from the context. Let u, v ∈ V (G). We say that u and v are safely connected if there exists
a path from u to v using only safe edges or if there exist two paths P1 and P2 from u to v

such that E(P1) ∩ E(P2) ⊆ S. We say that u and v are unsafe connected if u and v are not
safely connected and if there exists a path from u to v. For more details on graph notation
we refer to the standard monograph [28].

A parameterized problem is fixed-parameter tractable if every instance (I, k) can be solved
in f(k) · |I|O(1) time for some computable function f . For more details on parameterized
complexity, we refer to the standard monographs [11, 12].
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2 Basic Observations

In this section, we explore the aforementioned connection between UFGC and Hamiltonian
Cycle and some implications thereof. To this end, note that if the graph contains no safe
edges, then each vertex needs to be contained in at least one cycle in the solution. We show
that a solution of size n to UFGC (if such a solution exists) corresponds to a Hamiltonian
cycle.

▶ Observation 2.1 (⋆). Let G be a graph and let I := (G′ = (V (G), ∅, E(G)), n). Then G

contains a Hamiltonian cycle if and only if I is a yes-instance of UFGC.

Since Observation 2.1 describes a polynomial-time reduction from Hamiltonian Cycle
to UFGC, we can directly transfer any NP-hardness results for Hamiltonian Cycle on
restricted graph classes to UFGC for the special case that there are no safe edges. It is known
that Hamiltonian Cycle remains NP-hard on subcubic bipartite planar graphs [3], on split
graphs [19], and on graphs with constant maximum degree [18]. Moreover, Hamiltonian
Cycle is NP-hard for graphs with exactly one universal vertex, as shown next.

▶ Observation 2.2 (⋆). Hamiltonian Cycle is NP-hard even if there is exactly one
universal vertex.

We obtain the following simple corollary for UFGC.

▶ Corollary 2.3. UFGC is NP-hard, even if there are no safe edges, k equals n, and the
graph G a) is subcubic, planar and bipartite, b) is a split graph, c) has domination number
one, or d) has constant maximum degree.

Moreover, since Hamiltonian Cycle is W[1]-hard parameterized by clique-width cw [15],
and cannot be solved in f(cw) · no(cw) time [16], we obtain the following.

▶ Corollary 2.4. UFGC is W[1]-hard with respect to the clique-width cw, even if S = ∅
and k = n. Moreover, this restricted version cannot be solved in f(cw) · no(cw) time.

▶ Observation 2.5 (⋆). UFGC is NP-hard even if the bisection width is one.

3 Problem-Specific Parameters

In this section, we study problem-specific parameters. In particular, we show that UFGC
is fixed-parameter tractable when parameterized by the number of unsafe edges in the
input graph and we study some above-lower-bound and below-upper-bound parameterizations
for the solution size. Such parameters are frequently studied [23, 24]. However, since
Observation 2.1 shows hardness for UFGC where k = n and since each solution has at least
n − 1 edges, the parameterization above the lower bound of n − 1 is hopeless. Hence, we
focus on a parameterization below an upper bound. More precisely, we show that an optimal
solution of G consists of at most 2n − 4 edges. Then, we aim to find a solution for G with
k = 2n − 4 − ℓ edges for small values of ℓ.

▶ Proposition 3.1 (⋆). UFGC is fixed-parameter tractable when parameterized by |U |.

We continue by presenting an FPT-time algorithm for the below lower bound parame-
ter ℓ := 2n − 4 − k for UFGC.

▶ Theorem 3.2 (⋆). UFGC can be solved in ℓ8ℓ · poly(n) time, where ℓ := 2n − 4 − k.

IPEC 2023
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K

A

B

C

Figure 2 An example of a solution. Safe edges are depicted with solid lines and unsafe edges are
depicted with dashed lines. The modulator K and three connecting components A, B, and C of a
minimal backbone are drawn in black. All other vertices (drawn in blue) are not part of the minimal
backbone as all vertices in K are already safely connected in the black subgraph. The connecting
component A is a cyclic component and B and C are usual connecting components.

4 Structural Graph Parameters

In this section, we study two structural graph parameters. We start by giving an FPT-time
algorithm for the parameter treewidth tw. Afterwards, we develop a far more intricate
FPT-time algorithm for the parameter (vertex-deletion) distance to cluster graphs. Recall
that a cluster graph is a graph in which each connected component is a clique.

▶ Proposition 4.1 (⋆). UFGC parameterized by tw is solvable in O(n · 237 tw log(tw)) time.

We continue with the algorithm for distance to cluster graphs.

▶ Theorem 4.2. UFGC parameterized by the (vertex-deletion) distance ℓ to cluster graphs
can be solved in f(ℓ) · n3 time for some computable function f .

Proof. We start by computing a set K of ℓ vertices in O(3ℓ ·n3) time such that G′ = G[V \K]
is a cluster graph as follows. Note that a graph G is a cluster graph if and only if it does
not contain an induced P3, that is, three vertices a, b, and c with {a, b}, {b, c} ∈ E(G)
and {a, c} /∈ E(G). Hence, we can find an induced P3 in O(n3) if it exists and then branch
on which of the three vertices in the P3 to include in K. Note that K needs to contain at
least one of the three vertices and the resulting search tree has therefore depth ℓ and size 3ℓ.

We next give a few definitions required to give a more detailed description of the algorithm
afterwards. We call a subgraph of a solution H = (VH , SH , UH) a backbone if it contains
all vertices in K and each pair of vertices in VH is safely connected in H. See Figure 2
for an example. Given such a backbone H = (VH , SH , UH), a connecting component is a
connected component in H ′ = H[VH \ K]. We say that a backbone is minimal if the removal
of any connecting component results in some pair of vertices in K being not safely connected
anymore. We distinguish between two types of connecting components: cyclic and usual. A
cyclic connecting component is a cycle (with some connections to vertices in K). Note that
the number of edges in a cycle equals its number of vertices. A usual connecting component
is a tree. Its number of edges is one less than its number of vertices but if it contains unsafe
edges, then not all vertices are safely connected within the connecting component. Observe
that we can indeed assume that each connecting component is either usual or cyclic as any
connecting component that is not a tree contains at least as many edges as vertices. Hence,
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we can replace such a connecting component by any cycle through all of its vertices. Such a
cycle exists within any clique of size at least three (any permutation of the vertices results in
a cycle and any connecting component inside a clique of size at most two is a tree) and any
pair of vertices in a cyclic connecting component is safely connected.

Next, we distinguish between three types of cliques in G′. To this end, let C be a
connected component in G′, that is, a clique in the cluster graph. The three types are based
on the edges between C and K (note that all edges between vertices in C and the rest of the
graph are to vertices in K) and on the connected components within C if we ignore all unsafe
edges. We call such components strong components. A clique C is strong, if each strong
component in C contains at least one vertex with a safe edge to a vertex in K. In this case,
we can add C to the backbone using |C| (safe) edges (a maximal spanning forest plus for
each strong component one edge connecting it to K). The second type, we call weak cliques.
A weak clique is not a strong clique but it is connected to K by a safe edge or by two unsafe
edges with different endpoints in C. Since weak cliques are not strong cliques, there is some
strong component in them, which is not connected to K via only safe edges. Hence, to safely
connect this strong component L to K, we require at least |L| + 1 edges. Since we require at
least |C \ L| edges to connect the remaining vertices, we require at least |C| + 1 edges to
safely connect C to the backbone. For weak cliques, |C| + 1 edges are sufficient as we can
use a) a safe edge between C and K and a Hamiltonian cycle in C or b) two unsafe edges to
different vertices in C and any Hamiltonian path between the two endpoints within C. We
call the third type of clique singletons. A singleton is only connected to K by unsafe edges
and all of these edges have the same endpoint in C. Note that if there is at most one unsafe
edge between K and C (and assuming that K ̸= ∅), then there cannot be a solution as C

cannot be safely connected to K. We call them singletons because we can reduce such a
clique to a single vertex in a preprocessing step. Since all connections to K are through one
vertex v ∈ C, we have to safely connect all vertices in C to v. This can either be done via a
spanning tree consisting only of safe edges (if such a tree exists) or via any Hamiltonian cycle
otherwise1. Which case applies can be checked in linear time by checking whether there is
exactly one strong component in C.

We are now in a position to describe the algorithm. First, we guess which edges between
vertices in K belong to a solution T and the number p of connecting components in a minimal
backbone H of T . Note that p ≤ 2ℓ since any connecting component in H provides an
(unsafe) connection between two vertices in K and any cycle of unsafe connections implies
also safe connections. Hence, in the worst case each cycle is of length two and we require 2ℓ−2
connections to implement a “safe spanning tree” between the vertices in K. Next, we guess
the structure of H, that is, for each connecting component P in H, we guess the following
(see also Figure 3).
1. Which vertices in K are adjacent to vertices in P in T?
2. How large is the set Y of vertices in P that are neighbors to vertices in K in T?2

3. Which edges between K and Y are contained in T?3

4. Which pairs of vertices in Y are safely connected within Y ? (That is, a partition of the
vertices in Y )

5. Is P a usual or a cyclic component?

1 The Hamiltonian cycle exists if there are at least three vertices in C. If |C| = 2 and there is only an
unsafe edge between the two vertices, then there cannot be a solution and we can return no.

2 Note that |Y | ≤ 2ℓ by the same argument that shows p ≤ 2ℓ.
3 Note that we something like “there are three vertices y1, y2, y3 ∈ Y and the solution contains the safe

edge {u, y1} and the unsafe edges {v, y2}, {v, y3}, and {w, y3}”. However, we do not guess which vertex
in the input graph is a vertex in Y . For an example, we refer to Figure 3.

IPEC 2023
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u
v

w

a b c d

K

C

u

v

w

y1

y2

y3

K

Figure 3 The left side depicts the modulator K and one clique C in G − K. Safe edges are
depicted with solid lines and unsafe edges are depicted with dashed lines. To reduce visual clutter,
we do not show the unsafe edges between two vertices in C. The right side depicts one possible guess
for a connecting component. It contains three vertices y1, y2, and y3, some edges between K and a
partition of the guessed vertices (in our case y1 and y2 are guessed to be safely connected within C).
Note that in the graph on the left side there are many different possibilities to realize the guess on
the right side. One possibility is y1 = a, y2 = b and y3 = d. A second possibility is y1 = b, y2 = c

and y3 = d and a third possibility y1 = a, y2 = c and y3 = b.

Moreover, we guess which connecting components of the minimal backbone are contained
in the same clique in G′, that is, we guess a partition of the p connecting components.
Finally, we guess for each part of the partition the type of clique that contains the connecting
components and how the rest of the clique (that is, all vertices in the clique that are not
contained in any connecting component) is connected to the minimal backbone.

We distinguish between the following three types of connections. To this end, let C be a
clique in G′ that hosts at least one connecting component of H and let C ′ = C \ VH be the
set of vertices that are not contained in a connecting component. If there is a connecting
component in P that contains at least one unsafe edge, then we can replace this edge with
a Hamiltonian path through all vertices in C ′. If this is the case or if C ′ = ∅, then we say
that C ′ is empty. Otherwise, if we can safely connect all vertices in C ′ to the backbone
using |C ′| edges, then we say that C ′ is efficiently connected to the backbone. This is the
case if each vertex in C ′ is contained in a strong component in C that contains a) a vertex
in some Pi ∈ P or b) a vertex with an incident safe edge to a vertex in K. If neither of the
two cases above applies, then we require at least |C ′| + 1 edges to connect the vertices in C ′

to the backbone. Note that in this case, we can always find a path through all vertices in C ′

and connect the two ends to any vertex in C \ C ′. We call this type of connection inefficient.
Observe that if two solutions lead to exactly the same set of guesses, then they have the

same number of edges4 as the difference between the number of edges and vertices in their
minimal backbones and the types of the remaining cliques (both of cliques containing parts
of the minimal backbone and those which do not) is the same for both solutions. As argued
above, the difference between the number of edges and vertices in these cliques in a solution
is completely determined by their type.

It remains to show how to check whether a guess leads to a solution and to analyze the
running time. Towards the former, we first show how to test whether a given clique C of a
guessed type can host a guessed set P = {P1, . . . , Pc} of connecting components such that
the rest of the clique has the guessed connection type. We can handle most combinations
of clique type and connection type with a general approach. One special case has to be
treated differently: The connection type is efficient, each connecting component Pi ∈ P is

4 Assuming that the solutions are minimal, that is, they do not contain edges whose removal yields a
smaller solution.
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a usual component which safely connects all respective vertices in Y and the clique C is a
weak clique. First, we describe why this case is different from the others. Then, we show
how to handle this special case and how to handle all other cases. The difference is that
if the connection type is “C ′ is empty” or inefficient, then we can pretty much ignore the
connection type as we can always greedily find a solution independent of the connecting
component. If one of the connecting components in P is a cyclic component or a usual
component with at least one unsafe edge in it, then the connection type is “C ′ is empty”.5
The same is true if the clique C is a singleton. If C is a strong clique, then we can also
ignore C ′ as we can always greedily find an efficient connection independent of the connecting
component. Only if the connection type is efficient, P only consists of usual components
which safely connect all respective vertices in Y , and C is a weak clique, then we somehow
need to “hit all strong components in C” which do not have a safe edge to a vertex in K

using the connecting components.
The next step in this proof is to describe our algorithm to check if a clique C can host

a set P = {P1, P2, . . . , Pc} of connecting components where each Pi is a usual connecting
component consisting only of safe edges. Due to space constraints, we only show this algorithm
in this extended abstract; the running time analysis is deferred to the full version. Informally
speaking, we first show that each Pi is contained in a different strong component in C. We
then use Maximum Bipartite Matching to first check in which strong components Vj

in C each Pi can be contained in. We then check whether we can assign each Pi to some Vj

such that Pi can be contained in Vj and each strong component Vj which does not have a
safe edge to a vertex in K contains some Pi.

▷ Claim 4.3 (⋆). We can check in O(ℓ2 · n3) time whether a clique C can host a
set P = {P1, P2, . . . , Pc} of connecting components where each Pi is a usual connecting
component consisting only of safe edges.

Next, we present the general algorithm for all remaining cases, that is, the connection
type is not efficient, the clique C is not a weak clique, or the set of connecting components
contains an unsafe edge. Here, we can ignore the connection type and we only need to check
whether the guessed set P of connecting components can be hosted in a clique C. Since C is a
clique, any pair of vertices in C is connected by an edge. Hence, we can trivially connect any
set of t vertices with unsafe connections using t − 1 edges. We only need to check two points:
1. Is there for each vertex in Y (the neighbors of vertices in K in C) a distinct vertex in C

with all the required edges to vertices in K and
2. can all sets of vertices that are guessed to be pairwise connected via paths of safe edges

inside C be connected in this way?
Note that the latter point is unfortunately not as simple as checking whether all vertices
belong to the same strong component in C as the example in Figure 4 shows. We solve
both points as follows. We built a graph with two vertices y, y′ for each vertex y ∈ Y and
a vertex v for each vertex v ∈ C. There are edges {y, v} and {y′, v} if the following holds.
For each edge {x, y} with x ∈ K that is guessed to be in the solution, the edge {x, v} is
contained in the input graph G and the edge {x, v} is safe if and only if the edge {x, y} is
guessed to be safe. Moreover, there is an edge between two vertices u, v ∈ C if and only

5 We may assume that there is only one cyclic component in P as we can always merge two cyclic
components in one clique into one cyclic component. We need to consider the special case where the
cyclic component contains exactly two vertices with edges to vertices in K as we need to ensure that
there is at least one additional vertex not contained in any of the other connecting components in P.
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b c

Figure 4 A clique with five vertices is shown. Safe edges are depicted with solid lines and unsafe
edges are depicted with dashed lines. Suppose we want to connect a to b and c to d using only safe
edges. All vertices belong to the same strong component in C but the only solution is to include all
four safe edges in the backbone. If each pair of vertices was connected via a safe edge, however, we
could connect v with one of the terminal pairs and directly connect the other terminal pair with
a safe edge. In this case we only used 3 edges. Intuitively, we were able to use one edge less by
ignoring the connection between the two pairs of terminals. Since we assume our guess to be correct,
we do not need to connect these terminals inside C as they will be connected via some paths outside
of C. Thus, we want each set of vertices that are guessed to be pairwise connected via paths of safe
edges inside C to form their own connected component when considering the graph induced by C in
the solution.

if there is a safe edge between them in G. Let R = {R1, R2, . . . , Rr} with Ri ⊆ Y be a
partition of the vertices in Y according to which vertices are pairwise connected via paths
of safe edges. Let R′

i = {y, y′ | y ∈ Ri} be the corresponding vertices in our constructed
graph. As mentioned earlier, we need to consider the special case where one of the connecting
components is a cyclic component with exactly two vertices in it as we need to ensure that
there is at least one additional vertex that can be included in the cyclic component. In
this case, we add two new vertices z, z′ to the graph, connect each of them to all vertices v

with v ∈ C, and define the set R′
0 = {z, z′}. We now solve Disjoint Connected Subgraphs

where each set R′
i is one terminal set. Next, we show that if there is a set of disjoint connected

subgraphs each connecting the vertices in one set R′
i, then this corresponds to a solution

to both points. Note that we may again assume that each vertex in C can only fill the role
of one vertex in Ri and hence selecting any vertex adjacent to y in the solution gives us a
matching between the vertices in C and the vertices in Y (any vertex y ∈ Ri needs to be
connected to at least y′ and hence such a neighbor exists). Moreover, since the solution is a
set of disjoint connected subgraphs and we only included safe edges between vertices in C, we
are also ensured that this solution corresponds to a set of connecting components as guessed.
Conversely, if there is a set of disjoint subgraphs in C that exactly correspond to our set of
guesses, then this is also a solution to the instance of Disjoint Connected Subgraphs if
we additionally connect each pair of vertices y, y′ to the respective vertex in C. Thus, we
have found a way to check whether C can host a guessed set P of connecting components.

After checking which cliques could potentially host each set P of guessed connecting
components, it remains to check whether all of these guesses can be fulfilled at the same
time. To this end, we need to check whether all q ≤ p sets P1, P2, . . . , Pq can be hosted each
by a distinct clique. We do this using the textbook O(nm)-time algorithm for Maximum
Bipartite Matching as follows. We build a bipartite graph with one vertex vi for each set Pi

and a vertex uj for each connected component (clique) Cj in G′. There is an edge {vi, uj}
in the graph if and only if Cj can host Pi. It then only remains to check whether there is a
matching of size q as in this case each set Pi is matched to a distinct clique in G′.

For space reasons, we defer the analysis of the running time to the full version.

▷ Claim 4.4 (⋆). The algorithm runs in time f(ℓ) · n3 for some computable function f . ◀

We mention that each cluster graph is also a co-graph. Whether the parameter distance
to co-graphs also allows for an FPT-time algorithm remains an open question.
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5 Conclusion

In this work, we started an investigation into the parameterized complexity of UFGC. Our
main results are FPT-time algorithms for a below-upper-bound parameter, the treewidth,
and the vertex-deletion distance to cluster graphs, respectively. Moreover, we give a fairly
comprehensive dichotomy between parameters that allow for FPT-time algorithms and those
that lead to W[1]-hardness (or in most cases even para-NP-hardness).

Nonetheless, several open questions remain. First, what is the status of the parame-
ters that we were not able to resolve; for example does parameterization by the distance
to cographs or interval graphs allow for an FPT-time algorithm? Second, is there an
XP-time algorithm for UFGC parameterized by the clique-width. Third, it would be inter-
esting to study the existence of polynomial kernels for the parameters that yield FPT-time
algorithms. Unfortunately, some of these can be excluded due to the close relation to Hamil-
tonian Cycle. In particular, Hamiltonian Cycle (and hence also UFGC) does not
admit a polynomial kernel with respect to the distance to outerplanar graphs unless
coNP ̸⊆ NP/poly [7]. Moreover, using the framework of AND-cross compositions, it is
not hard to also exclude polynomial kernels for the parameters treedepth and bandwidth
unless coNP ̸⊆ NP/poly. However, this still leaves quite a few parameters ready to be
investigated in the future.

Last but not least, UFGC should only be regarded as a first step towards generalizing
Spanning Tree to more robust connectivity requirements. It is interesting to see whether
(some of) our positive results can be lifted to the more general problem (p, q)-Flexible
Graph Connectivity. Therein, the solution graph should still be q connected even if up
to p unsafe edges fail. Also, one can study other problems in the setting where the edge
set is partitioned into safe and unsafe edges from the lens of parameterized complexity; one
possibility is (p, q)-Flexible (s, t)-Path [2].
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