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Abstract

In this project we tried to answer the question whether it is possible to obtain in vivo quantitative spatio-
temporal gene expression data of mice, by making use of the GFP protein and Biofluorence Imaging. The
research was driven by a more specific question, being whether it is possible to detect if metastasis to the
bone has occurred in cancer progression studies, using GFP cancel cell lines, i.e cancer cells that pro-
duce Green Fluorescent Proteins (GFP), at a continuous known rate. We tried to give generic answers by
researching the following two subquestions. 1.) Is it possible to register a 3D mouse atlas to 2D Biolu-
minescense or Fluorescence photographs, based on only those photographs? 2.) Can we make qualitative
statements on the location of gene expression, after registration with an atlas?

The first question is covered in a paper called: ’Atlas Driven Registration of 3D Voxel Data to Multi-view
Photographs Based on 3D Distance Maps.’ It explains a method to register a 3D piecewise deformable
mouse atlas to 2 or more photographic sideviews of a mouse. Based on a distance map that we generated
from multiple backprojections of the sideview, we were able to construct an energy function that resembled
a ’goodness of fit’ of the registration. Comparisons were made with a gold standard and we obtained good
results with our method.

The second question is covered in a paper called: ’Testing for Spatial Gene Enrichment in C. Elegans
Using Chronograms and a 1D Worm Atlas’. In this paper we did not focus on the registration process,
because this was a straightforward procedure. With an atlas registered to an expression dataset, we applied
different statistical tests to answer the question that given the atlas and the expression profile, the observed
expression shows enrichment in a selected organ or not. In this paper we show that we are able to filter
highly enriched signals out of our complete dataset. We further discuss the added value of our atlas since
it is difficult to validate the obtained results of our tests.
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CHAPTER 1

Introduction

Molecular Imaging can be defined as the in vivo characterization and measurement of biological processes
at a cellular and molecular level in a noninvasive manner. Molecular Imaging is a relatively new imaging
paradigm that instead of looking at macroscopic physical processes, sheds light onto biological processes.
It is possible to visualize the transcription rate of genes, by inserting an observable gene, such as Luciferase
of the Green Fluorescent Protein which is regulated in the same way as a gene of interest, by placing it
downstream of a promoter that is identical to that of the gene of interest1. With the ability to visualize
gene expression the question arises on what can be done with acquired data. To answer this question
we take a look into the field of functional genomics, where gene expression data already is analyzed.
Most expression data sources do not contain spatial information on expression and in many cases miss a
temporal component also. With statistical methods, it is possible to scan for biomarkers and if we have
a temporal component in our dataset it may also be possible to reconstruct regulatory pathways or gene
networks. With Molecular imaging it is fairly straightforward to acquire a temporal gene expression profile,
given that we can compare data obtained in different acquisitions, but Molecular Imaging also introduces a
spatial component to the dataset, which is difficult or laborious to obtain with other acquisition techniques
currently used in functional genomics. This spatial component might give valuable new information on
local gene regulation in an organism and may improve our understanding of cellular processes.

When altering cancer cell lines in such a way that they produce a GFP protein at a continuous rate, these
cells can be observed and the number of cells can even be quantified based on fluorescence intensities.
In cancer research, Molecular Imaging can aid in progression studies, because it comprises non invasive
acquisition techniques. Follow up studies of the same organism are therefore possible, which makes it
possible to measure and compare progression of the cancer cells over time.

In order to be able to compare expression data from multiple measurements, we must have a method to
standardize expression data to some default dimension, size and orientation. One such method is, to be
able to map expression data to some predefined (anatomical) 3D atlas. With all expression data mapped to
this atlas, we can start comparing signals with each other and start further analysis.

In this thesis project we studied the following two questions. 1.) Is it possible to register a 3D mouse atlas
to 2D Bioluminescense or Fluorescence photographs, based on only those photographs? 2.) Can we make
qualitative statements on the location of gene expression, after registration with an atlas?

The first question is covered in a paper called: ’Atlas Driven Registration of 3D Voxel Data to Multi-view

1Literature Research, Martin Wildeman, 2008
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Photographs Based on 3D Distance Maps’. In this paper we have a complex 3D dataset, but we do not
have much gene expression data. We therefore focus on the development of an atlas registration in this
paper.

We developed a registration algorithm that allows us to register a 3D mouse atlas to 2D photographic
projections. This registration procedure will make it possible to map observed expression profiles in the
photographic modalities to the 3D atlas. Once a registered atlas is available we can, in principle2, calculate
the intensity and origin of gene expression and also, more specific, the location and amount of cancer cells
inside of the mouse body emitting the photons, when doing cancer progression studies. With localized and
quantified expression we can determine whether the observed expression signal is significant, and given
the atlas, whether it is ’enriched’ at a certain location or not.

Since we did not have expression data for mice available, we used gene expression data of the worm C.
Elegans to study the second question, in a paper called: ’Testing for Spatial Gene Enrichment in C. Elegans
Using Chronograms and a 1D Worm Atlas’. Since the shape of a worm is simple, the registration step was
easy and largely done already, and we could focus on the development and evaluation of statistical test
methods.

We compared different statistical tests, that we used to find gene enrichments in our complete dataset. The
methods applied on the C. Elegans data can, with some modifications, also be applied to expression data
from mice, once this data becomes available. We searched for enrichment in qualitative locations, such as
’head’ or ’tail’. When using this enrichment detection for cancer progression studies, it may be possible to
determine whether cancer has metastasized to a certain organ, by searching for enrichments of Wild e-Man,
Afstuderen op 30 januari 10:00, Zaal HB01.010 EEMCS expression in the mouse body. We suspect that
the qualitative locations of gene expression may give more insight in the function of genes.

With the evaluation of these two questions we have created a basis on which further analysis on spatio-
temporal gene expression data may be applied and in which registration and statistical testing may be
merged into one approach.

2A photon propagation model is needed for this. This computationally intensive approach will require a very accurate optical
model, as well as a near to perfect registration, otherwise the reconstruction of the photon source will be inaccurate.
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CHAPTER 2

Paper on Registration of 3D Mouse Atlas
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ATLAS DRIVEN REGISTRATION OF 3D VOXEL DATA TO MULTI-VIEW PHOTOGRAPHS
BASED ON 3D DISTANCE MAPS

M. H. Wildeman1,2, M. Baiker2, J. H. C. Reiber2, M. J. T. Reinders1, B. P. F. Lelieveldt2

1Information and Communication Theory Group 2Division of Image Processing
Department of Mediamatics Department of Radiology
Delft Technical University Leiden University Medical Center

The Netherlands The Netherlands

ABSTRACT
In the field of molecular imaging, modalities containing struc-
tural data and modalities containing functional data often
need to be fused, to obtain (new) biological relevant infor-
mation. In some cases the modalities that are fused, differ in
dimensionality, which makes a 2D/3D registration necessary.
In this article we present a new method to register a rigid
3D surface model derived from CT data, or an articulated
3D whole body atlas, derived from the Digimouse dataset,
to two or more 2D projection silhouettes, derived from mul-
tiplane photography. We show that by making use of a 3D
distance map derived from the 2D projection silhouettes, we
are able to construct an energy function which can be used
for registration. We show that our energy function is able to
generate good results for synthetic data as well as for real
data with a mean skin surface error of 0.15mm and 1.3mm
distance respectively. We demonstrate the working of this
energy function and optimization algorithm by applying it for
rigid registration, as well as for a hierarchical registration of
the articulated 3D whole body mouse atlas.

Index Terms— Distance Map, Normal Vector, 2D/3D
Registration

1. INTRODUCTION

Molecular Imaging comprises imaging of biological pro-
cesses at a cellular level and at molecular resolution in a
non invasive and in vivo manner [1]. A broad spectrum of
modalities exists in which each modality can contain different
structural and functional information, and when combined,
may generate new data which is not available in the separate
modalities, e.g. the structural data combined with functional
data may provide more information when combined than
when studied separately. In some cases, it can be useful to
register datasets of different modality and dimensionality.

One example of this is the registration of 3D CT or MRI
data on 2D bioluminescence imaging (BLI) data, where cor-
rect registration can give new insight in the 3D localization
and quantification of cancer cells relative to the CT/MRI

dataset, based on the BLI dataset, containing the biolumines-
cent cancer cell data [2].

Another example is, that because of the non invasive na-
ture of molecular imaging, follow up studies of the same or-
ganism are possible, which gives a need for registration of
data from multiple experiments, which for example enables
the monitoring of tumor growth. It is also of great value to
be able to compare biological information, retrieved from in-
tra subject experiments, to be able to measure and compare
functional biological data quantitatively.

The goal of this work is to develop a new accurate reg-
istration algorithm, to register 3D surfaces to 2D projection
silhouettes, derived from multiplane photography. In some
cases where registration is needed, only few 2D images are
available to obtain a registration. The 3D skin surface can
be a rigid body when both datasets contain the same subject
having exactly the same conformation or a 3D non rigid de-
formable atlas. Because we have sparse data with a minimum
of only two 2D contours, we need a way to reduce our set of
parameters in the non rigid registration process. A hierarchi-
cal piecewise optimization seems well suited for this because
we will optimize at most 9 parameters at a time. Since we
only allow for deformations in the skin surface based on re-
stricted skeleton movement, we only obtain biologically plau-
sible registrations.

The contributions of this work are as follows:

• We introduce a registration energy function that is
based on a 3D distance map and includes angle penal-
ties based on the direction of the gradient in this dis-
tance map.

• We apply this energy function to register CT datasets
or an articulated 3D atlas on multiple 2D contours, us-
ing a Similarity transformation or piecewise hierarchi-
cal Similarity transformations, respectively.
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2. BACKGROUND

Much work related to 2D/3D registration has been reported,
describing varying shape representations and optimization
criteria. X. Huang [3] gives a nice comparison off different
techniques that can be used for shape registration. In all shape
registration problems three choices have to be made. First,
the form in which the shape is represented has to be chosen.
Second, the kind of transformation has to be chosen in or-
der to register the 3D surface on the 2D projections. Lastly,
some registration criterion has to be found in order to find an
optimum. Huang et al. [3] make use of two distance maps,
both for global registration, using mutual information and for
generating a free form deformation mesh for registration of
non-rigid deformations. The method of Huang seems very
well suited for free form contour matching, but we are actu-
ally not interested in free form matching, because we want
to extend our method to a model with an articulated skeleton
and estimated skin surface, which allows only for restricted
deformations. Huang, moreover, will need two complete sur-
faces or contours for their registration, which we do not have
and therefore we can not apply their algorithm.

Iwashita et al. [4] generated a 2D distance map based on
the estimated contour of a 2D projection from a 3D object.
The distance map was used to estimate translation as well
as rotation, based on distances and force fields, to register
the same 3D rigid body that was used to generate the 2D
projection. Scaling was not estimated, because based on only
one distance map, it is not possible to determine if scaling in
the projection is caused by a large distance in the direction
of the camera view, or by real scaling of the 3D object. They
generated a 2D distance map, based on a detected contour
of a 2D image. They then iteratively calculated new con-
tours of the 3D object and also calculated ’driving forces’
for the optimization. These forces are based on the distance
and the direction in the distance map gradient. This is a
costly approach, since for each iteration the points in 3D
space that correspond to the detected 2D contour need to be
determined. They managed to effectively determine these
correspondences by using dedicated hardware, but if it is
possible to avoid switching between a 2D modality and a 3D
modality this correspondence problem can be avoided. The
approach of Iwashita et al. only works for rigid bodies and,
since we want to extend our method to a semi non rigid skin
surface model, their approach is not suitable for our goal.

Papademetris et al. [5] make use of an iterative closest
point matching algorithm, to register two 3D models. They
used a piecewise rotational model, based on an articulated
lower body atlas. The skin surface is smoothly updated by
making use of a weighted rotation based on the location of the
skin vertices, relative to the rotation point. In this way they
are able to obtain a smooth, natural skin deformation. For the
registration they have a complete lower body 3D skin surface
to register to, as well as a complete 3D articulated lower body

Fig. 1. A visualization of a pre-registration, generated with the Cyttron Vi-
sualization Platform, is shown. Four BLI photographs with known reference
(angles) between the images, registered to a thresholded 3D CT voxel set are
shown.

atlas. We do not have a complete 3D surface to register to and
therefore we use an implicit contour representation for the op-
timization, because recovery of point correspondence would
be a computationally expensive task and not straight forward
when only making use of two 2D projections [6].

3. METHODOLOGY

Our goal is to register a 3D structural dataset to a set of 2 or
more photographic images of the same structure with known
reference between the images (See Fig. 1 for an example). In
this section we present the methodology we use in our regis-
tration algorithm. We start by explaining our shape represen-
tation and how we obtain it, followed by the definition of our
energy function. We end this section by explaining the op-
timization algorithm, and we show the different transforma-
tions that we apply for registration. Figure 2 gives a schematic
overview of the complete algorithm.

3.1. Shape Representation

With our 2D/3D registration we start off with two modalities,
one being a CT voxel dataset and the other consisting out of
a set of n; (n ≥ 2) 2D images of the skin surface, rotated by
known in-between angles. A pre-registered example of the
two modalities is shown in Figure 1.

6



Algorithm Schematic
C

T
 R

E
G

IS
T

R
A

T
IO

N

A
T

LA
S

 R
E

G
IS

T
R

A
T

IO
N

Same Object Different Objects

Pre Processing

Global Registration

Local Registration

Energy Function

Digital Photograph

CT Data Digimouse CT Data

2+ Projection Silhouettes

(Manual) Segmentation

3D Hull

Backprojection

3D Mesh Model

(Manual) Segmentation (Manual) Segmentation

3D (Labeled) Mesh Model

FlatteningFlattening

Energy Function (DM)Eucliean Distance

Globally Registered Surface Globally Registered Surface

Apply and Evaluate
Global Transformation

Apply and Evaluate
Global Transformation

Iterate to convergence

Decrease Surface Angle

Energy Function (DM)

Apply and Evaluate
Local Transformation

Locally Registered Surface

Initialized 3D Surface

Initialize Initialize

Initialized 3D Surface

Locally Initialized 3D Surface

Initialize

Legend

(Intermediate) Result

Action

information flow

Object Relationship

Separate Note

Iterate to convergence

Decrease Surface Angle

Fig. 2. A schematic of the algorithm we propose. With the obtained 3D surface an energy is calculated. With an optimization algorithm, the 3D surface is
transformed iteratively, to minimize the energy function until convergence, to finish with a transformation matrix that defines the obtained registration.

3.1.1. 3D Structural Data

The 3D data can be of any modality, as long as a surface mesh
model can be extracted from it, which is needed for the op-
timization. The source skin surface, i.e. the surface that is
extracted from the 3D structural data set, is represented as a
triangulated 3D mesh model. Vertices in this model will be
referred to as v ∈ R3 in this paper. During registration we
either use a rigid CT skin surface for the rigid registration or
an articulated atlas for non rigid registration. Both the CT
skin surfaces as the articulated mouse atlas skin surface are
represented as a mesh model. Next to the skin surface, we
also segmented the skeleton of the 3D atlas data, resulting in
14 manually labeled bones. These rigid bodies are needed for
the hierarchical transformations we propose.

3.1.2. Multi 2D Optical Data

The target surface, i.e. the surface to which the 3D source
surface has to be registered, is not fully known. We there-
fore have chosen to construct an implicit shape representation,
based on a limited number of views. To do this, a convex hull
volume is created based on the shapes in the 2D images, by
back projecting the segmented skin silhouettes. This results
in a binary voxel model box, which we define as B, in which
all voxels that fall inside the convex hull are assigned 1, and
all others 0. The 2D images used are assumed to be ortho-
graphic projections which makes back projection a straight-
forward procedure. A 2D projection of 1D shapes is shown
as illustration in Figure 3
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Fig. 3. Schematic of projections as implemented in the algorithm

3.2. Defining the 3D Atlas

3.2.1. Joint Articulation

We created our articulated version of the Digimouse mouse
atlas similarly to the method of Baiker et al. [7]. We manually
selected pivot points and rotation axes, which we defined by
unit vectors û,v̂ and ŵ for the x,y and z axis respectively.
The x-axis vectors were chosen to point in direction roughly
parallel to the longest axis in the bone. The y-axis was set to
point to the joint origin of its parent, or as much as possible
in the direction of the y-direction of the world axes, when no
parent joint was present. The y-axis of the right ankle joint
for example (visualized in Figure 4) points toward the joint of
the right knee and is defined as

v̂init =
jointknee − jointankle

‖jointknee − jointankle‖
To obtain a 90◦ angle between the û and v̂init vectors, v̂init

was corrected by solving

90 =
360
2π

cos−1

(
v̂init ·

v̂init + nû

‖v̂init + nû‖

)

n was determined iteratively.

⇒ v̂corrected =
v̂init + nû

‖v̂init + nû‖
Finally, ŵ was obtained with ŵ = û× v̂corrected.

3.2.2. Skin Segmentation

To be able to deform the skin surface based on the skeleton
movement, we updated the 3D skin surface mesh model by
assigning each vertex in the skin surface a label, correspond-
ing to the label of the closest vertex in the skeleton surface.
The result of the articulation and skin segmentation is shown
in Figure 5.

3.3. Updating the Conformation of the Atlas

To reduce the degrees of freedom (DoF) in our optimization
function, we make use of the rigid nature of the mouse skele-

u^u^ v^

(v  +nu)^ ^

w^

v^correctedinit

init

Fig. 4. Visualization of joint articulation. v̂init is corrected, so that the
angle between û and v̂corrected is 90◦. ŵ is defined by the cross product of
û and v̂corrected. Note that n < 0 in this example.

ton, which determines most of the mouse skin shape. Our ar-
ticulation and joint definitions are similar to what is described
in [7], with two main differences. We do not allow transla-
tion for each rigid body, but only for the whole skeleton, with
its center of gravity (CoG) and rotation axes defined in the
’Spine’, as this rigid body is the highest in the hierarchy of
the skeleton. All transformations applied to ’Spine’ will be
applied to bones lower in the hierarchy as well. We make
use of uniform scaling for all limbs (1 DoF), instead of the 3
DoF’s for scaling defined in [7].

Joint Type Joints Modeled DoFs of the artic-
ulated bone

Global Orientation CoG Tx, Ty, Tz

Sx, Sy, Sz

Rx, Ry, Rz

Neck Rx, Ry, Rz

Shoulder Sxyz (Isotropic)
Hip
Wrist

Ball joint Ankle
Elbow Rz

Knee Sxyz (Isotropic)

Hinge joint

Table 1. Joint types used in the articulated atlas. (Images
obtained from [8])

To transform all articulated bones and corresponding skin
vertices, we make use of one transformation matrix for each
bone plus one matrix for global transformation, resulting in
a total of 14 matrices, which are obtained by applying a pa-
rameter set of Tx, Ty , Tz , Rx, Ry , Rz , Sx,Sy and Sz on the
Spine (Global Registration), and Rx, Ry , Rz and Sxyz on all
other body parts (Local Registration), where the DoF of Rx

and Ry are set to zero for the knee and elbow joints (Table 1).
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Legend
'Spine' skin

Head skin

Upper limbs

Lower limbs

Paws

Skeleton

Fig. 5. The atlas we used is based on Digimouse, combined with a CT dataset of mouse feet. The locations and rotation angles of the joints in the atlas were
manually selected. û is visualized in red, v̂ in green and ŵ in blue. All unit vectors were multiplied with 40 and have the joint locations as their origin, for
visualization purposes. The units of the axis represent the voxel location in the original CT dataset having a voxel size of 100µm.

The total parameter set Θ consist of 3 translation parameters,
8 scaling parameters (we used 1 scaling parameter per limb)
and 34 rotation parameters. A total of 45 parameters can be
changed to alter the conformation of the skeleton and the skin,
which is transformed with the same mapping function as used
for the skeleton, in correspondence with the defined labels of
the skin surface vertices. Rotation is achieved using trans-
formation matrices based on unit quaternions [9]. The skin
surface is updated with the same transformation matrix as is
used for the corresponding articulated bones. The elasticity
of the skin is not taken into account and the skin will ’fold’ or
’stretch’ at the rotation points, as is described in [5]. We ex-
pect that the error generated by those vertices, since they are
small in number, does not have a large effect on the location
of the optimum in the registration process.

3.4. Updating the Orientation of the Rigid 3D CT Surface

The CT dataset is registered in the same way as the global
transformation step of the ’Spine’ in the mouse atlas. The
only difference is how the local axes of the CT skin surface
are defined. The mean location of all skin vertices is defined
as CoG (the axes origin of the body), and the directions of
the local axes are parallel to that of the world axes. Since
the CT data and the optical data will be acquired from the
same individual, we only apply isotropic scaling, resulting in
7 optimization parameters for the registration process.

3.5. The Energy Function

3.5.1. The Distance Energy Component

To be able to use the binary voxel volume in our registra-
tion process, we designed an energy function that allows the
minimization of the distance of all vertices of the source skin
surface (S) to contour of the voxel set B = 1 (As defined
in Section 3.1.2). The energy function we propose, is a sum
of squared errors (SSE) of all vertices in S and is defined as
follows

Etotal =
n∑

v=1

E(v,Θ)2 (1)

For each vertex v in S an error is calculated as defined in
Equation 2, S containing n vertices. Θ is a vector containing
all transformation parameters used to register S to B.

E(v,Θ) = DM(x) (2)

x = bT (v,Θ)e (3)

In this equation T can be seen as a mapping function to
transform the source shape to the target shape. This can be a
single transformation matrix in case of a global affine trans-
formation, constructed with a parameter vector Θ. In case of
local transformations this function can be more complex, but
is still based on a set of parameters Θ.

9



3.5.2. Calculating the Distance Map

The distance error function DM is defined by Equation 4 as
described in [3]. All remaining occurrences of x in this paper
are defined by Equation 3.

DM(x) =





−D(x, SBE), if x ∈ BE
D(x, SBE), if x ∈ B − (BE + SBE)
0, if x ∈ SBE

max∀X∈B(D(X, SBE)), if x /∈ B
(4)

In this equation BE is defined as the eroded voxel set
of voxel set (B = 1) using one iteration and a diamond-
shaped structuring element. SBE is defined as the set of vox-
els ((B = 1) − BE), i.e. the surface of BE. D(x, SBE) is
the Euclidean distance function of a given vertex to the near-
est voxel in set SBE . x is defined as the location [x, y, z] in
the 3D voxel volume B. Figure 6 shows a schematic of the
voxel set definitions.

Fig. 6. Schematic of distance map voxel set definitions.

For computational purposes we precalculated the function
DM for all possible rounded vertex locations x where x ∈ B.
This pre-calculation is achieved by calculating the euclidean
distance map (DM ) of B, using Danielsson’s method [10].
The interior (BE) of the contour is assigned negative values,
the exterior (B = 0) positive values. The voxels belonging to
the surface ((B = 1)−BE) of the projection are assigned 0.
It should be noted that due to the discrete nature of the pre-
calculated distance map, the energy function that is obtained
is not a continuous function, which has to be taken into ac-
count when choosing an appropriate optimization algorithm
for optimizing this energy function.

3.5.3. Handling missing features and possible outliers

While the distance map itself gives a good result for a 3D
skin surface model that exactly fits in the binary bounding
box i.e. when the bounding box has the same shape as the
skin surface, it becomes less robust when this is not the case.

Fig. 7. A photograph of a mouse (a) was manually segmented into a binary
contour(b). (c) shows a simulated projection of the 3D surface obtained from
a CT of the same subject.

The simulated projection generated from a CT skin (Fig. 7c),
for example, does not contain skin of the ears, resulting in a
significant change of shape compared to the manually seg-
ments 2D projections (Fig. 7b). It can also be seen that during
acquisition the tail of the mouse has been moved, resulting
in variance when registering the two modalities. The SSE is
greatly affected by vertices that are far away from the desired
skin location and the optimum will have a tendency to shift
toward the ’outliers’, which could for example be artifact ob-
jects obtained when thresholding the CT dataset incorrectly.

Bounding the distance map
To cope with outliers, the energy function needs to be

altered, so that outliers are suppressed. This can be achieved
by introducing a maximum error Dmax, for all vertices gen-
erating an distance error of Dmax or more. This is defined in
Equation 5.

DMbound(x) = max(min(DM(x), Dmax),−Dmax) (5)

When looking at a visualization of the energy function in Fig-
ure 8, it becomes clear that a reasonably good fit is needed
first, before this bounded distance map can be used. This is
caused by the discontinuity of the SSE function, at the lo-
cation where the function energy reaches the value of D2

max

(See the red flat top in the energy function in Figure 8). Equa-
tion 1 is affected little by these discontinuities, because it is
a weighted average of all vertex energy values (E(v,Θ)) in
most cases, but it is affected when it is far away from the op-
timum. In that case the derivative of Etotal will be zero for all
parameters so that an optimization based on derivatives will
fail. Therefore a rough registration can be done first, by using
a larger Dmax, or by making a good initialization.

3.5.4. Correcting for inherent overestimation of Scale pa-
rameters

When minimizing the energy function as shown in Equation
1, the skin surface scaling will be overestimated. When all
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Distance Map Bounded DM Squared Bounded DM Energy Function

Fig. 8. An example of a distance map and corresponding energy function, based on a 2D Projection of a square (visualized as a red line), which could have
been generated by a 2 view orthogonal projection. The distance map was bounded at Dmax = 5. The squared distance map (DM2

bound) has a maximum
value of 25 and a minimum of 0 and is shown as 2D image and a 3D plot of the energy function landscape. The squared DM was pre calculated for efficiency
reasons, since E(v,Θ)2 = DMbound(x)2. (Eq. 2)

vertex errors are minimized, the vertices will be located as
close to 0 as possible, resulting in a set positioned outside
the convex hull, and a set positioned inside the convex hull,
so that the SSE is minimized. The best registration would be
when all vertices were located inside of the convex hull, as
close to 0 as possible, yielding a higher SSE, than the global
optimum. The reason for this is that only a few vertices of the
3D body are responsible for the 2D projections observed, but
all vertices are taken into account when taking the distance
map as error measure alone, as is depicted in Figure 9. We
need to correct for this error in the energy function, and we
introduce two penalties to do so.

Min SSE Best Fit

Fig. 9. The squares in this figure represent the bounding boxes. The circle
represent the registered source shape. The minimum SSE will not yield the
best registration, because it does not fit in the bounding box calculated from
the 2D projections which is the goal. All vertices will generate an error and
so the optimum will be at the point where all vertices are located as close as
possible to the boundary. As a result some vertices will need to be outside
the bounding box and some will need to be inside of it.

Penalizing Scaling Overestimation
Since we know that the bounding box is generated by

the outer vertices of the 3D skin surface only and therefore
vertices that lie outside the bounding box are wrongly posi-
tioned, we included an extra penalty α to penalize all vertices
located outside of the bounding box, by changing Equation 5
into Equation 6. To have a correcting effect for scaling, α > 1

has to hold, and α can not be too large, because real outliers
would get a too large effect on the position of the optimum.

DMboundOP(x) =

{
αDMbound(x), DMbound(x) > 0
DMbound(x), DMbound(x) ≤ 0

(6)

Angle incorporation
Also to correct for overestimation as well as for shape

differences between the modalities, we incorporate a condi-
tional penalty in the energy function, which causes the value
to be set to Dmax, when the angle rv (Eq. 7) between the skin
surface normal of a vertex and the 3D distance map gradient
(DMG) at that location is not below a preset maximum angle
rmax.

rv =
360
2π

cos−1 (DMG(x) · vertexnormal(T (v,Θ)))
(7)

DMG(x) =



∂DM(x)/∂x
∂DM(x)/∂y
∂DM(x)/∂z




∥∥∥∥∥∥



∂DM(x)/∂x
∂DM(x)/∂y
∂DM(x)/∂z



∥∥∥∥∥∥

(8)

When rmax is set to a smaller value, less vertices will be-
long to the allowed angle domain. This is visualized in Fig-
ure 10. This approach results in an energy function that will
decrease when more vertex normals are aligned with the gra-
dient directions in the distance map. This will yield an energy
function that is optimal when the skin normal directions are
aligned with the gradient directions of the distance map. Note
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Fig. 10. When rmax is set to a smaller value, more vertices get penalized
and thus set to the value Dmax. This will lead to an increase in the total
energy function. As a result, the energy function will lower, when more skin
surface normals are pointing in the right direction, which can be achieved by
optimizing the rotation parameters. In the figure above, areas are highlighted
which account for the skin surface distance error, i.e. the main part of the
energy function that needs to be minimized. In this picture, the red arrows
show the direction of the distance map gradient. The black arrows show the
direction of the surface normal direction.

that in order for this angle penalty to work, a bounded distance
map will be needed during calculation, otherwise the maxi-
mum value of the distance map would give too much weight
in the final SSE Energy function, resulting in local sub optima
(Equation 9).

3.5.5. Driving Force toward Optimum

When the distance map is not bounded, or whenDmax is set to
a high enough value, the angle penalties cause another effect,
which is shown in Figure 11. When the 3D skin surface is
on the ’wrong side’ of B, this would yield a local optimum
at a point where the SSE is minimal. When rmax is set small
enough though, vertices on the wrong side will give Dmax as
error (shown in red), independent of their real distance. This
will result in a derivative of 0 for all parameters, until their
orientation becomes correct. The green arrows depict vertex
normals of vertices that do not get penalized and thus have a
value of their real distance. The derivative for all parameters
will be based on DMG resulting in a force (blue arrows) on
those vertices in the direction of the rigid body. To make sure
that scaling is not set to zero, constraints on the parameters
are required.

Eangle(v,Θ) =

{
DMboundOP(x), if rv < rmax

αDmax, if rv >= rmax

(9)

3.5.6. Final Energy Function

Equation 10 shows the final SSE penalized energy function
that needs to be optimized for registration.

Efinal =
n∑

v=1

Eangle(v,Θ)2 (10)

Fig. 11. When making use of angle penalties (rmax is set to 90 in this pic-
ture), wrongly initialized surfaces can still be forced to the correct direction.
In this image, the gray arrows depict the distance map gradient direction, gen-
erated from the square projection. The red arrows depict the vertex normals
on the surface causing a penalty. The green arrows depict vertex normals of
vertices that do not get penalized. The blue arrows depict the direction in
which the non penalized vertices are forced.

3.6. Optimizing the Energy Function

3.6.1. Using the distance map and its gradient

The goodness of fit is determined by calculating an error and
is derived from the 3D distance map (DM ) and the 3D dis-
tance map gradient (DMG), depending on the 3D vertex po-
sition. At each iteration of the optimization, Equation 9 is
evaluated. In this equation, rv is calculated for each vertex by
applying Equation 7.

3.6.2. Initialization

The first step in the registration process is to provide the op-
timization function with an initialization. We initialized our
model, based on the assumption that the orientation of the
input geometry is roughly known. We use the center of grav-
ity (CoG) of the bounding box, combined with an anatomical
landmark, the tip of the nose (ToN), to derive the initial trans-
formation matrix. For this matrix we determine scaling pa-
rameter (Sxyz), by making use of the distance between CoG
and ToN in the bounding box and correcting this for the 3D
source skin. We also estimate initial translation (Tx, Ty, Tz),
by correcting the difference between the CoG of the bound-
ing box and the CoG of the source skin. The last parame-
ter we estimate is the rotation parameter around the y-axis
(Ry), by calculating the angle between the xz-components of
the vectors ToN − CoG of the bounding box and the source
skin. This rotation calculation is based on the fact that mice
are positioned on a mouse holder during acquisition and thus
variance will be largest in the y axis rotation. The y-axis is
defined as the vertical axis in the coronal view.
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3.6.3. Global Registration on Photographic Data

When having two datasets of the same subject, acquired with
different modalities, registration can be achieved by estimat-
ing one single transformation matrix. In this matrix rotation,
scaling and translation of the rigid object are implicitly de-
fined.

In Equation 1 every vertex is transformed with parameter
set Θ. Θ contains the transformation parameters Tx, Ty, Tz,
Rx,Ry,Rz and Sxyz, where T is a translation on an axis,R is
a rotation around an axis and S is scaling along an axis. The
analytical shape of these functions, i.e. which energy of the
vertex belongs to which parameter set, is not known, and has
to be calculated individually for each vertex. For every pos-
sible feasible rounded location obtained with T (v,Θ) a cor-
responding distance to B is calculated beforehand and stored
in DM . For rigid registration, the rotation parameters are re-
lated to the world axis, i.e. Rx means a rotation around the
x axis, when the CoG is translated to the origin of the world
axes.

3.6.4. Articulated Atlas Registration on Photographic Data

While global transformations alone can be useful to register a
3D volume set to multi plane photography data, we primarily
use global registration to demonstrate the correct working of
our algorithm and energy function, so we can apply it to the
deformable atlas we created.

The notion of a hierarchical transformation model gives
us the ability to separate the optimization problem into mul-
tiple subproblems, reducing the number of parameters to be
optimized in each step and thus reducing the dimensionality
of the optimization. To be able to use a hierarchical approach,
an energy function is needed that is able to take predefined
body part labels into account, while ignoring others. When
searching for an optimum of the spine for example, the opti-
mum must not suffer from parts that are lower in the hierarchy
because that would affect the optimal fit of the registration.
Figure 12 shows the hierarchy we applied in our registration
algorithm.

Global Registration Phase
During the registration of the spine and the head, all ver-

tices that belong to the limbs are removed from the energy
function, to prevent errors caused by non correctly positioned
limbs. The angle rmax is decreased during registration, to
obtain a better fit and orientation. Once the spine and head
are registered and no improvement can be gained, the limbs
are registered in a sequential order. Since the conformations
of the limbs are independent of each other, the order in which
they are registered is not of importance. For the initial reg-
istration steps of the spine and the head, DM can be used,
instead of DMbound, so that the energy function suffers less
from discontinuities. To avoid local minima, angle penalties
are not considered. α can still be applied to DM, to avoid

Global Registration
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(Intermediate) Result
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information flow

Object Relationship

Separate Note

no

yes

no

yes
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Fig. 12. A hierarchical way of splitting up the transformation as well as
the optimization problem.

overestimation of the scale parameter. In this way a rough
global registration can be obtained. After this initial registra-
tion step, DMbound is introduced and rmax is decreased in
discrete steps after convergence has been reached.

Local Registration Phase
When the Spine and Head are registered, we start the

registration of the limbs by applying a rough initialization
of θlimb for each limb, where θlimb contains 7 rotation pa-
rameters. For the initialization we do an exhaustive search in
the feasible rotation space with an angle increase of sr and
for each feasible orientation (−R : sr : R)we calculate the
surface error, including penalties generated by rmax. For each
evaluation step we set θbest = min(θbest, θnew). We end the
initialization when all feasible conformations are evaluated
and use θbest as initial parameter set for the registration. The
setting of sr is a trade off between exhaustiveness and cal-
culation speed. A very small step size would indicate a full
search space, while a large step size could falsely identify
a local minimum as the best initial position possible, with a
failing registration as result. A step size of factor 1

nsr would
require a factor of n7 more calculations and thus calculation
time. We choose a step size of 10 degrees.

3.6.5. Choice of Optimization Algorithm

For the optimization of the energy function (Eq. 1), we used
an iterative non-linear regression method. We chose a Newton
interior-reflective method for our optimization, because this
algorithm allows us to set upper and lower bound constraints
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on the set of parameters out-of-the-box, and it is efficient for
medium and large-scale optimization problems [11]. The new
locations of the vertices were calculated with each optimiza-
tion step and the new distances were read from the distance
map at each iteration.

4. EXPERIMENTAL SETUP

To test the correct working of our methods we implemented
a proof of concept in Matlab 2007b. To validate the algo-
rithm, we designed tests to demonstrate the working of the
distance map method by using synthetic data and real data
with a known gold standard registration. In addition we de-
signed an articulated mouse atlas from Digimouse which al-
lowed for non-rigid deformations.

4.1. Data Acquisition

4.1.1. Synthetic data

We define synthetic data as real CT data from which the skin
surface is segmented, and of which we made projections on
a 2D space, to generate synthetic binary 2D skin segmenta-
tions. The CT skin surface was scaled and translated in such
a way that when voxelizing the volume it would roughly span
300x150x150 voxels. This was done for memory reasons.
The surface was then refined by setting the maximum dis-
tance between all connected points on the surface to be 1. The
2D projections were generated by rounding the locations of
the vertices and setting the corresponding locations in voxel
space to 1. A projection silhouette was made in both the x
and y direction of the mouse surface, resulting in two binary
images of which one is shown in Figure 7c. The two binary
contours were backprojected into 3D space, to obtain a 3D
binary voxel model, that acts as bounding box for the reg-
istration problem. In addition to the existing distance map
generated out of two 2D skin surfaces, we also generated a
projection matrix based on four 2D skin surfaces, to deter-
mine the sensitivity for the algorithm to additional input data
and to compare the obtained improvement with the 2 surface
case. For the generation of the synthetic side views, i.e. the
projection of the 3D skin surfaces, we let the origin of rota-
tion be at the center of gravity of the binary voxel volume as
generated from the first two side projections. We then rotated
both the voxel volume and the skin surface model around this
points’ z-axis for 45 degrees, and calculated two new projec-
tions resulting in a second voxel volume. We then rotated
45 degrees back, to let the 4 view projection have the same
orientation as the 2 view projection.

4.1.2. Real data

The real data that we used is based on the same CT dataset,
but now accompanied with real 2D BLI images, in which we
manually drew contours, to obtain binary 2D skin projections

(Fig. 7b). We only used a top and side view BLI image to
obtain two contours. Again for memory reasons, we down-
sampled the images to 300x150 pixels. The 3D binary voxel
model was obtained with the same method that was used for
the simulated projections.

4.2. Test setup

4.2.1. Finding α

When only rigid transformations are applied during initializa-
tion and registration, we know that the 3D source skin surface
will fit well to the simulated projection space. Because of the
fact that we discard information by making projections of the
skin surface, the optimum is not located exactly at the orig-
inal skin surface anymore. For a completely convex model,
a perfect fit can in theory be obtained by letting rmax → 0.
Though as rmax converges to zero, at some point not enough
vertices are left to generate a useful energy function as virtu-
ally all vertices are given the error αDmax. As a result there
will always be an overestimation when α = 1. Obtaining the
right value for α is not straightforward and is dependent on
whether 2 or 4 views are used, which sampling is used and
also on the absence or presence of concavities in the 2D pro-
jections. We know for sure that α must be larger then 1, oth-
erwise the overestimation effect will become larger. To find
a good value for alpha, we ran all registrations on all mouse
examples, for a range of alpha = [0.5 . . . 9]

4.2.2. Rigid Transformation

We used CT datasets with accompanying BLI datasets of 10
different mice. The CT datasets were individually thresh-
olded and converted to a triangulated mesh, to obtain skin sur-
faces. We also segmented a top view and side view of each
mouse, resulting in a total of 20 2D projection silhouettes.
The transformation matrix of a pre-registration of the CT and
BLI datasets was used as a gold standard to compare our reg-
istration with. This pre-registration was acquired by making
use of expert landmark annotation in the two modalities and
registration of those landmarks. This registration was used as
a gold standard. To compare the added value of more than
two projections we ran tests with two synthetic projections
and with four synthetic projections. We also tested the added
value of the incorporation of the angle penalties by running
a test without the use of these angles. Finally the effect of α
was measured. An overview of the tests for rigid registration
is shown in Table 2.

4.2.3. Hierarchical Model

To test the robustness of our energy function and optimization
algorithm we generated random deformations in our mouse
model, where we changed the size of each bone allowing it to
be between 80% and 120% of the orignal size. We also rotated
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α rmax 2 Side 4 Side Abbreviation used
value values Views Views in Table 3
Synthetic Projection Data
1 180,45,10,5 Y Y Synthetic Data 2/4 surf.
1 180 Y Y Synth. 2/4 view w/o angle
2.5 180,45,10,5 Y Y Synth. 2/4 view outer pen. 2.5
Real Data (BLI Segmentation)
1 180,45,10,5 Y N/A Real Data 2 view
2.5 180,45,10,5 Y N/A Real Data 2 view outer pen. 2.5

Table 2. Overview of used tests.

each joint within the allowed feasible restriction set. We gen-
erated a random deformation with ±10◦ change in all joint
rotations, while maintaining the degrees of freedom in rota-
tion. We then generated changes in neck, left arm, right arm,
both arms, left leg, right leg, both legs and all limbs to get an
indication of robustness of the algorithm. We used 2 and 4
synthetic projections to generate the bounding boxes, as we
did for the affine transformation tests, to determine whether
extra information on the bounding box would yield better reg-
istration.

Since we did not have a gold standard for the hierarchi-
cal model registration, we only used synthetically generated
projections to test with.

4.2.4. Validation Indices

To measure the quality of the registration we calculated 1) the
differences in scaling and translation compared to the gold
standard, 2) the distance between two CoG points, 3) the
mean surface distance, 4) a mean Dice coefficient [12] and
5) the in between angles of the gold standard registration and
our own registration, by applying the transformation matrices
to the vector [1, 1, 1] and calculating the dot product between
obtained vertices, after correcting for translation.

4.2.5. Used Software

For the manual segmentation of the CT skin surface and the
Digimouse 3D atlas we used the software package Amira. For
implementation of the registration algorithm we used Matlab.

5. RESULTS

5.1. Results of Rigid registration

In Table 3 we compare results obtained from the synthetic 2
view case, the 4 view case with and without angle constraint
and finally the real data 2 view case in comparison with the
gold standard, where real data is defined as manually seg-
mented 2D BLI images, to which a 3D skin surface generated
from a CT scan is registered. We also show the improvement
obtained with incorporating an α of 2.5.

Fig. 13. Vertices on the skin surface that are penalized (red) give an error of
1 in the error function. The other vertices (green) will get their corresponding
distance in the distance map. It can be seen that the most vertices that are
below the allowed maximum angle (green) are located at the back. These
vertices are responsible for the shape of the 2D contour

5.1.1. Results for α

With our 10 real data samples and synthetic projections we
found that for two view projections, and α of 2.5 was optimal
by comparing performance with varying α, and for four views
an α of 5 showed the best average results. The graphs we used
to make this decision are shown in Figure 14. As can be seen
the values of α do not show a very clear optimum. We have
too little data to determine a clear optimum, but we can see
that the optimum is not really sensitive to different values. It
is clear from Figure 14 that α should be larger then 1.

5.1.2. Synthetic Data

In Table 3 the results of our rigid registration method are
shown. With a mean surface error of less then a voxel and
Dice indices approaching to 1, we obtain near perfect regis-
trations. This shows that the energy function performs well
for rigid transformations.

As can be seen in the synthetic data tests, in the 2 view
cases the skin error is slightly smaller compared to the 4 view
cases, which is unexpected, since 4 views give more infor-
mation about the shape of the mouse than 2 views. On the
other hand, the variance of the 4 view case is smaller, indi-
cating that the algorithm performs more stable when using 4
views, which can be explained by the extra information we
have. Also, the rotation errors indicate that the 4 view cases
generate better orientations of the mouse.

5.1.3. Real Data and Gold Standard

In order to validate the working and accuracy of our method,
we compared our transformation matrix to one with known
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Distance between Corrected Distance Distance between Scaling
Skin Surfaces1 between Surfaces Centers of Gravity Error

Unit voxels voxels voxels %
Synthetic Data 2 surf. 1.91± 1.83 0.92± 0.367 1.27± 1.22 0.74± 0.539
Synthetic Data 4 surf. 2.17± 1.70 1.08± 0.146 1.08± 0.696 1.33± 0.338
Synth. 2 view w/o angle 3.47± 1.38 2.46± 0.389 3.21± 2.52 2.95± 1.2
Synth. 4 view w/o angle 2.57± 1.44 1.61± 0.417 1.71± 1.1 2.30± 0.974
Synth. 2 view outer pen. 2.5 1.23± 1.56 0.353± 0.151 0.279± 0.235 −0.319± 0.220
Synth. 4 view outer pen. 2.5 1.35± 1.67 0.424± 0.0762 1.12± 0.32 −0.0665± 0.186
Real Data 2 surf. 4.20± 1.62 3.96± 1.19 11.2± 7.47 −1.65± 1.53
Real Data 2 surf. out. pen. 2.5 4.15± 1.75 3.86± 1.32 9.03± 6.20 −3.40± 1.86

Rotation Dice Translation Error
Error Coefficient x y z

Unit degrees voxels voxels voxels
Synthetic Data 2 surf. 0.592± 0.423 0.995± 1.51 · 10−3 1.07± 1.68 0.503± 1.54 3.76± 3.1
Synthetic Data 4 surf. 0.367± 0.268 0.995± 6.46 · 10−4 3.11± 1.44 2.75± 1.12 4.77± 2.86
Synth. 2 view w/o angle 1.26± 0.488 0.988± 1.92 · 10−3 6.21± 3.57 7.34± 5.25 8.98± 5.73
Synth. 4 view w/o angle 0.475± 0.188 0.992± 1.92 · 10−3 4.79± 3.00 5.20± 4.08 8.03± 2.95
Synth. 2 view outer pen. 2.5 0.598± 0.384 0.998± 5.10 · 10−4 −1.25± 0.855 −1.17± 0.704 1.63± 2.08
Synth. 4 view outer pen. 2.5 0.336± 0.224 0.998± 3.68 · 10−4 0.433± 0.800 −0.336± 0.695 1.42± 1.10
Real Data 2 surf. 1.73± 1.22 0.983± 3.00 · 10−3 7.25± 6.51 14.5± 7.69 1.31± 10.5
Real Data 2 surf. out. pen. 2.5 1.66± 1.03 0.984± 3.07 · 10−3 −11.7± 7.57 17.8± 5.11 2.78± 11.3

Table 3. Results of different optimization problems, compared to a gold standard generated by an in house developed program. A voxel roughly corresponds
to 350µm The mean skin surface error does not provide a good approximation of the real skin distance error. The voxelization of the CT surfaces is restricted
to the domain of the BLI data, which is not equal to the CT domain. When calculating the distance of the registered surface to the voxelized surface, the domain
of the CT skin surface that lies outside of the voxel domain generates an error. We therefore estimated the real error (second column) by leaving out all vertices
located outside of the voxel space.
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Fig. 14. 4 tests for α with different ranges for α and different number of used side views.
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Fig. 15. A qualitative comparison between our gold standard and our own
registration.

registration generated by the Cyttron Visualization Platform
[13], an in house developed program. The registration in this
program was achieved by using expert landmark annotation
and point-based registration. Three points were drawn into
the 2D images and in the 3D voxel set, and landmark based
registration was applied, using Procrustes method.

When looking at the real data performance of the algo-
rithm, we see slightly worse Dice indices than for the syn-
thetic data, but we still obtain an accurate registration with a
mean surface error of ≈ 1mm and a Dice index of 0.98. The
observed increase in error is mainly caused by the differences
in contour shapes between the real 2D mouse surfaces and the
2D CT projections. These differences can be caused by loss
of information during preprocessing, such as noise reduction
or by wrongly segmented photographs due to low contrast or
artifacts cause by reflection of light. Also small movements
of the mouse between the two acquisition phases are seen.

Based on an observed Dice index of 0.977, we must con-
clude that the gold standard that we use is less accurate than
our automated registration, which is good. As a result though,
the errors that are compared to the gold standard (everything
except the Dice index) are not as informative as we would
like. The errors that we observe for the real data are slightly
larger than for synthetic data, but errors are not solely caused
by registration errors. A part of the errors is caused by shape
differences, as explained in subsection 3.5.3, a part is caused
by the registration errors in the gold standard, and a part is
caused by the actual registration errors of our own algorithm.
An example of a visual comparison between the gold stan-
dard and our registration is shown in Figure 15. As can be
seen in Figures 7 and 15, a part of the registration ’error’ in
Table 3, is caused by a difference in shape between the 2D
BLI data and the 3D CT data projections. Because of these
shape differences, an inconsistency between DM and the CT
skin surface is created, which changes the location of the opti-
mum. Moreover the regions between the upper limbs and the
ears suffer from non linear gradient fields, which could cause
the angle penalty to generate extra errors. Also, the pose of
the tail is not completely fixed and thereby generates extra er-
rors. Moreover, because the tail of the CT modality exceeds

the covered space of the BLI modality and also the synthet-
ically generated contour modalities, the part of the tail that
is located outside of this modality generates an error. Since
the position of the tail of the mouse is probably non relevant
information in most cases, it could be taken out of the reg-
istration energy function, for example by removing it from
the CT dataset. Our visual check explains a large part of the
errors we observe and we conclude that the used energy func-
tion performs very well, given that the segmentation of the
optical data is of high quality.

5.2. Results of Atlas Registration

Because of the many parameters and the hierarchical structure
of the Digimouse atlas, it is difficult to interpret all obtained
results, especially since errors high in the hierarchy propagate
to lower parts in the hierarchy, but are partly corrected (e.g. a
wrongly positioned rotation point, will be compensated by a
’wrong’ rotation). The Dice index and skin surface errors are
a good indication of performance and easier to interpret.

5.2.1. Atlas registration to perturbed atlas projections

Since the algorithm makes use of only side views with a min-
imum of 2, it is very likely error prone in the case where a
mouse has its limbs positioned close to its body. Determina-
tions of rotations in the z-axis would be inaccurate, because of
the cylindrical shape of the mouse, and therefore the rotations
around the x and y axis could also be erroneous. Since rota-
tions in the x, y and z direction are not independent variables
it is of no use to take these parameters as a validation index.
Instead we used, as mentioned in Experimental Setup, the in-
ner rotation angle between initialized and registered transfor-
mation matrices. Plotting these angles all in the same figure
would give an unclear figure, so we merged all rotation er-
rors in a limb and all translation errors in a limb, to a mean
rotation and mean pivot distance respectively (Fig. 16E, F).
Although we lose information with this approach, it still gives
an indication on performance of the registration.

As can be seen, with perturbations in individual limbs,
the mean error of the corresponding limb parameters also in-
creases. Due to the hierarchical approach, a rotation error in
the Spine will result in a pivot point error and rotation error
in the upper limbs. The upper limb rotation errors generate
a translation error and rotation error in the part lower in the
hierarchy. It is therefore very important to have a good regis-
tration high in the hierarchy, because registration of children
will fail otherwise. We could also allow small translations for
individual articulated bones, to correct for inaccurate registra-
tions, but this would increase the DoFs.

In Figure 16E and F it can also be seen that the left leg
registration performs systematically worse than the right leg
registration. While searching for an explanation for this error,
we discovered that a small error was introduced in the seg-
mentation and labeling phase of the Digimouse CT dataset,
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Fig. 16. A: Surface skin error after registration for a synthetic 2 view case and 4 view case. With (α = 2.5) and without (α = 1) outer penalty. B: The
spine and head were overestimated in size in all cases. The incorporation of an extra penalty α solved this overestimation problem. Registration was done
with α = 1 and four view projection. C: Dice Index after registration for a synthetic 2 view case and 4 view case with (α = 2.5) and without (α = 1) outer
penalty. D: The percentage of falsely covered areas are the percentages of the calculated projections of the registered skin surface, that do not overlap with
the 2D contour which are used for registration. The non covered areas are the areas of these 2D images that are not covered by the projection of the registered
surface. Registration was done with α = 1 and four view projection. E: rotation errors for spine and limb and average error of all joints per limb. F: pivot
point distance error for spine and limb and average error of all joints per limb. All registration were run with sr = 20.
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which may be causing this error. The left foot and left lower
leg are overlapping in this labeling, resulting in a skin vertex
labeling that is also wrong, because we make use of a closest
point calculation. When applying rotations to the ankle joint,
errors will be introduced in the vertex normal directions. We
expect that the error penalties resulting from this are causing
the systematic error in the registration of the left foot.

It can be seen in Figure 16B and 16D that the Dice indexes
are mainly affected by an overestimation in size of the Spine
and Head labeled vertices, in spite of the angle penalties used.
To compensate for that we used α in the same way as we did
during the rigid registration. An improvement can be seen in
the Dice indices when we use this penalty, (Fig. 16C) and we
observed that the overestimation and false overlap decreased.

With α set to a value above 1 and the use of angle penal-
ties, we obtain a Dice coefficient of 0.98 for all perturbations.
Though it should be noted that the conformation of the mouse
limbs has a small effect on the Dice index, this result is good.
We observe that the pivot point distances of all limbs, except
that of the left leg, remain within 3 voxels, which corresponds
to ≈ 1mm.

5.2.2. Atlas registration to CT Projections

We also made some first steps in looking at performance of
our atlas registration to CT projections and obtained skin sur-
face errors of 7.42± 1.14 voxels and a Dice Index of 0.973±
0.003. These results are worse than what we observed with
CT to real data registration which is shown in Table 3, but
these registration indices are still good. A visual inspection
shows that many cases errors are caused by local sub optima,
but we also see that the estimation of the skin surface that we
calculate is based on a too simple model. Apart from this, the
use of an articulated atlas looks promising.

6. DISCUSSION

6.1. Contour Detection

Our registration algorithm heavily relies on the correct con-
tour detection of the mouse skin surface boundary of 2D skin
surface images, for instance BLI images. We have manually
segmented our BLI dataset, which was of good quality and
allowed us to make a good, although not quantifiable, seg-
mentation. Some contour detection algorithms can be used
for this, for example an active contour model [14]. Also the
model is known to consist of one part, so a closing and se-
lection can be applied to achieve one binary blob. To make
sure correct segmentation is achieved, a mouse holder should
be used that does not occlude the mouse. If this is not pos-
sible, an iterative method could be thought of that uses the
optimization algorithm to find more accurate contours of the
skin, to feed the next optimization. For a reasonable segmen-
tation though, we would need photographic data with a high
signal (mouse) to noise (rest) ratio. Observed occlusions in

the mouse image data suggests that a shape model will prob-
ably be necessary to aid in automatic segmentation. As can
be seen in Figure 7a, at the boundaries where the projection
contour would be, the mouse skin surface is darker, because
of shading. When applied automated segmentation by thresh-
olding, chances are that shaded part of the mouse will be rec-
ognized as background, resulting in a smaller segment. This
will affect accuracy of the registration, mainly in scaling.

6.2. Vertex distribution on skin surface

The mean skin surface error that is shown in Table 3 is based
on a uniform distribution on the skin surface. We used the
skin and its projection for registration of a 3D volume. The
point distribution versus 3D volume ratio is not constant, but
varies along the direction of the spine. It could be argued
that, although this uniform point distribution is working well
for the registration process, the obtained skin surface error is
probably not a good representation of the registration error.
Although we are registering a skin surface, our goal is the
registration of a 3D volume. A volume overlap error, in the
form of for example a Dice index, would therefore be a better
measurement.

6.3. Concavities

We make use of a backprojection of projected contour sil-
houette, to obtain a convex hull as an implicit representation
of our skin surface. Since mice are mainly ’cylindrical’ in
shape, this approach works quite well in our case, but when
more concave surfaces need to be registered, our proposed en-
ergy function will most likely fail. The angle penalty, set by
rmax, will increase errors, although partially undone by the
bounding of DM with Dmax. The only setting that can be
tuned is α, to compensate the large overestimations of scaling
parameters that will be caused by concave surfaces.

7. CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

We presented a novel method to register a 3D skin surface to
two or more 2D surface images. We demonstrated the work-
ing of this algorithm on synthetic and real data and showed
that it is important to have a correct segmentation of the 2D
images for the algorithm to work.

We also showed that 2D projections themselves provide
sufficient information to obtain a good registration when only
rigid transformations are applied, and, surprisingly, that a
dataset of 2 projections even outperforms a dataset of 4 pro-
jections. The atlas registration is less robust, but we still
manage to obtain a mean surface error of 1 voxel when we
fully perturb the atlas parameter set, based on 2 projections.
The registration of the atlas on real data does not yield the
desired results yet, and we probably need a more natural and
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flexible skin surface model, that is able to cope with intra sub-
ject shape differences, as well as to give a better estimation
on shape differences caused by elasticity of the skin surface.

7.2. Future Work

In order to improve the performance of the left foot regis-
tration, we need to obtain a better segmentation of the Digi-
mouse atlas. With this new segmentation the experiments of
the atlas registration have to be redone to determine whether
the segmentation error is indeed causing the observed errors.

While we are currently able to register an articulated atlas
on 2D projections, we do not have access to real data with a
known ground truth for joint rotations at the moment, which
makes it impossible to validate our results. Also we will
need a robust method that estimates the location of internal
organs correctly, based on the estimated location of the skin
and skeleton of Digimouse, to be able to use this technique
for quantitative light reconstruction.

We also will need to improve the estimation model of the
location and shape of the mouse skin surface, based on the
position of the skeleton. We know that the shape of the skin
surface at the abdominal region is not well defined by the con-
formation of the skeleton so a more advanced model is needed
to model differences in that region. Although our method cur-
rently allows limbs to change conformation in all directions,
it is more likely that it will have more restrictions than we
currently modeled, since a mouse holder will decrease the
feasible solution space and thus the DoFs in limb rotations.
These restrictions need to be studied and incorporated into
the model, most likely resulting in conditional rotation con-
straints (and the introduction of new local minima). Note that
a mouse holder will probably also have an effect on the skin
surface near the abdominal region, because of limiting space
in that area.

By using genetic techniques, it is currently possible to in-
sert light emitting or light fluorescent proteins in biological
cells. These techniques can be used for keeping track of mi-
gration and growth of for instance cancer cell lines, but they
may also be used to monitor gene activity inside of an organ-
ism, in a spatial-temporal manner [15]. In molecular imag-
ing, to determine the spatial and temporal location of these
cells inside a mouse, BLI scans can be made. Since for these
scans CCD cameras are used, only pictures of the surface of a
mouse can be made. For superficial localizations of the light
source, a thresholding on lumen can be made, but for deeper
lying regions, a photon propagation model is likely to give
a better prediction of the source of light [2]. In order to be
able to reconstruct the source of light, the inverse problem
has to be solved and for this a 3D model with known optical
properties is needed. By registering the surface pictures to,
for example, a CT dataset, a reconstruction of the light source
can be made. This technique is referred to as bioluminescence
tomography (BLT).

If we are able to obtain a robust and accurate registration
algorithm, we will be able to map acquired BLI data to the at-
las and start making quantitative analyses of observed spatio-
temporal gene expression data. For these analyses, statistical
tests will have to be developed to make reliable statements on
expression levels [15].
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ABSTRACT
Based on chronogram data that we obtained from the local-
izome website of Dupuy et al., we explored the possibility
of making qualitative statements on gene expression location,
solely based on the observed gene expression profile regis-
tered to a manually constructed atlas of organ locations. We
show that we are able to make statistically relevant statements
on locally enriched gene expression using this approach and
that we were able to find highly enriched gene expression pro-
files. Different statistical tests are explored, resulting in sim-
ilar top scoring genes for each test. We also show that our
method is limited, because we used a 1D spatial gene expres-
sion profile of 3D organisms, resulting in overlapping quali-
tative spatial locations in our dataset, such as the intestine and
the gonad sheet cells or the pharynx and the head neurons,
resulting in an ambiguous meaning to the found qualitative
expression enrichments.

Index Terms— Gene Enrichment, Chronograms, Statis-
tical Test, Spatial Expression, Caenorhabditis Elegans

1. INTRODUCTION

Functional Genomics is a field of science that studies the in-
teractions and functional behavior of genes. For these stud-
ies, large datasets on gene transcription and translation and
protein interactions are used. A common technique used in
genomics to measure expression profiles of mRNA (transcrip-
tion) is the use of microarrays [1]. A major drawback of mi-
croarrays is, that it is difficult and expensive to obtain expres-
sion data in local regions of an organism, because in addition
sectioned tissue profiling is required. If a temporal compo-
nent is also wanted, acquisition of expression becomes a la-
borious task [2]. It is known that gene expression is locally
regulated and therefore spatio-temporal gene expression data
may provide new functional insights on gene regulation. It is
therefore useful to have a means of acquiring spatio-temporal
expression information.

In this study we used spatio-temporal gene expression
data obtained from C. Elegans. C. Elegans is a well stud-

ied organism in both anatomical and genomical perspective.
Dupuy et al. [3] have acquired images of 1,992 different C.
Elegans strains, by making use of Fluorescence Microscopy
and a COPAS sorter (Union Biometrica). The COPAS device
is a flow cytometer that allows to measure objects of 20 to
1500 microns in size. Each strain has a promoter::GFP con-
struct inserted in its genome, which allowed Dupuy et al. to
observe spatial expression profiles of gene expression in a
single worm, by making use of the biofluorescent nature of
the GFP protein1. Dupuy et al. used the size of worms to
determine the developmental stage of C. Elegans. By sorting
all measured worms in size, a temporal component was added
to the dataset, resulting into spatio-temporal gene expression
profiles, which were visualized in what was introduced as
chronograms (Fig 2). To be able to improve our understand-
ing of local gene regulation in organisms, we explored the
possibility of making statistically relevant, qualitative state-
ments on spatially localized gene expression, by comparing
spatial expression profiles, observed in C. Elegans, with a
manually constructed 1D atlas of organ locations. First, we
filtered and registered our dataset into a consistent set of
chronograms. Second, we annotated the atlas with organ
locations. Finally, we applied different statistical tests, to de-
termine the presence or absence of enrichment in the organs
locations which were predefined in the atlas.

We show that we are able to find highly enriched gene ex-
pression profiles, based on a dataset of spatio-temporal gene
expression profiles and the use of prior knowledge in the form
of an atlas.

2. METHODS

2.1. Construction of Worm Atlas

To be able to test for enrichment of gene expression in cer-
tain organs, we created an atlas of the organ locations of C.
Elegans. To generate this atlas, we gathered information on

1A promoter::GFP construct is a strand of DNA, containing a promoter
pattern that regulates the transcription rate of the ’attached’ gene coding
DNA, in this case the gene for the GFP protein.
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Fig. 1. Manually Constructed Atlas (colored lines), for a reference of organ location and spatial extend, based on a 2D atlas
from [4]

organ locations from WormBase [5], WormAtlas [4] and other
sources [6]. From the WormAtlas website, we obtained a
schematic image which we used to measure locations and
sizes of a set of organs. The result of these measurements
is shown in Figure 1. Since the obtained spatial expression
profiles only had one dimension, we reduced the 2D worm at-
las to a 1D projection. Since this reduction in dimensionality
causes many organs to overlap, no unambiguous qualitative
statements can be made on gene expression location anymore.

2.2. Construction of dataset

Acquisition
We obtained the gene expression dataset, generated by

Dupuy et al. from the C. Elegans Localizome website
[7]. Some of the acquired strains contained the same pro-
moter::GFP construct, so we merged all expression profiles
having identical promoters, by averaging the multiple mea-
surements into a new expression profile. This way we ac-
quired a total of 1681 chronograms, each having a unique
promoter.

Signal Filtering
To obtain a good quality dataset, we removed all chrono-

grams missing more than 20 percent of data points, caused by
non observed worm sizes. A data point is defined as a pixel
of a worm. As an effect, more small worm sizes are allowed
to be absent than large worms sizes. Because Dupuy et al.
stopped their acquisition when most of the worms between
size 50 pixels (0.1mm) and 450 pixels (≈ 1mm) were ob-
served in their measurements, we decided to discard worm
sizes above and below these set boundaries. After removal of
poor data sets and non relevant worm sizes, we had a remain-
ing data set of 1155 chronograms, each chronogram having a

size of 401x450 pixels (See Fig. 2A). Worms being smaller
then 450 pixels, were aligned to the left side of the chrono-
gram and remaining pixels were set to zero. The data gaps
in the remaining chronograms were filled by making use of
interpolation (See Fig. 2B), so that we obtained a ’complete’
dataset to run our enrichment tests on. Interpolation was done
by taking the expression average of the two nearest existing
worm sizes smaller in size than the missing worm and the
two nearest worm sizes larger in size.

Registration
To be able to compare all worm sizes using the same sta-

tistical test, we ’registered’ the worms to our manually created
worm atlas, by resizing each individual worm to a length of
225 pixels. The size of 225 was chosen arbitrarily, although,
keep in mind that we wanted to reduce the weight of the
largest worms and increase the weight of the smaller worms
in the total dataset. A rationale for this value is, that a small
worm keeps more explanatory power, when it is not upscaled
too much. Up and downsampling of the worm sizes was done
using linear interpolation. We could use a linear registration
since C. Elegans shows a linear growth during each phase of
its development [8]. Inspection of our registered dataset sug-
gests that growth is indeed linear in each phase, since straight
lines in expression peaks can be observed in the registered
chronograms (See Fig. 2C and Supplementary Figs. 1S - 4S).

Normalization
To be able to compare all promoter expression profiles

with each other, we normalized the data per worm. Normal-
ization of the expression curve was done in order to obtain
an expression profile with a total expression of 1 (Equation
1). The normalization was applied to make visualization and
thus visual comparison of the chronograms easier (See Fig.
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Fig. 2. Chronogram data visualization of a randomly selected promoter. From left to right: A) Original Data, B) Original Data
with filled gaps,C) Registered and Normalized Chronogram.

2C and Supplementary Figs. 1S - 4S).

Îx =
Ix − P5(I)∑N

x=1 Ix − P5(I)N
(1)

In this equation, Î is the set of normalized intensity values,
I the set of original intensity values, N the number of data
points in the worm, i.e. it’s size and x a pixel of a worm.
P5(I) denotes the 5th percentile of set I . Note that N is fixed
to 225 after registration.

2.3. Data Integrity

The dataset of Dupuy et al. contains worms that were aligned
head to tail automatically, based on their expression profiles.
We observed some wrongly aligned worms in some chrono-
grams, suggesting that a Pearson Cross Correlation, which
Dupuy et al. used for alignment of worms, is not successful
in all cases. It could well be that because of these errors we
will miss some highly enriched signals. On the other hand,
given the dataset that we use, one could argue that a wrongly
aligned chronogram is not enriched. Also the main head/tail
orientation of the chronograms was determined manually by
Dupuy et al. We assume that this was done correctly, and
thus that in all our normalized chronograms, the heads of the
worms are located at the left side of the chronograms. We
decided to use the dataset of Dupuy et al. as is.

2.4. Qualitative Analysis on Spatial Expression

With a constructed Atlas as reference model and a normal-
ized and registered dataset, we can test for gene expression
enrichment, i.e. whether the expression of a gene in a certain
organ is significantly higher than outside that organ. Since
the constructed atlas is only applicable to the adult stage of C.
Elegans, we selected only the adult worm sizes in our chrono-
grams, being 325 to 450 pixels in size, roughly corresponding
to 650 to 900 µm in unregistered expression profiles. The 126

largest worms were thus used for statistical testing. We first
tested whether the expression data was normally distributed,
to decide which statistical tests to use. Since no clear normal
distribution was observed, we compared parametric and non-
parametric tests. We tested for enrichment with the following
tests. First, a two-sided two sample t-test, assuming normal
distribution, testing for H0 : µ1 = µ2, where µ is the mean
of the corresponding sample. Second, a two-sided Wilcoxon
Rank-sum test, to test against H0 : median1 = median2,
assuming unknown distribution. Lastly we calculated a cor-
relation score between the observed expression profile and an
’expected’ expression profile; we assigned a value of -1 to
all pixels falling outside of the organ and a value of 1 for all
pixels falling inside of it.

Results for the t-test and correlation are expected to be
similar, because of Supplementary Equation 9S. A high t-test
statistic, Rank-sum (Wilcoxon) or correlation score impli-
cates a high enrichment at the assumed organ location. The
choice of tests was driven by [9].

Separate Worm Profiles
First we apply a statistical test to each worm in a chrono-

gram individually, resulting in 126 test statistics for each
chronogram. This will result in a matrix of 1155x126x16
in size, containing the values of 1155 chronograms, each
having 126 worm sizes tested against 16 different organs.
Another matrix having the same size is obtained, containing
the p-values corresponding to the statistical tests. For all tests
we calculate a mean of the test statistic over the worm sizes,
yielding a matrix of 1155x16 in size containing test statistics.
For the p-values we also calculate the mean value over all
worm sizes. We can use the test statistics to rank the chrono-
grams on expression enrichment, resulting in 16 ranked lists
of chronograms, one for each organ.

Combined Worm Profiles
Instead of calculating the test statistics individually for

27



each worm size, we can also apply a statistical test to all
worm sizes at once, since we registered all worms to our
atlas. Combined testing results in one p-value and one test
statistic for each chronogram that we can use directly as en-
richment scores. Again we obtain a matrix with size 1155x16
containing test statistics and p-values, to calculate a rank-
ing and a significance filter. While with the separate worm
size testing we could use the original data, we now have to
normalize the data, because we combine different expression
profiles. We normalized each worm size in a chronogram
separately using Equation 1

Correcting for multiple testing
We can filter out only significant enrichment by making

use of the p-values obtained with the statistical tests. To
prevent marking enrichments as significant, that are solely
caused by chance, we have to correct our p-value cut-off, α
for multiple testing [10], and we decided to use a Bonferroni
correction for this. Our p-value cut-off of 0.05 is corrected
to α = 0.05/n where n in our case is 1155 (# of strains),
corresponding to the number of filtered chronograms in our
test set.

2.5. Definition Problems

It is not straightforward to state when expression is enriched
or not. The minimal definition would be that a signal is said
to be enriched in a certain area when the mean expression lev-
els are higher in that area than outside of that area, and have
a p-value lower than an α-cutoff of 0.05 corrected with Bon-
ferroni. Any more specific statements are driven by arbitrary
decisions.

It could be argued that some minimal difference between
two means is needed, to define something as enriched. When,
for example, you only define a signal as enriched when is has
at least a threefold higher expression than the observed back-
ground signal [11], a one tailed two sample t-test could be ap-
plied, testing against the null hypothesis H0 : µ1 = 3µ2. The
scalar 3 however, is arbitrary. It is also possible to lower the
allowed p-value, to only get really significant enrichments,
i.e. having a large difference in mean and a relatively small
variance, but setting the right value for the p-value cut-off is
also subjective.

We decided to use the minimal definition of enrichment,
and tested for significant differences in mean expression sig-
nal.

2.6. Validation

For most promoter chronograms we have the availability of
expert annotation on qualitative gene expression location,
which is based on microscopy observations. To validate our
results, we manually counted the occurrence of the searched
enrichment versus the corresponding spatial expression tags,

which were present in the localizome database [7]. Each
chronogram in the localizome database has a lists of qualita-
tive expression tags attached to it. Labels of chronograms that
we merged during the acquisition of the dataset were merged
in a new set of tags by making a union of the tag sets.

3. RESULTS

We calculated all test statistics on all chronograms, in combi-
nation with all organs defined in our worm atlas for separate
worm sizes and combined worm sizes, resulting in two ma-
trices of 1155x126x16 and 1155x16 in size respectively. We
calculated the top scoring enrichments for all organs where
some organs showed more profound enrichments than others.
Figure 3 shows an example of the top 10 enriched promoters
for the head, that were found by using the Wilcoxon Rank-
sum test and combined worm sizes.

Fig. 3. Result of the top 10 mean sum of the ranks of the
Wilcoxon test. The labels shown, are the names of the cor-
responding promoters. The light overlaid boxes illustrate the
tested organ region.

In Table 1 the top 10 scoring promoters for the tail neu-
rons are shown, including their corresponding p-values. Note
that ordering the test p-values does not yield the same result as
ordering the test statistics, since, because we used two tailed
tests and correlation, the p-value only indicates the signifi-
cance of the found difference in mean and not the direction of
difference, e.g. greater or less than the mean of the other sam-
ple. Another reason is, that since we calculated the means of
the test statistics and the p-values, the ordering of both values
changed. This is depicted in Figure 4 (Individual) and Figure
5 (Combined).
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Fig. 4. means of t-Values and p-Values, for t-test against the
head. Wormsizes were tested individually, and resulting p-
Values and t-Values were put in a new mean value. The mean
p-Values are not fully determined by mean t-Values anymore,
but are related.

Fig. 5. p-Values versus t-Test statistics, for t-tests against the
vulva. Wormsizes were combined in this test and p-Values are
fully determined by t-Values.
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Fig. 6. Overlap of found significant difference in mean, for
the tested expression profiles against the head, for different
statistical tests.

We could have filtered out the test statistics that are be-
low the expected value; 0 for correlation and t-test and, 113 ∗
organsize for the Wilcoxon rank sum test (see Equation 15S
for derivation) and allow a p-value cut-off that is twice as
large, but we think it is interesting to keep both tails in our
set, because it yields the enriched and not enriched examples
(red samples in Table 1). When we tested on the combined
worm sizes, we obtained very small p-values, which were
shown as 0 in Matlab. We could therefore not use p-values
to rank the found enrichment in significance. Since in the
combined worm profiles tests, the relation between p-values
and test statistics was maintained (Figure 5), we could in this
case safely order our enrichments, based on the test statistics
instead of the p-values (See Tables 2S and 3S). We com-
pared the found results of the t-test, the Wilcoxon rank-sum
test and a correlation coefficient. The correlation and t-test
statistics show the same behavior, as expected. A Venn di-
agram is shown in Figure 6 to illustrate this. Since all tests
perform similar, it is preferred to make use of the Wilcoxons
Rank-sum test for enrichment tests, because this test does not
make any assumptions on the underlying distributions of the
observed expression data.

4. DISCUSSION

We are able to find highly enriched signal with the use of a
manually constructed atlas. We showed that combining all
worm sizes into one test gives more significant enrichments
than when we test each worm size separately. The results in-
dicate that a manually constructed atlas can aid in finding ar-
eas with enriched gene expression and that found enrichments
show a common pattern. Also correct spatial expression tags
were found in many cases. The atlas that we use is not fully
annotated because many organs show overlap and full annota-
tion would give much redundancy. We do have some remain-
ing problems that need to be solved.

4.1. Limitations

Since many organs overlap in our 1D atlas, the exact recovery
rate is low. For example when searching for enrichment in
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Statistical Test on individual worm sizes
t-test wilcoxon correlation overlap

organ promoter mean t-value mean p-value promoter mean ranksum mean p-value promoter mean R mean p-value Venn
Tail Neurons p W08E12.5 93 2232 1.54e-012 p W08E12.5 93 5908 5.86e-007 p W08E12.5 93 0.75 1.54e-012

0 10

0

14

0

0
57

p D1007.1 93 1748 1.46e-006 p Y16B4A.1 93 5790 2.51e-007 p D1007.1 93 0.66 1.46e-006
p Y16B4A.1 93 1713 2.07e-010 p F42H10.3 93 5674 8.01e-006 p Y16B4A.1 93 0.66 2.07e-010
p C45G9.13 BC 1611 1.81e-007 p F09C3.2 93 5592 7.9e-006 p C45G9.13 BC 0.63 1.81e-007
p F09C3.2 93 1400 1.61e-010 p D1007.1 93 5569 1.25e-005 p F09C3.2 93 0.59 1.61e-010
p C12D8.1a BC -704 3.93e-005 p F19C6.1 BC 5448 3.13e-005 p C12D8.1a BC -0.35 3.93e-005
p Y69A2AR.18 BC -738 2.92e-007 p T25B9.2 BC 1365 1.77e-005 p Y69A2AR.18 BC -0.36 2.92e-007
p C18A3.5a BC -764 2.65e-005 p F52E4.1a 93 1309 3.61e-005 p C18A3.5a BC -0.37 2.65e-005
p Y37A1B.5 BC -784 3.79e-005 p W09D6.6 BC 1207 1.93e-005 p Y37A1B.5 BC -0.38 3.79e-005
p C41D11.2 BC -820 1.94e-005 p K07D4.7b BC 1116 7.41e-006 p C41D11.2 BC -0.4 1.94e-005

Table 1. Top scoring enrichments for different tests, using separate worm sizes. For full result table see Supplementary Tables
1S,2S. For visualization see Supplementary Figures 1S - 4S. Red values mean that there is a significant difference in the sample
value, but the mean expression in the organ region is smaller than outside of it (depleted).

the nerve ring, also promoters being expressed in the head
neurons, pharynx, and head show up, and vice versa.

We observed that many promoters did not have unambigu-
ous expression tags associated with them, because different
strains belonging to the same promoters contained different
expression annotation tags. The list of anatomical annotation
in the database was also not complete, only having 72% of all
promoters annotated, suggesting that the existing set of anno-
tations in the database is not complete either.

When ignoring the missing annotations, and using a (sub-
jective) region for validation, instead of the specific organ,
results were still difficult to interpret, but some correct an-
notations were found. I.e. all tags of organs that are (partly)
located in the region of the organ that is tested are seen as cor-
rect enrichment hit, or true positive. No accurate validation
could thus be done, and so the real performance of the used
tests remains unknown. Next to a list of correct tags, also
many unrelated tags show up, which is not surprising. The
fact that we do detect enrichment in the region of the head,
does not mean that the gene is not expressed in other parts of
the body, only that it is expressed at a different (detectable)
level. Resulting annotations from top scoring promoters can
be found in the supplementary (Table 4S).

4.2. Atlas Registration

We have no guarantee that the constructed atlas is accurate,
nor have we the knowledge that each worm has the same pro-
portions and organ locations. It could well be that the growth
of organisms is disturbed by the genomic alteration, resulting
from changes in protein synthesis and anabolic requirements
for this. As mentioned earlier, since we have overlapping or-
gans in our atlas, it is not possible to make unambiguous qual-
itative statements on gene expression. This clearly shows the
limits of the approach we used and forces us to maintain a
loose definition of enrichment to be in areas instead of in or-
gans.

5. FUTURE WORK

We want to extend this research from C.Elegans to expres-
sion profiles of a normal lab mouse. There is a structural

atlas available in the form of Digimouse [12], that we can use
for making statements on spatial expression in a similar way
as we did in this work. To extend this work to a 3D model,
instead of the current 1D model, some modifications have to
be made and some cautions should be taken. In a 3D atlas ap-
proach, we no longer have overlapping organs, as we did with
the C. Elegans atlas. This will make the qualitative statements
that we can make, less ambiguous. Since mouse models are
often used as model organisms for cancer research, an exam-
ple for enrichment search would be, that we want to answer
the question whether a cancer cell line has metastasized to
the bone or not; we only expect tumor growth on parts of the
skeleton, and not on the complete skeleton. We can use the
atlas to separate the body of the mouse into two segments,
e.g. ’skeleton’ and ’not skeleton’, resulting into two labeled
subsets of expression data which we can compare in the same
way as we did with this research. This example suggests that
this work can almost directly be translated to other organisms,
as long as we have the availability of a structural anatomical
atlas that can be registered to the acquired expression profiles.

Expected Problems
Note that in order to obtain a 3D expression dataset of

a mouse model, we will need a good atlas registration of
both skin surface and internal organs, in order to be able to
reconstruct the source of fluorescence by making use of a
photon propagation model [13]. If we are not able to locate
the source of fluorescence, we will not have the availability
of a 3D dataset and will have to use a 2D expression profile,
resulting in overlapping organs again. We expect that 3D
organs will have localized expression internally, which will
make it more difficult to obtain statistical relevant statements
on enrichment, because enrichment in a small part of an organ
would not significantly increase the mean expression com-
pared to the rest of the mouse body. The metastasis example
mentioned before, clearly shows this.
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Fig. 1S: Top 10 Scoring Enrichments for the Head. Tested
area depicted as rectangle overlay.

Fig. 2S: Top 10 Scoring Enrichments for the Tail Neurons.
Tested area depicted as rectangle overlay.
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Fig. 3S: Top 10 Scoring Enrichments for the Vulva. Tested
area depicted as rectangle overlay.

Fig. 4S: Top 10 Scoring Enrichments for the Developing Em-
bryo. Tested area depicted as rectangle overlay.
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Statistical Tests on Registered Data, Individual Worms, Top 10 Scores
t-test wilcoxon correlation Overlap

organ promoter mean t-value mean p-value promoter mean ranksum mean p-value promoter mean R mean p-value Venn
Body Wall Muscle p C29E4.4 BC 1925 3.15e-016 p F01G12.5a BC 25036 1.49e-011 p C29E4.4 BC 0.7 3.16e-016

0 8

0

18

0

0
58

p F55A8.2b BC 1887 3.27e-005 p K07G5.3 BC 25033 6.54e-014 p F52F12.1a BC 0.69 1.6e-017
p F52F12.1a BC 1846 1.59e-017 p F52F12.1a BC 25025 1.17e-012 p F55A8.2b BC 0.68 3.27e-005
p B0228.4 BC 1804 2.35e-009 p F28F8.6 BC 25016 8.2e-009 p K07G5.3 BC 0.67 1.23e-012
p F39G3.7 BC 1753 2.51e-006 p F39G3.7 BC 25010 1.29e-009 p B0228.4 BC 0.67 2.35e-009
p K07G5.3 BC 1750 1.23e-012 p W08F4.3 BC 25010 7.57e-010 p F39G3.7 BC 0.66 2.51e-006
p AC7.2 BC 1695 2.57e-008 p Y41D4A.4 BC 25010 2.86e-009 p AC7.2 BC 0.65 2.57e-008
p C16C10.1 BC 1694 6.56e-007 p M01E11.7 BC 25009 9.46e-012 p C16C10.1 BC 0.65 6.56e-007
p C53D6.2 BC 1646 2.34e-008 p Y71G12B.15 BC 25007 2.31e-005 p C53D6.2 BC 0.64 2.34e-008
p C52G5.2 93 1605 6.24e-012 p R09F10.6 BC 25006 3.2e-012 p M01E11.7 BC 0.64 5.01e-016

Body Neurons p K07D4.7b BC 3022 1.28e-037 p K07D4.7b BC 23815 2.77e-019 p K07D4.7b BC 0.84 2.28e-021

0 13

0

38

0

0
38

p K07G5.3 BC 2729 3.59e-005 p C56G2.9 BC 23720 3.31e-014 p C47C12.3 BC 0.81 4.06e-014
p C47C12.3 BC 2654 4.06e-014 p T10C6.13 BC 23714 5.61e-006 p K07G5.3 BC 0.8 3.59e-005
p T25B9.2 BC 2608 2.31e-006 p K07G5.3 BC 23683 8.91e-006 p T25B9.2 BC 0.8 2.31e-006
p C05A9.1 BC 2570 8.99e-007 p C47C12.3 BC 23677 6.18e-011 p C05A9.1 BC 0.79 8.99e-007
p Y67D2.2 BC 2449 7.95e-009 p F54C9.2 BC 23617 2.54e-005 p Y67D2.2 BC 0.78 7.95e-009
p F32B4.2 93 2373 2.55e-005 p Y67D2.2 BC 23605 8.58e-007 p C56G2.9 BC 0.77 7.04e-019
p F56B6.4b BC 2366 2.89e-010 p F56B6.4b BC 23598 2.49e-012 p AH6.4 BC 0.77 3.63e-010
p AH6.4 BC 2356 3.63e-010 p C04B4.2 BC 23584 1.14e-007 p T10C6.13 BC 0.76 8.07e-013
p T10C6.13 BC 2347 8.07e-013 p ZC373.5 BC 23581 3.76e-007 p F56B6.4b BC 0.76 2.89e-010

Intestin p K07G5.3 BC 2874 2.31e-006 p K07D4.7b BC 23345 1.22e-017 p K07D4.7b BC 0.82 4.69e-022

0 19

0

35

0

0
35

p C01G8.5a BC 2847 5.59e-006 p K07G5.3 BC 23341 2.2e-007 p K07G5.3 BC 0.82 2.31e-006
p K07D4.7b BC 2840 1.99e-039 p T10C6.13 BC 23309 2.99e-006 p C01G8.5a BC 0.8 5.59e-006
p AH6.4 BC 2460 4.3e-008 p C56G2.9 BC 23299 7.04e-010 p AH6.4 BC 0.78 4.3e-008
p Y45G12C.10 BC 2430 1.27e-005 p K08E7.8 BC 23286 1.17e-005 p C56G2.9 BC 0.78 1.23e-012
p F32B4.2 93 2409 2.38e-006 p F54C9.2 BC 23275 7.21e-007 p C47C12.3 BC 0.77 2.65e-010
p C47C12.3 BC 2404 2.65e-010 p C01G8.5a BC 23232 3.61e-007 p T25B9.2 BC 0.77 1.2e-005
p T25B9.2 BC 2389 1.2e-005 p F11H8.1 BC 23223 3.52e-006 p Y45G12C.10 BC 0.77 1.27e-005
p C56G2.9 BC 2381 1.23e-012 p F35H8.5 BC 23222 1.7e-006 p T10C6.13 BC 0.76 3.91e-012
p T10C6.13 BC 2330 3.91e-012 p ZC373.5 BC 23216 1.7e-008 p F32B4.2 93 0.76 2.38e-006

Gonad Sheat Cells p K07G5.3 BC 2954 2.05e-006 p C56G2.9 BC 22683 8.37e-009 p K07G5.3 BC 0.82 2.05e-006

0 18

0

31

0

0
30

p K07D4.7b BC 2800 3.32e-015 p K07G5.3 BC 22641 2.2e-007 p K07D4.7b BC 0.82 3.32e-015
p C56G2.9 BC 2671 5.4e-011 p T10C6.13 BC 22615 5.32e-008 p C56G2.9 BC 0.81 5.4e-011
p AH6.4 BC 2632 9.21e-010 p K08E7.8 BC 22605 3.59e-005 p AH6.4 BC 0.8 9.21e-010
p T10C6.13 BC 2459 4.37e-013 p F35H8.5 BC 22589 2.08e-008 p T10C6.13 BC 0.78 4.37e-013
p C47C12.3 BC 2425 1.23e-007 p F54C9.2 BC 22572 6.04e-007 p C47C12.3 BC 0.77 1.23e-007
p Y67D2.2 BC 2382 2.24e-006 p F11H8.1 BC 22549 5.24e-006 p Y67D2.2 BC 0.77 2.24e-006
p C05A9.1 BC 2348 1.92e-006 p K07D4.7b BC 22508 4.57e-015 p C05A9.1 BC 0.76 1.92e-006
p T25B9.2 BC 2286 2.36e-006 p ZC373.5 BC 22488 1.91e-007 p T25B9.2 BC 0.75 2.36e-006
p ZC373.5 BC 2266 3.58e-008 p C04B4.2 BC 22473 6.65e-010 p ZC373.5 BC 0.75 3.58e-008

Embryo p C37A2.4 BC 1597 1.5e-011 p F55C7.7a BC 9477 2.64e-008 p C37A2.4 BC 0.64 1.5e-011

0 3

0

1

0

0
3

p C18G1.2 BC 1481 2.57e-005 p C37A2.4 BC 9360 8.59e-012 p C18G1.2 BC 0.61 2.57e-005
p F55C7.7a BC 1371 7.39e-008 p F22B3.1 BC 9313 1.72e-009 p F55C7.7a BC 0.58 7.39e-008
p C32F10.1 BC 912 8.31e-007 p C04B4.2 BC 9280 1.27e-008 p C32F10.1 BC 0.43 8.31e-007

p C32F10.1 BC 9232 1.07e-006
p C26D10.2 BC 8719 1.47e-005

Tail Neurons p W08E12.5 93 2232 1.54e-012 p W08E12.5 93 5908 5.86e-007 p W08E12.5 93 0.75 1.54e-012

0 10

0

14

0

0
57

p D1007.1 93 1748 1.46e-006 p Y16B4A.1 93 5790 2.51e-007 p D1007.1 93 0.66 1.46e-006
p Y16B4A.1 93 1713 2.07e-010 p F42H10.3 93 5674 8.01e-006 p Y16B4A.1 93 0.66 2.07e-010
p C45G9.13 BC 1611 1.81e-007 p F09C3.2 93 5592 7.9e-006 p C45G9.13 BC 0.63 1.81e-007
p F09C3.2 93 1400 1.61e-010 p D1007.1 93 5569 1.25e-005 p F09C3.2 93 0.59 1.61e-010
p C12D8.1a BC -704 3.93e-005 p F19C6.1 BC 5448 3.13e-005 p C12D8.1a BC -0.35 3.93e-005
p Y69A2AR.18 BC -738 2.92e-007 p T25B9.2 BC 1365 1.77e-005 p Y69A2AR.18 BC -0.36 2.92e-007
p C18A3.5a BC -764 2.65e-005 p F52E4.1a 93 1309 3.61e-005 p C18A3.5a BC -0.37 2.65e-005
p Y37A1B.5 BC -784 3.79e-005 p W09D6.6 BC 1207 1.93e-005 p Y37A1B.5 BC -0.38 3.79e-005
p C41D11.2 BC -820 1.94e-005 p K07D4.7b BC 1116 7.41e-006 p C41D11.2 BC -0.4 1.94e-005

Head p C04C3.3 BC 3390 2.39e-043 p C04C3.3 BC 5290 1.9e-015 p C04C3.3 BC 0.87 2.39e-043

0 20

0

26

0

0
186

Head Neurons p F30A10.8a BC 2905 1.82e-037 p C10G8.7 93 5289 8.13e-014 p F30A10.8a BC 0.82 2.59e-023
Pharynx p Y69A2AR.18 BC 2648 1.34e-040 p B0252.2 BC 5251 1.51e-006 p Y69A2AR.18 BC 0.81 1.96e-031

p C10G8.7 93 2547 8.43e-039 p H28O16.1 BC 5242 3.8e-008 p C10G8.7 93 0.79 8.4e-024
p C34E10.6 BC 2387 5.44e-038 p F30A10.8a BC 5224 2.17e-011 p C34E10.6 BC 0.77 2.68e-020
p C37E2.1 BC 2326 1.02e-005 p F42G8.12 BC 5213 2.98e-006 p Y73F4A.2 BC 0.76 5.53e-026
p Y73F4A.2 BC 2274 1.4e-037 p Y69A2AR.18 BC 5211 1.51e-014 p C37E2.1 BC 0.75 1.02e-005
p F42G8.12 BC 2243 1.56e-016 p C34E10.6 BC 5198 5.68e-011 p F42G8.12 BC 0.75 1.56e-016
p R07G3.8 93 2176 7.49e-009 p T27E9.4a BC 5163 3.61e-014 p C03G5.1 BC 0.75 3.72e-013
p C03G5.1 BC 2171 3.72e-013 p T27A1.4 BC 5129 3.8e-011 p T27E9.4a BC 0.74 8.41e-030

Spermatheca None Significant None Significant None Significant
Hypodermis p F54D8.3 BC -620 1.47e-005 None Significant p F54D8.3 BC -0.31 1.47e-005

0 0

0

40

0

0
0

p W02C12.3b BC -621 1.01e-005 p W02C12.3b BC -0.31 1.01e-005
p gei-13 PF -626 1.92e-005 p gei-13 PF -0.32 1.92e-005
p ZK484.2 BC -630 2.58e-005 p ZK484.2 BC -0.32 2.58e-005
p C40C9.5 BC -636 3.44e-005 p C40C9.5 BC -0.32 3.44e-005
p C35D10.14 BC -638 7.49e-006 p C35D10.14 BC -0.32 7.49e-006
p F28B12.3 BC -648 3.97e-005 p F28B12.3 BC -0.32 3.97e-005
p F13G3.7 BC -654 3.34e-005 p F13G3.7 BC -0.33 3.34e-005
p F49E8.3 93 -658 3.94e-005 p F49E8.3 93 -0.33 3.94e-005
p T12D8.8 BC -662 2.89e-005 p T12D8.8 BC -0.33 2.89e-005

Nerve Ring p F30A10.8a BC 840 9.47e-007 None Significant p F30A10.8a BC 0.41 9.47e-007

0 0

0

7

0

0
0

p R05F9.1a BC 801 1.13e-005 p R05F9.1a BC 0.39 1.13e-005
p T04A6.1a BC 795 1.42e-005 p T04A6.1a BC 0.39 1.42e-005
p C34E10.6 BC 707 8.69e-006 p C34E10.6 BC 0.35 8.69e-006
p C03G5.1 BC 686 8.63e-006 p C03G5.1 BC 0.34 8.63e-006
p F08C6.7 93 652 4.72e-006 p F08C6.7 93 0.33 4.72e-006
p T27A1.4 BC 651 2.9e-006 p T27A1.4 BC 0.33 2.9e-006

Vulva None Significant None Significant None Significant
Anal Depressor Muscle None Significant None Significant None Significant
Pharyngeal Intestinal Valve None Significant None Significant None Significant

Table 1S: Top scoring enrichments for different tests, using separate worm sizes.
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Statistical Tests on Registered Data, Combined Worms, Top 10 Scores
t-test wilcoxon correlation Overlap

organ promoter t-value p-value promoter rankrum p-value promoter R p-value Venn
Body Wall Muscle p C29E4.4 BC 162 0 p F01G12.5a BC 395777998 0 p C29E4.4 BC 0.69 0

0 21

0

20

0

0
1101

p F52F12.1a BC 157 0 p K07G5.3 BC 395679627 0 p F52F12.1a BC 0.68 0
p K07G5.3 BC 150 0 p F52F12.1a BC 395675324 0 p K07G5.3 BC 0.66 0
p F32B4.2 93 147 0 p F28F8.6 BC 395611117 0 p F32B4.2 93 0.66 0
p F55C5.8 BC 144 0 p Y41D4A.4 BC 395407759 0 p F55C5.8 BC 0.65 0
p C01G8.5a BC 143 0 p F55C5.8 BC 395374173 0 p C01G8.5a BC 0.65 0
p B0228.4 BC 143 0 p Y71G12B.15 BC 395354079 0 p B0228.4 BC 0.65 0
p F10F2.8 BC 141 0 p F39G3.7 BC 395345890 0 p F10F2.8 BC 0.64 0
p F55A8.2b BC 140 0 p C29E4.4 BC 395320793 0 p F55A8.2b BC 0.64 0
p M01E11.7 BC 137 0 p R09F10.6 BC 395305068 0 p M01E11.7 BC 0.63 0

Body Neurons p K07D4.7b BC 251 0 p K07D4.7b BC 376569120 0 p K07D4.7b BC 0.83 0

0 45

0

26

0

0
1081

p C47C12.3 BC 224 0 p C39F7.1 BC 375088942 0 p C47C12.3 BC 0.8 0
p K07G5.3 BC 222 0 p T10C6.13 BC 375047629 0 p K07G5.3 BC 0.8 0
p K01G5.2a BC 214 0 p K12C11.2 BC 374955680 0 p K01G5.2a BC 0.79 0
p C05A9.1 BC 212 0 p C56G2.9 BC 374892706 0 p C05A9.1 BC 0.78 0
p C26C6.5 BC 212 0 p C47C12.3 BC 374583464 0 p C26C6.5 BC 0.78 0
p T25B9.2 BC 209 0 p AH6.4 BC 374533045 0 p T25B9.2 BC 0.78 0
p Y45G12C.10 BC 206 0 p K07G5.3 BC 374520855 0 p Y45G12C.10 BC 0.77 0
p C01G8.5a BC 204 0 p T25B9.2 BC 373912339 0 p C01G8.5a BC 0.77 0
p C56G2.9 BC 202 0 p K08E7.8 BC 373402719 0 p C56G2.9 BC 0.77 0

Intestin p K07D4.7b BC 238 0 p C39F7.1 BC 369399033 0 p K07D4.7b BC 0.82 0

0 51

0

26

0

0
1074

p K07G5.3 BC 233 0 p K07G5.3 BC 369171865 0 p K07G5.3 BC 0.81 0
p C01G8.5a BC 216 0 p K07D4.7b BC 369099341 0 p C01G8.5a BC 0.79 0
p K01G5.2a BC 211 0 p AH6.4 BC 368960234 0 p K01G5.2a BC 0.78 0
p AH6.4 BC 209 0 p T10C6.13 BC 368581266 0 p AH6.4 BC 0.78 0
p C56G2.9 BC 204 0 p C56G2.9 BC 368255082 0 p C56G2.9 BC 0.77 0
p C47C12.3 BC 203 0 p K08E7.8 BC 368118891 0 p C47C12.3 BC 0.77 0
p C16A3.10a BC 202 0 p K12C11.2 BC 367965459 0 p C16A3.10a BC 0.77 0
p T21H3.1 BC 199 0 p F54C9.2 BC 367867779 0 p T21H3.1 BC 0.76 0
p Y45G12C.10 BC 199 0 p C01G8.5a BC 367572618 0 p Y45G12C.10 BC 0.76 0

Gonad Sheat Cells p K07G5.3 BC 237 0 p AH6.4 BC 358864242 0 p K07G5.3 BC 0.82 0

0 42

0

28

0

0
1082

p K07D4.7b BC 236 0 p C56G2.9 BC 358608734 0 p K07D4.7b BC 0.81 0
p C56G2.9 BC 229 0 p C39F7.1 BC 358581749 0 p C56G2.9 BC 0.81 0
p K01G5.2a BC 227 0 p K07G5.3 BC 358240873 0 p K01G5.2a BC 0.8 0
p AH6.4 BC 222 0 p T10C6.13 BC 357834024 0 p AH6.4 BC 0.8 0
p F56E10.4 BC 214 0 p F35H8.5 BC 357520473 0 p F56E10.4 BC 0.79 0
p Y45G12C.10 BC 213 0 p F56E10.4 BC 357500595 0 p Y45G12C.10 BC 0.78 0
p Y71G12B.16 BC 206 0 p K08E7.8 BC 357443329 0 p Y71G12B.16 BC 0.77 0
p C01G8.5a BC 205 0 p K12C11.2 BC 357095947 0 p C01G8.5a BC 0.77 0
p C47C12.3 BC 204 0 p K01G5.2a BC 356947279 0 p C47C12.3 BC 0.77 0

Embryo p C37A2.4 BC 140 0 p C37C3.6b BC 153503806 0 p C37A2.4 BC 0.64 0

0 61

0

67

0

0
1007

p C37C3.6b BC 137 0 p F55C7.7a BC 149462722 0 p C37C3.6b BC 0.63 0
p C27A2.6 BC 132 0 p C27A2.6 BC 148421736 0 p C27A2.6 BC 0.62 0
p C18G1.2 BC 129 0 p C37A2.4 BC 148077133 0 p C18G1.2 BC 0.61 0
p C04B4.2 BC 127 0 p C04B4.2 BC 146738088 0 p C04B4.2 BC 0.6 0
p F22B3.1 BC 120 0 p C18G1.2 BC 146613474 0 p F22B3.1 BC 0.58 0
p F55C7.7a BC 119 0 p C05B5.7 BC 146194897 0 p F55C7.7a BC 0.58 0
p C05B5.7 BC 118 0 p C32F10.1 BC 145119286 0 p C05B5.7 BC 0.57 0
p F32D1.10 BC 114 0 p F22B3.1 BC 144880459 0 p F32D1.10 BC 0.56 0
p R13A5.6 BC 110 0 p ZK177.8a BC 143903062 0 p R13A5.6 BC 0.55 0

Tail Neurons p H06H21.10 BC 200 0 p H06H21.10 BC 97092455 0 p H06H21.10 BC 0.76 0

0 35

0

33

0

0
1079

p W08E12.5 93 187 0 p W08E12.5 93 93689865 0 p W08E12.5 93 0.74 0
p C07H6.7 93 152 0 p Y16B4A.1 93 91725415 0 p C07H6.7 93 0.67 0
p D1007.1 93 146 0 p R07B1.1 93 91369496 0 p D1007.1 93 0.65 0
p Y16B4A.1 93 141 0 p F42H10.3 93 90053228 0 p Y16B4A.1 93 0.64 0
p R07B1.1 93 138 0 p C07H6.7 93 89425684 0 p R07B1.1 93 0.63 0
p C45G9.13 BC 135 0 p F09C3.2 93 88479834 0 p C45G9.13 BC 0.62 0
p F09C3.2 93 122 0 p D1007.1 93 88391876 0 p F09C3.2 93 0.59 0
p Y5F2A.4 93 121 0 p T08D10.1 93 86940363 0 p Y5F2A.4 93 0.58 0
p F19C6.1 BC 121 0 p R11E3.8 BC 86724370 0 p F19C6.1 BC 0.58 0

Head p C04C3.3 BC 282 0 p C10G8.7 93 83785321 0 p C04C3.3 BC 0.86 0

0 18

0

25

0

0
1105

Head Neurons p F30A10.8a BC 245 0 p C04C3.3 BC 83779482 0 p F30A10.8a BC 0.82 0
Pharynx p B0252.2 BC 244 0 p B0252.2 BC 83526292 0 p B0252.2 BC 0.82 0

p H28O16.1 BC 241 0 p T04B2.3 93 83267502 0 p H28O16.1 BC 0.82 0
p Y69A2AR.18 BC 232 0 p H28O16.1 BC 83148740 0 p Y69A2AR.18 BC 0.81 0
p T04B2.3 93 225 0 p F30A10.8a BC 82811864 0 p T04B2.3 93 0.8 0
p C10G8.7 93 214 0 p F42G8.12 BC 82588377 0 p C10G8.7 93 0.79 0
p C34E10.6 BC 204 0 p Y69A2AR.18 BC 82482728 0 p C34E10.6 BC 0.77 0
p Y73F4A.2 BC 192 0 p C34E10.6 BC 82225210 0 p Y73F4A.2 BC 0.75 0
p C37E2.1 BC 191 0 p T27E9.4a BC 81746410 0 p C37E2.1 BC 0.75 0

Spermatheca p Y22D7AR.1 BC 76 0 p Y22D7AR.1 BC 26526289 0 p Y22D7AR.1 BC 0.41 0

0 135

0

80

0

0
828

p T23F4.4 BC 65 0 p T23F4.4 BC 26309369 0 p T23F4.4 BC 0.36 0
p F09F7.2a BC 64 0 p R144.10 BC 26019399 0 p F09F7.2a BC 0.36 0
p K11D2.2 BC 64 0 p F09F7.2a BC 25990647 0 p K11D2.2 BC 0.35 0
p Y45F3A.3 BC 64 0 p Y45F3A.3 BC 25976384 0 p Y45F3A.3 BC 0.35 0
p B0395.2 BC 61 0 p K11D2.2 BC 25970313 0 p B0395.2 BC 0.34 0
p R144.10 BC 60 0 p B0280.7 BC 25796881 0 p R144.10 BC 0.34 0
p W02D3.9 BC 59 0 p T04A8.4 BC 25744341 0 p W02D3.9 BC 0.33 0
p Y39A1A.15b BC 58 0 p B0395.2 BC 25681627 0 p Y39A1A.15b BC 0.33 0
p Y50D7A.6 BC 57 0 p R09F10.6 BC 25662155 0 p Y50D7A.6 BC 0.32 0

Hypodermis p C10G8.7 93 86 0 p C10G8.7 93 13805754 5.5e-293 p C10G8.7 93 0.46 0

0 21

0

10

0

0
1100

p F56H11.1b BC 60 0 p Y73F4A.2 BC 13481473 2.33e-265 p F56H11.1b BC 0.33 0
p Y73F4A.2 BC 55 0 p T04B2.3 93 13163656 1.28e-239 p Y73F4A.2 BC 0.31 0
p T04B2.3 93 51 0 p B0252.2 BC 13038536 7.56e-230 p T04B2.3 93 0.29 0
p B0252.2 BC 51 0 p C04C3.3 BC 12908456 6.6e-220 p B0252.2 BC 0.29 0
p M6.1a BC 40 0 p F56H11.1b BC 12657838 2.23e-201 p M6.1a BC 0.23 0
p C04C3.3 BC 38 0 p F42G8.12 BC 12639577 4.64e-200 p C04C3.3 BC 0.22 8.64e-307
p F42G8.12 BC 38 0 p H28O16.1 BC 12533434 1.74e-192 p F42G8.12 BC 0.22 1.02e-305
p H28O16.1 BC 32 0 p T27E9.4a BC 11862307 5.24e-148 p H28O16.1 BC 0.19 5.19e-218
p F46F6.2 BC 30 0 p M6.1a BC 11857794 9.97e-148 p F46F6.2 BC 0.18 7.53e-198

Nerve Ring p W08D2.7 BC 78 0 p F30A10.8a BC 13811445 1.75e-293 p W08D2.7 BC 0.42 0

0 35

0

29

0

0
1055

p F30A10.8a BC 75 0 p C50D2.7 BC 13780577 8.61e-291 p F30A10.8a BC 0.41 0
p C50D2.7 BC 73 0 p T04A6.1a BC 13770454 6.53e-290 p C50D2.7 BC 0.4 0
p F26H9.3 93 72 0 p Y32H12A.1 BC 13759449 5.89e-289 p F26H9.3 93 0.39 0
p F12F3.1 BC 71 0 p R05F9.1a BC 13748741 4.98e-288 p F12F3.1 BC 0.39 0
p T04A6.1a BC 70 0 p F08C6.7 93 13720353 1.41e-285 p T04A6.1a BC 0.39 0
p Y32H12A.1 BC 70 0 p W08D2.7 BC 13702573 4.79e-284 p Y32H12A.1 BC 0.39 0
p T01B10.2 BC 70 0 p T01B10.2 BC 13678716 5.34e-282 p T01B10.2 BC 0.39 0
p R05F9.1a BC 70 0 p C03G5.1 BC 13666025 6.51e-281 p R05F9.1a BC 0.38 0
p C27D8.4 93 69 0 p C34E10.6 BC 13665970 6.58e-281 p C27D8.4 93 0.38 0

Table 2S: Top scoring enrichments for different tests, using combined worm sizes. For visualization of head, tail, embryo and
vulva see Supplementary Figures 1S - 4S
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Statistical Tests on Registered Data, Combined Worms, Top 10 Scores, Cont’
t-test wilcoxon correlation Overlap

organ promoter t-value p-value promoter ranksum p-value promoter R p-value Venn
Vulva p C37A2.4 BC 45 0 p C37A2.4 BC 13417972 4.13e-260 p C37A2.4 BC 0.26 0

0 142

0

92

0

0
725

p C04B4.2 BC 35 0 p F55C7.7a BC 12863871 1.5e-216 p C04B4.2 BC 0.21 5.5e-267
p C18G1.2 BC 35 0 p C18G1.2 BC 12760197 7.58e-209 p C18G1.2 BC 0.2 7.57e-265
p Y71H2B.10 BC 34 0 p C37C3.6b BC 12731398 9.88e-207 p Y71H2B.10 BC 0.2 1.41e-252
p C27A2.6 BC 34 0 p C04B4.2 BC 12542540 3.95e-193 p C27A2.6 BC 0.2 1.05e-245
p F32D1.10 BC 33 0 p C27A2.6 BC 12536412 1.07e-192 p F32D1.10 BC 0.19 2.88e-229
p R13A5.6 BC 32 0 p Y71H2B.10 BC 12421760 1.12e-184 p R13A5.6 BC 0.19 3.94e-222
p F55C7.7a BC 32 0 p C05B5.7 BC 12421533 1.16e-184 p F55C7.7a BC 0.19 5.71e-218
p C37C3.6b BC 32 0 p F22B3.1 BC 12399955 3.6e-183 p C37C3.6b BC 0.18 1.08e-215
p C05B5.7 BC 32 0 p F32D1.10 BC 12293425 6.67e-176 p C05B5.7 BC 0.18 1.66e-214

Anal Depressor Muscle p ZK524.2a BC 39 0 p F54C9.4 93 9872625 2e-179 p ZK524.2a BC 0.23 0

0 108

0

34

0

0
866

p Y102A11A.6 BC 39 0 p W06D4.1 BC 9854145 5.62e-178 p Y102A11A.6 BC 0.23 2.96e-322
p F19C6.1 BC 38 0 p F19C6.1 BC 9840381 6.68e-177 p F19C6.1 BC 0.22 5.9e-306
p W06D4.1 BC 35 0 p K06A5.6 BC 9778463 4.19e-172 p W06D4.1 BC 0.2 3.06e-259
p F54C9.4 93 33 0 p ZK524.2a BC 9659728 4.32e-163 p F54C9.4 93 0.19 1.78e-239
p K06A5.6 BC 33 0 p F41H10.8 93 9652408 1.53e-162 p K06A5.6 BC 0.19 1.02e-227
p F41H10.8 93 30 0 p C50F7.4 BC 9611734 1.62e-159 p F41H10.8 93 0.18 2.05e-198
p F26A1.14 BC 30 0 p F54D8.2 BC 9604643 5.42e-159 p F26A1.14 BC 0.18 1.46e-195
p B0218.8 93 29 0 p F26A1.14 BC 9572478 1.27e-156 p B0218.8 93 0.17 9.67e-186
p B0546.1 BC 29 0 p F42H10.3 93 9526393 2.92e-153 p B0546.1 BC 0.17 1.82e-178

Pharyngeal Intestinal Valve p C13G3.3b BC 72 0 p C13G3.3b BC 7028235 2.73e-157 p C13G3.3b BC 0.39 0

0 41

0

16

0

0
1030

p JC8.10a BC 62 0 p JC8.10a BC 6975808 1.29e-152 p JC8.10a BC 0.35 0
p T23H2.2 BC 60 0 p K07A9.2 BC 6949718 2.57e-150 p T23H2.2 BC 0.34 0
p K07A9.2 BC 59 0 p C51E3.7a BC 6929560 1.5e-148 p K07A9.2 BC 0.33 0
p F11D5.3a BC 58 0 p F11D5.3a BC 6920412 9.38e-148 p F11D5.3a BC 0.32 0
p F55A12.3 BC 56 0 p T23H2.2 BC 6914644 2.98e-147 p F55A12.3 BC 0.32 0
p T04D1.3 BC 55 0 p F31C3.3 BC 6906153 1.63e-146 p T04D1.3 BC 0.31 0
p C27H5.8 BC 54 0 p T04D1.3 BC 6906022 1.67e-146 p C27H5.8 BC 0.3 0
p F31C3.3 BC 53 0 p F55A12.3 BC 6901251 4.32e-146 p F31C3.3 BC 0.3 0
p F54G8.4 BC 52 0 p C27H5.8 BC 6895982 1.23e-145 p F54G8.4 BC 0.29 0

Table 3S: Top scoring enrichments for different tests, using combined worm sizes. For visualization of head, tail, embryo and
vulva see Supplementary Figures 1S - 4S

query head tail neurons embryo vulva
annotations analdepressormuscle:5

analsphincter:1
bodywallmuscle:6
distaltipcell:1
embryo:5
excretorycell:1
gonadsheathcells:2
headneurons:3
hypodermis:5
intestinal:2
nervering:1
pharynx:6
spermatheca:1
tailneurons:3
unidentifiedbody:1
unidentifiedcells:1
unidentifiedhead:2
unidentifiedtail:1
unknown:3
ventralnervecord:1
vulvalmuscle:2
vulvaother:2

embryo:2
headneurons:1
intestinal:3
unknown:7

analdepressormuscle:1
bodyneurons:1
bodywallmuscle:3
coelomocytes:1
distaltipcell:1
embryo:10
excretorycell:1
headmesodermalcell:1
headneurons:8
hypodermis:2
intestinal:5
intestinalmuscle:1
nervering:4
pharynx:3
seamcells:1
tailneurons:4
unidentifiedbody:4
unidentifiedcells:3
unidentifiedhead:5
unidentifiedtail:3
uterinemuscle:1
ventralnervecord:3
vulvalmuscle:2

analdepressormuscle:1
bodyneurons:1
bodywallmuscle:2
coelomocytes:1
distaltipcell:1
embryo:10
excretorycell:1
headmesodermalcell:1
headneurons:8
hypodermis:1
intestinal:4
intestinalmuscle:1
nervering:4
pharynx:3
seamcells:1
tailneurons:5
unidentifiedbody:3
unidentifiedcells:3
unidentifiedhead:4
unidentifiedtail:2
uterinemuscle:1
ventralnervecord:4
vulvalmuscle:2

Table 4S: Occurrence count of Annotation tags for the top 10 T-Test, shown for different organs
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Correlation Coefficient vs. t-test
The way in which we designed our correlation test, will cause
this test to give similar results in comparison with the t-test
statistics.

The expected value of x will be the mean value of x

E(x) = µx (1S)

Correlation is defined as

ρij =
cov(i, j)
σiσj

=
cov(i, j)√
σ2

i σ
2
j

(2S)

The covariance can be rewritten to

cov(i, j) = E(ij)− E(i)E(j) = E(ij)− µiµj (3S)

When having the value

j =

{
1, j ∈ organ
−1, j /∈ organ (4S)

and
X = ∀i ∈ organ (5S)

and
Y = ∀i /∈ organ (6S)

we can rewrite E(ij) to

E(X − Y ) = E(X)− E(Y ) = X − Y (7S)

Equation 2S can now be rewritten to

X − Y − µiµj√
σ2

i σ
2
j

(8S)

When comparing this to the equation used to calculate a t-
value, we see that

X − Y − µiµj√
σ2

i σ
2
j

≈ t = (X − Y )

√
n(n− 1))∑n

i=1 (X̂i − Ŷi)2
(9S)

where
X̂i = (Xi −X) (10S)

and
Ŷi = (Yi − Y ) (11S)

The Expected Value of a Wilcoxon rank sum statistic
The total rank sum of a set with size N will be the sum of the
range

1, 2, . . . , N − 1, N (12S)

which is equal to

N∑

x=1

x =
N ∗ (N + 1)

2
(13S)

The expected rank value of an element x from the ranked set
will be its mean (see Eq. 1S)

E(x) = µx =
N ∗ (N + 1)

2N
=
N + 1

2
(14S)

The expected summed rank value of a ranked subset with size
S will therefore be

S
N + 1

2
(15S)
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APPENDIX A

Master Thesis Proposal

A.1 Master Thesis Proposal

Molecular Imaging allows the detection of specific tissues, diseases or even gene expression using different
modalities. Modalities such as CT and MRI contain anatomical information, so that acquisitions of this
modality can be registered to a 3D mouse atlas. This registration is important for data normalization and
the possibility of follow up studies. Some scanning techniques do not capture any anatomical information.
Instead, three (or more) photographic pictures are taken of the animal before it is scanned, in such a way
that the photo pictures taken before acquisition are known to be aligned to the x,y,z position of the scan
that follows. When it is possible to register a 3D mouse atlas to these three photos, this 3D atlas will
automatically also be aligned to the scanned image, which does not have any anatomical information. This
creates the following new possibilities:

• Given a registered 3D atlas to a modality such as PET, SPECT, BLT or FMT, anatomical information
is incorporated into these modalities, which allows qualitative localization of the measured signal in
these modalities.

• For BLT and FMT, it also becomes possible to reconstruct the photon source by solving the inverse
problem. Without an anatomical model this would be impossible for BLT and difficult for FMT,
because for FMT the forward problem needs to be solved first, before the inverse problem can be
solved. For BLT it is impossible to solve the forward problem, because no known input is available.

• Given the aligned 3D atlas, it becomes possible to select a region of interest that can be selected in
the three photo images. This ROI in turn will be scanned on the acquisition device which is aligned
to the photo pictures.

• Given a registered segmented 3D atlas and a gene expression acquisition, it becomes possible to
design statistical tests on temporal and (qualitative) spatial gene expression profiles.

A.2 Thesis Research Proposal

The thesis will comprise two parts. One being an image processing/registration part and the other being
the development of statistical tests. Those parts are not necessarily based on the same data source, in fact
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it is assumed that for the development and validation of statistical tests, the provided data from MI source
will not be available in sufficient amounts. For the development of the statistical tests, we will make use
of data acquired from the wormbase database. Data has the form of so-called chronograms (Dupuy 2007).
With this data we want to answer the questions:

• given a chronogram, can we make a statement on the qualitative location(s) of the gene with certain
reliability?

• given (a) qualitative location tag(s) of a gene, can we make statements on the statistical relevance of
the observed signal?

Chronograms will be clustered by using a Pearsons Cross Correlation distance.

For (far) future it could be possible to use gene expression profiles obtained with BLT or FMT with known
qualitative gene expression location, to help registering in the 2D/3D registration, by incorporating a 3D
photon propagation model in the registration process.
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APPENDIX B

Master Thesis Planning Proposal

Research in steps including estimated time needed.
Research started around March 1st 2008. Projected end date will be December 1st 2008 Planning is based
on a workload of 32 hours a week, resulting in 39.5 weeks corresponding to 45 ECT.

Image Registration

Duration Description
1 month

• Make 3D Back-projection out of (at least) two 2D contours.

• Rigid registration of a 3D Shape of the same animal (i.e. CT Skin surface) to 3D
projection (bounding box)

– Explore optimization criteria

2 months

• Rigid registration of a 3D Atlas (another animal) to the same 3D bounding box.

2 months

• Finish with registering non rigid 3D Atlas (In house articulated mouse atlas) by using
refinement.

– Use hierarchical set of joint rotations to obtain rigid skeleton deformations

– Generate skin surface from rigid deformed skeleton in 3D atlas. This will result
in a non rigid skin surface deformation.

– Register calculated skin surface to 3D boundary box by tuning the rotation pa-
rameters of the skeleton in an hierarchical manner.

Table B.1: Planning for Image Processing Part.

Note that an optimization function is needed for each step. In each step the optimization function gets more
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complex and more parameters need to be optimized. Complexity is reduced by making use of a hierarchical
optimization, i.e. one set of parameters is optimized at a time.

Statistical Testing

Duration Description
1 Month

• Make use of data available on WormBase

• Find a way to obtain chronograms from WormBase

• Translate chronogram images to a structure that can be used for statistical testing, or
determine how they can be used as is.

1 Month

• Determine if qualitative spatial (organ locations) or temporal (developmental stages)
are available.

2 Months

• Create a statistical model to determine if genes are significantly differentially expressed
in specific organs or in specific developmental stages (age)

– If qualitative spatial regions are available, segment chronograms in these regions.
(horizontally)

– If qualitative temporal stages are available, divide chronograms in these regions.
(vertically)

– Determine if statistical differences are found between these regions.

– If statistical differences do no match to qualitative boundaries when available, try
to explain.

– If qualitative regions are not available, try to find them based on statistical differ-
ential gene expression.

Table B.2: Planning for Statistical Testing Part.

1 Month: Write report(s) and prepare final presentation.
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APPENDIX C

Working Document on Mouse Paper

45



46



47 

Working Document - Martin Wildeman – Last Update January 15, 2009 

 

2D Image / 3D Deformable Mouse Model registration 

2D Image / 3D Rigid Mouse Model Registration 

To be able to register a 3D deformable mouse model onto 2D images, first a method was 

developed to register a 3D rigid mouse model. The following problems needed to be tackled to 

get to a working optimizer. 

Problem: Correspondence Problem 

We only have two modalities at our disposal to solve the registration problem. First we have a 

top view and a side view image, next to that, we have a triangle skin surface mesh, based on a 

CT data set. To get to a registration the skin surface mesh needs to be aligned in 3D space to the 

2D mouse contours obtained by segmentation of the mouse pictures. 

Based on these to modalities it is not possible to determine which vertices in the 3D skin surface 

model (should) correspond to the points on the contours of the mouse model. 

Solution: Distance Matrix 

To overcome this problem, instead of trying to find and minimize the distance between 

corresponding points in the two modalities, a 3D distance matrix is calculated, based on the set 

of 2D images available. (Currently only 90 degree angle rotation between images is supported) 

First, a binary voxel set for each image is created, where the image is projected into the total 3D 

space. Each slice in the 3D voxel space thereby becomes a copy of the original segmentation in 

such a way that a stack of copies of one segmentation is created. After that all voxel sets are 

multiplied with each other, resulting into a 3D bounding box, or ‘solution space’ 

Now that a binary shape estimation of the mouse is calculated, distances to the 0/1 boundary are 

calculated, using a distance transform function, available in the DIPimage toolbox. Each voxel in 

the 3D space gets a Euclidian distance value to the nearest border assigned. 
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We can now place the 3D model onto the calculated distance matrix and immediately read out 

the distance per vertex from the boundary of the “optimal” solution. A built-in optimization 

function, found in the Optimization Toolbox of Matlab is used to find the optimal solution. 

 

Problem: The Square Like Shape of the bounding box vs. The round shape of the mouse. 

Because the goal of this research is to align a 3D model to a minimum of 2 side views, the 

solution space in the form of projected segmentations (a.k.a. the bounding box) will give a 

square like shape as a result. The more viewpoints are obtained, the less square the bounding 

box will be. Because of the assumption though the light beams onto the mouse and from the 

mouse during acquisition of the photo are parallel, view from top-bottom and left-right are 

assumed to have the same information and thus count as one. 

As a result an optimal fit, will give the lowest mean squared error, which is not necessarily the 

best solution. For example see schematic below. 

 

 

Solution: Introduction of angles and “trenches” 

If only vertices are taken into account that point to the same direction in space in 

both the model as the bounding box, the fit will become better for those vertices. 

The total error over all vertices will become worse, because of the “squarish” 

nature of the bounding box. i.e. The further in the optimization process, the 

more weight the ‘contour-vertices’ get. 

A similar effect can be seen when the distance transform is cut of at a 

certain value. When all values above 5 voxels away from the 0 

distance surface get the value 5, the Jacobian that is calculated at 

those locations will be zero causing the optimization algorithm to 

stop at those points. Especially in the corners of the bounding 

box, the distance can be larger than this threshold and thus will 

not be taken into account for the optimization. 

 

Smallest MSE Best solution 

Model 

Bounding Box 
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Problem: Because of the discrete nature of the distance matrix, it is not possible to use the built 

in Jacobian estimator of the lsqnonlin function (Least Squares Non Linear Model fitting) This 

estimator makes such small discrete increments, that there is no difference in fitness and thus no 

improvement estimated. 

Solution:  The Jacobian Matrix is estimated manually, by taking large(r) steps. To get a good 

estimation, to calculation for each parameters are made, -delta x and a +delta x 

Currently the following stepsizes are used: 

Used Translation step size 0.5 

Used Rotation step size 5 

Used Scaling step size 0.01 

 

These values are taken manually. A more intelligent way of determining the step sizes should be 

thought of, but current settings seem to work well. 

 

Problem: Matlab is very slow when using for loops, but very fast when using matrix operations. 

To compare a list of x,y,z values with the 3 dimension distance matrix (voxel field), an iteration 

through all x,y,z values is needed. 

Solution: By addressing the voxel space differently a huge speed up is obtained. A voxel that 

would ‘normally’ be addressed with matrix(10,23,12) can also be addressed as, given that we 

have a matrix of 20x40x50 fields big, matrix(10+(23-1)*20+(12-1)*20*40) of matrix(9250). 

The last value can be calculated first, such that a list of alternative addresses is obtained. With 

this alternative list, a direct ‘voxel readout’ can be achieved. The for loop it completely removed 

and transformed into a matrix address vector. This vector can be used to do a single readout on 

the matrix and assignment to an error vector. 

 

Problem: Digimouse is a rigid model. We need a semi non rigid registration. 

Solution: To be able to deform the mouse skin surface non rigidly but to also reduce the 

degrees of freedom as much as possible, we will make use of the rigid nature of the mouse 

skeleton. Every joint has 1 to 3 degree of freedom in rotation, every bone has 3 degrees of 

freedom in scaling and location/translation is restricted by connectivity in the joints. 

The program Amira was used to manually segment the skeleton into separate bones, where the 

spine and pelvis were left in one piece or bone. Organs can be roughly interpolated between ribs, 

pelvis and spine. 

The rotation or pivot points in the joints were manually estimated, as well as the local 

orientation. 
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Axis are defined as follows: axis has it’s origin in the pivot points. The longest part of the bone 

will be the x-axis. Y-axis will be orthogonal on that, preferably pointing to the direction of the 

fixed bone. When that is not possible, it will point up as much as possible. (So there is no 

rotation around the x axis.) 

Table 1: Manually Selected Points 

 Origin A Point on X A Point on Y 

Spine 188,5 132,5 456,5 188,5 132,5 702,5 188,5 202,5 702,5 

Skull 200,5 130,5 722,5 204,5 68,5 928,5 208,5 172,5 740,5 

Left_Upper_Arm 246,5 122,5 706,5 322,5 60,5 704,5 252,5 132,5 706,5 

Left_Lower_Arm 322,5 60,5 704,5 316,5 52,5 818,5 246,5 122,5 706,5 

Left_Hand 316,5 52,5 818,5 316,5 52,5 848,5 326,5 62,5 818,5 

Right_Upper_Arm 138,5 118,5 712,5 72,5 58,5 674,5 120,5 138,5 710,5 

Right_Lower_Arm 72,5 58,5 674,5 88,5 58,5 780,5 138,5 118,5 712,5 

Right_Hand 88,5 58,5 780,5 88,5 58,5 816,5 88,5 70,5 780,5 

Right_Upper_Leg 240,5 136,5 234,5 336,5 64,5 254,5 264,5 150,5 232,5 

Right_Lower_Leg 336,5 64,5 254,5 286,5 58,5 104,5 240,5 136,5 234,5 

Right_Foot 286,5 58,5 104,5 388,5 58,5 104,5 336,5 64,5 254,5 

Left_Upper_Leg 140,5 120,5 232,5 52,5 48,5 234,5 122,5 140,5 228,5 

Left_Lower_Leg 52,5 48,5 234,5 100,5 40,5 94,5 140,5 120,5 232,5 

Left_Foot 100,5 40,5 94,5 18,5 26,5 128,5 52,5 48,5 234,5 
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Table 2: Corrected Values 

 Origin A Point on X A Point on Y 

Spine 188,50 132,50 456,50 188,50 132,50 702,50 188,50 202,50 456,48 

Skull 200,50 130,50 722,50 204,50 68,50 928,50 208,40 174,03 735,43 

Left_Upper_Arm 246,50 122,50 706,50 322,50 60,50 704,50 253,80 131,44 706,47 

Left_Lower_Arm 322,50 60,50 704,50 316,50 52,50 818,50 246,59 122,62 704,86 

Left_Hand 316,50 52,50 818,50 316,50 52,50 848,50 326,50 62,50 818,50 

Right_Upper_Arm 138,50 118,50 712,50 72,50 58,50 674,50 120,96 138,91 710,76 

Right_Lower_Arm 72,50 58,50 674,50 88,50 58,50 780,50 131,42 118,50 665,61 

Right_Hand 88,50 58,50 780,50 88,50 58,50 816,50 88,50 70,50 780,50 

Right_Upper_Leg 240,50 136,50 234,50 336,50 64,50 254,50 256,35 156,61 230,80 

Right_Lower_Leg 336,50 64,50 254,50 286,50 58,50 104,50 255,22 138,27 278,65 

Right_Foot 286,50 58,50 104,50 388,50 58,50 104,50 286,50 64,50 254,50 

Left_Upper_Leg 140,50 120,50 232,50 52,50 48,50 234,50 123,43 141,26 228,48 

Left_Lower_Leg 52,50 48,50 234,50 100,50 40,50 94,50 131,91 121,93 257,55 

Left_Foot 100,50 40,50 94,50 18,50 26,50 128,50 139,67 63,38 198,36 

 

Problem: The skin surface should be estimated based on skeleton. 

Solution: Estimate which vertices belong to which bone. Do this by making a nearest neighbor 

calculation.  Transformation applied to bone of closest vertex , will also applied to this vertex of 
the skin. Eventually also a weighted transformation can be applied, based on distance from pivot 

point and orientation to pivot point. (Papadimetris et al.) 

If skin surface is not sub sampled, right now  9.7*1010  distances need to be calculated. This 

needs to be reduced. Skeleton probably can be simplified. 

First vertices appointed to skeleton will get same transformation as corresponding  bone in the 

skeleton. At the joints, some correction may be needed, but currently the optimization will use 

‘unsmoothed’ skin surface for optimization. 

In stead of subsampling, we calculated the distances in parts. After all skin vertices we label, we 
discarded all skeleton vertices, because these are not used anyway for the registration. 
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Problem: Some vertices of the skin are appointed to the wrong skeleton bone. 

Solution: Euclidian distance appears not to be strong enough. (see Figure 1) Do a manual 
segmentation, or try to remap all labels that have less than 2, (or 1) neighbors with the same 

label. 

Even better solution: I changed a >= constrain into a > constrain. All artifacts are gone. 
(Figure 2) 

 

Figure 1: When tilting the head, some point near the abdominal are also rotated. This 

suggests that they are falsely assigned to the skull. This could be due to noise of the 

skull. 
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Figure 2: All artifacts are gone 

 

Problem : Rotations should be defined unambiguously, to have a clear meaning. 

When rotating sequentially around the x and y axis, it is possible to end up with a rotation 

around the z axis, without defining this angle. 

Solution: Use Euler Angles to define local axis.  To 
reduce degrees in freedom of some rotations, set some 

Euler angles fixed to 0. With the local axis as reference.  

Problem: Euler Angles are complicated when using a 
hierarchical transformation model. For scaling in a 

certain direction they are well suited, but for local 

rotations Euler Angles do not suffice. 

Update: In view of consistency, the Euler Angles have 

been converted to quaternions also. Angle estimation is 

done by using a linear search algorithm. 

Solution: For local rotation, i.e. rotations in the joints, 
rotations around the locally defined axis, in the form of 

unit vectors is needed. Quaternions are perfectly suited 
for this problem. With Quaternions, rotation Matrices can be constructed that will result in a 

rotation around a unit vector. 

For both scaling and rotation, points need to be mapped to the global origin. So when 
manipulating the full mouse model, all the pivot points need to be updated, to be able to 

translate single rigid bodies to the origin.  The pivot points from table 2 are used in the process. 

The mouse manipulation algorithm is described in the topic “Mouse Manipulation Algorithm Used” 
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Problem: The new algorithm MouseManipulator works very well and is fairly efficient. Unspite a 

fairly fast computation (less than a second), the calculation of the Jacobians becomes very costly 
though. For each parameter to optimize, each iteration a Jacobian has to be calculated. For a 

Rotation/Scaling/Translation operation on all three axes, this mean 18*less than a second. For 3 
iteration already 30 seconds are needed. 

Solution: 

While the skin transformation is a non rigid operation, it is in fact a combination of rigid 

transformations. It must be possible to do small updates to the model, because all updates are 
linear combinations of transformation Matrices. 

Also it should be noted that when the local axis are updated after each operation the following 

statement holds: 

+90 deg x ���� - 90 deg x ���� + 90 deg y is equal to + 90 deg x ���� + 90 deg y ���� - 90 deg x 

Normally, when the rotation axes are fixed, the second equation would yield a rotation around 

the x, y AND z axis, because after the first two operations, the x axes would be located on the 
position where originally the x axis was located. When updating the local axis with each 

operation, this is not the case, and a rotation around the x axis will always be a rotation around 
the same axis with respect to the rigid body. The first equation would yield a rotation around the 

y axis, because the first two operations in both cases cancel each other out. 

Subproblem: 

When applying incremental updates to the mouse model, the Euler Angles calculated before 
need to be updated as well, to be able to do incremental scaling operations with respect to the 

local axis. Some way has to be found to update these euler angles, or some other way of scaling 

along the axis has to be found. 

Workaround: 

In order to save calculation time and in order to keep the mouse model consistent, I have 

decided to undo rotations first, by applying matrix multiplications in reverse order. After that the 

new rotation angles are calculated. 

 

Problem: 

The main part of calculation time is consumed by the calculation of sines and cosines. 

Possible solutions: 

I’ve contacted Jan Bot in order to compile Matlab code with a C compiler. This should be possible 

within a week. 

Bart Witteman came with the suggestion to convert the sine functions to a lookup table, in order 
to improve speed. 

Both approaches didn’t work out and we agreed on the fact that performance issues were not of 

importance. We therefore focused on accuracy and precision instead of speed for the algorithm. 
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Problem: 

The head of the mouse is squeezed into the area where the paws should go. This problem 

cannot be solved by making use of angles or ‘ditches’, because both yield a suboptimum. 

Solution: 

Try to come up with an extra penalty (which is also cheap in terms of computational power). For 

instance, minimize the difference between maximum x,y,z and and minimum x,y,z. This will force 

the mouse model into an as large as possible area, during the first optimization step, i.e. the 
global scaling. 

 
Update: 

 
Instead of introducing an extra constraint, the initialization is set outside of the bounding box. 

This way optimization is done by “shrinking” the mouse to an optimal fit. Also some brute force 

large rotation are tried, before starting optimization step, to start with the lowest error and 
thereby avoiding local optima. 

 

 

Problem: A reasonable set of rotation restrictions need to be set. I.e. try to estimate feasible 
rotation angles. 

Solution: Set these parameters manually. A good estimation will hopefully suffice. 

Current set of restrictions:  

 

Table 3: Rotation and Scaling restrictions. 

 Min 
Scaling 

Max 
Scaling 

All 0,8 * 1,2 * 
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initial initial 

 Min Rot x Min Rot y Min Rot y Max Rot 

x 

Max Rot 

y 

Max Rot 

z 

Spine -20 150 -30 20 210 30 
Head -5 -10 -20 5 10 20 
Left Upper Arm -10 -10 -40 30 30 60 
Left Lower Arm 0 0 -20 0 0 90 
Left Hand -5 -5 -20 5 5 20 
Right Upper Arm -10 -10 -40 30 30 60 
Right Lower Arm 0 0 -5 0 0 90 
Right Hand -5 -5 -20 5 5 20 
Left Upper Leg -10 -30 -40 10 60 10 
Left Lower Leg 0 0 -30 0 0 70 
Left Foot -5 -5 -25 5 5 110 
Right Upper Leg -10 -30 -40 10 60 10 
Right Lower Leg 0 0 -30 0 0 70 
Right Hand -5 -5 0 5 5 125 
 

Problem: When updating the mouse model, a lot of local suboptima exist, in which the 

optimization algorithm can get stuck. It is not feasible to apply a full search algorithm. 

Solution: Instead of doing a full search optimization, try to get a good fit as initialization, by 
applying an ‘intelligent’ brute force initialization. Scan trough the possible feasible solution space 

to obtain this initial point. Note that this initialization is a very expensive one and the for a 
refinement of the search space where n is the refinement factor, the increase in needed 

computation power will be n7. 

Problem: The results need to be compared with some ground truth 

Solution: Take a CT surface as a ground truth. Generate synthetic 2D image segmentations to 
construct a 3D bounding box with. Use this bounding box as the optimization function and 

calculate the real error by comparing the optimized Digimouse skin surface with the initial CT skin 
surface. 

 Skin 1 Skin 2 Skin 3 

Mean Absolute error  5.933466e+000 4.223713e+000 5.925363e+000 

Mean Error 1.272084e+000 2.821863e+000 -1.336364e+000 

MSE 5.726520e+001 2.827605e+001 7.077466e+001 

Figure 3: Errors obtained after optimization. Errors are in Voxels 
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Figure 4: A final 'fit' is found which is close to the true location around the feet, but around the head, 

the error is larger. 

Problem: The error and thus the optimum, is calculated, by looking at the vertices lying on the 

surface. But the error we’re interested in is the overlap in volume. 

Solution: It is not feasible to take the voxelspace as an argument for the fitness space. Instead it 

might be possible to use a point distribution on the surface which is not uniform, but related to 

to “volume” covered by the vertices on the skin. This will not be applied in the method, but is 

merely a recommendation. 

Note: It seems that an rotation delta of 1 in the calculation of the Jacobian is not course enough. 

When using a delta +/- of 5 the optimization will get stuck in an optimum less fast. Note also 

that the smallest rotation still giving a difference where a difference is expected is the best delta 

increment possible, but in the current setup it is not possible to use a dynamic step size. Since 

we have a discrete solution space, the only way to obtain a smaller step size is to make an 

interpolation of each vertex. This is very computational expensive, because it will need a lookup 

of 8 values for each vertex, resulting in a final weighted value. 



58 

Update: 

Instead of using a dynamic change in step size, we decided to use a discrete change. After an 

optimum has been reached, we decrease the rotation step size and start again. This gives a small 

improvement, which could especially be useful for the Digimouse optimization, due to its 

hierarchical nature. 

Problem: The body of the mouse is not correctly registered because the limbs give a larger 

error, when registering. 

Solution: Only take into account parts of the body that are optimized when calculating the error. 

The labeling of vertices is already present. Implementation in matlab is by making use of the 

function ‘find’. All vertices that do not have the correct label will be set to value 0. Since the 

labeling is a constant, setting these vertices to some constant value, will not have an effect on 

the derivatives and thus on the optimization process. Setting them to zero though, will give a 

better indication of skin surface error, during optimization. 

Problem: (Euler) Angles are a dependent parameter set. If an adjustment is made in one angle, 

chances are that the other parameters change a lot. 

Solution: Instead of using Euler angles, Use x-y-z rotations. This will not prevent the problem, 

but since small adjustments are expected, also smaller deviations in the rotations are expected. 

This would probable give rise to less problems, since we also make the assumption that the 

initial orientation of the 3D surface is roughly right. 

Problem: It is not possible to obtain rotation parameters from a transformation matrix, since the 

solutions are not unique. Rotation parameters are dependent set. Another measure for rotation 

error is therefore needed. 

Solution: Instead of directly comparing the angles applied for the transformation, calculate the 

angle between a vector [1 1 1]*transformation Matrix. The smaller this angle is, the better the 

registration apparently is. 
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Problem: The initialization of the left leg goes wrong in many cases. 

 

 

Figure 5: Local optimum, The Left leg has a degree of freedom that allows for initialization in the 

position of the right leg. 

 

Solution: Make the search space smaller and find a way to make sure the mouse does not end 

up in infeasible positions. 

 

Extra Advantage: If the search space becomes smaller. The time to search becomes less as well. 

 

While we have changed the feasible rotation space, we still observe that the registration of the 

left leg systematically more often is registered incorrectly. After searching for bugs in the code 

for a long time and after many testing, we concluded that the error is not in the code. 

When trying to make some nice visualizations in Amira, we accidentally bumped into a labeling 

error, that might explain the registration errors of the left foot. Because of the wrong labeling in 

the ankle joint, the closest point labeling that we apply will assign some vertices at the bottom 

of the left foot, to the lower leg bone, resulting in unpredictable directions are the vertex 

normals, when applying rotations to the ankle joint. The labeling error is visualized in Figure 6. 
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Figure 6: Wrong Labeling of the ankle joint. 
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Varying rotation step size in estimation of Jacobian. 

 

After running the optimization with the new parameter set (Table 4) the results looked more 

promising, but still not good. Inspection of the results show the right arm was wrongly 

estimated many times. A bug was found in the code where in the hierarchical optimization step 

of the right arm, the rotation restrictions of the left arm were used. This now has been 

corrected. 

 

Table 4: Final Rotation and Scaling Restrictions 

 Min 

Scaling 

Max 

Scaling 

All 0,8 * 
initial 

1,2 * 
initial 

 Min Rot x Min Rot y Min Rot y Max Rot 
x 

Max Rot 
y 

Max Rot 
z 

Spine -10 170 -10 10 190 10 

Head -10 -10 -20 10 10 20 

Left Upper Arm -10 -10 -40 10 30 60 

Left Lower Arm 0 0 -20 0 0 90 

Left Hand -5 -5 -20 5 5 20 

Right Upper Arm -10 -10 -40 30 30 60 

Right Lower Arm 0 0 -5 0 0 90 

Right Hand -5 -5 -20 5 5 20 

Left Upper Leg 0 0 -20 0 20 20 

Left Lower Leg 0 0 -20 0 0 40 

Left Foot -5 -5 -25 5 5 60 

Right Upper Leg 0 0 -20 0 20 20 

Right Lower Leg 0 0 -20 0 0 40 

Right Hand -5 -5 0 5 5 60 

 

 

Problem: Is normalization of the thresholded distance map useful? 

Answer: Not really. The energy function does not really change from optimization. 
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The only difference that could affect the optimization is that the penalty function that is given, is 

the same as Dmax. When this penalty is not normalized to 1, the optimization could be affected 

by the preset precision (the error stop criterion). When a vertex is given a larger penalty, the 

precision of the algoritm can be smaller (larger error stop criterion). 

 

On the other hand, when the distance part of the energy function is normalized, is looses it’s 

direct meaning, being distance. When Dmax is 25 for example, a distance of 1 is normalized to 
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1/625. When Dmax is set to 5, a distance of 1 will be normalized to 1/25. This would mean that 

the optimization algorithm would need more precision when Dmax is set to a higher value. 

 

The penalty of the angle needs to be set to the maximum possible distance, Dmax, because 

otherwise, the event could occur that vertices having a distance of Dmax would benefit from an 

angle penalty, which is set to a smaller error then Dmax. 

 

To summarize: When Dmax is relatively larger, the optimization algorithm would need more 

precision for the skin error part when normalized and relatively less precision for the angle 

penalty when not normalized. The inverse holds for a relative smaller Dmax. Since for fine tuning 

the allowed angle is set to a small value, the angle penalty part counts for a large part in the 

energy function. It can therefore be argued that normalization is slightly favorable.  

 
Problem: Even with the incorporated angle penalty, the scaling factor of the registration is 

overestimated. Especially when using the hierarchical model, it is of importance to register the 

main body as good as possible. Otherwise the positioning of the limbs will not finish successfully. 

 

Solution: We incorporate extra knowledge. Since we know that the bounding box is generated 

by the surface of the mouse, we also know that all vertices have to lie within that bounding box. 

We therefore can penalize vertices that are on the outside of the bounding box. The right 

parameter setting needs to be found though and it could be conflicting with the angle penalty. 

Al vertices the lie outside of the bounding box are multiplied with this penalty. The effect of  

alpha  is 5 is shown in Figure 7 and Figure 8. 
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Figure 7: The composition of the Dice index, alpha is set to 5 
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Figure 8: The composition of the Dice index, alpha is set to 1
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We tuned this parameter in such a way that we obtained the best Dice index for a real data 

example view two side views. The parameter 
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Preliminary test of best value for α. For this one mouse an alpha of 2.5 seems optimal. Oddly 

enough overall results also show to be the best we could achieve with alpha is 2.5 
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After ‘fixing’ the following two bugs, the errors went down a bit. 

 

- Freedom of rotations was unrealistically large. Therefore virtually each initialization 

would start in the proximity of the spine skin surface. 

- For initializing and optimizing the right arm, the restrictions of the left arm were used. 

This gave a discrepancy between the random generation of the mouse model and the 

registration. 
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The golden standard doesn’t seem to be gold at all. We can thus not quantify the performance 

of our algorithm. Instead of that, we compare the Dice indices with those of the Gold standard 

to make it plausible that our algorithm at least gets a better registration than what is obtained 

with the golden standard registration. 

 

 

Figure 9: Golden Standard 



69 

 

Figure 10: BLI registration 
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Changing the step size in the limb initialization (sr in the paper) 

 

When setting the  sr value to 10 instead of 20, both the mean skin surface error and the Dice 

index improve. 
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The α setting has a stronger effect than the sr setting. 
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In Figure 11 and Figure 12, it can be seen that rotation errors in the elbow, also causes a rotation 

error in the wrists. 
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Figure 11: Pivot point distance errors of all individual rigid bodies. 
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Figure 12: All rotation errors of each individual rigid body 
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Figure 13: Projections of CT data and Mouse Atlas Registration. 
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The search for α : 

A more extensive search indicates that an optimal α would lie somewhere at 5. In any case it is 

shown that an α > 1 gives a better result on average than an α <= 1. Variance is almost zero, for 

the ten cases that we studied.  
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Figure 14: Dice's index vs. α for four views, resolution of 1 
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Figure 15: Dice's index vs. α for two views, resolution of 1 
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Figure 16: Scaling error vs. α for 2 view registration. 

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

Figure 17:Scaling error vs. α for 4 view registration. 
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Figure 18: Errorbar of dice index vs. alpha (2view) 
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Figure 19: Errorbar of Dice index vs. alpha (4view) 
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Global Algorithm Currently Used: 
- Read out top view 

- Read out side view 

- Combine top and side view into voxel model by multiplying 

- Calculate distance transforms resulting in 3D distance matrix. 

- Calculate thresholded distance transform, using 5 voxels. 

- Calculate gradient directions resulting in three 3D matrices (for x,y,z direction), based on 

complete unthresholded distance transform. 

- Normalize gradient-directions to length 1, so that they can be used for angle calculation 

- Read out skin surface. 

- Make global initialization by making sure the skin surface falls into the distance-matrix 

- Start loop, making the allowed angle between gradient direction and skin surface normal, 

smaller each time. 

o If allowed angle = 180 

� Use full distance matrix 

o Else 

� Use thresholded distance matrix 

o End if 

o Calculate angle between vectors by taking the dot product 

o If angle allowed 

� Read out distance transform matrix 

o Else 

� Set value to maximum value that can be found in the distance matrix 

o End if 

o Return vector of distances 

- Loop 

- Plot figures 
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Mouse Manipulation Algorithm Used: 

 

- Import Amira ascii digimouse surfaces into Matlab 

- Import Manually Selected Pivot Points, including a point on x-axis and y-axis. 

- Correct y-point so that it is orthogonal to x. 

- Convert x and y points to unit vectors 

- Calculate z unit vector by taking cross product 

- Calculate Euler Angles that are needed to rotate Global Axis into Local axis. (Full 

optimization search) 

- Merge all skeleton surfaces. 

- Link each vertex on the skin surface to the nearest skeleton surface. 

Do Scaling: 

For each bone 

- Map singe bones to their origins 

- Do inverse rotation so that global and local axis are the same,by using pre calculated 
Euler Angles 

- Scale along x,y and z axis 

- Rotate again with pre calculated Angles 

- Map single bones back to original location 

- Calculate the translation effect on children 

Do Rotations: 

For Each bone 

- Calculate quaternions for x, y and z vectors 

- Map bone and its children to origin 

- Apply rotation on bone and on its children 

- Apply rotations on pivots of children of bone (not on pivot of bone itself) 

- Map bones back to original position 

Do Transformations: 

- For each bone, do translation. Also for pivots. 



80 

 

Additional Settings and Results. 

 

 Min 
Scaling 

Max 
Scaling 

All 0,8 * 

initial 

1,2 * 

initial 

 Min Rot x Min Rot y Min Rot y Max Rot 

x 

Max Rot 

y 

Max Rot 

z 

Spine -20 150 -30 20 210 30 
Head -5 -10 -20 5 10 20 
Left Upper Arm -10 -10 -40 10 30 60 
Left Lower Arm 0 0 -20 1 1 90 
Left Hand -5 -5 -20 5 5 20 
Right Upper Arm -10 -10 -40 30 30 60 
Right Lower Arm 0 0 -5 1 1 90 
Right Hand -5 -5 -20 5 5 20 
Left Upper Leg 0 0 -40 1 50 40 
Left Lower Leg 0 0 -30 1 1 80 
Left Foot -5 -5 -25 5 5 110 
Right Upper Leg 0 0 -40 1 50 40 
Right Lower Leg 0 0 -30 1 1 80 
Right Hand -5 -5 0 5 5 125 
 

 Skin 1 Skin 2 Skin 3 

Mean Absolute error  5.173724e+000 5.637252e+000 5.071760e+000 

Mean Error 1.413894e-001 4.176248e+000 1.176282e+000 

MSE 4.223858e+001 4.736853e+001 4.007259e+001 
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Initializing ... done in 0.226732 sec 

Rasterize points in patches to grid points ... done in 4.49101 sec 

Fill volume ... done in 3.72622 sec 

reinitializing left arm 

reinitializing right arm 

reinitializing left leg 

reinitializing right leg 

Average absolute error : 6.270567e+000 

Average error : 2.585499e+000 

MSE : 7.688429e+001 

Initializing ... done in 0.148426 sec 

Rasterize points in patches to grid points ... done in 5.18034 sec 

Fill volume ... done in 4.04634 sec 

reinitializing left arm 

reinitializing right arm 

reinitializing left leg 

reinitializing right leg 

Average absolute error : 3.918637e+000 

Average error : 2.633346e+000 

MSE : 3.393262e+001 

Initializing ... done in 0.159021 sec 

Rasterize points in patches to grid points ... done in 4.20455 sec 

Fill volume ... done in 2.66367 sec 

reinitializing left arm 

reinitializing right arm 

reinitializing left leg 

reinitializing right leg 

Average absolute error : 5.935442e+000 

Average error : 8.131472e-001 

MSE : 5.618114e+001 
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Run : 1 

------------------- 

Rotation Error in deg 

                   ''    'x'              'y'              'z'       

    'spine'              [    14.8438]    [    12.9031]    [ 3.0051] 

    'head'               [     1.7238]    [     0.7753]    [ 0.6523] 

    'left upper arm'     [     8.3314]    [     9.2876]    [54.3048] 

    'left lower arm'     [          0]    [          0]    [ 4.2027] 

    'left hand'          [     3.5800]    [     3.2837]    [14.7493] 

    'right upper arm'    [     9.2102]    [     4.0728]    [25.5663] 

    'right lower arm'    [          0]    [          0]    [43.0534] 

    'right hand'         [     4.7828]    [     3.9240]    [15.9900] 

    'left upper leg'     [4.1170e-014]    [3.3998e-014]    [ 2.3065] 

    'left lower leg'     [          0]    [          0]    [29.9899] 

    'left foot'          [     4.1618]    [     2.7574]    [ 1.1409] 

    'right upper leg'    [     0.5259]    [     5.2538]    [19.2053] 

    'right lower leg'    [          0]    [          0]    [ 3.1323] 

    'right foot'         [     0.2272]    [     2.9298]    [ 3.1468] 

Scaling Error in % 

    3.9959    6.8656    5.2022 

    0.7027    0.7027    0.7027 

    4.0186    4.0186    4.0186 

    4.0186    4.0186    4.0186 

    4.0186    4.0186    4.0186 

   10.2681   10.2681   10.2681 

   10.2681   10.2681   10.2681 

   10.2681   10.2681   10.2681 

    4.2914    4.2914    4.2914 

    4.2914    4.2914    4.2914 

    4.2914    4.2914    4.2914 

    2.3870    2.3870    2.3870 

    2.3870    2.3870    2.3870 

    2.3870    2.3870    2.3870 

------------------- 

Topview area : 15588 

Non covered area Top : 1124 (7.21 %) 

Falsely covered area Top : 2054 (13.18 %) 

Sideview area : 10480 

Non covered area Side : 696 (6.64 %) 

Falsely covered area Side : 668 (6.37 %) 
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Figure 20: Schematic overview of the program. The Evaluate and Transform iterations (Gray area) differ 

for non rigid and rigid registration. 
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APPENDIX D

Working Document on C. Elegans Paper

85



86



87 

 

Working Document on C. Elegans chronograms 

 

On obtaining data 

Problem: The chronogram dataset is only available in XML format. 

Solution: Download the XML datafile and convert this XML data into matlab structures. 

 

Problem: The server hosting the datafile crashes during download of the complete dataset. 

Solution: Download an ‘empty’ dataset, that only contains the names of genes the have a 

chronogram attached to it. With this file, download specific queries for this genes: 

There are 1606 genes available, containing at least 1 chronogram per gene. 

There are 2058 chronograms containing spatial temporal gene expression data. 

 

There are currently three matlab structures. 

A geneList structure, pointing to mat files, which in turn contain a structure of following format: 
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** Data contains the following fields: 

wormgroupid: [500x1 uint32] 

orientation: [500x1 int8] 

datacount: [500x1 uint8] 

mean:  [500x500 uint16] 

min:  [500x500 uint16] 

max:  [500x500 uint16] 

stddev:  [500x500 uint16] 

Gene 

Gene Label 

Chronogram 1 

Chronogram 2 

Promoter Name 

Locus Name 

Strain Name 

Run 

id 

Orientation 

Data** 
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The localizome database 

The following data is stored in the localizome database 

Gene(s)  1606 

Promoter(s)  1681 

Strain(s)  1991 

Chronogram(s)  2085 

 

The meaning of a chronogram. 

A chronogram is a representation of measurements of Promoter::GFP contructs. Each promoter 

is related to one genes and a gene can in theory have multiple promoters. Since the chronogram 

data reflects the observation of promoter regulation, the most logical combination would be to 

connects chronograms to promoters. 

We therefore added all measured profiles, belonging to the same promoter, into one 

chronogram. 

Since the raw data from the Localizome website isn’t realy raw anymore, (Aligment of different 

wormsizes is already done) we expected that global orientation was already resolved. 

After comparing the images generated from data with the images generated by dupuy, some 

chronograms seemed to be flipped. We didn’t correct for this yet, and as a result, the average 

profiles al looked alike. 

All gene profiles are annotated with an orientation, except for gene T18D3.4, connotated with 

promoter p_myo-2_AZ217_CGC, where strain AZ217 did not have an orientation in it’s data 

tags. We compared this dataset with a thumbnail generated by Dupuy et al. and decided that it’s 

orientation should be one. (i.e. its orientation was correct in the database.) During the 

processing of all chronograms, we saw some aligments that weren’t internally consistent. i.e. 

not all heads were pointing in the same direction. This will make calculation from enrichment 

impossible for those cases. 

 

Normalization of chronograms. 

All chronochrams are normalized to a size of 401x450 datapoints. All datapoints that do not fall 

into this region are discarded. Dupuy et al. made measurements until most datapoints from 50 

to 450  were observed. Chronograms need to be normalized to be able to compare them. 
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When normalized to surface of 1, you get a distribution of gene expression 

2 Assumptions are made: 

 - Organlocation Changes proportional to size of worm duing development 

 - Gene Expression is not age related. 

Selecting Statistical Relevant Signals. 

As was described in supplementary materials by Dupuy, we generated a background signal (B) 

with the 68 lowest mean signal chronograms. We kept 1531 chronograms, instead of the 1520 

that was reported in Dupuy. (The reason they used the number 68 is probably fully arbitrary an 

generated best results) We calculated a mean chronogram and a standard deviation , m(B) and 

σ(B) 

after this we calculated the Z score according to the formula, as was shown in Dupuy: 

n

B

BmC

Z i

n

i

ii

)(

)(

σ

∑ −

= where i is datapoint location, after a chronogram was flattened. (i.e. 

instead of stacked on top of each other, all worms were concatenated. 

 

Instead of the reported 820 chronograms having a Z score of 11 or more. (Again, it is unclear 

where this value of 11 originates from) we found a total of 94 chronograms. 

 

Constructing the Worm Atlas. 

There are two ways of constructing a wormatlas. 

First, we can construct an atlas by using known anatomical location found in literature. Since we 

have a 1D worm structure, all 3D anatomical information that we find have to be translated to a 

1D (binary) model. 

Secondly, we can make use of chronogram averages and take the highest observed peaks in the 

chronograms, to construct an atlas, using a data driven approach.
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Marked points from anterior to posterior. 

1 4 

2 14 

3 24 

4 41 

5 56 

6 67 

7 79 

8 200 

9 220 

10 270 

11 280 

12 287 

13 346 

14 365 

15 476 

16 492 

17 506 

18 528 

19 582 
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Figure 1: Different stages in C. Elegans development 

(http://www.wormatlas.org/handbook/anatomyintro/anatomyintro.htm) 

 

Figure 2: Lifecycle (from http://www.wormclassroom.org/ac/lifeCycle.html) 
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Figure 3: From The embryonic muscle transcriptome of Caenorhabditis elegans (Rebecca M Fox ) 
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Determining the correlation between chronograms. 

Of these values we calculated the Pearson’s Correlation Coefficient:  

),(),(

),(
),(

jjCiiC

jiC
jiR = and ∑

∑∑
−=

n

x

n

x

x

n

x

x

xx
n

ji

jijiC ),( where i and j are vectors of size n 

where i and j are two equally sized chronograms, and x is the datapoint index and n is the 

number of datapoints in i (or j) 

Resulting in Figure 4Figure 4. We expect the chronograms having the highest correlation, 

to be expressed in the same organs of the worm. 
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Figure 4: PCC of all chronograms vs. all chronograms. The subset of chronograms used, is the set with a 

Z-score > 11. 
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Figure 5: Clustering using Average  Linkage 
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The highest High Pearson Correlation observed was based on following 2 chronograms. 
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How to determine spatial expression profile: 

 

I parsed anatomical information from the Localizome website. Each strain belongs to multiple 

anatomical expressions. This makes thing complicated. 

We generated average chronograms by adding all expression profiles annotated with some 

anatomical profile together. 

Hopefully correlation will show up higher for chronograms that have some related anatomical 

information. 

A quick qualitative inspection unfortunately does not show large differences between different 

anatomical view. 

embryo headneurons intestinal rectalglandcells unidentifiedtail bodywallmuscle developingspermatheca developingvulva

hypodermis nervering rectalepithelium seamcells spermatheca uterus ventralnervecord vulvaother

unidentifiedhead pharynx tailneurons bodyneurons gonadsheathcells analdepressormuscle analsphincter uterinemuscle

coelomocytes arcadecells labialsensilla developinguterus distaltipcell dorsalnervecordlateralnervecords
c
ommissures excretorycell

intestinalmuscle pharyngealglandcells pharyngealneurons pharyngealintestinalvalve developinggonad unidentifiedcells amphids phasmids

headmesodermalcell excretoryglandcellsspermathecauterinevalvemechanosensoryneurons amphidsocketcells unidentifiedbody uterineseamcell pvtinterneuron
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As can be seen in the plots of the averaged chronograms, some averages are affected by 

datasets with too many missing datapoints (resulting in a lower mean intensity and some high 

intensity bars). We therefore applied a filter which removes all chronograms from the averages 

that had more then 60% of datapoints missing. This still seems like a lot of missing data, but it is 

in accordance with Dupuy et al. and they seemed to get good structural information when using 

this as filter. 
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Figure 6; Difference of filtered vs non filtered 
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After correcting for the orientation of the chronogram data, we observer strong correlation and 

more over, larger clusters, which is a logical result. 
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We now also expect the anatomical ‘fingerprints’ to be more different. We do see difference in 

the ‘fingerpints’ but there is still no obvious difference between the anatomical annotations. 

The largest difference is that in stead of three regions of strong expression, observed in the 

uncorrected chronograms, we now see only two regions of strong expression. 
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Figure 7: Final obtained fingerprints. 

Update: We found a bug in the code, which caused an incorrect merging of strain chronograms. 

Everything has to be redone! All statistical tests and fingerprint calculation.
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Since we do not find any obvious differences between the avegaraged chronograms having 

shared onotology tags, we decided to make use of the manually segmented atlas. 

Since we have a 1D worm, we have many organs that overlap. This is not a problem when trying 

to aswer whether a gene is ‘enriched’ in a certain area. When trying to answer in what organs 

the observed genes are expressed difficulties do arise. 
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Figure 8: Chronogram of a p_H28O16.1_BC::GFP construct. Likely to be enriched in the head. Left the 

full chronogram, right the datapoints which we define to be in the adult stage. 

 

To test for enrichment, a two sample t-test can be applied, where the gene expression samples 

are divided into two groups. In the organ area, or not. We can then test for  different mean 

expression in one worm, but also over a complete chronogram, (or a subset of a chronogram. 

Relation to age: 

The atlas we constructed is based on adult worms. The used chronograms consist out of larval 

and adult stages. We have to determine when the transition between larva and adult occurs. 

This is not a discrete event and occurs somewhere between the size of 650 and 900 μm. The 

transition is triggered by let-7. (There is no chronogram of this gene available) 

To be sure that our spatial atlas corresponds to observations of the adult phase, we only use 900 

to 1150 μm as our data source. (Based on Figure 9) 

 

In a chronogram 0.1mm equals 50 datapoints and ~1 mm probably equals 500 datapoints. This 

would mean that we can only use 450+ datapoint measurements, which leaves us with 1 worm 
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size per chronogram. Instead we use 0,65 mm+ as size which gives us the wormsize 325-450 to 

apply a t-test on. 

We are confined to this approach, because we cannot recover the meaning (e.g. the size) of a 

datapoint. 325-450 seems a safe guess, since it looks like Dupuy et al mark 300+ as the adult 

stage. This would translate into line 276-401 in our chronograms (containing size 325-450) 

When using a t-test the assumption is made that the observed data is drawn from a normal 

distribution. 

When using a two sample  t-test you are able to test the null hypothesis H0 that the means of 

both datasets is equal. Since this difference is present in many cases, this might nog be a good 

test for enrichment. See example below: 

 

Figure 10: Selected regions based on atlas. Both regions will get a significant different mean, when 

applying a t-test 

 

We also used a chi-square test to test whether the observed data subset selection seen in the 

frame can be explained by the normal distribution seen in the whole worm. To do this, the 

observed mean expression and its variance in the worm are calculated. After that the data 

observed in the selected region is tested against a null hypothesis “observed data is generated 

by a normal distribution with given variance”. The H0 is rejected below a 5% significance level. 

To make use of the multiple rows that we have, we applied the chi-square test to all row 

separately. We calculated a fraction of rejected H0 and sorted the results of test from high to 

low rejection fraction. The largest fractions are differently expressed in most of the observed 

areas. 
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Problem: 

The chronogram data does not seem to be normally distributed. Some random examples below 

(Figure 11): 
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Figure 11: The distribution of intensity values of 4 Randomly picked chronograms 

 

In fact, the distribution seems to be varying greatly and no assumptions can thus be made about 

the distribution of the data. It is thus not possible to perform a t-test, nor a chi-square test, 

because both of the tests assume normal distribution. 
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Based on the following table, it seems logical to pick a Wilcoxon test, to rank the scores. The 

same problem still remains though. With the Wilcoxon test, we are only able to test for a 

difference in distribution. 

Table 1: Choose a test (From Intuitive Biostatistics, Chapter 37) 

 Type of Data 

Goal Measurement 
(from Gaussian 
Population) 

Rank, Score, or 
Measurement (from 
Non- Gaussian 
Population) 

Binomial 
(Two Possible 
Outcomes) 

Survival Time 

Describe one 
group 

Mean, SD Median, interquartile 
range 

Proportion Kaplan Meier 
survival curve 

Compare one 
group to a 
hypothetical 
value 

One-sample t test Wilcoxon test Chi-square 
or 
Binomial test 
** 

 

Compare two 
unpaired groups 

Unpaired t test Mann-Whitney test Fisher's test 
(chi-square for 
large samples) 

Log-rank test or 
Mantel-
Haenszel* 

Compare two 
paired groups 

Paired t test Wilcoxon test McNemar's 
test 

Conditional 
proportional 
hazards 
regression* 

Compare three or 
more unmatched 
groups 

One-way ANOVA Kruskal-Wallis test Chi-square 
test 

Cox 
proportional 
hazard 
regression** 

Compare three or 
more matched 
groups 

Repeated-
measures 
ANOVA 

Friedman test Cochrane Q** Conditional 
proportional 
hazards 
regression** 

Quantify 
association 
between two 
variables 

Pearson 
correlation 

Spearman correlation Contingency 
coefficients** 

 

Predict value 
from another 
measured 
variable 

Simple linear 
regression 
or 
Nonlinear 
regression 

Nonparametric 
regression** 

Simple logistic 
regression* 

Cox 
proportional 
hazard 
regression* 

Predict value 
from several 
measured or 
binomial 
variables 

Multiple linear 
regression* 
or 
Multiple nonlinear 
regression** 

 Multiple 
logistic 
regression* 

Cox 
proportional 
hazard 
regression* 
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Results of the chi_squared test: 

For the genes, enriched for the tail genes, we found the following top10 registered 

chronograms: 

 

Figure 12: Tail enriched, found with chi_squared test 

For the genes, enriched for the head, we found the following top10 registered chronograms. 

 

Figure 13: Head enriched, found with chi-squared test. 
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All, but one chronogram contained the annotation ‘head’ or ‘pharynx’. p_F28H7.9_BC, which is 

expressed in the nerve ring and tail neurons, was falsely marked as ‘enriched’ in the head, but 

because of Figure 10, this makes sense. 

 

 Embryonic Development also showed some sensible results. 

 

Figure 14: Embryoninc Development, found with the chi-squared test. 
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Results of Wilcoxons test: 
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Figure 15: Enrichment of the head, Wilcoxons test. 

The results of the Wilcoxons test were a bit disappointing. No pattern was dicovered in the 

chronograms, where the other tests showed very clear enrichment. 

Update(!): The implemented Wilcoxon test in matlab (ranksum) selects the smallest sample to 

be the first sample and the largest sample to be the second one. When using the z-Statistic as a 

measure for ranking, you will get an inverse order of what you expect, if your first sample is 

larger then your second one. 

if nx <= ny 
   smsample = x; 
   lgsample = y; 
   ns = nx; 
else 
   smsample = y; 
   lgsample = x; 
   ns = ny; 
end 

As workaround we sort ascending when or first sample is larger then 0,5*wormsize and 

descending otherwise. 
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Can’t we just use correlation? 

The chronogram that is shown in Figure 8 was found using a correlation estimation. While we 

only used the largest worm for this test (The worm with size of 450 datapoints).  

Although this test is a very simple way to search for enrichment, we found that first experiments 

show good results. When we take more worm sizes into account, we can chose to make a score 

with more, or less weight in the weighted correlation score that follows. 

When all sizes are weighted equally, it suffices to calculate a correlation score of the average 

observed correlation score. Otherwise you can choose between calculation of the correlation of 

a weighted average, of the weighted correlation of all sizes, the last approach being more costly 

and probably yielding a similar result. 

When making use of the correlation scores, we see some strikingly results, that show that 

embryonic development is only taking place in the adult stage of the worms’ life. 

 

Figure 16: Embryonic development, found with correlation scores of mean expression. 
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Figure 17: Embryonic development, found with mean correlation scores of individual expressions. 

 

Mean of correlations vs. Correlation of Mean 

It does make a difference whether you calculate correlation scores of individual worms and 

average those, or when you calculate the correlation score of the average expression. The first 

approach seems to find stronger enrichtments. 

 

Correlation works in two ways 

While correlation shows good results when searching for enrichment, we can also make good 

statements on ‘definitely not enriched’. As correlation scores that approach 1 are likely to be 

enriched, correlations that approach -1 are likely to be not enriched, but even are that opposite 

of that. 
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Figure 18: According to the correlation scores, following profiles were found to be not enriched in the 

head. 
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Signal Distributions of ‘noise’ vs. ‘enrichment’. We set the signal area to ‘head’ because we believe that 

promoter p_C04C3.3_BC is enriched in the head. 
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Figure 19: ‘Noise’ area distribution of promoter p_C04C3.3_BC 
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Figure 20: ‘Signal’ area distribution of promoter p_C04C3.3_BC 
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Figure 21: Complete distribution of promoter p_C04C3.3_BC 
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Signal Distributions of ‘noise’ vs. ‘enrichment’. We set the signal area to ‘tail’, but we believe that 

promoter p_C04C3.3_BC is enriched in the head. 
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Figure 22: ‘Noise’ area distribution of promoter p_C04C3.3_BC 
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Figure 23: ‘Signal’ area distribution of promoter p_C04C3.3_BC 

 

From Figure 19 to Figure 23 distributions, we cannot make any assumptions about what kind of 

distribution we see. The signal areas of both the ‘right’ area as the ‘wrong’ area seem to 

approach a normal distribution. The cumulative and ‘noise’ areas both are not normally 

distributed. 



117 

 

Can we test for enrichment with a t-test like test? 

We need a definition for ‘enrichment’ first. (Cite Guoqiang Gu, Global expression analysis of 

gene regulatory pathways) For example. For enrichment we expect at least a threefold 

expression over background signal. 

 

We can than make a null hypothesis that looks like BEH µµ 30 <=  

If that hypothesis can be rejected, we can safely predict that the observed mean expression in 

the area of interest is at least three times larger than the background signal: BEH µµ 31 ≥=  

Pros:  You get signals that are at least threefold enriched. 

Cons: Threefold is (very) arbitrary. See for instance top right histogram in Figure 11, where the 

expression profile is hardly more intense then the background signal. We still want to be able to 

say something on localized expression there, although probably not a very intense signal, it still 

can be a specific one. 
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Correlation vs t-Test 

The way in which we designed our correlation, will yield results that are in relation with the t-

Test 

)(xEx =µ  

)()()()))(((),( jEiEijEjiEjiC ji −=−−= µµ  

When having 





−
=

outorgan

inorgan

j

j
j

,1

,1
and outorganinorgan iXiX == 21 ,  

 

Head

-1,5

-1

-0,5

0

0,5

1

1,5

0 50 100 150 200 250

Head

 

C(i,j) will transform to 
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The correlation is then related to the t-Test and will give similar results. 
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