Safe and natural navigation
dynamic environments

learned from human behavior

Ewoud Croll

Delft
I De I ft Uﬁiversity of . .
Technology Department of Cognitive Robotics

Safe and natural navigation in
dynamic environments

learned from human behavior

MASTER OF SCIENCE THESIS

Ewoud Croll

March 31, 2020

Department of Cognitive Robotics (CoR)
Faculty of Mechanical, Maritime and Materials Engineering (3mE)
Delft University of Technology

This work is done under supervision of Dr. Javier Alonso-Mora and PhD Student Bruno de
Brito.

(; Delft =N
TUDelft &y
Copyright ©
All rights reserved.

Abstract

Social Navigation is the task of robot motion planning in an environment shared with humans.
This is an especially hard sub-problem of motion planning because the planner has to deal
with a dynamic, continuous and unpredictable environment. We present a local motion
planner, namely Neural Network Model Predictive Control, for autonomous ground vehicles
in highly dynamic environments. A neural network is trained to plan local trajectories based
on human behavior data. It has therefor learned to mimic how a person would behave in such
a situation. The trajectory plan of the neural network is used as guidance and initialization
of a model predictive controller. This MPC creates a kinematically feasible trajectory and
assures collision avoidance with the static and dynamic obstacles in the environment within
its receding horizon. This combined planner and controller is tested in simulation and showed
on a real autonomous robot.

1

Table of Contents

Introduction

1-1 Humaninteraction
1-2 Research Aim
1-3 Outline

Scientific Paper

2-1 Introduction
2-2 Preliminairies
2-3 Method: Planning network
2-4 Method: Combining MPCand NN
2-5 Simulation experiments L
2-6 Real world experiments
2-7 Conclusion

Concluding Remarks

3-1 Discussion,
3-2 Conclusion L,
3-3 Further work

More results

Neural network variations

B-1 Variations
B-2 Results
B-3 Improve interactions

MPC variations
C-1 Variations
C-2 Results

Tt O = W

© oo N O

17

17
19
19

21

23
23
24
26

Table of Contents

iii

D Static free space calculation 30
E Data gathering 33
E-1 Experimentsetup 33
E-2 Post processing 35
E-3 Trainingonrealdata 35
E-4 Discussiononrealdata 36
Bibliography 37

Table of Contents

Preface

In front of you lies my master thesis work, a years worth of diving deep into the topic of
motion planning techniques. I got the chance to try and wrap my brain around the paradoxes
of interactions between robots and humans and the models that try to describe them. Most
interesting is the realization that much of the behavior we expect from the robot results in a
discussion on how humans make their decision and how they learned to come to that decision.
Humans, just like neural networks, need a lot of experience before they understand what to
do in a certain situation. Similar to a model predictive controller we can only look so far
ahead in life until the variables become so uncertain that you just have to trust it will turn
out all right. We have no other choice than to resort to heuristics that are handed down from
person to person and although there is no proof those are still the right way to do things,
it is a good starting point of the optimization that life is. Its interesting to see that now,
during the COVID-19 crisis, human have to reinvent their own motion planning and solve
the planning puzzle much more conscious in order to keep the required 1.5 meter distance. It
gives a little taste of the actual complexity of the task a robot has to deal with.

There are several people that I want to thank especially.

From the research group I want to thank Bruno, my daily supervisor, who provided me with a
great starting point to build further on. He was always available to answer questions and able
to come up with possible solutions for the problems I encountered. I admire is working drive
and wish him all the best in finding the perfect motion planner for his PhD research. I also
want to thank my professor, Javier Alonso-Mora, for his critical eye and vast vast knowledge
of the research area. During the meetings he was able to quickly identify shortcomings in
any solution I presented which gave direction to my research. This, together with the casual
conversations we had in the hallways and during lunch, made a really nice working experience.

2 Table of Contents

I want to thank my parents, who supported me through my entire studies. They gave me
advice were necessary, but just as importantly, backed me on every decisions I took. They
are a stable factor, which i can always turn to. I am thankful for their financial investment,
and for the great launch they gave me into this world.

My friends in the studies Achin, Yannick, Anoosh and Chadi, for the interesting discussion
on neural networks, motion planners and life. I also want to thank them for the fun times in
the lab and during the breaks, motivating me to come to university day after day.

My friends from back in Enschede, especially Robin, Paul, Kruiter and Schijvens from Vulpes;
Bart, Tom, Robin and Rogier from my house het Riet, the guys from my dispute Heres, the
people from my first house Castillo del Conjo and all the other great people I met along
the way. I also want to thank all the friends I made in Delft, including everybody from
Plankenkoorts, Carli and her gang and my current roommates who gave me the welcome
distractions and made studying a time to never forget.

Figure 1: Jackal in the rain.

Chapter 1

Introduction

Autonomous navigation for robots is a research area in the spotlights nowadays. Autonomous
cars promise increased mobility, safety and efficiency. Robots can support people who work in
dangerous environments and can do jobs that people don’t want to do such as very repetitive
work or work that is though on the human body. Highly automating a robot has the advantage
that it needs less supervision or can even perform it’s work completely on its own.

knowledge, mission
data base commands
“position” 5 ,/
global map
environment model ath
local map P
1
Information - 4 Path _
= Extraction Execution 2
(=] . H | c
=1 s et see_—thmk-a_ct chusior S
2 faw commands e
@ S
a o
Sensing =

Real World
Environment

Figure 1-1: Typical automated robot cycle

Typically robot automation is divided into three separate components that run sequentially
to make the robot move. This is called the "See, think, act" cycle and consists of a perception
component, a logic component and a controller. The perception component is responsible for
handling the raw sensor data and tasks such as filtering. The logic component has three main
responsibilities: map building, localization and to coming up with a path for the robot on
that map. The controller is responsible for calculating motor commands to follow the path as
close as possible. There are multiple way to divide the robot’s intelligence over the different
components. For example the perception component could already disregard obstacle’s that
are definatly not going to obstruct, such as obstacles that are hanging from the ceiling for a
ground robot. It could be designed simpler and just pass the information about the object

4 Introduction

on to the logic component and let it make the decision by itself. A lot of robots uses this
structuring of tasks, but research is done on combining several of these components. Path
planning and controlling can be combined in a model predictive controller for example. The
whole pipeline can be replaced by an end to end neural network which generates a command
directly from the raw sensor inputs.

1-1 Human interaction

Robots are finding their way from factories where they are isolated from human interactions
to everyday situations such as offices, hospitals and households. These are environments
where robots and humans share the same space. Robots are expected to not get in the way of
humans but still perform their task efficiently. One of the problems that arise is the motion
planning of the robot where the robot has to understand the applicable social norms and has
direct interactions with humans. This problem set is called social navigation [1]. Which lies
on the cross section between the fields of robot motion planning and human-robot interac-
tion (HRI). The topic of social navigation is one that has existed for quite some time but
has gotten more attention in recent years. A reason for this development is the availability
of adequate hardware platforms. The developments in perception of the environment make
it possible to detect static and dynamic obstacles. The next step is improving the decision
making and the motion planning capabilities in dynamic and hard to predict environments.

Figure 1-2: Two pedestrians blocking the hallway, the robot needs to predict the interaction to
find its path to the end of the hallway. [2]

Autonomous robots currently in operation typically follow a pre-planned path or a path
derived from markings on the road. It has limited capabilities in going around any obstructions
in its path, most robots will stop and only proceed when their planned path is free of obstacles
again. In research, methods have been applied for planning a route through an unseen static
environment. They are shown to work in real time and give reasonable trajectories, however it
becomes a lot more difficult to plan in an environment with other pedestrians walking around.
While walking around one has to predict where the other pedestrians are going and what is
the right way to proceed in the environment. The right way is determined by many social
rules, which are not captured by exact science as of today. Examples of these social rules are
keeping to the right side of a hallway, not crossing through groups of people and keeping a
certain distance to others depending on how crowded the area is. A robot that can understand

Introduction 5

these rules will be able to navigate through crowded environments with much more ease and
have a higher acceptance than a robot that is only able to follow a fixed path. In the situation
of figure 1-2 gives an example for this. Two people are walking side by side, leaving too little
room for the autonomous wheelchair to pass. A planner which assumes a static or constant
velocity world model would not find a feasible path because of the pedestrians blocking the
way. A smarter planer would predict that one of the pedestrians will probably move out of
the way when to robot gets close, this interaction is vital for the robot to reach its goal. The
general problem of robots stopping because they are unable to predict the interactions with
humans in the environment is referred to as the freezing robot problem [3].

1-2 Research Aim

This research aims to further discover the possibilities of teaching a robot to navigate through
a crowded environment. We are looking to create a method that works in a real environment
and therefor demonstrate the workings on an autonomous robot platform. We aim to build a
method that learns its planning rules from humans, this is a complex model where we expect
deep learning to be a viable solution for replicating human behavior. At the same time we
want the robot to always operate in a safe way, a receding horizon controller can come up
with trajectories and check them for collisions over a limited horizon. In this research we
will find the answer to the question: Can we use deep learning based on human behavior to
improve a constraint trajectory optimization planner?

1-3 OQutline

The core part of this report is covered in chapter 2 which consist of a scientific research paper
in which the method, experiments, results and conclusions are discussed. The method consists
of two parts: the creation of a neural network for planning trajectories and the integration of
this planner into a model predictive controller. Multiple simulations are done in a simulation
and a proof of concept is showed on a real robot. After the scientific paper in chapter 3
we go into a more in depth discussion on several advantages and challenges of the presented
approach together with recommendations for future research. In the appendix we further
discuss the following parts of the thesis:

e Appendix A: More results from the simulation experiments.

e Appendix B: Discusses variations of the neural network we tried, together with tests
and results.

e Appendix C: Discusses variations for integration of the neural network and the model
predictive controller, together with simulations experiments and results.

e Appendix D: Shows two alternatives for the used static free space search.

e Appendix E: Explains the approach used in the data gathering experiment and shows
results of using this real data for the neural network.

Chapter 2

Scientific Paper

Scientific Paper

NN-MPC: Safe and natural navigation in dynamic environments
learned from human behavior

Ewoud Croll

Abstract— Social Navigation is the task of robot motion
planning in an environment shared with humans. This
is an especially hard sub-problem of motion planning
because the planner has to deal with a dynamic, continuous
and unpredictable environment. We present a local motion
planner, namely Neural Network Model Predictive Control, for
autonomous ground vehicles in highly dynamic environments.
A neural network is trained to plan local trajectories based on
human behavior data. It has therefor learned to mimic how a
person would behave in such a situation. The trajectory plan of
the neural network is used as guidance and initialization of a
model predictive controller. This MPC creates a kinematically
feasible trajectory and assures collision avoidance with the static
and dynamic obstacles in the environment within its receding
horizon. This combined planner and controller is tested in
simulation and showed on a real autonomous robot.

I. INTRODUCTION

This paper proposes a new method for safe navigation
of Autonomous Ground Vehicles in dynamic environments.
Commonly dynamic environments are treated like static
environments in which the robot has to re-plan its trajectory
often to account for the changes in the environment. In
this way valuable knowledge about movement in the area
is lost. Often the navigation is split into two separate
problems, the motion planner and the controller [1]. Motion
planner techniques however usually don’t take the trajectory
smoothness and kinodynamic feasibility into account. This
can cause the controller to be unable to follow the trajectory.
The controller can then choose to follow the planned path
as closely as possible but then the guarantees about obstacle
avoidance given by the planner are dismissed and a collision
with a static or dynamic obstacle is very possible. Instead we
would like to have method that does both the local planning
and control simultaneously.

In highly dynamic and uncertain environments static
motion planners are not adequate for modeling the movement
in the surroundings of the robot. local motion planning
becomes a necessity for collision avoidance. For this
nowadays usually reactive methods are used to guide the
AGYV away from a collision. Artificial potential field methods
[2] Social force methods [3] and Dynamic window methods
[4] are examples of this, however they lack convergence
guarantees and are very limited in their decision making
and reasoning skills. They cannot make a move that is
unfavorable at the current time but results in a overall favor
in the long run. This can lead to the robot getting stuck at a
local minimum of its artificial potential field and not being
able to move further. On top of that once an environment
surpasses a certain dynamic complexity the robot decides

Fig. 1: The mobile robot platform

all paths have a risk of collision and the robot decides to
stop driving, this is called the freezing robot problem [5]. A
solution is to better model the interactions between the robot
and surrounding humans, this gives knowledge about which
trajectory plans are likely to be safe.

A. Related work

More recently researchers have been interested in using
data from human behavior to guide the robot. For example by
using inverse reinforcement learning [6][7] to model human
behavior in a predefined set of features. This model is then
used on-line to guide the robot. In these models however
allow no goal position for the robot to be specified and
therefor it is only able to drive as straight as possible while
exerting human like behavior. Driving human like is not a
goal in it self, so these robots are still a step away from
being useful as autonomous agents.

Another way to learn from examples is to create an end-
to-end neural network to guide the robot, trained using
reinforcement learning [8]. In this work the robot is rewarded
for reaching its goal and penalized for collisions with
pedestrians and for disregarding predefined social norms.
The neural network does not give any guarantees for not
colliding with obstacles, therefor an extra layer to stop the
robot in unsafe situations is necessary. When this layer is
activated the robot will stop and it is not able to find a safe
path until the situation changes. We would like to have more
flexibility and be able to still drive the robot safely even
though the trajectory planned by the neural network violates
the collision constraints.

8

A solution proposed by B Brito [9]' from our research
group is to use Local Model Predictive Contouring Control
(LMPCC) which integrates a local planning stage with the
controller. This method allows to compute safe, smooth and
kinodynamic feasible trajectories, while also computing the
optimal control inputs over a planning horizon. The planner
is encouraged to follow a predefined spline while being
restricted to not collide with the static and dynamic obstacles
as explained in section II.

There are however some limitations in this controller that
can cause it to show undesirable behavior. It is difficult
to define the cost function and its weights such that the
behavior of robot is as expected in different scenario’s.
This is undesirable because we strive to create a robot that
is flexible in its use and can be introduced into a new
environment without having to change the system. Another
issue is that the gradient based nature of the optimizer will
search in the neighbourhood of the previous solution and
will not come to a solution where the reward is lower at
first. This effect is amplified by the very limited number of
optimization steps in each cycle. In this work the free space
is calculated in the neighborhood of the previous calculated
trajectory which again limits the planner to the area where it
has planned to go to before. The supplied reference trajectory
to the LMPCC also has a big influence on the robot behavior
and can be limiting if the robot has to deviate far from this
reference due to a busy dynamic situation. Instead we would
like to have a more flexible setup that can quickly change its
planned path when drastic changes in the environment occur.
The above problems we are looking to solve by introducing
a neural network planner to support the model predictive
controller in multiple ways.

B. Contributions

We propose a solution of the motion planning problem
by combining the rigorousness and reliability of Local
Model Predictive Controller with the flexibility and scene
understanding of a Deep Neural Net trained on human
behavior data. An overview of the different components of
this planner can be seen in figure 2. Building on LMPCC
[9] we made the following changes and contributions.

1) Create a planner neural network to guide the robot in

a natural way instead of using a predefined reference
trajectory.

2) Define a MPC cost function and initialization that
uses the trajectory generated by the neural network,
while still maintaining obstacle avoidance capabilities
for both the dynamic and static obstacles.

3) Performance results and demonstration in simulation
and real world situations using a mobile robot.

II. PRELIMINARIES
A. Robot description
The robot B is assumed to operate in a 2 dimensional

plane YW = R? and its dynamics can be described by

! Available at: www.alonsomora.com/docs/19-brito-ral.pdf

Scientific Paper
goal
position

L.

™

Planner
NN

Guide,

Initialize Initialize

Free static Restrict
enviranment MPC
search

Velocity

Environment ——»
- ;ommand

Restrict

L Pedestrian
Prediction

Fig. 2: Overview of the combined neural net and MPC
planner

discrete-time nonlinear system where the future state depends
on the current state and the inputs to the robot.

z(t+1) = f(z(t), u(t), (1)

Where z(t) is the state of the robot which consists of
its position, orientation and velocities. u(¢) is the input
to the robot defined by a linear and angular velocity. The
area occupied by the robot is approximated by a circle
encompassing in the whole of the robot. We will use z, v,
and 6 to describe the position and heading of the robot in the
global frame and v and w for its linear and angular velocity.
the subscribed nn is used to describe the trajectory generated
by the neural network, the subscript gt is used for the ground
truth positions from the dataset and the subscript mpc to
describe the trajectory generated by the model predictive
controller. The design weight weights) are used for the
MPC cost model J.

B. Obstacles

Static obstacles in the environment denoted by Os@tc ¢
W are encoded in an occupancy grid map This map is
created before the experiment either manually or using a
SLAM approach. During experiment the map is used in
both path planning, during the real experiments the map is
also used for localisation. During an experiment the current
readings of the sensors are compared to the static map and
all obstacles that are not found on the map are considered
to be dynamic obstacles. All the dynamic obstacles i are
represented by ellipses moving obstacle of area A4; C W
with a major and minor axis. The area occupied by all
moving obstacles is defined by OP" Uieqr,.ny Ai-
Their future position can be predicted using a constant
velocity model or using a neural network. To remove some
uncertainties in the measurement of the positions of the
moving obstacles we use a linear Kalman filter.

C. MPC formulation

We are tasked with generating a trajectory for the robot N
time steps into the future which is collision free to both static
and dynamic obstacles. For this we formulate the problem as
minimizing a cost function J that includes deviations from

Scientific Paper

the neural network generated path v defined by waypoints
over the planning horizon.

N
Z J(zkaulm’}/k)
k=0

J = min
Z0:N,UW0:N,Y0:N

st zpy1 = f(zr,ug), (2a)
B(z1) N (O y OP™) = ¢, (2b)
uy €U, zp € Z, zy given. (2¢)

The MPC optimizes its trajectory over a horizon and the
first velocity of this plan is executed on the robot. The
NNMPC problem of Eq. 2 is nonconvex. To solve this
optimization problem online in real time we use ACADO
with its and its C-code generation tool. For the robot
dynamics we use a unicycle model with linear and angular
velocity. The model is then discretized directly in ACADO
using a multiple-shooting method combined with a Gauss-
Legendre integrator of order 4, no Hessian approximations,
and a sampling time of 50 ms. gpOASES is used to solve
the resulting QP problem. At a maximum of 10 iterations
we require a KKT tolerance of 10~%. When the solver is not
able to find a feasible solution the robot is stopped.

D. LMPCC

We compare the NN-MPC to the existing method in the
group: the LMPCC. It uses a trajectory spline generated from
manually defined way points. In the cost function of the
model predictive controller there are terms to encourage to
following the generated trajectory by with a contour and lag
error term. The optimizer is restricted to find its solutions that
do not collide with static and dynamic obstacles as described
in the previous sections. The optimizer is initialized with the
result of the previous iteration.

III. METHOD: PLANNING NETWORK
A. Network structure

The planning network we use is based on the pedestrian
prediction network developed in the group. This network
already has capabilities of capturing human behavior around
obstacles and other humans. It is altered to make it is suitable
for planning a trajectory to a goal position instead of only
predicting a trajectory based on historical data. The inputs of
the neural network are an occupancy grid, a radial pedestrian
grid, current state of the robot and distance to the goal.

State ———»|

Ocecupancy.
Grid

Pedesirian
Grid

Concal | LSTM |—>Trajec.tory

Goal
Distance

Fig. 3: Structure of the planning network

9

The occupancy grid is a 60x60 grid section extracted from
a global occupancy grid, only showing the surroundings in
the neighbourhood of the robot. The size of occupancy grid
would give too many parameters for the network to learn,
therefor it is passed through convolutional layers that are
trained using an autoencoder [10]. The radial pedestrian grid
input consists of a vector of 72 elements, each representing
a 5 degree angle around the robot. The value of the element
is the distance between the robot and the closest pedestrian
in that 5 degree section, with a max of 6 meters. The state
input is defined as the heading in radians and the absolute
velocity of the robot with respect to the robot goal frame.
The input for the distance to goal is added to make sure the
robot stops when it reaches its goal. The direction of the goal
will be discussed later.

The network outputs the trajectory as a single vector
consisting of x and y velocities for the planned horizon. We
chose 15 steps into the future, which results in an output
vector of size 30. The time between the steps is 0.15 seconds.
This gives a plan for 2.25 seconds into the future, which is
enough to avoid imminent collisions coming up without over
burdening the MPC optimization. At a velocity of 1.0 m/s,
each step is about 0.15 meters apart. This is considerably less
than the size of the robot, so we can guarantee no collisions
on the path in the MPC restriction.

As can be seen in figure 3 all the inputs of the neural
network, except the goal distance, go through separate LSTM
(long short-term memory) layers and after concatenation
together with the goal distance go through a fully connected
layer, another LSTM layer and another fully connected layer.
The LSTM layers have memory built in the cell, which
gives it capabilities of handling sequences of data. This is
useful because we want the network to take historic data
into account when planning its path. With that it can learn
more complex interaction between pedestrian depending of
the direction and speed they are walking at. Additionally
these LSTM cell give some inertia to the network causing it
to retain its chosen path to a certain extend. This is useful
because we want the robot to keep the same trajectory at
least for a little bit. Because of the dependence on historical
data the network is always trained and tested using sequences
of data.

The loss function looks as follows.

Zr =Ev.Dp

1 T
7 2V vk] 3)
k

where vy, is the predicted velocity vector at step k from a
sequence with length 7' sample from the dataset, D and, v
is the ground-truth. Since we train using multiple sequential
positions we define the loss function of an entire sequence as
the mean of the loss function of each predicted trajectory in
the sequence. The final loss function is found in equation 3.
For training we use the RMSProp optimizer and the learning
rate decays exponentially.

10
B. Auto encoder

For the occupancy grid we use several convolutional
layers. The purpose of these layers is to lower the
dimensionality of the input. Starting with a grid of 60x60 =
3600 variables, we apply three convolutional layers. The first
layer has size 5, stride 2 and 64 kernels. The second layer
has size 3, stride 2 and 32 kernels. The third layers has size
3, stride 2 and 8 kernels. This leaves us with 8 images of size
8x8. These images are flattened to form a vector of length
512. This is much smaller than the original input of 3600
variables. To train the weights of the encoder we create an
auto encoder by attaching a decoder consisting of the same
convolutional layers in reverse. An auto encoder works by
having the output resemble the input of the auto encoder as
closely as possible. The bottle neck is the smallest layer, the
auto encoder needs to learn a most meaningful and dense
representation of the occupancy grid to reproduce it with
the decoder. An example of an input grid and the produced
output of the auto encoder can be seen in figure 4. When the
auto encoder shows a satisfactory result we take the learned
weights from the encoder layers and use them in the model.
The weights of these encoder model are now set fixed and
not anymore changed in when training the rest of the model.

Fig. 4: Auto encoder input and output grids

C. Planing towards the goal

To make the network plan towards the goal position we
define a vector v pointing from the robot’s position towards
the supplied goal position. All the inputs are rotated by
negative the angle between vector v and the global map’s
x-axis such that they are expressed in the frame with the
vector v as x-axis. This ensures that as seen in this frame
the goal always lies on the x-axis. In this way the neural
network is trained to always try to drive the robot in the
direction of the x-axis as much as possible. This rotation
is easily done on the radial pedestrian grid an on the state,
but is more complex to perform on the occupancy grid. To
make sure the rotation does not leave us with cutoffs and
unknown area’s in the grid, first a bigger selection is made.
This section is rotated and then cut to the required size as
seen in figure 5. The output trajectory of the neural network
is rotated back by the same angle to the global frame. The
rotation trick makes for a much more homogenenous data
set, where the network just has to learn to plan towards
the right with obstacle avoidance. We proof this has better
performance than adding the relative goal as another input.
We choose to center the occupancy grid on a point that lies 2

Scientific Paper

meters in front of the robot in the direction of the goal instead
of on the robot itself. This gives more the information about
the environment in front of the robot, which is more valuable
than the information about obstacles behind the robot.

=\

Pre-processing

Post-processing

Fig. 5: Rotation of the occupancy grid to the goal

D. Training data

First we tried to use a dataset of real humans walking
around. There is no dataset available which has both the
human interactions and obstacles avoidance we collected a
dataset our self. In a lab of 10x10 meters a table is setup at
each side a the room and an some obstacles are placed in
the center. The people are instructed to solve four puzzles
of which the pieces are spread out over all the tables. They
are allowed to only take one piece of the puzzle at the time.
This makes sure people there is a lot of walking in between
the different tables, with a changing combination of obstacle
avoidance and interaction with the other humans. The people
quickly become occupied with the task so they will no longer
pay attention to the experiment and show natural walking
behavior. The network however did not produce good results
with this dataset. The most likely reason was that the dataset
was much to small. We checked this by training the network
on a portion of the simulation dataset with the same size
as our real dataset, this also did not give a working planner
network. More information about the experiment setup and
filtering can be found in the appendix.

Instead we use a dataset generated by a simulation of 15
pedestrians walking around in an area with small obstacles.
The behavior of the pedestrians is simulated by a force based

w o U .
- my -

Fig. 6: Still from dataset used for training

Scientific Paper

simulation that includes social forces based on the research
by Helbing [11] to simulate real human behavior. A still
from this dataset can be seen in figure 6, where each red dot
is a pedestrian, the green dot is the ego pedestrian who is
moving to the purple goal position. The data set is split into
two parts: 90% of it is used for training and the other 10%
is used for testing. This is done such that we can check if
the model is not over trained on the training set. For each
trajectory in the set, at the goal position 20 positions are
appended where the pedestrian is standing still on the goal
position. This is done such that the planner will better learn
it has to stand still when it reached its goal.

E. Validation

In table I the loss of the neural network on the test set can
be seen. The neural network is compared to a planner that
simply plans straight to the goal and has the same velocity
as the people from the data set. The loss from the neural
network is lower than the loss from the simple planner. This
is a good indication that a neural network learned grasps the
structure of the data and is able to mimic the pedestrian
trajectories in similar cases. This however does not give
guarantees that it actually produces reasonable trajectories.
To if the network is capable of steering the robot we run
a simulation where the robot is put in an environment with
many obstacles. The neural network produces a trajectory at
a rate of 10Hz and the first velocity of each of the trajectory
plans is executed. The resulting trajectory can be found in
figure 7. For this figure it can clearly be seen that the robot is
able to navigate from its starting point (green dot) to the goal
(red dot) and will avoid the obstacles in its way. In chapter
V we will show more experiments and results for the neural
network planner.

Loss on test set
Neural network planner | 0.11
Straight to goal planner | 0.29

TABLE I: Loss of planner neural network
= ¢ =

- - | -

Fig. 7: Neural network planner avoiding static obstacles

Different variations of the network architecture have been
tried, such as having the relative goal position as input to the
network instead of using the frame rotation strategy, using
Cartesian or polar coordinates for the state representation,
centering the grid on top of the robot or shifted to the
front and different representations for the pedestrians. A full
explanation of these variations and their results can be found
in Appendix A.

11

We noticed that the amount of avoidance the neural
network showed with pedestrians is small. For further use we
made some adjustments to how the pedestrians are added to
the grid such that effect of humans on the planner network
is larger. The pedestrians are added to the occupancy grid
as completely black circles instead of Gaussians and their
position was calculated 1.5 seconds into the future using
a constant velocity assumption so that the neural network
planner starts avoiding the pedestrians earlier.

IV. METHOD: COMBINING MPC AND NN

Our method uses a neural network for planning a local
trajectory towards the goal taking into account the static
world and dynamic pedestrians. This planned trajectory is
used in combination with a model predictive controller. We
discuss four different ways how to make this combination.
The first way is to use the neural network trajectory to guide
the MPC through its cost function, we can use the neural
network to initialize the MPC and we try using the neural
network trajectory to initialize the search routine for the
static free space around the robot. Besides that, we can use a
separate neural network to predict to path of the pedestrians
in the environment and use this prediction to restrict the
MPC. An overview of the whole system is found in figure
2. In the next sections we discuss each of the parts.

A. Guiding MPC using NN

The neural network is integrated into the MPC cost
function in such a way that the MPC is encouraged to
follow the neural network generated trajectory but is still
able to deviate when the restrictions on the MPC ask for
it. We designed a cost function which motivates the mobile
robot to follow a position reference provided by the NN,
Xnn = [Znn, Ynn], and a velocity reference v,, calculated from
Xnn and the timestep.

J(Xka ’Uk-) = Jtracking (Xk) + Jvel(vk) (4)
Jtracking(xk:) = Qm”xk - lnn”%"’@y”yk - ynn”% (5)

Jvel(vk) - Qvel”vk - Unn”% (6)

where {Q, Qy, Quer} are the design weights.

When investigating alternatives for this formulation we
also tried a different way to guide the heading of the robot.
Instead of the error in the position we can use the error in
the heading of each point in the planning horizon. We also
investigated if using a fixed reference velocity instead of the
velocity produced by the neural net, more tests and results
on this can be found in appendix C.

B. Initialization of MPC optimizer

The initialization of the optimization strategy could be of
big importance. The optimization method relies on gradient
descent and is therefor prone to local minima. On top of that
the online setting dictates that we have only very limited
time to come to the next control action and can therefor

12

only do a limited number of optimization iterations. A good
initialization of the optimizer is therefor vital. The usual way
to do this is to initialize the MPC with the previous result,
where the timestep is shifted one step to account for the
progress of time. This causes optimization of the new step to
start looking in the same direction as the previous step. This
can cause to the optimization to get stuck in a local minima,
with a much better alternative around. Therefor we choose
to initialize our optimization with the trajectory generated
by the neural network. This allows the optimization to
easily switch its plan to the other side of an obstacle if
the neural network decides that is a better option. Note
typically warm staring of an MPC is done by initializing the
MPC with results that have come from offline optimizations.
Typically these optimizations can have a longer running time
or can look further ahead. In our experiments however the
initialization does not come from MPC results but from a
neural network trained on human data.

C. Static free space search

The model predictive controller needs to take the static
obstacles into account when planning its trajectory. These
static obstacles are stored in the form of an occupancy
containing the obstacles that are found during the mapping
operation plus the obstacles that are found with the LiDar
during operation. The model predictive controller is limited
to find a solution within a free rectangle. These rectangles are
calculated by taking the previous trajectory and expanding
a rectangle on each of the trajectory points until it hits an
obstacle. More details on the free static space search can
be found in Appendix D. The drawback of this method is
that the free space is only calculated in the neighbourhood
of the previous MPC solution. If the dynamic environment
dictates a better trajectory around the other side of a static
obstacle this free space search routine does not allow that.
As alternative we start the static free space search on the
trajectory points generated by the neural network. This
allows the static free space to jump to the other side of a
static obstacle if the neural network finds that to be the better
side.

D. Neural network for pedestrian predictions

The robot needs to be able to plan its trajectories with
many people walking around the robot. We are using a
model predictive controller, which optimizes its planned
trajectory over a planning horizon. This is only possible
when we have information about how the environment is
going to look in the future. It is fine to assume the static
environment is not going to change, but that is not the case
for the dynamic part of the environment. Pedestrians are
quite hard to predict, because an uninformed observer has
no knowledge about where they are going to. Besides that
there are numerous reasons why a pedestrian would follow
an unexpected route, perhaps they forgot something and turn
in a different direction or they walk into a friend and stop to
make a chat. It is unthinkable that a robot would be able to
predict these situations exactly. In the end this does not have

Scientific Paper

to be a problem, since humans among each other often cannot
predict this either and they are able to navigate through busy
hallways. It is however useful to predict the pedestrians as
good as possible, because in that case the planned path of
the robot is still valid in the next time steps which leads to
a smoother drive and a more optimal route.

A constant velocity prediction can be used to predict the
pedestrians walking in the neighbourhood of the robot. The
velocity of the pedestrians is calculated from the a number
of position measurements and smoothed using a Kalman
filter. If a pedestrian is walking towards a wall, a constant
velocity prediction will predict that the pedestrian will walk
through the wall. This is however very unlikely, a human
is able to derive from the situation that the pedestrian is
probably going to make a turn. Instead of the constant
velocity assumptions we use a neural network to predict the
pedestrians. The network is similar in structure and training
to our planner network seen before. The difference is that
now the inputs are in the frame of the walking direction of
the pedestrian instead of towards to goal, and there is no
goal distance input. The network is trained on the same data
set as the planner network. We will experiment with using
this neural network prediction instead of the constant velocity
model as a restriction on the model predictive controller. The
pedestrian predictions do not have to be not used in the neural
network planner because it can create its own understanding
of pedestrian interactions.

E. Validation

Several experiments where done to investigate which
of the combination strategies between the neural network
planner and the model predictive controller give an improved
result. The simulation tests and results can be found
in appendix C. We found that both the guidance and
initialization of the MPC by the neural net gives improved
results in terms of a low number of collisions and a quick
route to the goal. We found that initializing the static free
space search with the neural network generated path does
not give satisfactory results because it fails when the neural
network plans slightly through a static obstacle. In that case
the free space search could no longer come up with a free
space and the MPC would stop the robot. We also found
no improved results by using a neural network to predict
the pedestrians over using the constant velocity prediction.
This could be because there is only a limited amount of
interaction in our model and therefor the two method of
predictions are very similar. Also the predictions are trained
on pedestrian to pedestrian interaction and not on pedestrian
to robot interactions. In the following experiments we use
the guidance and initialization using the neural network and
a constant velocity prediction for the pedestrians.

Scientific Paper
V. SIMULATION EXPERIMENTS

Several experiments are performed in simulation to find
the best configuration of the system and to make a fair
comparison with existing approaches.

A. Software setup

The simulation is based on ROS Gazebo [12] where
the model of the robot is supplied by its manufacturer
Clearpath [13]. The pedestrians are not modeled into gazebo
but their positions are calculated using the open source
PedSim package [14]. This package is meant to simulate
large crowds, for example in the case of evacuation. However
it can also be used for individual pedestrians. PedSim allows
to define obstacles in the form of walls and also the start
and goal positions for each pedestrian. It uses a force model
to determine the walking direction of the pedestrians which
includes an attractive force to the goal and to pedestrians
within it own group and a repulsive force from obstacles
and other pedestrians. The simulated robot is inputted as a
pedestrian such that the forces of the other pedestrians take
the robot into account as if it was just another pedestrian.
The used social forces model is not extremely accurate but it
is light weight and works sufficiently for its purpose. Since
we don’t forward the pedestrian locations to the simulations
it is necessary to check for collisions ourselves. A collision is
defined when the distance between a robot and a pedestrian
is less than 0.4 meters.

B. Scenario

First we test two scenario’s where previous LMPCC
method was already performing well to ensure the
performance of the new method is this working in those
situations. The first scenario is a pedestrian crossing a
hallway from the side, and a robot has to decide to avoid
by going in front of the person or behind it as seen in figure
8. The second scenario is a hallway where three people
approach the robot, as in figure 9. The pedestrians have a
separation of 6 meters and their vertical position is randomly
drawn from a uniform set of -2 to +2 meters around the
center of the hallway.

The third experiment is similar to the second experiment
but now there are three pairs of pedestrians coming from the
opposing side. We found that the LMPCC has difficulties
in such a scenario. The scenario can be seen in figure 10.
We will run four different control strategies on this scenario.
We will compare our proposed NN-MPC with the previously
developed LMPCC method. The third method is ’straight to
goal’ where the MPC is guided by a straight line from to
current position to the goal through the same cost function
as is used for the NN-MPC. This should give us insight if

13

it is necessary to use a neural network for guidance. The
fourth method is 'neural net only’ where we do not use
the MPC to steer around obstacles and only steer the robot
using the neural network generated trajectory. This should
give insight if the obstacle avoidance of the model predictive
controller gives an added advantage. In these experiments the
pedestrians are non-cooperative. This means they act walk as
if the robot is not there. If we would make the pedestrians
cooperative the fastest method would be for the robot to just
drive straight to goal and let the pedestrians move out of the
way for him, our main metric of comparison is the number
of collisions so we need our simulated pedestrians to not
avoid these collisions by them self.

L

Fig. 8: Scenario 1, intersection with crossing pedestrian

Fig. 9: Scenario 2, hallway with opposing pedestrians

l

\
JA

Fig. 10: Scenario 3, hallway with pairs of opposing
pedestrians

Successful runs | Crashes | Time outs | Time to goal | TtGon 2 | TtGon 3 | TtG on 4 | Average solve cycles
1. NN-MPC 50 0 0 15.3 15.5 15.1 15.5 2.4
2. Straight to goal | 20 30 0 20.5 20.5 - - 35
3. Neural net only | 20 30 0 14.6 - 14.6 - -
4. LMPCC 27 22 1 24.0 - - 24.0 4.0

TABLE II: Results of the simulation experiment 3

14

Fig. 12: Straight to goal guidance trajectories of the
simulation

Fig. 13: Neural network only trajectories of the simulation
experiment

Fig. 14: LMPCC trajectories of the simulation experiment

Scientific Paper
C. Results

The first two scenario’s where both 100% successfully
by both the nn-mpc and the lmpcc. We will not go into
details here, the trajectory’s can be found in Appendix A. The
results of the third experiment can be found in table II, the
followed trajectories in figure 11 to 14. The NN-MPC is able
to complete the scenario successfully 100% of the time and is
nicely able to steer around the pairs of pedestrians and move
to the side of the hallway when necessary. The LMPCC only
has 54% succesful runs, it has trouble because of conflicting
cost terms from the pedestrians and the guidance path. It
makes the robot drive backwards and the optimizer cannot
come to feasible solutions from time to time which causes
collisions. Both the straight to goal guidance and the neural
net only guidance do not perform well and are unable to
avoid the pedestrians very often. From these results it is clear
that the combination of the neural network and the MPC is
essential for the method to work and they re-enforce each
other. We also calculated the average time to goal over the
successful runs. To make a fair comparison the time to goal
for the NN-MPC is also calculated over the instances where
the other methods had successful runs, of which te results
can be seen in the columns marked TtG on 2’, *TtG on 3’
and *TtG on 4°. It can be seen that NN-MPC is much faster
than LMPCC, even though the robot drives with the same
velocity. This is because the LMPCC drives a longer route
to avoid the pedestrians. The neural network only method
has a similar time to goal as the NN-MPC on successful
trajectories, this is expected because the trajectories where
the neural network only is successful is almost identical to
what NN-MPC produces in those situations.

D. Case studies

A A L
LMPCC
. -_—- - o
NN-MPC

Fig. 15: Row of people approaching robot, comparison
between guidance strategies. Red: pedestrian prediction,
pink: NN generated trajectory, blue: MPC solution

To illustrate some other advantages of NN-MPC we take
a closer look at two scenario’s. In the first scenario we look
at scenario where four pedestrians are approaching the robot
as can be seen in figure 15. In this scenario the pedestrians
are cooperative, that means they see the robot as another
person and will move around the robot by their social force.
The LMPCC is unable to pass the pedestrians because it has
a cost that increases when it gets closer to a pedestrian. It
will not see the possibility of the pedestrians cooperating

Scientific Paper

and making room for the robot. The Neural network does
see the possibility. The pedestrians cooperate slightly and
let the robot through, in the case that the pedestrians would
not cooperate enough, the mpc restriction would predict a
collision and stop the robot until the pedestrians pass along
sides and the robot can continue driving again.

’: ﬁ.:i ::‘
Initialized previous re.sult)
I— = 3 —

Initialized neural network plan

Fig. 16: Pedestrians cross robot path, comparison between
MPC initialization strategies. Red: pedestrian prediction,
pink: NN generated trajectory, blue: MPC solution

To illustrate what effect initialization with neural net has,
instead of initialization with the previous MPC result we
show the scenario in figure 16. Pedestrians are crossing
the path the robot wants to take. When initializing with
the neural network the MPC switches to going behind the
pedestrians much sooner, while the alternative sticks to the
solution where it wants to go in front of the pedestrians
longer, driving around the pedestrians to long way around.

VI. REAL WORLD PROOF OF CONCEPT
A. Hardware Setup

For the real world proof of concept of this research a fully
autonomous ground vehicle (AGV) is used. The platform is
based on Clearpath’s Jackal, extended with several sensors
and computer modules. The Jackal is a four wheeled
differential drive robot capable of outdoor use. The two
left wheels and the right wheels are mechanically connected
and will spin at the same speed. Through differential drive
and sideways slippage of the wheels the robot can turn.
The Jackal is equipped with an onboard computer, inertial
sensors (IMU), encoders, GPS, Wifi and Bluetooth. It is
fully integrated with the robotic operating system (ROS) and
has a built in controller that takes velocity commands. To
make the platform capable of autonomous navigation more
precise localisation is necessary. For this purpose a Velodyne
64 layer LiDar is added on top of the robot. A Stereolabs
ZED stereo camera equips the robot with the capability to
distinguish humans from other obstacles. This is useful such
that a specialized pedestrian predictor can be used on them.
The Jackal is already equipped with an Intel i5 processor
running at 2.6Ghz. This computer is tasked with running the
controller and localization modules. An extra Intel i7 NUC
mini PC is added to run the motion planner and pedestrian
prediction nodes.

Fig. 17: Real robot experiment.

“ :

Fig. 18: Real robot experiment rviz overview.

In the lab experiments we want to exclude any errors
caused by inaccurate perception. Instead of the on board
sensors we make use of the OptiTrack motion capture system
during the lab experiments. This system uses a setup of many
camera’s attached to the ceiling of the lab room. The system
is able to track marker dots, where three dots in different
planes are enough to measure the position and orientation
of a rigid body. The robot is equipped with several of
these markers and pedestrians are asked to where a helmet
with three tracking dots attached on top of them. A ROS
node forwards the frame transformations and functions as
the bridge between the OptiTrack system and the motion
planning running on the robot.

B. Software Setup

Several external packages are used to operate the robot.
The low level control of the jackal is done with the open
source ROS joint state controller / diff drive controller. This
controller is velocity based and uses the robots odometry as
feedback. On board localisation is done by first making a
map of the environment using ROS GMapping which uses
a simultaneous localisation and mapping (SLAM) approach
on the laser data. After the mapping phase localisation is
done using the ROS AMCL node, which uses adaptive Monte
Carlo localization approach with a particle filter to localize
itself on the map. This position is fused with information

16

gained from the inertial sensors and wheel encoders using
the ROS robot pose EKF (extended kallman filter) package.

To recognize the pedestrians in the environment of the
robot an open-source pedestrian tracker SPENCER is used.
This uses both the RGB-D camera and laser range finder to
identify, localize and track pedestrians. These pedestrians are
removed from the static map and a prediction is made for
their trajectory. These predicted trajectories are inserted as
dynamic obstacles into our planner.

C. Results

We were able to make the robot drive to the goal while
evading a pedestrian walking through the path of the robot.
In figure 18 a screenshot of RVIZ corresponding with the
situation in 17 is shown. The rainbow colored dots are the
laser measurements which are matched to the walls and
other obstacles to localize the robot. The people detector
is limited to the light grey area to lower the number of false
recognitions. From the picture can be seen the robot has
recognized the pedestrians and predicted its future trajectory.
The neural network has taken the pedestrian into account and
generated a path around the pedestrian. The MPC confirmed
that path is clear of collisions and therefor mimics the neural
network generated path exactly.

VII. CONCLUSION

We presented a solution to the planning problem in
dynamic and unknown environments for a robot navigating
in human populated area’s. We learned a neural network to
generate a plan based on the static and dynamic obstacles
around the robot and combined this plan with a model
predictive controller that is able to adjust the plan of the
neural network if it would collide with the obstacles. This
gives a solution that is both very aware of the surroundings
and flexible in its plan generates as well as safe for operation
in real environments. We have seen that guidance of the
MPC with a neural network planner improve its behavior.
Using the neural network trajectory as initialization of the
MPC is shown to improve the flexibility of the method and
makes it easier to adjust its trajectory to a quickly changing
environment.

From the simulations can be seen the planner is able
to navigate through a hallway with oncoming pedestrians
without problems, while using only the neural network or
only a LMPCC causes collisions. With the real experiment
we demonstrate it is possible to run the whole perception,
planning and control pipeline in real time.

For further research we recommend going further in depth
in ways to model interactions of pedestrians and the robot
into both the planner and prediction neural networks. This
will also require obtaining new data, preferable in a real
environment with actual pedestrians. We also recommend
looking into other ways to define and calculate the static free
space around the robot. Additional discussion and research
recommandations can be found in Chapter 3.

[6]

[10]

[11]

[12]

[13]

[14]

Scientific Paper
REFERENCES

W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and Decision-
Making for Autonomous Vehicles,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 060117-
105 157, 2018. [Online]. Available: http://www.annualreviews.org/doi/
10.1146/annurev-control-060117-105157

S. S. GE, “dynamic motion planning for mobile robots using potential
field method,” Proceedings of the 8th IEEE Mediterranean Conference
on Control and Automation, Jul 2000.

F. Zanlungo, T. Ikeda, and T. Kanda, “Social force model with explicit
collision prediction,” Europhysics Letters, vol. 93, no. 6, p. 68005,
2011.

M. Seder and I. Petrovic, “Dynamic window based approach to
mobile robot motion control in the presence of moving obstacles,”
Proceedings 2007 IEEE International Conference on Robotics and
Automation, 2007.

P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation
in dense human crowds: Statistical models and experimental studies
of human-robot cooperation,” International Journal of Robotics
Research, vol. 34, no. 3, pp. 335-356, 2015.

H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
Compliant Mobile Robot Navigation via Inverse Reinforcement
Learning,” The International Journal of Robotics Research, vol. 35,
no. 11, pp. 1289-1307, 2016. [Online]. Available: http://ijr.sagepub.
com/content/early/2016/01/04/0278364915619772

M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart,
“Predicting actions to act predictably: Cooperative partial motion
planning with maximum entropy models,” IEEE International
Conference on Intelligent Robots and Systems, vol. 2016-Novem, pp.
2096-2101, 2016.

Y. E. Chen, M. Everett, M. Liu, J. P. How, and R. O. May, “Socially
Aware Motion Planning with Deep Reinforcement Learning,”
International Conference on Intelligent Robots and Systems (IROS),
pp. 1343-1350, 2017.

B. Brito, B. Floor, L. Ferranti, and J. Alonso-mora, “Model Predictive
Contouring Control for Collision Avoidance in Unstructured Dynamic
Environments,” 2019.

G. E. Hinton and R. S. Zemel, “Autoencoders, Minimum
Description Length and Helmholtz Free Energy,” in Advances
in Neural Information Processing Systems 6, J. D. Cowan,
G. Tesauro, and J. Alspector, Eds. Morgan-Kaufmann,
1994, pp. 3-10. [Online]. Available: http://papers.nips.cc/paper/
798-autoencoders-minimum-description-length-and- helmholtz- free-energy.
pdf

D. Helbing and P. Molndr, “Social force model for pedestrian
dynamics,” Physical Review E, vol. 51, no. 5, pp. 4282-4286, 1995.
N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), 2004.
“Mobile robots for research
https://clearpathrobotics.com/
“Pedsim.” [Online]. Available: http://pedsim.silmaril.org/

development.” [Online]. Available:

Chapter 3

Concluding Remarks

3-1 Discussion

3-1-1 Limited experiences in the dataset

The datasets we used for training the planner model are limited in its diversity. In general
machine learning works well on data that is close to its training data but generalizes less
well to cases that are much different from the training data. The datasets we used consist of
multiple pedestrians walking each to their own goal with relatively small obstacles in their
way. For scenario’s that are much different we are certain that the robot will behave safely, but
it is uncertain if the robot will behave as a human would in that situation. Examples are the
behavior around groups of people walking together and behavior around bigger unexpected
obstacles. A solution is to collect more diverse data geared towards the environment in which
the robot is expected to operate.

For this research we use dataset that consists of humans interacting with each other, we assume
that the interaction between humans and the robot will be similar. This isn’t necessarily the
case. To improve the interaction model, data has to be collected by having actual humans
interact with the robot in real life. The behavior of the people around the robot is expected to
depend on the appearance of the robot so using data collected by a different robot might not
be representative. The behavior of the surrounding people will also depend on the behavior
of the robot itself. This creates a loop where the robot will adapt its behavior based on
its experiences and the surrounding agents will adapt on that again. This requires several
experiments of data gathering before the system comes to an equilibrium.

3-1-2 Using a real dataset

In this research we worked with a dataset obtained from simulated pedestrians. This is done
because we can easily generate a very big dataset of simulated pedestrians while it is hard to
obtain a similar size dataset of real pedestrians. During the data gathering experiment we

18 Concluding Remarks

also found that gathering real data requires a lot of filtering and manual work to get a clean
dataset. Another challenge with real data is that people are inherently random. Even in a
controlled environment people will walk the same start to finish trajectory in many different
ways. A neural network needs even more data to be able to generalize over these different
trajectories.

On the other hand, using a real dataset would increase the argument of the NN-MPC method
a lot. In the current method the neural network only mimics the rules of simulation it was
trained on. In fact the simulation rules could have been used in the MPC directly. The neural
network does has the advantage that it decreases the query time and is able to directly finds
a trajectory for the whole horizon, while the simulation only finds the movement direction for
the current time step. By using a neural network we did show it is possible to integrate one
into a receding horizon controller to result in a good planner.

3-1-3 Limited number of agents in MPC

In our implementation of the model predictive controller each pedestrian adds a restriction
on the solver. It restricts the position of the robot to be outside of the predicted position
of the pedestrian. The restrictions have to be defined beforehand and only the parameters
of each restriction can be changed online. With these parameters it is possible to disregard
some of the restrictions. So it is possible to insert less pedestrians into the solver than we
defined beforehand, but it is not possible to insert more.

With every additional restriction on the solver, it will take more time to do a optimization
step. We need a number of optimization steps to get to a feasible trajectory that is close
enough to the optimal result, we also need to have a high frequency of output trajectories for
our controller to follow. These two restriction result in a maximum number of pedestrians
we can take into account before the calculations get too slow. In our setup we found this
maximum to be six pedestrians. It is very likely that the robot is going to operate in an
environment with more than six pedestrians around, in this case we are only inserting the six
closest pedestrians into the solver. This works well until there are more than six pedestrians
in very short proximity from the robot, now we cannot guarantee that we will evade all of
the pedestrians around.

For safety we programmed the robot to stop driving in the case that there are more than six
pedestrians very close to the robot. But this is not desirable behavior to happen regularly.
A solution has to be found so more pedestrians can be taken into account. One method is by
reducing the planning horizon, but this will result in a less optimal trajectory in the global
sense. Another way would be to choose a faster solver package. We have indications that the
package that we used (ACADO) is not the fastest available and we could switch to another
package, such as Forces Pro.

3-1-4 Tunability of behavior

This research is based on finding a better planner and controller combination by learning
from human behavior. This means the behavior of the robot will be directly based on the
dataset of examples supply to it. Besides changing the dataset we have very limited amount

Concluding Remarks 19

of control to manually tune the final behavior of the robot. One characteristic that we might
want to tune is the aggressiveness of the robot. This aggressiveness can be best described
by an example: if the robot is driving behind a person walking rather slowly, does the robot
need to overtake or does it need to stick behind the person, for which speed does it need to
do what? And when operating in a busy hallway, to what extend can the robot expect the
other people to move out of the way? In our research these decisions are all made by copying
the behavior found in the human data.

This raises the question: do we actually want robots to behave in a similar way as humans do?
This all depends on how robot will be perceived in the future, will they be purely machines
that are submissive to human needs or will we attribute some emotional attachment to them,
no definite answer can be given to this question at this point. Besides that the allowed
aggressiveness might be different for the purpose of the robot. A robot that is driving an
AED to a patient with cardiac arrest is allowed much more aggressive driving than a robot
that has all day to clean the floor.

In our current setup it is possible to put some limitations on the robot behavior through
the model predictive controller, we can put limits on the linear and angular velocity and
accelerations. But the core behavior has to come from the neural network planner, which is
purely based on the training data. One way to influence this neural network planner is to
give it an additional inputs that specify the required aggressiveness to the network. When
this aggressiveness input is set low the model should come up with a submissive trajectory
and when its set to a high number the trajectories should be very aggressive. To learn this
behavior it has to be labeled in the data, this can be done either manually after the data is
recorded or by instructing the test subjects to behave in a more or less aggressive manner.

3-2 Conclusion

In this work we demonstrated it is possible to combine a deep neural network planner with
a model predictive controller in a successful way. The neural network has the advantage it
can come up with a good trajectory taking into account obstacles in the environment and
the inference of the model is fast. The model predictive controller makes sure the gener-
ated trajectory is safe over the planning horizon and can enforce the kinematic constraints.
The combination of the two is shown in simulation and real experiments to be a promising
option for the combined planning and control problem in dynamic and unpredictable envi-
ronments. All the listed discussion points have viable solutions, which can be researched and
implemented.

3-3 Further work

There are several ways this work can be continued. The first essential question is if we need
to switch to training the neural network on real pedestrian data. Using real data has the
advantage that actual interactions can be learned which improves accuracy of predictions
and can include more social characteristics in the planning behavior. The difficulty with real
data is that it is very diverse and has some apparent randomness which is not realistic to
capture in a model. The network needs to be complex to capture much of the reasoning in

20 Concluding Remarks

the trajectories. As alternative to reduce the necessary complexity data can be gathered in a
restricted lab experiment. The environment can be designed and the people instructed such
that they only show certain types of behavior. The robot will then learn to perform that
behavior.

Research needs to be done for ways to calculate the static free area around the robot and
restrict the model predictive controller to calculate its solutions inside this area. The current
solution of the expanding rectangle is too restricting. The method should be fast because it
needs to be recalculated every cycle. Also the restrictions it poses on the solver should be
rather simple such that it does not slow down the optimization iterations.

A standard method need to be developed which can give a quantitative judgement to qual-
ity of a social motion planning solution. Factors like social compliance are too vague and
different solutions are very hard to compare because they are tested under vastly different
circumstances and conditions. The number of collisions is a clear metric but we now advance
into an area where have multiple methods that can drive to a goal without collisions but
one has a more favorable path than the other. Metrics like path length, time to goal and
average distance to pedestrians are not conclusive. If the goal of the planner is act close to
how a human would an adversarial network can be used to judge if the trajectories are indeed
similar to what a human would do. A different way of judging the performance of a planner
could be by doing a study where a group of participants is asked to rate the robot behavior
as a sort of user study.

A different approach to continue this work would be to decrease the task of the neural network.
Instead of the output being a trajectory it could also be a binary decision, such as: should
I overtake or not, and should i overtake on the left or on the right of this pedestrian. This
decision has to be made taking into account all the pedestrians in the scenario including their
walking direction and speed. After this, the MPC should be encouraged to come up with a
trajectory that meets this decision. This lowers the complexity of the neural network, because
it does not have to deal with dynamic obstacle avoidance anymore.

Appendix A

More results

We tested the NN-MPC on three simulation scenario’s. The first simulation scenario in figure
A-1 is an intersection the pedestrian is approaching from the left as seen by the robot. The
scenario is run 5 times where the pedestrian starts at 5 different y position’s 1 meter apart so
that it arrives at the intersection at different times. The robot has to decide correctly if it can
pass in front of or behind the pedestrian. Experiment 2 is a hallway with three pedestrians
approaching the robot as in figure A-2. The horizontal spacing between the pedestrians is 6
meters. The vertical position in the hallway is chosen from a uniformly random distribution.
The experiment is executed 50 times to test on enough pedestrian positions.

L

]
R
- s— g
Figure A-1: Experiment 1, in- Figure A-2: Experiment 2, hallway three
tersection people approaching

The trajectories of the first experiment using the NN-MPC method can be found in figure
A-3 and using LMPCC in figure A-2. Both are sucesfull in reaching the goal position for
all pedestrian positions. The LMPCC is a bit smoother, but goes in front of the pedestrian
where is was better to go behind. It has to accelerate a bit to make sure it does not come

22 More results

to a collision. The LMPCC goes back to its reference trajectory quickly, while the NN-MPC
takes a new straight path to the goal position.

;/. T
-
S~
Figure A-3: NN-MPC trajecto- Figure A-4: LMPCC trajectories
ries on experiment 1. on experiment 1.

The results for the second experiment for the NN-MPC is found in figure A-5 and for LMPCC
in figure A-6. Both the methods are succesfull in all random placements of the pedestrians.
Again the LMPCC tends to return to the reference trajectory, while the NN-MPC creates a
trajectory that points to the goal position.

Figure A-5: NN-MPC trajecto- Figure A-6: LMCPC trajectories
ries on experiment 2. on experiment 2.

Appendix B

Neural network variations

In our search for better network architectures we tried several approaches to improve the
planning behavior of the neural networks. These alternatives did not provide better results
in when we tried them, but the ideas could be useful for further research.

B-1 Variations

There are many parameters in the neural network setup that have multiple sensible options.
It is impossible to compare all of them, but we selected the most interesting ones and made
a comparison.

State input in Cartesian coordinates or Polar coordinates. The state input gives the neural
network an information about the velocity and direction of the robot. Previously the velocity
was expressed as Cartesian coordinates (x and y velocity), but these have the disadvantage
that they do not express the orientation of the robot when it’s velocity is zero. Instead
we want to use polar coordinates which expresses the velocity as an orientation and absolute
velocity, such that we do have orientation information at zero velocity. We make a comparison
to make sure the network performance is still good when using polar coordinates. (Variation
2)

Front shifted grid. The occupancy grid was previously centered on the position of the robot.
This gives an equal amount of information in front of and behind the robot. In the experiments
we found that the neural network can sometimes not look far enough ahead to take into
account the obstacles that are in front of him. The information behind the robot is much
less relevant because the chance that is has to go backwards is much smaller than it going
forward. Simply increasing the size of the occupancy grid has the drawback of increasing the
complexity too much, therefor we tried the approach of centering the occupancy grid several
meters in front of the robot. (Variation 3)

Rotate to goal or goal as input. To make sure the neural network plans towards the goal
position, all the inputs are rotated towards the goal position and the result is rotated back

24 Neural network variations

to the global frame. We compare this to the approach where input the goal into the neural
network as relative x and y positions or in polar expression (Variation 6 and 7). We also see
what happens if we rotate the frame with the orientation of the robot. (Variation 4 and 5)

Representation of agents. Lastly we try different methods of inputting the surrounding pedes-
trians to the neural network. One way is to use the radial pedestrian grid, another way is to
use the pedestrians as obstacles in the occupancy grid. This can be done using a Gaussian
distribution centered on the pedestrian. We try both possibilities and the combinations of
them. (Variations 8, 9 and 10).

B-2 Results

The experiments variations and results can be found in table B-1. From variation 2 we
can see that the way the state is defined does not give noticeable difference on the network
performance, the same goes for variation 3 in which the occupancy grid is centered on top
of the robot instead of in front of it. From variations 4 till 7 we see setting the goal as an
input instead of rotating the frame towards the goal performs much poorer, both when using
a Cartesian and polar representation for the goal position. This is the case both for the non
rotated frame and for the frame rotated in the direction of movement of the robot.

From variation 8 we see that putting the pedestrian on the occupancy grid or not has no
influence as long as we still have the radial pedestrian grid. If we remove the radial pedestrian
grid however the losses go up as can be seen from variation 9 and 10.

SUOIJEIIEA %JOMIDU |BIND|

state occ grid center | frame rotation | goal input | ped on occ grid | ped grid train loss | test loss
1: Proposed method polar front to goal distance yes yes 0.11 0.11
2: Cartesean state cartesian | front to goal distance yes yes 0.11 0.10
3: Centered grid polar center to goal distance yes yes 0.11 0.11
4: Rotate with ped, goal cartesian | polar center robot heading | cartesian | yes yes 0.15 0.15
5: Rotate with ped, goal polar polar center robot heading | polar yes yes 0.13 0.13
6: No rotation, goal cartesian polar center no rotation cartesian | yes yes 0.14 0.14
7: No rotation, goal polar polar center no rotation polar yes yes 0.14 0.13
8: Ped not on occupancy grid polar front to goal distance no yes 0.11 0.10
9: No seperate pedestrian grid polar front to goal distance yes no 0.14 0.15
10: No pedestrians polar front to goal distance no no 0.17 0.17
Straight to goal 0.32 0.29

Table B-1: Different tested variations of the neural network with results on train and test set

q¢

26 Neural network variations

Opposing Trailing

Figure B-1: Pedestrian avoidance trained on pedestrian only data.

B-3 Improve interactions

The aim of the neural network is take the interactions between the robot and the pedestrians
into account. In the current setup the amount of interaction is still limited. We trained the
neural network on a dataset that consists of only pedestrians, without any obstacles. This
way the neural network does not need to develop different behavior for static and dynamic
obstacles. Training on pedestrian only data manages to capture an interesting behavior where
it comes up with a different trajectory depending on the walking direction of the pedestrian.
When a pedestrian in front of the robot is walking in the same direction the robot learned
to follow it, while a robot that is approaching the robot is avoided as can be seen in figure
B-1. In this instance all the the inputs to the neural network are exactly same, except for the
hidden states of the LSTM cells. This shows the memory cells are able to differentiate between
these situations and can use the historic paths to create different trajectories. Unfortunately
the neural network planners trained on this pedestrian only dataset where not stable when
tested in a simulation and where not able to lead the robot to the goal in all cases. This
experiment does show that LSTM cells are a promising method to model interactions between
pedestrians.

Appendix C

MPC variations

Figure C-1: Simulation scenario two obstacles and two pedestrians

C-1 Variations

In this paper multiple ways of integrating the neural network with the model predictive
control are proposed. To analyze which give an improvement to the behavior of the robot, two
scenario’s are defined in which the different approaches are compared. The first simulation is
meant to test the method’s capabilities to drive to the goal and do static and dynamic obstacle
avoidance in a relatively calm environment. The scenario consists of a 10 by 10 meter room
with two static obstacles and two pedestrians. The robot is tasked with navigating to the other
corner of the room. The methods are compared on the number times the robot successfully
reached to goal against the number of times it collides or gets stuck. We also compare the
time it takes the do a successful run, this is an indication of how efficient the route of the robot

28 MPC variations

was. Each simulation is performed 100 times to account for the randomness in the position
of the simulated pedestrians. The list of variations in the parameters can be found in table
C-1. Pedestrians can be predicted using the constant velocity assumption or using the neural
network prediction. The free space around the robot can be calculated using the expanding
rectangles method initialized with the previous MPC result or using the neural network or
they can be hardcoded into the optimizer as discussed in the appendix. The initialization can
be done using the previous result or using the neural network prediction. The cost function
of the optimization consists of a velocity error based on the neural network output or on a
fixed reference velocity and the heading guidance can be done based on a position error or a
heading error.

C-2 Results

The results of experiments in the first scenario can be found in table C-1. By comparing
experiments 1 and 2 it can be seen that pedestrian prediction by neural network or by constant
velocity assumption does not make a noticeable difference. A possible reason for this is that
in this simulation the pedestrians walk straight a lot anyway, therefor the constant velocity
assumption is actually a very good one in scenario. The neural network prediction has showed
to be useful in scenario’s where there is an obstacle separating the paths of the pedestrian and
the robot, this however does not occur often in real world scenario’s. The constant velocity
assumption will therefor work just fine.

From variations 3 and 4 can be seen that the free space calculation by rectangles based on
Neural networks performs better than those based on the MPC result. They even outperform
the default which has the free space calculated hard coded in the optimizer. The hard coded
method seems to get stuck more often than the free rectangle based method. The neural
network based free rectangle calculation is the best.

When initialization is done in the classical way, by using the result of the previous iteration
like in experiment 5, the performance of the planner is much worse. The robot gets stuck
quite often. This could happen when the previous iteration of the MPC and a new neural
network result differ a lot. The optimization will not come to a new trajectory and there for
the stuck situation can not be resolved.

Guiding by reference velocity instead of velocity from the neural network as seen in experiment
6 gives a much worse performance. This is especially seen in the case where the robot is at a
standstill. With a fixed reference velocity the optimizer has a much harder task to come to a
path with a feasible of increased velocity steps, while with the velocity guided by the neural
network these velocity steps are already in place.

Guiding by heading error instead of position error as in experiment 8, gives a worse perfor-
mance. This could be because it is more favorable for the last position of the plan to match
up with the neural network than the last heading.

suoljeuen HdIN

Ped Pred | Free space calc | Init Velocity cost | Heading cost Succesfull | Crashes | Time outs | Time to goal
1: Proposed method NN Hardcoded NN NN vel Pos err 92 4 4 18.6
2: Const vel ped pred | Const Vel | Hardcoded NN NN vel Pos err 94 6 0 17.6
3: Free space: MPC NN MPC based NN NN vel Pos err 93 7 0 19.1
4: Free space: NN NN Neural net NN NN vel Pos err 96 3 1 18.2
5: Initizilization MPC | NN Hardcoded MPC | NN vel Pos err 87 2 11 20.1
6: Reference velocity | NN Hardcoded NN Ref vel Pos err 53 17 30 20.4
8: Cost by heading NN Hardcoded NN NN vel Heading err 85 14 0 19.6

Table C-1: Different tested variations and results experiment 1

6¢

Appendix D

Static free space calculation

The optimizer of the MPC is restricted to planning within a calculated free space. This free
space has to be calculated very often and therefor has to be computationally efficient. The
method relies on having an occupancy map available to calculate the free space from. In the
LMPCC paper the free space is calculated based on the locations of the result calculated in
the previous iterations of the model predictive controller. At each of the waypoints in the
trajectory a region is inflated until it reaches an occupied or unknown cell. He proposes two
methods for defining these region: one is a rectangular region and one is a circular region.
In the image you can find the rectangular inflated region align with the orientation of the
vehicle. As can be seen from the image, not the entire free region around the robot is covered
by the free space calculation. This has a direct result that the robot will not be able to use
the entire free space. This becomes a limitation in an environment with many static obstacles
or in one with tight passage ways.

~
N

Fig. 7: Vehicle aligned search routine.

Figure D-1: The free space search routine

Another limitation of the current method is that the free space is calculation based on the
previous optimal result. Therefor the new optimization can only be done in the proximity
of the previous result. This is a major disadvantage in changing environments because the
environment may change in such a way that the robot needs to drastically change its plans.

Static free space calculation 31

It could be a better plan to go around an obstacle from the other side and the current method
of calculated the free space will not allow that. We propose two methods to overcome this
and make the planning of the robot more flexible.

The first alternative is to do the free space calculation based not on the previous result of
the MPC but on the result of the neural network. This will limit the MPC optimization
to only be able to come up with solutions in the vicinity of the neural network generated
trajectory, but this does not seem to be a problem because they are suppose to be close
together anyway. One condition is that the neural network has to be good enough for this
to reach satisfactory results. This could give problems when the neural network plans a
trajectory that partially goes through an obstacle, because then there is no free space for that
position in the optimization and no feasible trajectory can be calculated.

The second alternative is to program the obstacles directly into the optimizer. This is only
possible when the static space is known completely beforechand and can be described with a
couple of simple geometric shapes. It is not possible to use a logical OR in the restrictions
of a MPC because this would not be differentiable. It is therefor not possible to to limit the
x and y coordinates directly. For example if there is an obstacle spanning from x=4 to x=6,
one cannot say x should be smaller than 4 or bigger than 6. We need a single equation to
describe both possibilities. For this we developed a method to encode a rectangular obstacle
in the space. This uses the fact that we can determine if a point is outside of a diamond
shaped figure around to origin with a single formula:

[z +yl >=a (D-1)

Where a is the height of the diamond (here chosen to be sqrt(2)/2) such that the sides are
1). the solver is unable to allow the absolute value of an online variable, because the absolute
function is not differentiable at the origin. Instead we use this approximation:

|| = Va2 +ec (D-2)

Where c is a small number The only thing left is to transform the rectangular obstacle and
test point such that the obstacle has the same shape as the diamond. This is done by a
translation, scaling and a rotation. As can be seen in figure D-2, point A inside to original
obstacle and point B is outside. After the transformation point A is still inside and point B
outside. The formula for determining if a point is inside or outside of the rectangle will agree

with this.

Figure D-2: Transformation from obstacle to diamond shape

In our experiments we noticed that using the neural network to guide the free space search
already improves the flexibility but is still a limitation in the trajectory calculation. Since

32 Static free space calculation

getting the best method for finding free space is a thesis by it self and not within the scope of
this work and because our experimental spaces are easily described by a rectangular external
wall and rectangular obstacles we choose to program the static obstacles into the solver
directly. In future research or real world implementation a satisfactory solution for this
problem has to be found.

Appendix E

Data gathering

We performed a data gathering experiment to create a data set that captures how people
walk around in an environment. There are several data sets with pedestrians available online,
but they are not satisfactory. There are no data sets available with both static obstacles and
pedestrians interacting. Since we want our robot to learn both we need a dataset where the
two are combined in one experiment.

E-1 Experiment setup

The goal of this research is to abstract the reasoning of humans when they are walking
around in an environment and teach a robot to behave in a similar way. Since we are using
a supervised learning approach it is necessary to have good training data. We performed an
experiment with four pedestrians walking around and recorded their positions. They way
the experiment is setup and the way the people are instructed is vital for their behavior and
with that the future behavior of the robot. The subjects in the experiment where explained
that they should walk around as they naturally would, this is hard for people if they are very
aware that they are being recorded. Therefor we introduced a game that has the sole purpose
of making the subjects walk around the room with goal positions. On four sides of the room
a small table is setup with a tan gram puzzle. The pieces of the puzzle are spread out over
the other tables in the room. The subjects are instructed they can only use pieces from the
other tables and they can only walk around with one piece of the puzzle in their hand at the
time. This forces the subjects to walk back and forth between the tables often and that the
paths of the subjects cross frequently. In the room several static obstacles are placed as well.
This will supply us with data on how pedestrians deal with these kind of static obstructions.
The location of these obstacles is measured so they can be used in the map later on. The
pedestrians are tracked using a motion capturing system, which uses many camera’s attached
to the ceiling of the room. The pedestrians all where a helmet with several tracking dots. The
camera’s can distinguish these dots and use the pattern to identify the separate pedestrians.

34

Figure E-1: Data collection experiment

Figure E-2: Tangram puzzle pieces and puzzle

Data gathering

Data gathering 35

Figure E-3: Filtered trajectories and static obstacles

E-2 Post processing

The recording of the positions of the pedestrians is done at a rate of 100Hz. Our neural
network learns data with a time step of 0.3 seconds so the data needs to be sub sampled.
For this we use a cubic interpolation that tries to match to a pieces of the trajectory as close
as possible, this has the added advantage that it can smooth measurement noise out of the
data. On top of that we use a Kalman filter that smoothens the trajectories a bit more. The
behavior when standing by the tangram puzzle is not interesting for our algorithm, therefor
we remove all the data points where they are within a range of 0.5 meters from one of the
tangram puzzles. This leaves with a set of trajectories walking from one table to anther. The
goal position is selected as the final point of such a trajectory piece. This results in these
trajectories as seen in the image.

E-3 Training on real data

When using the neural network training in the same way as we did on the data set as seen
from the simulation, the performance of the model is not great. It learns to predict towards
the goal and to take the current heading of the robot into account, but does not learn obstacle
avoidance. We expect this is because there is simply not enough data. To support this claim,
we take a part of the simulation data set with the same size of the real data set and train on
this. The network also does not learn proper obstacle avoidance, while it does learn obstacle
avoidance while training on the full simulation dataset.

Gathering much more data is not an option, so we investigate ways to improve the learning
with this real data. First we try warm starting the training with the simulation data. This
does not yield better results, the model does not end up with better results in either the loss
or on the unit tests.

In second attempt to learn more from the gathered data we combined and mixed the real
and simulated datasets. For every batch of 16 trajectories that are used in the training every
time, 8 will come from the real dataset and the other 8 will come from the simulated dataset.

36 Data gathering

This very much improves the results when tested against the real dataset. The performance
is even much better then when just training on the real dataset for a longer time.

E-4 Discussion on real data

One thing that that was noticed in the experiment is that there where several occasions where
a tracking helmet was lost from the motion capturing system. This was all ways when a person
was standing bent over their Tangram puzzle. This is not a problem by itself, because the
data gathered at these position was filtered out anyway. However the motion capture system
had a difficult time identifying the different patterns of the hats. It happens that when a hat
is lost from the capturing the systems thinks it sees that hat on the place where another hat
actually is. We now have a big jump and two pedestrians on top of each other. To mitigate
this problem we cut the trajectories in two when there is a big jump. This results in some
short pieces of trajectories where two pedestrians are on top of each other. This could give
some confusion when using this dataset later on.

Bibliography

[1] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot navigation: A
survey,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1726-1743, 2013.

[2] M. Kuderer, H. Kretzschmar, and B. Wolfram, “Teaching Mobile Robots to Cooperatively
Navigate in Populated Environments,” IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 3138-3143, 2013.

[3] P. Trautman and A. Krause, “Unfreezing the Robot: Navigation in Dense, Interact-
ing Crowds,” IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 797-803, 2010.

38

Bibliography

	Front Matter
	Cover Page
	Title Page
	Table of Contents

	Main Matter
	Introduction
	Human interaction
	Research Aim
	Outline

	Scientific Paper
	2-1 Introduction
	2-2 Preliminairies
	2-3 Method: Planning network
	2-4 Method: Combining MPC and NN
	2-5 Simulation experiments
	2-6 Real world experiments
	2-7 Conclusion

	Concluding Remarks
	Discussion
	Conclusion
	Further work

	Appendices
	More results
	Neural network variations
	Variations
	Results
	Improve interactions

	MPC variations
	Variations
	Results

	Static free space calculation
	Data gathering
	Experiment setup
	Post processing
	Training on real data
	Discussion on real data

	Back Matter
	Bibliography

