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Joint Angle and Delay Estimation
Using Shift-Invariance Techniques
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Abstract—In a multipath communication scenario, it is of- selective transmission in the downlink, especially in FDD
ten relevant to estimate the directions and relative delays of systems; the space-time manifold is frequency dependent and
eac?\ g‘“f't'pathh ray. \{V‘a derive a.C'Os.ed'fofrmhS”bSpace'based quickly varies because of independent fading of the rays
method for the simultaneous estimation of these parameters . . ’
from an estimated channel impulse response, using knowledgebUt the angle and delay parameters are relatively statlona}ry.
of the transmitted pulse shape function. The algorithm uses a Knowledge of these parameters can be used for effective
two-dimensional (2-D) ESPRIT-like shift-invariance technique to transmit diversity as well.
separate and estimate the phase shifts due to delay and direction  |n this paper, we derive an algorithm for the joint high-
of incidence with automatic pairing of the two parameter sets. aq4|ytion estimation of multipath angles and delays, assuming
Improved resolution is obtained by enlarging the data matrix linearly modulated sources with a known pulse shape function
with shifted and conjugated copies of itself. y , . p . .p

and no appreciable Doppler shifts. An extensive literature on
source localization exists, and hence, it is essential to list the
conditions on the mobile communications scenario that we
shall consider.

l. INTRODUCTION 1) The number of sources is small. For convenience, we

URCE localization is one of the recurring problems  consider only one source in a multipath environment,
n signal processing. In general, it can involve the joint  but this is no limitation. . _
estimation of frequencies, Doppler shifts, directions of arrival 2) The multipath environment is modeled by a discrete
(azimuth/elevation) and time/time-difference of arrival, and as ~ number of rays, each parameterized by a delay, complex
such, itis the central issue in many radar or sonar applications. ~amplitude (fading), and angle. This leaves out diffuse
In mobile communications, source localization by the base sta- ~ Scattering. _ _ _ o
tion is of interest for advanced handover schemes, emergenc$) A channel estimate is available. For communication
localization, and potentially many user services for which a  applications, this typically implies that the source signals
GPS receiver is impractical (see [2] for a recent discussion in  are (known) digital sequences that are linearly modu-
this area). lated by known pulse shape functions.
In a multipath scenario, source localization by the base4) Doppler shifts and residual carriers of sources are ne-
station involves the estimation of the directions and relative ~ glected. _ _
delays of each multipath ray. It is often assumed that the5) The source signals are received by a narrowband phased
directions and delays of the paths do not change quickly, array consisting of at least two antennas spaced at half
as fading affects only their powers, so that it makes sense Wwavelength or closer. _
to estimate these parameters. This information can then b&) The data received by the antennas is sampled at or
used to adjust a space-time (RAKE) receiver in the uplink, ~ above the Nyquist rate. For digital sources, this typically
although for this purpose, it is not really necessary to determine ~ implies fractional sampling by a factor of two.
the parameters themselves: estimation of the independerThe Doppler condition restricts the delay estimation by plac-
space-time manifold components suffices (see, e.g., [3] and a limit on the number of samples that can be processed in
[4]). However, the parameters are essential for space—timee batch. Similarly, the narrowband assumption in 5) entails
_ _ _ __that a delay across the array can be modeled as a phase shift.
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carrier frequency. If both azimuth and elevation are to beg various processing techniques to improve the numerical
estimated, then the antenna array must have a two- (or threseguracy and to deal with closely spaced rays. Identifiability
dimensional (2-D or 3-D) configuration. of the DOA’s and delays using the proposed technique is
As mentioned, the angle/delay estimation problem is, in fagddressed in Section IV, whereas Section V briefly explores
a radar problem, and as such, many algorithms have alredmbyv the algorithm can be adapted to use antenna arrays
been proposed. Here, we are interested in high-resolution joither than ULA's. The Craér—Rao bound (CRB) of the
estimation algorithms, which work in situations where thestimates is given in Section VI, and Section VIl illustrates
number of parameters to be estimated is relatively smadilhe performance using computer simulations.
Joint estimation can resolve a larger number of rays thanNotation: Vectors are denoted by boldface, matrices by
1-D estimation and is preferred to avoid exceptions ampitals. * denotes matrix complex conjugate transppiethe
maintain resolution in cases where two or more rays have equatrix pseudo-inverse (Moore—Penrose inver$g) denotes
directions of arrival (DOA's) or delays. Various approachesomplex conjugatel,, is them x m identity matrix and0,,,
to similar joint estimation problems with known pulse shapa zero matrix withi columns and an appropriate number of
have recently been proposed [5]-[10]. These approaches oftews. ® is the Kronecker product, anelis the “Khatri-Rao”
require computationally unattractive ML searches and/or neptbduct, which is a column-wise Kronecker produdt B =
accurate initial points and do not always work properly forrayjg; @ by az @by -+ ].
with nearly equal directions or delays. The method proposed
by Ogawaet al. [9] is a 2-D (windowed) MUSIC algorithm, I
and the method by Wagt al. [8] performs a successive ML
optimization for an increasing number of rays, using lowe
order results as initial points. The method by Swindlehurs
et al. [6], [7] that is applicable to our scenario consists of We derive a data model for the reception of a single source
an iterative ML scheme (IQML) that requires initializationin @ multipath scenario. Assume that we transmit a digital
For this, an ESPRIT-type harmonic retrieval algorithm wasgquence{s;} over a channel and measure the response
proposed, which bears some resemblance to the algorithmfing M antennas (cf. Fig. 1).The noiseless received data
this paper, but it is nonjoint and restricts the total number &1 general has the form
rays to be less than the number of antennas.

. DATA MODEL

. Channel Model Estimation

The algorithm we develop herein transforms the data by xl_(t)
a DFT and a deconvolution by the known pulse shape func- x(t)=1] =" seh(t - kT) 1)
tion, which maps delays into phase shifts in the frequency () k

domain. This is, of course, a classical approach and has ) ) ) )
been considered, e.g., in [6]-[8] as well. New here is tHhereT’is the symbol rate, which will be normalized1o= 1

observation that by stacking the result into a Hankel matrig®™ NOW on. A commonly used multiray propagation model

the problem is reduced to one that can be solved using 2\¢5 SPecular multipath writes tha/ x 1 impulse response as

ESPRIT techniques [11], [12], which were developed for joint r
azimuth-elevation estimation. Thus, the algorithm is closed- h(t) = Z alw;)Big(t — 1) (2)
form and computationally attractive, and angles and delays i=1

are jointly estimated and automatically paired. Many of the . . _
tricks developed for ESPRIT and DOA estimation, such é/ghereg(t) is @ known pulse shape function by whigh; }

forward-backward averaging, spatial smoothing [13], and resl modulated. In this '”‘_‘Ode" there. aredistinct propagation

processing [12], [14], are readily incorporated into the curreﬂ?ths’ each parameterized by a tripie, 7, 5;), where

algorithm. The number of rays may be larger than the number®: DOA;

of antennas, which overcomes a limitation of the nonjoint 1-D 7 path delay; _ .

ESPRIT method mentioned in [6] for initialization of a joint ~i € € complex path attenuation (fading).

iterative ML optimization. The vector-valued function(«) is the array response vector
A second difference to several other approaches is that {@¢ an array ofM antenna elements to a signal from direction

propose to first estimate the channel matrix and subsequently

deconvolve the pulse-shape function via the DFT, rather thanSuppose thah(t) has finite duration and is zero outside an

directly deconvolve the observed modulated data. This shoiiigerval [0, L), where L is the (integer) channel length mea-

lead to better results if the number of samples is small becaged in symbol periods. We assume that the receivedgata

there are no edge effects. Finally, the algorithm has an elegiinsampled at a rate P times the symbol rate. Using either

extension to the estimation of delays and both azimuth at@ining sequences (knowfx; }) or blind channel estimation

elevation angles. This results in a joint diagonalization problet@chniques (e.g., [15], [16]), it is possible to estimate:),

of three matrices. Similar generalizations occur if we have &=0, 1/P, ---, L—1/P, at least up to a scalar. Specifically,

nonuniform array with multiple baselines. suppose we start samplingtat 0 and collect samples of(t)
The structure of the paper is as follows. The data and, . . . .

. . . . . 1The assumption of digital sources is not at all essential but chosen because
channel model are described in Section II. Section Il Contam%ives a useful normalization to several parameters in the time/frequency
a detailed derivation of the basic steps of the algorithm, includemain.
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(a-,Ti,ﬁi) where a; = a(oei), and g = [g(k — Ti)]k=071/p7...7L_1/p
is an LP-dimensional row vector containing the samples of

Y t— 7).
~~~~~~ [zt £ —— joint ot =)

angle B. Channel Model Transformation
delay

P .

Y ( : estim. In the delay estimation algorithm, we make use of the fact
Sk zult) >y that a Fourier transform maps a delay to a certain phase
progression. Collect the samples of the known wavefg(th
into a row vector

g = {9(0) g<%) ...g<L_%>}

and letg = gF, whereF denotes the DFT matrix of size

Fig. 1. Multiray propagation channel.

during N symbol periods; then, (1) implies that

X=HS LP x LP defined by
where 1 1 1
_ _ 1 ¢ ¢LP—1 '
x(0) x(1) e x(N=1) Fo= | _ _ 7 ¢ = i Cx/LP),
1 1 . . . )
X<F> X<1+ F) 1 ¢LP—1 ¢(LP—1)
X = (4)
: If 7 is an integer multiple ofl/ P, then it is straightforward
X<1 _ l) x<2 - l) o x| N = 1 to see that the Fourier transforgp of the sampled version of
- P P PJ g(t — ) is given by
h(0) h(1) h(L -1) ~ P P2 TPNLP—17 ia ey &
h{ = h{l1+ =
<P> < + P) The same holds true for any if g(¢) is bandlimited and
H = . . sampled at or above the Nyquist rate. This is not in full
: : agreement with the FIR assumption we made earlier, which
h<1 _ l) h<2 _ l) h<L _ l) requires thay(t) is nonzero only in a finite intervd0, L) so
L P P P that L = L, + [max(7;)] is finite. Because of this truncation,
s s . the spectrum ofg(¢) widens, and sampling at a rate/ P
0 ! ]_\‘_1 introduces some aliasing due to spectral folding. This gives
§.— | S-1 S0 s1 N extra terms in (5) that will eventually lead to a bias in the
delay estimate. In typical situations, however, the extra terms
. are small. For example, fd? = 2, a raised-cosine pulse shape
S—L+1 S-L+2 - SN-L with roll-off factor (excess bandwidth) = 0.10 truncated at a
If {s;}is known fork = —L+1,.--, N —1, andN > L, lengthL, =4 leads to a model mismatch in (5) of maximally

then a least-squares estimate Hf is H = X ST, where 6% for anyr, with a corresponding delay estimation error of
St = (§5%)~15*. If L is unknown, then it can be estimatedess than 0.002. The error becomes even smaller for ldrger
from the rank ofX if MP < L or else from the rank of a Lg, Or p. Hence, in comparison to estimation errors that will
Hankel matrix constructed fromX [15]. As long as{s;} is Occur in the presence of noise, this bias will not be of any
known, it is safe to overestimate as this will simply extend Significance.

H by zero columns. Alternatively, ifs;} is unknown, then ~ Thus, we will assume thaf(¢) is bandlimited and sampled
blind channel estimation techniques can estinfatand both at such a rate that (5) is “valid” even #f is not an integer
H and S, up to a scalar by using the Toep"tz structureof multlple of 1/P We can then write the Fourier-transformed
under certain additional conditions that are not of interest fsta model

us here. H:=HF
It is, at this point, convenient to recollect the estimated
impulse response samples into &hx PL matrix as
1 1 H = ABF diag g
H = {h(o) h<ﬁ> h<L— F)} ag(g)
where ' is the Vandermonde matrix
The channel model (2) can then be written as 1 ¢ 2 - fP—l
/31 0 g1 FLP = : : :
H =[a; - - a,] - | = ABG  (3) 1 ¢p ¢2 -0 pLP-L

0 /31 = d)z — d)‘rgp _ e—j(?ﬂ'/L)ﬂ'
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Fig. 2. Definition of parameters. (a) Time domain. (b) Frequency domain.

(With abuse of notation, we usually omit the size indextdf the ESPRIT algorithm [17] as applied to harmonic analysis.
although it will vary at several places, its size is always cle&towever, in general, the number of antennas is limited and
from context.) might not satisfy the conditiol/ > ». We can avoid this
The next step is to do a deconvolution gft) by dividing problem by constructing a Hankel matrix out &f. It then
H by diagg). Obviously, this can be done only on intervalbecomes sufficient to havé/ = 2, as we will explain in
where g is nonzero. To be specific, assume that) is Section Ill.
bandlimited with normalized bandwidth,,. (that is, its To estimate the DOA'«; }, we need to know the array
Fourier transform is nonzero only for angular frequenciesanifold structure. For simplicity, we will assume a uniform
lw] < %Wmax), and assume thaP > W,.x. Then,g has at linear array (ULA) consisting of omnidirectional elements with
most LW .« honzero entries, and we can limit our attentioequal interelement spacings so that we can use the ESPRIT
to this interval. For a raised-cosine pulse shape with rolldgorithm to estimate the DOA’s as well. Any other array
off factor (excess bandwidthy, we haveW,.. = 1 + p; configuration on which the ESPRIT algorithm works can be
see Fig. 2. Usually, however, we would select a somewhated here. A 2-D configuration is considered in Section V.
smaller number{¥, say, since the entries at the border can be It is clear that angles and delays can be estimated inde-
relatively small as well, and their inversion can blow up thpendently of each other by directly working on the rows and
noise. Indeed, in the case of a raised-cosine pulse, we adwstimns ofH. However, this does not give a pairing of angles
to setl’’ = 1 and select only th& center frequency samples.to corresponding delays and might result in poor resolution
Let Jz: LP x LW be the corresponding selection matrior closely spaced angles and delays. The algorithm derived
for g. For later use, we require that the selected frequenciesSection Il provides a joint estimate, using ideas from 2-D
appear in increasing order, which with the definition of thBOA estimation (viz., [11], [12]).
DFT in (4) usually means that the fin@L1W /2] samples of
g should be moved up front/; has the form

C. Remarks
0 1w )2) In the above deconvolution approach, we first estinfdte
Jg = 0 0 P LP X LW. from X and S and then do a DFT and divide out the pulse
Trowyx 0 shape in the frequency domain. A small model mismatch
If there are no other (intermittent) zero entries, we can factBfcurs because of the spectral aliasing after truncation of the
diaggJz) out of H.J; and obtain pulse shape (governed Uy,, p, and P). Another method of

~ deconvolution would be to do a Fourier transform directly on
H := H Jz{diaggJz)} ", (M x LW) (6) X and on the remodulated sourse s,g(t — ¥T') and divide
these to obtairH. This is the approach followed in [6]. This
direct method is computationally cheaper and does not need
H — ABF. (7) an estimate of, but the accuracy is limited by the fact that
the first or lastl. symbols are not taken into account correctly.
If the number of multipaths is not larger than the numbérhis effect is averaged out as more sample periods are taken
of antennagr < M), then it is possible to estimate tlgg’'s into account.
and, hence, the delays;} from the shift-invariance structure Note that it is safe to overestimale This will extendh(t)
of F, independent of the structure of. This is essentially with additional zero columns. After Fourier transformatign,

which satisfies the model



VAN DER VEEN et al: JOINT ANGLE AND DELAY ESTIMATION USING SHIFT-INVARIANCE TECHNIQUES 409

has more nonzero samples than before but satisfies the saelection matrices

model. The new samples interpolate the old ones. Hence, (7), .
is still valid for a largerL. Jog =m0 © Iagy  Jap := I @ [I—1 01

qu5 = [01 Irn—l] & IJWa Jy@ =1L, ® [01 IJ\l—l]-

[ll. JOINT ANGLE AND DELAY ESTIMATION To estimated, we take submatrices consisting of the first and,
respectively, lastV/(m — 1) rows of H, i.e., Xy = JoH,
A. Algorithm Outline Y, = JyoH, whereas to estimate, we stack, for alkn blocks

H®, its first and, respectively, lagtl — 1 rows: Xy = J,oH,

Our objective is to estimatd(«w;, 7;)} from the shift- Ys = J,oH. These data matrices have the structure

invariance properties present in the data mdder ABF. We
first outline the procedure and then introduce improvements Xy =ABF Xg = A gBF
to arrive at the final algorithm. _ _ _ Y, = Ay ®BF Yy = A sOBF
Let us assume that our antenna array is a uniform linear . _
array consisting ofd/ omnidirectional antennas spaced at where A, = J.gA, Ay = JypA. If dimensions are such

(10)

distance ofA wavelengths. Thend = Ag, where that these are low-rank factorizations, then we can apply the
. 2-D ESPRIT algorithm [11], [12] to estimat® and ©. In
© =diagb; - 6,] particular, since
1 1
6, ... 6 Y, — AX, = A.[Q — AL |BF
Ay = : : Yy — AXy = A.0[© — AL |BF
9{\4'—1 911}4'—1 the ¢; are given by the rank reducing numbers of the pencil
0. :— oI27A sin a; (Ys, Xs), whereas thed; are the rank reducing numbers of
L ' (Ys, X¢). These are the same as the nonzero eigenvalues of
In analogy, we can define (for some) X[, and X]Y,.
The correct pairing of eackp; with its corresponding;
® =diag¢y -+ ¢r] follows from the fact thatX}Y, and X]Y; have the same
1 1 eigenvectors, which is caused by the common fadfofthe
o1 ey eigenvectors are in fact scalings of the columnsEs). In
Ay = : : particular, these matrices satisfy a model of the form
el gt XYy =T"'er
d)i :e_](QW/L)Ti' ngve :T_l@T.

The main idea now is as follows. Froff, we construct a The challenge of joint estimation is to find a matfixhat best
Hankel matrixH by left shifting and stacking» copies ofH. diagonalizesboth matrices. Various (suboptimal) approaches
In particular, forl < ¢ < m, define the left-shifted matrix are possible, which are described in Section IlI-E.

H® = He;.rw-m+i- (The notation,, i---j indicates
taking columng through; of a matrix.) Then, we defing/ by B. Data Extensions
T If two rays have the same delays, thénhin (9) becomes
Ho=| : (mM x LW —m + 1). ®) rank deficient. As a result, the rank #&f is  — 1 instead ofr.

The two corresponding! vectors will be combined, and the
angles cannot be identified correctly. This is entirely similar to

The motivation for this step is tha{ has a factorization the problem with coherent signals in the usual DOA problem,
where it was solved using “spatial smoothing.” This technique

H(.rn)

;1421) can be nicely integrated with our approach, as follows.
H = ABF, A:= 9 = Ay o Ag ) For integers2 S_ml <LW,1<L mig M — 1, define
’ Hz J e HZ S —m+j
Aeq)rn—l F(Z7J) _ .:J 7LV‘. 1+7J
whereo denotes the Khatri-Rao product, i.e., a column-wise FM_;WH PR F]\l—mz—l—i' LW it

Kronecker product. Hence, if we can choose the stacking
parametern such that botn AL > » andLW —m+1 > » and

if all factors are full rank, thet{ has rank-, which means that as equal-sized submatrices Hf As a generalization of (8),
we can estimated up to anr x r factor at the right. Detection redefine’” as

1<i<my, 1<j<m

of r is possible if there is am such thatH{ becomes singular, LY . FHme,D
which requires that at least one of these inequalities is a strict ,, _ : :
inequality. FLom) ... Flme.m)

The estimation oft and © from 7 is based on exploiting
the various shift-invariant structures present4n Define the my(M —my + 1) X ma(LW — my +1).
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‘H has a factorization have the same row span rgiV) and pairwise the same column
Ag span colA,,) and colA,y). This corresponds to a total
Ag® least squares solution and requires three subspace estimates.
H=ABF := . B[F OF ..-©™~1F]. (11) Computationally less demanding, and almost equally accurate

;n - in practice, is the following LS procedure, which forces a
Ap @™ common row span but implicitly projects, andYy onto the
(Ag is similar, as before, but now has only —m-+1 rows.) column spans of{,, and Xy, respectively.

The computation ofp and © from H proceeds as before. If Let
ms = 2, then we can have two rays with equal delays and
still, 7 will be full rank. More generally, ifd rays can have

equal delays, then we need to sef > d to ensure the rank pe 5 singular value decomposition (SVD)f, whereU and

of 7. Naturally, this will reduce the number of rows &fs y gre unitary matrices, antl is a diagonal matrix containing
accordingly. To be able to estimate the corresponding ang|gs singular values of{, in nonincreasing order [18]. The

using shift invariance of, we need, to have atleasf+1 mper of raysr can be estimated from this SVD as the
rows because the multiplication by, does not add resolution mper of singular values larger than a certain noise level.

in this case. Hence)/ > 2d antennas are needed. Let U be the firstr columns ofU; it forms a basis of the

A second technique to extend the data matrix is KnowWdkiimatedy-dimensional column span ofi. Without noise,
as forward-backward averaging and uses the fact that {jg navel7 = AT for some nonsingular x ~ matrix 7.
eigenvalues(¢;, ¢;) are on the unit circle, along with the pefine

symmetric structures ady and A,. Let J denote the exchange . R
matrix that reverses the ordering of rows, and define Uvp = J2gU,  Uyg = JyoU

He=[H JH)] (12) Ung = JooU, Uy = JyoU.

He =UXV*

These matrices have noise-perturbed modéls = A,,T,
Uye = Az ®T, etc. To arrive at am x » pencil problem, the
number of rows of each of these matrices has to be reduced
to » as well. Again, this can be done in various ways. A
numerically pleasing way is to compute a QR factorization of

H. = AF, := A[BF, @~™tl@=Mtm g r(9)]  (13) Uss andto apply the factor tol,,, as well; this corresponds

to a LS projection of the column span &, onto that ofU,.

The computation of and © proceeds as before. Thus, weThus, introduce th&)R factorizations as
can double the number of columns of the data, which gives

of sizemy (M —may+1)2ma (LW —my +1), wherel® indicates
complex conjugate. Sincgd A®) = [JAgf)] o [JAY] =
[Ap@~(m=D] o [Ag@~(M—m2)] = AP—mutle=Mtm: it
follows that H. has a factorization

a significant improvement in accuracy. It also provides some " " "
protection against loss of rank in case of equal delays; even Q [Usp Uyl =t v {Ew EW}
if ms = 1, the multiplication by®—»+mz2 B(¢) ensures that 0 *
usually we can tolerate two rays with equal delays. It is not e ror
entirely sufficient that the two angles are different because of Q" [Uzg Uyl =t 7 [Ewe E, } :
the phase aliasing that occurs@r ™2, However, sinceB 0 *

and B(?) also play a role (this includes initial phase offsets)ihe four original data matrices have now been reduced to
we may assume in practice that has full rank if two delays equivalentr x + data matrices, satisfying
are the same. In general, to be able to identifgys with equal
delays, we neeth, > £d andM —my > d, i.e, M > 3d. E,, =5T E.y=5"T
We will assume .from.now on that, an_de_ are selgc_ted E,, =5®T E, =S5"0T
such that we can identify alt rays. The implied conditions
on M and LW are discussed in Section IV. for certain nonsingular x » matricesS’, §”, andT.

(14)

C. Rank Reduction D. Real Processing

In the presence of noisé{. will be of full rank rather Similar as in [12] and [14], we can use the structure of
than rankr. As with most subspace-based parameter ek to do a transformation to a real matrix, which us allows
timation algorithms, we first have to redudd, to its »- to keep the SVD ofH. and all subsequent operations in
dimensional principal column span. This reduction constitutéise real domain, with obvious computational and numerical
the main computational expense but is necessary becaadeantages. This is possible because every entryfincan
noise increases the rank of the matrix pencils in (10), af@ combined with its complex conjugate by simple unitary
thus, spurious eigenvalues are introduced. To avoid this, itdslumn and row transformations, which do not depend on the
standard practice to modify the algorithm such that the pendita. The details are in [12] and [14] and need not be repeated
problem involves matrices of sizex r. here.

There are several techniques to do the rank reduction. TheSuffice it to say that we can transforid. to a real matrix
most accurate is perhaps to ensure gt Y, X4, Y5 in (10) and compute a real-transformation Bffrom this matrix. We
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can also transforij o + Eyy) and j(EL4 — Eyy) to real the imaginary part give®. This method usually works fine
matrlcesz and Ew and compute these in terms of theand guarantees that only a sindgleis used. The problem is
real-transformed/ using transformed selection matrices anthat it does not guarantee thdt is a real matrix. Hence,
QR factorizations as before. The real-valued matrices that irecritical cases, it might happen thdt becomes complex

obtain this way satisfy the model so that7( ~_1E~y¢)T—1 is complex. The imaginary part of
Ex¢ —§'T E.e=5"T this term gives a contribution to the estlmate@1f8|m|larly,
{ - ) { . (15) the real part ofjT(E_} E,6)T~" gives a contribution tcb.
Byp =5'0T =57er A second problem is that the method cannot be extended to

for certain new real-valued nonsingulax r matricesS’, S, cases with more than two matrices, as occurs, e.g., in the joint
and7. Here,® = j(I+®) 1 (I-®), 0 = j(I+0)"*(I-0©); estimation of delays and both azimuth and elevation. Finally,
the generalized eigenvalues are real-valued and, in fact, areithe not easily modified to work with generalized eigenvalues;
Cayley transformations of¢;}, {6;}. clearly, it is not correct to compute a generalized eigenvalue
decomposition of E,.4 + jE.s, Eyqe +JEy9)
Method “@Q?": A second method is described in [11] and
was later called the algebraically coupled matrix pencil
The final step of the algorithm is to estimabeand® from (ACMP). It works with the Schur decomposition (17) or
(14) or (15). In essence, we have to find a square invertitgeneralized Schur decomposition (18). In essence, the method
matrix 7" to simultaneously diagonalize two matrices first computes a Schur decomposition of the first matrix
E;1E,, =T7'0T Q(E, Ey)Q" = Ro. When we applyQ to (E,j E,),
“’_1 - this produces in the presence of noise, an “almost-upper”
By Eye =101 (16)  matrix that is approximately equal tBs. The method then
and similar for the real-valued decompositions. The fact thebntinues to compute the exact eigenvalue decomposition of
the same matrix’ is used gives a coupling between the twthe second matrix using x 2 Jacobi rotations [19]. Since the
eigenvalue problems; thih entry of ® corresponds to thigh matrix is already close to upper, each Jacobi rotation is either
entry of ©. Numerically more favorable is to determine Schuelose to an identity matrix or to a permutation. This is easily

E. Joint Diagonalization

decompositions detected, and in the latter case, a permutation is also applied to
E;;Eng =QRoQ* th_e _estlmate ob. 'I_'he algorithm works well, althpugh it would
1 . fail in the theoretical case afxactlyrepeated eigenvalues of
Eg Eye =QRe0) (A7) the first matrix. It is easily extended to more than two matrix

where () is a unitary matrix, andRg and Rg are upper pencils. The method has as feature that the true eigenvalues
triangular. @ and © are given by the diagonals of thesenf each matrix pencil are obtained as parameter estimates. It
matrices. is suboptimal because slightljifferent matrices are used to

A problem with using the Cayley transformation of unitdiagonalize each pencil.
modulus to real-valued eigenvalues is that eigenvalues closé\n alternative but similar way to couple the two eigenvalue
to —1 are mapped tatoo. This occurs for relatively large problems is to mdependently compute diagonalizing matrices
delays 7; or anglesq; close to+90° for half-wavelength Tj and7, forE 1Ey9 andE EW, respectively, and follow
spaced antenna elements. Hence, unlike the complex-valiges observation thaf, 17, should be close to a permutation
case, E,4 and E,, can be badly conditioned. In view of matrix (in the case of distinct eigenvalues).
this, it is numerically advisableot to form (£} Eys) and  Method “QZ" A third method is similar to the one pro-
(E;elEyg) but to work on the original pencils and to comput@osed in [20] and can be called a “super’-generalized Schur

the generalized Schur decompositions method as it tries to compute@Z (Schur) decomposition for
Ew¢ —Q'RpuZ Epg = Q" RyoZ more than two matrix pencils. It is an attempt to find unitary

{ . , { . Y (18) ¢, Q", and Z to make all fourE matrices in (18) as much
By =Q RysZ Eyo =Q RypZ upper triangular as possible by a straightforward extension

where @', 97, and Z are unitary, and allR matrices are of the usualQZ iteration [18]. This leads to the following
upper triangular. After these generalized Schur decompositiaaigorithm outline (cf., [20]):

have been determined, we obtain estlmates of the param-|,iiialize Z(© by a Schur decomposition @, E,.,
eter values by setingg = diag(R,,)diag ' (R.s), © = fork=1.2. ...
diag(Rye)diag™" (R, 6)- a) Find@® (unitary) to minimize

A number of techmques have been proposed to solve such HQ/(k)EwZ(k—l)H%F + HQ/(k)E ¢z(k—1) 112
problems in the presence of noise. All of these are suboptimal. b) Find Q") (unitary) to minimizé

Method “I™: The method proposed in [12] is the easiest 1Q"® Epp Z3=1) |12 1 + || Q"R E o 2*—=1) |2

z6 LF yé LF
to describe. After real-transformations, bathand® are real. ¢) find Z) (unitary) to minimize
Hence, we can diagonalize o ||Q'(2)sz(;:) [ ||Q'(;:)Ey¢Z(:) HQ%FJF
(EroEye) + (B Eye) = TH($ +jO)T. 1Q W Ewe Z®) I35 + |Q ™ Eyo 20 ||7 5.

[Alternatively, we can work with the Schur decomposition Here, || - || denotes the Frobenius norm of the strictly

in (17).] Thus, the real part of the eigenvalues gidesand lower triangular part of a matrix. It is hard to find the exact
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minimizers in every step, but this is also not necessary; we can Tmax
find good approximate solutions and rely on the outer loop to i yd (mwgz)
15 1

provide convergence. There are several approximate solutions,
e.g., based on Householder rotations [20] or Givens rotations
[21]. 7
It should be said that unlike in [20], the convergence
properties of this iteration have been disappointing so far.
Without accurate starting point (as obtained by the initial
Schur decomposition), the convergence can be very slow an
usually stalls in a local minimum. This is probably becauseZ; St
it corresponds to annshiftedQZ iteration. With an accurate
starting point, the performance of this method is slightly better 4}
than the previous two methods, which indicates that there is
some advantage in a truly joint estimation approach. 3l

4.1) (6,2) (5,2) (6,3)

12
4.2

IV. |DENTIFIABILITY

To identify & and © from (13) and (10), necessary condi-
tions are that the submatrices,,, and A,y of A are “tall,”

whereasF, is “wide,” i.e.,
. Fig. 3. Maximal number of rays that can be identified. The curved lines
a) r< (m1 - 1)(M —m2+ 1) are the analytically computed contours of the maxima, assuming continuous

b) »<mi(M —ms) parameters.

c) 7 <2mo(LW —my +1).

rank condition holds ot ; here, we need < Qm% }0 ensure

sM+m c)n—1
Subject to these conditions, we can try to maximize tHB€ rank [almost—we assume that thg™ "3 7" are
number of rays that can be identified for givan and L1 different]. Altogether, this gives the following necessary and
by optimizing overm; andm.. This is analytically feasible (almost) sufficient conditions for identifiability of rays with
only if we assume continuous parameters, which after soemMostd equal delays: Equation (19) holds, and

calculations then produces my > %d
( Tmax = (LW + 1)M(2 - \/5)2 M Z %d
if LW > M + %\/51 M1, opt = (LW +1)(2 = V2) With these additional constraints, can we still identify the

same maximal number of rays? Suppdde> 2d; then, the
L2, opt =M (V2 -1 ’ i Z 32

112, opt (\/_ ) ) smaller of the twoms opt IN (19) IS, opt = (V2-1)M >
Tmax = LW (M +1)(2 — V2) 3(V2 - 1)d > %d. Hence,ma, o can be reached, and the

; - . 3
it LW < M — % 2 myope =1+ LW(2 - \/5) maxima reported in Fig. 3 do not change, providgd> _§d.
' Similarly, supposed rays have equal angles but different
(M2, opt = (M +1)(V2 = 1). delays. Then, the corresponding columns4gfare the same.

(19) To ensure the rank oft,;, we needd < m; — 1. For 7, we

needd < 2(LW —my +1). Hence,r rays with at most/ equal

The first range corresponds to a region where conditions ggles are identifiable if and (almost) only if (19) holds, and
and c) are satisfied with equality, whereas the second range

has conditions b) and c) satisfied with equality. There is a small my >d+1
third range in between, where all three conditions are satisfied Lw > %d.
with equality. Although this can be solved analytically, the
equations are awkward and, hence, omitted. The actual m&upposeLW > gd; then, the smaller of the twan; o in
ima are slightly smaller because; and m, can take only (19)ismy opt = (2—V2)LW +1> (2—v2)3d+1 > d+1.
integer values; see Fig. 3. The general behavior, howeverAigain, we can still reach the same maximal number of rays
quite accurately captured by the equations. as before, provided W > %d.

For identifiability, it is not sufficient that the dimensions of One way to increase the maximal number of rays could be to
the factorsA,,, A.¢, and F. are at least; they should also increase the pulse shape lendih since L > L, + max(7;).
be of full rankr. The Vandermonde structure of these factorsnother way to increasd. is to zero-padh(¢) prior to the
ensures that this is the case if all angles and all delays &ET. This results in extra samples in the frequency domain
different. As discussed before, dfdelays are equal (but with that fit the same model as before and interpolate the previous
different angles), then the corresponding columnsdgfare samples. In principle, this means that even with = 2
all the same so that the corresponding columnsigf have antennas, we can estimate an arbitrarily large number of rays.
to span a rankf subspace; its size should be at ledsbws. In actuality, however, the amount of noise that can be tolerated
Hence, we need < M —m to enable identification. A similar becomes exceedingly small. The underlying problem is that
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increasingL in this way does not improve the conditioning ofForward—backward averaging can be applied if the array is
‘H., whereas every additional ray within the same resoluti@entrosymmetric. In that case, we can define

cell deteriorates the conditioning 6{. roughly by an order

of magnitude. Very quickly, even the modeling errors [i.e.,
aliasing due to the FIR assumption gj{¢)] destroy the
required accuracy. As another way to view this, note that
for increasing L the eigenvaluesd are compressed to aThe selection matrices need redefinition:

_ 124(c) ; Jo 0
Ho=[H  JHO), J—J¢o[0 le.

decreasingly small sector of the unit circle. Joo = Imer 01] ® Ingiam,
V. OTHER ARRAY CONFIGURATIONS Jyo =01 Ln—1] @ Inyna,
Jpg =1 @ Ip,—1 01 O
A. Two-Dimensional Angle Estimation o a-1 Ou O]
_ _ - _ Jyo =1L @01 Iny—1 Opgl
In this section, we indicate an extension to delay plus both o =Ly @ [0 I 0]
azimuth and elevation estimation using a 2-D antenna array. ey m My SMz=1 T
For simplicity of exposition, we will consider only one type Jyp :=Im @ [Op, 01 Ing—1].
of array, consisting of two ULA’s oriented in two differentProceeding similar to the ULA case, we &, = J.,H.,
directions, e.g., in anl shape or a+ shape. Extensions toy, = J,,H., etc. Due to the preserved shift-invariance

more general 2-D arrays on which the ESPRIT algorithgtructure, these data matrices then admit factorizations similar
works are straightforward to derive, see, e.g., [12]. The main (10):

issues are the. preservauon qf shift-invariance properues_ and X, = AgBF Xy = Ao BF

the correct pairing of the estimated path parameters using a

coupled eigenvalue method. Yy = A ®BF Yy = A,0OBF

Thus, consider a sensor array consisting of a ULA wifh Xy =ABF
elements spaced; wavelengths in one direction and a ULA { (21)
of M, elements spaced, wavelengths in a complementary Yy = Ay VBE
direction. The two arrays should be close to each othavhere U = diag; ---%,]. The parameter tripleg(¢;,
preferably in a centro-symmetrig-shape. The array responsé;, 1)} are given by the rank-reducing numbers of each of
matrix A, is replaced by the pencils(Y,, X,), (Ys, X¢), and(Y,, X, ), respectively.
Proceeding as before, we eventually have to solve three
A coupled eigenvalue problems that share the same (right)
A= {Ae} eigenvectors. Either joint eigenvalue estimation meth@d “
g wl . or “QZ” in Section IlI-E is applicable.
A 6 - 0 B. General Arrays with Identical Elements
? 5 : Because the above even works fdf = 2 andM, = 2, the
_9{”1_1 s ML array geometry is essentially arbitrary. Indeed, for a general
o1 1 array, every available baseline pair generates a block in the
1 Uy A matrix and can be used to estimate a direction cosine with
Ay = : : Wo respect to this baseline, provided the antenna elements of the
z/;MZ—l z/)M'Z_l pair are identical. If there are multiple identical baseline pairs
B T (the array is redundant), then these can be combined in larger
blocks.

wheref; = ¢/27214i | andy); = /27221, whereu,; andv; are  To illustrate this with an example, consider a uniform
the direction cosine variables relative to the orientations of th@xagonal array (Fig. 4). For the constructiorifwe simply
two arrays.V, is a diagonal unimodular matrix that accountsork with the array response vectar= [a; - -- ag]” and its
for the phase offset between the first elements of both arragsrresponding matrixi, which gives (20) as before. Since the
In the construction ofH, we need to keep track of thearray is centrosymmetric, we can define
partitioning of A. The shifts in frequency domain are unaltered,
but the spatial shifts lead to significant complications that " O3x3 I3
we wish to avoid here. Hence, let us assume that only the = { }
frequency shifts are taken. With shifts, this then leads t&(

as in (8) before, satisfying the model so thatJ”al®) = a, assuming zero phase at the center of the
array. As before, we set

I3 0O3x3

H=ABF, A=Ay0A. (20)
He=[H JHO], J=JoJ"
2If an array element is shared by both subarrays, then in the ab . . L . .
equations, it appears repeated. In computing the SVD{pofthe duplicate Oﬁ]e d'ﬁerence 'S_ in the def'mt'on of the select|0n. mamces_-
rows should be suppressed. There are nine different baselines. The corresponding baseline
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the angle/delay estimates in the presence of random noise
but constant (unknown) fadings. In this case, we do not
have to assign a distribution to the fadings. If we apply
the “vec” operation to the noise-perturbed model in (3) and
with some abuse of notation call the resulting vecthr”*
we obtainh := veqH') = UB + v, whereU = GT ¢ A,
B:=[p --- A%, andv is the noise on the channel estimates.
To relate this to the noise on the data matkix let us assume
that the latter noise has a zero-mean white complex Gaussian
distribution with variances?. The channel estimates are given
by H = XS*(S5*)~%, and if the training signals have
perfect autocorrelation propertiedl fN)SS* = I1], then the
estimation noise on the channel is zero-mean white complex
Gaussian with variance? = ¢2/N.

The CRB for DOA estimation without delay spread was

Fig. 4. Uniform circular array.

blocks pairs are defined by derived in [22]. The model therein is the familiaf(¢) =
fan ] Mo As(t) + n(t),t = 1,.--, N with the noisen(t) assumed
1 a2 . .
Az = as |’ Ay = s Gaussian and spatially and temporally uncorrelated s{ayl
- - some unknown deterministic sequence. We can readily adapt
ags = 32 . Ay = Z?’ the results in [22] to our model. Omitting the details, we have
&6 | L &5 2
aa|9] a =[] CRB(a, 7) = % {realB*D*PEDB)}™t  (22)
L L6 ] where B = I, ® B, Pt = I — U(U*U)"'U*, and D =
A= ||, ag=|" [GToA!, (G")ToA]. Here, prime denotes differentiation, where
:aﬁ J :“4: each column is differentiated with respect to the corresponding
a. — |2 - — | parameter, and all matrices are evaluated at the true parameter
o lan]” T as values:
[z ] (=] da da
o as _ as A/ — A/ — | == Al )
Are — as | y Ay = L | (a) day (al)v ) da, (a1)
a,7 =ay, ay7 = a4 and similar forG’ = G’(1). The diagonal elements of the

CRB define the minimal variance that can be obtained for an
unbiased estimate of the corresponding parameter.

For a Rayleigh-fading channel, the path fadingave a
Along with a selection matrix fo®, we finally obtain up to 10 zero-mean complex Gaussian distribution, with some covari-
coupled matrix pencils, all having the same right eigenvectoence matrix/is. The CRB in this case has been developed
Obviously, a truly joint procedure such as meth@@Z” can in [5] as
now have definite advantages. RB(a, 7) =

There are several issues remaining here. The number of 52
rays that can be estimated is limited by the smallest submatrix 2v {realD*P+D © (1ax2 ® RgU*RglUR@)T]}_l. (23)
that we take. If we discard baseline pairs 7-9, then we obtain

Azg = A2, Ayg = 43

Azg = a3z, A9 = Ag.

r < 2(LW — my + 1). Since we did not consider spatial"'®"® _ _
smoothing but did do forward—backward averaging, we can® element-wise matrix product (Schur—Hadamard
have no more than two rays with equal delays. Finally, a product);

discussion on how to combine the various phase differencel2zxz 2 X 2 matrix of ones;

estimates into a single azimuth-elevation estimate is omitted®n  covariance matrix of the channel estimatesgiven
here. For each ray, it involves the least-squares estimation by Ry = URU* + o7

of the direction vectolfsin ¢ cos a, sin ¢ sin o], which is
linearly related to the phase differences expressed in radians.
Combinatorial problems due to aliasing arise if some baselinedn this section, we illustrate the performance of the algo-

VII. SIMULATION RESULTS

have a larger length than half the wavelength. rithm, referred to as shift-invariance joint angle and delay
) estimation (SIJADE). We assume one source emitting signals
VI. CRAMER-RAO BOUND that arrive at an array oM = 2 sensors via- = 2 paths.

The CRB provides a lower bound on the variance of arMfe also assume the communication protocol uses training
unbiased estimator. The CRB depends on whether the phits, from which the channel is estimated using least squares.
fadings are modeled as unknown deterministic quantities or\&& collect samples ok(¢) during N = 40 symbol periods.
random variables with a known distribution. We first considerhe pulse shape function is a raised cosine with 0.35 excess
the deterministic assumption, which will produce a bound drandwidth, truncated to a length &f, = 6 symbols. In the
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Fig. 5. Standard deviation of estimates versus noise.
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Fig. 6. Standard deviation of estimates versus angle/delay separation.

basic setup, we choose angles of arriyallo, 20]°, time 2) Resolution of SIJADEThe achievable resolution is il-
delays [0, 1.1]T, constant fading amplitudes [1, 0.8], andustrated in Fig. 6 by varying the angle and delay of the second
randomly selected but constant fading phases. The stackiag, keeping the angle and delay of the first ray fixe¢-alt0°,
parameters are:; = 5 andmy = 1, the oversampling rate is 07). The same parameters as before were used. As expected,
P = 2, and the noise power is15 dB (which translates to for “well-separated” delays, the resolution of the angles is only
an SNR of roughly 16-18 dB, varying with fading phases)imited by the amount of noise, whereas the resolution of the
In subsequent simulations, some of these parameters detays suffers whenever thés are close since with two an-
varied. The experimental standard deviation of the estimatesnas, we cannot resolve two equal-delay rays using ESPRIT.
is based on 500 Monte Carlo runs and is compared against the3) Influence of the Stacking Parameters and m,: For
deterministic CRB. As explained in Section 1I-B, the estimatesell-conditioned scenarios, the precise valuesmgf andm.
of the algorithm are slightly biased, but since this is usuallgre not critical, as long as they allow the estimation ohys.
an order of magnitude smaller than the standard deviatidhe choice of the stacking parameters matters more when the
of the estimates, a comparison with the CRB is meaningfylaths are not well separated in space or time.
The diagonalization method used in the final step is eitherFor close angles, such as in Fig. 7(a), the delay estimation
method ‘I or method ‘Q": the results of these methodsis much influenced by the choice af,, whereas the angle
are almost always indistinguishable except in critical casesstimation is not (and thus is not shown here). Increasing
as demonstrated later in this section. my usually results in better performance. This is because the
1) Basic SIJADE PerformancefFig. 5 shows the experi- angle-delay matrix4 [m; (M —mq 4+ 1) x 7] in (11) or (13)
mental variance of the angle and delay estimates as a functgmis taller so that its columns are more linearly independent
of the noise powers. All parameters are as listed abovefrom each other, resulting in increased accuracy of the angle
The two curves in each figure correspond to each of the twod delay estimates. However, the delay mafFix in (13)
rays (for the CRB as well). It is seen that the differencgets less wide, and as we increase past a certain point,
in performance compared with the CRB is approximatelhe performance starts to degrade again because the rows are
3-5 dB. The bias of the estimates was at least an orderin$ufficiently independent. [This does not show very well in
magnitude smaller than their standard deviation. Fig. 7(a) because the delays are well separated.] Note from the
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Fig. 9. Impact of diagonalization method (critical case).

graph that the optimal value afi; is 6. Interestingly, Fig. 3 estimation, but too large amns will take a toll on the

predicts that precisely this setting allows a maximal numbeonditioning of A since its columns become shorter and will

of rays to be estimated in the cas& = 8 and M = 2. not be as “independent.” Note from the graph that the optimal
Similar conclusions follow from Fig. 7(b), where the delaysalue of m, is 2, which is also the optimal setting in Fig. 3

are close. In this case, the angle estimation is affected by foe LW = 5 and M = 7.

choice ofms, whereas the delay estimation is not. Increasing 4) Choice of Channel Length: Fig. 8 looks into the ef-

meo from 1 to 2 marginally improves the accuracy of angléect of estimating the channel length incorrectly. The true
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Fig. 11. Comparison with other joint angle-delay methods (critical case).

channel length is 8. It is seen that when we increase tidich is based on IQML (cf., [23]) and the method in [24],
estimate of the channel length, the performance slowly which is known as 2-D IQML. In both cases, we start from
degrades. This is because more noise enters into the tailttd modelH = ABF as derived in Section f.The IQML
the channel estimate and, hence, into the data maffixThe method of [7] estimates the delays from the Vandermonde
performance degradation is smooth. A small overestimatistructure of I’ while disregarding the structure id. After
of L is certainly acceptable. Underestimatihgs much more £ has been foundA can be computed (up to scaling by
serious since this affects the validity of the model. B) as HF', and the angle (or angles) corresponding to each
5) Influence of Joint Diagonalization MethodJsually, the delay are estimated by an ML search on each columri of
performance of the algorithm is not influenced very muchy fitting to the closest vectors in the array manifold. Two-
by the choice of the joint diagonalization method in théimensional IQML is a generalization of IQML, originally
final estimation of the parameters (methodg™*@Q,” “@z" for joint azimuth-elevation estimation, and uses the model
in Section III-E). However, there are critical cases wherd = (£ 0 A)B. It tries to simultaneously fit the Vandermonde
the difference is clear. One such case, where the de@gguctures of bottF™* and A. Two-dimensional IQML requires
are very closely spaced, is depicted in Fig. 9. Methad atM > r, so that we let the number of antennasie= 3

performs poorly in estimating the delays. This is because ifp] the comparison. Results as a function qf SNR are shown in
the critical case the eigenvector matiixbecomes complex so Fig. 10. The performance of all three algorithms is comparable

that T(E;JEW)T* andT(E;elEyg)T—l are no longer real in this well-conditioned case. The computational complexity

valued. Hence the real and imaginary parts of the eigenvaIL?JéQML'based algorithms is quite high since they are iterative

are mixed, causing the angle and delay estimates to be mi? need to compute eigenvalues at each iteration.

as well. (Since the delays are quite close, this does not showcu s:eg\./vi]irgcilrwnepg;?; t:ergzée; ;E]aonmggsﬂ:g ;Orgg;e ;glr?\?alter
in the angle estimates.) The difference between methgd “ . 1Y SP — . P

PR S values, the signal singular values Hfare only slightly above
and “QZ" is usually not significant.

6) Comparison to Other AlgorithmsFinally, we compare _ _ _ _ ,
3The way to arrive at this model is not the same in all algorithms, but

SI_‘JADE to a few OFher angle-delay.estlmatlon glgorlthms. V\(weere, we do not wish to compare discrepancies caused by different methods
will focus on a variant of the algorithm by Swindlehurst [7]pf deconvolution.
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the noise level. Because the IQML and 2-D IQML algorithms  Acoust., Speech, Signal Processingl, ASSP-34, pp. 1340-1342, Oct.
as described in [7] and [24] do not work with an extendéd 1986.

G. Golub and C. F. Van LoamMatrix Computations. Baltimore, MD:

: . : ) 18
matrix, the fact tha#' is almost singular makes the algorlthmé ] Johns Hopkins Univ. Press, 1989.

fail.

They lack sufficient resolution for delays that are closelft9] P. J. Eberlein, “On the Schur decomposition of a matrix for parallel

spaced computation,”IEEE Trans. Computyol. C-36, pp. 167-174, 1987.

[20] A. J. van der Veen and A. Paulraj, “An analytical constant modulus
algorithm,” IEEE Trans. Signal Processingiol. 44, pp. 1136-1155,

VIIl. CONCLUSION May 1996.

We have described an algorithm that jointly estimates thgt L. De Lathauwer, B. De Moor, and J. Vandewalle, ‘Independent

component analysis based on higher-order statistics onlygtan. IEEE

directions of arrival and time delays of multiple paths using an  signal Process. Workshop Stat. Signal Array ProceSsrfu, Greece,
estimate of the channel impulse response. The SIJADE algo- June 1996, pp. 356-359.

rithm is closed form and can estimate the parameters of m 78l

P. Stoica and A. Nehorai, “MUSIC, maximum likelihood and
Craner—Rao bound,IEEE Trans. Acoust., Speech, Signal Processing,

paths than the number of antennas. The usual “smoothing” vol. 37, pp. 720741, May 1989.
techniques available to ESPRIT can be elegantly incorporat@a] Y. Bresler and A. Macovski, “Exact maximum likelihood parameter

and improve the resolution of closely separated rays.

estimation of superimposed exponential signals in noieRE Trans.
Acoust. Speech Signal Processing]. ASSP-34, pp. 1081-1089, Oct.

A limitation of the algorithm is that it starts from impulse 1986.
response data. If we have input-output data available, as[qg M. P. Clark and L. L. Scharf, “Two-dimensional modal analysis based

on maximum likelihood,”IEEE Trans. Signal Processingpl. 42, pp.

typically the case, then the estimation of first the impulse 1443 14572 june 1994.
response and second the parameters is inherently suboptimal.
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