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SUMMARY

Offshore wind is expected to be one of the important contributors to the energy transi-
tion towards a more renewable and sustainable energy future. This can be clearly seen
from the amount of investments over the past years as well as from the substantial up-
coming offshore wind projects in the years to come. Many technological implemen-
tation challenges have already been addressed, but the number of new challenges will
continue to increase. Especially, as the industry continues moving further offshore with
larger wind turbines and as the existing offshore wind farms will approach the end of
their service lives. Therefore, the need for improved asset management modelling over
the entire service life from design towards decommissioning will continue increasing to
support better data driven decision making under uncertainty.

For this and in particular for the construction management of offshore wind assets,
in this thesis new models and methods have been developed to support this enhanced
decision making. These decisions are subject to various types of risks and uncertainties,
varying from environmental uncertainties, supply chain disruptions and stochasticity
of construction activities’ durations. Therefore, these should be properly taken into ac-
count in construction management models using performance and/or expert data from
past construction projects.

In this thesis two types of data availability have been distinguished: (i) where suf-
ficient relevant performance data is available and (ii) where relevant past performance
data is rather limited. In the first case, statistical methods are used, such as Copula func-
tions to model the dependence between metocean variables and Bayesian Networks to
model the dependence between subsequent construction activities. In the second case,
expert knowledge and data are used to quantify the uncertainty using a mathematical
aggregation method for expert judgments (i.e. Cooke’s classical modelling). The differ-
ent methods have been applied to several test cases to investigate the associated cost
and time impact. As a result of this research, different tools and an open-source soft-
ware were developed. These also can be used in different fields of application using this
proper mathematical expert judgment aggregation modelling.

Finally, it can be concluded that the state-of the art developments within this the-
sis substantially contribute to decision making under uncertainty, so that construction
management strategies are optimised and thereby the offshore wind energy assets life
cycle value is maximised.

xi





SAMENVATTING

Wind op zee zal naar verwachting één van de belangrijke bijdragen leveren aan de toe-
komstige energietransitie naar meer hernieuwbare en duurzame energie. Dat blijkt dui-
delijk uit de hoeveelheid investeringen van de afgelopen jaren en uit het omvangrijke
aantal offshore windprojecten voor de komende jaren. Veel technologische implemen-
tatie uitdagingen zijn al aangepakt, maar het aantal nieuwe uitdagingen zal nog steeds
verder toenemen. Dit komt vooral omdat de industrie steeds grotere windturbines en
steeds verder uit de kust installeert en omdat de bestaande offshore windparken het
einde van hun levensduur zullen naderen. Daarom zal de behoefte aan verbeterde asset
management modellering gedurende de gehele levensduur -van ontwerp tot ontman-
teling - blijven toenemen om hiermee betere en data gedreven besluitvorming onder
onzekerheid te ondersteunen.

Hiervoor, en in het bijzonder voor het constructiemanagement van offshore wind-
parken, zijn in dit proefschrift nieuwe modellen en methoden ontwikkeld om deze ver-
beterde besluitvorming te ondersteunen. Deze beslissingen zijn onderhevig aan ver-
schillende soorten risico’s en onzekerheden, variërend van omgevingsonzekerheden, ver-
storingen in de bouwstroom en onzekerheid van de duur van de constructieactivitei-
ten. Daarom moet hier goed rekening mee worden gehouden in constructiemanage-
ment modellen welke gebruik maken van prestatie- en/of expertgegevens van eerdere
constructie projecten.

In dit proefschrift worden twee soorten gegevensbeschikbaarheid onderscheiden:
(i) daar waar er voldoende relevante prestatiegegevens beschikbaar zijn, en (ii) daar waar
relevante historische prestatiegegevens te beperkt zijn. In het eerste geval worden sta-
tistische methoden gebruikt, zoals Copula-functies, om de afhankelijkheid tussen me-
tocean variabelen te modelleren en Bayesiaanse netwerken om de afhankelijkheid tus-
sen opeenvolgende constructieactiviteiten te modelleren. In het tweede geval worden
expertkennis en gegevens gebruikt om de onzekerheid te kwantificeren met behulp van
een wiskundige aggregatiemethode voor expertbeoordelingen (i.e., de klassieke Cooke’s
modellering). De verschillende methoden zijn toegepast op verschillende testgevallen
om de impact op de bijbehorende kosten- en tijdimpact te onderzoeken. Als resul-
taat van dit onderzoek zijn verschillende tools en een open-source software ontwikkeld.
Deze kunnen ook in verschillende andere toepassingsgebieden worden gebruikt met be-
hulp van deze juiste wiskundige aggregatiemethode voor expertbeoordelingen.

Ten slotte kan worden geconcludeerd dat de ‘state-of-the-art’ ontwikkelingen bin-
nen dit proefschrift substantieel bijdragen aan besluitvorming onder onzekerheid, zodat
constructiemanagement strategieën worden geoptimaliseerd en daarmee de levenscy-
cluswaarde van offshore windenergie-assets wordt gemaximaliseerd.

xiii
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RESEARCH CONTEXT

By failing to prepare you are preparing to fail.

Benjamin Franklin
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4 1. RESEARCH CONTEXT

1.1. DECISION MAKING UNDER UNCERTAINTY

U NCERTAINTIES have been impacting the decisions of humans since the start of early
civilizations and will almost certainly continue impacting the lives of everyone in

the future.
But what is uncertainty? Uncertainty can be defined as the lack of certainty and it dis-

appears when one becomes certain about a declarative sentence, when truth conditions
about this sentence exist and the conditions for the value “true" hold [1]. In practical ap-
plications uncertainty is usually removed by observation. A clear distinction should be
made between uncertainty and ambiguity. Ambiguity can be removed to a certain extent
by increasing the clarity of linguistic conventions. On the other hand, uncertainty can
be quantified or represented mathematically. This can be expressed in terms of proba-
bility which has the formal properties of a measure of area on a surface with total area
equal to 11. For example the initial statement of this section can be rewritten as follows:
“Uncertainties have been impacting the decisions of humans since the start of early civ-
ilizations and with probability almost equal to 1 uncertainty will continue impacting the
lives of people in the future".

Quantifying uncertainty can be particularly useful in decision making. By properly
quantifying the uncertainty it is possible to compare different scenarios and choose the
most adequate one with a certain level of confidence. This can be particularly useful for
taking decisions concerning topics with high impact. These can vary from global poli-
cies to management decisions concerning large offshore wind energy infrastructure as-
sets (as in this thesis). These topics usually have many different risk factors that increase
their complexity. Moreover, these are often dependent on each other. Hence, proper rep-
resentation of the associated uncertainties, their dependence as well as the aggregated
effect of all these factors should be taken into account by the analysts and the decision
makers to ensure that the problem under investigation is adequately informed.

1.2. ENERGY SITUATION

T HE world energy consumption has been steadily increasing during the past decades.
Projections from the US Energy Information Administration show an increase of 28%

between 2015 and 2040 in their international energy outlook reference case IEO20172 [3].
As it can also be seen in Figure 1.1 more than half of the increase is attributed to countries
(including China and India) which are not members of the Economic Cooperation and
Development (OECD). This expected increase in demand for energy is driven mainly by
the economic growth.

Another more recent study, from the International Energy Agency, investigated two
different scenarios [4]. Namely the Current Policies Scenario (CPS) and the Stated Poli-
cies Scenario (SPS). The CPS assumes there will be no additional changes in the existing

1More precise and formal definition of probability can be given by the axioms of Kolmogorov [2].
2According to US Energy Information Administration: “The used reference case assumes continual improve-

ment in known technologies based on current trends and relies on the views of leading economic forecasters
and demographers related to economic and demographic trends for 16 world regions based on OECD mem-
bership status. The IEO2017 considers current policies—as reflected in current laws, regulations, and stated
targets that are judged to reflect an actual policy commitment—for major countries with the goal of realisti-
cally capturing their effects in the projection"
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Figure 1.1: International energy outlook [3].

policy, while the SPS considers intended policy initiatives and targets that have been an-
nounced. In CPS, the energy demand rises by 1.3% annually until 2040. Despite the fact
that this estimate is lower than the 2.3% increase that was observed in 2018, it would still
lead to an important increase in energy-related emissions and need for energy security.
In SPS, an increase by 1% per year until 2040 is estimated. In this Scenario, low-carbon
sources cover more than half this demand and liquefied natural gas (LNG) accounts for
another third. Also, it is estimated that oil demand will slow down by 2030s and coal
use will also decrease. It is estimated that the electricity sector will be subjected to rapid
transformations and especially those countries with “net zero aspirations" will reshape
their supply and consumption. However, one of the findings of this analysis is that the
growth of “clean energies" will not be sufficient to balance the effects of an expanding
global economy and population. This leads to the conclusion that the world falls far
short of shared sustainability goals

During the past years a lot of attention has been drawn towards the development of
clear energy or renewable energy technologies due to the expected depletion of fossil
fuels and respective consequences [5] [6] [7]. According to the World Bank renewables in
a global scale, have contributed a growing share of electric capacity every year reaching
≈ 22.8% of total global power generating capacity in 2015 [8]. It is expected that this share
will continue increasing by 2.3% per year on average reaching 31% in 2040 [3].

Among the different renewable energy technologies offshore wind has showed im-
pressive growth in the last years, especially in Europe. Although offshore wind energy
technology was less mature than onshore wind [9], the advantages of offshore wind en-
ergy such as the higher-quality of wind resources at sea; the ability to use larger wind
turbines and the ability to build larger wind farms than onshore attracted major devel-
opers.
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Figure 1.2: Sandbank OWF of Vattenfall3.

According to [10], the global offshore wind market grew approximately 30% between
2010 and 2018. United Kingdom, Germany and Denmark are the leaders in Europe.
United Kingdom and Germany have currently the largest offshore wind capacity in op-
eration while Denmark in 2018 produced 15% of its electricity from offshore wind. It is
worth mentioning that China also added more capacity than any other in 2018. In the
coming years, approximately 150 new offshore wind projects are scheduled to be com-
pleted worldwide.

According to the energy outlook report of International Energy Agency [4], the “Cost
reductions and experience gained in Europe’s North Sea are opening up a huge renew-
able resource. Offshore wind energy has the technical potential to meet today’s electric-
ity demand many times over". One of the main reasons is the advancements in offshore
wind technology which allows for larger turbines which lead to higher electricity produc-
tion. Further improvements and innovations such as floating wind turbines and energy
storage (e.g. hydrogen storage) are expected in the future. These will allow to move far-
ther offshore and make use of higher and more reliable wind speeds as well as enabling
new markets. Offshore wind projects are expected to attract investment up to a trillion
dollars to 2040 [4]. In the Sustainable Development Scenario, presented in [4] offshore
wind energy together with onshore wind energy become the leading source of electric-
ity generation in the European Union. In this way the full decarbonisation of Europe’s
power sector can become possible.

1.3. DEVELOPMENT GAP

O FFSHORE wind energy is considered one of the most promising renewable energy
sources and it is expected to grow even more during the upcoming years. However,

3Source: https://powerplants.vattenfall.com/sandbank.
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the high costs of offshore wind farms (OWF) should reduce further in order to achieve
the set goals and make them more competitive compared to the conventional energy
sources. For these reasons, a lot of research has been funded in the last years. EUROS
(Excellence in Uncertainty Reduction of Offshore wind Systems) research programme
was funded by the Dutch government and industry partners and aimed to combine ex-
cellence in expertise areas from universities, knowledge institutes and industry in an
integral approach of cost reduction in wind energy, unprecedented in the sector. EUROS
focuses on major factors in the total cost of energy of an OWF: design and construction,
and the logistics of installation and maintenance. Despite the fact that there are various
uncertainties and risks in design and logistics, present evaluation approaches are frag-
mented, focusing on single issues. Therefore, in order to avoid obstructive conclusions,
methods for integral models should be developed that will assist in understanding and
treating properly the aggregated effects of the risks and uncertainties concerning the en-
tire offshore wind project. This leads to better risk and uncertainty assessment.

Installation and maintenance services of OWF are capital intensive activities which
can be further optimized in terms of cost and time by investigating possible alternatives
and making decisions concerning the assets involved. Towards that direction, this PhD
thesis (funded by EUROS and its respective work package entitled “Smart service logis-
tics”) concerns the development of stochastic models in order to include and quantify
uncertainties to enable the improvement of the entire OWF installation process.

Construction activities of OWFs are not only expensive, but also complex. Their com-
plexity stems from the fact that these are subject to various uncertainties such as envi-
ronmental offshore conditions, supply disruptions and failures which may occur during
the construction process. All these uncertainties should be taken into account espe-
cially during the planning phase. Otherwise, planning based on inaccurate estimates,
may lead to decisions which will cause significant schedule and budget overruns dur-
ing the construction phase. To avoid these undesirable outcomes, probabilistic decision
support tools should be utilized in the planning phase to support optimal construction
management given these uncertainties. Thus, reliable tools that take into account vari-
ous uncertainties during the entire OWF supply chain, would be essential for achieving
cost reduction.

For the aforementioned reasons, during the last years, various models have been
developed concerning different aspects of OWFs decision support. A thorough review
of the developed models until 2011 is presented in [11]. The majority of these models
were focused on the maintenance strategies. Since then, more studies were conducted
and various models concerning the construction (or installation) process of OWFs were
developed. For example, Kaiser and Snyder in [12] developed a model of the installa-
tion costs of offshore wind projects on the U.S. Outer Continental Shelf. While Sarker
and Faiz in [13] proposed a method to identify the characteristics of OWFs installation
processes that minimize the total time requirement for transportation and installation,
without taking into account the uncertainties. Moreover, most of the developed mod-
els use a simulation-based approach and focus on developing different approaches to
better describe the environmental condition uncertainty. In particular, Vis and Ursavas
in [14] developed a simulation-based decision support tool to investigate different lo-
gistical approaches within the installation phase of OWFs while taking into account the
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external influence of weather by the use of a Markov chain with three states. Paterson
et al. in [15] developed a software tool that relies on Monte Carlo methods to simu-
late multiple independent scenarios of the defined installation strategy for an offshore
wind farm, while considers the risk imposed by adverse weather conditions by using a
hidden Markov model (HMM). Morandeau et al. in [16] presented the MERMAID (Ma-
rine Economic Risk Management Aid) simulation software package that was used for the
analysis and optimization of marine energy installations and the investigation of a ves-
sel designed for installation of OWFs. Leontaris et al. in [17] proposed a methodology to
produce realistic synthetic time series of wind speed and wave height in order to incor-
porate the environmental risk into the estimates of the duration of cable installation of
OWFs. Also, Guo et al. in [18] proposed a fuzzy duration forecast model for the construc-
tion of onshore wind turbines which are only subject to the impact of wind uncertainty.

Other researchers focused on investigating optimization techniques concerning the
installation of OWFs. Irawan et al. in [19] developed an integer linear programming
(ILP) model to determine the optimal installation schedule considering constraints re-
garding weather conditions and the availability of vessels. Kerkhove et al. in [20] pro-
posed a Markovian model to describe the weather component and an approach that
uses both general meta-heuristic optimization approaches and dedicated heuristics to
optimize the project planning. Ursavas et al. in [21] proposed a two-stage stochastic
integer program that considers disruptions arising from uncertain weather conditions
and the solution approach of the planning problem of wind farms is based on partial
Benders decomposition strategy. Barlow et al. in [22] proposed a decision-support tool
in a combined framework of an optimization and simulation model which improves the
capabilities of both models to provide a mechanism to address current OWF installation
projects while taking into account the seasonal uncertainties. Scholz-Reiter et al. in [23]
have developed an optimization model for OWF installation scheduling using mixed-
integer linear programming (MILP). Particularly, Scholz-Reiter et al. [23] recommended
to develop a simulation model that takes into account possible supply disruptions and to
integrate this with their model, in order to have a robust design for planning of offshore
installation.

1.3.1. RESEARCH OBJECTIVES
In order to contribute to the essential energy transition towards sustainable energy tech-
nologies in the upcoming years, the goal of this research is to investigate probabilistic
risk analysis methods and develop models to allow for proper quantification of the pre-
dominant uncertainties concerning the construction management of offshore wind en-
ergy assets.

More specifically, this objective is split into the following:

1. Identify appropriate methods that can properly describe the predominant uncer-
tainties for the construction management of offshore wind assets. These predom-
inant uncertainties concern the following:

• Environmental uncertainties, which hinder the offshore operations

• Risk of supply disruption during the construction

• Durations of construction activities and their dependence
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2. Enable comparisons of realistic scenarios and mitigation measures to aid decision
making.

3. Enable the quantification of the aggregated effect of the aforementioned uncer-
tainties on the scheduling and budgeting of offshore wind asset projects.

1.4. THESIS OUTLINE

The outline of this thesis is presented in Figure 1.3. The main body of the thesis (exclud-
ing Part I: Introduction and Part IV: Epilogue) is divided into two main parts (i.e. Part II
and Part III) which present methods and applications for decision making under uncer-
tainty regarding the construction management of offshore wind assets. Part II concerns
methods that can be used for representing uncertainty in cases where there are sufficient
available data. On the other hand, Part III discuss methods and applications concerning
the representation of uncertainty in cases where only limited relevant data are available.
Part II and III comprises of two and three chapters respectively, which are based on sev-
eral scientific publications where the author of this thesis was the main author.

More specifically, Chapter 2 is based on [17] and presents a method to create syn-
thetic time series of the most important metocean conditions that hinder the construc-
tion operations. It also discusses shortly an extension to this model that takes into ac-
count current velocity that was particularly interesting for an application on the O&M of
tidal energy converters.

Chapter 3 is based on [24] and presents a novel model allowing for investigating the
effect of the dependence of the installation activities of OWFs.

Chapter 4 is based on [25] and presents a newly developed MATLAB toolbox that can
be used for the analysis and synthesis of expert judgments using Cooke’s classical model.

Chapter 5 is based on [26] and presents a methodology to assess the supply disrup-
tion risk during the construction of OWFs using expert judgments and its incorporation
into the estimates of duration and cost of the project.

Chapter 6 is based on [27] and presents a method to improve the uncertainty rep-
resentation of the reliability of OWFs in order to enable comparison and selection of
operation and maintenance (O&M) strategies.

The Chapters of this dissertation do not include the full research output of the author
related to this research project. The remaining research output, in which the author was
also involved, is summarized in a list of publications in section Publications.
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Part I: Introduction

Chapter 4: Learning from 
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Chapter 3: Construction 
Activities Duration 

Chapter 2: 
Environmental 
Uncertainties

Chapter 5: Supply 
Disruptions Risk

Chapter 6: OWFs 
Reliability using Expert 

Judgments

Part II: Enabling Decisions 
with Available Data

Part III: Enabling Decisions 
with Limited Data

Chapter 7: Conclusion 
and Recommendations

Chapter 1: Research 
Context

Part IV: Epilogue

Figure 1.3: Visual representation of the outline of this thesis.
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2
ENVIROMENTAL UNCERTAINTIES

Remember to get the weather in your damn book
weather is very important.

Ernest Hemingway

Environmental uncertainties concerning variables such as wave height and wind speed
are crucial because these may affect installation and maintenance operations with poten-
tial delays and financial consequences. In order to include these uncertainties into the es-
timation, adequate models should be developed to simulate an installation scenario for a
large number of historical environmental data. Data regarding environmental time series
are usually scarce and limited, therefore they should be modelled. Since the environmental
variables are in reality dependent, a probabilistic method is proposed for their construc-
tion using copulas. To demonstrate the effectiveness of this method compared to the cases
where observed or independently constructed environmental time series are used, a realis-
tic cable installation scenario for an offshore wind farm was simulated. It was found that
the proposed method should be followed to acquire more reliable and accurate estimates
of the installation’s duration.

Parts of this chapter have been published verbatim in Ocean Engineering , (2018) [1].
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T HIS chapter proposes an alternative method to produce large number of realistic
time series of wind speed and significant wave height, which can be valuable for

planning and scheduling more efficiently offshore installation operations. In order to
plan the sequence of complex offshore installation operations and decide the optimal
combination of vessels and equipment required for a particular operation, different sce-
narios should be simulated and compared. Therefore, large number of environmental
time series is needed to account for uncertainties regarding the environmental condi-
tions that limit the operations. Usually it is difficult, expensive and sometimes impossi-
ble to acquire a large data set of environmental time series and when it is possible there
are often missing values due to failures in the measuring equipment [2], which can influ-
ence the estimation of the duration of offshore operations. For these reasons it is impor-
tant to create realistic environmental time series by taking into account the dependence
between the environmental characteristics.

2.1. AVAILABLE METHODS

O FFSHORE construction operations, are subject to a variety of uncertainties such as
environmental conditions, failure of vessels and/or equipment, variation in the du-

ration of operations, availability of the required components etc. However one of the
main cause of miss-estimations of project duration and delays is the miss-estimation
of environmental parameters, such as the wind speed and the significant wave height,
which are difficult to predict in the planning phase. For those reasons, project schedulers
may use buffers in the planning phase which can lead to overestimation of the duration
of a project and subsequently the cost of the installation. Therefore it is essential to find a
method which will assist schedulers in acquiring more accurate and reliable estimation
of the duration of offshore installation operations by incorporating these uncertainties.

A lot of research has been conducted in the past regarding forecasting of environ-
mental time series. Zounemat-Kermani et al. in [3] mention the following methods to
model wind - wave characteristics: statistical techniques, discrete spectral approach,
stochastic simulation, numerical methods and data driven models (such as artificial
neural networks, fuzzy wavelet model, genetic programming and fuzzy logic). More-
over, a survey regarding the stochastic models for wind and wave state time series was
conducted by Monbet et al. in [2] and categorizes these models into: non-parametric
models, models based on Gaussian approximations and other parametric models. Also,
Zounemat-Kermani et al. in [3] propose an analysis of wind-wave time series using chaos
theory. These methods however do not always explain the underlying physical proper-
ties attached to a joint probability distribution. Hence nothing or little may be said in
terms of joint probabilities of environmental random variables that are described by a
non-normal joint distribution.

Univariate distributions are used frequently in order to estimate the design param-
eters of wind speed and wave characteristics without considering their dependence [4].
Some studies were focused on estimating the joint distribution of wave characteristics
such as significant wave height and wave period. Particularly, Salvadori et al. in [5] used
Copulas, Athanassoulis et al. in [6] used applications of Placket model and Galiatsatou
and Prinos in [7] investigated different bivariate distributions, in order to find the de-
pendence between significant wave height and wave period. However only a few stud-
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ies investigate the joint distribution of the wind speed and the significant wave height.
Particularly, Fouques et al. in [8] propose one method using only the correlation matrix
and another method based on multivariate Hermite polynomials expansion of the multi-
normal distribution, in order to model the joint occurrence of those variables including
the wave period. Moreover Bitner-Gregensen and Haver in [9] and [10] developed a joint
environmental model which is based on conditional modelling approach (CMA) which
concerns wind, waves, current and sea water level. This model was also applied for de-
sign and operations of marine structures by calculating the joint distribution based on
parametric fits for each one dimensional marginal [11]. Also the Nataf model [12] is used
in many applications in literature for modelling metocean variables. Nevertheless in
[13], it is noted that Nataf model may lead to bias results, when the transformation to
standard normal variates deviates from a multi normal distribution. Finally, Yang and
Zhang in [4] followed a similar approach as the one described in this article, using Cop-
ulas to estimate the joint distribution of wind speed and significant wave height without
taking into account the autocorrelation which is essential when time series are required.

In the following sections a method using copulas is proposed in order to produce
time series of environmental characteristics that limit the operations (i.e. wind speed
and significant wave height) by taking into account their dependence and the observed
autocorrelation. Copulas provide a way of studying scale free measures of dependence
and a starting point for constructing families of bivariate distribution [14]. Also, copulas
allow the construction of models which go beyond the standard ones at the level of de-
pendence [15] and they avoid the restriction that presents the traditionally used method
which describes the pairwise dependence using families of bivariate distribution char-
acterized by the same parametric family of univariate distributions [16]. Following the
copula approach, it is possible in many cases to construct the joint distribution requir-
ing only the marginal distributions of the variables and measures of their dependence
[17]. Also, in our case, the characterization of the joint distribution of the environmental
variables of interest is semi-parametric. In other words, the one dimensional margins
are modelled by non-parametric estimators while the underlying dependence structure
are described by one parameter copulas. Moreover the use of copulas has made the
investigation of asymmetries in the joint distribution relatively easier since they satisfy
different types of tail behaviour [18]. These asymmetries are, as it shall be demonstrated
in this chapter, crucial for offshore operations which are mainly influenced by extreme
environmental conditions. Finally, in order to investigate the effect of this approach, an
application of the proposed method concerning the estimation of the duration of the
cable installation of an offshore wind farm was conducted.

2.2. PRELIMINARY CONCEPTS

B EFORE continuing to the method proposed for the construction of time series for sig-
nificant wave height and wind speed, the main concepts and definitions to be used

in the remainder of this chapter are introduced. Copulas are defined as functions that
join or “couple" multivariate distribution functions to their one-dimensional marginals.
In particular, they are multivariate distribution functions whose one-dimensional mar-
gins are uniform on the interval [0,1] [14]. The most important theorem of copulas the-
ory is Sklar’s theorem [19] which states that any multivariate joint distribution can be
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written in terms of the univariate marginal distribution functions and a copula which
describes the dependence between the random variables. For the two dimensional case,
let HX Y (x, y) be a joint distribution function with marginal distribution FX (x) and GY (y)
which lie in the interval [0,1]. Then there is a copula C on the unit square I 2 such that
for all x, y satisfies equation 2.1 [16].

HX Y (x, y) =C (FX (x),GY (y)), x, y ∈ℜ (2.1)

There is a large variety of copulas which can be used to model joint distributions
with different characteristics. Three of the most common families of copulas are: the
Gaussian, Gumbel and Clayton copulas. These copulas can model different tail asymme-
tries of the joint distributions and have been used in many financial applications(e.g.see
[20]).These were also investigated in the application that is presented in section 2.4. The
Gaussian copula is given by equation 2.2

C (u, v) =Φρ(Φ−1(u),Φ−1(v)) (2.2)

whereΦ denotes the standard normal distribution function andΦρ the standard bivari-
ate normal distribution function with linear correlation coefficient ρ. The Gumbel and
Clayton copulas are two of the most used one-parameter Archimedean copulas. For the
bivariate case, Archimedean copulas are defined as C (u, v) =φ−1(φ(u)+φ(v)). The gen-
erator function of Gumbel copula is φ(u) = [−ln(u)]θ, θ ∈ [1,∞) while the generator of
Clayton copula is φ(u) = (u−β−1)/β, β ∈ [−1,∞) [14]. The Gumbel copula is defined in
equation 2.2 and the Clayton copula is defined in equation 2.2.

C (u, v ;θ) = exp(−[(−ln(u))θ+ (−ln(v))θ]1/θ) (2.3)

C (u, v ;β) = (u−β+ v−β−1)−1/β (2.4)

A way of fitting copulas to data concerns the use of correlation estimators (which
are measures of dependence) such as Spearman’s rho rS and/or Kendall’s τ. These im-
portant measures of dependence refer to the ranks of the data achieving scale-invariant
estimates [21]. In equation 2.5, Spearman’s rho rS is presented in terms of copulas.

rS (X ,Y ) = 12
∫ ∫

I 2
uvdC (u, v)−3 = 12

∫ ∫
I 2

C (u, v)dud v −3 (2.5)

Another important concept that should be introduced for our analysis, is tail depen-
dence. Tail dependence allows the study of dependence between extreme values, be-
cause (for positive dependence) shows the amount of dependence in the upper right
quadrant tail or lower left quadrant tail of a bivariate distributions [15]. The upper tail
dependence coefficient is defined in equation 2.6.

λU = lim
q→1

P (Y >G−1(q)|X > F−1(q)) (2.6)
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(a) Gaussian copula
(ρ = 0.7)

(b) Gumbel copula
(θ = 2,rS = 0.7)

(c) Clayton copula
(β= 2.1,rS = 0.7)

Figure 2.1: Density functions of Gaussian, Gumbel and Clayton copulas.

One can characterize X and Y as asymptotically dependent in the upper tail when λU ∈
(0,1] or as asymptotically independent in the upper tail if λ = 0. The coefficient of
lower tail dependence can be defined analogously for the lower tail. The three para-
metric models of interest have been selected precisely because they capture lower, up-
per or no-tail dependence. Usually, the density of bivariate copulas defined as: c(u) =
(∂2C (u1,u2))/(∂u1∂u2) is used to illustrate copulas’ distributions.

Plots of the density function of the three copulas of interest in this chapter (for Spear-
man’s rank correlation rS equal to 0.7) are presented in Figure 2.1. Intuitively the reader
may see that for positive correlation the mass in the upper tail of the Gumbel copula is
significantly larger than that in the lower tail, which is indication of upper tail depen-
dence. Analogously for the Clayton copula the mass in the lower tail is larger than that in
the upper tail, which indicates lower tail dependence. Having described briefly the main
concepts to be used in the rest of the article, we proceed to describe the data of interest.

2.3. PROPOSED METHOD

H ISTORICAL metocean time series should be analyzed to find the best fitting model
that can be used to construct synthetic time series with similar statistical character-

istics. The steps that are proposed for this analysis are presented in section 2.3.1. After
the procedure of the analysis, the algorithm for the construction of synthetic time series
is presented in section 2.3.2. Finally, the methods to validate the synthetic time series are
presented in Section 2.3.3. The proposed method is summarized in the following steps:

1. Analysis of Historical Data (Section 2.3.1)

2. Construction of synthetic time series (Section 2.3.2)

3. Validation of synthetic times series (Section 2.3.3)

2.3.1. ANALYSIS OF HISTORICAL DATA
The analysis of historical environmental data is consisted of the following steps

1. Data pre-processing

2. Transforming observations in pseudo-observations
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3. Performing different statistical tests:

• Sum of square differences based on Cramér-von Mises statistics

• Calculation of semi-correlations

• Calculation of exceedance probabilities of different percentiles

DATA PRE-PROCESSING

For all datasets that the author has analyzed during this research project, there was the
need of data pre-processing. The purpose of this is to remove missing, unfeasible or
unrealistic values and put data in the required format for further analysis. Particularly,
several values were observed in the environmental datasets that were used for the analy-
sis in section 2.4.1. These values were probably occurred due to failures in the measuring
or recording equipment. Although the number of these values was comparatively small
to the size of the set, their exclusion was required. The importance of this process is
usually underrated. However it is self-evident that including unrealistic/wrong values
will probably lead to miss-estimation of the best fitting copula and its parameter and
subsequently to the synthetic time series.

DATA TRANSFORMATION

Because the marginal distributions of random variables are usually unknown, it is of-
ten recommended to estimate the parameters of the copula of interest using pseudo-
observations. These may be interpreted as a sample of the underlying copula [16, 22].
The underlying copula of a random vector is invariant by continuous, strictly increas-
ing transformations. Therefore the observations X j , when j refers to the random vari-
able, can be safely transformed to pseudo-observations, using the ranks. The pseudo-
observations are defined as [16]: U j = R j /(n + 1) = nF̂ j (X j )/(n + 1), where n refers to
the number of the observations and F̂ j the empirical cumulative distribution function
defined as:

F̂ j (t ) = 1

n

n∑
i=1

1(X j É t ) (2.7)

where 1() is the indicator function, which is defined as follows for a set E :

1E (ω) =
{

1, ω ∈ E

0, ω ∉ E
(2.8)

STATISTICAL TESTS

The following different statistical tests are proposed in order to find the goodness of fit
of the copulas under investigation.

Sum of square differences based on Crámer-von Mises statistic. In order to find which
copula fits the data best, "blanket tests" are usually used. The "blanket tests" are favoured
compared to other methodologies due to the fact that they do not involve parameter tun-
ing or other strategic choices [16]. There are various types of "blanket tests" nevertheless
in our study the test that concerns the calculation of the sum of square differences be-
tween the empirical Cn and the parametric copula C(θn ), based on Crámer-von Mises
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statistic was performed. The empirical copula is a non-parametric estimator of the true
copula and it summarizes the information of pseudo-observations. For the bivariate
case with two random variables (u1,u2) the empirical copula is defined as in equation
2.3.1.

Cn(u) = 1

n

n∑
i=1

1(U1 É u1,U2 É u2), u = (u1,u2) ∈ [0,1]2 (2.9)

Moreover, the sum of square differences based on Crámer - von Mises statistic for an
empirical process An =p

n(Cn −Cθn ), is defined as in [23] by equation 2.10

Sn =
∫

[0,1]d
An

2(u)dCn(u) =
n∑

i=1
(Cn(Un)−Cθn (Un))2 (2.10)

The sum of the square difference between the empirical and the parametric copula is
calculated for every copula under consideration (e.g. SN for Gaussian, SGum for Gumbel
and SC l for Clayton) and the copula for which the smallest value is obtained should be
preferred.

Calculation of semi-correlations. Another approach to investigate which copula de-
scribes better the dependence between significant wave height and wind speed, con-
cerns the calculation of Pearson correlation for upper and lower quadrant of the actual
observations transformed to standard normal N(0,1) margins. Let Φ denote the stan-
dard normal cumulative distribution function, then Z j =Φ−1(U j ), for j = 1, . . . ,d are the
standard normal transforms of the pseudo-observations [18]. After dividing the stan-
dard normal transforms of observations into four quadrants, for positive correlation the
upper semi-correlation is defined as: ρne = ρ(Z1, Z2|Z1 > 0, Z2 > 0) and the lower semi-
correlation is defined as: ρsw = ρ(Z1, Z2|Z1 < 0, Z2 < 0). The upper and lower quadrant
correlations indicate whether or not there is tail asymmetry. When there is tail asymme-
try, the two semi-correlations present an obvious difference [18]. Also, these values could
be compared to the product moment correlation of all quadrants . This procedure has
been exemplified in the context of traffic load measurements before, for example in [24].
If the values of semi-correlation are larger than the overall Pearson correlation or there
is big difference between the upper and lower semi correlation, then there is indication
of tail dependence.

Calculation of exceedance probabilities for different percentiles. The third test con-
cerns the calculation of conditional exceedance probability for different percentiles con-
cerning the observations as well as the investigated copulas. The calculation of the joint
exceedance probabilities for each copula under consideration is described by equation
2.11 where up is the percentile of interest.

P (U > up ,V > up ) = 1−2up +C (up ,up ) (2.11)

Therefore the calculation of the joint conditional exceedance probabilities for each cop-
ula under consideration is given by equation 2.12.

P (U > up |V > up ) = P (U > up ,V > up )/P (V > up ) = (1−2up+C (up ,up ))/(1−up ) (2.12)
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The calculated exceedance probabilities of the observations, which were computed
based on the empirical version of equation 2.12, were plotted along with the conditional
exceedance probabilities for each different copula under investigation, in order to eval-
uate which copula describes better the extreme cases of large wind speeds occurring
together with large wave heights. The purpose of this study is to find the right copula
that will be used to produce environmental time series which will show whether or not
certain operations can be performed during the time intervals. Hence, the percentiles
up that are investigated should correspond to values close to the environmental limits
of the operations. For that reason, it was decided to conduct this analysis for values of
up larger than 80th percentile. Following this approach it is safe to assume that these
percentiles include the values that address the limits of the vessels.

2.3.2. ALGORITHM FOR SYNTHETIC TIME SERIES
Knowing the copula among the investigated families, that describes best the depen-
dence between wind speed and significant wave height, it is possible to produce couples
that take into account the dependence between the variables by using the estimated
parameter for each month. However, in order to produce realistic environmental time
series the autocorrelation should also be taken into account. Similar analysis as the one
presented in section 2.3.1 was performed in order to investigate which copula describes
the dependence of the wind speed with lagged versions of itself and it was found that the
Gaussian copula describes it best.

After the copulas that describe the dependence of the environmental variables and
the autocorrelation are both known, random environmental (synthetic) time series can
be produced. In our case, the procedure of random time series generation was con-
ducted for each month separately in order to include seasonality. The generation of time
series for each month could be represented by simple vine or a dependence tree, as it
is defined by Kurowicka and Cooke [25], consisting of three nodes and two edges. The
nodes are associated with marginal densities while the first edge specifies the autocorre-
lation of wind speed and the second edge specifies the dependence between wind speed
and wave height, using the copula families that were determined by the analysis. The
procedure consists of the following steps:

1. Generate the first wind speed value ut ∼U [0,1], using a uniform random number
generator.

2. Calculate the subsequent value(s) of wind speed in [0,1] based on the previous
value (ut ) by solving the inverse conditional Gaussian copula [18] in equation 2.13.

C−1(ut+1|ut ;ρ) =Φ(Φ−1(ut+1)
√

1−ρ2 +ρΦ−1(ut ))) (2.13)

where Pearson correlation ρ = 2sin(π6 rS ) and rS is the Spearman’s rank correlation
coefficient.

3. Next, the inverse conditional Gumbel copula function written in Matlab by An-
drew Patton1 provides the value of wave height vt ∈ [0,1] for each of the generated

1http://public.econ.duke.edu/ ap172/
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wind speed values ut . The conditional Gumbel copula is described by the equa-
tion 2.14 [18]:

C (vt |ut ;θ) = u−1
t exp(−[xθ+ yθ]1/θ)[1+ (

y

x
)θ]1/θ−1 (2.14)

where x =−ln(ut ) and y =−ln(vt ). Using the calculated parameter θ of the Gum-
bel copula the inverse conditional Gumbel copula is found numerically using a
bisection method.

4. The values of wind speed and wave height are transformed back to the original
units through the inverse cumulative distribution function of each separate vari-
able.

5. Combine the generated time series of each month to acquire time series for the
whole year.

It should be noted that the proposed method will cause a discontinuity between the
values occurring at the last hour of the month and those at the first hour of the follow-
ing month. However, this discontinuity is considered acceptable for the scope of this
research, since our main focus lies on the environmental behaviour over a long period
of time. Also, based on the method proposed by [18] time series were also generated
by taking into account more than one lag (by using a D-Vine for the time series process
of the wind speed Ut . However it was found that this approach does not improve the
persistence of the synthetic time series and therefore it was decided to proceed with the
proposed method based on a first order lag.

2.3.3. VALIDATION OF SYNTHETIC TIME SERIES
Besides the visual comparison between the scatter plots of the observed and generated
time series, two additional characteristics of the time series is advised to be compared
in order to validate the synthetic time series. These are the monthly workability and the
persistence of weather windows.

The monthly workability concerns the percentage of the time steps during which
an operation, limited by certain environmental thresholds, can be performed for every
month. “The persistence of an environmental parameter above (below) some thresh-
old level is defined as the time interval between an up-crossing (down-crossing) of that
threshold level and the first subsequent level down crossing (up-crossing) of the same
level” [26]. Similarly, the persistence of weather windows can be defined as the amount
of hours that the environmental parameters (i.e. wind speed and wave height) do not
exceed the environmental thresholds (or limits) of an operation.

2.4. APPLICATION OF PROPOSED METHOD

T HIS section presents the application of the methods described in 2.3 as well as a test
case concerning the estimation of the duration of the cable installation of an OWF.

2.4.1. ENVIRONMENTAL DATA ANALYSIS
Two different environmental data sets concerning average wind speed (m/s), that is the
average of the wind speeds observed in the time interval of interest, and significant
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wave height (m) which is the mean values over the upper third of the observed wave
heights during the time interval [27], were analysed in order to find which of the three
copulas families introduced in section 2 describes best the dependence between those
two variables. The first environmental data set concerns 21 years (1990-2011) of mea-
surements in one-hour intervals from an offshore station (41010) located east of Cape
Canaveral in Florida, available on National Oceanic and Atmospheric Administration
(NOAA)2 web site. The second environmental data set concerns 3 years (2010-2013) of
observations from an offshore station located in the North Sea and it was provided by
Deltares. Deltares’ environmental data were provided in 10-min intervals and they were
transformed into one-hour intervals by taking the maximum value observed during one
hour. It was decided to take the maximum values of the means observed during one
hour; however it must be noted that the results would not be different concerning which
copula fits better the data if the mean of the mean values was used. Both available envi-
ronmental data sets were analysed following the same procedure.

The described (in Section 2.3.1) historical environmental data analysis was conducted
for every month in order to ensure that seasonality will be taken into account in the es-
timation of the copula parameter and subsequently in the produced time series. Con-
cerning data from Deltares and NOAA, Tables 2.1 and 2.2 present the calculated values
of the sum of square differences and the semi-correlations for February, June and for the
entire data sets. For both environmental data sets the Gumbel copula had the smaller
square difference compared to Gaussian and Clayton copula; meaning that the Gumbel
copula has the smallest "distance" between empirical copula and the estimate repre-
sented by the parametric copula. Moreover, the calculated values of semi-correlations
clearly show that there is tail asymmetry. It can be seen that the upper quadrant semi-
correlation regarding Deltares’ data is larger than the overall correlation while the upper
quadrant semi-correlation regarding NOAA data are very close. This result suggests that
a model with upper tail dependence is preferable. Considering the three copulas under
investigation, only Gumbel copula has upper tail dependence. The results of these tests
evidently indicated that the Gumbel copula is the copula that fits the data best among
the copulas under consideration.

ρ ρN E ρSW SN SGum SC l

Overall 0.6123 0.7092 0.1278 2.1420 0.9587 11.2876
February 0.6486 0.6479 0.2536 2.5932 1.3222 12.3801
June 0.6750 0.6431 0.3244 0.8740 0.3189 9.3321

Table 2.1: Semi-correlation and square differences of the environmental data provided by Deltares.

In Figures 2.2 and 2.3, the values of exceedance probability for percentiles larger than
80th are presented for Gaussian, Gumbel and Clayton copula, while the dots indicate the
exceedance probability of observations. Based on the presented plots, it was found that
Gumbel copula underestimates the exceedance probability less than the other investi-
gated families, as far as percentiles smaller than 90th and 96th are concerned for Deltares
and NOAA entire data sets respectively. For higher percentiles, the size of the sample is

2https://www.noaa.gov/
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ρ ρN E ρSW SN SGum SC l

Overall 0.6412 0.6322 0.1531 1.2848 0.5084 9.7843
February 0.6542 0.6496 0.1442 1.1522 0.4223 9.7625
June 0.5595 0.5692 0.1232 1.0443 0.4731 6.8582

Table 2.2: Semi-correlation and square differences of the NOOA environmental data.

Figure 2.2: Conditional exceedance probabilities P (U > up |V > up ) for different percentiles up concerning
environmental data provided by Deltares.

smaller and therefore the calculated exceedance probabilities of the observations tend
to have larger distance from those of the Gumbel copula. However it is obvious that
Gaussian copula, which was the second best among the investigated families, underesti-
mates the probability of extreme environmental conditions in all cases. This is crucial in
our case where the quality of the estimated duration of the operations is influenced by
the quality of estimation regarding extreme environmental conditions that hinder the
operability of the vessels and equipment. Therefore, based on the conducted tests on
both available environmental data sets, one can safely conclude that among the one
parameter copula families investigated Gumbel is the most appropriate to model the
dependence between wind speed and significant wave height.

2.4.2. TEST CASE DESCRIPTION

A simulation algorithm, which performs Monte Carlo simulations concerning the in-
field cable installation of an offshore wind farm, was developed in order to identify the
influence of using synthetic time series instead of observations. The flowchart of this

Figure 2.3: Conditional exceedance probabilities P (U > up |V > up ) for different percentiles up concerning
environmental data from NOOA.
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algorithm can be found in Figure 2.5 (in which green and red arrows denote respectively
positive and negative response to associated decision boxes). The developed algorithm
together with the copulas algorithm (described in Section 2.3.2) were combined into a
decision support tool (Figure 2.4) which can be used by concept engineers to compare
different cable installation scenarios.

The developed decision support tool works as follows: first historical environmental
data observed in the installation site are fed into the copula analysis algorithm, which
performs the presented statistical tests and calculate the parameters regarding the de-
pendence of the wind speed and the significant wave height as well as the autocorrela-
tion for each month. Then, as many random environmental time series as needed are
produced. Through testing, it was found that 1000 randomly generated annual time se-
ries are sufficient since the resulted CDF curves of installation’s duration do not present
important differences with a larger number of time series. Following, the produced time
series, along with the cable installation scenario details are fed into the cable installa-
tion algorithm which simulates the proposed installation scenario for every different set
of time series. Finally a CDF curve of the duration of the cable installation is obtained
as output and the user is able to estimate the duration of a cable installation scenario
within a confidence level.

Operation Wind Wave
Pre-lay grapnel run - 1.5 m
Crew transfer 12 m/s 1.25 m
Pull-in 12 m/s 1.25 m
Pre-lay survey - 1.75 m
Cable laying 12 m/s 1.75 m
Pre-burial survey - 1.5 m
Burying cable - 1.5 m
Post-burial survey - 1.5 m

Table 2.3: Details of the cable installation test case.

A realistic test case was provided by the internationally operating Dutch marine con-
tractor Van Oord. This concerns the cable installation of an OWF consisting of 55 wind
turbines in the North Sea. The layout of the OWF, consisting of nodes (i.e. wind turbines
and ports) and edges (i.e. lines that connect different nodes and represent the cables)
is presented in Figure 2.6. The infield cable installation of an offshore wind farm is a
complex process consisting of different operations performed by different types of ves-
sels. The cycle of installation operations that take place in every edge of the OWF when
post lay burial (PLB) of the cable is concerned, are presented in a Gantt chart (Figure
2.7). Also, the environmental limits (Table 2.3) for the different operations of the cable
installation, were provided. To clarify, it must be mentioned that the performance con-
cerns the duration of each operation, and that the limiting environmental conditions
may differ for various operations.
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Figure 2.4: Developed decision support tool for cable installation.

Figure 2.6: OWF and cable layout.
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Figure 2.7: Gantt Chart for post burial scenario of cable installation.
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Figure 2.5: Algorithm for simulating the cable installation (green and red arrows denote respectively positive
and negative response to associated decision boxes).
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2.4.3. VALIDATION
Time series were also provided by Van Oord, concerning the wind speed and the signifi-
cant wave height of a location in the North Sea, close to the site of the OWF. These time
series concerned 10 years of corrected 6 hours intervals measurements. These environ-
mental data were analyzed using the statistical analysis mentioned in section 2.3.1. It
was found that the Gumbel copula describes the dependence of the wind speed and the
significant wave height best for all months except November and December when the
Gaussian copula was preferred. Therefore, the time series for these two months were
produced, as it was described in section 2.3.2, by using the inverse h-function of Gaus-
sian copula, instead of the inverse conditional Gumbel copula. Applying the proposed
method, 1000 random annual time series of wind speed and wave height, considering
6h intervals, were constructed and their scatter plot is presented in Figure 2.8. While
Figure 2.9 shows the scatter plot of the observed time series. It can be seen that the plots
present similarities in terms of shape, marginal distributions and extreme values.

Figure 2.8: Scatter plot of 1000 constructed annual time series using copulas based on Van Oord’s environmen-
tal data.

Figure 2.9: Scatter plot of 10 years of observed time series provided by Van Oord.

In order to validate the synthetic time series, the monthly workability and the persis-
tence of weather windows were calculated for both synthetic and observed time series,
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considering an operation limited by values of significant wave height (X2) larger than
1.5 m and values of wind speed (X1) larger than 12 m/s. Moreover, different realistic
environmental limits were tested, without resulting in significant differences from the
presented case. In Figure 2.10, it can be seen that the mean workability of 1000 synthetic
time series is very similar to the mean workability for 10 years of observed time series,
for every month. This indicates that the proposed method captures sufficiently the de-
pendence between wind speed and wave height, since it is possible to produce synthetic
time series with similar workability to the observed.

Figure 2.10: Mean monthly workability of observed and synthetic time series.

However, in order to ensure that the proposed method produces realistic time series
that take into account the time dependence of the environmental variables, the persis-
tence of the weather windows was also tested. The CDF of the persistence of the ob-
served time series is compared to the CDF of the persistence of the synthetic time series
and to every year’s persistence of the synthetic time series, in Figure 2.11a and 2.11b
respectively. As it can be seen in Figure 2.11a, the CDFs of the persistence of weather
windows are very similar for both observed and synthetic time series. In Figure 2.11b,
one may observe that the CDF of the persistence varies for different years of the gen-
erated time series. These results show that using the proposed method, it is possible
to produce realistic time series that present similar characteristics to the observations
avoiding overfitting of the model.

2.4.4. REQUIRED TRANSFORMATIONS
As it was mentioned before, cable installation consists of different sub-operations per-
formed by various vessels with different operational limits. However some of these sub-
operations may have durations smaller than six hours. Therefore it is needed to trans-
form the time series from 6h intervals to 1h intervals. In this study we calculate the
values for 1h interval using linear interpolation. After transforming both, observed and
synthetic time series, to time series with 1h intervals, the workability and the weather
windows’ persistence was tested and ensured that the transformed time series (1h) have
the same characteristics as their original (6h) time series. The workability plot concern-
ing the interpolated synthetic time series was identical to the one concerning 6h syn-
thetic time series (Figure 2.10). The plot showing the cumulative distribution of the per-
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(a) Percistence CDF for observed and all synthetic
time series

(b) Percistence CDF for observed and 1000 sepa-
rate synthetic time series

Figure 2.11: Comparison of persistence between observed and synthetic times series.

sistence concerning the observed time series and the interpolated synthetic time series
can be found in Figure 2.12. The resulting plot shows that the persistence of interpolated
synthetic time series is similar to the persistence of observations. The main difference
with Figure 2.11b is that there is a probability of having smaller weather windows than
6 hours since the resolution of the synthetic time series is 1 hour. However it must be
mentioned that the probability of these cases is lower than the one of the 6h observa-
tions. This result supports the statement that it is possible to obtain higher resolution
time series maintaining the characteristics of the observations.

To conclude this section, we call the reader’s attention to two different cases in which
1h time series may be produced using the proposed method and 6h data available: (i) use
linearly interpolated 1h historical data for the construction of synthetic time series; (ii) pro-
duce 1h synthetic time series directly from 6h available historical time series. It must be
noted that both cases will lead to a wrong process as judged by persistence statistics.
Hence, it is important to first produce synthetic time series with the same resolution as
the available observed time series and then use interpolation to increase the resolution.

Figure 2.12: Comparison between CDF of the observed persistence and CDF of persistence for 1000 interpo-
lated synthetic time series (1h).

2.4.5. RESULTS
The infield cable installation scenario under consideration was simulated for different
sets of time series (1h),considering 1st of June as starting date of the operations and the
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obtained CDF curves were compared. Firstly, it is important to compare the CDF curves
of the cases where the observed time series and the randomly constructed time series
were considered for the simulation. Secondly, it is of interest to compare the same CDF
curves when other types of uncertainties are also included. Thirdly, we compare the
CDF curves of the cases where dependently and independently constructed time series
are used. The last comparison is for illustration purposes, in order to emphasize why
offshore operators should never consider environmental variables as independent.

Observed versus Synthetic time series One could say that it is sufficient to simulate
the installation scenario for the available observed time series in order to acquire a good
estimate of the duration. This statement was investigated by simulating the same ca-
ble installation scenario (PLB) for observed and synthetic time series without taking into
account any other uncertainties (i.e. the durations of the operations were assumed con-
stant and risks of failures were not considered).

In Figure 2.13, the CDF curves of these cases concerning the environmental data pro-
vided by Van Oord are presented. Usually project managers use CDF curves to estimate
the duration of a project within a confidence interval. In practice experts often base their
decisions on the 70th or 80th percentile (or P70, P80 value) of the CDF curve of the du-
ration. Regarding the 70th percentile, it can be seen that when synthetic time series are
used for the simulation, the estimated duration equals 1220 hours. However, the P70
value of the CDF of the duration when observed time series are considered, may range
from 1190 – 1240 hours. Hence, when the scenario is simulated concerning dependently
constructed time series instead of a limited number of observed time series, it is possible
to acquire more accurate estimates of the total duration.

In general it can be said that the estimate of the duration using synthetic time series
is similar to the estimate when observed time series are used. However, constructing
a large number of time series includes more possible environmental realizations to the
estimation of the duration. Thus, the obtained CDF curve presents a bigger range (from
1125 to 1390 hours), incorporating more environmental uncertainties into the estima-
tion of the duration and can be used to acquire a more precise estimate of the distribu-
tion of duration.

Besides environmental conditions there are also other uncertainties that influence
the total duration of an offshore operation. Some of these uncertainties could be po-
tential failures of equipment or variation of performance value from the deterministic
value that has been assigned. Selected uncertainties were also included in the devel-
oped tool after consultation with cable installation experts, using common features of
Monte Carlo simulation models [28]. In particular it was decided to calculate the value
of the most uncertain operation (i.e. crew transfer) from a triangular distribution and
assign a failure probability equal to 2.5% and its impact in time regarding the pull-in
operations. The results of the simulations for the same sets of observed and synthetic
time series are presented in Figure 2.14. It is interesting to see that seven different runs
of simulations concerning the observed time series present significant variations in the
CDF of the duration of the installation. However, this is not observed for the CDF of the
duration, concerning 1000 synthetic time series, which was almost identical for different
runs. Hence, it can be stated that this outcome shows clearly the importance of having a
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Figure 2.13: Comparison between observed and constructed time series based on Van Oord’s environmental
data without taking into account other uncertainties.

large number of realistic time series in order to acquire a reliable estimate of the duration
of the installation, including uncertainties regarding the environment, the performance
of the equipment and possible failures.

Dependently versus independently constructed synthetic times series For illustra-
tion purposes, the case was investigated where environmental time series are constructed
independently by calculating random numbers in [0,1] and using the inverse empirical
cumulative distribution of every month to transform them in the appropriate range. As
it was expected, the scatter plot of the independently constructed time series (Figure
2.15) seems unrealistic compared to the observed time series. As it can be seen in Fig-
ure 2.16, the duration CDF curve of the independent case has larger values and bigger
range than that of the dependent case. This result was anticipated for the independent
case, due to the fact that the cases where at least one of the two values exceeds the en-
vironmental limits of an operation are more often, resulting in shorter weather windows
and subsequently larger total duration. Therefore, the P70 value of the independent case
overestimates the estimated duration in an order of 600 hours (i.e. 25 days) compared
to the case of dependently constructed time series. An overestimation of that scale may
lead to false decisions regarding the scheduling of the operations and the installation
components (i.e. vessels and equipment), resulting in increase of the cost of the cable
installation. All the above reasons indicate that constructed time series that take into
account the dependence of the wind speed and the wave height should be used in order
to safely estimate the time of the cable installation.

2.4.6. COMPARISON OF DIFFERENT CABLE INSTALLATION SCENARIOS
The developed tool can help project schedulers and researchers in comparing different
installation scenarios based on the estimation of their duration, including environmen-
tal, performance and failure uncertainties. For that reason a different cable installation
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Figure 2.14: Comparison between CDF curves concerning synthetic time series and multiple runs for observed
time series including performance and failure uncertainties.

Figure 2.15: Scatter plot of independently constructed annual time series based on Van Oord’s environmental
data.

Figure 2.16: Comparison between dependently and independently constructed time series based on Van
Oord’s environmental data without taking into account other uncertainties.
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Figure 2.17: Gantt chart of SB scenario.

Figure 2.18: CDF curve of duration concerning PLB and SB scenarios including performance and failure un-
certainties.

scenario was built and simulated. This scenario concerns the case of simultaneously
burying (SB) which does not require a separate vessel for the burying of the cable but
considers smaller performance regarding the cable laying/burying operation. The in-
stallation cycle of simultaneously burying scenario for every edge of the OWF, is pre-
sented in a Gantt chart (Figure 2.17). After simulating both cable installation scenarios,
it can be seen from the obtained CDF curves (Figure 2.18) that it is more probable that
the PLB scenario will result in smaller duration of the installation than the SB scenario.
Hence, it is obvious that SB scenario would need more time to complete the installation
and it should not be preferred over the PLB scenario. However, it must be mentioned
that it could be possible that the SB scenario would be preferable in terms of costs, since
it concerns three instead of four vessels, whose day rates are very expensive. Therefore,
if one is interested in finding the overall optimal scenario, it is recommended to also
investigate the cost.

2.5. CONCLUSIONS AND RECOMMENDATIONS
In this chapter a method is proposed in order to produce realistic random time series
of the environmental conditions, such as wind speed and significant wave height, that
usually hinder the operability of vessels for offshore operations. The proposed method
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uses copulas to take into account the autocorrelation and the dependence of wind speed
and significant wave height. Usually observed time series are not available for many
years. Therefore, being able to synthesize large number of realistic time series of wind
speed and wave height can help project schedulers or researchers in simulating offshore
operations including environmental uncertainties.

In order to evaluate the importance of using the proposed method in the estimation
of the duration of offshore operations a decision support tool for the cable installation
of offshore wind farm, was developed. A cable installation scenario as well as time se-
ries measured wind speed and wave height close to the installation site, were provided
by Van Oord. Using the proposed method, 1000 synthetic time series were constructed
and validated by comparing important characteristics such as workability and persis-
tence with those of the observed time series. Then, the cable installation scenario was
simulated for different sets of time series.

It was found that dependently constructed synthetic time series provide a better in-
sight into the duration of the cable installation compared to the case where only ob-
served time series are used. The main advantage has to do with the fact that more pos-
sible realizations of environmental conditions are taken into account. Concerning the
case of independently constructed time series, the results show that not including the
dependence between wind speed and significant wave height will lead to unrealistic
time series which will result in miss-estimation of the duration of the offshore opera-
tions which are limited by these environmental characteristics. The presented method
can help professionals and researchers who are interested in including uncertainties,
concerning environmental conditions, performance of the equipment and possible fail-
ures, in the scheduling of offshore operations and the comparison of different scenarios,
by acquiring more accurate and reliable estimations of their duration.

Besides wind speed and wave height, there are also other environmental variables
such as wave period, wind direction, current speed etc., which limit or influence offshore
operations. Extending the models which represent the bivariate joint probability distri-
butions to models which represent multivariate joint probability distributions, adds sig-
nificantly to the complexity of the models. As it was already mentioned in section 2.1,
many studies have focused on describing the bivariate or multivariate joint distributions
of metocean variables without aiming in constructing synthetic time series. Since nowa-
days it is possible to acquire historical environmental time series, it would be possible
to extend the method proposed in this article in order to construct sufficient number
of synthetic time series concerning more metocean variables. These synthetic time se-
ries can be used as input to stochastic simulation models in order to acquire better esti-
mates of the duration of offshore construction activities. The use of Vine copulas, which
have been used for time series in financial applications [29, 30], is suggested for future
study. It is expected that different families of copulas with more than one parameter
would be needed in order to describe the multivariate distributions. Attention should be
paid though, because as the number of metocean variables increases, the dependence
of these variables with each other and in time will become more complex. A good way
to validate results is through persistence and workability as presented in Section 2.4.3.
How much the persistence and workability computed from synthetic time series would
differ from those computed from the observations, when more environmental variables
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are added, is to be investigated.
Finally, for future work, it is suggested to expand the features of the developed tool in

order to be able to simulate the entire installation of an OWF including also uncertain-
ties concerning the cost, the availability of components, the duration of operations and
failure events. Incorporating these uncertainties will contribute significantly towards the
reduction of their current high costs.

2.6. EXTENSION OF PROPOSED METHOD
It is worth mentioning that also in [31] similar approaches were followed using extended
models of copulas that are named Vines. Vines are pairs of bi-variate copulas that are
able to represent the dependence between multiple random variables. Previous stud-
ies on the application of vine copulas for describing sea states have already showed the
relevance of modelling the dependence between wind and wave conditions [1, 31, 32].

In [33] a similar approach is proposed which can be seen as an extension of the
method presented in this chapter. In this approach a Vine copula was used in order to
produce multivariate synthetic time series including the wave period, the tidal velocity
and the current velocity. This with the purpose of applying it on a topic concerning the
O&M of tidal energy converters (TECs). The key findings from extending this method as
shown in [33] are the following:

• Using a D-vine was possible to generate synthetic time series that incorporate the
dependencies between wind speed, wave height, wave period and current velocity

• More possible realizations of the environmental conditions are possible to be rep-
resented while the persistence of the operational windows remains comparable to
the original limited dataset

• It is possible to incorporate the dependent uncertainties of the offshore environ-
mental conditions into the decision making processes for the replacement of tidal
energy converters

• A replacement maintenance application case concerning a TEC concept from Damen
Shipyards for a specific tidal location in Canada was examined to illustrate the im-
pact of this approach on decision making.

• A decision support tool utilizing Semi-Markov Decision Process (SMDP) was used
to determine “optimal" replacement maintenance policy (i.e. combination of failed
TECs to initiate actions for replacement). This tool allowed the description of mul-
tiple failing TECs in different tidal platforms, ensuring the minimization of main-
tenance costs and revenue losses.

• The impact of using vine copula-based synthetic time series was also investigated.
To achieve this the durations of certain activities were calculated and compared
to the case where the original limited dataset was used. It was found that using
the original limited dataset could lead to a considerable underestimation of the
operational windows and maintenance replacements, compared to the case where
vine copulas were used to generate time series.
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3
CONSTRUCTION ACTIVITIES

DURATION

Time isn’t the main thing. It’s the only thing.

Miles Davis

Offshore wind operations face important logistical challenges and require improved man-
agement of the installation and maintenance processes. For this reason, numerous models
have been developed concerning different aspects of these operations. Most of these models
assume constant durations for the installation or maintenance activities or employ prob-
ability distributions to describe the associated uncertainty. However, these approaches do
not take into account the dependence between the activities or the learning effect. This
chapter proposes methods to improve the description of the stochasticity of the duration
of installation activities of offshore wind turbines (WTGs). To achieve this, the use of non-
parametric Bayesian Networks (NPBN) are explored using real data from realized installa-
tion projects. It was found that the proposed approach allows for a proper representation
of the uncertainty on the duration of the installation activities that can lead to more accu-
rate and reliable estimates of the installation durations. Hence, this can effectively support
decision makers in optimizing the work planning of offshore activities.

Parts of this chapter have been published verbatim in PSAM proceedings [1].
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3.1. INTRODUCTION AND MOTIVATION

D URING the last years, it became apparent that offshore wind energy can significantly
contribute to the essential transition from conventional energy sources to renew-

ables [2, 3]. Moreover, this transition can already be observed in the European offshore
industry; offshore wind energy has recently become financially competitive, attracting
more investments from major energy companies. However, certain aspects, related to
the management of the construction process of offshore wind farms, should be im-
proved in order to tackle the logistical challenges caused by the necessity to move farther
offshore in coming years.

Construction activities of offshore wind farms are complex and capital intensive. In
addition, these activities are subject to various uncertainties such as environmental con-
ditions, supply disruptions and failures or crew mistakes which may occur during the in-
stallation process. However, most of these uncertainties are often neglected or described
superficially, resulting in significant budget and schedule overruns. To avoid these unde-
sirable outcomes, probabilistic risk analysis methods should be utilized in the planning
phase to support optimal decision making under uncertainty.

During the last years, various models have been developed concerning different as-
pects of the installation process of offshore wind farms [4–11]. However, the majority
of the available models either assume constant values for the duration of the activities,
neglecting the associated uncertainty, or make use of distributions (such as triangular or
normal probability distributions many times quantified with informal procedures and
not adequately validated) to describe the uncertainty of these variables. In both cases,
the dependence between the durations of subsequent construction activities is ignored.
The construction activities of offshore wind farms are operations that are usually per-
formed sequentially, by the same set of installation vessels and crew. Hence, the as-
sumption of independence could lead to miss-estimations of total cost and time, which
may result in decisions which will prove to be far from optimal during the installation
phase.

3.1.1. OUTLINE
This chapter explores different methods for improving the modeling of the duration of
construction activities. Non parametric Bayesian Networks are utilized to better describe
the dependence between the construction activities. Also, as possible extension au-
toregressive models and dynamic Non parametric Bayesian Networks are recommended
to describe the learning effect during the construction project and the combination of
learning effect and construction activities dependence. The theoretical background of
the utilized methods can be found in Section 3.2 while Sections 3.3 and 3.4 present the
application of the methods for describing the activities dependence and a possible ex-
tension to describe the learning effect and their combination respectively.

3.2. THEORETICAL BACKGROUND

3.2.1. BAYESIAN NETWORKS
Bayesian networks (BNs) are graphical, probabilistic models which consist of nodes and
directed arrows (or arcs). Each node represents a continuous or discrete random vari-
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able, while the arrows connect the nodes to describe the dependence between the ran-
dom variables. Each arc connects a predecessor (or parent) node with a successor (or
child) node and represents the dependence between these two. The arcs of the BN
should connect the nodes in a way such that there are no directed cycles in the graph.
Moreover, the graphical structure of BNs allows the visualization of conditional indepen-
dencies as well as conditional dependencies. Summarizing, the BNs are directed acycli-
cal graphs (DAGs) which represent the joint probability distribution of random variables
in an intuitive way.

There are different classes of BNs depending on the type of random variables that
constitute the network. Namely discrete BNs which consist of discrete random variables
and hybrid BNs (HBNs) which can involve both discrete and/or continuous variables.
For the formalization of discrete BNs the reader is referred to [12]. In this study, since
the variables of interest (i.e. duration of installation activities) are continuous, a class of
HBNs, the so called non-parametric BNs (NPBNs) were used. The main characteristic of
NPBNs is that the dependence is described by copulas. Copulas are multivariate distri-
bution functions whose one-dimensional margins are uniform on the [0,1] interval [13].
Hence, for NPBNs it is only required to specify the empirical marginal distribution for
each variable and a (conditional) rank correlation for each arc [14]. A complete descrip-
tion of NPBNs is out of the scope of this chapter. For a complete overview, the reader is
referred to [15] and [14].

There are different families of copulas. A detailed description of these can be found in
[16]. For the purpose of this study, we limit the analysis to one-parameter copula families
for which the dependence structure can be written as function of the rank correlation
coefficient between pairs of random variables. The Spearman’s rank correlation for the
ranks of two random variables X and Y is given by eq. 3.2.1, where FX (x) is the rank of
variable X .

r (X ,Y ) = E(FX (x)FY (y))−E(FX (x))E(FX (x))

σFX (x)σFY (y)
(3.1)

3.3. DEPENDENCE BETWEEN ACTIVITIES

T HIS section investigates the impact of neglecting the dependence between the dura-
tion of the offshore construction activities and propose a method to incorporate this

dependence into the estimates of the cost and time of the project. For this purpose, in
the proposed method, the durations of the offshore construction activities of the wind
turbine generators (WTG) are calculated using a Bayesian network (BN). This represents
the dependence relationship between the activities and was populated using historical
data of a past project.

To investigate the impact of this approach, a test case concerning the installation of
150 wind turbines in the North Sea is simulated for three different approaches. The first
and second approach are those currently used in practice (i.e Approach 1: independent
constant values for the activities duration and Approach 2: durations described by a tri-
angular distributions) while the third scenario utilize the developed BN. The cumulative
distributions of cost and time for project completion are compared and the impact of
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Figure 3.1: Order of installation activities of WTGs.

neglecting dependence is presented.

3.3.1. MODELING METHODOLOGY
The proposed methodology to model the dependence between construction activities
can be summarized in the following steps:

1. Cluster the activities in a way that represents the construction process

2. Analyse the historical data to find for which construction activities a description
of uncertainty and dependence would be sensible

3. Identify the appropriate bivariate copula that describes the dependence between
pairs of installation activities

4. Build a BN model that describes the dependence between the selected installation
activities

3.3.2. APPLYING METHODOLOGY
In general, the installation of offshore WTGs consists of multiple activities, including ac-
tivities for positioning of the vessel, preparation for the construction activities and test-
ing the mechanical systems after the completion of the installation. Since our goal is to
investigate whether the dependence between these activities is important or not, it was
chosen to focus on the “main” activities of the installation. Therefore, in our case, the in-
stallation of the WTGs concerns the installation of tower, nacelle and rotor (i.e. 3 blades).
These are sequential activities which are usually performed from the installation vessel
that has all the required components on board. In Figure 3.1, a hypothetical simple Gantt
chart illustrates the order of consolidated installation activities for one WTG.

Copula Definition Tail Dependence
Gaussian C (u, v) =Φρ(Φ−1(u),Φ−1(v)) none
Gumbel C (u, v ;θ) = exp−[(−ln(u))θ+ (−l n(v))θ]1/θ upper
Clayton C (u, v ;β) = (u−β+ v−β−1)1/β lower

Table 3.1: Characteristics of investigated copulas.

Historical data from an installation project performed by the Dutch marine contrac-
tor Van Oord were used. This project concerns the installation of 150 WTGs in an OWF
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located in the North Sea. The provided database concerns a detailed register of the du-
rations of all the operations which were performed by two installation vessels (vessel V 1
and vessel V 2), as well as the delays that occurred for different reasons. The database was
divided per vessel and the durations of the installation activities were analyzed. From the
analysis of the database, it was found that the duration of the installation activities un-
der investigation presents noticeable fluctuations. More precisely, the average duration
of the rotor installation was 255 min and 367 min, while the standard deviation was 78
min and 95.4 min, for vessel V 1 and V 2 respectively (see also Figure 3.1). In the calcula-
tion of these durations the delays due to weather conditions were not included.

IDENTIFYING THE APPROPRIATE COPULA

Two different tests were performed to identify the appropriate bivariate copula that de-
scribes the dependence between pairs of installation activities. Three of the most pop-
ular one-parameter copulas which represent different tail dependencies were investi-
gated. Namely, the Gaussian copula, the Gumbel copula and the Clayton copula. The
different characteristics of these copulas are summarized in Table 1, where Φ denotes
the standard normal cumulative distribution andΦρ denotes the standard bivariate nor-
mal distribution with Pearson correlation ρ.

The performed tests concern: (i) the computation of semi-correlations introduced
in [16] and (ii) the Cramér-von Mises statistic presented in the “blanket test” described
in [17], for every pair of installation activities for each vessel. These tests have also been
used to identify the best fitting copulas in a variety of applications such as [11, 18, 19].

The first test concerns the semi-correlations which are the Pearson correlation co-
efficients for each quadrant (i.e. NE, SE, SW and NW) computed on the standard nor-
mal transforms of the original data. If the values of semi-correlations are larger than the
overall Pearson correlation coefficient ρ, then there is indication of tail dependence. The
calculated semi-correlations for vessel V 1 are presented in Table 3.2 and the results are
visualized together with the normal transforms in Figure 3.2. For vessel V 1, the semi-
correlations of different pairs of activities indicate that there might be asymmetry, how-
ever the semi-correlations of the quadrants are not significantly different than the overall
Pearson correlation. Regarding vessel V 2, the calculated semi-correlations are presented
in Table 3.3 and the normal transforms are presented in Figure 3.3. For vessel V 2, the
semi-correlations regarding the installation activity pairs of Tower – Rotor and Nacelle
- Rotor have a larger value compared to the overall correlations. Therefore, the second
diagnostic test (i.e. “blanket test”) was used.

The second test is based on the Cramér-von Mises statistic and describes the sum of
square differences between the empirical copula Cn(u) given by:
Cn(u) = 1/n

∑n
i=1 1(U1 <= u1,U2 <= u2),u = (u1,u2) ∈ [0,1]2

and the parametric copula C(θn )(u), as presented in eq. 2.10. This shows which copula
family fits better the empirical copula of each pair of activities. In Table 3.2 and Table 3.3
the results of the Cramér – von Mises statistic for every pair of activities are presented for
vessel V 1 and V 2 respectively. The best fitting copulas for every pair can be seen in bold.
However, the values of the statistic for every copula are low and the differences between
the different copulas are not significant. Hence, the parametric bootstrap procedure
described in [17] was also performed, with a sample size equal 1000 and grid space equal
to 300, resulting in the p-values presented in Table 3.4.
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ρ ρN E ρSE ρSW ρNW Sg auss Sg umbel Scl ay ton

Tower-
Nacelle

0.4 0.226 -
0.0668

-0.233 -0.576 0.453 0.397 0.674

Tower-
Rotor

0.28 0.369 0.0186 -0.291 -
0.0679

0.643 0.586 0.864

Nacelle-
Rotor

0.53 0.693 -0.366 0.0320 0.495 0.297 0.337 0.357

Table 3.2: Summary of performed tests for vessel V 1

ρ ρN E ρSE ρSW ρNW Sg auss Sg umbel Scl ay ton

Tower-
Nacelle

0.37 0.2023 0.271 -
0.0226

0.0027 0.437 0.363 0.755

Tower-
Rotor

0.05 -0.198 0.075 0.291 -0.310 0.365 0.359 0.382

Nacelle-
Rotor

0.01 0.222 0.426 0.219 -0.162 0.531 0.523 0.481

Table 3.3: Summary of performed tests for vessel V 2

Based on the computed p-values, it is not possible to reject any of the investigated
copulas. Based on the analysis described above, it was decided to use the Gaussian cop-
ula as a fair representation for all bivariate pairs of installation activities. This copula
family will be used in the BN to represent the dependence structure of each pair of ac-
tivity durations.

BUILDING BN MODEL

In order to build the BN model that describes the dependence between the WTG instal-
lation activities, the Uninet software for non-parametric BNs was used [20]. Different
configurations were tested to build the model for each vessel. To decide which configu-
ration describes better the dependence of the WTG installation activities the empirical
rank correlation matrices were compared to those of the developed BN models using the
normal copula. The rank correlation matrices were constructed by calculating the rank
correlation between every possible pair of the installation activities.

V 1 Gauss V 1 Gum-
bel

V 1 Clay-
ton

V 2 Gauss V 2 Gum-
bel

V 2 Clay-
ton

Tower-
Nacelle

0.758 0.841 0.484 0.768 0.859 0.417

Tower-
Rotor

0.503 0.603 0.33 0.847 0.889 0.838

Nacelle-
Rotor

0.949 0.889 0.869 0.639 0.653 0.709

Table 3.4: P-values from bootstrap
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(a) Tower-Nacelle installation duration (b) Nacelle-Rotor installation duration (c) Tower-Rotor installation duration

Figure 3.2: Semi-correlations and normal transforms for pairs of activities performed by vessel V1.

(a) Tower-Nacelle installation duration (b) Nacelle-Rotor installation duration (c) Tower-Rotor installation duration

Figure 3.3: Semi-correlations and normal transforms for pairs of activities performed by vessel V 2.

For both vessels, models with serial connection were chosen (Figure 3.4 and 3.5. for
vessel V1 and V2 respectively). The nodes are represented as histograms of the duration
of every activity and the average and standard deviation of those samples are also shown.
The comparison of the BN rank correlation matrices to the empirical ones are presented
in Tables 3.5 and 3.6. As it can be seen, these do not present significant differences. The
chosen configuration (i.e. serial connection) is also an intuitive representation of the
dependence between the sequential installation activities of the WTG.

As it was mentioned before, the Gaussian copula was assumed to describe the bi-
variate dependence between the installation activities. In order to verify this assump-
tion, the determinants of the rank correlation matrices were used as described in [14].
The determinant takes values between zero (if there is linear dependence between the
normal transforms of the variables) and one (if all variables are independent). Three dif-
ferent determinants of rank correlation matrices were calculated using Uninet. Namely,
the determinant of the empirical rank correlation (DER), the determinant of the empiri-
cal normal rank correlation (DNR) and the determinant of the rank correlation matrix of

Figure 3.4: BN model for V 1.
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Figure 3.5: BN model for V 2.

Empirical rank correlation BN rank correlation
Tower-V1 Nacelle-V1 Rotor-V1 Tower-V1 Nacelle-V1 Rotor-V1

Tower-V1 1 0.403 0.285 1 0.386 0.203
Nacelle-V1 0.403 1 0.517 0.386 1 0.51
Rotor-V1 0.285 0.517 1 0.203 0.51 1

Table 3.5: Empirical and BN rank correlation matrices regarding vessel V 1

the developed BN using the Gaussian copula (DBN). To clarify, DER and DBN of vessel
V 1 are the determinants of the correlation matrices presented in Table 3.7 7 while DNR
is the determinant of the rank correlation matrix that is obtained by transforming the
marginals to standard normals.

The calculated determinants are expected to differ since the empirical copula would
be different than the Gaussian copula. Hence, for each model it was tested: (i) whether
the DER is within the 90% confidence bound of the DNR and (ii) whether the DNR is
within the 90% confidence bound of the DBN. For both models, it was found that DER
was within 90% bound of DNR and DNR was within 90% bound of DBN, for 150000 sam-
ples. This means that the Gaussian copula is a valid assumption for both models and
these can be used to represent the dependence of the offshore WTG installation activi-
ties.

3.3.3. TEST CASE FOR DEPENDENCE OF DURATION OF ACTIVITIES
To investigate the impact of the developed BN models into the estimated duration of
the OWF installation process, a simulation model was developed in MATLAB, regarding
the installation of offshore WTGs. A flowchart of the developed simulation algorithm is
presented in Figure 3.6. First the details of a particular installation scenario (i.e. details
of OWF and vessels, available environmental time series, environmental limits etc.) are
loaded.

Empirical rank correlation BN rank correlation
Tower-V2 Nacelle-V2 Rotor-V2 Tower-V2 Nacelle-V2 Rotor-V2

Tower-V2 1 0.342 0.0379 1 0.353 0.0039
Nacelle-V2 0.342 1 -0.0098 0.353 1 0.0107
Rotor-V2 0.0379 -0.0098 1 0.00394 0.0107 1

Table 3.6: Empirical and BN rank correlation matrices regarding vessel V 2
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Model for V 1 Model for V 2
DER 0.60777 0.88103
DNR 0.62483 0.87358
DBN 0.62964 0.87514

Table 3.7: Values of determinants for models validation.

This scenario is simulated N_ts times for every available environmental time series
to introduce the weather risk and N_sims times for every available time series to intro-
duce the uncertainty of the activities duration. The activities for the installation of every
WTG are treated as uninterruptable, thus each activity starts only if there is enough time
remaining in the weather window. If this condition is satisfied, then the time of com-
pletion of this particular activity is saved and the next activity is examined, otherwise
the subsequent weather window is examined. This procedure is repeated until all the
required N_WTG are installed. Ultimately, the cumulative distribution of the duration of
the WTGs installation is computed and plotted.

Inputs of test case The developed simulation model was used to simulate a hypothet-
ical case concerning the installation of 150 WTGs in the North Sea. Time series consist-
ing of ten years of measurements concerning significant wave height Hs and wind speed
UW in the North Sea were used, to incorporate environmental uncertainty similarly to
[11, 21]. The environmental limits, above which the activities cannot be performed were
set equal to 1.5 m for significant wave height and 8 m/s wind velocity according to [9].
For this test case, the analyzed 2 vessels (V 1 and V 2) were used to install 75 WTG each. It
should be mentioned that one of the main assumptions of this simulation model is that
the support structures and the TPs are already installed when the vessel is positioned
and ready to start the installation of the WTGs.

Three different approaches were used to calculate the duration of the activities in
order to investigate the impact on the cumulative distribution of the total duration of the
installation. Approach 1 made use of the mode (i.e. most frequent value) of the registered
durations for every activity performed by each vessel. Approach 2 employed a triangular
distribution for every activity using as parameters the minimum, mode and maximum
of the registered durations. Finally, Approach 3 made use of the developed BN models
to incorporate the dependence between the installation activities. The reasoning for
choosing to compare these three approaches is that Approach 1 is a logical and simple
approach that could often be used in current practice, Approach 2 is commonly used
for introducing uncertainty regarding the durations of project activities and Approach 3
is the proposed way to introduce the dependence of activities duration in a stochastic
simulation framework. A summary of the details of the simulated scenario can be found
in Table 3.8.

Results of test case The results of the simulated scenario concerning the CDFs of the
total installation duration are presented in Figure 3.7. When the samples from the trian-
gular distributions (Approach 2) and the developed BNs (Approach 3) are obtained be-
forehand, the simulation algorithm needs less than 2 min to produce and plot the results.
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Figure 3.6: Flowchart of developed simulation algorithm (green and red arrows denote respectively positive
and negative response to associated decision boxes).

Details Values

Number of WTGs 150
Number of Vessels 2 (vessels V1 and V2)
MetOcean time series 10 years of measurements for Hs and Uw

Approach 1
Tower-V1 = 115min
Nacelle-V1 = 105 min
Rotor-V1 = 230 min

Tower-V2 = 125min
Nacelle-V2 = 125 min
Rotor-V2 = 305 min

Approach 2

V1 Triang. Distr. param.: V2 Triang. Distr. Param.
a b c a b c

Tower 45 115 226 Tower 65 125 310
Nacelle 55 105 170 Nacelle 85 125 255
Rotor 165 230 653 Rotor 245 305 795

Approach 3 Developed NPBN for V1 Developed NPBN for V2

Table 3.8: Details of simulated scenarios



3.3. DEPENDENCE BETWEEN ACTIVITIES

3

51

Figure 3.7: Obtained distribution of the simulated test case for different approaches.

From the obtained distributions one can notice significant differences in the estimates of
the total duration of the WTGs installation. When Approach 1 is used the estimated dura-
tion ranges from 1950 hours to 2700 hours due to the uncertainty of the environmental
conditions. The estimated total duration for Approach 2 ranges from ≈ 2450 hours to
≈ 3350 hours while for Approach 3 ranges from ≈ 2150 hours to ≈ 2900 hours. These
results indicate that when the uncertainty regarding the duration of the activities is in-
troduced without taking into account the dependence between these (Approach 2), then
the overall uncertainty of the estimated duration increases. In other words, it is shown
that the proposed BN models allow a more a realistic representation of the installation
process that leads to reduction of the uncertainty of the estimated installation’s duration.

In practice, similar computations are used in the planning process of OWF instal-
lation projects and constant values such as the mode (Approach 1) or the mean of the
registered activities are used. By comparing the 50th percentile (P50) of the CDF of Ap-
proach 1 with that of the CDF of Approach 3 a difference equal to ≈ 200 hours (≈ 9 days)
is observed. Considering the fact that the day rates of the installation vessels approx-
imate hundreds of thousands of Euros, an underestimation of that level can lead to a
miss-estimation of millions of Euros. Hence, the appropriate representation of the de-
pendence between the installation activities can assist the decision makers to more ac-
curate estimates which can be profitable for all the involved parties.

3.3.4. CONCLUSIONS CONCERNING DEPENDENCE OF CONSTRUCTION OP-
ERATIONS

One way to further reduce the costs and improve the competitiveness of offshore wind
energy is by improving the management of the logistics of the installation process. To
achieve this, simulation models that take into account the predominant uncertainties
can prove useful. The presented method used the theory of Bayesian Networks to build
models that represent the dependence between the installation activities of offshore
wind turbines.

It was shown that a NPBN with serial connection can be used to represent the se-
quential nature of the installation activities performed by a vessel. To illustrate the im-
pact of incorporating the dependence of the installation activities, a simulation algo-
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rithm was developed and a hypothetical case was simulated for three approaches con-
cerning the duration of the activities. It was found that the proposed approach (i.e.
dependent, stochastic activity durations) results in estimates with reduced uncertainty
compared to the approach where independent stochastic activity durations were con-
sidered. Furthermore, it provides more realistic and accurate representation of the in-
stallation process that can lead to more reliable estimates of the total duration compared
to a simple approach that is used in practice. More precisely, the simplest approach (in-
dependent, constant activity duration) resulted in a difference up to 9 days less for the
the estimated total duration P50 value, compared to the proposed approach.

Concluding, the proposed approach allow proper representation of the dependence
between the installation activities that can assist decision makers in the planning of the
installation process. This approach can lead to reduction of the uncertainty of the esti-
mated installation duration and subsequently its cost. However, it must be mentioned
that for this study, it was decided to focus only on the “main” activities of the installation
of WTGs based on data from one past project. In order to obtain a widely applicable
general representation of the dependence between the installation activities further re-
search is required. Furthermore, there are many more activities that are required for
the installation of OWFs and their dependence should be investigated and described ap-
propriately. These will result in a more complex model and acquiring sufficient data to
quantify the BN model might be very challenging or impossible. A potential solution
would be to quantify the BN based on formal expert judgment methods.

3.4. POSSIBLE EXTENSION - LEARNING EFFECT

T HE learning effect during construction projects with repetitive activities has been
identified in the past as an important factor. Offshore construction activities such

as the the installation activities of OWFs have a repetitive nature. However, this effect
has not been modeled in detail in the existing models. In the following subsection a
possible extension is recommended for taking into account the learning effect during
the installation of OWFs.

3.4.1. PROPOSED MODELING METHODOLOGY
The methodology to describe the learning curve is described in the following steps:

• Step 1: Investigation of significance of learning effect for different activities. First
of all the significance of learning effect for the different groups of activities should
be explored.

• Step 2: Model the learning effect. Investigate appropriate autoregressive models
for describing the learning effect for the activities that presented a significant effect
from Step 1. In order to investigate different ARMA - ARIMA models the built-
in econometrics toolbox in MATLAB can be used. This toolbox can support the
analysis and assists in finding the model that fits better the existing data. It also
enables the use of AIC and BIC criteria.

• Step 3: Lastly, the impact of the different approaches in modeling learning effect
can be explored by the use of a realistic test case.
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Investigate significance of learning effect A preliminary investigation was conducted.
For this, real data provided by the Dutch marine contractor Van Oord were analyzed.
These data were collected during the installation of offshore wind farms that were per-
formed in the past. These data concerned the durations of the different activities per-
formed. It was chosen to focus on the most important activities for the installation of
WTGs and foundations when the vessel is at the site. For this purpose all the relevant
sub-activities were clustered into the following groups:

1. preparation activities;

2. installation of tower;

3. installation of nacelle;

4. installation of rotor (3 blades);

5. finalization activities

Plots of the duration of the activities concerning the installation of WTGs of anonymized
projects with the order these were performed gave an indication of the significance of
the learning effect. In Table 3.9 are shown the results of fitted linear regression model
along with the p-values (Note: these values were calculated using fitlm function of Mat-
lab). The p-values concern the t-statistic for each coefficient that tests the null hypoth-
esis that the corresponding coefficient is zero against the alternative that it is different
from zero, given the other predictors in the model. In the presented case, there is only
one predictor; i.e. the previous value of the duration for a particular activity. A p-value
of the t-statistic below 5% means that there is no significant trend in at the 5% signifi-
cance level. The analysis of the available data showed that a significant negative trend
was found for installation of towers, nacelles and rotors. On the contrary, no trend was
found for the preparation and finalization activities. These findings were consistent for
the majority of the different available projects and vessels.

Find appropriate model for learning effect The next step is to find an appropriate
model that describes the learning effect for those activities which a significant learning
effect was found in Section 3.4.1. To achieve this the built-in econometrics toolbox of
MATLAB can be utilized. Different tests should be performed to find the most suitable
autoregressive model for the respective activities.

Combination of learning effect and dependence of activities duration Finaly, one
would think what would be the impact when combining the dependence between the
activities with the learning effect. In order to investigate this, it is recommended to ex-
tend the NPBN presented in Section 3.3.2. The developed NPBN can be copied as many
times as the chosen relevant lags in order to create a dynamic NPBN that will capture the
temporal dependence of the construction activities.
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Activity Estimate P-value
’V2_Pr2_FOU_Prep’ 0.233 0.667
’V2_Pr2_FOU_MPs’ -6.079 2.657e-08
’V2_Pr2_FOU_TPs’ -2.591 1.469e-09
’V2_Pr2_FOU_Fin’ -0.172 0.336
’V2_Pr2_WTG_Prep’ 0.116 0.658
’V2_Pr2_WTG_Twr’ -1.243 3.228e-09
’V2_Pr2_WTG_Ncl’ -0.614 8.147e-05
’V2_Pr2_WTG_Rot’ -1.180 0.028
’V2_Pr2_WTG_Fin’ 0.065 0.522
’V1_Pr2_FOU_Prep’ 0.303 0.065
’V1_Pr2_FOU_MPs’ -4.90 2.917e-13
’V1_Pr2_FOU_TPs’ -2.583 8.824e-14
’V1_Pr2_FOU_Fin’ -0.071 0.512
’V1_Pr2_WTG_Prep’ -0.540 0.099
’V1_Pr2_WTG_Twr’ -0.646 2.145e-04
’V1_Pr2_WTG_Ncl’ -0.628 1.551e-09
’V1_Pr2_WTG_Rot’ -2.101 2.943e-09
’V1_Pr2_WTG_Fin’ -0.004 0.968
’V1_Pr1_WTG_Prep’ -1.059 0.079
’V1_Pr1_WTG_Twr’ -1.253 0.0019
’V1_Pr1_WTG_Ncl’ -0.938 0.0037
’V1_Pr1_WTG_Rot’ -1.851 4.3503e-04
’V1_Pr1_WTG_Fin’ -0.563 0.004
’V3_Pr3_FOU_Prep’ -1.351 0.385
’V3_Pr3_FOU_MPs’ -10.968 2.246e-04
’V3_Pr3_FOU_TPs’ -19.330 2.504e-07
’V3_Pr3_FOU_Fin’ -3.534 0.021

Table 3.9: Significance of learning effect for different activities and projects.
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4
LEARNING FROM EXPERTS

An expert is a man who has made all the mistakes
which can be made, in a narrow field.

Niels Bohr

Often in engineering or scientific applications relevant data for the problem under inves-
tigation are limited. In these cases, expert judgments can be used. However, in order to ob-
tain valuable assessments the elicitation, evaluation and combination of the expert judg-
ments should be performed in a structured manner. One of the most widely accepted and
applied methods for structured expert judgments is Cooke’s Classical model. The Cooke’s
Classical model for elicitation and combination of expert judgments has been used in sci-
ence and engineering since at least the early 1990’s. The most widely used program for
applications of this model is EXCALIBUR. However, its code is not available for practi-
tioners, which limits the accessibility and potential of the method. In this Chapter, a re-
cently developed MATLAB toolbox (ANDURIL) is presented with the intention to fill in this
gap. The software has been tested in a recent real-life application reproducing the results
of EXCALIBUR. Various advantages for the users from having the developed source code
available for practice. Recent updates of the original toolbox and applications utilizing
the developed toolbox are also mentioned.

Parts of this chapter have been published verbatim in SoftwareX 7, (2018) [1].
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4.1. METHODS FOR EXPERT JUDGMENTS

I N practice, engineers, scientists and decision makers in general are often confronted
with problems where sufficient relevant field data (or measurements) are not avail-

able. In these cases, modeling or expert judgments become an alternative source of
valuable data.

To be able to use the judgments of different experts, these should be combined for
the variables of interest. There are different approaches and methods for aggregating
the assessments of the experts. The subject of treating expert judgments as an alter-
native source of data has been extensively discussed [2–5]. The available methods can
be divided in behavioral and mathematical approaches [6]. Mathematical approaches
combine by utilizing various mathematical methods the elicited individual judgments
(expressed as subjective probabilities) of the experts concerning the uncertain quantity
under investigation. On the other hand, behavioral methods aim at achieving consen-
sus among the experts who are usually allowed and encouraged to discuss and share
assessments. The most popular behavioral methods are the Delphi technique and the
Nominal Group. For this dissertation Cooke’s classical model was chosen to be applied.
This method was chosen because it has been shown that such a mathematical approach
has an advantage over behavioral approaches [6].

4.2. CLASSICAL MODEL FOR STRUCTURED EXPERT JUDGMENT

F OR the aforementioned reasons, Cooke in [2] has developed a method (i.e. Cooke’s
classical model for structured expert judgment) to aggregate expert judgments based

on performance measures. Cooke’s classical model (CM) is the most widely used method
in practice. It has been used in many fields including the nuclear sector, chemical &
gas industry, hydraulic engineering, aerospace and aviation, occupational safety, health,
banking and volcanology to name some. Up to 2008 a total of 45 applications were col-
lected in a database [7] and at least 33 more applications have been performed since
then [8].

In Cooke’s classical model, the experts assess their uncertainty over two types of con-
tinuous quantities. The first type corresponds to target variables. These are variables
whose uncertainty cannot be sufficiently described using current models or field data
and hence expert judgments are required. The second type of variables queried in the
classical model are the so called seed variables. These are variables from the experts’ field
which are known to the (group of) analyst(s) at the moment of the elicitation (or will be-
come known to them post hoc) but whose true values are not known to the experts at the
moment of the elicitation.

Experts are thus scored according to their performance in assessing uncertainty over
seed variables. Their opinions are weighted and later combined on the basis of their per-
formance. The purpose of the classical model is to enable rational consensus. According
to [2], any methodology for structured expert judgment that aims at enabling rational
consensus should comply with the following requisites:

1. Scrutability: All data and processing tools are open to peer review and results must
be reproducible by competent reviewers.
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2. Empirical control: Quantitative expert assessments are subjected to quality con-
trols.

3. Neutrality: The method for evaluating expert opinions should encourage experts
to state their true opinions.

4. Fairness: Expert opinions are not judged, prior to processing the results of their
assessments.

The main concepts of Cooke’s classical model are summarized below. This with the
purpose of making available to the reader the main elements of the method and the
developed code. For details and extensive discussion the reader is referred to [2] and
supplementary material for [8].

In Cooke’s classical model experts are asked to provide assessments of their uncer-
tainty concerning continuous quantities in the form of a number of percentiles of their
uncertainty distribution. Most commonly the 5th , 50th and 95th percentiles are queried.

The percentiles are assessed for uncertain quantities which are in fact the target vari-
ables (or variables of interest). These percentiles are also queried for quantities whose
value is known to the analysts (or will be known to the analysts within the time frame
of the research), but is not known to the experts at the moment of the elicitation. These
are called seed or calibration variables and are used to ensure empirical control of ex-
perts’ uncertainty assessments. Examples of a seed variable and a variable of interest
concerning the example study used in this chapter for economic growth in Mexico are:

1. Seed variable: Quarterly growth rates of gross domestic product in Mexico have
been below -5% in four instances between the first trimester of 1994 and the third
trimester of 2013. What was the average value of the 28-day Mexican Federal Trea-
sury Certificates (CETES) interest rate in these four trimesters? Indicate the 5th ,
50th and 95th percentiles of your uncertainty distribution.

2. Target Variable: Consider a scenario in which, at the end of 2020, the Mexican
(commercial) interest rate is between 3.5 and 4.0 percent, the unemployment rate
is between 5.4 and 5.6 percent, the inflation growth rate is between 3.0 and 3.3, and
growth rates of gross domestic product in the USA are between 2.8 and 3.3 percent.
Please provide your estimates (5th , 50th and 95th percentiles of your uncertainty
distribution) of average gross domestic product growth rate in Mexico up to 2020.

Seed variables are used to compute two measures of performance: statistical accu-
racy or calibration and informativeness. These measures are presented next.

4.2.1. STATISTICAL ACCURACY
Assume we have answers from e = 1, . . . ,E experts on i = 1, . . . , N seed variables and
1, . . . , N1 target variables. Assume further that we assess three quantiles: qi ,5, qi ,50 and
qi ,95 for the 5th , 50th and 95th quantiles of each uncertain quantity. That is including
the target variables. There are thus j = 1, . . . ,4 interquantile bins. The procedures de-
scribed next may be easily extended by assuming more quantiles are assessed from each
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expert. For each quantity, each expert divides his/her belief range into four interquan-
tile intervals, for which the corresponding probabilities of occurrence p = [p1, . . . , p4]
are: p1 = 0.05 for a realization value ≤ 5th percentile, p2 = 0.45 for a realization value
∈ (5th ,50th] percentiles, p3 = 0.45 for a realization value ∈ (50th ,95th] bin, and p4 = 0.05
for a realization value > 95th percentile. The empirical version of p = (p1, . . . , p4) for ex-
pert e, is denoted s(e) = (s1, . . . , s4), where s j (e) is equal to the number of realizations of
seed variables falling in the j th interquantile assessed by expert e divided by the total
number of seed variables.

s1(e) = Number of realizations ≤ 5th quantile

N

s2(e) = Number of realizations ∈ (5th ,50th] quantile

N

s3(e) = Number of realizations ∈ (50th ,95th] quantile

N

s4(e) = Number of realizations > 95th quantile

N

One way to measure the difference between p and s(e) is through relative informa-
tion or entropy, which is a measure of the disagreement between them.

I (s(e), p) =
4∑

j=1
s j (e) ln

s j (e)

p j
(4.1)

Experts’ assessments are treated as statistical hypotheses. Consider for each expert
the null hypothesis H0 : The inter quantile interval containing the true value for each
variable is drawn independently from the probability vector p.

The quantity 2N I (s(e), p) where I (s(e), p) is given in equation (4.1) is asymptotically
χ2

3 (the degrees of freedom are the number of interquantile intervals minus 1). This
quantity can be used to test H0 and it defines the calibration score:

C (e) = P {2N I (s(e), p) > r } (4.2)

The probability in equation 4.2 can be evaluated by a χ2
3 distribution. The calibration

score C (e) is the probability that a deviation at least as large as r could be observed on
N realizations if H0 were true. Where r is the percentile of interest in the χ2 distribution
of interest obtained from evaluating 2N I (s(e), p) for the data corresponding to a partic-
ular expert. Values of calibration close to zero mean that it is unlikely that the experts’
probabilities are correct.

4.2.2. INFORMATIVENESS
The informativeness (or information score) measures the degree to which a distribution
is concentrated (or spread out) with respect to a background measure. In the classical
model the uniform or log-uniform background measures are used. An intrinsic range is



4.2. CLASSICAL MODEL FOR STRUCTURED EXPERT JUDGMENT

4

63

calculated for each expert’s density. The intrinsic range is obtained by adding a k% over-
shoot to the smallest interval containing all quantiles and realizations (when available),
where k is selected by the analyst (typically k% = 0.1). The lowest (l ) and highest (h)
values for the intrinsic range are li = mi n{qi ,5(e), vi } and hi = max{qi ,95(e), vi } where
vi is the realization of interest. Then qli = li −k(hi − li ) and qhi = hi +k(hi − li ). The
information score is then computed as:

I (e) = 1

N

N∑
i=1

[
ln(qhi −qli )+p1 ln

p1

q5,i −ql ,i
+ . . .+p4 ln

p4

qh,i −q95,i

]
(4.3)

Notice that the information score does not depend on the realizations (other than in
terms of calculating the intrinsic range when available) and hence may also be computed
for the target variables. When target variables are also considered, the summation in
equation 4.3 runs to N1 which includes target variables. Also notice that in equation 4.3
a uniform Background measure is applied. For a log-uniform background measure the
log of q·,i would be used instead.

4.2.3. COMBINATION
In the classical model the combination of experts’ assessments is called a Decision Maker
(DM). This is a weighted average of individual estimates. When the weights are deter-
mined based on the performance of experts in the seed variables, we speak of performance-
based DM. The DM probability densities fDM ,i , for every item i , are thus:

fDM ,i =

E∑
e=1

wα(e) fe,i

E∑
e=1

wα(e)

(4.4)

The weighs for each expert wα(e) are given by the product of calibration and infor-
mation scores when a certain threshold in calibration is attained. That is:

wα(e) = 1{C (e)>α}C (e)I (e). (4.5)

Where 1{A} denotes the indicator function for A. Values of C (e) <αwould fail to con-
fer the study the required level of confidence. Note that the DM can also be evaluated in
terms of calibration and information. For this reason the DM is referred to as the "virtual
expert". In the performance based DM the value of α is chosen such that the calibration
score of the DM is maximized. The weights in Cooke’s model are weakly asymptotically
strictly proper. This property ensures that if an expert wishes to maximize her long run
expected weight then she should do this by stating her true beliefs as answer to the seed
variables [2].

There are different types of DMs obtained from different weighting (or combination)
schemes. The simplest weighting schemes are equal weighting and user-defined weights
which fall outside of the performance-based DMs. The Global Weights DM is computed
as described above while the Item Weights DM computes the scores in equation 4.5 using
the information score per item rather than the average information score (equation 4.3).
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Once the different combination schemes have been investigated with Cooke’s method
it is common practice to perform robustness analysis. This refers to the process of ex-
cluding one seed variable or one expert at the time and re-do the analysis with the meth-
ods described in this section. However, the investigation of robustness does not nec-
essarily has to be a "leave one out at the time" procedure. This has been discussed ex-
tensively in the context of out of sample performance of Cooke’s method in recent years
[8, 9].

4.3. ANDURIL DESCRIPTION

I N the majority of past studies, which utilized the Cooke’s method, the analysis and
synthesis of expert opinions based on experts’ performance in judging uncertainty

were performed with the free, closed source software EXCALIBUR1. Hence, the value of
EXCALIBUR over the past 25 years is undeniable. However, there are some limitations
that stem from the fact that EXCALIBUR is a closed source software. Recently, a number
of cross validation studies have been conducted using Eggstaff’s MATLAB code [8, 9].
However, this code is not publicly available and it still does not implement important
features of the model such as the item weighting scheme [8].

First, EXCALIBUR being a closed source software makes the understanding of the
method more difficult and time consuming to researchers who are recently introduced
to the method. Moreover, it is impossible to modify it with the purpose of expanding its
features or investigate different approaches for combination of expert judgments. For
these reasons, an open source software for Cooke’s classical model [1] was developed
as part of this doctoral research project. This software consists of a number of different
functions which were collected in a MATLAB toolbox.

The developed toolbox was named ANDURIL2. Moreover, the freely available3 AN-
DURIL provides the user with the required transparency of all the calculations in CM
(e.g. calculations of performance measures and the aggregation of expert judgments)
and it is easily modifiable by intermediate MATLAB users. This is expected to be of ben-
efit for practitioners and researchers of CM.

A brief description of the developed MATLAB toolbox can be found in the following
subsections.

1EXCALIBUR is freely available at: http://www.lighttwist.net/wp/excalibur.
2In order to avoid confusion of the minority of people, who are not familiar with the universe of Lord of the

Rings by J.R.R. Tolkien, the authors would like to clarify the inspiration for the name of the developed Matlab
toolbox. Andúril was the name of the sword of Aragorn, the son of Arathorn, which was reforged from the
shards of Narsil (the sword that was used by Isildur to cut the One Ring from Sauron’s hand). Excalibur is
also the name of the legendary sword of King Arthur. Similarly to the sword, the source code of EXCALIBUR
software remained accessible only to a few worthy ones. Therefore, the researchers and practitioners could
only admire and use the software without being able to further investigate and explore developments of the
method. To change this, the existing software had to be “broken to pieces" and then “reforged". Naturally,
the name of the resulting new open source Matlab toolbox is ANDURIL. Hopefully, this will help in bringing
peace to troubled researchers and practitioners of Cooke’s classical model.

3ANDURIL is freely available at: https://github.com/ElsevierSoftwareX/SOFTX_2018_39.

http://www.lighttwist.net/wp/excalibur
https://github.com/ElsevierSoftwareX/SOFTX_2018_39
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4.3.1. SOFTWARE ARCHITECTURE
The first version of ANDURIL did not have a user interface, but there was a main script
named ANDURIL_Main that can be used by the user to enter the data and run the desired
analysis. The supported functionalities of Cooke’s classical model by ANDURIL which
can be accessed by ANDURIL_Main are presented below.

The main script ANDURIL_Main that can be used to apply Cooke’s classical model
to analyze and synthesize expert judgments by using ANDURIL. ANDURIL supports the
following features:

1. Calculation of DM using global weights

2. Calculation of DM using item weights

3. Calculation of DM using equal or user defined weights

4. Optimization of DM

5. Robustness check itemwise

6. Robustness check expertwise

7. Plotting assessments itemwise

8. Plotting robustness results

ANDURIL consists of a number of different functions to support the aforementioned
functionalities. The developed functions can be grouped according to their purpose.
The different groups of functions are:

1. import values

2. analysis of judgments

3. synthesis of judgments

4. post-processing

A description of the main functions of ANDURIL is given in Table 4.1.

4.3.2. VALIDATION OF ANDURIL
ANDURIL has been validated with EXCALIBUR. For this purpose a recent structured ex-
pert judgment (SEJ) study concerning the estimation of GHG emissions in Mexico for
2020 and 2030 was used as an illustrative example [10]. The part of the study that is used
to validate ANDURIL is the one concerning the estimation of Gross Domestic Product.
In this study 9 experts participated and provided the 5th , 50th and 95th percentiles of
their uncertainty distribution regarding 13 seed variables and 6 target variables. The re-
sults obtained from applying ANDURIL to the test case are presented and compared with
those obtained from EXCALIBUR.
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Function’s Name and Description

calscore: Calculates the statistical accuracy (or calibration score) of expert e over
the set of seed items (eq. 4.2).
calculate_information: Calculates the relative information (or information score)
of expert e over the set of seed items as well as the information score of every expert
over all items (eq. 4.3).
global_weights: Calculates the calibration score, the information score over the
seed items and subsequently the weight of every expert e.
calculate_DM_global: Calculates the distribution of the DM for every item, using
the global weights or equal weights weighting schemes.
item_weights: Calculates the weights of every expert e for every item. The main
difference with the global weights weighting scheme is that the weights are different
for every item. In this way, the opinion of every expert has a different weight for every
item. This is achieved by using the relative information of every particular item.
calculate_DM_item: Calculates the distribution of the DM for every item using the
item weights weighting scheme.
DM_optimization: Calculates the distribution of the DM for every item using the
significance level alpha (α) that optimizes the DM in terms of statistical accuracy.
Checking_Robustness_items: Calculates the performance measures (calibration
score, information score over seed variable and over all variables with respect to the
background measure) of the DM that occurs when up to N_max_it seed item(s) are
excluded at most. It calculates the performance measures for every possible combi-
nation, starting from excluding one up to N_max_it seed items at a time.
Checking_Robustness_experts: Calculates the performance measures of the DM
that occurs when up to N_max_ex expert(s) are excluded at most, similarly to
Checking_Robustness_items.
plotting_itemwise: This function produces as many plots as the total number of
items (i.e. seed and target items). Every plot presents the assessments (i.e. 5th , 50th ,
95th percentiles) of every expert e as well as every DM, for every particular item i.
robustness_plots: Produces three box plots. Each box plot corresponds to one
measure of performance in judging uncertainty. Namely statistical accuracy, infor-
mation score over all items and information score over seed items. Each box plot
presents how the values of every measure vary with the number of excluded items (x-
axis). In these plots a horizontal line is also plotted, that shows the values of the DM
whose robustness is under investigation.

Table 4.1: Main functions of ANDURIL.
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Five different DMs were calculated using ANDURIL:

1. The global weight decision maker(DM1), calculated using the function
calculate_DM_global,

2. the item weight (DM2) using the function calculate_DM_item,

3. the equal weight (DM3) calculated using the function calculate_DM_global with
equal weights for every expert,

4. the optimized global weight decision maker (DM4) which was calculated using the
function DM_optimization and

5. the user weight (DM5) which was calculated using the function
calculate_DM_global while giving to expert 5 and 6 weights equal to 0.4 and 0.6
respectively.

It should be noted that the background measure for every item was chosen as uni-
form. However, the same DMs were calculated and validated when the log-uniform
background measure was used for every item.

The comparison of the obtained quantiles using ANDURIL and EXCALIBUR is pre-
sented in Table 4.2. As it can be seen, there are very small differences between the output
of EXCALIBUR and ANDURIL due to differences in the precision of the calculating en-
gine. Particularly, the maximum difference is 0.0005 in absolute value across the quan-
tiles of the DMs of interest.

EXCALIBUR ANDURIL
Name q5 q50 q95 q5 q50 q95

DM1 3.02 5.431 8.000 3.0201 5.4311 8.000
DM2 3.063 5.327 8.000 3.0633 5.3275 8.000
DM3 2.297 4.684 7.463 2.2971 4.6840 7.4626
DM4 3.021 5.44 7.999 3.0209 5.4395 7.9994
DM5 3.098 6.026 7.928 3.0978 6.0263 7.928

Table 4.2: Comparison of the four DMs’ quantiles regarding seed item 5 using ANDURIL and EXCALIBUR.

Furthermore, Figure 4.1 shows the comparison of the obtained plots for every indi-
vidual expert and DMs (DM1, DM2 and DM3) concerning seed item 5. The plots of AN-
DURIL were produced using the function plotting_itemwise and show that the same
results are obtained with EXCALIBUR.

4.4. IMPACT OF ANDURIL

A S it was mentioned before, the value of EXCALIBUR software is undeniable. How-
ever, the fact that EXCALIBUR is a closed source software causes some limitations

for researchers and practitioners of Cooke’s classical model. These limitations were in-
vestigated by using ANDURIL. In this section, it is illustrated how limitations regarding
intrinsic range, item weights, distributions of DMs and robustness can be overcome.
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(a) ANDURIL (b) EXCALIBUR

Figure 4.1: Comparison of obtained plots for the assessments of all experts and DMs concerning seed item 5.

4.4.1. INTRINSIC RANGE
The bounds of the intrinsic range for every item i (i.e. ql i and qhi introduced in section
4.2.2) are calculated by considering the assessments of every expert; even the ones with
zero weights. Moreover, the intrinsic range for a calibration item takes into consideration
the realization of the seed variable. One could argue that for the calculation of the DM’s
distribution only the assessments of the experts with non-zero weights could be used.
This is not possible to be investigated using EXCALIBUR.

For this reason, one of the functions of ANDURIL (i.e. calculate_DM_global) was
modified in order to investigate the effect of calculating the intrinsic ranges of every item
by: i) taking into account the realization and the judgments of only those experts with
non-zero weights (that produces DM1_alt1) and ii) taking into account only the judg-
ments of the experts with non-zero weights (that produces DM1_alt2). This new func-
tion was named alter_calc_DM_global.

Tables 4.4, 4.5 and 4.6 present the quantiles of DM1, DM1_alt1 and DM1_alt2 re-
spectively. Some differences can be observed, especially (as expected) in quantiles qh

and ql of every item. Particularly, the maximum absolute difference between DM1 and
DM1_alt2 concerns the qh quantile of seed item 8. One may investigate whether these
small differences between DM1 and DM1_alt2 (or DM1_alt1) concerning q5, q50 and q95

quantiles would result or not in differences in the measures of performance of the DMs.
To investigate this, in Table 4.3 the measures of performance in judging uncertainty are
presented for each DM. Some expected small differences can be observed in the infor-
mation scores, because the intrinsic range of every item reduces when the quantiles of
the experts with zero weights are not taken into account. However, a large absolute dif-
ference (equal to 0.189) was observed when comparing the calibration score of DM1 with
that of DM1_alt1 or DM1_alt2. The reason of this 71.3% increase in calibration score, is
that the changes in Q5 of DM1_alt1 and DM1_alt2 regarding seed item 10 caused the re-
alization to fall into the first interquantile range. The calibration score in equation 4.2 is
a fast function. Small changes in the model may lead to changes in orders of magnitude
of the score. Especially when the number of seed variables is low as is usually the case in
applications. It should be mentioned that such large differences in values for the intrin-
sic range may not be always observed in different applications. Nor the consequences
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of choices for intrinsic ranges in performance measures should necessarily follow the
same pattern as in our presentation. This issue has not been discussed in literature for
example in those related to out of sample performance of Cooke’s model [8, 9]. This is a
subject that could be further explored with the aid of ANDURIL.

Calibration
Score

Information
Score (All it.)

Information
Score (Seed it.)

Un-normalized
Weights

DM1 0.2650 0.8063 0.9548 0.2531
DM1_alt1 0.4540 0.8366 0.9920 0.4504
DM1_alt2 0.4540 0.8413 0.9988 0.4535

Table 4.3: Measures of performance of DMs.

ql q5 q50 q95 qh

Seed Item 1 -4.7 3.35 27.46 59.67 87.7
Seed Item 2 -1.15 16.40 36.06 49.83 54.65
Seed Item 3 -10.1 25.89 52.10 89.44 99.1
Seed Item 4 0.2 4.33 10.84 19.86 21.8
Seed Item 5 1.4 3.02 5.43 8.00 8.6
Seed Item 6 1.00 50.00 74.46 99.69 109
Seed Item 7 1.2 4.00 5.35 6.00 10.8
Seed Item 8 -5.957 5.01 5.95 6.99 103.927
Seed Item 9 -1.92 1.80 2.44 3.50 30.72
Seed Item 10 2.1 5.17 6.03 8.60 12.9
Seed Item 11 0.03 0.95 1.35 1.50 9.27
Seed Item 12 1.49 2.51 3.74 5.19 6.41
Seed Item 13 0.344 0.48 0.88 0.95 1.016
Target Item 1 0.77 1.79 3.37 4.10 5.93
Target Item 2 0.675 1.23 2.44 3.20 4.575
Target Item 3 1.6 3.90 4.58 6.00 6.4
Target Item 4 0.86 3.00 3.88 4.50 4.94
Target Item 5 0.67 1.60 2.79 3.70 4.63
Target Item 6 1.17 3.14 4.85 5.90 6.33

Table 4.4: Quantiles of DM1.
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ql q5 q50 q95 qh

Seed Item 1 -2.7 3.39 27.46 59.47 65.7
Seed Item 2 12.6 16.95 36.05 49.82 53.4
Seed Item 3 18.5 27.15 52.10 89.40 96.5
Seed Item 4 2.4 4.49 10.84 19.86 21.6
Seed Item 5 2.5 3.03 5.43 8.00 8.5
Seed Item 6 45 50.00 74.46 99.65 105
Seed Item 7 3.8 4.00 5.35 6.00 6.2
Seed Item 8 -3.977 5.01 5.95 6.99 103.747
Seed Item 9 1.63 1.80 2.44 3.48 3.67
Seed Item 10 4.6 5.36 6.03 8.27 9.4
Seed Item 11 0.84 1.01 1.35 1.45 1.56
Seed Item 12 2.2 2.52 3.74 5.10 5.8
Seed Item 13 0.345 0.48 0.88 0.95 1.005
Target Item 1 1.24 1.85 3.37 4.10 4.36
Target Item 2 0.78 1.25 2.44 3.20 3.42
Target Item 3 3.69 3.90 4.58 6.20 6.21
Target Item 4 2.85 3.00 3.88 4.50 4.65
Target Item 5 1.28 1.66 2.79 3.70 3.92
Target Item 6 2.71 3.27 4.85 5.90 6.19

Table 4.5: Quantiles of DM1_alt1.

ql q5 q50 q95 qh

Seed Item 1 -2.7 3.39 27.46 59.47 65.7
Seed Item 2 12.6 16.95 36.05 49.82 53.4
Seed Item 3 18.5 27.15 52.10 89.40 96.5
Seed Item 4 2.4 4.49 10.84 19.86 21.6
Seed Item 5 2.5 3.03 5.43 8.00 8.5
Seed Item 6 45 50.00 74.46 99.65 105
Seed Item 7 3.8 4.00 5.35 6.00 6.2
Seed Item 8 4.8 5.08 5.95 6.88 7.2
Seed Item 9 1.63 1.80 2.44 3.48 3.67
Seed Item 10 4.6 5.36 6.03 8.27 9.4
Seed Item 11 0.84 1.01 1.35 1.45 1.56
Seed Item 12 2.2 2.52 3.74 5.10 5.8
Seed Item 13 0.345 0.48 0.88 0.95 1.005
Target Item 1 1.24 1.85 3.37 4.10 4.36
Target Item 2 0.78 1.25 2.44 3.20 3.42
Target Item 3 3.69 3.90 4.58 6.20 6.21
Target Item 4 2.85 3.00 3.88 4.50 4.65
Target Item 5 1.28 1.66 2.79 3.70 3.92
Target Item 6 2.71 3.27 4.85 5.90 6.19

Table 4.6: Quantiles of DM1_alt2.
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It.
1

It.
2

It.
3

It.
4

It.
5

It.
6

It.
7

It.
8

It.
9

It.
10

It.
11

It.
12

It.
13

Exp. 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 3 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 4 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 5 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 6 0.450 0.661 0.698 0.523 0.613 0.707 0.846 0.844 0.808 0.951 0.898 0.886 0.959
Exp. 7 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 8 0 0 0 0 0 0 0 0 0 0 0 0 0
Exp. 9 0.550 0.339 0.302 0.477 0.387 0.293 0.154 0.156 0.192 0.049 0.102 0.114 0.041

Table 4.7: Table with weights of every expert per item regarding DM2.

4.4.2. ITEM WEIGHTS

When the item weights weighting scheme is used to combine the expert judgments, the
information score of the obtained DM and the weight that is presented in the output ta-
ble from EXCALIBUR are calculated using global weights [2]. For illustration, see Figure
4.2. Therefore, it is not possible for the user to know the exact weights that were used per
item. On the other hand, ANDURIL provides the user with tables W_itm and W_itm_tq
which contain the weights of each expert concerning the seed variables and target vari-
ables respectively.

The normalized weights W_itm for every expert per seed item (which were used to
obtain DM2) are presented in Table 4.7. The experts with statistical accuracy below the
significance level α will have a weight equal to zero. The experts with statistical accu-
racy above the significance level will have an un-normalized weight equal to the product
of the statistical accuracy and the information score of each variable. In the presented
example, it can be seen that although only experts 6 and 9 have non-zero weights, the
weights of these two experts differ significantly from item to item (e.g. item 1 and item
13). This type of information can be valuable to the analyst, in order to visualize the
impact of informativeness of every expert on the weight per item.

Figure 4.2: Table from EXCALIBUR including DM2



4

72 4. LEARNING FROM EXPERTS

4.4.3. DISTRIBUTIONS OF DMS
The cumulative distribution of a DM is calculated by integrating the density of the DM
(equation 4.4). To achieve this, all the values of the quantiles of the experts with non-zero
weights are taken into account and the cumulative probability of every unique value is
computed. Hence, the qi ,5, qi ,50 and qi ,95 quantiles of the DM are obtained. In EXCAL-
IBUR the output distributions of the DMs are calculated by linear interpolation between
these three quantiles (i.e. qi ,5 , qi ,50 and qi ,95) of the DM. This may lead to differences
between the distributions obtained by integration (Case 1 in figure 4.3) and the distri-
butions that are obtained by interpolating in between quantiles (Case 2 in the same fig-
ure). Functions calculate_DM_global and calculate_DM_item of ANDURIL provide
the user with the DM distributions containing the quantiles of experts with non-zero
weights. After using these functions for each DM, the code presented below can be used
to plot and compare the distributions of DM1 regarding seed item 5.

Figures 4.3a, 4.3b and 4.3c present the two different distributions of DMs concerning
seed item 5, combined with global, item and equal weights weighting schemes respec-
tively. From these plots, it can be seen that interpolating linearly between qi ,5, qi ,50 and
qi ,95 to obtain a distribution for the DM may cause significant variations in the resulting
distributions, especially when the equal weight combination is considered. The inte-
grated cumulative distribution contains more linear components since every percentile
provided by every expert is considered in the density.

(a) Global weight DM (b) Item weight DM (c) Equal weight DM

Figure 4.3: Comparison of output cumulative distributions obtained by integration (Case 1) and interpolation
(Case 2) concerning (a) global weights, (b) item weights and (c) equal weights.

4.4.4. ROBUSTNESS ITEMWISE
When investigating the robustness of the obtained DM, EXCALIBUR supports the ex-
clusion of only one item at a time for re-calculation of the new DM. Hence, it is not
possible to investigate how the performance measures (i.e. Statistical accuracy and In-
formation scores) vary as more than one item are excluded at a time. For this reason,
Checking_Robustness_items and robustness_plots functions of ANDURIL were de-
veloped. The latter produces three box-plots. Each plot corresponds to one measure of
performance in judging uncertainty. Namely statistical accuracy, information score over
all items and information score over seed items. Examples for our demonstration case
are presented in Figures 4.4, 4.5 and 4.6 for statistical accuracy, information score (over
all items) and information score (over seed items) respectively.

Each box-plot presents how the values of every measure vary with the number of
excluded items (horizontal axis). In these plots a green horizontal line that shows the
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values of the initial DM whose robustness is under investigation. A magenta marker
shows the geometric mean for every number of removed items.

It should be noted that when the number of excluded seed items increases there is
the possibility that for some combinations (of excluded seed items) the calibration score
of all experts reduces below the significance level alpha, resulting in zero weights for
every expert. Hence, these combinations are not considered.

As it can be seen in Figures 4.4, 4.5 and 4.6 although the interval containing 95%
of the recalculated scores increases as more items are removed at a time, the median
remains close to the original value (shown by the green horizontal line) for every measure
of performance.

Figure 4.4: Robustness of calibration score with respect to the number of excluded seed items.

Figure 4.5: Robustness of information score over the seed items with respect to the number of excluded seed
items
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Figure 4.6: Robustness of information score over all items with respect to the number of excluded seed items

4.5. CONCLUDING REMARKS

T HE developed MATLAB toolbox named ANDURIL was created to support decision
making under uncertainty, when expert judgments are combined by applying Cooke’s

classical model for structured expert judgment. The main purpose for developing this
toolbox is to create an open source software that can be used by practitioners and re-
searcher who are interested in applying or further developing Cooke’s method. The de-
veloped tool was validated with the closed source software EXCALIBUR. For this purpose
a recent study concerning green house gases emissions in Mexico was used as a test case.
It was shown that ANDURIL can reproduce accurately the results of EXCALIBUR.

The advantages of having a transparent open source software for applying Cooke’s
method were discussed. The developed toolbox can be used to investigate different ways
of calculating the intrinsic range of the aggregated opinions that may result in differences
in the performance measures of the obtained DMs. Moreover, it is possible to provide
the analyst with the weights of each expert per item when the item weights weighting
scheme is considered. Also, it gives the opportunity to the user to calculate the integrated
cumulative distribution of the DM considering in the density every percentile provided
by every expert with non-zero weights, rather than just interpolating in between the 5th ,
50th and 95th percentiles of the DM. Finally, the robustness of the obtained DM can be
investigated while excluding more than one seed item at a time. Surely, other possi-
bilities than the ones discussed in this chapter may be explored further by researchers
interested in the method.

Concluding, the developed tool constitutes a first step towards an open source ver-
sion of Cooke’s classical model. Despite the limitations of the current version of AN-
DURIL, it is to the authors belief that the developed toolbox will be valuable to those
who are interested in further investigating and applying the method. Some possible ex-
tension of the toolbox currently available in EXCALIBUR and not in ANDURIL have been
discussed. It is the ambition of the developers to extend ANDURIL also with the more
recent techniques of elicitation of multivariate dependence.
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4.6. RECENT UPDATES
Since its creation and until the writing of this Section, ANDURIL has been continu-
ously improved to better support the researchers and practitioners who are interested
in Cooke’s classical model. ANDURIL was also translated in Python [11] in order to make
it accessible to those with no or limited access to MATLAB licenses. Finally, additional
improvements to both versions were performed and a standalone Graphical User Inter-
face was added to the Python version ANDURYL [12].

Until now, ANDURIL has been used to apply Cooke’s classical model in [13–16]. The
first application was in [13] where ANDURIL was used to analyze and synthesize the ex-
pert judgments for the application of the proposed Condition Over Time Assessment
method that quantifies the uncertainty regarding the period that is required for infras-
tructure assets (such as bridges) to deteriorate to a given condition. Recently, ANDURIL
was used in [16] to apply Cooke’s Classical model with the purpose of reconstructing
historical water level data based on expert assessments.
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5
SUPPLY DISRUPTIONS RISK

However beautiful the strategy,
you should occasionally look at the results.

Winston Churchill

Offshore asset construction is a complex and costly process that is subject to various un-
certainties within the entire supply chain. Hence, both the construction management op-
timization and the reduction of deployment expenditures should be supported by auto-
mated decision support models which include proper representations of predominant un-
certainties. One of these is the supply disruption risk that is often ignored in existing mod-
els. Therefore, this article proposes a methodology to properly take this construction risk
into account. An algorithm to model this risk was developed and a study was conducted
to obtain the required probability distributions of disruption delays using real data and
expert judgments for an offshore wind farm construction application. The simulation of a
realistic test case with an appropriately modified stochastic simulation tool showed that it
is important to consider this risk in order to make optimal decisions for different offshore
wind farm construction strategies.

This chapter have been published verbatim in Automation in Construction 324, 289 (2018) [1] .
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5.1. INTRODUCTION

I T is a fact that large and complex construction projects are subject to various uncer-
tainties, which may hinder the construction processes. Therefore, models and tools,

which support the management of the construction activities, must allow a proper rep-
resentation of these uncertainties. Supply disruptions are an important issue that may
occur in every large construction project and cause significant delays, resulting in bud-
get and schedule overruns. Although a lot of research has been conducted in the past re-
garding the supply chain risk (for a thorough review the reader is referred to [2–6]), this
has not been investigated for the construction of offshore assets and the fast-growing
offshore wind industry in particular.

Although the previously high costs of offshore wind industry have been already partly
reduced [7], the proper description of uncertainties in all different phases of the offshore
wind farms’ (OWFs) life cycle is needed to make offshore wind even more financially
competitive. Especially, certain aspects related to construction management of OWFs
should be improved to tackle the arising logistical challenges [8]. This will be partic-
ularly crucial in the coming years, in order to cope with the increasing challenges due
to the necessity to move farther offshore. Furthermore, service providers have already
identified “installation and logistics of OWFs as one of the main construction risks" due
to capital intensive construction activities [9].

Construction activities of OWFs are not only expensive, but also complex. Their com-
plexity stems from the fact that these are subject to various uncertainties such as envi-
ronmental offshore conditions, supply disruptions and failures which may occur during
the construction process. All these uncertainties should be taken into account espe-
cially during the planning phase. Otherwise, planning based on inaccurate estimates,
may lead to decisions which will cause significant schedule and budget overruns dur-
ing the construction phase. To avoid these undesirable outcomes, probabilistic decision
support tools should be utilized in the planning phase to support optimal construction
management given these uncertainties. Thus, reliable tools that take into account vari-
ous uncertainties during the entire OWF supply chain, would be essential for achieving
cost reduction.

For the aforementioned reasons, during the last years, various models have been de-
veloped concerning different aspects of OWFs decision support. A thorough review of
the developed models until 2011 is presented in [10]. The majority of these models were
focused on the maintenance strategies. Since then, more studies were conducted and
various models concerning the construction (or installation) process of OWFs were de-
veloped. For example, in [11] is developed a model of the installation costs of offshore
wind projects on the U.S. Outer Continental Shelf. While in [12] is proposed a method to
identify the characteristics of OWFs installation processes that minimize the total time
requirement for transportation and installation, without taking into account the uncer-
tainties. Moreover, most of the developed models use a simulation-based approach and
focus on developing different approaches to better describe the environmental condi-
tion uncertainty. In particular, in [13] is developed a simulation-based decision support
tool to investigate different logistical approaches within the installation phase of OWFs
while taking into account the external influence of weather by the use of a Markov chain
with three states. In [14] is developed a software tool that relies on Monte Carlo methods
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to simulate multiple independent scenarios of the defined installation strategy for an
offshore wind farm, while considers the risk imposed by adverse weather conditions by
using a hidden Markov model (HMM). In[15] is presented the MERMAID (Marine Eco-
nomic Risk Management Aid) simulation software package that was used for the anal-
ysis and optimization of marine energy installations and the investigation of a vessel
designed for installation of OWFs. In[16] is proposed a methodology to produce realistic
synthetic time series of wind speed and wave height in order to incorporate the envi-
ronmental risk into the estimates of the duration of cable installation of OWFs. Also, in
[17] is proposed a fuzzy duration forecast model for the construction of onshore wind
turbines which are only subject to the impact of wind uncertainty.

Other researchers focused on investigating optimization techniques concerning the
installation of OWFs. In [18] is developed an integer linear programming (ILP) model to
determine the optimal installation schedule considering constraints regarding weather
conditions and the availability of vessels. In [19] is proposed a Markovian model to de-
scribe the weather component and an approach that uses both general meta-heuristic
optimization approaches and dedicated heuristics to optimize the project planning. In
[20] is proposed a two-stage stochastic integer program that considers disruptions aris-
ing from uncertain weather conditions and the solution approach of the planning prob-
lem of wind farms is based on partial Benders decomposition strategy. In [21] is pro-
posed a decision-support tool in a combined framework of an optimization and simu-
lation model which improves the capabilities of both models to provide a mechanism
to address current OWF installation projects while taking into account the seasonal un-
certainties. In [22] is developed an optimization model for OWF installation scheduling
using mixed-integer linear programming (MILP). Particularly, in [22] is recommended to
develop a simulation model that takes into account possible supply disruptions and to
integrate this with their model, in order to have a robust design for planning of offshore
installation. Thus, none of the aforementioned models addressed the risk of supply dis-
ruptions during the installation process of OWFs. So far, only in [23] and [24] partly
considered this. In [24] this is done for a limited scope regarding only the cable unavail-
ability; whereas, in [23] is proposed a model using expert judgments which were elicited
using pairwise-comparison matrices, which cannot lead to numerical estimates but only
to preferences [25].

Therefore, this article proposes a methodology to model this supply disruption risk
of the required components based on real data and expert judgments (Section 5.2.1).
These expert judgments were elicited, evaluated and combined by using Cooke’s clas-
sical model [25]. The theoretical background of the classical model and the details for
applying it in this study can be found in Section 5.2.2. For the analysis and synthesis
of the expert judgments, a newly developed and recently released open-source MATLAB
toolbox named ANDURIL [26] (presented in Chapter 4), was used. The results of the
expert judgments elicitation can be found in Section 5.3.

The current study covers the supply disruption risk of the major components which
are most commonly used in OWFs. Namely, the monopiles (MPs), the transition pieces
(TPs), the towers, the nacelle and the rotor that consists of 3 blades. These components
of an offshore wind turbine generator (WTG) are illustrated in Figure 5.1. To quantify
the supply disruptions risk an existing stochastic decision support tool (ECN Install, see
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Section 5.4.1) was modified with the proposed algorithm (Section 5.2.1). This allows to
simulate different scenarios and compare these in terms of the cumulative probability
distributions (CDFs) of the estimated duration and cost of the installation accounting
for the risk of supply disruptions (Section 5.4). Hence, the proposed method can be
used to investigate the impact of supply disruptions during the construction process
allowing the comparison of different scenarios and support decision makers in planning
and choosing the “optimal" scenario.

Finally, it should be mentioned that the proposed methodology within this article
can not only be applied to the optimization of offshore but also to inland construction
management processes such as for example the road construction supply chain with its
uncertainties within the entire supply chain, from the asphalt production plant until the
final paving.

Figure 5.1: Different components of an offshore WTG.

5.2. METHODOLOGY

A methodology is proposed to include the supply disruptions risk into probabilistic
models for construction of offshore assets. As it was mentioned before, the exist-

ing decision support models for scheduling of offshore constrcuction activities focus
mostly on describing uncertainties regarding the environmental conditions which hin-
der the construction operations. Hence, the proposed methodology is particularly rel-
evant for offshore assets. However, it could also be applied to different construction
projects which are subject to various uncertainties and their planning requires proba-
bilistic models. Assuming such a probabilistic model on hand, one who is interested
in including the supply disruptions risk, should first recognize whether this is relevant
for the application under investigation. If so, then the existing model should be appro-
priately modified in order to take into account the events that may lead to delays due
to supply disruptions. Afterwards, one should investigate whether sufficient relevant
data are available and perfom statistical analyses to obtain the probability distributions
which are required as inputs to the modified model. If relevant data are scarce, then
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the application of a structured expert judgment (SEJ) method such as Cooke’s classical
model [25] is recommended (see Section 4.2). The proposed methodology is depicted in
the form of a flowchart diagram in Figure 5.2.

START

END

Construction Project 
subject to Supply 
disruptions Risk?

Investigate Scenarios and Strategies for the construction 
project for the remaining uncertainties neglecting the 

Supply disruptions Risk

Sufficient relevant 
historical data?

Perform statistical analysis 
and obtain the required 
probability distributions 

Perform 
Structured expert 
judgment method 

(e.g. CM)

Start 
Sub-process 1

End

Identify reasons and events 
for supply disruptions

Build algorithm 
to describe these events

Modify planning model 
with developed algorithm

Investigate Scenarios and 
Strategies for the construction 

project including the Supply 
disruptions Risk

Compare strategies 
and choose the 

“optimal”

Update 
Probabilistic 

Model 

Start 
Sub process 2

End

Form i) relevant seed questions 
based on relevant historical data 

and ii) target questions

Find experts in the field of 
application who are interested in 

participating

Perform elicitation of expert 
judgment (in workshop or 

individual interviews)

Analyse the expert judgments 
and combine these with the 

appropriate weighting scheme

Obtain probability distributions

YES

NO

NO

YES

Use existing 
Probabilistic Model

Figure 5.2: Flowchart diagram of actions one should take to include the risk of supply disruptions into a prob-
abilistic decision support model.

In the following subsections, the proposed methodology is applied to model the sup-
ply disruptions and quantify this risk during the installation of OWFs is presented. First,
in subsection 5.2.1 the reader can find a detailed description of the algorithm that was
developed to model this risk. Then the application of Cooke’s classical model for the
quantification of the uncertainty regarding supply disruptions as well as the required
theoretical background is presented in subsection 5.2.2.

5.2.1. ALGORITHM FOR MODELING SUPPLY DISRUPTIONS
Usually, different types of components of OWF such as monopiles (MPs), transition pieces
(TPs), towers, blades and nacelles are transported from manufacturers to the feeder (or
installation) port. Subsequently, transport vessels or installation vessels transport these
components to the OWF site.

There are various reasons why the required components might not be available to be
loaded to the transport vessel when the vessel is at the port. Some of these reasons can
be delays, damages of components and equipment or miscommunication between the
parties involved in the installation process; these may occur during transport from the
manufacturers to the feeder port or even within the port. Therefore, this delay can vary
significantly.

In this study, the supply risk is modeled as an event at the loading port that is caused
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in case the required components are not available when needed. This event is described
by:

1. a probability of occurrence PUC , where UC denotes the event of unavailability of
the required components for every type of component C ∈ (1,2...,n) of the total n
different types of components

2. the delay DC (in units of time) which denotes the waiting time until the required
components of type C are available for loading. Hence, the waiting time DC is a
random variable with a cumulative probability distribution FDC .

Figure 5.3 presents the flowchart of the developed algorithm that can be used to take
into account the risk of supply disruptions. When the vessel is at the port and a new
loading operation of components is about to start at time t , it should be checked if the
stock level SC ,t of the component C is sufficient to proceed. So, the first step of the al-
gorithm is to examine the amount of components SC ,t−1 that was available in the port
when the previous loading operation of this type of components C has been completed
at time t−1. Usually, the entire installation process starts only when there is the required
amount of components S′

C , concerning every type of component C , at the installation
port. Thus, as far as the first loading operation (t = 1) is concerned, the stock SC ,t=0 = S′

C .
If the stock SC ,t−1 is not sufficient (i.e. there are less than the required components RC

of component type C ) then a pseudo-random number X ∼U (0,1) is generated. If X has
a value smaller or equal than the probability of occurrence PUC for this particular type of
component C , then the event of components’ unavailability UC occurs. Subsequently,
the delay (or waiting time) DC until these are ready for loading is sampled from FDC .
Otherwise, if X > PUC , the stock SC was replenished in the meantime with an amount
equal to a user-defined replenish strategy RpC for the particular component C . Then,
the algorithm proceeds with loading the vessel and updating the stock level SC .

SC,t-1 ≥  RC 

SC,t= SC,t  - RC

Loading operation 
of C is completed

Generate 
Random 
number 

X ~ U(0,1)

X ≤  PUc

Sample DC,t from 
distribution of the waiting 

time FDc

SC,t = SC,t-1 + RpCNO

YES

YES

END
Continue with 

transportation of 
Component C

NO
START

Loading Operation 
of Component C

SC,t = SC,t-1 + RpC

SC,t = SC,t-1

Figure 5.3: Flowchart of the algorithm that is used to include the risk of supply disruptions.
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5.2.2. METHOD TO QUANTIFY RISK OF SUPPLY DISRUPTION
Detailed data concerning OWFs construction projects are scarce. Moreover, these infor-
mation are commercially sensitive and it is challenging to acquire a sufficient amount of
relevant data. Hence, it is not possible to do a statistical analysis to obtain representative
values concerning the probability of occurrence and the distribution of the waiting time
which are required to include the risk of supply disruptions (see Figure 5.3). Therefore,
the best alternative is to use expert judgments to assess these uncertain variables.

In order to be able to use the judgments of different experts as inputs of the devel-
oped stochastic simulation model, these should be combined for every variable of in-
terest. There are different approaches and methods for combining the assessments of
the experts. The subject of treating expert judgments as an alternative source of data
has been extensively discussed [25, 27, 28]. In this study the performance-based method
named Cooke’s classical model, which was presented in Chapter 4, was used to aggre-
gate the expert judgments. This mathematical aggregation method was chosen because
it has been shown that such a mathematical approach has an advantage over behavioral
approaches [29]. It is also worth mentioning that Cooke’s classical model was used in the
past for a different application on the offshore wind field. In [30] is proposed a structured
expert judgment elicitation process to quantify the required parameters associated with
epistemic uncertainties and develop an availability growth model that takes into account
the sources of systemic risk to provide a more accurate estimation of farm performance
over early life.

For the purpose of this study three different types of DMs were obtained using differ-
ent weighting schemes. The simplest one is equal weighting and hence falls outside of
the performance based DMs. The Global Weights DM is computed as described above
while the Item Weights DM computes the scores in equation 4.5 using the information
score per item rather than the average information score (equation 4.3 in Appendix A.1).
The difference between DMs will be discussed further in section 5.3.2.

SEED QUESTIONS

Relevant data from the field of offshore wind construction are needed to formulate seed
questions. In this study a Dutch marine contractor (i.e. Van Oord) provided the time reg-
ister database of four past projects concerning the construction of OWFs. This database
contains a detailed archive with the duration of all the activities as well as the inci-
dents that occurred during these projects. Hence, although these data, concerning four
projects, were not sufficient to do a statistical analysis and draw safe conclusions, they
were valuable to formulate the seed questions which were used to evaluate the perfor-
mance in judging uncertainty of every participant.

For the purpose of this study, 14 seed questions were formulated. These questions
concerned frequencies of occurrence as well as the registered waiting time of the delays
due to unavailability of different components. The projects were anonymized but impor-
tant details of these projects were provided to the experts. An example of the provided
information regarding project (construction of an OWF with 32 wind turbines, located
in the Irish sea) can be found in Table 5.1. To illustrate the format of the seed questions
that were used, one of these is presented below:

SQ. 1: Consider an installation project (Project 1) of an OWF consisting of 32 WTG in
the Irish sea with the details presented in Table 5.1. A number of times, the monopiles
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(MPs) were not available while the vessel was on-site ready to start the installation. What
do you believe was the maximum registered delay, until the required MPs were available?

5%-tile (Q5) 50%-tile (Q50) 95%-tile (Q95)
. . . . . . . . .

Components Monopiles Transition Pieces
Installation port Birkenhead, Liverpool Birkenhead, Liverpool

Manufacturer location Rostock
Teesport (16 TPs)
Aalborg (16 TPs)

Distance of installation port
from manufacturer

≈ 1150N M
≈ 750N M
≈ 980N M

Transportation method to in-
stallation port

Shipped (vessel speed
15 kn)

Shipped (vessel speed
15 kn)

Estimated transportation du-
ration to installation port

≈ 75 h
≈ 50 h
≈ 65 h

Number of trips from manu-
facturer

8 8

Buffer stock at installation port
at the commencement of the
installation operation

≈ 20 ≈20

Transportation from installa-
tion port to OWF site

Tugs towed floating
MPs to the installation
vessel on-site

Barges transferred TPs
to the installation ves-
sel on-site

Table 5.1: Information provided to the experts regarding Project 1.

TARGET QUESTIONS

The purpose of this study is to obtain probability distributions regarding the delays that
may occur due to unavailability of different components (such as monopiles, transition
pieces, towers, blades, nacelles) during the construction of OWFs. For every different
component, two types of target questions were queried, resulting in 10 target questions
in total. The first type concerns the relative frequency of the event in which the required
components are not available. The second type concerns the waiting time (i.e. delay)
due to the occurrence of such an event. The obtained distributions can be used to sup-
port projects which will happen in the near future with certain characteristics. These
characteristics are presented in Table 5.2. To illustrate the two different types of target
questions (TQ. 1 and TQ. 2) that were used, an example concerning the monopiles is
presented below.

TQ. 1: Assuming that the operation of loading monopiles (MPs) to the transportation
vessel will be performed 1000 times, how many times would you expect that the required
MPs will not be available to start the loading operation?
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5%-tile (Q5) 50%-tile (Q50) 95%-tile (Q95)
. . . . . . . . .

TQ. 2: If the required monopiles (MPs) are not ready for loading while the transporta-
tion vessel is in port, what would you expect to be the delay (i.e. waiting time) until the
required MPs are available for loading?

5%-tile (Q5) 50%-tile (Q50) 95%-tile (Q95)
. . . . . . . . .

Location North Sea
Number of Wind turbines More than 50
Distance from manufacturers to the installation port More than 150 NM
Distance from installation port to the OWF site More than 20 NM

Table 5.2: Characteristics of projects which can be supported by the results of this study.

5.3. ANALYSIS OF EXPERT JUDGMENTS
In this study, 11 experts with experience in the offshore wind field have participated. The
participants were affiliated to different types of companies (such as marine contractors,
manufacturers, OWF owners, consultancy firms etc.) operating in 4 different European
countries (i.e. the Netherlands, Germany, UK and Belgium) in order to ensure the elici-
tation of expert judgments from a pool of experts with diverse expertise. The criteria for
the participation of an expert concerned his/her experience in the offshore wind indus-
try and involvement in the construction of OWFs. A list with the names and affiliation of
the experts can be found in Appendix A.1.

The expert judgments were elicited in the period from July 12th until August 15th

2017. Few experts participated in an expert judgment elicitation workshop that took
place on July 12th 2017 in Delft while the expert judgments of the remaining partici-
pants were elicited by individual (teleconference or in person) interviews with the an-
alyst. The structure of all the elicitation sessions was kept the same, in order to ensure
that all the experts were provided with the same information. Each elicitation session
consisted of: i) a short presentation of the purpose of this study; ii) an introduction to
Cooke’s classical model for structure expert judgment; iii) a short example exercise and
iv) the filling out of the questionnaire regarding the risk of supply disruptions during the
OWF installation process. The vast majority of the SEJ studies conducted in the past
made use of the closed-source software EXCALIBUR to perform the analysis and syn-
thesis of expert judgments according to CM. In this study, the developed open-source
MATLAB toolbox called ANDURIL [26] was used. This toolbox provides open access to
a code that makes transparent the calculations of performance measures and the ag-
gregation of expert judgments, allowing the current methods to be more accessible and
different approaches or extensions to current methods to be further explored (for more
information the reader is referred to Chapter 4). It should be noted that the obtained
results were validated using EXCALIBUR software.
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5.3.1. PERFORMANCE OF THE EXPERTS
As it was mentioned in Chapter 4, the performance of the experts in judging uncertainty
is evaluated using two measures, the calibration score (or statistical accuracy) and the in-
formation score. Based on these measures, it is possible to compute the un-normalized
weights using eq. 4.5 and subsequently the normalized weights.

Table 5.3 shows the measures of performance in judging uncertainty as well as the
un-normalized and normalized weights of every participant. It should be noted that the
order of these values concerning the anonymized experts does not correspond to the or-
der of the names of the experts (provided in Appendix A.1). The presented values of the
information score are computed by ANDURIL considering a log-uniform background
measure and the weights are computed when considering a significance or cut-off level
α equal to zero. It can be seen that experts 2 and 4 are the only experts with calibra-
tion score larger than 0.01 (a value that is usually chosen for the significance level α).
This leads to larger weights which means that their judgments will mainly constitute the
DM’s distributions of every queried variable. It is worth mentioning that the information
scores of the best calibrated experts are low compared to those of the remaining partici-
pants. Although this is not always the case, it is logical since the provided quantiles cover
a larger range. In this study most of the remaining experts with low calibration scores,
had high information scores. That means that these experts were confident about their
assessments and provided narrower distributions for the queried seed variables, which
were not statistically accurate.

Expert ID Calibration
Score

Information
Score (All
items)

Information
Score (Seed
items)

Un-
normalized
Weights

Normalized
Weights
excl. DM

Expert 1 0,0002060 0,70675 0,86518 0,00017825 0,0006529
Expert 2 0,011904 0,471358 0,516478 0,0061485 0,022523
Expert 3 6,804e-10 0,93655 1,090144 7,418e-10 2,717e-09
Expert 4 0,569084 0,452635 0,4606201 0,2621317 0,9602551
Expert 5 1,983e-07 1,214771 1,1789866 2,338e-07 8,565e-07
Expert 6 1,314e-05 0,82397 0,712980 9,366e-06 3,431e-05
Expert 7 1,192e-07 1,214716 1,195092 1,425e-07 5,219e-07
Expert 8 0,00036218 1,165429 1,137962 0,00041215 0,00150981
Expert 9 2,547e-11 0,8838053 0,802524 2,044e-11 7,489e-11
Expert 10 1,762e-05 0,8577063 0,897994 1,582e-05 5,795e-05
Expert 11 0,00441208 0,8424475 0,9259006 0,0040851 0,0149649

Table 5.3: Measures of performance in judging uncertainty and weights for every participant, obtained from
the analysis with ANDURIL.

5.3.2. SYNTHESIS OF DMS
There are different weighting schemes that can be used to aggregate expert opinions for
every variable and obtain the so called decision maker (DM) (i.e. the combined opinion).
The simplest one is to assign equal weights to every expert, which provides the equal-
weight decision maker (DMequal ) which of course does not take into account the per-
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formance of the experts in judging uncertainty. As it was introduced in section 4.2, CM
method uses the two performance measures (i.e. statistical accuracy/calibration score
and informativeness) to compute the weights based on the performance of the experts
in judging uncertainty.

There are two different types of performance-based weighting schemes. The first one
is called global weights, for which the weight of every expert is computed by taking the
product of the calibration score and the average relative information over all the seed
items. These global weights are multiplied with the density of every expert for every
variable (see equation 4.4) to obtain the density of the combined opinion (DMg l obal ).
Hence, DMg l obal was synthesized using the values of the normalized weights presented
in Table 5.3. The second type of performance-based weighting schemes is called item
weights and the main difference with global weights is that the weights are different for
every item based on the relative information for this particular item. This means that the
opinion of every expert (whose calibration score is larger than the significant levelα) has
a different weight for every item. By multiplying the non-zero weight of every expert for
every item with the expert’s density of the variable, the density of the combined opinion
(DMi tem) is obtained.

The aforementioned three different weighting schemes were investigated in this study
and the performance of the resulting DMs was evaluated in terms of statistical accuracy
and relative information (with respect to the log-uniform background measure for every
variable). To achieve this, every synthesized DM is treated as a “virtual expert" that en-
ters the pool of experts. Table 5.4 summarizes the performance measures (statistical ac-
curacy or calibration and mean relative information) for every decision maker obtained
using different weighting schemes (DMg l obal , DMi tem and DMequal ). It is interesting
to note that both the statistical accuracy and the informativeness of the decision mak-
ers which were obtained using performance-based weights (i.e. DMg l obal and DMi tem)
are significantly better than those of the decision maker obtained with equal weights
(DMequal ). Also, the statistical accuracy of the DMequal is below 0.05 that is the rejec-
tion threshold usually set as significance level. Moreover, the statistical accuracy of the
performance-based decision makers is higher compared to that of the expert with the
higher calibration score (i.e. Expert 4). However, the relative information of the perfor-
mance based decision makers is lower than that of every individual expert. This means
that in general the synthesized decision makers have wider distributions than most ex-
perts for the different items. Finally, one can see that there is not a big difference between
the measures of performance for the two performance-based decision makers DMg l obal

and DMi tem .

It is important to note that the asymptotic strictly scoring rule property requires a
cut-off level beneath which an expert is unweighed. Usually, in practice, the value ofα is
either set equal to 0.01 (that is more “generous" than the traditional 0.05 for hypothesis
testing) or it is chosen to optimize the combined score of the resulting DM. However, in
this study, the cut-off level was chosen to be equal to zero. In this way, the judgment
of every expert, no matter how small its contribution, is included in the obtained distri-
butions. Although, all the participants in this study were experts in the field of offshore
wind energy, they had different functions and were affiliated to different types of com-
panies. Hence, the diversity of the pool of experts could be reflected to the resulting
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distributions, by setting al pha = 0. However, the analysis was also performed when
considering al pha = 0.01. It was found that this had a minor influence to the obtained
distributions and the measures of performance of the resulting performance based DMs
(which can be found in Appendix A.4). This was expected as experts 2 and 4 have signif-
icantly higher statistical accuracy compared to the other experts.

Name Calibr. Score Inf. score (total) Inf. score (seed items)
DMg l obal 0.96812 0.34834 0.34809
DMi tem 0.96812 0.35677 0.35466
DMequal 0.03868 0.13560 0.131805

Table 5.4: Comparison of the three DMs’ performance measures.

Figure 5.4: Assessments regarding waiting time (in min) due to unavailability of towers (Target Item 6).

5.3.3. ROBUSTNESS OF PERFORMANCE-BASED DMS USING ANDURIL
It is also worth investigating the robustness of the obtained DMs with respect to the seed
questions. To achieve this, one or more seed items are removed and the DMs are com-
puted again. Then the resulting DMs are evaluated in terms of statistical accuracy and
informativeness.

In this study, the robustness analysis has been performed using the newly developed
ANDURIL toolbox [26]. The reason for this choice is that ANDURIL gives the opportu-
nity to the user to decide the number of the seed items which should be excluded at a
time. For the purpose of this study, it was chosen to exclude all the possible combina-
tions up to 3 seed items at a time (i.e. a total of 469 combinations). However, it must be
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mentioned that excluding seed questions reduces the calibration power. Therefore, AN-
DURIL provides the option to the user to decide whether the calibration power is taken
into account for the computation of the calibration score. In the presented results, a
different calibration power was not taken into account.

The results of the robustness investigation of DMi tem and DMg l obal are presented in
Fig. 5.5 and Fig. 5.6 respectively. It can be seen that the calibration score of the DMi tem

can range from 0.7 to 0.92 approximately with a median of ≈ 0.75, when one seed item
is excluded at a time. As it was expected the range of the obtained calibration scores
increases as more than one seed items are excluded at a time. However, the median of
the calibration score when excluding two seed items at a time remains close to the me-
dian occurring when only one seed item is excluded. On the contrary, the median of
the calibration score is ≈ 0.6 when all combinations of 3 seed items are excluded at a
time. Although the resulting calibration scores are not very close to the original calibra-
tion score (i.e. green dashed horizontal line), these are significantly larger than 0.05 that
is usually set as the threshold at which the study would cast doubts regarding its esti-
mates. Moreover, the resulting information scores of the DMi tem are less spread and the
medians are closer to the original value concerning both the information score over the
seed items as well as the one over the target questions. As far as the robustness box-plots
of the DMg l obal (Fig. 5.6) are concerned, similar conclusions can be drawn. Following
the same approach, it is also possible to investigate the robustness of the obtained DM
with respect to the experts. It was chosen to investigate this when excluding one ex-
pert at a time. The performance measures of the resulting performance-based DMs are
presented in Table 5.5. Both measures of performance and especially informativeness
decrease significantly when expert 4 is excluded, while only the statistical accuracy is
reduced when expert 2 is excluded.

(a) Calibration score (b) Information - Seed (c) Information - Total

Figure 5.5: Robustness box-plots concerning (a) the calibration score, (b) the information score over the seed
items and (c) the information score over all the queried variables of the DMi tem , when excluding up to three
seed items at a time.

5.3.4. OBTAINED DISTRIBUTIONS - INPUTS FOR SIMULATION TOOL
The obtained distributions concern the relative frequency of occurrence of a delay due
to unavailability of required components and the waiting time distribution in between
availability of the major components required for the installation of offshore WTGs. These
components are: the monopiles (MPs) the transition pieces (TPs), the towers, the blades
and the nacelles. Figure 5.1 shows the different main components of a typical offshore
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(a) Calibration score (b) Information - Seed (c) Information - Total

Figure 5.6: Robustness box-plots concerning (a) the calibration score, (b) the information score over the seed
items and (c) the information score over all the queried variables of the DMg l obal , when excluding up to three
seed items at a time.

Excluded
Expert

DMg l obal

Calibra-
tion
Score

DMg l obal

Informa-
tion
score
(total)

DMg l obal

Informa-
tion
score
(seed
items)

DMi tem

Cali-
bration
Score

DMi tem

Infor-
mation
score
(total)

DMi tem

Infor-
mation
score
(seed
items)

Expert 1 0.96812 0.33982 0.34875 0.96812 0.34771 0.35533
Expert 2 0.43118 0.37786 0.40134 0.43118 0.38028 0.39926
Expert 3 0.96812 0.34834 0.34809 0.96812 0.35677 0.35466
Expert 4 0.65873 0.15863 0.13098 0.65873 0.18163 0.17062
Expert 5 0.96812 0.34834 0.34810 0.96812 0.35677 0.35466
Expert 6 0.96812 0.34837 0.34816 0.96812 0.35680 0.35472
Expert 7 0.96812 0.34834 0.34809 0.96812 0.35677 0.35466
Expert 8 0.96812 0.35075 0.35146 0.96812 0.35927 0.35782
Expert 9 0.96812 0.33866 0.34091 0.96812 0.34699 0.34724
Expert 10 0.96812 0.34842 0.34818 0.96812 0.35686 0.35474
Expert 11 0.96812 0.35697 0.33835 0.96812 0.36722 0.35152

Table 5.5: Robustness of performance-based DMs with respect to experts.

WTG that were taken into account in this study.

Among the different combinations of the experts’ judgments presented in section
5.3.2, it would be a sensible decision to use as inputs for the stochastic simulation model,
the distributions obtained using item weights, (i.e. DMi tem). The main reasons for this
choice are based on the evaluation of the performance of the obtained DMs (treated as
“virtual experts") in assessing uncertainty. In Table 5.3 and Table 4.3, it can be seen that
DMi tem has higher statistical accuracy compared to every individual expert and higher
relative information (which is a slowly varying function) compared to DMg l obal .

To illustrate the obtained distributions using the item weights weighting scheme,
Figure 5.7 presents the distributions concerning the relative frequency of occurrence of
unavailability of required TPs and required blades, as well as the waiting time due to
this. The distributions, obtained with performance based weighting schemes, presented
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small differences across the different types of components. Moreover, these distribu-
tions can be characterized as significantly wide (e.g. the waiting time until the required
TPs become available can range from minutes up to several days). This can be explained
because the queried variables express large variance since these are influenced by many
different aspects. Also, the obtained distributions can be used to support projects with
various characteristics, rather than one project that partly express the large variance of
the output distributions. In Appendix A.3 and A.3.1, one can find the figures that present
the distributions of every individual expert as well as the obtained distributions of every
DM concerning the seed and target variables respectively.

(a) Relative Frequency of occurrence - TPs (b) Waiting time due to TPs unavailability

(c) Relative Frequency of occurrence - Blades
(d) Waiting time due to unavailability of required
blades

Figure 5.7: Obtained distributions concerning the relative frequency of delays due to unavailability of the re-
quired TPs (a), blades (c) and the waiting time due to unavailability of the required TPs (b), blades (d).

5.4. MODEL IMPLEMENTATION

T HE methodology presented in Section 5.2 is applied to a realistic test case concerning
the installation of offshore wind farms.

5.4.1. ECN INSTALL
In order to investigate the impact of including/neglecting the uncertainties regarding the
supply disruptions during the installation process of OWFs, a realistic test case should be
simulated. For this purpose, a modified version of a software developed from ECN (ECN
Install v. 2.1) [31] was used to simulate different scenarios and provide the user with
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cumulative distributions of time and cost of each scenario. ECN Install is a time driven
decision support tool that simulates an installation scenario for a different number of
historical environmental time series and provides the user with the estimates regarding
the duration and the cost. The tool provides excellent flexibility in the hands of the user
to model the desired planning and export the cost and time outputs for any project. Due
to the high reliance on the user-defined inputs, the outputs are profoundly dependent
on the quality of input data. Figure 5.8 presents the start screen and the user interface of
the software.

(a) Start screen

(b) Example of user interface

Figure 5.8: ECN Install software

ECN Install highlights the barriers during the installation activities and supports in
eliminating project risks. ECN Install is designed to test various conceptual installation
strategies for accelerating the knowledge transfer between different actors involved. It
leads towards efficient resource management to minimize the possible delays and over-
all costs for simulated schedules. The ECN Install simulation tool is in existence from
early 2014, where over the years it has seen systematic improvements. The latest com-
mercial tool available is based on version 2.1. This version of the tool was modified with
the algorithm presented in subsection 5.2.1. A realistic test case that was developed from
ECN was simulated using the modified ECN Install tool.

5.4.2. TEST CASE DETAILS
The realistic test case that was developed from ECN and presented in [32], concerns an
OWF consisting of 150 wind turbines and simulates scour protection activities and the
installation operations of the support structures (i.e. monopiles and transition pieces),
the wind turbines, the (infield and export) cables and the offshore substation. The in-
stallation plan of the simulated test case is split in the following phases:

1. Scour protection: Rock dumping is performed for each of the 150 monopiles as
scour protection method. It is assumed that rock loading to the vessel takes place
in the port of Eemshaven.

2. Foundations: The foundation of each wind turbine consist of a monopile and a
transition piece. Two vessels were employed for the installation of foundations.
Both vessels carry three complete foundations at a time. The installation of 90
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foundations is performed by vessel 1 while 60 of them by vessel 2. Loading of
foundations to the vessels is carried out in Orange Blue Terminal of Eemshaven
port. Last, it is noted that an extra restriction concerning the piling is applied in
the Netherlands from January 1st until July 1st.

3. Export cables: Two AC 220 kV export cables of over 100 km each, weighting 90 kg/m
are installed. Their installation is a challenging and complex engineering process
because of several restricted areas. Briefly, the installation of export cables is split
in shallow waters, near shore, deep waters and connector cable installation.

4. Substations: Two 300 MW substations are installed on top of two jacket structures.
A heavy lift vessel installs first the two jackets and subsequently positions the sub-
stations. The jackets are towed by tugboats from Bow Terminal of Vlissingen port
whereas the substation are transported from Hoboken, Antwerp.

5. Inter-array cables: Approximately 140 km of inter-array cables are required to in-
terconnect the wind turbines with an average weight of 30-40 kg/m. Inter-array
cable laying is carried out by a cable laying vessel whereas the post-burying is per-
formed by a multi purpose vessel and a remotely operated vehicle (ROV).

6. Wind turbines: Wind turbines installation is performed by 2 vessels (75 turbines
each) while components are loaded in the port of Esbjerg. For both vessels, one
loading includes three complete wind turbines and for each turbine, the tower
comes at one piece while nacelle and hub are pre-assembled. Hence, five lifts are
required for the installation of one turbine.

The details of the simulated test case are summarized in Table 5.6.

Number of WTG: 150
Location: North Sea
Starting Date: 1 June
Installation operations: Scour protection, Support structures,

Wind turbines, Cables and Offshore Sub-
stations

Environmental conditions: 20 years of observations in the OWF site
Strategy 1: Initial stock at the in-
stallation port in the commence-
ment of project

10 units of each component (MPs, TPs,
Towers, Nacelles, Rotors)

Strategy 2: Initial stock at the in-
stallation port in the commence-
ment of project

20 units of each component (MPs, TPs,
Towers, Nacelles, Rotors)

Table 5.6: Details of the simulated test case.

The presented installation test case was simulated for three different approaches,
which represent the risk aversion of the user regarding the supply disruptions. In Ap-
proach 1 (or Base): the risk of supply disruptions is neglected, in Approach 2 (or Neutral):
the risk of supply disruptions is described with a “moderate" frequency of occurrence
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and in Approach 3 (or Pessimistic): the risk of supply disruptions is included with an
“high" frequency of occurrence. The terms “moderate" and “high" represent the me-
dian (50th percentile) and the 95th percentile of the obtained probability distributions
regarding the frequency of occurrence, respectively.

5.4.3. RESULTS
The realistic test case was simulated 1000 times in total (i.e. 50 simulations for every
available year of environmental time series) to properly incorporate the risk of supply
disruptions. Following this approach, different strategies can be compared in order to
support decisions with a certain confidence level. For illustration purposes, two different
strategies concerning the initial stock in the commencement of the installation project
were simulated (see also Table 5.6). The results of the test case when Strategy 1 and
Strategy 2 are considered, are presented below. It should be mentioned that for both
strategies the replenished amount of every component (as presented in Figure 5.3) was
equal to 5 units and the stock in the harbor could not exceed the initial stock of every
strategy.

INITIAL STOCK: STRATEGY 1
In Figure 5.9 and 5.10 are presented the duration of the installation (in days) and the total
cost of the installation (when the cost of the components is not included) respectively.
It can be seen that when the risk of supply disruption is included with a “moderate" rel-
ative frequency of occurrence (i.e. the 50th percentile of the CDF of every component),
the cumulative distributions of the duration and the cost of the installation present small
differences compared to the case where this risk is neglected. More precisely, concern-
ing the 80th percentile (or P80 value), there is a difference of approximately equal to ≈ 4
days and ≈ 0.42 Me for the duration and the cost of the installation respectively. How-
ever, these values differ significantly in the pessimistic case, where the risk of supply
disruptions is included with a “high" relative frequency of occurrence (i.e. the 95th per-
centile of the CDF of every component). In this case, the difference compared to the Base
approach is ≈ 15 days for the duration and ≈ 3.9 Me, for the cost of the installation.

An important remark concerning the resulting cost CDF of the Neutral approach is
that the total cost of the installation sometimes appears to be smaller than the Base ap-
proach. Although this may be counter-intuitive, it shows a more realistic modeling of
the total cost calculation. The total cost of the installation is rigorously calculated based
on the resources utilization. One can find a short description of the cost calculation in
Appendix A.2 and a more detailed description of the cost calculation that is supported
by ECN Install in [32]. The aforementioned remark can be explained by the difference in
the cost of the vessels depending on their state (i.e. remaining idle, traveling or perform-
ing an activity); the weather windows that may happen to be longer and the fact that the
vessels are hired for the entire day. Hence, there are a few cases where although a small
delay in the loading operation results in a delay in the total duration, the total cost of the
installation is lower compared to the case where this delay has not occurred.

INITIAL STOCK: STRATEGY 2
A similar trend concerning the difference between the CDFs obtained for different risk
aversion approaches, can be seen when Strategy 2 is considered for the initial stock at the
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Figure 5.9: Duration of Strategy 1 for different risk aversions.

Figure 5.10: Cost of Strategy 1 for different risk aversions.

port. In this scenario, all the details of the test case were kept the same, except the cost of
the harbor. Since in Strategy 2 there are 20 (instead of 10) units of every component in the
commencement of the project, it was assumed that the cost of the harbor will be twice
as high as the harbor cost in Strategy 1. Figures 5.11 and 5.12 show the resulting CDFs
of the duration and cost of the installation respectively. When Strategy 2 is considered,
the difference of the P80 value between the Base and Neutral case is ≈ 3.5 days for the
duration and ≈ 0.52 Me, for the cost of the installation. Whereas the difference between
the Base and the Pessimistic approach is ≈ 14.5 days for the duration and ≈ 4.23 Me, for
the cost.

COMPARISON OF STRATEGIES

It was shown that there is a significant impact into the estimates of the duration and
cost of the installation, when the risk of supply disruptions is included with a Pessimistic
approach. However, it is also interesting to investigate which of the two simulated strate-
gies, regarding the initial stock, is the most economical when this risk is taken into ac-
count. Figure 5.13 shows the CDFs of the cost of the installation for the Strategy 1 and
Strategy 2. It can be clearly seen that Strategy 1 should be preferred over Strategy 2 in
terms of cost. However, it must be mentioned that this result is heavily influenced by
the cost of the harbor, which was considered twice as high for Strategy 2. Also, as it can
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Figure 5.11: Duration of Strategy 2 for different risk aversions.

Figure 5.12: Cost of Strategy 2 for different risk aversions.

be seen from Figures 5.9 and 5.11, the estimated duration present minor differences for
both strategies. This would differ depending on the amount of initial stock as well as the
replenished amount of components. Numerous scenarios can be investigated. For ex-
ample, an extreme scenario where it is assumed that all the required components for the
installation of an OWF are available at the port in the commencement of the project, will
result in a CDF of the duration identical to the Base approach. However, the CDF of the
cost will be much different, showing a significantly higher total cost. To investigate such
a scenario more realistically, the user could also add a monetary penalty above a defined
threshold for the duration. These and many more different scenarios and strategies can
be investigated and compared with the developed approach. In this way, it is possible for
the decision makers to choose the most economical scenario with a certain confidence
level.

To further explore alternative scenarios for the presented realistic test case, four dif-
ferent strategies regarding the initial stock of different components in the commence-
ment of the installation process were also simulated. These strategies differ in an im-
portant characteristic of the project (i.e. initial stock of the components) that can be
intuitively used as a mitigation measure for the risk of supply disruptions. The investiga-
tion of these additional strategies would show whether difference in the initial stock of
particular component(s) would result in important differences in the estimated cost and
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time of the test case. It was found that the cumulative distribution of the total duration
had insignificant differences for the simulated strategies. This can be explained by the
small differences in the obtained distributions regarding the relative frequency of occur-
rence and the waiting time for different components. On the other hand the CDFs of the
cost varied proportionally to the required area in the port. The details of all simulated
strategies (including Strategy 1 and 2) as well as comparison of the obtained CDF of the
cost for the pessimistic approach can be found in Appendix A.5.

Figure 5.13: Cost comparison of different strategies for the pessimistic approach.

5.5. DISCUSSION
The proposed methodology was depicted in Figure 5.2 and it has some challenges and
limitations that should be discussed. To begin with, considering the first sub-process
of the proposed methodology, past construction projects from the field of application
should be investigated in order to identify potential events which may cause delays due
to supply disruptions. These are used for creating algorithm(s) in order to update the
probabilistic model. This can be particularly challenging because in case unforeseen
events are not modeled properly or are completely neglected, this might lead to underes-
timation of the supply disruptions risk. Furthermore, regarding the second sub-process
of the proposed methodology, a number of challenges or limitations of applying a SEJ
method such as the CM are listed below:

1. the data are often scarce and commercially sensitive for studies which are similar
to the presented study. However, these are crucial for forming a sufficient number
of seed questions based on which the performance of the experts is evaluated.

2. it can be challenging to find experts in the field of application who are interested
in participating and available for several hours.

3. the analyst should have been trained in CM, to ensure the proper elicitation of the
expert judgments in a structured way.

There are also limitations concerning the obtained probability distributions from ap-
plying the proposed methodology to the presented case. These probability distributions
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(i.e. the relative frequency of occurrence and the waiting time due to unavailability of
components during the installation of OWFs) are compatible with future projects which
comply with the characteristics presented in Table 5.2. These characteristics were delib-
erately set as such to support a wide range of future projects. However, there might be
the case that in the long-term future, significant changes to the associated technology
and the offshore construction practice will render the obtained distributions invalid. In
this case, it should be mentioned that the proposed methodology could be applied again
to update the probability distributions.

5.6. CONCLUSIONS & RECOMMENDATIONS
In order to further facilitate the transition from conventional energy sources to sustain-
able energy technologies, such as offshore wind, it is crucial to improve the management
of the installation of OWFs. The installation of OWFs is a complex process that is influ-
enced by various uncertainties. One important uncertainty that is usually overlooked
in practice and in scientific literature, is the risk of unavailability of the required com-
ponents, when needed, due to supply disruptions. To fill this gap, a methodology was
proposed to model the risk of supply disruptions.

Due to the absence of sufficient relevant historical data, expert judgments were used
to quantify the risk of supply disruptions for different components. For this purpose,
11 experts from different companies and countries provided their assessments. Their
judgments were analyzed by using Cooke’s classical model and were combined using
different weighting schemes. It was found that the combined opinion using item weights
(DMi tem) performed better in terms of statistical accuracy (i.e. calibration score) and
informativeness. It is worth mentioning that the DMi tem had a much higher calibration
score compared to every individual expert as well as the equal weight DM (DMequal ),
whose score was below 0.05 that is usually the threshold below which the study would
cast doubts regarding its estimates.

Afterwards, a test case was simulated when following different approaches which
express the risk aversion. It was found that disregarding the supply disruptions from the
estimated duration and cost may cause significant schedule and budget overrun. More
precisely, in the Pessimistic case, neglecting this risk may lead to an underestimation of
≈ 4 Me, for the P80 value.

Furthermore, six different strategies concerning the initial stock at the installation
port were investigated. It was found that despite the CDFs of the duration were similar
for all strategies, a large difference, proportional to the required area in the port, was
observed in the CDFs of the total cost of the installation for these strategies. Of course
following the proposed methodology, it is possible to incorporate the risk of supply dis-
ruptions to various scenarios. Hence, it was shown that applying the proposed method-
ology allows to incorporate the risk of supply disruptions to the cost estimates of various
scenarios. This can assist in comparing scenarios and making optimal decisions regard-
ing: 1. Schedule of installation; 2. Buffer stock; and 3. Selection of vessels and installation
port

Ultimately, it must be mentioned that the proposed methodology and the obtained
distributions can be used in future projects (with particular characteristics) to properly
incorporate the risk of supply disruptions. However, since the obtained distributions
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can support multiple projects which share the characteristics presented in Table 5.2,
these were expected to have a wide range. To improve this in future studies, two rec-
ommendations are given. First, the expert judgments could be elicited for a particular
project of which the details will be given to the experts to reduce their uncertainty. Sec-
ond, a dependence model, similar to those presented in [33], can be developed, where
the dependence between the obtained distributions and different project characteristics
will be described. Computing conditional distributions of interest for particular projects
could be an application of such a model.
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6
OFFSHORE WIND FARMS

RELIABILITY USING EXPERT

JUDGMENTS

Offshore wind farms (OWFs) are energy assets that are expected to play an essential role
in the crucial transition towards a fossil-free future. Hence, their reliability and resilience
must be optimized while taking into account the associated uncertainties. This chapter
proposes a method to improve the representation of uncertainty of the reliability of OWFs
with the purpose of enabling better decisions that will lead to more resilient energy assets.
It is a fact that data concerning the operation and maintenance (O&M) of OWFs and infor-
mation regarding upcoming technology improvements are limited and commercially sen-
sitive. Therefore, the judgments of five experts in O&M were elicited and combined based
on their performance in judging uncertainty. These combined probability distributions
were used as input in the simulation of a realistic test case. The cumulative distribution
of the energy availability was obtained while taking into account the uncertainties con-
cerning: the number of unplanned visits, the environmental conditions and the duration
of repair activities. It was shown that the proposed method allows a better representation
of the uncertainty of the availability in different operational phases of OWFs. Moreover,
it enables the comparison of different strategies while taking into account user’s risk ap-
petite. Thus, better informed O&M decisions can be taken for future OWFs which can lead
to higher energy availability.

The study presented in this chapter was supported by Vattenfall’s O&M Roadmap department. Parts of this
chapter have been published verbatim in ESREL 2020 - PSAM 15 proceedings [1].
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6.1. INTRODUCTION AND MOTIVATION

O FFSHORE wind energy is considered one of the main contributors towards the im-
portant and crucial transition to a fossil-free energy future. During the last years,

the transition to renewable energy sources is also supported by big energy companies.
This alongside with technology advancements has led to significant reduction of the lev-
elized cost of energy (LCOE) in Europe. However, there is still room for improvement,
especially in the installation and maintenance processes and the associated uncertain-
ties, contributing 8% and 13% to the LCOE respectively.

Optimal decisions regarding the maintenance of offshore assets such as offshore
wind farms are impacted by various uncertainties which may cause downtime of the
assets. For that reason, a lot of research has been conducted in the past focusing on im-
proving the operation and maintenance (O&M) of offshore wind farms (OWFs) [2]. Be-
sides the undeniable crucial role of environmental conditions, another important factor
that drives the maintenance decisions is the reliability of the offshore wind system and
the way this is modelled can be improved as shown in [3]. The reliability of an offshore
wind system is typically expressed using failure rates for the different components. This
factor significantly increases the complexity of the optimization of such processes and
poses challenges to achieve resilient offshore energy assets.

Similarly to [4] the lack of resilience of an energy infrastructure asset can be ex-
pressed as function of the supply and demand of its service. In other words, for OWFs a
commonly used measure such as the production based availability (PBA) can be used to
describe the resilience of the energy asset. According to the IEC Technical Specification
61400 26-2 PBA is percentage of potential energy a turbine is extracting from the wind.
For a given wind resource, over a reporting period, the PBA is the actual production di-
vided by the possible production.

Thus decisions concerning the strategies of the O&M of OWFs should aim to make
these energy assets more resilient while the associated uncertainties are considered in
the best possible way. Otherwise, these decisions may result in lower availability and
subsequently significant revenue losses. Hence, the purpose of this study is to improve
the estimates of the reliability of OWF by quantifying the uncertainty concerning events
that cause standstill and require unplanned visits for manual intervention. This infor-
mation can assist in making optimal decisions regarding the maintenance strategies.
However, data to accurately model these unplanned visits are often scarce or insuffi-
cient. Therefore, in the absence of sufficient historical data and information concerning
future WTGs designs, expert opinions can assist in order to achieve this goal.

A group of experts provide their assessments concerning the amount of unplanned
visits in different life cycle stages of OWFs with certain characteristics. The combined
probability distributions of these assessments will serve as inputs to a probabilistic sim-
ulation model, that simulates different maintenance scenarios. The output of this model
will be the cumulative distribution of the energy availability, while taking into account
the uncertainties concerning (i) the number of unplanned visits; (ii) the environmental
conditions; as well as (iii) the duration of repair activities.

The results will allow the comparison of different maintenance strategies. In this way
it is possible to find the optimal O&M strategy with a certain level of confidence.
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6.2. PROPOSED METHOD
This chapter proposes a method that can be applied to support decisions for O&M of
OWFs while improving the uncertainty representation of the estimated OWF’s availabil-
ity. Because of the high complexity of the O&M process, it was chosen to limit the scope
of the associated uncertain variables. Hence, this study focusses on describing the un-
certainty concerning the number of events (such as failures of components of the WTGs)
that cause standstill of a WTG and require unplanned visits for repair. It should be
mentioned that the developed methodology differentiate between the severity of these
events (by classifying events due to minor-moderate or major failures) as well as the dif-
ferent phases of the lifecycle of the OWF.

6.2.1. DEVELOPED MODEL
An O&M logistics model has been developed in the past from Georgios Katsouris (co-
author of [1]). This model includes the following functionalities:

(i) Randomly generating time of next failure;

(ii) Prioritizing scheduled and unscheduled tasks;

(iii) Allocating resources;

(iv) Weather windows / Downtime Calculation;

(v) Transit and Transfer to site;

(vi) Performing maintenance tasks.

The model simulates different O&M strategies and returns as output the mainte-
nance costs and CDF of the availability.

The existing model has been modified to take into account the uncertainty regarding
the afore mentioned variables. It is assumed that the inter-failure times are independent
and identically distributed exponential variables. Thus, the unplanned visits can be de-
scribed by a homogeneous Poisson process with the rate of occurrence of events per
WTG which cause standstill and require unplanned visits. The causes of the required
unplanned visit (UV) are divided in two jointly exhaustive events (i.e. minor-moderate
failure and major failure). Depending on the cause of the unplanned visit different repair
time distributions are utilized to compute the required time to repair. A flowchart of the
algorithm of the modified model is presented in Fig. 6.1 and can also be summarized in
the following steps:

1. For every WTG, a random interarrival time for the next required unplanned visit
is generated, using the average number of unplanned visits corresponding to the
appropriate operational phase

2. A random number X ∼U (0,1) is generated

3. If X > P fmi nor (of the corresponding appropriate operational phase), then the rea-
son for the unplanned visit is a major failure, otherwise it is a minor-moderate
failure
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Figure 6.1: Flowchart of extended model for O&M process.

4. If the unplanned visit is caused by a major failure, then the lead time to acquire the
required resources is sampled from the appropriate distribution. Then, the tasks
are prioritized, the resources are allocated, the weather windows are calculated
and the vessel transits to the OWF site. Finally, the required time TRma j to repair
when the technicians are on the site is sampled from the appropriate probability
distribution

5. Otherwise, if the unplanned visit is caused by a minor-moderate failure, then the
appropriate tasks are prioritized, the resources are allocated, the weather windows
are calculated and the vessel transits to the site. Afterwards, the required time
TRmi n to repair when the technicians are on the site is sampled from the appropri-
ate probability distribution

Due to lack of sufficient data to properly represent the uncertainty of the required
variables for the proposed model, expert judgments can be used. The mathematical
aggregation method, called Cooke’s classical model, was chosen to elicit the judgments
from a group of experts and optimally aggregate these to form the so called decision
maker (DM). More information about this method can be found in [5, 6] and have already
been presented in Chapters 4 and 5.

6.3. EXPERT JUDGMENTS ANALYSIS AND SYNTHESIS

F OR the purpose of this investigation, five experts from the energy utility Vattenfall
with relevant expertise in the O&M field of OWFs provided their assessments during

individual interviews. During these interviews the analysts explained the motivation of
the study, described the method of expert judgments elicitation and clarified all aspects
concerning the questions to remove ambiguity. The experience of the experts ranged
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Characteristic Description
Location North Sea; Irish Sea; Baltic Sea
Number of Wind Turbines More than 50 WTGs and less than

100 WTGs
Distance from manufacturers to
the installation port (relevant for
replacement)

More than 150 NM

Distance from operations port to
the OWF site

More than 20 NM

Minor - moderate failure event E.g. pitch motor, reset thermal re-
lays etc.

Major - replacement failure event E.g. switch gear, generator, bear-
ings, transformer

WTG characteristics Mature technology

Table 6.1: Characteristics of OWFs to be considered.

from 5-20 years in offshore wind field and they had different roles which are related to
O&M of OWFs.

For the seed questions publicly available data from System Performance Availability
and Reliability Trend Analysis (SPARTA) initiative were used along with data from Vat-
tenfall’s data centre. The data from SPARTA concern 22 anonymized OWFs in the UK
in the period 2017-2019 [7, 8], while the data from Vattenfall’s data centre concerned the
company’s operational offshore wind portfolio. The available data from SPARTA concern
only OWFs in the UK and do not provide information about different lifecycle phases and
reasons for transfers. Hence, it is not possible to use these directly as input for the model.
Also, the available data are not sufficient to properly describe the associated uncertainty.
However, both of the available datasets can be used for the purpose of measuring the
performance of the experts in judging uncertainty. Thus, based on these data, ten seed
questions were formulated regarding different measures of the recorded availability, the
amount of non-access days to the OWFs, the number of transfers and the OWFs’ capacity
factor.

The target questions were formulated in such a way to elicit uncertainty estimates
concerning the number of unplanned visits (UVs) for each wind turbine in a year, the
relative frequency of failures and the repair time. These were elicited for offshore wind
farms with the characteristics presented in Table 6.1. The uncertainty estimates regard-
ing the number of UVs as well as the relative frequency of minor-moderate failures were
gathered for 3 different operational phases of the lifecycle of an OWF. These were: (i) Op-
erational Phase 1, during 1st and 2nd year of operation; (ii) Operational Phase 2, ranging
from 3rd year of operation until 10 years before decommissioning of the OWF; (iii) Op-
erational Phase 3, during the final years of OWF’s lifecycle.

In [9], it was shown that only for certain components (such as the converter and elec-
trical components), significant differences were observed in the failure rates during the
lifetime of an offshore wind turbine, that resemble the failure trend suggested by bathtub
curve. In this study minor-moderate failure events are caused mainly by similar compo-
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Expert ID Statistical ac-
curacy C (e)

Information
(all items)

Information
(seed)

Weight w(e)

Exp. 1 0.00131 1.3004 0.8007 0.00105
Exp. 2 0.00281 0.7427 0.6320 0.00177
Exp. 3 0.06085 0.6994 0.8083 0.04918
Exp. 4 0.00138 0.6598 0.6507 0.00089
Exp. 5 0.01397 0.7227 0.8822 0.01232

Table 6.2: Performance measures of experts.

nents, thus it was decided to differentiate over the 3 aforementioned distinct operational
phases in the life cycle of an OWF to reflect the experts’ uncertainty concerning failures
during these phases. The duration of the periods were chosen in consultation with an
expert.

Every expert provided his assessments individually and the analysis and synthesis of
these was performed using the recently developed ANDURIL Matlab toolbox [10]. Plots
showing the assessments of the experts and the DMs regarding the seed questions which
were based on publicly available data and the target questions can be found in Figure 6.2
and 6.3 respectively. The performance of the experts in judging uncertainty is summa-
rized by the performance measures in Table 6.2. In general it can be seen that the sta-
tistical accuracy is low while the information score can be considered high. This means
that most of the experts were overconfident in their uncertainty assessments. However,
Expert 3 and Expert 5 have a statistical accuracy larger than 0.01 which is often used in
practice as cut-off level beneath which an expert is unweighted.

According to Cooke’s classical model, there are different ways of combining the ex-
perts’ assessments in order to form a DM [11]. Therefore, 4 different weighting schemes
were investigated. The simplest weighting scheme (DMequal) assigns equal weights to
every expert irrespective of the expert performance in judging uncertainty. The remain-
ing three weighting schemes calculate the DMs using the computed performance mea-
sures. DMg l obal is obtained when every expert receives one weight while DMi tem is ob-
tained when every expert receives a different weight based on its information score per
item. DMg l obal−opt is obtained when the weights of every expert are computed using a
cut-off level that maximizes the statistical accuracy of the DM. The obtained DMs can
also be treated as “virtual experts”. These are added to the pool of experts and the same
measures of performance in judging uncertainty are computed. Table 6.3 summarises
the performance measures of the obtained DMs.

DM Statistical accu-
racy C (e)

Information (all
items) I (e)

Information (seed)

DMequal 0.1135 0.1705 0.1824
DMg l obal 0.2441 0.4637 0.5226
DMi tem 0.2441 0.5176 0.5965
DMg l obal−opt 0.4925 0.3352 0.3648

Table 6.3: Performance measures of obtained DMs.
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Figure 6.2: Plots of calibration questions based on publicly available data form SPARTA.

From Table 6.3, one can make a number of observations. First of all, it is interesting
to mention that all DMs have a larger statistical accuracy compared to the more statis-
tically accurate expert (i.e. Expert 3). However, the informativeness of the DMs is lower
compared to all experts. Also, the DM with the lowest overall performance (i.e. statistical
accuracy and informativeness) is DMequal . The DM with the highest statistical accuracy
and overall performance is DMg l obal−opt . Hence, it was chosen to use the obtained dis-
tribution from DMg l obal−opt weighting scheme as input to the modified model. In Table
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Figure 6.3: Plots concerning the obtained assessments for the target questions.

Target Variable Operational Phase 1 Operational Phase 2 Operational Phase 3

Average Number
of UVs

P5: 1.9
P50: 4.9
P95: 8.1

P5: 1.8
P50: 3.1
P95: 5.8

P5: 2.3
P50: 4.7
P95: 9.9

All Operational Phases

Repair time
minor-moderate

P5: 1.33 hrs
P50: 3.06 hrs
P95: 7.75 hrs

Table 6.4: Obtained values of DMg l obal−opt for TQs relevant for the simulated test case.

6.4, one can find the values of obtained distributions when combining experts’ assess-
ment using the DMg l obal−opt weighting scheme. These values were used as input in the
hypothetical test case presented in Section 6.4.

6.4. O&M APPLICATION
A realistic hypothetical test case was simulated to investigate the effect of the uncertainty
of the variables concerning the unplanned visits. Two different O&M strategies were as-
sessed with respect to the access method to the offshore wind turbines, specifically Crew
Transfer Vessel (CTV) based access and a variant including Helicopter. In essence, for
cases where a Helicopter complements CTV operations, availability is increased due to
higher accessibility to offshore locations. This study focuses on the impact of uncer-
tainty on availability under different O&M strategies but it is mentioned that mainte-
nance costs should also be considered for optimal O&M planning. More details of the
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Characteristic Description
Location North Sea
Number of Wind Turbines 50 WTGs
Distance from operations port to
the OWF site

27 NM

Access methods CTV; CTV + Heli
Technicians 3 teams of 2 technicians
Maintenance Scope Minor - Moderate failure events
WTG characteristics > 8 MW

Table 6.5: Specifics of the test case.

test case can be found in Table 6.5.

Each strategy is simulated using the Monte-Carlo framework of the O&M logistics
model for 500 simulations of yearly operations representing the 3 different operational
phases. The uncertainty variables for each simulation include the MetOcean condi-
tions, different distribution of UVs based on the elicited estimates regarding their av-
erage yearly number and a random repair time for each task based on the distribution
given in Table 6.4.

The choice of the values concerning the number of UVs represents the risk aversion
of the analyst. Thus, a risk averse analyst would choose to use an average number of UVs
based on P95 confidence level where in most cases P50 values are used in practice. For
the purpose of this study, the impact of UVs in availability is investigated during Oper-
ational Phase 2 using CTV based access in Figure 6.5. Moreover, a comparison between
strategies utilizing CTV and CTV+Heli access during Operational Phase 1 under various
confidence levels is presented in Figure 6.4.

Various conclusions can be drawn based on Figures 6.4 and 6.5. First, yearly avail-
ability increases by approximately 1% when moving from operational phase 1 to 2 due
to the reduction in the failure rates. For CTV based access during phase 2, a risk averse
option (P95) for the UVs reduces the expected availability by 1.5% compared to the P50
option while in the worst case scenario by 3.5% demonstrating also the higher range as-
sociated to P95 confidence. Last, comparing CTV versus CTV+Heli access, we see an
availability upside of 1% and 2% for P50 and P95 UVs respectively. This means that
the helicopter option is more attractive when risk appetite is relatively low which is also
something that we see in practice.

6.5. CONCLUSIONS
This chapter proposed a method to improve the uncertainty representation of the reli-
ability of OWFs. To achieve this a previously developed O&M logistics model was mod-
ified and experienced experts from the offshore wind field provided their uncertainty
estimates for a number of questions. Cooke’s classical model was used to optimally ag-
gregate their judgments regarding the target variables. The obtained distributions were
used for a realistic hypothetical test case. For this test case, two different O&M strategies
were assessed. It was found that the proposed approach allows a better representation
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Figure 6.4: PBA CDF during Operational Phase 2 – CTV.
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Figure 6.5: PBA CDF during Operational Phase 1 – CTV vs CTV+Helicopter.
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of the uncertainty of the availability in different operational phases.
Moreover, it enables the comparison of different strategies while taking into account

user’s risk appetite. In this way, the “best” O&M strategy that results in higher availability
of the OWF can be chosen according to the user’s confidence level of choice

Finally, it should be mentioned that the proposed method together with the obtained
expert assessments can be used in future projects to support the decisions concerning
O&M strategies with a higher confidence level. This along with further development of
the model to incorporate the cost of alternative strategies would allow an holistic eval-
uation of O&M strategies under uncertainty and assist in having more resilient energy
assets in the future.
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7
CONCLUSION

In this chapter, the most important findings of this research are summarized. Further-
more, their scientific and technical implications for society are discussed. Finally, rec-
ommendations are given for further research with the purpose to further advance the
conducted research and overcome its current limitations.

7.1. MAIN FINDINGS & VALORIZATION
The purpose of this research was to investigate and propose methods that can be used
to support decisions concerning the construction management of offshore wind energy
assets. These decisions are subject to various uncertainties and therefore these should
properly be taken into account. Hence, probabilistic risk analysis methods were ex-
plored. More specifically, Monte Carlo simulations proved to be an efficient method to
allow for investigating the aggregated effect of different uncertainties.

A distinction was made between cases where sufficient relevant data exist and where
these are limited. When sufficient data were available, these were analyzed using statisti-
cal methods to describe the dependence of these random variables. In this work, meth-
ods such as copulas and non-parametric Bayesian networks were utilized to describe
the dependence of environmental conditions and the uncertainty of the subsequent off-
shore construction operations.

On the other hand, when sufficient relevant data are not available, expert judgments
were used to quantify the uncertainty. A mathematical aggregation method that is Cooke’s
classical model was chosen to take into account the performance of the experts in judg-
ing uncertainty. This method was applied in different applications related to offshore
wind assets such as the risk of supply disruption during the installation phase and the
unplanned events that initiate corrective maintenance activities during the operational
phase. This approach was proven particularly useful to quantify the uncertainty of events
and take decisions for mitigating these risks. In the context of this research, an open-
source Matlab toolbox named ANDURIL was developed which can be used for applying
Cooke’s classical model. This toolbox enables researchers and practitioners in under-
standing and applying and further developing this method. As a showcase of possible
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developments, the investigation of the robustness of the obtained combination of expert
judgments was presented. It is worth mentioning that the creation of this open-source
toolbox allowed for further improvement and development of a modern software to ap-
ply Cooke’s classical model while including the most important functionalities of its an-
cestor EXCALIBUR. ANDURIL became scriptable and was also developed in Python (i.e.
ANDURYL) to make it accessible to those with limited or no access to Matlab licenses.
Moreover, the updated versions allow for user-defined quantiles and missing items. Fi-
nally, a stand-alone graphical user interface was developed for ANDURYL that makes
the software more accessible to researchers and practitioners of Cooke’s classical model
with limited Matlab or Python experience.

The investigations concerning the predominant uncertainties of the construction
management of offshore assets and their main findings are listed below:

• Environmental uncertainties. Typically, a large amount of hindcast weather data is
used to incorporate the environmental uncertainty into the estimated duration of
the installation of OWFs. When a sufficiently large amount of historical/hindcast
data is not available, synthetic time series can be used. These synthetic time series
enable the evaluation of different scenarios while taking into account more pos-
sible MetOcean conditions than the existing historical observations. For the pur-
pose of a test case synthetic time series were constructed and validated by compar-
ing important characteristics such as workability and persistence with those of the
observed time series. It was found that dependently constructed synthetic time se-
ries provide a better insight into the duration of installation scenarios. Especially,
when more uncertainties such as the duration of certain activities are taken into
account. More specifically, for the investigated test case, when only limited hind-
cast data were used, the estimated 70th percentile of the total time to completion
from different runs differed 2%−7% compared to the more robust P70 value which
was estimated with the synthetic time series.

• Supply disruptions. Supply disruptions can occur during the execution of large
construction projects such as the installation of an OWF. These disruptions can
be modeled as an event with a probability of occurrence and an impact (i.e. de-
lay, waiting time until the required components become available). Due to lack
of sufficient relevant data which are typically commercially sensitive, expert judg-
ments were collected and combined using Cooke’s model to quantify the supply
disruption risk. A realistic test case was simulated to investigate the impact of ne-
glecting this risk. It was found that neglecting the supply disruption risk can lead
to an underestimation of 2% (i.e. approximately 4 million Euros) of the installation
cost. The obtained distributions can be used in future OWF installation projects to
support decision for mitigating this risk or estimating the required amount of the
allocated contingency budget.

• Uncertainty and dependence description of offshore construction operations. Stochas-
ticity of the duration of construction activities is often neglected in the models
which are used to support decisions for construction management of offshore
wind assets. Moreover, the dependence of the durations of construction activities
is not taken into account in practice. A non-parametric Bayesian network (NPBN)
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with serial connection can represent the dependence between consecutive con-
struction activities of offshore WTGs. Sampling from this NPBN allows to evaluate
installation scenarios of WTGs while taking into account the uncertainty and the
dependence of construction activities. For the simulated test case, it was found
that neglecting the dependence and assuming constant duration of construction
activities can lead to approximately 7% decrease concerning the 50th percentile of
the estimated total duration.

• Reliability estimates for O&M strategies. To improve the representation of the un-
certainty concerning the reliability of an OWF during it’s lifetime, expert judg-
ments can be used. In a study supported by Vattenfall, Cooke’s classical model
was applied to obtain uncertainty estimates of unplanned events which can cause
standstill and revenue loss. For this study, distinction was made for different op-
erational phases and different types of failures (i.e. minor-moderate and major).
This approach can be combined with a simulation model for O&M logistics. In
this way, it is possible for the decision makers to compare different maintenance
strategies according to their risk appetite and choose the “optimal" strategy ac-
cording to the confidence level of their choice. In the simulated test case, it was
found that a risk averse (or pessimistic) modelling approach leads to 1.5% reduc-
tion in the expected production based availability compared to a moderate risk
appetite modelling approach for the same maintenance strategy (CTV based ac-
cess).

The investigated methods can be combined in a simulation framework that allows
for the quantification of the aggregated effect of the predominant uncertainties. More-
over, this simulation framework enables the comparison of different realistic scenarios
as well as possible mitigation measures. In this way, the decision makers can base their
decisions on results which include the associated quantified uncertainties and choose a
quasi-optimal scenario.

The proposed methods were applied mainly to studies concerning offshore wind as-
sets. It was shown that these can improve the representation of uncertainty and subse-
quently support decisions that will further reduce the associated costs. This reduction
will be crucial for the urgent energy transition towards renewable energy sources as it
will enable further expansion of the offshore wind energy field which is considered one
of the most promising renewable sources. Thus the proposed methods can be used by
professionals in contractors, manufacturers and developers of the offshore wind indus-
try, to achieve a fossil-free energy future.

In addition, it should be noted that the proposed methods in this research context
could also be used to quantify uncertainty and support decisions in different fields. More
specifically, for example, the developed Matlab toolbox ANDURIL was also used in re-
cent studies such as one concerning the decision support of maintenance strategies in-
cluding the uncertainty of the condition of assets with long service-life.

7.2. DISCUSSION AND RECOMMENDATIONS
Among the investigated topics of this research, there is a number of topics that are worth
further research. Therefore, specific limitations concerning the different parts of this
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research are discussed and recommendations are given below:

• The synthetic time series method, which was proposed to incorporate more pos-
sible metocean conditions into the estimated duration of an offshore wind in-
stallation project, did not allow to produce synthetic samples that exceeded the
recorded values. Thus, it is also not possible to take into account climate change.
Climate change can lead to more frequent extreme events and more extreme meto-
cean conditions in general, which are not described in the historical data and
therefore will not be described in the synthetic as well. Hence, investigation of
a method that combines extreme value theory with the proposed copulas method
for synthetic environmental time series might assist in order to take into account
climate change. Moreover, it would be valuable to investigate how it would be pos-
sible to decide which of the available historical years are relevant for representing
the altered climate for the scenarios under investigation.

• Since its creation, ANDURIL Matlab toolbox is continuously updated by researchers
in Technical University of Delft. The toolbox was also developed in Python (named
ANURYL) and a user interface was added. The value of this toolbox can be im-
proved by extending the current functionalities by adding the measures of experts’
performance in judging the dependence of random variables.

• Another recommended investigation that can use ANDURIL as showcase is the ad-
dition of a proximity performance measure which can maybe be combined with
the performance measures of Cooke’s classical model. This might be useful in
studies where experts are providing estimates that are very far from the realization
of the seed items.

• The proposed method for modeling supply disruptions can be extended in order
to take separately into account manufacturing delays that may occur in an off-
shore wind installation project. This can be particularly interesting in the future
due to the increasing demand for offshore wind turbines and the limited number
of suppliers who would be capable of supplying these.

• When considering the uncertainty of the duration of offshore construction activ-
ities the learning effect was not included in the proposed method. It was shown
that the learning effect during an offshore wind construction project can be im-
portant. Based on few past projects and particular repetitive activities there was
a significant learning effect. Hence, it is recommended to investigate the applica-
tion of autoregressive models and dynamic Bayesian networks.

• Ultimately, while all the investigated and proposed methods of this research can be
used in a simulation framework to support decisions for offshore wind assets, the
identification of the “optimal" scenario is limited by the investigated scenarios that
will be chosen by the user. Therefore, the investigation of stochastic optimization
methods will be worthwhile in order to take into account the aggregated effect of
all predominant uncertainties and find the truly optimal scenario.
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A.1. PARTICIPANTS OF THE STUDY

Name Affiliation Country
Andersen K. J. Veja Mate Germany
Claus M. Siemens the Netherlands
De Ridder E. Jan de Nul Belgium
Engelmann L. Maritime Technik Germany
Garrett C. DNV-GL United Kingdom
Holy A. L. Vattenfall Germany
Knipping D. Van Oord the Netherlands
Rabaut D. DEME Belgium
Rainey P. EON United Kingdom
Robert P. DAMEN the Netherlands
Warnaar P. ECN the Netherlands

A.2. COST CALCULATION - ECN INSTALL
ECN Isntall calculates the cost of the installation process by keeping track of the installa-
tion activities in the time domain and hourly save the utilization of resources. For every
performed simulation, information is gathered regarding the working time and waiting
time (due to weather, supply disruptions, harbour and shift delays) for every vessels and
equipment. Then, these are used accordingly to the user-defined costs. More precisely,
the total cost of the installation process is computed using equation A.1.

Costi nst al l ati on = cvessel s + cequi pment + cpor t s + cl abour (A.1)

where:

cvesssel s =
∑

v∈V
c f i xed ,v +Ndr,v ∗dr,v +Ndr w,v ∗dr w,v+

Nmob/demob,v ∗ cmob/demob,v +Ntr i ps,v ∗ cadd ,v

(A.2)

where v and V a vessel and the set of vessels respectively; c f i xed ,v the fixed cost of
vessel v ; Ndr,v and Ndr w,v the number of working and waiting days of vessel v respec-
tively; dr,v and dr w,v the day rates for working and waiting respectively; Nmob/demob,v

and cmob/demob,v number and cost of (de-)mobilizations respectively; Ntr i ps,v and cadd ,v

number of trips and additional cost respectively.

cequi pment =
∑
e∈E

c f i xed ,e +Ndr,e ∗dr,e +Ndr w,e ∗dr w,e (A.3)

where e the equipment and E the set of used equipment; c f i xed ,e the fixed cost of the
equipment; Ndr,e and Ndr w,e the number of working and waiting days of equipment e
respectively; dr,e and dr w,e are the day rates while working and waiting respectively.

cpor t s =
∑

p∈P
cp ∗Dp (A.4)
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where p and P denote one port and the set of ports respectively; cp and Dp are the
cost of port p per day and the number of days port p was used.

cl abour =
∑

dl∈Dl

cl (A.5)

where dl and Dl denote one day and the set of days for which labour is performed;
cl is the labour cost per day.
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A.3. CALIBRATION VARIABLES

(a) Maximum registered delay because required MPs not avail-
able (Prj. 1).

(b) Maximum registered delay because required TPs not avail-
able (Prj. 1).

(c) Average of registered delays because required TPs not avail-
able (Prj. 1).

(d) Number of times there was a delay larger or equal to one
hour because the required MPs were not available (Prj. 1).

(e) Maximum registered delay because required TOWERS not
available (Prj. 2).

(f) Average of registered delays because required TOWERS not
available (Prj. 2).
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(g) Maximum registered delay because required BLADES not
available (Prj. 2).

(h) Number of times there was a delay (≥ 1h) because the re-
quired TOWERS were not available (Prj. 2).

(i) Maximum registered delay because required MPs not avail-
able (Prj. 3).

(j) Average of registered delays because required MPs not avail-
able (Prj. 3).

(k) Number of times there was a delay larger or equal to one
hour because the required MPs were not available (Prj. 3).

(l) Maximum registered delay because required MPs not avail-
able (Prj. 4).
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(m) Average of registered delays because required MPs not
available (Prj. 4).

(n) Number of times a delay (>= 1h) occurred because the re-
quired MPs were not available (Prj. 4).

A.3.1. TARGET VARIABLES

(a) Relative frequency of occurrence (per 1000) of unavailability
of required MPs.

(b) Waiting time (in minutes) because required MPs not avail-
able for loading.

(c) Relative frequency of occurrence (per 1000) of unavailability
of required TPs.

(d) Waiting time (in minutes) because required TPs not avail-
able for loading.
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(e) Relative frequency of occurrence (per 1000) of unavailability
of required Towers.

(f) Waiting time (in minutes) because required Towers not
available for loading.

(g) Relative frequency of occurrence (per 1000) of unavailability
of required Blades.

(h) Waiting time (in minutes) because required Blades not
available for loading.

(i) Relative frequency of occurrence (per 1000) of unavailability
of required Nacelles.

(j) Waiting time (in minutes) because required Nacelles not
available for loading.
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A.4. EXPERT JUDGMENTS ANALYSIS WITH al pha = 0.01

Expert ID Calibration
Score

Information
Score (All
items)

Information
Score (Seed
items)

Un-
normalized
Weights

Normalized
Weights
excl. DM

Expert 1 0,0002060 0,70675 0,86518 0,00 0,00
Expert 2 0,011904 0,471358 0,516478 0,0061485 0.0229
Expert 3 6,804e-10 0,93655 1,090144 0,00 0,00
Expert 4 0,569084 0,452635 0,4606201 0,2621317 0.9771
Expert 5 1,983e-07 1,214771 1,1789866 0,00 0,00
Expert 6 1,314e-05 0,82397 0,712980 0,00 0,00
Expert 7 1,192e-07 1,214716 1,195092 0,00 0,00
Expert 8 0,00036218 1,165429 1,137962 0,00 0,00
Expert 9 2,547e-11 0,8838053 0,802524 0,00 0,00
Expert 10 1,762e-05 0,8577063 0,897994 0,00 0,00
Expert 11 0,00441208 0,8424475 0,9259006 0,00 0,00

Table A.1: Measures of performance in judging uncertainty and weights for every participant, obtained from
the analysis with ANDURIL using a cut-off level equal to 0.01.

Name Calibration Score Information score (total) Information score (seed)
DMg l obal 0.96812 0.38179 0.36811
DMi tem 0.96812 0.39156 0.38038

Table A.2: Comparison of the performance measures of two performance-based DMs for al pha = 0.01.
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A.5. ALTERNATIVE STRATEGIES

Strategy 1: Initial stock at the in-
stallation port in the commence-
ment of installation

10 units of each component (MPs, TPs, Towers,
Nacelles, Rotors)

Strategy 2: Initial stock at the in-
stallation port in the commence-
ment of installation

20 units of each component (MPs, TPs, Towers,
Nacelles, Rotors)

Strategy 3: Initial stock at the in-
stallation port in the commence-
ment of installation

20 units of foundation components (MPs, TPs)
and 10 units of WTGs components (Towers, Na-
celles, Rotors)

Strategy 4: Initial stock at the in-
stallation port in the commence-
ment of installation

10 units of foundation components (MPs, TPs)
and 20 units of WTGs components (Towers, Na-
celles, Rotors)

Strategy 5: Initial stock at the in-
stallation port in the commence-
ment of installation

20 units of MPs, TPs, Towers and 10 units of Na-
celles, Rotors

Strategy 6: Initial stock at the in-
stallation port in the commence-
ment of installation

20 units of MPs, TPs, Nacelles, Rotors and 10
units of Towers

Table A.3: Details of the different simulated strategies.

Figure A.3: Cost comparison of all different simulated strategies for the pessimistic approach.
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