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Abstract
In this work, we present VisuaLayered, the implementation of a combined analysis workflow for pigment
identification. VisuaLayered is an integrated, interactive system that focuses on the combined visual
analysis of Macro X-Ray Fluorescence (MA-XRF) and Reflectance Imaging Spectroscopy (RIS) data.

Analysing paintings for pigment identification is relevant for many applications in the cultural her-
itage domain, such as conservation and restoration. Domain experts use non-invasive scanning tech-
niques as an initial step in their analysis. Two such techniques are MA-XRF and RIS. They provide
hyperspectral data on the elemental and molecular composition of pigments, respectively. Domain
experts analyse these two complementary data modalities in order to determine the pigments present
in the different paint layers of a painting. However, due to the size and high-dimensionality of these
datasets, experts have problems with efficiently analysing the data. In general, they examine the two
data modalities separately in the analysis workflow and use their knowledge to unify all the information
without additional software support, as there is no integrated system that is designed specifically for
the combined analysis of MA-XRF and RIS data.

We worked in collaboration with domain experts from the Rijksmuseum, Amsterdam in order to
design and implement VisuaLayered based on current domain practices. We use t-SNE for projecting
the high-dimensional data into a two dimensional space, which the user can interactively explore in
combination with other linked views in order to find connections between the two data modalities. With
our system, experts can explore the spatial distribution and the correlation between pixels that have
similar molecular and/or elemental compositions. Additionally, for the RIS data, we support endmember
identification and analysis based on the pigments’ spectral profiles. We tested the efficiency of our
system with respect to the designed workflow in a case study evaluation with our collaborator. They
successfully used VisuaLayered for the analysis of one painting and found the views combining the two
data modalities very useful for better understanding the relation between them. Moreover, they were
able to identify new pigments, that they missed when using existing software.
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1
Introduction

Painting analysis reveals information about the materials used for the creation of a painting. This in-
formation can be used to understand an artist’s work, for the conservation and restoration of paintings
or for historical reasoning [1]. Generally, the painting analysis process starts with non-invasive tech-
niques, in particular with imaging techniques that allow the identification of different pigments in the
paint layers and the visualization of their distribution on the painting surface [2].

Two such non-invasive imaging techniques are Macro X-Ray Fluorescence (MA-XRF) and Re-
flectance Imaging Spectroscopy (RIS). MA-XRF reveals the chemical element distribution in paint lay-
ers and RIS reveals the molecular structure of the layers. However, analysing the results obtained
using these two data modalities individually is not always enough for understanding the pigment distri-
bution of a painting. MA-XRF and RIS provide unique insights into the structure of the pigments and
complement each other [1]. Therefore, domain experts work with both data modalities to identify the
pigments used in a painting.

MA-XRF and RIS are hyperspectral imaging techniques, which means that discrete values are reg-
istered for narrow bands and a continuous spectrum is obtained for every scanned pixel. The resulting
data are saved as data cubes [3]. Such data cubes may contain millions of pixels with more than 200 di-
mensions per pixel. Domain experts are now facing the problem of efficiently exploring and interacting
with these high-dimensional spaces. They identify pigments by analyzing the elemental and molecu-
lar profiles of pixels, which they compare to known pigment characteristics. A visual approach allows
for easy exploration and interaction with the scanned pixels. However, directly visualizing and under-
standing the structure of the high-dimensional spaces of RIS and MA-XRF is challenging. To tackle
this, we chose dimensionality reduction to visualize each dataset and make it interactively explorable.
Furthermore, we use t-SNE[4] to project the datasets in two dimensions [5] and embed similar pixels
as neighbouring points such that domain experts can relate groups of points to the pigments they rep-
resent. Additionally, the two data modalities are generally considered in separate steps of the analysis
process [6, 7] and domain experts combine the gained insights from both data modalities without as-
sistance from the tools they are using. Therefore, an integrated visual analysis system that connects
the MA-XRF and RIS data can help domain experts better understand the elemental and molecular
structure of pigments.

Furthermore, machine learning techniques exist for the automatic analysis of RIS data [8] that com-
pare the scanned spectra to a library of existing pigment representative spectra to identify the pigments
in a painting. However, it is difficult to model the complexmixtures of pigments in paint layers. Moreover,
paints and painting techniques differ from one artist to another and from one time period to another, so
there is limited comparability between different RIS datasets. Automatic techniques are limited to the
spectra present in the spectral library, that may not represent an accurate baseline for the pigments in
the painting. Domain experts can reason about the pigment distribution in a painting even in mixtures
by looking for specific cues in one of the data modalities and connecting them to characteristics identi-
fied in the other data modality. Because of this, they are able to justify their decisions, unlike automatic
methods, and modify their conclusions during the analysis as they uncover more information that is
important. Therefore, domain expert knowledge is relevant even for automatic methods as experts can
validate the accuracy of the automatic results.
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2 1. Introduction

We built an integrated system, VisuaLayered, which consists of multiple linked views for the ex-
ploration of both data modalities. VisuaLayered keeps domain experts in the loop by being highly
interactive and allowing them to be involved in every step of the analysis process. We worked together
with domain experts from the Rijksmuseum, Amsterdam in order to design, implement and evaluate
VisuaLayered. The main contributions of this work are:

1. A combined and interactive visual analysis workflow for RIS and MA-XRF data with the goal of
pigment identification

2. A prototype implementation of the mentioned workflow

We evaluated the efficiency of VisuaLayered in a case study with our collaborator. We wanted to
see how well VisuaLayered implements the designed workflow, so we prepared five analysis tasks to
be completed in VisuaLayered. Additionally, we asked our collaborator to complete the same tasks
with existing tools that she normally uses in order to see if VisuaLayered improves her typical analysis
workflow. The results show that the views combining the MA-XRF and RIS data provided in VisuaLay-
ered represent a clear improvement in understanding the connections between the two data modalities.
Furthermore, she was able to identify more pigments using VisuaLayered.

The project structure follows the design study methodology presented by Sedlmair et al. [9]. Design
studies fall under the category of problem-driven research as they start with an existing problem and try
to find a solution for it by first designing it and then validating it. Sedlmair et al. [9] propose a framework
that leads to the implementation of a visual analysis system. The framework can be divided into three
parts. The first part refers to the set up of the study in which we learned about the current visual
analysis literature and we met with our collaborators from the cultural heritage domain. The second
part consists of the abstraction of the problem, design, implementation and evaluation. The third and
last part contains the reflection on the obtained results and the writing of the design study paper.

Chapter 2 presents the background of the two data modalities, MA-XRF and RIS and their appli-
cation in cultural heritage. Chapter 3 highlights the related work with respect to current visual analysis
systems for the two data modalities and for similar high-dimensional data. Then, in Chapter 4 we de-
scribe the requirements analysis and the process through which we defined it. In Chapter 5 we present
the prototype, VisuaLayered, and explain how it connects to the requirements. Chapter 6 presents the
evaluation and discussion of results. In Chapter 7 we present our ideas for future work and in Chapter 8
the conclusions.



2
Background

In this section we describe the two data modalities used by our collaborators, Reflectance Imaging
Spectroscopy (RIS) and Macro X-Ray Fluorescence (MA-XRF) and explain how they can be used for
painting analysis. Both data modalities are hyperspectral imaging techniques, which means that for
every pixel of the scanned image, we register a continuous spectrum. This is possible because val-
ues are registered for neighbouring wavelengths with a small sampling distance [10]. Compared to
multispectral techniques, which only register values for a small number of more distant wavelengths,
hyperspectral techniques characterise a material in more detail and allow for easier comparison be-
tween materials [11]. Hyperspectral imaging analysis developed rapidly over the last 20 years and
became available in the cultural heritage domain, where domain experts use it for pigment identifica-
tion. Other applications of hyperspectral techniques include minerals’ analysis in geology and soil and
vegetation analysis [10].

2.1. Reflectance Imaging Spectorscopy
Reflectance Imaging Spectorscopy (RIS) determines the molecular composition of a material by mea-
suring the amount of light that is reflected by it. Light interacts with elements and molecules [3] and
we obtain a reflectance spectrum, where low values indicate that light is mostly absorbed and high
values indicate that light is mostly reflected by the material. The devices used for RIS capture values
in the visible range, 400 - 700 nanometers (nm) and in the infra-red range, 700 nm - 1 mm [12]. We
can observe the entire electromagnetic spectrum in Figure 2.1, with values expressed in meters. Our
collaborators work with VNIR (visual and near infra-red) cameras, which capture the range of 400 -
1100 nm and with SWIR (short wave infra-red) cameras, which capture the range of 1000 - 2500 nm.

Figure 2.1: Electromagnetic spectrum (by William Anderson)

Every pure material can be identified based on its reflectance spectrum. We call this representative
reflectance spectrum an endmember [10]. In an ideal world, this would allow us to identify any material
by comparing its reflectance spectrum to a universal library of endmembers. However, in reality, mate-
rials (including the pigments used in paintings) are not pure due to their mixing and layering with other
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4 2. Background

materials or due to degradation because of aging or other external conditions. Furthermore, such a
universal library of endmembers is often not available.

For painting analysis, domain experts may define endmembers as the representative spectra in the
painting under study. Using spectral unmixingmethods, we can identify the endmembers that constitute
a mixed spectrum and their contribution to the mixture. There exist linear and nonlinear unmixing meth-
ods. Linear methods assume a spectrum is a linear combination of endmembers and provide accurate
results when materials are present in the mixture in distinct layers. However, in cases where materials
are mixed in layers that intertwine, nonlinear methods provide better results. Some linear spectral un-
mixing algorithms are based on three steps. The first one is dimensionality reduction in order to reduce
the complexity of processing hyperspectral data, while preserving important information for the unmix-
ing of spectra [13]. The second one is the identification of endmembers in the reduced space. The third
one is the unmixing of all mixed spectra based on the identified endmembers. For the second step, we
have two ways in which we can identify endmembers, manually or automatically. Automatic methods
are used to identify endmembers directly in the scanned data or by matching scanned spectra to end-
members from a spectral library. Typically, the automatic methods that find endmembers in a painting,
try to find an optimal set of endmembers according to a defined criterion, but such endmembers may no
longer be physically meaningful. Therefore, it is important to still consider manual identification, which
is done by domain experts, who use their domain knowledge of realistic endmembers and identify them
by interactively exploring the scanned spectra and choosing representative spectra for different areas
in the painting [13]. In some cases, endmembers have peaks at specific wavelengths, which clearly
indicate the presence of a particular pigment. Alternatively to using unmixing methods, we can use a
spectral similarity measure in order to identify the spectra that are similar to the identified endmembers.
By considering only the spectra that are similar to an endmember, we obtain an endmember mapping,
which shows us the spatial distribution of relevant molecules.

2.2. Macro X-Ray Fluorescence

Figure 2.2: Example XRF spectra [14]

X-Ray spectroscopy appeared at the beginning
of the 20th century. Macro X-Ray Fluorescence
(MA-XRF) determines the elemental composition
of a material. This technique works by shoot-
ing an X-Ray that moves an inner shell electron
of an element and then registering the fluores-
cent radiation created when this electron is re-
placed by an outer shell electron [15]. Figure 2.1
shows that X-Rays are situated between ultravio-
let and Gamma rays on the electromagnetic spec-
trum. The peaks of the XRF spectrum at spe-
cific energy values indicate the presence of dif-
ferent chemical elements (Figure 2.2). Therefore,
based on these peaks, experts extract elemental
maps showing the distribution of one chemical el-
ement and further study the elemental composi-
tion of a material.

2.3. RIS and MA-XRF Data in Cultural Heritage
Paintings have a complex, layered structure, which we can understand through advanced imaging
techniques like RIS and MA-XRF. A painting is created on a support (e.g. a canvas) and consists of a
ground layer, followed by an underdrawing, pictorial layers and lastly, a varnish layer [16]. The pictorial
layers contain different pigments, that domain experts try to identify. If they know the pigments and
the order and quantity in which they are applied, domain experts can accurately restore and conserve
paintings, without altering their composition. Through non-invasive scanning techniques, like RIS and
MA-XRF, domain experts may even discover a completely different painting underneath the visible paint
layers [17] or observe the corrections done in the past by other restorers. Moreover, they know how
pigments alter over time and can identify specific cues in the data that indicate the age of the used
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pigments. Additionally, art historians gain insights into the pigments used in different time periods by
important artists [18] through the analysis of multiple, varied paintings.

Non-invasive imaging techniques, such as MA-XRF and RIS, are the first part of a typical analysis
process. Galli and Bonizzoni [19] make a summary of various XRF techniques and their applicability
in cultural heritage. They present MA-XRF as a powerful and easy to use technique that can guide a
more in depth analysis of a painting. If necessary, domain experts take samples of a painting and do
experiments on it in order to have a complete analysis of a painting. Mazzinghi et al. [20] used MA-
XRF to analyse a painting of a Flemish painter from the 15th century. This technique alone could not
identify pigments with 100% certainty, but in combination with results from other works from the same
painter or from the same time period, they could still decide on a set of possibly used pigments. With
the use of MA-XRF element mappings they identified pigments like ultramarine, vermilion and gold.
Moreover, they discuss the use of MA-XRF for the analysis of furniture, tiles, metals, manuscripts and
other materials in cultural heritage, highlighting its relevance in the field. Applications of RIS also reveal
important information about the paint layers in a painting [21, 22]. Recent works focus on automatic
endmember detection. For example, Grabowski et al. [8] successfully identify the endmembers of five
green pigments by automatically matching the scanned spectra to 22 endmembers in a spectral library.
They propose a three-step method which consists of clustering the data, identifying endmembers based
on the clustering followed by mapping the endmembers to the spectral library and in the end, labeling
the pixels based on the pigments they represent. However, a limitation of their results is the fact that
they only test their method on a small number of pigments in mock-up samples and not in an artist’s
painting, which may have aged pigments in more complex mixtures, that may not be represented that
easily in a spectral library. Moreover, there is work focused on finding accurate spectral similarity
measures for automatic matching [23]. Additionally, Grillini et al. compare several imaging models for
spectral unmixing [24]. Their models fall into three categories: additive, subtractive and hybrid. They
conclude that subtractive mixing models perform the best in the case of oil-based mock-up paintings.

MA-XRF and RIS are used in combination in the cultural heritage field as they provide complemen-
tary information that is useful to better understand the structure of a painting. They allows us to uniquely
identify pigments and visualize their distribution on the surface of a painting. On the one hand, MA-XRF
indicates the presence of different chemical elements (e.g. calcium, copper) in the paint layers of a
painting, but this is not enough information for pigment identification. Firstly, one chemical element
can be present in multiple pigments. Secondly, paint is applied in layers and MA-XRF does not pro-
vide depth discrimination, so we may not always know how the elements are distributed in the layers.
Thirdly, pigments can be mixed, so it may be unclear which elements belong to which pigment. On the
other hand, the RIS data also presents limitations. Some pigments have very similar endmembers, so
it is difficult to distinguish between them only based on their measured reflectance. Moreover, if we
have a mixture of pigments, its endmember may not be enough for identifying its constituent pigments.
Therefore, we can use the RIS data in combination with the MA-XRF data in order to characterize pig-
ments with respect to both their molecular and elemental compositions in order to make an informed
decision on the pigment distribution in a painting.

Additionally, the two data modalities have different capabilities with respect to the interaction with
the paint layers, as they have different depths of penetration that depend on the energy of the used
radiation. MA-XRF provides information about all the layers of a painting because it penetrates the
entire thickness of an object, while RIS only interacts with the upper layers of paint because light only
penetrates the first microns. Hence, a scanned pixel might indicate the presence of chemical elements
that do not correspond with the RIS results. Hence, domain experts have to reason about the possible
combinations of chemical elements that match the identified endmembers. Moreover, they can deduce
what elements are present in the first layers of paint, that are not covered by RIS and have a clearer
idea of the order in which the pigments were applied in the painting.

As recent works show, the combined analysis of MA-XRF and RIS proves to be very powerful in
the cultural heritage domain. Domain experts work with MA-XRF elemental maps (Figure 4.1b) and
RIS endmember maps (Figure 4.1c) in order to reason about the pigment distribution in a painting. For
example, D’Elia et al. [25] conducted an analysis on two paintings made by one of Leonardo da Vinci’s
apprentices. They scanned one section for each painting as they were interested in modifications made
in those areas. By using both data modalities they successfully identified pigments like carbon black
and vermilion. Moreover, they identified parts of the original painting, that were hidden underneath the
top paint layers. In another example, the combination revealed pigment residues on an antique Greek
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statue [26]. Even though the statue was extensively analysed in the past by archaeologists, the two
datamodalities complemented each other and showed the presence of earth based underlayers of paint
and revealed the presence of lead based pigments on the statue. Additionally, the combined analysis
revealed in high detail the pigment distribution in Johannes Vermeer’s Girl with a pearl earring [27]. For
this application, MA-XRF was used to confirm the pigments found based on the endmembers (e.g. for
the pigment vermilion, MA-XRF showed the presence of mercury) and to reveal information about the
sub-surface layers that were not captured with RIS. Moreover, the combination revealed the distribution
of the pigments identified in samples taken from of the painting in previous analyses.



3
Related Work

We are interested in the combined visual analysis of RIS and MA-XRF data. Since these two data
modalities are hyperspectral, we start by looking into existing analysis techniques for hyperspectral
data in Section 3.1 in order to learn how they are typically analysed and develop our workflow based
on them. Moreover, due to the fact that domain experts try to establish the pigment distribution in a
painting by exploring different areas of the painting, we consider visual analysis systems that allow
users to interactively explore the search space in section 3.2. Additionally, due to the high-dimensional
nature of the two data modalities, we consider dimensionality reduction techniques that project the data
into a structured lower-dimensional space that domain experts can more easily interact with.

3.1. Analysis of Hyperspectral Data
The existing software for the analysis of hyperspectral data for cultural heritage generally focus on the
analysis of one of the two data modalities used in this work. XISMuS is a software system designed
specifically for MA-XRF data analysis [6]. It provides pre-processing methods for MA-XRF data cubes.
Moreover, it supports the visualisation of elemental maps, individually and in combination, similarly to
our system. In addition, we provide the visualization of combined maps from RIS and MA-XRF such
that users can explore the spatial overlap of the two data modalities. PyMca is another software system
for the analysis of XRF data [28]. Campos et al. [29] use PyMca for creating and visualizing elemental
maps. While at the beginning the system focused on one type of XRF maps, it developed over time
and now also supports the imaging of other (even non-spatial) multispectral data, like Fourier transform
infrared maps. Moreover, it supports the simultaneous manipulation of different data modalities [30].
However, PyMca does not provide a dedicated workflow for pigment identification, which is our goal.

Next, we consider systems that allow users to explore the reflectance spectra in RIS datasets. The
Specim IQ hyperspectral VNIR camera comes with its own analysis software [7]. For a scanned paint-
ing, users can select individual pixels in order to visualize their spectrum. Moreover, users can create
false color images and explore the spatial distribution of the selected spectra using the Spectral Angle
Mapper (Section 5.3) algorithm. We provide similar functionalities, with improved interactivity, such that
we can define and save endmembers based on selections of multiple similar pixels. Additionally, HypIX
(Hyperspectral Image eXplorer) allows us to explore time series of hyperspectral data [31]. Through
three interactive, linked views they show the spatial distribution of data and the registered spectra at
different time steps and an embedding of all time steps. Our system consists of similar linked views,
but instead of focusing on how the hyperspectral data evolves over time, we focus on visually combin-
ing the two data modalities in order to better understand the correlation between them. Furthermore,
Hyper3D is a system that focuses on the visualization of volumetric hyperspectral data [32]. It was de-
signed in collaboration with art conservators and is meant to help them in their analysis. They provide
2D views to complement 3D models’ inspection, like a spectral plot showing the spectrum of a selected
pixel. We follow a similar design process, but work with linked 2D visualizations of hyperspectral data
and provide a spectrum view with more interactive settings for endmember identification.

Furthermore, since hyperspectral data is relevant for other fields, such as agriculture and mineral-
ogy [24], tools developed for these fields can still be useful for cultural heritage data analysis. Such

7
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an example is the geospatial data analysis software, ENVI [33]. It is a powerful system that provides
many functionalities that can be used for analysing RIS data, including the ones present in the afore-
mentioned Specim IQ software. Additionally, ENVI allows users to automatically detect endmembers
using the Spectral HourglassWizard. We describe ENVI in more detail in Section 4.3, as it is the system
that our collaborators currently use for their analysis.

For our implementation, we integrate views and techniques that are used in the field for each data
modality, such as the ones described in this section. However, the presented systems are not designed
for multi-modal data analysis. We want to go a step further by designing and implementing a workflow
that focuses on the combined analysis of the two data modalities.

3.2. Interactive Visual Analysis of High-Dimensional Data
The data obtained using hyperspectral imaging can be explored through visualization. Liu et al. [34]
conducted a survey into high-dimensional data visualizations. We can directly visualize the data using
Parallel Coordinate Plots (PCP), which treat the dimension of a dataset as separate axes, ordered
linearly and represent one point as a line that has a specific value for every axis. This view allows us
to see points that have similar/different values across dimensions, but the structure that we observe
is influenced by the ordering of the axes. Another direct visualization method is the Scatterplot Matrix
(SPLOM) which consists of a matrix of scatterplots showing the relation between every two possible
dimensions of a dataset. However, this view does not allow for exploring the relationship of more than
two dimensions at the same time.

The high-dimensional nature of the data makes it difficult to directly visualize it. We can address
this by transforming the original data through subspace clustering, dimensionality reduction (DR) or
regression analysis [34]. Dimensionality reduction (DR) projects high-dimensional data into a lower-
dimensional space, typically 2D or 3D, while preserving important features between points in the original
space. We chose dimensionality reduction in our work because we wanted a space that that can
be efficiently explored and interacted with. DR techniques can be divided into two main categories,
linear and non-linear. Linear methods, such as Principal Component Analysis (PCA) [35] and Linear
Discriminant Analysis (LDA) [36] transform the data linearly. Non-linear methods, such as Uniform
Manifold Approximation and Projection (UMAP) [37] and Multidimensional Scaling (MDS) [38] create
projections for data that cannot be modelled linearly [34]. Another non-linear method is t-SNE [4], which
preserves local distances between data points when performing the projection. We use t-SNE in our
analysis, as domain experts are interested in identifying pigments, which correspond to points that are
similar in the high-dimensional space with respect to both data modalities. t-SNE hasmany applications
in medical visualization, for example in the case of singe-cell data analysis, it allows the identification
of potentially problematic tissues [39]. Moreover, in medical genetics t-SNE can separate continental
populations and accurately represent human genetic data at different scales (global and local) [40]. In
the case of the analysis of high-dimensional images, Vieth et al. [41] incorporated texture information
into dimensionality reduction methods.

Dimensionality reduction is already used for the analysis of hyperspectral data [11]. In the case of
ink and paper data analysis, the t-SNE embedding shows a clear separation between groups of similar
points and facilitates the easy clustering of the data, outperforming PCA due to its non-linearity [42, 43].
The embeddings are visualized in 2D scatterplots. Moreover, the clusters obtained based on the t-SNE
embedding score better than the PCA based ones according to different clustering indices. Pouyet et
al. [44] conduct a comparison between the same two algorithms and minimum noise fraction (MNF) for
the reduction of reflectance data of mock-up paintings and one manuscript. In this case, t-SNE also
produces a better embedding for endmember identification through clustering. In HypIX [31], which is
mentioned in Section 3.2, the embedding view obtained using t-SNE acts as a basis for point selections
and further analysis in the other two available views. Additionally, in Section 2.3 we mentioned an
example of automatic endmember identification [8]. As part of their algorithm, they use dimensionality
reduction (Barnes-Hut-SNE [45]) for creating an embedding fit for the automatic clustering of pixels.
Macro et al. [25] use PCA for filtering pixels that are perceptually similar, but different in their reflectance
spectrum, when trying to find representative pixel clusters for endmember identification. Additionally,
using the t-SNE embedding of a joint data cube of MA-XRF and RIS data, Alfeld et al. [3] could more
easily establish some of the pigments present in the paintings of an Egyptian tomb. For example,
the embedding showed a clearly separated cluster for one pigment and highlighted sub-surface paint
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layers. The combination of the two data cubes is non-trivial, as they span different high-dimensional
spaces and have to be normalized and perfectly aligned in order to obtain a fused cube that can be
used for meaningful further analysis. Based on previous work, we see that t-SNE embeddings facilitate
the easy and accurate clustering of hyperspectral data.

In the astronomy field, Goodman highlights the need of a complete system for the analysis of high
dimensional data [46]. He suggests the use of multiple linked views that update upon a user selection,
not only for tabular data, but also for images and data cubes. Such a system would enhance the
analysis process by offering context in a visualization, which allows for comparison between different
data models. He also mentions integrating views available in the field and adapting views from other
fields in order to build such a system. We aim to create a similar integrated system for the combined
analysis of RIS and MA-XRF data.

Interactivity is an important element in the analysis of high-dimensional data as it allows domain
experts to focus on specific aspects of the data and to integrate their knowledge into the system in order
to solve their analysis tasks. Brehmer et al. [47] focus on the visualization of dimensionally-reduced
data and make a classification of visual analysis tasks based on interviews with ten domain experts
from different fields. Three of the five identified tasks refer to the clustering of the reduced space and
are suited to our workflow. The first task is identifying clusters in the reduced space and learning more
about the structure of the high-dimensional space based on those clusters. The second task is naming
the clusters in order to give them meaning and to summarize the analyst’s results. In VisuaLayered,
pixels that are similar with respect to either data modality may be clustered and named according to the
pigment they represent. The third task refers to the matching of clusters to the classes they represent.
Moreover, Sedlmair et al. [48] analyse DR uses based on the problems experts from different domains
try to solve. In many data analysis cases, DR is used for creating an embedding that can be visualized
and explored in a 2D scatterplot. They divide the user tasks into dimension and cluster focused tasks.
Sacha et al. [49] mention the importance of adapting DR based analyses to domain specific problems
by involving experts in the design process and providing interactive visualizations that fit their analyses.

The analysis of high-dimensional data from different domains is supported in interactive visual anal-
ysis systems. Cytosplore is a visual analysis system for the analysis of the high-dimensional mass
cytometry data, which allows the user to interactively explore the data in order to identify and annotate
phenotypically similar cells [50]. ImaCytE extends the notions presented in Cytosplore for the analysis
of imaging mass cytometry data [51]. One of the tasks supported by ImaCytE is the identification of
cell phenotypes. The user can visualize the data in a 2D embedding, cluster similar cells based on the
embedding and annotate the found clusters. The clusters can be iteratively changed by the user and
changes have immediate effects in all the other linked views of the system. We follow a similar workflow
for identifying endmembers, but in addition, we combine and correlate the endmember clustering with
the MA-XRF clustering in order to relate the molecular structure of pixels to their elemental structure
and identify pigments. Another integrated system for the analysis of imaging mass cytometry data is his-
toCAT [52]. Furthermore, using Visinity [53] users can visually analyse cell interactions by considering
cell neighbourhoods in tissue images. The user can select regions of interest in an image viewer, further
explore local neighbourhoods in a parallel coordinate plot, explore similar neighbourhoods in a UMAP
2D embedding and explore cell interactions in a correlation matrix. Similarly, we combine MA-XRF and
RIS data in multiple linked views. Visinity builds on two previous systems, Facetto [54], which supports
the partially automated analysis of tissue cells and Scope2Screen [55], which facilitates focus+context
exploration and annotation for the analysis of tissue images. Additionally, the visual analysis workflow
proposed by Somarakis et al. for the analysis of spatially-resolved omics-data allows users to identify
differentiating characteristics of two cohorts in order to better understand the evolution of diseases [56].
They use customizable raincloud plots in order to visually compare the two cohorts based on the abun-
dances of different cell types. They focus on identifying the differences between two datasets, while
we try to identify the similarities between two data modalities since pixels that represent one pigment or
a mixture of pigments should have the same composition with respect to both data modalities. Visual
analysis is also beneficial for exploring temporal data. MulteeSum is a system that visually combines
temporal gene expression data with spatial data of the cells that contain the explored genes [57]. Lastly,
EVA is a visual system used for identifying financial fraudulent operations based on money transaction
data over a period of time [58].





4
Requirements Analysis

In order to develop a visual analysis system for painting analysis, we needed to understand what the
requirements of such a system are. As described in Chapter 1, we structured our work as a design
study and in this chapter we describe all the steps that were required to start the implementation of
our prototype. In Section 4.1 we give an overview of the entire design process from learning about
the use of MA-XRF and RIS data for painting analysis to evaluating VisuaLayered. In Section 4.2 we
describe the data specifications for MA-XRF and RIS using a painting provided by the Rijksmuseum as
an example. Then, we present the typical analysis workflow of our collaborator in Section 4.3 and based
on it, we describe the task abstraction for our proposed workflow in Section 4.4 and the visualization
design for VisuaLayered in Section 4.5.

4.1. Design Process
This design study was carried out in close collaboration with imaging researchers at the Rijksmuseum,
Amsterdam. We started the study with two introductory meetings with our collaborators. In the first
meeting, we were introduced to the two data modalities that we use in this project, MA-XRF and RIS.
Moreover, we briefly observed the current workflow of our collaborators. In the second meeting, they
presented us general acquisition methods and their applications in the cultural heritage domain. Addi-
tionally, we saw in more detail how MA-XRF and RIS work and what kind of information they capture
about a material. These meetings helped us understand the background for our work.

Afterwards, we conducted a field study in order to learn more about the typical analysis workflow of
our collaborator, so that we understand how we can help them with a combined visual analysis system.
For the field study, we had the opportunity to visit the Rijksmuseum and observe our collaborator while
they analysed the painting described in Section 4.2 using MA-XRF and RIS data. Based on the field
study, we created a visualization design for VisuaLayered, which we presented to our collaborator
in order to make sure we included all of their requirements. Next, we deployed the first prototype of
VisuaLayered. Moreover, we sent our collaborator different versions of the prototype once new features
were added such that they can test it along the way. Throughout the project, we had regular meetings
with them during which we updated them on our progress and we received feedback on the different
functionalities of VisuaLayered.

4.2. Data Structure
The main painting that we used during the development of the prototype is called Figures in a Courtyard
behind a house by Pieter De Hooch [59], which can be seen in Figure 4.1a. Pieter de Hoch was a
Dutch Golden Age painter, who created this work in c.1663-c.1665 in his Delft period. The painting
is oil on canvas and has a size of 45.7 x 60 cm (width x height). Data on the painting was provided
by our collaborators from the Rijksmuseum. The MA-XRF data was acquired and processed by Anna
Krekler [59] and the RIS data was acquired and stitched by Francesca Gabrieli. For MA-XRF, the data
was captured with a Bruker M6 scanner. We received elemental maps, such as the one in Figure 4.1b,
which shows the distribution of Ca in the painting. For RIS, our collaborators shared a dataset obtained
using a SOC710 VNIR camera. Based on the RIS dataset, we can obtain endmember maps, such as
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the one shown in Figure 4.1c. For the RIS data, the painting was scanned in horizontal bands using a
spectral sampling distance of 2.54 nm (in a similar setting as shown in Figure 4.2). In order to obtain a
full image of the painting, the bands were stitched back together.

Figure 4.1: a) Figures in a Courtyard behind a house by Pieter De Hooch [59], b) Ca elemental map, c) Red ochre endmember
map

Figure 4.2: VNIR camera example setup

As mentioned in Chapter 2, RIS and MA-XRF are hyperspectral imaging techniques, so for both
data modalities we register a data cube which contains one spectrum per pixel. For RIS, we consider a
discretely sampled version of each reflectance spectrum that we interpret as a high-dimensional space.
RIS can have a spectral resolution of less than 10 nanometers and a spatial sampling of hundreds
of micrometers [60]. The raw MA-XRF data cube may contain millions of pixels with thousands of
dimensions per pixel [14]. With mobile and commercial MA-XRF devices, it is possible to scan surfaces
of ≈ 50 × 50 cm2 in a few hours, with lateral resolutions ranging from tens to thousands of micrometers.
However, after the raw cube is processed into elemental maps, the dimensionality is reduced to the
number of identified chemical elements. One elemental map represents one dimension of the final MA-
XRF dataset. The number of obtained maps is ≈ 10 [61]. Hence, we work with RIS datasets that have
a higher number of dimensions than the MA-XRF datasets. For both datasets, the 𝑥 and 𝑦 coordinates
indicate a pixel’s position in the painting and the 𝑧 coordinate indicates its dimension. Figure 4.3 and
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Figure 4.4 show illustrations of a RIS and an MA-XRF data cube with spectra for two extracted pixels,
respectively.

As a requirement in our analysis, the two datasets must have the same number of high-dimensional
pixels, such that we can characterize a pixel with respect to both data modalities. We realise that for
the best results the two datasets have to be completely aligned, such that the pixels represent the
same location in the painting for both data modalities. However, such data was not available during
the development of the project and we discuss this limitation further in Section 6.3.

The painting shown in Figure 4.1a is saved as 1174 × 1756 pixels for both data modalities with a
pixel size of roughly 0.35 × 0.35 mm2 (after re-scaling). For RIS, we received a sampled data cube,
which has 200 dimensions in the range [400, 900] nm. For MA-XRF, we received 28 grayscale element
mappings, each showing the spatial distribution of one chemical element in the painting.

Figure 4.3: RIS data cube

Figure 4.4: MA-XRF data cube

4.3. Field Study
We set up the field study with our collaborator in order to learn about her typical analysis process. It was
important to first understand the steps of the workflow for the analysis of MA-XRF andRIS data such that
we can design our combined workflow. We mostly observed her workflow and asked questions when it
was unclear to us why she took certain decisions in the analysis process. Her analysis normally starts
with the visual inspection of the MA-XRF maps to get an initial overview of the elemental distribution in
the painting.

Then, she uses the geospatial analysis software ENVI [33] for analysing the RIS data. She uses
three main views provided by ENVI for identifying endmembers in the painting: an image viewer, a
lineplot and a scatterplot. Using the image viewer she can visualize an image of the painting, either in
grayscale by choosing one wavelength of the data cube or in RGB, by choosing three wavelengths for
the red, green and blue channels of the image. The image view comes with 2 zoom levels for more
precise pixel selections. She initially explores the spectra in the image by selecting pixels in different
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regions in the image viewer and visualizing their spectra in a lineplot. In order to get a comprehen-
sive set of endmembers, our collaborator identifies endmembers manually and automatically. For the
manual selection, she searches for endmembers in a reduced space of the data cube. The Spectral
Hourglass Wizard (SHW) algorithm, which is a variant of PCA, projects the data in a 3D scatterplot
based on three chosen principal components. In this space, our collaborator manually selects pixels
and looks at their spectra in the lineplot. If she finds a group of points with similar spectra that all repre-
sent one endmember, she saves the group as a cluster with its corresponding average spectrum as the
endmember. After this, she also computes endmembers automatically and manually verifies whether
the identified endmembers have a realistic spectrum.

In the end, for each endmember, she maps the pixels with spectra similar to it. The mapping is done
using the Spectral Angle Mapper (Section 5.3). This algorithm uses a threshold value for defining the
similarity between points, that our collaborator interactively chooses based on a histogram. In order to
decide the final threshold value, she selects pixels in the image view that are included in the map and
look at their spectra. For example, if some of the spectra are not similar enough to the endmember,
she reduces the threshold value. Moreover, she already considers the presence of a pigment based
on the endmember map and check it by reopening certain elemental maps that should also indicate
the presence of the same pigment. Combined with the MA-XRF elemental maps, she has mappings
for both MA-XRF and RIS and can visualize them side-by-side in order to identify the pigments used in
the painting.

For the RIS data, in the lineplot, she can also interactively choose three wavelengths for the RGB
channels of the image in order to obtain false colour images. Such images can help distinguish pixels
which are spectrally different, but perceptually the same by for example, mapping one of the RGB
channels in the near infra-red range. Moreover, some pigments are more difficult to distinguish by just
using the measured spectra, so she performs the same analysis process on a first derivative data cube.
This is especially useful in the case of red pigments. After this meeting, we considered the design of
our system.

4.4. Task Abstraction
Based on the field study, we define a set of analysis tasks for the proposed system. In order to describe
the tasks, we use keywords presented by Brehmer and Munzner [62] for the task abstraction of a visu-
alization design, which are highlighted in italics. The two main tasks are the endmember identification
based on the RIS data and the pigment identification based on the combination of MA-XRF and RIS
data. We further divided these two tasks into subtasks that focus on specific actions (the keywords)
that are required in order to complete the tasks:

T1. Endmember identification in RIS

T1.1 Identify candidate endmembers in the high-dimensional space
T1.2 Compare and filter candidate endmembers based on their spectral characteristics
T1.3 Explore the spatial distribution of pixels that are similar to a selected endmember

T2. Pigment identification

T2.1 Explore the spatial distribution of pixels containing selected chemical elements
T2.2 Identify pixels that have similar molecular and elemental profiles
T2.3 For the pixels spectrally similar to an endmember, identify their elemental composition
T2.4 Annotate pixels according to the pigment they represent, based on both data modalities

The tasks can be followed in the order in which they are written down (Figure 4.5) and hence the
pigment identification can be seen as the final goal. However, it is important to note that the second
task, the pigment identification, is strongly connected to the first one. Hence, some tasks may be
completed at the same time in the workflow. For example, during task T1.3, domain experts may also
consider T2.1 in order to verify their assumptions regarding the identified endmembers. Moreover, since
during the analysis, users might reconsider their endmembers and pigment classifications, our workflow
allows users to easily go back to completed tasks and change their selections. We highlight three such
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cases in Figure 4.5. Domain experts might reconsider their endmembers once they look at the spatial
distribution of similar pixels (T1.3 to T1.1) or once they identify pixels that are similar with respect to
both data modalities (T2.2 to T1.1). Additionally, when establishing the elemental composition of an
endmember they might go back to analysing the elemental maps in more detail (T2.3 to T2.1).

Figure 4.5: Workflow

4.5. Visualization Design
After learning about the workflow of our collaborators during the field study and establishing the required
analysis tasks, we created a visualization design for our system. Our focus was on the combined visual
analysis of the two data modalities, so we thought of different ways in which their connection can be
explored. Our collaborator’s current analysis is quite time consuming as there is no visual link between
the two modalities and they combine the datasets mostly in their head. Moreover, we also wanted to
incorporate parts of their current workflow regarding the analysis of the RIS data and improve certain
interactivity aspects. In comparison to ENVI, which was not developed for cultural heritage analysis,
we designed a system that is streamlined to painting analysis. Figures 4.6,4.7 and 4.8 show the initial
design sketches, that we presented to our collaborator. We based our design on three possible use
cases, that present all the initially considered views and ways in which they can be combined during
the analysis. In total, we present three views: an image view, an embedding view and a spectrum view.
Selections can be linked across all views so that we are always aware how pixels are represented in
both data modalities. The three uses cases are:

1. Combined cluster analysis (Figure 4.6) - The first use case refers to the combined analysis of
the two data modalities. The first view on the left is an image view, similar to the one provided
in ENVI. The next two views are embedding views, which show the reduced space of the RIS
and MA-XRF data. One point in the embedding represents one pixel. Compared to the Spectral
Hourglass Wizard, our embedding computation requires less parameter settings. We provide the
embedding view as a base for clustering points that are similar. In the case of the RIS data, it
can be used for identifying endmembers and in the case of the MA-XRF data, it can be used for
identifying pixels that have the same elemental profile. An example selection is shown in green,
synchronized in all views.
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Figure 4.6: Combined cluster analysis design sketch

2. Endmember selection (Figure 4.7) - The second use case refers to the identification of endmem-
bers based on the RIS data. The first two views are the image and embedding views. The third
one is the spectrum view, that was designed based on the lineplot view in ENVI. We can see the
three RGB lines in the spectrum view that can be connected to the RGB channels of the image. It
is also possible to create endmember maps in this view. We also thought of ways to improve the
interaction with the spectrum view. We show the standard deviation for the average spectrum of
a selection of pixels. This addition informs the user how accurate an endmember is for a group
of pixels. Additionally, dragging the RGB lines in the spectrum view and changing the threshold
value for the endmember map computation, show results in real time such that the user receives
immediate feedback on their actions.

Figure 4.7: Endmember selection design sketch
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3. Mapping analysis (Figure 4.8) - The third use case refers to the analysis of the two data modal-
ity mappings. Using the image view with three different inputs (an image of the painting, RIS
maps and MA-XRF maps) we can reason about the spatial overlap of pixels with selected molec-
ular/elemental structures. The maps can be visualized individually or in combination.

Figure 4.8: Mapping analysis design sketch

At this point in the design process, we also considered a view that shows the correlation between
the clusters of the two datasets. This view is not included in the sketches, but they were added to the
system during development.





5
VisuaLayered

VisuaLayered is the prototype that we designed and implemented for the combined visual analysis of
MA-XRF and RIS data. The main building blocks of VisuaLayered are five interactive, linked views.
Figure 5.1 shows a screenshot of VisuaLayered. The user can open the available views in any number,
combination and order, to help them in their analysis. We built the prototype based on the tasks de-
scribed in Section 4.4. In VisuaLayered, we can explore the spatial distribution of pixels for T1.1, T1.3,
T2.1 (Figure 5.1a), classify similar pixels for T1.1, T2.2 (Figure 5.1b,c), compare pixels’ reflectance
spectra for T1.2 (Figure 5.1d), explore the correlation between the two data modalities for T2.2, T2.3
(Figure 5.1e) and annotate groups of points based on the pigments they represent for T2.4. Moreover,
we can connect the two data modalities and explore pixels with respect to their molecular and elemental
composition in order to identify the pigments used in a painting. Selected pixels in VisuaLayered are
highlighted in red in all the shown images.

Sections 5.1 and 5.2 present the prototype functionalities and analysis workflow in relation to the
tasks in Section 4.4. Section 5.1 presents the workflow for the endmember identification task (T1),
using the RIS data. This subsection is based on the contents our short paper attached in Appendix A.
Section 5.2 presents the combined analysis of the two data modalities for the pigment identification task
(T2). In the last section of this chapter, Section 5.3, we describe the implementation of VisuaLayered.

Figure 5.1: VisuaLayered showing the painting Figures in a Courtyard behind a House by Pieter De Hooch [59]; a) Image View
showing an RGB image of the painting using the RIS dataset; b), c) Embedding views showing both data modalities; d) Spectrum
view showing spectra from the RIS data; e) Cluster correlation view showing the correlation between the two data modalities
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5.1. Endmember Identification
Here we present our design and implementation to tackle task T1, the endmember identification, as
presented in Section 4.4. The task consists of the following subtasks:

T1.1 Identify candidate endmembers in the high-dimensional space

T1.2 Compare and filter candidate endmembers based on their spectral characteristics

T1.3 Explore the spatial distribution of pixels spectrally similar to a selected endmember

Figure 5.2: Workflow for endmember identification (T1); a) Selection of roof in photograph of painting in the Image View; b)
Selection highlighted with blue boxes in the Embedding View; c) One wavelength of the RIS dataset in grayscale in the Image
View; d) One endmember shown in blue and average spectrum of selection shown in black in the Spectrum View

The endmember identification task (T1) can be completed through the image, embedding and spec-
trum views (Figure 5.2). The histogram view can also be used as an addition to the image view. For
this task we use the RIS data cube.

For identifying candidate endmembers (T1.1), we need to explore the spectra of the pixels. We
can start by selecting pixels in the image view (Figure 5.2a) or in the embedding view (Figure 5.2b)
and looking at the average spectrum of our selection in the spectrum view (Figure 5.2d). The average
spectrum is shown in black in the spectrum view.

The image view (Figure 5.2a) allows us to select areas in the image which contain pixels that have
a similar color. By selecting different areas in the image, we can probe the RIS data and get an initial
idea of the spectra and therefore of the candidate endmembers present in the dataset. The image
view comes with settings that the user can change such that the shown image fits in their analysis. A
photograph of the painting can be directly visualized in this view (Figure 5.2a). However, we cannot
show the entire spectral information of a pixel on an RGB-screen. Hence, it is possible to pick up to three
dimensions of the data cube. We can set one wavelength as the image channel and show its values
using false colors, by setting a colormap (Figure 5.2b). Alternatively, we can pick three wavelengths
and map them to the red, green and blue channels of the image. This can be done by using a drop-
down list in the image view or by dragging the R, G and B-lines in the spectrum view (Figure 5.2d).
In Figure 5.3a, the RGB lines are set at the visible red, green and blue wavelengths and hence we
obtain the image in Figure 5.3b. The user can drag the lines across the dimensions of the spectrum
and gradually see how the image colors change. In Figure 5.3c, the shown spectrum was used as a
reference for setting the red channel value at around 900 nm and we obtain the image in Figure 5.3d.
Setting false colors in the RGB image allows us to identify pixels that are perceptually the same, but
different in the infra-red range, and thus help us identify new candidate endmembers.
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Figure 5.3: Examples of different RGB channels; a) Spectrum view with RGB lines set as the visible RGB wavelengths and b)
Corresponding RGB image from Image View; c) Spectrum view with red line set in the near infra-red range and d) Corresponding
RGB image from Image View

The image view uses a window/level linear function (Figure 5.4a) to set the dynamic range of the
display colors of the pixels. In order to obtain accurate images, the user can set the window and level
based on the data range, using a set of sliders in the image view. To make this more intuitive, we
provide the histogram view, which shows one dimension of the dataset (Figure 5.4b) in order to more
easily adjust the settings to the actual data. In the histogram we can visualize the window/level function
in relation to the data. Hence, the user can interactively adjust the window and level by dragging the
two ends of the diagonal line (highlighted in the blue boxes in Figure 5.4b) across the x axis and setting
them to fit the data range. Additionally, the user can select one of the bars in the histogram and see
the spatial distribution of the selected points in the image view.

Figure 5.4: Window/Level function

Once we have an initial idea of the spectra in the image, we can select similar pixels in the embed-
ding view (Figure 5.2b) and save these selections if their average spectra represent candidate end-
members. As discussed in Section 4.5, we cannot efficiently explore the data in the high-dimensional
space directly. Instead, we use dimensionality reduction to project the data points into two dimensions
and visually explore and interact with them. Since we can define candidate endmembers based on
groups of pixels which have a similar spectrum, we chose the t-SNE algorithm [4] for dimensionality
reduction. When computing the projection, t-SNE tries to preserve local neighborhoods between points
in the high-dimensional space. We configured t-SNE to use the cosine distance for comparing points
in the high-dimensional space. Hence, in our case, points which are spectrally similar appear close
together in the embedding. Figure 5.5a shows the t-SNE embedding of the RIS dataset, where each
point represents one pixel.
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Figure 5.5: a) RIS t-SNE embedding; b) Clustered RIS t-SNE embedding (the clusters are indicated as the color overlay)

The user can then cluster the embedding and look at the average spectra of these clusters in the
spectrum view in order to identify candidate endmembers. The clustering can be done manually, as
the user can make selections in the embedding and save them as clusters or automatically, using the
Mean Shift Clustering algorithm [63], as has been done in other applications [50]. Since the points
are grouped based on their similarity, we want to make selections of neighbouring points, which result
in average spectra with low standard deviation in the spectrum view. The standard deviation of an
average spectrum is indicated as a semi-transparent area around it, as can be seen around the spectra
in Figure 5.6b. In Figure 5.6b we can see a smaller standard deviation area for a selection of pixels
similar in RGB, highlighted in pink in Figure 5.6a, compared to the standard deviation of a selection of
more diverse pixels, highlighted in green in Figure 5.6a.

Figure 5.6: Spectrum standard deviation example; a) Two selections in Image view: selection of similar pixels in RGB shown in
pink and selection of more diverse pixels shown in green; b) Indicated in the same colors, the corresponding average spectra of
selections

Moreover, if we have a specific area in the painting for which we want to know the endmember, we
can make a selection in the image view and based on it decide which points to cluster in the embed-
ding. For example, in Figure 5.7a we selected part of the roof and we can see that in the embedding,
Figure 5.7b, the selection appears mostly in the group of points surrounded by the blue box. Hence,
we may decide to cluster that group and hence obtain a candidate endmember with a low standard
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deviation representing the roof.

Figure 5.7: Clustering example; a) Selection of area in image; b) Part of selection highlighted in the blue box in the embedding,
corresponding to one group of pixels

The purpose of the automatic clustering is to give the user a guideline for finding candidate endmem-
bers. For example, the data can be over-clustered and then the user can manually merge clusters or
discard them in order to get a final set of clusters corresponding to valid candidate endmembers with
low standard deviations. We obtained the clustering in Figure 5.5b in this way. It represents just an
illustration of the procedure, as we did not use any domain knowledge of realistic endmembers when
refining the clusters.

We compare and filter the found candidate endmembers (T1.2) using the spectrum view. This view
is implemented as a lineplot for which the 𝑥 axis shows the wavelengths of the spectrum in nanome-
ters (nm) and the 𝑦 axis shows the measured reflectance. We can load all the candidate endmembers
corresponding to the embedding clusters in this view. In Figure 5.8a, we can see a list of two endmem-
bers on the right, out of which only the first one is visible. Based on only the endmembers, we can
already assume the presence of some pigments. We can easily interact with the endmembers in the
list and customize them by setting their name, color and visibility. By making some of the endmembers
not visible, the user can focus on comparing only a subset of them. Moreover, the user can remove
any duplicate or irrelevant endmembers during the analysis. In the end, we can export the filtered and
visible endmembers to a file. Additionally, a set of predefined endmembers can be imported from a
file in the view. For example, if the user has a set of endmembers from another similar painting of the
same artist, they can load it into the view and compare it to the found endmembers.

We can explore the spatial distribution of pixels which are spectrally similar to an endmember using
endmember and cluster maps (T1.3). Endmember maps are created in the spectrum view and visu-
alized in the image view. We provide two different implementations for creating a map. One of them
is the Spectral Angle Mapper, introduced in Section 4.3 and the other one is the Spectral Correlation
Mapper [64]. We discuss their implementation in more detail in Section 5.3.2. With both algorithms, we
obtain a grayscale map in which the pixels that are similar to an endmember are white and the pixels
that are dissimilar are black. Additionally, we can map all pixels that do not meet a set threshold to
black. We can choose to visualize a single endmember map in the image view (Figure 5.8b) in order
to see how the map changes in real time as we adapt the similarity threshold in the spectrum view (Fig-
ure 5.8a). In order to decide the right threshold value, we use the MA-XRF data as well (Section 5.2).
If we cannot find a map that accurately represents an endmember, we can still choose to discard the
endmember (T1.2).
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Figure 5.8: a) Spectrum View with one endmember shown; b) SAM map of shown endmember

Finally, we can load a combination of maps in the image view in order to visualize the spatial dis-
tribution of multiple endmembers at once and in order to potentially identify unexplored areas in the
painting or areas that are missing endmember information (for example due to scanning errors). We
can visualize multiple endmember maps by treating every map as a different semi-transparent layer
(with a user selected constant colour) in the image, such as in Figure 5.9c,d. An alternative to the
endmember map is the cluster map, which shows all the points belonging to a cluster. We can visu-
alize the cluster maps in the image view, as shown in Figure 5.9a,b. Since we use clusters to define
endmembers, the cluster map also shows all the points that are similar to an endmember. We further
discuss the similarities between the endmember and cluster maps in Section 6.3.

Figure 5.9: a) Four endmember clusters shown as different colors; b) Corresponding clusters in image view; c) Corresponding
endmembers in spectrum view; d) Combined maps of the four endmembers
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5.2. Pigment Identification
Here we present our design and implementation to tackle task T2, the pigment identification, as pre-
sented in Section 4.4. The task consists of the following subtasks:

T2.1 Explore the spatial distribution of pixels containing selected chemical elements

T2.2 Identify pixels that have similar molecular and elemental profiles

T2.3 For the pixels spectrally similar to an endmember, identify their elemental composition

T2.4 Annotate pixels according to the pigment they represent, based on both data modalities

Figure 5.10: Workflow for pigmet identification (T2); a) RIS dataset in the Image View; b) Selected points highlighted by a blue
box in the RIS Embedding View; c) Endmember highlighted on the x axis in f); d) MA-XRF elemental map in the Image View; e)
Selected points highlighted by a blue box in the MA-XRF; f) Selection made in Cluster Correlation View

For the second task, the pigment identification (T2), we can use the image, embedding, spectrum
and cluster correlation views (Figure 5.10). We want to characterise pixels with respect to both their
molecular and elemental composition in order to identify pigments, so for this task we use both data
modalities.

We can explore the spatial distribution of chemical elements (T2.1) by using the MA-XRF elemental
maps. Similarly to visualizing the endmember maps (T1.3), we can use the image view in order to
look at the elemental maps individually (Figure 5.11b) or in combination (Figure 5.11c). The combined
map allows us to see the overlap between different chemical elements. For example, in case we have
a mixture of pigments with distinctive elements in their composition and we see that those elements
overlap, we can already assume that the mixture is present. Moreover, if a pigment is composed
out of two elements, we could combine their maps and see where the respective pigment is present.
Alternatively, we can use the embedding view in order to explore the overlap of two elements. In
Figure 5.11a, we can see the selection of points that contain both Ca and Hg highlighted in the blue
box. Based on the image in Figure 5.11b, we can see that the selection appears in an area where
the Ca and Hg maps overlap in Figure 5.11c. In comparison to the image view, the scatterplot of
two elements shows a clearer separation between the points that contain both elements and just one
element. However, in the image view we can explore the overlap of more than just two elements.
Hence, we can also use the elemental maps in order to help us decide the threshold angle in the SAM
computation of the endmember maps (T1.3).
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Figure 5.11: Example MA-XRF maps; a) Selection of points which contain calcium (Ca) and mercury (Hg); b) Ca elemental map;
c) Combined elemental map of Ca (black) and Hg (pink)

In order to confirm any assumptions of pigments based on either one of the two data modalities, we
need to analyse them in combination. Hence, we continue by exploring pixels with similar elemental
and molecular compositions (T2.2). We expect that such points correspond to a pigment or a mixture
of pigments. We already have clusters of points that have a similar molecular composition from the
endmember identification workflow in Section 6.1.1, so we need to also find clusters of points with a
similar elemental composition. If we have both sets of clusters, we can explore their overlap in the
cluster correlation view (Figure 5.10f). Since the embedding shows us similar points, we can compute
the t-SNE embedding of the MA-XRF data and cluster points with a similar elemental composition,
just like we did with the RIS embedding. For the MA-XRF data we do not use the spectrum view, but
we can use the endmember information as guidance for selecting the clusters. For example, we can
open the RIS embedding and spectrum view (Figure 5.12b,c) in combination with the image view of
the elemental maps and the MA-XRF embedding (Figure 5.12a,d). Then, we can make a selection in
the embedding of the MA-XRF data, such as the one indicated in the blue box in Figure 5.12d and if it
corresponds to an endmember in the RIS data we can save the cluster.

Figure 5.12: Clustering the MA-XRF data; a) Ca elemental map with selected points; b) RIS embedding with selected points; c)
Spectrum of selection; d) Selection in MA-XRF embedding for creating a new cluster; e) Setting name of cluster in cluster list
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Figure 5.13: RIS embedding with color overlay of
MA-XRF clusters

After we obtain both sets of clusters (shown as the col-
ors in Figure 5.14b,d), we can explore their correlation in the
cluster correlation view (Figure 5.14a). This view is imple-
mented as a heatmap and the color intensity of an entry cor-
responds to the similarity of the two clusters that intersect at
that entry (in Figure 5.14a the similarity is measured using
the overlap coefficient, described in Figure 5.14). A tooltip
appears as we hover over one entry, showing the number
of common points between two clusters and their similarity
value. The entries are grouped based on their row and col-
umn similarity. The groups are indicated by the colors of
the entries. Moreover, we can explore the spatial distribu-
tion of the common points in the image view (Figure 5.14c).
Additionally, a cluster on any axis can be selected in order
to further analyse it with respect to the other data modal-
ity. In Figure 5.14a we select the overlap of two clusters
that are very similar (similarity of 0.9), as we can also see in
the embedding views (Figure 5.14b,d), where the two cor-
responding clusters are highlighted in blue boxes. Hence, we identified a pigment at the intersection of
the two clusters. Alternatively, we can load the clusters of one data modality as the color overlay in the
embedding of the other modality and explore the overlap of clusters. For example, Figure 5.13 shows
the RIS embedding colored with the MA-XRF clusters.

Figure 5.14: a) Selection made in Cluster Correlation View of RIS clusters (x axis) and MA-XRF clusters (y axis); c) Image View;
Selection highlighted with blue box in b) RIS embedding and d) MA-XRF embedding

Since we now know the pixels with a similar molecular and elemental structure, we can find out
what elements correspond to an endmember concretely (T2.3). For this, we can use the image view to
visualize a combination of maps from both datamodalities and observe their overlap. For example, if we
assume the pixels in an endmember map represent a particular pigment, we can choose to combine this
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endmember map with the elemental maps of elements that are present in the pigment in order to verify
our assumption. In Figure 5.15b we can see an endmember map (corresponding to the endmember in
Figure 5.15a) with two elemental maps (of Ca and Co) combined.

Figure 5.15: Combined map of both data modalities; a) Endmember in Spectrum View, b) Combination of endmember map in
blue (corresponding to endmember in a) ), Cobalt (Co) map in pink and Calcium (Ca) map in black

Moreover, we can pick one dimension of one modality as the color overlay in the embedding of the
other modality. In Figure 5.16 we can see the RIS embedding with the distribution of two chemical
elements (Hg and Co). In Figure 5.16a,b,c we highlight the points that belong to a cluster in the em-
bedding and have a high value for the shown element (in the orange box the points with Hg and in the
green box the points with Co). We know that these points are similar to an endmember and contain
the shown chemical element.

Figure 5.16: a) RIS embedding with color overlay of two elements, in a) Mercury (Hg) and in b) (Co); The green boxes highlight
the points which have a high value for the chosen element

Figure 5.17: Scatterplot of Hg and Ca
with endmember clusters set as color
overlay with one endmember cluster
that contains high values for both ele-
ments highlighted in the orange box

Similarly, if we consider the scatterplot of two elements discussed
in Section 5.1 (Figure 5.11a), we can set the color overlay of the points
as one or more of the endmember clusters and hence identify end-
members which contain one or both of the selected elements. For
example, in Figure 5.17 we set the color overlay as the endmember
clusters in the scatterplot of mercury (Hg) and calcium (Ca) and we
can see that the group of points that contain high values for both ele-
ments (highlighted in the orange box) belong to one endmember clus-
ter.

Lastly, for an overview of all endmembers and their elemental dis-
tribution, we can look at the correlation of the endmember maps and
the elemental maps. The twomap datasets can be clustered using the
cluster dimensions plugin (Section 5.3.6) and visualized in the cluster
correlation view (Figure 5.19b). The user can decide which points
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should be included in the cluster of every dimension. The clusters obtained in this way can overlap and
they do not have to cover all the points in a dataset. In the case of the MA-XRF maps, it may be useful
to refine the points considered to contain a chemical element as there can be noise in the elemental
maps. We can interactively set a minimum threshold for every cluster, as shown in Figure 5.18d for
the Ca map cluster. The Ca map is used as guidance both in the image view (Figure 5.18a) and in
the embedding view as the color overlay (Figure 5.18c). The cluster points are shown in red in the
embedding (orange boxes in (Figure 5.18b) and they correspond to areas that have a high value for
Ca, as highlighted in Figure 5.18c with the same boxes. However, in the case of the RIS binary maps,
we do not have to refine the clusters, as the default minimum threshold is set as the mean value of
a dimension and hence only the pixels similar to an endmember are included in an endmember map
cluster.

Figure 5.18: Adjusting cluster based on Ca elemental map; a) Ca elemental map with pixels included in the cluster highlighted;
b) MA-XRF embedding showing the pixels included in the clusters in the two orange boxes; c) MA-XRF embedding with color
overlay of Ca map showing pixels with high values for Ca in the orange boxes

If we use these two sets of clusters, one entry in the cluster correlation view represents the points
that are both similar to a specific endmember and contain a specific chemical element. We can consider
one endmember map cluster, indicated in Figure 5.19b as the highlighted column and go through every
entry in the column in order to explore its elemental distribution.

Figure 5.19: Exploring the elemental distribution of one endmember; a) Selection highlighted in the Image View; b) Cluster
Correlation View of endmember (x axis) and elemental (y axis) map clusters with the focus on the endmember called pigment23
and the selection of its intersection with the Ca map cluster

We can annotate a group of pixels according to the pigment they represent (T2.4) when naming the
clusters in any modality. By giving pigment names to the clusters, we keep an organized list and can
easily identify and filter clusters. Cluster names can be updated in the cluster list (Figure 5.12e) or, for
the RIS data, also in the endmember list in the spectrum view (Figure 5.8a).
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5.3. Implementation
The prototype is implemented in a plugin-based system, called HDPS, which is designed for the analysis
of high-dimensional data. The system is implemented using Qt [65], which is a cross-platform user
interface framework. The plugin-based nature of the system allowed for the easy extension of the
existing functionalities. All the data loaders, the t-SNE and Mean Shift Clustering algorithms, and the
views described in this chapter are implemented as plugins. The system already had an image loader,
which we used for loading the photograph of the image and the MA-XRF elemental maps, and an
ENVI loader for the RIS data cube. An endmember loader was added for our application for importing
endmember lists. The image and embedding views were already present in the system. We added
the spectrum, cluster correlation and histogram views. Additionally, we implemented two other plugins
for processing the data, one for obtaining the complement of a Cluster dataset and one for clustering
the dimensions of a Point dataset. The interface of our plugins remains consistent with the design of
the system. Section 5.3.1 briefly describes general aspects of the system, which are relevant to our
prototype. The remaining subsections describe the implementation of the five added plugins.

5.3.1. System Information
The image and embedding views are implemented using OpenGL [66]. The image view does not
support the visualization of a zoomed in selection of one image, as shown in the design in Figure 4.6,
but the user can open two different image views and set different zoom levels for them in order to obtain
a similar result. Moreover, the system provides an improved version of t-SNE [67], which efficiently
computes embeddings of millions of pixels.

The system also supports linking of parameters between views. The user can publish a parameter
and link it to any other compatible field. We use this functionality for connecting dataset dimensions
across views, like the RGB image channel values to three wavelength values in the spectrum view, as
described in Section 5.1. This functionality was inspired by the needs of our application.

Moreover, multiple file types can be loaded into the system. The RIS data cube is loaded based
on its header file (.hdr) using the endmember loader, for which we implemented nearest neighbour
subsampling. Endmember lists are loaded using the endmember loader and saved as .txt files in the
spectrum view. Through the image loader we can add images of various formats. For example, for the
painting described in Section 4.2, its photograph is a .png file and the MA-XRF elemental maps are
.TIFF images.

The three main data types of the system are Points, Images and Clusters. The RIS and MA-XRF
datasets are loaded as Points and Images datasets. Points represent a group of high-dimensional
pixels. Images extend Points by spatial coordinates. Clusters represent sets of pixels from a Points
datasets. A user can save a selection of Points as a subset (a Points dataset) or as a cluster in a
Clusters dataset. There is no requirement in the system for clusters to be complete (i.e. color all the
data) or exclusive.

For our implementation, we used the JavaScript library D3 [68] for rendering the views, embedded
in a Qt webview. The data for the views is processed using C++ such that VisuaLayered can run heavy
computations efficiently. The communication between the backend and the frontend is handled by
using QtWebEngine [69], which uses an embedded Chromium browser. Every plugin operates on or
visualizes one or two datasets.

5.3.2. Spectrum View
The spectrum view, shown in Figure 5.20, is based on D3 line charts. The view uses one Points dataset
as input. The average spectrum and standard deviation for a selection is obtained by computing the
average of the selected pixels for every dimension of the dataset. This happens on the C++ side
for performance reasons, as indicated previously. The boundaries of the shown standard deviation
area are obtained by subtracting and adding the standard deviation to the average spectrum values.
Additionally, a subset or a cluster set can optionally be added in the view to serve as endmember
objects. A subset can be added in two ways, as one endmember per pixel or as one endmember
for the average of the selection. When adding a set of clusters, each cluster is converted into one
endmember. The properties of an endmember are: name, color, average spectrum data and source
dataset. Any changes in the endmember cluster sets, like for example merging clusters, are reflected
in the endmember list as well. Furthermore, a list of endmembers can be exported and reused in
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a different project by importing. Finally, it is also possible to remove endmembers from the list. In
comparison to the endmember selection design (Figure 4.7), the spectrum view is now a single line
plot combining the RGB sliders, the average spectrum and endmember lines. The possibility to set an
endmember’s visibility and the fact that the typical number of endmembers is relatively small, allows
us to show everything in one view.

Figure 5.20: Spectrum View

For the endmember map computation, we provide two algorithms, the Spectral Angle Mapper and
the Cluster Correlation Mapper. The Spectral Angle Mapper (SAM) [64], which is generally used in the
field, is implemented using Equation 5.1,

𝛼 = 𝑐𝑜𝑠−1
∑𝑋𝑌

√∑(𝑋)2 ∑(𝑌)2
,where (5.1)

𝛼 is the angle between a pixel spectrum and the endmember, 𝑋 is the pixel spectrum, and 𝑌 is the
endmember.

The Spectral Correlation Mapper (SCM) [64] is implemented using Equation 5.2,

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑ (𝑋 − 𝑋)(𝑌 − 𝑌)

√∑ (𝑋 − 𝑋)2 ∑(𝑌 − 𝑌)2
,where (5.2)

𝑋 is the pixel spectrum, 𝑋 is the mean of 𝑋, 𝑌 is the endmember, and 𝑌 is the mean of 𝑌

Figure 5.21: SAM illustration in two dimensions

Both algorithms consider the pixels as high-dimensional
vectors. SAM uses the cosine distance in order to find sim-
ilar pixels to an endmember, while SCM uses the Pearso-
nian Correlation Coefficient. For SAM, the similarity is the
measured angle, which takes values in the range [0∘, 90∘].
A small value of 𝛼 indicates high similarity and a large value
indicates low similarity. Figure 5.21 shows an example of
the measured angle in two dimensions. For SCM, the sim-
ilarity is a value in the range [−1, 1], where a value of 1
indicates a strong positive correlation and a value of −1 in-
dicates a strong negative correlation. SCM is an improve-
ment of SAM as it shows negative correlations in the data,
while SAM only considers absolute values [64].

Every computed endmember map is saved as a dimen-
sion in the endmember map dataset. We create one such
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dataset per mapping algorithm such that the obtained maps can easily be compared. We provide three
types of maps. The first one is binary, which assigns 1 to the pixels that are similar to an endmember
and 0 to the other pixels. The second one is the threshold based one, which shows the similar pixels
to an endmember based on the set threshold (for SAM, it shows the pixels at distances lower than the
threshold; for SCM it shows pixels which have a similarity value higher than the threshold). The third
one is distance based, showing all the distances between the points in the data and an endmember.
Only the distance based one is saved in memory and the first two ones are computed on the fly based
on the distance map, whenever the threshold angle is changed. In comparison to the design of the map-
ping analysis (Figure 4.8), a combined map is not only one single image, but can be obtained through
the layering of multiple images, for which we can set the visibility, which gives us more flexibility in the
combinations we can obtain.

5.3.3. Cluster Correlation View
The cluster correlation view, shown in Figure 5.22, is based on D3 heatmaps. The view uses two
Clusters datasets as input. One entry in the heatmap shows the similarity between two clusters, based
on the number of points they have in common. The similarity is computed on the C++ side for all
possible combinations of two clusters and sent to the JavaScript side. Clicking on one of the entries of
the heatmap or on one of the cluster names on the axes, sends a signal to the C++ side to select the
corresponding pixel indices in all of the other views.

Figure 5.22: Cluster Correlation View

The correlation value, shown in the heatmap as the intensity of the entries’ colors, can be computed
using one of the following similarity measures, which have values in the range [0, 1]:

1. Overlap coefficient [70]: Overlap(𝑋, 𝑌) = |𝑋 ∩ 𝑌|
min(|𝑋|, |𝑌|)

2. Jaccard index [71]: 𝐽𝐼(𝑋, 𝑌) = |𝑋 ∩ 𝑌|
|𝑋 ∪ 𝑌| =

|𝑋 ∩ 𝑌|
|𝑋| + |𝑌| − |𝑋 ∩ 𝑌|

3. Sørensen–Dice coefficient [72]: 𝑆𝐷𝐶(𝑋, 𝑌) = 2|𝑋 ∩ 𝑌|
|𝑋| + |𝑌|

, where 𝑋, 𝑌 are two finite sets.

Moreover, a tooltip appears when the user hovers over an entry in the heatmap showing the number
of common points between two intersecting clusters and their similarity coefficient. While all three
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measures show the similarity between two finite sets, they provide slightly different results. For example,
if one set is a subset of the other one, the overlap coefficient results in a strong correlation, a value of
1, while the other two metrics result in lower correlation values. By default, the overlap coefficient is
selected. The user can choose any of the three measures.

The entries in the heatmap are ordered using the Spectral Co-clustering algorithm [73]. In the last
step of the algorithm, the heatmap entries are biclustered with k-means, using theClusterfck library [74].
Entries that have similar rows and columns are clustered together. The colors used in the heatmap
indicate the clustering and gray entries do not correspond to any cluster. Furthermore, the user can
set the number of biclusters.

5.3.4. Histogram View
The histogram, shown in Figure 5.23, is based on D3 barplots. The view uses a Points dataset as input.
Per dimension, the data points are sorted in a given number of intervals on the C++ side. The number
of points in every interval is sent to JavaScript. The histogram can be used for setting the window/level
settings of the image view, as described in Section 5.1. The user can set the minimum and maximum
values of the window based on the data values in the histogram by moving the two ends of the diagonal
line, which are represented by two circles. The level is computed automatically as the middle point of
the window.

Figure 5.23: Histogram View

5.3.5. Complement Cluster
This plugin is fully implemented in C++. Given a Clusters dataset and its source, which is a Point
dataset, this plugin identifies all the points that are not included in any of the clusters, but are part of
the source dataset. The resulting points are saved as a new cluster in the input Cluster dataset. The
user can use this complement cluster in order to identify areas in the painting that are unexplored.

5.3.6. Cluster Dimensions
This plugin takes as input a Points dataset and is fully implemented on the C++ side. It creates a
cluster for every dimension of the dataset. The points that are initially included in the cluster have a
value that is larger than or equal to the mean value of a dimension. The user can adapt the minimum
and maximum range of the cluster. This plugin turns a Point dataset into a Cluster dataset. This is
useful, for example, for converting the endmember maps into Cluster sets for comparison and further
processing.
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Evaluation

We conducted an evaluation with our collaborator from the Rijksmuseum in order to assess the usability
and effectiveness of VisuaLayered. The evaluation consists of three parts. In the first part, we asked
our collaborator to complete five painting analysis tasks using her typical analysis workflow, for which
she mainly uses the geospatial analysis software, ENVI. In the second part, we asked her to complete
the same five tasks using VisuaLayered. She analysed the same painting using both workflows. We
observed and made an audio recording of her workflow in both systems and recorded her screen for the
analysis in VisuaLayered. Based on all of these materials, we describe and compare the two workflows.
In the third part, we asked her to fill in a survey via Microsoft Forms [75], which is aimed at assessing
the features and usability of VisuaLayered and at comparing the two workflows. The survey can be
found in Appendix A.2 and consists of 6 main sections. In the first section we ask the profession of
our participants. The second section is the list of tasks to be completed using ENVI. The third section
is the same list of tasks for VisuaLayered and each one or two tasks is/are followed by corresponding
questions answered on a 5-point Likert scale [76]. The fourth section consists of questions about the
comparison of the two systems. The fifth section asks five general questions about VisuaLayered. The
last section consists of 10 standard System Usability Scale (SUS) questions [77].

The evaluation lasted one day. We met with our collaborator at the Rijksmuseum and we conducted
the evaluation in her normal work environment, using her work PC. For each of the two workflows, she
spent ≈ 2-3 hours. In general, she spends more time in order to analyse a painting, but since we
wanted to compare both workflows back-to-back in one day, we decided to split the available time
equally between the two workflows and see how much she can achieve, without rushing through the
tasks. Our collaborator was involved in the development process from the beginning, so at the moment
of the evaluation, they were already familiar with parts of the system. However, we still provided a
written example workflow with screenshots of possible ways of combining the available views. During
the evaluation we answered any questions regarding these provided examples.

In Section 6.1 we describe the workflow of our collaborator in both systems. Then, we go over the
survey results in Section 6.2. Lastly, we discuss additional results obtained using VisuaLayered, that
are not part of the case study workflow and the limitations of the evaluation in Section 6.3.

6.1. Case Study
In order to prepare for the evaluation, we asked our collaborator to provide two datasets, that they did
not analyse in the past, one for RIS and one for MA-XRF, of the same size for a painting of her choice.
They provided data on the painting Still Life with a Vase of Flowers and a Dead Frog by Jacob Marrel,
1634. Jacob Marrel is a German still life painter who lived in the 17th century and spent part of his
life in Utrecht, The Netherlands. The painting is oil on panel and has a size of 31cm x 40.3cm (w x h).
The MA-XRF data was acquired and processed by Nouchka De Keyser and the RIS data was acquired
and stitched by Francesca Gabrieli. Both datasets have 1257 x 1635 pixels (after re-scaling). The RIS
data cube has 256 dimensions and for MA-XRF we have 34 elemental maps. We prepared the t-SNE
embeddings for both data modalities in VisuaLayered in advance of the evaluation.

As described above, we prepared 5 painting analysis tasks to be completed by our collaborator. We
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go over them one by one and explain their connection to the task abstraction provided in Section 4.4.
We started the evaluation with the typical analysis workflow in ENVI, with the goal to create results for
comparison, then we moved on to VisuaLayered.

In Section 6.1.1 we describe the first two evaluation tasks which refer to task T1, the endmember
identification. In Section 6.1.2 we describe the remaining 3 evaluation tasks which refer to task T2, the
pigment identification. For all the images showing views from VisuaLayered, selected pixels and points
are indicated in red.

6.1.1. Endmember Identification
We wanted to evaluate how well the user can identify endmembers in VisuaLayered with the first two
evaluation tasks:

• ET1 Identify the endmembers present in the studied painting (T1.1, T1.2).

• ET2 Explore the spatial distribution of pixels that are spectrally similar to the found endmembers
(T1.3).

ENVI For ET1, our collaborator started with opening the RIS dataset in an image viewer (Figure 6.1) in
ENVI. By selecting different areas in the RGB image (Figure 6.1a) with the help of two zoomed in views
(Figure 6.1b,c) and looking at the selected pixels’ spectra in a spectrum view (Figure 6.1d), she gained
an initial idea of the present endmembers. Then, with a false color image (Figure 6.2), she observed
the underlying and otherwise hidden pigment used for indicating the position of three flowers, which is
a technique commonly used by the painter. The hidden pigment appears in red in the false color image,
as the red channel is set in the near infra-red range and we can see it in Figure 6.2 in the three flowers
that are highlighted in green boxes. After this, she started defining endmembers using two automatic
methods and by manual selection in ENVI. The Sequential Maximum Angle Convex Cone (SMACC)
algorithm automatically identified 30 endmembers. This was followed by using the Spectral Hourglass
Wizard (SHW) which found 35 endmembers automatically. In the 3D reduced space obtained with
the SHW, she also made manual selections of clustered pixels, looked at their spectra and found 7
endmembers (Figure 6.3). Identifying endmembers in this space was tedious as she had to rotate
the space and try different combinations of principal components for the three dimensions in order
to better understand the structure of the data. Afterwards, she went through the automatically found
endmembers one by one in the spectrum view in order to verify whether their shapes are physically
valid. In the end, she saved 11 endmembers from the SHW automatic computation, four from SMACC
and all the manually identified ones, resulting in a final list of 22 endmembers as input for ET2.

Figure 6.1: Visual inspection of the spectra in ENVI; a), b), c) Image view with different zoom levels; d) Spectrum view showing
spectrum of selected pixel
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Figure 6.2: False color image in ENVI with the red channel in the near infra-red range showing hidden pigment in the three green
boxes

Figure 6.3: Manual endmember selection in ENVI; a) Clustered SHW embedding; b) Endmembers corresponding to the shown
clusters

In ET2 the goal was to explore the spatial distribution of pixels similar to the found endmembers.
She did this by computing grayscale endmember maps using SAM (Section 4.3), checking their quality
and saving eight maps (one for an automatically found endmember and seven for all the manually
selected endmembers). As the decision of which endmember maps to keep is partially based on the
MA-XRF elemental maps, we describe this part of the analysis in Section 6.1.2.

VisuaLayered With task ET1 we wanted to observe how our collaborator identifies candidate end-
members and compares and filters them based on their spectral characteristics (T1.1, T1.2) in Visu-
aLayered. She started by opening the image, spectrum and embedding views (Figure 6.4b). Based on
the structure obtained in the t-SNE embedding, she manually annotated groups of points in the data
and assigned them to a cluster set. The clusters are indicated as different colors in the embedding. She
selected groups of neighbouring points and looked at their average spectrum and spatial distribution
in the image. If she found a relevant spectrum, she saved its corresponding points as a cluster and
loaded it in the spectrum view as an endmember. Since t-SNE projects the data in 2D, in comparison
to the 3D embeddings obtained in ENVI (based on different principal components), it was easier to
identify groups of points for clustering in VisuaLayered. Furthermore, in comparison to ENVI, where
she picked endmembers only based on the shape of the spectrum, in VisuaLayered she also assessed
the quality of a candidate endmember based on its standard deviation. For example, in Figure 6.5
we can see a selection of points (Figure 6.5a) that was adjusted such that its endmember has a small
standard deviation (Figure 6.5b). Additionally, in VisuaLayered she could make selections in the image
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view in order to identify other relevant clusters in the embedding. In Figure 6.4a we can see the image
selection mostly appears in three groups of the embedding, which resulted in creating the highlighted
cluster in Figure 6.4b. In total, she manually created 19 clusters and therefore 19 endmembers.

Figure 6.4: a) Selection in image for identifying clusters in the Embedding View; b) Highlighted cluster in the Embedding View
created based on selection

Figure 6.5: Use of standard deviation area for cluster decision; a) Initial selection; b) Adjusted selection that was saved as a
cluster

Moving on to ET2, which is based on T1.3, she used SAM, which is available in the spectrum
view, in order to create binary endmember maps. Setting the threshold angle for SAM was more
difficult in VisuaLayered than in ENVI, as in ENVI the angle can be set with the help of a histogram.
However, setting the visibility of endmembers in the spectrum view helped our collaborator keep the
view organised. In ENVI the spectrum view sometimes became too cluttered with spectra and she
had to open a new view in order to continue visualising endmembers. In VisuaLayered she only used
one such view. In total, she saved 12 maps, from which six were also found in ENVI and six were
obtained for endmembers identified only in VisuaLayered. However, there were also two endmembers
only identified in ENVI. Figure 6.6 shows one of the six new endmembers from its cluster selection
to its mapping. It represents the background of the image. For these results, we need to take into
consideration the fact that she spent a shorter amount of time than she normally does in order to
analyse a painting and identify endmembers. Hence, these results may not be representative of the
number of endmembers found in the usually allocated time.
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Figure 6.6: Background endmember; Endmember cluster selected in a) Embedding View, b) Image View; c) Endmember shown
in Spectrum View; d) Obtained map for background endmember

6.1.2. Pigment Identification
Next, we wanted to evaluate how well the user can identify pigments in VisuaLayered with the following
three evaluation tasks:

• ET3 Consider the endmembers from task 1 (and the pixels that are similar to them) and establish
their elemental composition as well, in order to identify the used pigments (T2.1, T2.2, T2.3).

• ET4 Are you satisfied with your endmembers? If not, consider refining your endmember selec-
tions.

• ET5 Can you reason about the possible order of the paint layers? If yes, annotate your selections
to indicate this (name clusters e.g. top_ultramarine, bottom_ochre) (T2.4).

ENVI As part of her typical analysis, our collaborator used the MA-XRF elemental maps and RIS
endmember maps in order to identify pigments for ET3. She started by creating an endmember map in
ENVI with a base threshold value. Then, she looked at the spectra of the similar points highlighted in
the map in order to check whether the threshold needs to be changed. If points with dissimilar spectra
were considered similar to the endmember, she reduced the threshold and checked again. Moreover,
she visualized the elemental maps using different software in order to validate the endmember maps.
Based on an endmember, she already assumed a pigment and therefore searched for the elemental
maps of elements that exist in the composition of that pigment. She visualized the maps as separate
images and visually compared them. She tried to overlap the highlighted points in the endmember
map with the highlighted points in the corresponding elemental maps as much as possible. After she
computed all the maps, she was happy with the identified pigments and did not refine the endmember
list for task ET4.

VisuaLayered In VisuaLayered, for task ET3, she used a combination of all the available views, ex-
cept for the histogram view. As part of the endmember map creation process she used the embedding
view to better understand the relation between the two data modalities (T2.2). By opening the embed-
ding of the MA-XRF data and using one endmember map as the color overlay, she could observe the
distribution of the points similar to an endmember in the MA-XRF data. For example, in Figure 6.7b
the end2 map is set as the color overlay in the embedding and its points appear mainly in two groups
of the MA-XRF data, that are highlighted in the green boxes. Since she already assumed that the end-
member represents azurite, which contains copper, she expected to also see the highlighted points in
the copper map. Hence, she then changed the color overlay as the copper (Cu) map and instantly saw
the same two regions highlighted, as shown in the green boxes in Figure 6.7c. However, the fact that
the points appeared in two different groups indicated to our collaborator that one of the groups should
contain an additional chemical element, which is not present in the other group. She tried a few more
elemental maps as the color overlay until she settled on cobalt (Co), which is present only in the top
cluster as shown in the green box in Figure 6.7d. Hence, this view offered a clear separation of points
that have a similar reflectance spectrum, but a different elemental composition.



40 6. Evaluation

Figure 6.7: MA-XRF embedding with different color overlays: a) clusters of endmember maps, b) azurite endmember map, c)
Cu elemental map, d) Co elemental map

Next, shewanted to establish the elemental composition of all endmembers (T2.2, T2.3) by analysing
the endmember and elemental maps in combination in the cluster correlation view. For this, she au-
tomatically created one cluster per endmember maps, where each cluster contains all the points that
are similar to an endmember. She also automatically created one chemical element cluster per ele-
mental map (T2.1) and manually refined these clusters. In Figure 6.8a,b we can see the mercury (Hg)
cluster as the selected points, with the minimum threshold value set by our collaborator in Figure 6.8c.
The corresponding mercury map is used in the image view as the background (Figure 6.8a) and in the
embedding view as the color overlay (Figure 6.8b) as guidance for setting the threshold.

Figure 6.8: Adjustment of the Hg cluster; a) Cluster highlighted in red in Image View and b) Embedding View; c) Settings for
cluster adjustment

She then loaded these two cluster sets in the cluster correlation view and saw the elemental compo-
sition of all identified endmembers (T2.3). Hence, this view offered a clear overview of the connections
between the two data modalities. In the case of end2, it clearly showed the distribution of its map
points in three main elemental clusters (Figure 6.9). Our collaborator could observe this separation
in ENVI as well. However, in ENVI it was a process that was more time-consuming and more prone
to error as she had to search for the right elemental maps and then visually inspect them in order to
establish the overlap in her mind. With the cluster correlation view, this information was shown directly.
Moreover, the image view was no longer used for establishing the overlap of the maps (like in ENVI),
but for spatially visualizing the separation of one endmember cluster into its elemental clusters (Fig-
ure 6.9b,c,d). Moreover, the cluster correlation view provided new information on the overlap of maps
that was otherwise missed in ENVI (e.g. endmember 1 with the calcium (Ca) and potassium (K) maps).
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Figure 6.9: Example separation of endmember cluster into elemental clusters; a) Cluster Correlation View with end2map cluster
highlighted; The background binary image in b), c) and d) is the end2 map; b) Selection of Cu map cluster; c) Selection of Ca
map cluster; d) Selection of Co map cluster

Our collaborator pointed out that the leaf in the azurite map obtained in ENVI (leaf indicated in
the blue box in Figure 6.10a) is mapped better in VisuaLayered (leaf indicated in the blue box in Fig-
ure 6.10b). She knew this because azurite contains copper (Cu), which is present in the leaf as shown
in the blue box the MA-XRF copper map (Figure 6.10c). When comparing the two endmembers for
azurite (Figure 6.10d), we can see that the VisuaLayered endmember has a higher peak at around
980 nm. The endmember in VisuaLayered is obtained based on a cluster of points in the embedding
which mostly contains points from the leaf. Hence, this endmember can more accurately map the leaf,
compared to the ENVI one.

Figure 6.10: Azurite map comparison; a) ENVI endmember map; b) VisuaLayered endmember map; c) Cu elemental map

For ET4 she did not reconsider the endmembers found in VisuaLayered and indicated that she
was very confident in the identified ones. In the end, she did not go over the last task, ET5, in either
software as establishing the order of paint layers is a more complex process that requires more time
than we had available and additional, different data (e.g. the SWIR data cube). The only observation
that she made during the ENVI based analysis was that the pigment lead white appears to be applied
over ochre. She observed this when creating the endmember maps and annotated the corresponding
map to indicate this. Since ET5 also refers to the annotation of pixels according to the pigment they
represent (T2.4), even without the indication of paint layer order, our collaborator saved the identified
pigment names as part of the ENVI and VisuaLayered endmember map names.

6.2. Survey Results
In this section we briefly discuss the answers provided in the survey by our collaborator. Her profession
is conservation scientist (Q1) and she is familiar with both data modalities and their combined analysis.
The questions about the five analysis tasks and about the comparison between the two workflows
were answered on a 5-point Likert scale [76] (Figure 6.11). In the end, we asked 5 general feedback
questions, followed by the 10 Standard Usability questions [77].
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1 2 3 4 5

2. The image view is efficient for exploring areas of interest in the painting ⬤
3. Dragging the RGB lines in the spectrum view and seeing real-time updates of the image RGB channels helped me identify hidden 
structures in the painting
4. The embedding view complemented the image view and helped me identify pixels with similar spectra ⬤
5. The standard deviation area around an average spectrum improved the selection of endmembers * ⬤
6. I can easily customize and filter the saved endmembers in the spectrum view ⬤
7. The linking of the image, embedding and spectrum views improved the endmember identification process ⬤
8. Updating the threshold angle for SAM in the spectrum view and seeing instant changes in the endmember map helped in deciding 
the best threshold angle for a map * ⬤

9. Linking the two datasets and using the image and embedding views for each data modality helps me understand the relation between 
the two data modalities

⬤

10. The embedding of the MA-XRF data helped me better understand the elemental composition of similar pixels * ⬤
11. The cluster correlation view helped me identify pixels that are similar with respect to both data modalities ⬤
12. The cluster correlation view improved my understanding of the molecular and elemental composition of pixels * ⬤
13. Using the embedding of one data modality with the color overlay as the clustering of the other modality helps me find similarities 
between the two data modalities

⬤

14. Using the embedding of one data modality with the color overlay of one dimension from the other data modality allows me to focus 
on a detail of one data modality and analyze it in the context of the other one

⬤

15. It was useful to explore the pixels with a known elemental composition by looking at two dimensions of the MA-XRF dataset in the 
embedding view *

⬤

16. I could easily establish the elemental composition of endmembers using the cluster correlation view ⬤
17. The combination of different MA-XRF and RIS maps in the image view is not useful for understanding the spatial overlap of different 
endmembers and chemical elements

18. Using the cluster correlation view with the endmember and chemical element clusters helps me better understand the order of the 
paint layers
19. Combining the two data modalities in one embedding view does not help in understanding the order of the paint layers

21. Compared to ENVI, I could more efficiently *statement*  in VisuaLayered:
    explore the RIS data ⬤

    explore the MA-XRF data ⬤
    identify endmembers ⬤
    explore the spatial distribution of endmembers ⬤
    explore the spatial distribution of pixels with similar elemental composition ⬤

    jointly explore pixels with similar spectral and elemental profiles ⬤

    reason about the order of paint layers
    classify pixels according to the pigment they represent ⬤

General 
Feedback

22. I am confident in the pigments that I found by following the tasks in the evaluation ⬤

Comparison

Score

Tasks 1,2

Tasks 3,4

Task 5

StatementSection

Figure 6.11: Collaborator answers to survey questions on a 5-point Likert scale from strongly disagree (1) to strongly agree (5);
The statements followed by * are rephrased to their positive form in this table and their scores are inverted for representation
purposes

For the first two tasks (Q2-Q8), she was overall happy with the workflow for endmember identifi-
cation (e.g. the use of the embedding view for identifying similar spectra or the linking of the image,
embedding and spectrum views for finding endmembers). For Q8, she indicated that the setting of
the threshold angle for SAM could be improved. Moreover, she did not provide any feedback on the
interactive setting of the RGB wavelengths (Q3) as she did not use it (they already looked at false color
images in ENVI). For the next two tasks (Q9-Q17), they were again happy with the provided functional-
ities for pigment identification (e.g. the use of the cluster correlation view for identifying pixels that are
similar with respect to both data modalities or the linking of the two datasets across all views). Since
she did not combine any maps in the image view, Q17 was left unanswered. Since the last task was
not completed, there are no questions answered for this task (Q18-Q20).

When comparing the two workflows (Q21), she indicated that she could more efficiently explore the
RIS data and the spatial distribution of endmembers using ENVI. However, she considered VisuaLay-
ered better for identifying endmembers. Moreover, for the exploration of the MA-XRF data and the
combined analysis, she considered VisuaLayered more efficient. Lastly, she considered VisuaLayered
better for identifying pigments.

For the general feedback (Q22-Q26), she wrote that VisuaLayered helps her understand the corre-
lation of the two data modalities, ”in particular with mixtures”. She indicated that she is very confident
in the identified pigments. For the best features of the system, she mentioned: the embedding of the
RIS data for easier endmember identification, the embedding of one modality with the color overlay of
a cluster (set) for ”navigating the dataset” and the cluster correlation view with the endmember and the
elemental maps for having ”a final identification of the pigments”. Moreover, she wrote what she thinks
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is missing from the system: a histogram for deciding the threshold angle for SAM (similar to the one in
ENVI), the visualization of the spectra in the MA-XRF data cube (before it is transformed into elemental
maps) and the computation of the first derivative of the RIS data cube. Furthermore, she mentioned
that it was difficult to adjust the minimum threshold using the slider in the cluster per dimension settings.
Lastly, the SUS score is 85 out of 100.

6.3. Discussion
In Section 6.3.1 we discuss additional results obtained based on the evaluation and we go over the
limitations of the evaluation in Section 6.3.2.

6.3.1. Additional Results
At the end of the evaluation, we had a short discussion with our collaborator about other ways of using
the views as part of the analysis. We considered the embedding view with the color overlay of all the
endmembermap clusters (Figure 6.7a). Our collaborator used the color overlay of only one endmember
at various moments in the analysis, like in Figure 6.7b. However, by using all the endmember map
clusters, we can explore the distribution of all endmembers in the MA-XRF embedding and use this
view for selecting one particular endmember, that we want to further explore.

Additionally, we discussed about visualizing two dimensions of the MA-XRF data, so the combina-
tion of two chemical elements, in the embedding view (Figure 6.12). This could be used for identifying
pixels that represent a pigment which is characterized by two chemical elements. Moreover, we could
see a clear separation between these pixels and pixels which contain only one of the two elements.
Hence, this view can be used for T2.1 if only the MA-XRF data is available and for T2.3 if we also use
the endmember map clusters as the color overlay, as shown in Figure 6.12a. In this case, the selected
points correspond to end2, so we can see the points that contain only Cu and the points that contain
Cu and Co, just like in Figure 6.7.

Figure 6.12: Overlap between end2 map cluster and two selected chemical elements;

Additionally, after the evaluation we observed that the vermilionmap (Figure 6.13a) obtained in ENVI
is better than the map obtained in VisuaLayered (Figure 6.13b). We know this, because similarly to the
leaf in Figure 6.10, the flower highlighted in Figure 6.13c contains mercury, which is present in vermilion
and hence the flower should be highlighted in its endmember map. Upon further analysis, we observed
that the flower appears as a separate cluster in the embedding (indicated in red in Figure 6.14a) and
its average spectrum is a lighter version of the vermilion endmember chosen in VisuaLayered (shown
in blue in Figure 6.14c). If we combine both the endmember and the flower spectrum SAM maps, as
shown in Figure 6.14d, we obtain a very similar map to the one inFigure 6.13a. Hence, we can still
obtain the same result in VisuaLayered and have a distinction between the lighter and darker vermilion.
Alternatively, we can discard the initially selected endmember and save just the flower spectrum as an
endmember. We can see it is very similar to the ENVI endmember (shown in purple in Figure 6.13c).
If we slightly increase the threshold angle for SAM, we also obtain an almost identical map to the ENVI
one.
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Figure 6.13: Vermilion map comparison; a) ENVI endmember map; b) VisuaLayered endmember map; c) Hg elemental map

Figure 6.14: A better mapping of vermilion; a) RIS embedding showing the endmember cluster (in blue) and flower cluster (in red);
b) The same two clusters highlighted in the Image View; c) The two cluster spectra and the ENVI endmember in the Spectrum
View; d) The VisuaLayered endmember and flower spectrum maps combined in the Image View; e) The flower endmember map

Our collaborator used some of the automatically selected endmembers for mapping in ENVI, while
in VisuaLayered she only used the automatic clustering to get an initial idea of the spectra present
in the image. In the end, however, most of the maps for the automatically found endmembers were
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discarded in ENVI. This indicates that the manual selection, based on domain expert knowledge, is
the most relevant one, indicating that our initial reasons to provide an interactive workflow are valid.
Additionally, the 6 maps obtained in ENVI and VisuaLayered for endmembers that represent the same
pigment are very similar (e.g. the azurite maps in Figure 6.10a,b). Therefore, we wanted to also com-
pare the corresponding sets of endmembers and we loaded them in a spectrum view in VisuaLayered
(Figure 6.15). We set the same hue and saturation for every two endmembers representing one pig-
ment, with the VisuaLayered endmembers in a lower lightness. We can observe that the VisuaLayered
endmembers have similar shapes to the ones in ENVI, with peaks at the same wavelengths, but at
different values on the y-axis. In general, the VisuaLayered endmembers are darker than the ENVI
ones, with the exception of azurite.

Figure 6.15: Comparison of endmembers representing the same pigment; a) ENVI endmembers; b) VisuaLayered endmembers

Lastly, due to the fact that t-SNE uses the cosine distance in order to project the high-dimensional
data into 2D, which is the same distance used in the Spectral Angle Mapper, the clustering of the
embedding could be used to replace the SAM computation for all the endmembers. Using SAM, we
map points that have a similar spectrum to a selected endmember. In the t-SNE embedding, points
that have a similar spectrum are grouped together. We create clusters based on these groups of
points and save their average spectra as endmembers. Ideally, the saved endmembers have a small
standard deviation. Hence, the points in an endmember cluster are points with a similar spectrum to
an endmember, just like the points in an endmember map obtained with SAM.

We explored this idea using the evaluation data. As a starting point in our example, we use the
automatic clustering of the t-SNE embedding . We over-clustered the embedding into 133 clusters and
manually refined them by either discarding small, separate clusters (of less than 10000 points), merging
clusters that were part of one single group of points and editing clusters that had an average spectrum
with a large standard deviations. After refinement, we were left with 35 clusters (Figure 6.16d), which
mostly have average spectra with a low standard deviation. We use the cluster correlation view to
compare these clusters with the 19 endmember map clusters obtained by our collaborator. We discuss
two examples based on this clustering.

The first example is shown in Figure 6.16. We picked and further analysed an endmember map (of
end19) that mostly overlaps with only one of the clusters (cluster 10), as shown in Figure 6.16d. The
points from the end19 map cluster are selected and shown in red in the embedding, mostly as part of
the pink cluster, which is cluster 10. The map of end19 shows the pigment present in the table. The
endmember and the cluster spectrum (Figure 6.16a) are very similar, but the cluster contains more
pixels representing the table, than the end19 map created by our collaborator (the map and the cluster
points are highlighted in red in Figure 6.16c). As the standard deviation of cluster 10 is not larger than
that of end19, the cluster could be a better representation of the endmember. Additionally, the points of
the end19 map that do not overlap with cluster 10, belong to its neighbouring cluster (also highlighted
in Figure 6.16d). This cluster contains points with a darker version of the endmember. Hence, we could
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also consider a combined map of the two clusters instead of the endmember map.

Figure 6.16: Example 1; a) end19 and cluster 10 spectrum; b) Correlation of automatically found clusters (x-axis) and endmember
map clusters (y-axis) with end19 map cluster selected; c) Points in endmember map and cluster highlighted in two image views;
d) RIS embedding with color overlay of automatically found clusters and end19 map points selected and shown in cluster 10
(pink cluster)

The second example is shown in Figure 6.17. For this example we picked the end2 map, that
overlaps with multiple clusters. In the embedding we selected the end2 map points. We discuss
clusters 22 and 30 as they have the biggest overlap with the map. The spectra of the two clusters
and the endmember are similar, with different values for the peaks (Figure 6.17). Since the end2 map
contains most of the points in cluster 22 and end2 has a smaller standard deviation than the cluster
22 spectrum, we assume that the other clusters that are selected, like cluster 30 (that has a darker
spectrum), contribute to the reduction of the standard deviation. Having the different clusters provides
us with more information on the different spectra representing one pigment, as opposed to creating
just one endmember map. We can again consider a combined map of the clusters (Figure 6.17c) and
refine the clusters based on the elemental maps in case too many/few points are selected (similarly to
choosing the threshold angle for SAM). The clustering of the t-SNE embedding does not require setting
a threshold value and, if done automatically, it attributes one cluster to every point in the dataset. It
can be a more direct way of obtaining maps of the endmembers. However, domain knowledge and the
MA-XRF elemental maps are still required in order to refine and obtain the most representative clusters
for the existing pigments.
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Figure 6.17: Example 2; a) end2, cluster 22 and cluster 30 spectra; b) Correlation of automatically found clusters (x-axis) and
endmember map clusters (y-axis) with end2 map cluster selected; c) Points in endmember map and cluster highlighted in two
image views; d) RIS embedding with color overlay of automatically found clusters and end2 map points selected and shown in
cluster 22 (pink cluster) and cluster 30 (orange cluster)

6.3.2. Limitations
We start by mentioning that the evaluation was done with only one participant, which is not enough for
proving the efficiency and usability of VisuaLayered. This case study is a pilot and a refined version
of the five analysis tasks and survey can be used for a larger study. It was difficult to find other do-
main experts with similar levels of experience with both data modalities, who could test our proposed
workflow in the available time. Hence, we view the case study described in Section 6.1 as an example
use of VisuaLayered that shows the functionalities of the system in relation to the proposed workflow.
Moreover, we recognize that the evaluation is not completely impartial as our collaborator took part
in the development process of VisuaLayered and provided feedback on possible improvements along
the way. However, we took this into consideration when creating the survey and alternated affirma-
tive and negative statements in the survey. During the evaluation, we also mostly observed her work
and only answered questions when something was unclear, without making any suggestions on what
visualizations should be used.

We decided to start the comparison in the evaluation with the analysis in ENVI and afterwards
in VisuaLayered, so that we can observe whether VisuaLayered improves our collaborator’s typical
workflow. Moreover, we did not want her to use the results obtained in VisuaLayered as a guide for her
analysis in ENVI. However, this still occasionally happened the other way around. For example, she
had a previously identified endmember in mind and tried to also find it using VisuaLayered. However,
we think the comparison still produced valuable results and as mentioned in Section 6.1, she even
found a few additional endmembers using VisuaLayered.

The t-SNE computation requires some processing time. For this reason we decided to compute the
embeddings of the MA-XRF and RIS datasets before the evaluation. It took us around three hours to
run t-SNE on both datasets on the hardware specified in Figure 6.18. However, this is not necessarily
problematic, as we can perform the t-SNE computation once per dataset and then use the embeddings
throughout the entire analysis.

Additionally, in an ideal setting the MA-XRF and RIS datasets would be completely aligned. We
characterize the pigments in the painting with respect to both data modalities by looking at pixel values
in both data cubes. Hence, corresponding pixels in the two datasets should represent the same spatial
position in the painting. However, the scanning is done with two devices with different specifications
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Category Component
OS Windows 10
CPU AMD Ryzen 7 2700x (8 Cores, 16 Logical Processors, 3700MHz Clock Frequency)
GPU NVIDIA GeForce RTX 2070 SUPER (8GB GDDR6 VRAM)
RAM 32GB DDR4, 3200 MHz

Figure 6.18: Hardware specifications used for running t-SNE

and spectral sampling distances and the resulting data cubes are not completely aligned. Moreover, the
MA-XRF dataset is obtained by stitching together multiple smaller data cubes of parts of the painting, so
the alignment within the dataset is also not perfect. Furthermore, we can observe that noise is present
in the data (for example in the spectrum of one single pixel) due to the real life conditions of scanning.
By considering average spectra of the RIS data and by refining the chemical element clusters of the
MA-XRF data, we also aim to reduce the noise in the data.



7
Future Work

For future work, we consider possible additions to the analysis workflow based on the evaluation results
and related work.

We would like to automatically set a basis threshold angle for the SAM computation in order to
assist the user. Our collaborator uses a histogram in ENVI which shows the number of similar pixels
according to a given threshold value. They normally set the threshold around the first change in the
values in the histogram. We could identify this change automatically, set the threshold right before the
change and generate the map. Then, the user could still interactively change the threshold in a similar
histogram view. Furthermore, during the evaluation we learned that determining whether a spectrum
is an endmember, depends on the location of its peaks. Hence, we would like to add the possibility
of zooming in on user selected wavelength ranges of the spectrum in the spectrum view. Moreover,
users should then be able to use the selected range for the SAM computation, such that they can
identify pixels that are similar to an endmember only based on the significant part of the endmember.
Additionally, based on the qualitative feedback received in the evaluation, we want to make minor
usability improvements such as decreasing the slider step sizes for the SAM/SCM threshold and the
cluster per dimension minimum/maximum thresholds, reducing the computation time of the SAM/SCM
maps and improving the interaction in the histogram view.

Next, we consider techniques that could be added to the workflow based on related work. The joint
data cube of the two data modalities’ raw cubes might offer a new perspective on the available data.
However, combining the two datasets is not straightforward. Firstly, the two datasets would have to
be completely aligned, which is also a current requirement of the datasets analysed in VisuaLayered.
Secondly, the datasets represent different high-dimensional spaces and simply fusing the RIS and MA-
XRF spectra for every scanned pixel would lead to a loss of information. Thirdly, neither of the two
datasets should dominate the other one in computations on the fused cube. Alfeld et al. [3] fused
the RIS-XRF and MA-XRF cubes for their application. They aligned the RIS dataset, that has a higher
lateral resolution, to theMA-XRF dataset and chose relevant spectral ranges in both datasets to balance
their influence on the fused cube. They obtained a cube with 784 channels, from which 59% of the
channels represent the XRF data and 41% represent the RIS data. Using the t-SNE embedding of the
combined cube, they identify pigments and present their results. We would like to include a fused data
cube in the current workflow of VisuaLayered and use it to complement the combined analysis of the
MA-XRF and RIS datasets. By computing the t-SNE embedding of the combined cube, we would have
an additional space for clustering the pixels and we could explore the correlation of these clusters to
the clusters of the two data modalities in order to better understand the fused space.

Furthermore, spectral unmixing methods for RIS data could provide more insight into the compo-
sition of mixed pigments. We could use automatic methods, like Maximum Distance (MaxD) [78] or
Simplex Identification via Split Augmented Lagrangian (SISAL) [8] in order to help domain experts
identify the endmembers present in the painting. This would be similar to using the Spectral Hourglass
Wizard in ENVI for automatically identifying endmembers. Additionally, we would consider automatic
pigment identification methods, which work by matching the scanned reflectance spectra to a library of
pigment endmembers in order to identify pigments, possibly without the need to first identify endmem-
bers in the painting. However, since the reflectance spectrum of a pigment is influenced by the surface
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and ground layer of a painting, we would like to use an endmember library that is created based on
similar works to the investigated painting [78]. In VisuaLayered, we could add such automatic methods
as an initial step in the analysis, so that we identify a set of endmembers, which experts can validate
and manually refine. Moreover, we could use methods that provide a confidence value on the identi-
fied endmembers, such that experts could start refining the endmembers which have low confidence
values.

Lastly, we would like to explore the visualization of a time series of RIS datasets [31]. The pigments
used in a painting degrade over time because of numerous reasons, like external factors (e.g. light,
temperature). Hence, if we perform multiple RIS scans of one painting, over the years, we might be
able to see how the pigments change by comparing the data from different scans. By using a variant
of t-SNE, Joint t-SNE [79], we obtain comparable projections across time steps. Joint t-SNE keeps the
points that do not change over time in the same location across projections and hence clearly shows
the points that change and move in the projections. Therefore, it could help us understand what points
represent pigments that changed their molecular structure over time. We could use the embedding
view and its functionalities to show the projections and interact with the data.

We believe a structured evaluation with a greater number of domain experts is the next step for
assessing the efficiency of VisuaLayered and obtaining quantitative results as well. As an introduction
for the evaluation, we could prepare a demo showing an example analysis workflow in VisuaLayered
and a document describing all the functionalities of the system, such that participants can learn how to
use the system even if we are not assisting them. Furthermore, in order to make the evaluation shorter
with respect to time and therefore accessible to more participants, we could provide a simplified survey
and a list of simpler tasks that participants would have to complete using only VisuaLayered. For
example, for the first task instead of asking participants to identify all endmembers in a painting, we
could ask them to identify a fixed number endmembers. Moreover, we could set a time limit per task
and take into account how far every participant gets in the available time. Moreover, we should consider
different datasets obtained with or based on RIS that are normally used as part of the analysis, such as
SWIR data cubes and the first derivative of RIS data cubes. We would like to add the computation of
the first derivative data cube as an additional plugin. Moreover, our collaborator suggested the addition
of the MA-XRF original data cube (before its processing into elemental maps) in the visual analysis. If
we change the axes domain in the spectrum view, we could also visualize the MA-XRF spectra and
analyse them in combination with the other data.



8
Conclusion

We designed and implemented VisuaLayered, an interactive workflow for the combined visual analysis
of Reflectance Imaging Spectroscopy and Macro X-Ray Fluorescence data for pigment identification
in paintings. VisuaLayered is an integrated system which consists of five views that allow the user to
explore and interact with these two complementary datamodalities. This work was done in collaboration
with the Rijksmuseum in Amsterdam. We conducted a field study with our collaborator and learned
about their typical analysis workflow in order to design our workflow. In VisuaLayered the user can
explore the spatial distribution of pixels with different elemental and molecular compositions in the
image view, identify and compare endmembers by using the embedding and spectrum views and better
understand the correlation between the two data modalities using the cluster correlation and embedding
views. The linking of all available views offers a direct connection between the two data modalities
throughout the entire analysis process. VisuaLayered is meant to help domain experts in their analysis
and hence, interactivity is an important aspect of all the available views.

We tested the functionalities of VisuaLayered in a case study. We asked our collaborator to complete
five painting analysis tasks using both their typical analysis tools and using VisuaLayered. The aim of
the case study was to obtain an example analysis workflow in VisuaLayered and discuss how well it
matches the proposedworkflow andwhether it improves our collaborator’s typical workflow. We learned
that the visual combination of the two data modalities represents an improvement as it allows them to
better and more easily identify the connections between the MA-XRF and RIS data. In particular, they
found the embedding view with different color overlays and the cluster correlation view of endmember
maps and chemical element clusters really useful. Additionally, clustering the embedding with the help
of the spectrum view, which shows the standard deviation of selected average spectra, improved the
process of endmember identification. In the end, they found more endmembers using VisuaLayered.

Reflection To conclude, my thesis was a very interesting, fun and at times challenging project. I
think making a planning at the beginning of the thesis really helped me organize my thoughts about the
project into explicit actions that I could to take in order to complete my project. The planning also helped
me understand the extent of my project. At the beginning, I could have planned more meetings with our
collaborators in order to have an even clearer picture of the cultural heritage background. During the
development of the prototype, I could have found one or two more domain experts who were willing to
test the prototype so I would have more feedback on what can be improved. I did not always meet the
deadlines I set for myself in the planning, but even with small delays I was generally able to complete
all the planned tasks. However, I did not work on the report consistently throughout the project (as
indicated in the planing), so this led to me having a harder time when it came to writing the report.
Lastly, if I prepared the evaluation earlier in the process, we could have asked a few more people to
participate in the evaluation.
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Appendix

A.1. Short Paper
The following paper was submitted and accepted as a short paper at the Eurographics Workshop on
Graphics and Cultural Heritage 2022. This paper is based on my thesis work and focuses on the visual
analysis of RIS data for endmember identification and analysis. I would like to thank all the co-authors
of the paper for their feedback and contribution.
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Visual Analysis of RIS Data for Endmember Selection
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Figure 1: Overview of the implemented system showing the painting Figures in a Courtyard behind a House by Pieter De Hooch [Kre19];
The pixel selection is highlighted in red in the a) image view, b) embedding view and shown as the top spectrum in the c) spectrum view.

Abstract
Reflectance Imaging Spectroscopy (RIS) is a hyperspectral imaging technique used for investigating the molecular composition
of materials. It can help identify pigments used in a painting, which are relevant information for art conservation and history.
For every scanned pixel, a reflectance spectrum is obtained and domain experts look for pure representative spectra, called
endmembers, which could indicate the presence of particular pigments. However, the identification of endmembers can be a
lengthy process, which requires domain experts to manually select pixels and visually inspect multiple spectra in order to find
accurate endmembers that belong to the historical context of an investigated painting. We propose an integrated interactive
visual-analysis workflow, that combines dimensionality reduction and linked visualizations to identify and inspect endmembers.
Here, we present initial results, obtained in collaboration with domain experts.

CCS Concepts
• Human-centered computing → Visual analytics; Visualization systems and tools; • Applied computing → Fine arts;

1. Introduction

Digital, non-invasive imaging techniques provide new insights into
cultural heritage. Domain experts register and analyze properties
of materials present in paintings, in order to identify pigments
and guide the conservation and restoration of old master paintings.
Moreover, this information is relevant for art history to enable dat-
ing and establishing the authenticity of a painting [BPP05]. One
such technique is Reflectance Imaging Spectroscopy (RIS), a hy-
perspectral technique which captures the molecular composition of
the material being scanned as reflectance spectra. Experts look for
pure representative spectra, called endmembers [RDF*12], which
correspond to different pigments, allowing them to establish the

pigment distribution in a painting. Domain experts can manually
select pixels and analyze their spectra in order to find pigments,
but this can be a lengthy process. Automatic endmember selec-
tion [GMGM18; MBG*22] shows promising results for pigment
identification, but depends on matching spectra to a set of prede-
fined endmembers. Domain experts often need to identify wrongly
classified pixels and to help improve the automatic endmember
selection process. Further, there is limited comparability between
endmembers derived from different paintings, as other factors such
as aging of the painting, measurement batches, etc. have an impact
on the acquired data. Therefore, domain expert knowledge is cru-
cial in the analysis process.

© 2022 The Author(s)
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We propose a visual analysis system that keeps domain experts
in the analysis loop and provides semi-automatic methods for end-
member detection. This work is the first part of an ongoing design
study, conducted in collaboration with domain experts in order to
create a visual analysis workflow for painting analysis. In partic-
ular, here, we focus on the interactive extraction of endmembers.
The main contributions of this work are:

• a visual analysis workflow for interactive identification of end-
members in RIS data

• a prototype implementation of the workflow

While endmember selection is an essential part of the analysis
process, more than just molecular information is needed to char-
acterize a pigment or a combination of pigments and understand
the layered composition of a painting. In the broader scope of this
project, we aim to integrate the analysis of RIS data with other
imaging modalities, such as Macro X-Ray Fluorescence (MA-
XRF) which is commonly used to inspect the elemental distribution
in paint layers. [DDVV20; MTS*19]

2. Related Work
Visual exploration of high-dimensional data is a vast area in vi-
sualization research. An in-depth review is out of the scope of
this paper. A good overview is presented in the survey by Liu et
al. [LMW*17], while Brehmer et al. [BSIM14] present an overview
of typical applications, domains, and corresponding tasks.

Recently, high-dimensional imaging data has become more
widely available in several application domains, including cultural
heritage, and consequently a number of visual analysis approaches
are available. Grabowski et al. [GMGM18] use t-SNE [vdMH] as a
base for clustering pixels and then automatically identify pigments
by matching spectra to predefined endmembers representing differ-
ent pigments. Pouyet et al. [PRK*18] compare t-SNE to PCA and
MNF for visualizing hyperspectral data of paint samples and ob-
tain the best results for pigment identification with t-SNE. Alfeld et
al. [APMW18] applied t-SNE on RIS and MA-XRF data. With the
help of the t-SNE embedding visualized in a scatterplot, they were
able to identify most of the pigments present in the wall paintings
of an Egyptian tomb. We build on these developments as one aspect
of our proposed workflow.

Hyper3D [KRF*14] is a visualization system designed to aid art
conservators, focused on hyperspectral volumetric data. It provides
a pixel-wise reflectance spectrum view for detail exploration of the
data. We follow a similar approach of developing an integrated sys-
tem, but focus on paint layer information revealed by RIS where the
spectrum view offers a broader range of analysis options for end-
member identification.

3. Requirements Analysis
In order to establish the requirements for the system, we conducted
a series of meetings with collaborating imaging-science experts
from the Rijksmuseum, Amsterdam. After discussing their general
data analysis needs, we conducted a field study consisting of semi-
structured interviews and observed their current workflow for ana-
lyzing RIS data. After implementing our initial prototype, we have
deployed the software with our partners and have conducted regular
follow-up meetings to identify issues and provide updates.

https://www.overleaf.com/project/62c96f03f5a459ae819940dd

Data Reflectance Imaging Spectroscopy (RIS) is a hyperspec-
tral imaging technique that goes beyond standard photography by
measuring continuous spectra of reflected light for each imaged
pixel [APMW18]. Depending on the acquisition hardware, differ-
ent ranges of the light spectrum are captured. For example, VNIR
(visible to near-infrared spectroscopy) cameras capture the range of
400 nm to 1000 nm and SWIR (short-wave infrared spectroscopy)
cameras capture 1000 nm to 2500 nm. The data is stored as a vol-
ume where the x- and y-dimensions correspond to the spatial ex-
tents of the data and the z-dimension to a discrete sampling of the
spectral information. In the following, we interpret the spectral in-
formation as a high-dimensional space and thus the data at each x,y
position as a high-dimensional pixel.

Throughout this paper, we use a VNIR dataset (covering roughly
400 nm to 900 nm) of the painting Figures in a Courtyard Behind
a House by Pieter de Hooch [Kre19]. The data cube consists of
1174× 1756 pixels with a pixel size of roughly 0.35× 0.35 mm2.
Each pixel represents a sampling of the spectral information with
2.54 nm, resulting in 200 dimensions.

Current Workflow The current endmember extraction workflow
of our collaborators is based on a combination of tools and scripts
around the geospatial analysis software ENVI [L3H]. They start
by selecting different areas in the painting in an image viewer and
then inspect the corresponding spectra in a lineplot. Once they have
an initial overview of the data, they manually and/or automatically
define endmembers using the Spectral Hourglass Wizard (ENVI-
SHW). Lastly, they create endmember maps by plotting points with
similar spectra to an endmember using the Spectral Angle Map-
per [DM00]. At this point they can look at the maps and reason
about the used pigments.

Task abstraction Based on the data and observed workflow, we
have identified the following tasks that the proposed system must
support. The user

T1: identifies different endmember candidates in the high-
dimensional image data,

T2: compares and filters identified endmember candidates based
on their spectral information, and

T3: explores the spatial distribution of pixels relating to identified
endmembers and mapping parameters.

4. Proposed Solution
Based on the requirements analysis (Section 3), we created the de-
sign and implemented a prototype of our proposed system that we
refined during follow-up meetings with our collaborators.

4.1. Design
The proposed system is shown in Figure 1. It consists of three main
views to support the tasks described in Section 3. All views in the
system are linked to enable comparison across all views.

4.1.1. Image View

The first view (Figure 1a) is an image view. The view can be used in
different modes to support tasks T1 and T3. For probing the image
for potential endmembers (T1), the view is used to show the orig-
inal image data. Since showing the full spectral information is not
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feasible on an RGB-screen, we provide different modes; if a reg-
istered photograph of the painting is available, this can be shown
directly. Additionally, the user can select any wavelength to show
the corresponding scalar field, optionally as false colors using a col-
ormap, or select three different wavelengths and map them to the
red, green, and blue channels of the screen. Figure 1a shows an ex-
ample using three wavelengths in the visible red, green, and blue
spectra, inidcated by the vertical lines in Figure 1c, emulating a
photograph. However, channels can easily be remapped, for exam-
ple to show information of the otherwise invisible infrared part of
the spectrum. The user can interactively make selections of pixels
in this view and visualize the corresponding spectra in the spectrum
view (Section 4.1.3).

Additionally, the image view is also used for T3. Any created
endmember map (Section 4.1.3) can be shown in the view, either
individually or as a combination, e.g., by mapping up to three dif-
ferent maps to the RGB channels (Figure 2).

4.1.2. Embedding View
Figure 1b shows the embedding view. We use t-SNE [vdMH] to
create an embedding of the original VNIR data. To support the
calculation of t-SNE embeddings on more than two million pixels
we use a GPU-based implementation of t-SNE [PTM*20]. Every
point in the embedding corresponds to a pixel in the image, where
points with a similar spectrum are placed close to each other. We
use the cosine distance to calculate the pairwise distances between
the discrete spectra. The t-SNE view is used to identify groups of
similar pixels that can serve as potential endmembers (T1), with-
out relying on the visual inspection in image space. The user can
probe the embedding via a selection and visualize the correspond-
ing spectra in the spectrum view (Section 4.1.3). This task can also
be supported by clustering the embedding using Mean Shift clus-
tering [HPvU*16] and using the resulting clusters to derive end-
members.

4.1.3. Spectrum View
The third view (Figure 1c) is the spectrum view that is implemented
as a lineplot, where the x-axis represents the wavelengths in nm and
the y-axis represents the measured reflectance. The view shows the
mean spectrum of any selection of pixels from the two other views
as a black line. In addition to the mean, it is possible to visualize
the standard deviation of a spectrum as an area around the line (e.g.,
colored areas in Figure 2). When the user has identified a suitable
spectrum for an endmember, the selection can be made persistent

Figure 2: Endmember maps corresponding to three endmembers.

in this view (T2). Persistent spectra are added to a list view and can
optionally be visualized in the lineplot with a user-defined color.

To allow further inspection of the image, based on the spectra,
the user can set the wavelengths for coloring the image view di-
rectly in this view. Three vertical lines (Figure 1c) represent the R,
G, and B channels of the image view and can be dragged along the
x-axis to any combination of interest. For example, the user can set
the values of the three lines in the near-infrared range to identify
areas that are perceptually similar, but differ in their spectral com-
position. The change is reflected immediately in the image view
so that the user can gradually see how their wavelength selections
influence the colors in the image.

As described above, when a selection is made persistent to cre-
ate an endmember, it is added to a list view on the side of the spec-
trum view. From this view, the user can toggle the creation of an
endmember map for each item, using the Spectral Angle Mapper
(SAM) (T3). SAM computes the cosine distance of the endmem-
ber to all pixels in the image. We choose SAM based on the current
workflow of our collaborators, but optionally provide mapping us-
ing the Spectral Correlation Mapper [DM00; DGH14]. For either,
the distance is typically thresholded to create binary maps, where
similar pixels are set to true and all others to false. Figure 2 shows
an image combining three endmember maps, obtained with SAM,
using the R, G, and B channels.

4.2. Implementation
We implemented our workflow in a plugin-based framework for
high-dimensional data analysis. The system is implemented in
Qt/C++ and visualizations in OpenGL and D3 [BOH11], respec-
tively, according to the required performance. Upon completion of
the full project, we plan to release the tool as open source.

5. Preliminary Results
We have deployed an initial prototype of the implemented system
with our domain expert collaborators. Based on their feedback, we
have gone through several iterations to add functionality.

Our collaborators have successfully identified endmembers us-
ing the system in initial testing. In their early feedback, they were
enthusiastic about the integrated analysis workflow. The linked
views with real-time selections make the analysis easier and offer a
better understanding of the data.

In this first phase, the focus was on interactive, manual explo-
ration of the data. Initial experiments lead us to believe that clus-
tering based on the t-SNE embedding can further improve the pro-
cess and potentially also replace the SAM computation. We use the
same cosine distance metric as SAM when computing the pairwise
distances in t-SNE. As a result, obtained clusters contain points
that are similar to an endmember in an SAM map. Figure 3 shows
a visual comparison of an endmember map created using SAM and
one based directly on a cluster extracted from the t-SNE map. The
points belonging to the endmember cluster (Figure 3b) are high-
lighted in red and the points selected through SAM for the same
endmember (Figure 3c) are highlighted in blue. Based on a thresh-
old angle, SAM selected dissimilar points, which are scattered in
other clusters than the endmember cluster (Figure 3d) and which
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Figure 3: Comparison of t-SNE cluster (red) and endmember-based (blue) map.

lead to a larger standard deviation of the SAM points visible in blue
in the spectrum view (Figure 3e). t-SNE offers a more automatic so-
lution than SAM as it does not require predefined endmembers or
setting threshold angles for identifying similar spectra. We plan a
structured comparison in future work.

6. Conclusion and Future Work
We presented an integrated, interactive system and analysis work-
flow for endmember identification and mapping. Initial results and
feedback from our collaborators show that the system improves
their current workflow. As part of our research, we want to fur-
ther develop the system to allow for the combined visual analysis
of MA-XRF and RIS data. In particular, we aim to provide means
to identify points with similar elemental composition and study
correlations between the two data modalities. Further, it would be
interesting to explore ways to model pixels as a combination of
endmembers using spectral unmixing [GTG21] as pigments can
appear in a painting as such mixtures.
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A.2. Evaluation Survey



Combined Visual Analysis of MA-XRF and 
RIS Data - Evaluation
You are being invited to participate in a research study titled Combined Visual Analysis of MA-XRF and RIS 
Data. This study is done by Andra Popa from the TU Delft. 

The purpose of this research study is to evaluate the workflow within our proposed system, VisuaLayered, in 
comparison to another existing system, the geospatial analysis software ENVI. 

We prepared a list of painting analysis tasks for you to follow. You start by completing the tasks in ENVI, then 
in VisuaLayered. For our software, the tasks are followed by a few questions. Once you finish a task, please fill 
in its corresponding questions. In the end, we prepared a few questions regarding the comparison of the two 
systems and a few general feedback questions regarding our software. 

In case any of the questions are not applicable to your workflow, please leave them unanswered. 

The painting used to show example views in our software is Figures in a Courtyard behind a House by Pieter 
de Hooch (A. Krekeler, catalogue of the exhibition Pieter de Hooch in Delft. From the Shadow of Vermeer, A. 
Jansen (ed.), W-Books, Zwolle, 2019, pp. 56-79). 

The form has 8 sections. The questions will take approximately 20 minutes to complete. The data will be used 
for assessment of our system and reported in a thesis report and defence. 
  
As with any online activity the risk of a breach is always possible. To the best of our ability your answers in 
this study will remain confidential. We will minimize any risks by not recording your name. 

Your participation in this study is entirely voluntary and you can withdraw at any time. You are free to omit 
any questions. The research data will be stored 10 years or more, in accordance with the TU Delft Research 
Data Framework Policy. 

Corresponding Researcher:
Andra Popa 
a.popa-2@student.tudelft.nl

Personal Information



What is your profession?

1



Evaluation Tasks - ENVI

Please complete the following tasks using ENVI: 

1. Identify the endmembers present in the studied painting. 
   
2. Explore the spatial distribution of pixels that are spectrally similar to the found endmembers. 
   
3. Consider the endmembers from task 1 (and the pixels that are similar to them) and establish 
their elemental composition as well, in order to identify the used pigments. 

4. Are you satisfied with your endmembers? If not, consider refining your endmember selec-
tions. 
   
5.  Can you reason about the possible order of the paint layers? If yes, annotate your selections 
to indicate this (name clusters e.g. top_ultramarine, bottom_ochre).



Evaluation Tasks - VisuaLayered

Please complete the following tasks using VisuaLayered: 

1. Identify the endmembers present in the studied painting. 

2. Explore the spatial distribution of pixels that are spectrally similar to 
the found endmembers. 

Example workflow using the RIS dataset 

1. You can identify areas of interest in the painting using the image view and explore the average 
spectra of your selections in the spectrum view (Figures 1, 2). The image display range can be set us-
ing window/level settings. You can interactively set these settings in the histogram view by dragging 
the ends of the diagonal green line (once the window/level fields from the two views are linked to 
each other)  to match the data range (Figure 3). Moreover, you can interactively set the RGB channels 
of the image by dragging the three RGB lines in the spectrum view, once the channels and the lines 
are linked to each other (Figure 6c). 
  
 2. Next, you can explore the spatial distribution of spectrally similar pixels in the t-SNE embedding of 
the data in the embedding view (Figure 4a). Points with similar spectra are grouped together. You can 
use the spectrum view to observe the average spectra of your selections and look for potential end-
members with a low standard deviation area around a spectrum (Figure 4b). You can save a selection 
as a cluster in the embedding view. Alternatively, you can automatically cluster the entire dataset us-
ing Mean Shift Clustering and manually refine this clustering. You can color the points in the embed-
ding based on the clustering (Figure 5). 
  
 3. Then, you can load a set of clusters in the spectrum view as endmembers (Figure 6c). The spectrum 
view allows you to change the color and name of an endmember (Figure 7a). 
  
 4. For every found endmember, you can perform the Spectral Angle Mapper (SAM) algorithm in the 
spectrum view in order to obtain an endmember map (Figure 7b). You can interactively set the 
threshold angle for SAM in this view (Figure 7a). 
  
 5. You can explore a combination of endmember maps or endmember clusters in the image view 
(Figure 8). A combination of 3 maps can be obtained by setting one map per RGB channel of the im-
age.  

Once you completed the tasks, please answer the following questions. The questions should 
take around 2 minutes to answer.

Alt text: VisuaLayered with 3 open views. Image 
View, Embedding View, Spectrum View



Strongly disagree

1 2 3 4 5

Strongly agree

The image view is efficient for exploring areas of interest in the painting.

2

Strongly disagree

1 2 3 4 5

Strongly agree

Dragging the RGB lines in the spectrum view and seeing real-time updates of the image 
RGB channels helped me identify hidden structures in the painting.

3

Strongly disagree

1 2 3 4 5

Strongly agree

The embedding view complemented the image view and helped me identify pixels with 
similar spectra.

4

Strongly disagree

1 2 3 4 5

Strongly agree

The standard deviation area around an average spectrum did not improve the selection of 
endmembers.

5



Strongly disagree

1 2 3 4 5

Strongly agree

I can easily customize and filter the saved endmembers in the spectrum view.

6

Strongly disagree

1 2 3 4 5

Strongly agree

The linking of the image, embedding and spectrum views improved the endmember 
identification process.

7

Strongly disagree

1 2 3 4 5

Strongly agree

Updating the threshold angle for SAM in the spectrum view and seeing instant changes in 
the endmember map did not help in deciding the best threshold angle for a map.

8



Evaluation Tasks - VisuaLayered

Please complete the following tasks in VisuaLayered: 

3. Consider the endmembers from task 1 (and the pixels that are similar 
to them) and establish their elemental composition as well, in order to 
identify the used pigments. 

4. Are you satisfied with your endmembers? If not, consider refining your 
endmember selections. 

Example workflow using the MA-XRF and RIS datasets 

1. You can start by grouping together the two datasets. This ensures the linking of all open views that 
show data from either dataset. You can use the image and embedding views like in the previous ex-
ample, but this time also for the MA-XRF data in order to observe the similarities between the two 
datasets (Figure 9). You can then also cluster the MA-XRF data to obtain groups of points that have a 
similar elemental composition. 
  
 2. Next, you can observe the correlation of both cluster sets in the cluster correlation view (Figure 
10a).  
  
 3. Moreover, you can combine the two data modalities in one embedding view. You can have the em-
bedding of one data modality open and color the points based on the clustering of the other modal-
ity (Figure 11) or color the points based on the distribution of one dimension from the other modality 
(Figure 12). 
  
 4. If you want to look at two specific chemical elements' distribution in combination, you can also 
load the MA-XRF dataset in the embedding view and choose the two dimensions/elements you want 
to visualize (Figures 13, 14). 
  
 5. You can also save the RIS and MA-XRF maps as clusters (by choosing the Cluster per Dimension op-
tion for each dataset and manually changing the obtained clusters) and also load them in the cluster 
correlation view in order to see the elemental composition of an endmember (Figure 15). You can also 
cluster all the points that do not belong to any cluster in a cluster set (by choosing the Complement 
cluster option) in order to potentially identify areas in the painting that are unexplored (Figure 16). 
  
6. In the end, you can explore the overlap between any combination of maps from both data modalit-
ies. Any number of maps can be combined by loading, in the image view, one map per dataset and 
setting the opacity level to 50% and a constant color per map (Figures 17, 18). 

Once you completed the tasks, please answer the following questions. The questions should 
take around 2 minutes to answer.



Strongly disagree

1 2 3 4 5

Strongly agree

Linking the two datasets and using the image and embedding views for each data 
modality helps me understand the relation between the two data modalities

9

Strongly disagree

1 2 3 4 5

Strongly agree

The embedding of the MA-XRF data did not help me better understand the elemental 
composition of similar pixels.

10

Strongly disagree

1 2 3 4 5

Strongly agree

The cluster correlation view helped me identify pixels that are similar with respect to both 
data modalities.

11

Strongly disagree

1 2 3 4 5

Strongly agree

The cluster correlation view did not improve my understanding of the molecular and 
elemental composition of pixels.

12



Strongly disagree

1 2 3 4 5

Strongly agree

Using the embedding of one data modality with the color overlay as the clustering of the 
other modality helps me find similarities between the two data modalities.

13

Strongly disagree

1 2 3 4 5

Strongly agree

Using the embedding of one data modality with the color overlay of one dimension from 
the other data modality allows me to focus on a detail of one data modality and analyze it 
in the context of the other one.

14

Strongly disagree

1 2 3 4 5

Strongly agree

It was not useful to explore the pixels with a known elemental composition by looking at 
two dimensions of the MA-XRF dataset in the embedding view.

15

Strongly disagree

1 2 3 4 5

Strongly agree

I could easily establish the elemental composition of endmembers using the cluster 
correlation view.

16



Strongly agree

1 2 3 4 5

Strongly disagree

The combination of different MA-XRF and RIS maps in the image view is not useful for 
understanding the spatial overlap of different endmembers and chemical elements.  

17



Evaluation Tasks - VisuaLayered

Please complete the following tasks in VisuaLayered: 

5.  Can you reason about the possible order of the paint layers? If yes, an-
notate your selections to indicate the order (name clusters e.g. 
top_ultramarine, bottom_ochre). 

For this task, you can use the combined views described in the previous section. 

Once you completed the task, please answer the following questions. The questions should 
take around 2 minutes to answer. 

Strongly disagree

1 2 3 4 5

Strongly agree

Using the cluster correlation view with the endmember and chemical element clusters 
helps me better understand the order of the paint layers.

18

Strongly disagree

1 2 3 4 5

Strongly agree

Combining the two data modalities in one embedding view does not help in 
understanding the order of the paint layers.

19



How did you use the available views in order to complete this task?

20



Comparison between ENVI and VisuaLayered

Now that you completed the tasks in both systems, we would like to ask you to compare them. 

This part should take around 3 minutes to complete.

Please choose a score for the following statements: 

Compared to ENVI, I could more efficiently *statement* in VisuaLayered:

21

ENVI is
more

efficient

ENVI is
more

efficient

same
efficiency

same
efficiency

VisuaLayer
ed is more

efficient

VisuaLayer
ed is more

efficient

explore the
RIS data

explore the
MA-XRF data

identify
endmembers

explore the
spatial
distribution
of
endmembers 

explore the
spatial
distribution
of pixels with
similar
elemental
composition

jointly
explore pixels
with similar
spectral and
elemental
profiles



reason about
the order of
paint layers

classify pixels
according to
the pigment
they
represent



General Feedback

This section contains 5 questions about our system. This part should take around 5 minutes to 
complete.

Strongly disagree

1 2 3 4 5

Strongly agree

I am confident in the pigments that I found by following the tasks in the evaluation.

22

Do you use the MA-XRF data in order to identify endmembers? If the answer is yes, please 
explain why you use it.

23

Does the system help you understand the relation between the two data modalities? 
Please explain your answer.

24



What is the best feature of the system?

25

What is missing from the system and would help you in your analysis?

26



General Usability of the Software

Please answer the following questions regarding our system.  

This part should take around 2 minutes to complete.

Strongly disagree

1 2 3 4 5

Strongly agree

I think that I would like to use this system frequently.

27

Strongly disagree

1 2 3 4 5

Strongly agree

I found the system unnecessarily complex.

28

Strongly disagree

1 2 3 4 5

Strongly agree

I thought the system was easy to use.

29

Strongly disagree

1 2 3 4 5

Strongly agree

I think that I would need the support of a technical person to be able to use this system.

30



Strongly disagree

1 2 3 4 5

Strongly agree

I found the various functions in this system were well integrated.

31

Strongly disagree

1 2 3 4 5

Strongly agree

I thought there was too much inconsistency in this system.

32

Strongly disagree

1 2 3 4 5

Strongly agree

I would imagine that most people would learn to use this system very quickly.

33

Strongly disagree

1 2 3 4 5

Strongly agree

I found the system very cumbersome to use.

34

Strongly disagree

1 2 3 4 5

Strongly agree

I felt very confident using the system.

35



This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

Strongly disagree

1 2 3 4 5

Strongly agree

I needed to learn a lot of things before I could get going with this system.

36
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