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A B S T R A C T

In this paper, a real-time state estimation platform for distribution grids monitored by Phasor Measurement
Units (PMUs) is developed, tested, and validated using Real Time Digital Simulator (RTDS). The developed
platform serves as a proof-of-concept for potential implementation in an existing 50 kV ring network of the
Dutch distribution utility Stedin medium voltage distribution grid located in the southwest (Zeeland area) of
the Netherlands. To catch up with the fast sampling rates of PMUs, the platform incorporates computationally
efficient techniques for state estimation and detection, discrimination and identification of anomalies like bad
data and sudden load changes. Forecasting Aided State Estimation has been utilized to enable measurement
innovations needed for fast anomaly detection, discrimination, and identification, whilst the Extended Kalman
Filter (EKF) algorithm is selected to provide fast state forecasting and filtering. The platform has been
tested under various normal and abnormal operating conditions considering different statistical properties of
measurement noise as well as different bad data and sudden load change scenarios. To demonstrate advantages
and disadvantages for embedding EKF into the platform, EKF is compared with Unscented Kalman Filter (UKF)
in terms of estimation accuracy, computational efficiency, and compatibility with the module for anomaly
detection, discrimination, and identification. The results of extensive simulations provide good hints about the
feasibility of PMU-based real-time state estimation for the Stedin distribution grid.
1. Introduction

State estimation (SE) plays an important role in monitoring and
control of power systems by providing reliable estimates of the sys-
tem states. They represent the backbone of any Energy/ Distribution
Management System. In the past several decades, SE of transmission
networks was prioritized. This resulted in the advancement of solutions
during the time. On the other hand, the SE of distribution networks
remained in the background for a long time since these grids have
been mainly radial with uni-directional power flows making classical
monitoring and control fairly sufficient. To ensure the optimal integra-
tion of intermittent and volatile renewable generation and to maximize
the grid hosting capacity, more sophisticated monitoring and control
of distribution networks is needed. This calls for developing advanced
Distribution System State Estimation (DSSE) approaches. At the same
time, the practicability of the existing approaches against electrical
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and/or communication disturbances in real-life distribution networks
is equally important to be validated.

SE in power systems as a subject had evolved from 1970 when it
was proposed for the first time by Schweppe [1]. Yet only a few SE
models were worthy enough to be built in real-world settings. Classical
weighted least square (WLS) based static state estimation (SSE) matches
the features of transmission networks [1,2]. However, due to high
redundancy requirements and sensitivity to missing and bad data, WLS
SSE encountered resentment in distribution networks [3]. The draw-
backs of WLS SSE could be overcome by using Forecasting-Aided State
Estimation (FASE) which consists of two stages: prediction stage and
estimation stage. State predictions can be considered as an additional
set of measurements improving the overall redundancy. FASE usually
employs different variants of classical Kalman filter capable to handle
142-0615/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
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distribution system nonlinearities: Extended Kalman Filter, Unscented
Kalman Filter, Ensemble Kalman Filter, Cubature Kalman Filter, to
name a few [3–6]. Each variant has its advantages and disadvantages,
so the choice is usually influenced by the compromise between esti-
mation accuracy, computational efficiency and robustness to different
types of anomalies. As compared to others, Extended Kalman Filter
(EKF) usually demonstrates better computational efficiency which is es-
sential for real-time applications [7–9]. Although other variants might
cope better with high degree of nonlinearities, EKF still works well in
a ‘mild’ nonlinear environment showing high accuracy for quasi-linear
systems [7,8].

Thanks to the benefits of the process model, FASE can achieve more
accurate estimates than SSE in normal operation, i.e., in the absence of
bad data (BD) when the system operation point changes slowly enough
over the time. The operation point of real distribution networks can
change abruptly due to sudden load change (SLC), large uncertainties in
the output power of distributed renewable energy sources (RES), as well
as due to network reconfiguration. This can temporarily spoil the ac-
curacy of FASE until new quasi-steady state operation point is reached,
because process noise level will increase during the transition [10,11].
Apart from this, telemetric failures cause BD. If left unattended, BD
can produce misleading system states [12,13], introducing input errors
for other centralized control applications (e.g., Economic Dispatch and
Contingency Analysis Programs). False Data Injection Attack, as a
sort of smartly organized BD, threatens the FASE progressively as the
distribution network evolves to a cyber–physical system. It is hard to
completely prevent the occurrence of any kind of anomaly; however,
anomaly should be detected anytime it appears in order to avoid
negative effects on the estimator’s performance. In general, there have
been many attempts to detect anomaly presence, discriminate between
different types of anomalies and identify the origin of anomaly in power
systems; starting from pioneering papers like [14–16], through later
work [10,17,18], all the way to the most recent published research [11–
13,19,20]. Yet, Anomaly Detection, Discrimination, and Identification
(ADDI) faced a lot of troubles in distribution networks due to a lack of
telemetry. Reliable ADDI requires sufficient measurement redundancy
which real-life distribution networks do not possess. Therefore, many
ADDI methods for transmission networks easily fail at the distribution
level. In addition, most traditionally used ADDI methods rely on mea-
surement residuals. To enable ADDI this way, it is required to execute
state estimation at least once but sometimes even more before the final
estimation stage. Those ADDI methods would not be the best choice for
real-time applications because they increase the computational burden.

For a long time, monitoring of real-life distribution networks was
based on Supervisory Control and Data Acquisition (SCADA) systems.
Modern SCADA delivers the measurements with sampling rates of 2–
4 s [7]. With the application of synchrophasors standardized in 2005
through IEEE C37.118 standard, 50(60) samples/second time-aligned
phasor measurement unit (PMU) data acquisition became possible [21].
High sampling rates and accuracy of PMUs created an opportunity
for realization of many real-time applications [22], however it also
brought about new challenges. For the sake of clarity, the application
is considered to run in real-time when its execution time is shorter
or equal to the selected time step. This time step is usually influ-
enced by the time constant of physical phenomena to be captured
and/or by sampling rates of collected measurements. For the SE driven
by PMUs this requires very fast execution, including both ADDI and
final estimation execution. The practical utilization of PMUs in real-
life distribution networks is still rare due to (a) high PMU price, (b)
higher number of nodes as compared to transmission networks, and (c)
lower priorities for monitoring and control as compared to transmission
networks [23,24]. Although there is a lot of work on PMU based DSSE
reported in the literature, assumptions are usually made regarding the
amount of PMUs implemented in DSSE and regarding their placement
in the network [25–28]. Distribution networks where PMU based DSSE
2

has been tested are usually benchmark distribution test systems (IEEE,
UK test systems, etc.) [29–31]. Although examples of small smart-
grid distribution networks built up at University Campuses are tested
before [32], there is no work reported on real-life distribution network
totally covered with PMU measurements.

In order to provide the required confidence for implementation
into the control center, the performance of PMU-based DSSE should
to be validated under a simulated real-time environment. Real-Time
Digital Simulator (RTDS) is able to solve the power system equations
close to 25–50 μs, which can realistically represent conditions of a
real-life network [33]. Besides, it provides PMU firmware that can
communicate voltage and current phasors, power injections and power
flows to any external device outside the simulation platform. In [34],
preliminary works on how RTDS is utilized to obtain real-time view of
the network’s state using state estimation is explored. In [35], the RTDS
and data acquisition platform is used for the validation of real-time
dynamic state estimation and further informed decisions on optimal
PMU placements is made on IEEE 39 Bus system. In [36,37], RTDS
is used to validate the application of state estimation on 14 bus test
microgrid. For SE studies, in general, RTDS simulated PMU streams
are time-stamped at an external phasor data concentrator (PDC) and
utilized as true measurements in a measurement vector. Since these
PMU measurements are the most close-to-real-life streams that can be
generated for simulation at 50(60) samples/second, a DSSE capable
of working under these high reporting rate conditions can be directly
deployed in control centers for online power system states visualiza-
tion [38]. Moreover, with RTDS, the power system’s behavior can be
simulated under various transient and load profiles driven quasi-steady
state (QSS) conditions which can be used to assess the robustness
of PMU-based DSSE and ADDI algorithms. Since PMU streams are
acquired from the external platform, there is also an opportunity to
artificially inject BD at PDC level. This can be further used to challenge
ADDI algorithms and check for their resilience against BD.

In this paper, we use RTDS to test and validate the performance of
PMU-based DSSE for potential implementation into the control center
of 50 kV Stedin network located in the Zeeland area of the Netherland.
Zeeland 50 kV ring network is a real-life medium-voltage distribution
network with a high PMU redundancy. To the best of authors knowl-
edge, this is the first example of a real-life distribution network covered
with a significant amount of PMUs where the number and the locations
of PMUs are not assumed but correspond to a real situation in the site.
For the successful validation of DSSE, we identified three necessary
requirements: firstly, a real-time simulation and data acquisition plat-
form capable of mimicking real-life event scenarios; secondly, an ADDI
module acting as a screening stage to ensure measurement quality;
finally, an efficient DSSE capable of operating within PMU sampling
rate. Hence, the paper focuses on achieving this workflow to realize an
efficient real-time state estimator.

We consider that abrupt changes in a system operation point are
caused by SLC, whilst BD appears due to the sensor and/or communi-
cation failures. Network topology changes and sophisticated malicious
data attacks are not in the scope of this paper. Consequently, ADDI
methodology is selected to screen anomalies like SLC and BD. Two
of the pre-estimation schemes from [3,14] have been tested for the
detection and discrimination of SLC and BD. Next, they are tested to
identify either the PMU placed at the bus with the disturbed load or
the PMU corrupted with BD. Lastly, countermeasures are applied based
on the type of anomaly.

In this paper, EKF FASE is selected as an estimation algorithm in
the PMU-based DSSE. By utilizing FASE instead of SSE, the redun-
dancy is additionally increased in an artificial way. The redundant
information enables more accurate estimates during normal operation
and facilitates ADDI under abnormal conditions. FASE takes care of
providing measurement innovations to be used in ADDI instead of
measurement residuals. In this way, the screening stage requires less
time because time consuming post-estimation schemes can be avoided.

This is essentially important because SE scheme coupled with the
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ADDI should consume lower computational time than that with the
fast refresh rate of PMUs. Finally, the estimation stage also requires
a computationally efficient algorithm that is enabled by deploying
EKF. EKF computational efficiency is demonstrated against Unscented
Kalman Filter (UKF).

This paper is organized as follows: Section 2 introduces the FASE
fundamentals and addresses the concepts of EKF-based FASE technique;
Section 3 presents the ADDI methods along with counteractions; Sec-
tion 4 describes the test set-up, thresholds and simulation settings;
Section 5 presents the simulation results obtained under the influ-
ence of various noise and network conditions, and finally Section 6
concludes the paper.

2. FASE EKF fundamentals

2.1. Process model

The formulation of the process model in the state space is as
following:

𝒙𝑘+1 = 𝑭 𝑘𝒙𝑘 + 𝒈𝑘 +𝒘𝑘 (1)

where 𝒙 is n × 1 state vector composed of three-phase nodal voltages
in polar coordinates; 𝑭 and 𝒈 are n × n state transition matrix and
n × 1 state transition vector, respectively, updated using Holt’s linear
exponential smoothing [39]; 𝒘 is n × 1 white Gaussian process noise
with zero mean and n × n covariance matrix 𝑸; n is number of states;
index 𝑘 denotes the time sample.

2.2. Measurement model

The measurement function is given as:

𝒛𝑘 = 𝒉(𝒙𝑘) + 𝒆𝑘 (2)

where 𝒛 is m × 1 measurement vector; 𝒉 is m × 1 nonlinear vector
unction representing the link between the measurements and the
tates; 𝒆 is m × 1 white Gaussian measurement noise with zero mean
nd m × m covariance matrix 𝑹; m is the number of measurements. The
easurement vector 𝒛 is composed of bus voltages and branch currents
easured by PMUs in polar coordinates, pseudo measurements of non-

ero active and reactive bus power injections and virtual measurement
f zero bus injections.

The performance of every type of Kalman filter is influenced by the
atio between 𝑸 and 𝑹 [26,40]. For real-world distribution networks
he true value of 𝑸∕𝑹 ratio is not available and should be estimated.
or most cases, 𝑹 can be defined easier and closer to the true one
𝑹 depends on class of accuracy of measurement devices which is
sually known). Then, using defined 𝑹, optimal 𝑸 for quasi-steady

state operation can be defined through offline analysis of this operation
mode [41].

2.3. Extended Kalman filter

Based on (1) and (2), EKF performs SE by utilizing the following set
of equations:

𝒙−𝑘+1 = 𝑭 𝑘𝒙+𝑘 + 𝒈𝑘 (3)

𝑷 −
𝑘+1 = 𝑭 𝑘𝑷 +

𝑘𝑭
𝑇
𝑘 +𝑸𝑘 (4)

𝒗𝑘+1 = 𝒛𝑘+1 − 𝒉(𝒙−𝑘+1) (5)

𝑘+1 = 𝑯𝑘+1𝑷 −
𝑘+1𝑯

𝑇
𝑘+1 +𝑹𝑘+1 (6)

− 𝑇 −1
3

𝑘+1 = 𝑷 𝑘+1𝑯𝑘+1𝑺𝑘+1 (7) s
+
𝑘+1 = 𝒙−𝑘+1 +𝑲𝑘+1𝒗𝑘+1 (8)

+
𝑘+1 = [𝑰 −𝑲𝑘+1𝑯𝑘+1]𝑷 −

𝑘+1 (9)

here 𝒙−(𝒙+) and 𝑷 −(𝑷 +) are forecasted (estimated) state vector and
ts covariance matrix, respectively; 𝒗𝒌+𝟏 is the innovation vector; 𝑺𝑘+1

is the innovation covariance matrix; 𝑯𝑘 is the Jacobian matrix; 𝑲𝑘+1
is the Kalman gain; 𝑰 is the identity matrix. EKF can be initialized
using estimation results of WLS at time 𝑘=0 to get initial estimated
state vector 𝒙+0 and its covariance matrix 𝑷 +

0 [42].
By taking into account that the real-time state estimation in our

ork mostly utilizes linear PMU measurements and a few nonlinear
seudo/virtual measurements, only few elements in the Jacobian ma-
rix should be updated over time whilst most of the entries will be
onstant. This eliminates the risk of high computational burden making
KF a suitable choice for a proof-of-concept.

. Anomaly detection, discrimination and identification

By using the prediction results of EKF FASE, in this paper the
ollowing two methods are adopted for ADDI: the conventional inno-
ation analysis method [14], and the improved innovation analysis
ethod [3]. For the sake of clarity, the detection refers to the determi-
ation of the anomaly presence, the discrimination is the classification
f the detected anomaly according to its type, whilst the identification
s the procedure of finding out the origin of the anomaly in order to
roperly counter it and make the SE remain unbiased. Anomalies that
ill be addressed in this paper are SLC and BD, where BD considers
nly gross errors in the recorded measurements. The incorrect topology
nformation or errors contained in the network parameters are more
omplicated to deal with [15]. Consequently, they are not under the
cope of this paper. We also neglect the possibility of having BD at
he same time with SLC given that the probability of such an event
appening is quite low.

Regardless ADDI method adopted, the presence of the anomaly is
etected using the largest normalized innovation test (Section 3.1). The
kewness of normalized innovation distributions (Section 3.2) and/or
he skewness of the largest normalized innovation ratio (Section 3.3)
re used to discriminate between BD and SLC, depending on the
dopted ADDI method. The identification stage has been briefly de-
cribed in Section 3.4. The adopted ADDI methods are presented in
ections 3.5–3.6. Finally, the anomalies are managed suitably as per
ection 3.7.

.1. Largest normalized innovation test

In order to detect the anomaly presence, an innovation analysis is
onducted. It is one of the pre-estimation techniques for the anomalies’
rocessing [15,43]. The principle is based on the statistical character-
stics of the normalized innovation (NI) vector 𝝉 whose 𝑖th element is

defined as the following:

𝜏𝑘(𝑖) =
𝒗𝑘(𝑖)

√

𝑺𝑘(𝑖, 𝑖)
(10)

Once NIs are calculated, the largest normalized innovation (LNI) can
be determined as 𝐿𝑁𝐼𝑘 = max𝑖 ||𝜏𝜏𝜏𝑘(𝑖)|| and compared with the threshold
𝜸 to check for the presence of anomalies. If 𝐿𝑁𝐼𝑘 > 𝜸, the presence of
anomalies is detected.

The choice of the detection threshold 𝜸 depends on the statistical
properties of the noise. For a Gaussian measurement and a process noise
with known standard deviations, 𝜸 setting is still influenced by 𝑸∕𝑹
atio [41]. Although measurement standard deviations can be known
airly, the knowledge of process noise standard deviations cannot be so
eliable because process noise varies over time (even in a quasi-steady
tate). Therefore, offline simulations of quasi-steady state have to be
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run for each particular test network and measurement configuration
in order to establish 𝜸 that clearly distinguishes abnormal from normal
operation [14]. This is even more necessary when noise is non-Gaussian
distributed.

3.2. Skewness of NI distributions

The skewness is a measure of an asymmetry level in the distribu-
tions. When the skewness is closer to zero value, the distribution is
more symmetrical and vice versa. This property for NIs distribution can
be used to discriminate between BD and SLC since the presence of BD
may shift the NIs distribution from being symmetrical, whilst under SLC
the distribution will remain symmetrical. The skewness is defined as
[3,14,39]:

𝜓𝑘 =𝑀3,𝑘∕𝜌3𝑘 (11)

where 𝑀3 is the third central moment; 𝜌 is the standard deviation of
the distribution. They can be obtained as follows:

𝑀3,𝑘 = 𝐸
{

(𝜏𝜏𝜏𝑘)
.∗3} − 3𝜇𝑘𝐸

{

(𝜏𝜏𝜏𝑘)
.∗2} + 2𝜇3𝑘 (12)

𝜌2𝑘 = 𝐸
{

(𝜏𝜏𝜏𝑘)
.∗2} − 𝜇2𝑘 (13)

𝜇𝑘 = 𝐸
{

𝜏𝜏𝜏𝑘
}

(14)

where the operator . ∗ 𝑏 is element-wise exponentiation for a vector
base with the power 𝑏. The calculated skewness is tested for a dis-
crimination threshold 𝜁 . If |𝜓𝑘| > 𝜁 , the anomaly is recognized as BD;
otherwise, the system is affected by SLC as depicted. The discrimi-
nation threshold 𝜁 depends on the system and can be determined by
offline simulations for the anomalies [14,39].

Since it measures the asymmetry level of the distributions, the
skewness is convenient to discriminate between BD and SLC when the
noises follow symmetrical distributions. However, the discrimination
capability will be questionable if the noise distribution is asymmetrical
(like in the case of the Gaussian Mixture model).

3.3. Skewness to the largest NI ratio

Apart from the skewness of NI distributions, it is reported in [3] that
the skewness to the largest NI ratio (SIR), given as:

𝑆𝐼𝑅𝑘 = |𝜓𝑘|∕𝐿𝑁𝐼𝑘 (15)

has a clear threshold to separate BD and SLC. This discrimination
threshold is defined as SIR𝑡ℎ = min(1/3, 3𝜎𝑚𝑎𝑥), where 𝜎𝑚𝑎𝑥 is the
maximum of the measurement noise standard deviations. If SIR𝑘 >
SIR𝑡ℎ, the anomaly is recognized as BD; otherwise, SLC happened.

3.4. Anomaly identification

This step aims to identify the anomaly so that it can be appropriately
countered. After the anomaly is discriminated using the skewness of
NIs distribution and/or the SIR, an indicator of the suspicion of the
observed measurements is created as a set of flagged measurement
indexes [5]. When the 𝑖th scanned measurement satisfies the condition
|

|

𝜏𝜏𝜏𝑘(𝑖)|| > 𝛾, the 𝑖th index is set to one, indicating that this index
is flagged and the corresponding measurement is being suspected.
Otherwise, the 𝑖th index is set to zero indicating that the corresponding
measurement is non-suspected.

If an anomaly is recognized as BD, the PMU measurements cor-
rupted with BD are identified by finding all flagged measurement
indexes. If an anomaly is recognized as a SLC, only the PMU measure-
ment associated with the LNI is identified to locate the PMU nearest to
the bus with a SLC.
4

Fig. 1. The flowchart of conventional innovation analysis method (Method 1).

3.5. The conventional innovation analysis method

The conventional innovation analysis method, referred to as Method
1 in this paper, has been used in [3,14,39,44,45]. This method utilizes
LNI test and the skewness of NIs distribution 𝜓𝑘. The flowchart of
Method 1 is presented in Fig. 1.

3.6. The improved innovation analysis method

The second method used in this paper is the improved innovation
analysis method, which will be referred to as Method 2. This is pro-
posed in [3] in order to discriminate BD, SLC, and a sudden topology
change by using LNI test, the skewness of NIs distribution 𝜓𝑘 and the
SIR index. Note that anomalies like sudden topology changes are not
under the scope of this paper. Therefore, the ADDI algorithm from [3]
is simplified resulting in the flowchart shown in Fig. 2.

3.7. Countermeasures for detected anomalies

This step aims at countermeasures taken after the ADDI stage. If BD
occurs, the identified measurement(s) corrupted with BD is substituted
with the corresponding forecasted measurement(s) before executing
the EKF filtering process. When SLC occurs, WLS SSE is performed
instead of the EKF filtering process because the predictions of EKF
are unreliable under SLC. It is ensured that these countermeasures are
light enough and provide the most reliable estimates during anomalous
conditions without compromising on computational efficiency.

4. Implementation aspects

The implementation of the EKF-based FASE and ADDI algorithm
has been carried out using MATLAB R2020b running on an i7-9700
@ 3.00 GHz CPU, 8 GB RAM. The real-time experimental set-up (Sec-
tion 4.1) simulates the true (actual) measurements. The raw (scanned)

measurements for SE are obtained by adding random noises to the true
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Fig. 2. The flowchart of improved innovation analysis method (Method 2).

measurements. The noises are Gaussian with a zero mean and have un-
certainties according to Table 1. Section 4.2 explains the assessment of
the measurement and the process noise covariance matrix. Section 4.3
shows the threshold values for the adopted ADDI tests. The estimation
performance is evaluated using the indices from Section 4.4.

4.1. Real-time experimental set-up

In this paper, an actual 50 kV ring of a Stedin network located
in the southwest (Zeeland area) of the Netherlands is used as a test
benchmark. The network topology with the measurement configuration
and the power flows are depicted in Fig. 3. The 150 kV busbar (bus
1), which is not covered with PMU, is assumed to be a slack bus with
constant voltage over time. For the 50 kV voltage level, there are five
PMU voltage measurements at every substation from bus 2 to bus 6, and
six PMU current measurements on the three-phase 50 kV cables. Apart
from this, pseudo measurements of power injections at their nominal
power, and virtual measurements of zero injections are simulated, as
shown in Fig. 3, to ensure the full network observability. This work is
focused on the estimation of states at buses 1–6, i.e., all 50 kV busbars
and 150 kV busbar.

A Real-Time Digital Simulator (RTDS) can simulate physical models
in real-time with time steps as low as tens of microseconds. This high
precision of the simulator facilitates mimicking the quasi-steady state
(QSS) nature of the distribution grid close to real life. Besides, with the
integration of intermittent RES, the RTDS is extremely useful to capture
the system dynamics driven by power electronics-based RES.

Fig. 4 depicts the laboratory setup designed at TU Delft RTDS
laboratory. The PMU data streams of 50 kV Stedin Network generated
in the RTDS-RSCAD environment on computer A is communicated
using the IEEE standardized communication protocol, C37.118 over the
TCP/IP channel. The PMU streams are further channelized to a single
time-stamped data stream using a PDC. The positional time difference
arises because various PMU locations are nullified and aligned at PDC.
The PDC data is further communicated to computer B, where our
5

Table 1
The measurement accuracy for different types of measurements.

PMU measurements Pseudo measurements

𝑉 𝜃 𝐼 𝛿 Power injection

3E-3% 3E-5 rad 1% 2E-1 rad 20%

Table 2
The thresholds settings for Method 1 and Method 2.

Method Threshold values

𝛾 𝜁 SIR𝑡ℎ
Method 1 4.5 3.2 –
Method 2 4.5 3.2 0.2

synchrophasor data acquisition platform (so-called SADF) decodes the
transmitted data into human-readable format. This is further utilized to
form true measurements for real-time SE.

4.2. Measurement and process noise covariance matrix

For simplicity reasons, the measurement error covariance matrix 𝑹𝑘
is assumed to be diagonal. The diagonal elements of 𝑹𝑘 represent mea-
surement variances. Standard deviation 𝝈(𝑖) for pseudo measurements
of power injections and PMU measurements of voltage and current
magnitudes can be assessed as [41]:

𝝈𝑘(𝑖) =
acc𝑖 [%]
100

⋅
𝒛𝑡𝑘(𝑖)
3

+ 𝑘𝑓 ⋅ 𝒇 (𝑖) (16)

where 𝒛𝑡 is a true measurement vector; acc[%] is a measurement
accuracy in percentage; 𝑘𝑓 is a scaling coefficient; 𝒇 is a meter full-
scale. By considering that the accuracy of PMU voltage and current
angle measurements is defined in radians, i.e. acc[rad], the standard
deviation for these measurements is assessed as:

𝝈𝑘(𝑖) = acc𝑖 [𝑟𝑎𝑑]∕3 (17)

Table 1 shows the measurement uncertainty for each measurement
type. Here 𝑉 , and 𝜃 denote bus voltage magnitude and voltage angle,
respectively; 𝐼 and 𝛿 denote branch current magnitude and current
angle, respectively.

The process noise covariance matrix 𝑸𝑘 is assumed to be constant
with diagonal terms all equal to 1×10−11. This setting is chosen because
it results in optimal estimates in quasi-steady state mode based on large
number of offline simulations. The optimal value of 𝑸𝑘 for quasi-steady
state is very small since PMU measurement uncertainties are very low
[25].

4.3. Threshold settings for the adopted ADDI methods

To set the detection threshold 𝛾, we start with the assumption
that measurement NIs closely follow the Gaussian distribution. The
distribution of NIs is influenced by: (a) the distribution of both process
and measurement noise; (b) the linearity/non-linearity of the process
model (1) and measurement model (2); (c) the settings of matrices 𝑸
and 𝑹; and (d) 𝑸∕𝑹 ratio [41]. If the process and the measurement
noise follow Gaussian distribution, if (1) and (2) are linear, if 𝑸 and 𝑹
correspond to their true values, and if 𝑸∕𝑹 is small enough, it can be
expected that NIs follow standard Gaussian distribution. Ideally, this
means that in the absence of anomalies absolute values on NIs will
be lower than 3 with 99.7% probability. However, non-linearity in (1)
and/or (2), as well as approximate knowledge of 𝑸 and 𝑹, can make
the distribution of NIs deviate slightly from the standard Gaussian, even
when the measurement noise is Gaussian distributed. The disparity is
also being contributed by the process noise distribution which could
also deviate from the Gaussian in the real-world applications. Conse-
quently, the value of detection threshold 𝛾 may be different than 3
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Fig. 3. An illustration of the Stedin MV grid and the PMU measurement configurations.
(usually slightly higher than 3 if 𝑸∕𝑹 is small enough). Thus, 𝛾 can
be reliably established only through simulations of normal operations
for each particular test system and measurement configuration. The
threshold should be selected in a way to ensure that the anomalies
will not be detected wrongly in their absence. In our case, extensive
simulations have shown that 𝛾 =4.5 is a suitable setting if measurement
noise has a Gaussian distribution.

The discrimination threshold 𝜁 for the skewness of NIs distribution
depends on the topology and measurement configuration of the net-
work [39]. However, it is also influenced by the asymmetry level of
system noise distributions. The threshold is set based on the simulations
of a large number of different anomaly scenarios [14]. According to the
extensive test simulation cases, the value of 𝜁 = 3.2 is selected.

Discrimination threshold SIR𝑡ℎ is selected from the condition SIR𝑡ℎ =
min(1/3, 3𝜎𝑚𝑎𝑥) [3]. Due to the fact that 𝜎𝑚𝑎𝑥 in our system is 0.2/3
(accuracy of current angle measurements is 0.2 rad, see Table 1), the
threshold is adopted to SIR𝑡ℎ = 0.2.

Considering Gaussian measurement noise, the threshold settings for
both ADDI methods are summarized in Table 2.
6

4.4. Performance indices

The state estimation error is assessed using (18) and (19):

𝑀𝐴𝐸𝑘 =
1
n

𝑛
∑

𝑖=1

|

|

|

𝒙+𝑘 (𝑖) − 𝒙𝑡𝑘(𝑖)
|

|

|

⋅ 100 (18)

𝑀𝐴𝐸𝑖 =
1
𝑇

𝑇
∑

𝑘=1

|

|

|

𝒙+𝑘 (𝑖) − 𝒙𝑡𝑘(𝑖)
|

|

|

⋅ 100 (19)

Here, 𝑀𝐴𝐸𝑘 is the mean absolute error at the time sample k; 𝒙𝑡 is the
true state vector; 𝑀𝐴𝐸𝑖 is the mean absolute error of the state variable
i over the number of time samples T. All of the error units are either
in % or crad (0.01 rad) for 𝑉 and 𝜃 states, respectively.

5. Simulation results and discussions

This Section presents the real-time experimental results. The results
are provided for three different operating conditions: quasi-steady
state, SLC and single/multiple BD. The performance of utilized EKF
FASE is compared against UKF FASE [39]. Comparison has been made
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Fig. 4. Work bench description of real-time state estimator.
Fig. 5. 𝑀𝐴𝐸𝑘 of estimated (a) voltage magnitudes and (b) voltage angles under quasi-steady state operation.
in terms of estimation accuracy, computational efficiency and compat-
ibility with ADDI algorithm. In case of UKF, ADDI makes use of the
same threshold settings like in the case of EKF (Table 2). UKF equations
are provided in Appendix A. Firstly, we discuss the performance under
Gaussian noise. Thereafter, the impact of non-Gaussian noise is also
studied.

5.1. Quasi-steady state operation

Figs. 5 and 6 show the estimation errors 𝑀𝐴𝐸𝑘 and 𝑀𝐴𝐸𝑖, respec-
tively, obtained under quasi-steady state operation over a thousand
time samples simulation period. Performance indices in Figs. 5 and
6 testify that very accurate state estimates can be achieved for both
voltage magnitudes and voltage angles during quasi-steady state oper-
ation. The results indicate there is no pertinent difference in estimation
accuracy between EKF and UKF.
7

5.2. Unpredictable sudden load changes

The findings summarized in Table 3 show that, regardless of the
Kalman filter type, both Method 1 and Method 2 are able to detect,
discriminate and identify SLC precisely at the moment of its occurrence.
SLC scenarios are simulated at different locations and for different
intensities (20%, 50% or 100% curtailment of load demand or output
power of wind turbine (WT) attached to the bus). For all simulated
scenarios, LNI is higher than the adopted detection threshold (𝛾 = 4.5)
enabling reliable detection either for EKF or UKF. It can be also seen
that all of the skewness and the SIR values are below the adopted
discrimination thresholds (𝜁 = 3.2 and SIR𝑡ℎ = 0.2). Hence, Method
1 and Method 2 can discriminate anomaly as SLC reliably regardless of
Kalman filter type. In addition, the identification stage can identify the
PMU nearest to the SLC event by finding the measurement associated
with LNI.
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Fig. 6. 𝑀𝐴𝐸𝑖 of estimated (a) voltage magnitudes and (b) voltage angles under quasi-steady state operation.
Table 3
Results of detection, discrimination and identification of SLC event.

Bus Rated power Intensity LNI Meas. with LNI Skewness SIR Method 1 Method 2

EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF

2 Load
7.5 MW

20% 12.6 18.1 𝜃2𝐵 𝜃2𝐴 2.49 2.69 0.02 0.01 ✓ ✓ ✓ ✓

50% 24.7 32.6 𝜃2𝐴 𝜃2𝐵 2.54 2.43 0.01 0.01 ✓ ✓ ✓ ✓

100% 26.8 48.6 𝜃2𝐴 𝜃2𝐴 2.63 2.52 0.00 0.00 ✓ ✓ ✓ ✓

3
Load
13 MW

20% 26.5 39.9 𝜃3𝐴 𝜃3𝐶 2.12 2.03 0.01 0.01 ✓ ✓ ✓ ✓

50% 31.0 45.3 𝜃3𝐵 𝜃3𝐵 2.20 2.13 0.00 0.00 ✓ ✓ ✓ ✓

100% 52.5 77.6 𝜃3𝐴 𝜃3𝐶 2.19 2.17 0.00 0.00 ✓ ✓ ✓ ✓

WT
3 MW
0.3
MVAR

100% 149 237 𝜃3𝐵 𝜃3𝐵 1.77 1.61 0.01 0.01 ✓ ✓ ✓ ✓

5
Load
20 MW

20% 10.2 23.9 𝜃5𝐶 𝜃5𝐵 1.95 1.86 0.01 0.01 ✓ ✓ ✓ ✓

50% 21.1 26.9 𝜃5𝐶 𝜃5𝐴 1.97 1.81 0.00 0.00 ✓ ✓ ✓ ✓

100% 31.3 42.02 𝜃5𝐴 𝜃5𝐴 2.07 1.98 0.00 0.00 ✓ ✓ ✓ ✓

WT
10.8 MW
4MVAR

100% 762 815 𝜃5𝐴 𝜃5𝐵 1.62 1.50 0.00 0.00 ✓ ✓ ✓ ✓
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Fig. 7.a shows 𝑀𝐴𝐸𝑘 of estimated voltage magnitudes obtained
y EKF (UKF) with and without installed ADDI module for the case
f 5 MW active power curtailment of the load attached to bus 4 at
ime 𝑘 = 20. Fig. 7.b shows the same accuracy index evaluated over

estimated voltage angles. Once SLC hits the system, state forecasting
becomes unreliable. Since the process noise covariance matrix is kept
as constant, the estimation accuracy of EKF at the instant of SLC
occurrence dramatically deteriorates if no action is taken (see blue line
with cross markers in Fig. 7). With the ADDI module implemented, the
anomaly presence is detected, the anomaly is discriminated as SLC and
proper action is taken by switching from EKF FASE to the WLS SSE.
This technique significantly reduces the negative impact which SLC
has on estimation accuracy (see the blue line with circle markers in
Fig. 7). After the moment of SLC occurrence, LNI is still high because
the process model is not able to re-track the system state immediately
after SLC. Consequently, the LNI test still triggers the ADDI algorithm
for a certain time after SLC occurrence. Since ADDI recognizes this
anomaly as SLC, WLS SSE will be consecutively executed until the LNI
value becomes lower than the detection threshold (𝛾 = 4.5) at moment
= 42. From here on, the estimation algorithm again switches back to

he EKF filtering and utilizes the forecasted states in the filtering stage.
y replacing EKF with UKF, a similar performance can be observed in
erms of estimation accuracy and ADDI triggering.

.3. Single and multiple bad data

Several test cases considering different magnitudes of single BD
re simulated for PMU measurements of the voltage magnitude and
8

ngle placed at bus 2, phase A, and PMU measurements of current
agnitude and angle at branch 2–3, phase A, as shown in Table 4.
he gross errors of the PMU measurements are expressed in terms of
he number of measurement standard deviations 𝝈(i). From Table 4,
D with gross errors larger than 8𝝈(i) can be distinguished by both
ethod 1 and Method 2 since the skewness of NIs distribution and the

IR values are higher than the adopted discrimination thresholds (𝜁 =
.2 and SIR𝑡ℎ = 0.2). It should be highlighted that Method 1 wrongly
ecognizes the two cases of BD as SLC. These are gross errors of very
mall magnitude 8𝝈(i) contained in PMU measurements of current
agnitude and angle at branch 2–3, phase A. In contrast, Method 2

orrectly discriminates, identifies, and counters them. This is because
he skewness values of NIs distribution for these two cases were lower
han the defined discrimination threshold 𝜁 ; however, the SIR values
ere still high enough as compared to discrimination threshold SIR𝑡ℎ.
herefore, the SIR index of Method 2 helps recognizing BD with very
mall magnitudes. The same ADDI performance is recorded in the case
f both EKF and UKF FASE.

Simultaneous presence of gross error of 20𝝈(𝑖) in voltage magnitude
easurement at bus 2, phase A, and gross error of 8𝝈(𝑖) in current
agnitude measurement at branch 2–3, phase A, is used to test the
latform against multiple BD (check Table 5 for more details). Multiple
D appears successively from 𝑘 = 37 to 𝑘 = 46. The performances of the
KF (UKF) without and with the installed ADDI module are compared
n terms of 𝑀𝐴𝐸𝑘 of estimated voltage magnitudes and angles. The
esults are shown in Figs. 8.a and 8.b, respectively. Without the ADDI
odule implemented, EKF cannot recognize erroneous measurements

o they slip into the filtering stage. This increases 𝑀𝐴𝐸 of estimated
𝑘
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Fig. 7. 𝑀𝐴𝐸𝑘 of estimated (a) voltage magnitudes and (b) voltage angles in the presence of SLC.
Table 4
Results of detection, discrimination and identification of single BD.
Measurement BD(𝝈(i)) LNI Meas. with LNI Skewness SIR Method 1 Method 2

EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF EKF UKF

𝑉2𝐴 20𝝈(i) 13.68 13.65 𝑉2𝐴 𝑉2𝐴 6.57 6.5127 0.47 0.424 ✓ ✓ ✓ ✓

𝑉2𝐴 50𝝈(i) 36.3 36.26 𝑉2𝐴 𝑉2𝐴 9.67 9.63 0.25 0.253 ✓ ✓ ✓ ✓

𝛿2𝐴 20𝝈(i) 16.01 16.02 𝛿2𝐴 𝛿2𝐴 7.37 6.683 0.46 0.421 ✓ ✓ ✓ ✓

𝛿2𝐴 50𝝈(i) 39.83 39.74 𝛿2𝐴 𝛿2𝐴 9.61 9.703 0.24 0.244 ✓ ✓ ✓ ✓

𝐼2−3𝐴 8𝝈(i) 6.78 6.77 𝐼2−3𝐴 𝐼2−3𝐴 2.72 2.038 0.38 0.302 ✗ ✗ ✓ ✓

𝐼2−3𝐴 60𝝈(i) 56.88 56.87 𝐼2−3𝐴 𝐼2−3𝐴 10.44 10.118 0.18 0.178 ✓ ✓ ✓ ✓

𝛿2−3𝐴 8𝝈(i) 9.66 9.66 𝛿2−3𝐴 𝛿2−3𝐴 2.52 2.55 0.34 0.337 ✗ ✗ ✓ ✓

𝛿2−3𝐴 60𝝈(i) 58.24 58.32 𝛿2−3𝐴 𝛿2−3𝐴 9.49 9.506 0.27 0.27 ✓ ✓ ✓ ✓
Table 5
Results of detection, discrimination and identification of multiple BD.
Measurement BD(𝜎(i)) |𝜏𝜏𝜏𝑘(𝑖)| LNI Skewness SIR

EKF UKF EKF UKF EKF UKF EKF UKF

𝑉2𝐴 20𝝈(i) 14.85 13.63 14.85 13.63 5.85 5.36 0.39 0.39
𝛿2−3𝐴 8𝝈(i) 6.56 6.74
d
w
0
p
t
A

c
h
m
t
n
a
p
e
d
l
m
n
T
a
G
t
w

voltage magnitudes whilst the accuracy of the voltage angle estimates
is less affected (voltage magnitude measurement is one of the PMUs
corrupted with BD). With ADDI implemented, the system detects the
presence of the anomaly using the LNI test (check Table 5). After
determining the anomaly as BD based on skewness and SIR, the two
erroneous measurements are correctly identified and replaced by the
corresponding forecasted measurements. Next, EKF filters the noise,
and provides the estimation accuracy like in normal operation. Similar
considerations apply to the UKF results. It has been noticed that both
Method 1 and Method 2 discriminate this case as multiple BD, even
though one of the two bad measurements contains a gross error of
very small magnitude. Therefore, small gross errors of 8𝝈(i) can be
considered as a borderline case for ADDI: sometimes ADDI will be able
to discriminate it properly, however sometimes not. It is expected that
gross errors smaller than 8𝝈(i) cannot be discriminated correctly using
ADDI. Anyway, these BD are of very small intensity and even if they
slip into the filtering stage as a single bad measurement they are not
powerful enough to deteriorate estimation accuracy.

5.4. Impact of non-Gaussian measurement noise

Although measurement noise is routinely considered with a Gaus-
sian distribution [46], certain works report that measurement noise
of realistic PMUs is unlikely to follow Gaussian distribution [47,48].
If the Gaussian assumption is violated, the setting of the detection
threshold 𝛾 provided in Table 2 should be revised. To analyze the
impact of a non-Gaussian measurement noise, we consider two more
9

cases: when measurement noise makes use of Laplacian distribution and o
when it follows the Gaussian mixture (GM) distribution of two Gaussian
components. In the first case, the Laplacian distribution of the 𝑖th
measurement has a zero mean and a scale parameter 𝝈(𝑖). In case of GM
istribution, noise components of the 𝑖th measurement are represented
ith mean values of 0.5𝝈(𝑖) and 2𝝈(𝑖), with standard deviations of
.7𝝈(𝑖) and 1.3𝝈(𝑖), and with weights of 0.7 and 0.3, respectively. The
arameters for Laplace and GM distribution can be found in [49], whilst
he probability density functions of these distributions are given in
ppendix B.

Fig. 9 shows LNI values obtained during quasi-steady state operation
onsidering different distributions for the measurement noise. This
as been done for both EKF and UKF FASE. In the case of Gaussian
easurement noise, it can be seen that LNI picks up the value higher

han 3 not so rarely. As discussed in Section 4.3, this is due to system
onlinearities and limited knowledge about system noise statistics (𝑸
nd 𝑹), because of which NIs follow Gaussian distribution only ap-
roximately (despite the measurement noise is ideally Gaussian). To
nsure LNI values will not trigger ADDI during normal operation, the
etection threshold is set to 𝛾 = 4.5. In this way, LNI values stay
ower than the threshold 𝛾 during the whole simulation period if the
easurement noise is Gaussian distributed. However, in the case of
on-Gaussian noise, LNI occasionally exceeds this detection threshold.
his is expected since both Laplace and GM measurement noise with
ssumed distribution parameters have longer tails as compared to the
aussian measurement noise (check Fig. B.1 in Appendix B). Longer

ails in measurement noise reflect an increase in NIs, as a result of
hich threshold 𝛾 needs to be readjusted. The new setting depends
n the properties of measurement noise. In the case of a Laplacian
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Fig. 8. 𝑀𝐴𝐸𝑘 of estimated (a) voltage magnitudes and (b) voltage angles in the presence of multiple BD.
Fig. 9. LNI during quasi-steady state operation considering different measurement noise distributions in case of (a) EKF and (b) UKF FASE.
easurement noise with assumed distribution parameters, it can be
xpected that during normal operation LNI should be lower than 5.8
ith a probability of 99.7% (ideally). Again, due to system nonlin-
arities and only approximate knowledge of 𝑸 and 𝑹, LNI might be

slightly higher than 5.8. After simulations were run, it turned out that
𝛾=6.5 can be used as a detection threshold in the case of Laplace
measurement noise. Similar considerations can be applied in the case
of GM measurement noise for which 𝛾=7 enables reliable detection.
Comparing Figs. 9.a and 9.b, it can be seen that the choice of Kalman
filter type does not affect conclusions regarding 𝛾 readjustment.

To analyze how non-Gaussian measurement noise impacts selec-
tion of discrimination thresholds 𝜁 and SIR𝑡ℎ, extensive simulations
of abnormal operating conditions have been conducted considering
the assumption that measurement noise under normal operation is
distributed according to Laplace or GM distribution. Due to lack of
space, Fig. 10 shows the results for only a few of simulated anomalies:
small BD appears from time 𝑘 = 146 to 𝑘 = 176, this is followed
by a large SLC case at 𝑘 = 500, and lastly a large BD is introduced
from 𝑘 = 800 to 𝑘 = 840. The rest of the simulation period system
is in a normal quasi-steady state operation. As it can be seen from
Fig. 10, skewness 𝜓 and SIR are calculated only when ADDI detects the
presence of an anomaly (when LNI is higher than the adopted detection
threshold 𝛾). Next, there is no significant difference in skewness 𝜓
for different types of distributions that would require readjustment for
discrimination threshold 𝜁 = 3.2. Discrimination threshold 𝜁 adopted
based on a Gaussian assumption will be able to discriminate SLC from
BD even when the measurement noise follows a Laplacian or a GM
distribution. In the case of BD, skewness 𝜓 keeps a high value regardless
of measurement noise distribution (except in the case of very small
BD, which will be demonstrated later). Skewness for all simulated SLC
scenarios stays below the threshold 𝜁 ; since skewness is a measure of
symmetry in the distributions and since the Laplacian noise is with a
ymmetric distribution, the skewness of NIs in case of a Laplacian mea-
urement noise stays the same as in the case of Gaussian measurement
10
noise. On the other hand, slightly higher skewness values are recorded
under SLC for a GM measurement noise since GM distribution is not
symmetrical. For the assumed parameters of the GM distribution, it
turned out that the asymmetry level is not crucially large to make the
skewness exceeding the adopted threshold 𝜁 = 3.2, thus not requiring
any readjustment of the threshold 𝜁 . Yet, it should be highlighted that
for some distributions with higher asymmetry levels this might not
be the case, so the discrimination threshold 𝜁 should be readjusted
accordingly. Therefore, it is always necessary to revise the setting for
𝜁 through the simulations. Similar conclusions can be withdrawn for
discrimination threshold SIR𝑡ℎ. Again, replacing EKF with UKF will not
change conclusions about the impact of non-Gaussian measurement
noise on discrimination thresholds 𝜁 and SIR𝑡ℎ.

To verify the performance of Method 1 and Method 2 after the
readjustment of ADDI thresholds, simulations are repeated by selecting
new random SLC and BD scenarios: a single small BD of 8𝝈(𝑖) and
10𝝈(𝑖) appears from time sample 𝑘 = 146 to 𝑘 = 176 and 𝑘 = 200
to 240, respectively; thereafter, a large SLC happens at 𝑘 = 500, and
finally, a large BD case of 60𝝈(𝑖) occurs from 𝑘 = 800 to 𝑘 = 840.
The rest of the time system operates in a normal quasi-steady state
(QSS). Due to lack of space, in Fig. 11 results have been shown only
for the case of Laplacian measurement noise and EKF FASE. The new
set of threshold settings for the Laplacian noise are: 𝛾 = 6.5, 𝜁 = 3.2
and SIR𝑡ℎ = 0.2. If BD of 8𝜎 appears this time, ADDI not only fails
to discriminate the anomaly as BD (as that was the case when the
measurement noise was with a Gaussian distribution) but it also fails
to detect the anomaly presence. This is expected because longer tails of
Laplacian measurements noise require a new setting for threshold 𝛾 to
be 6.5, which is very close to 8. This makes it very hard for the LNI test
to clearly separate a normal operation from such a small BD. To check
when the LNI test becomes able to clearly detect the presence of small
BD, small BD is increased to 10𝝈(𝑖). As it can be seen from Fig. 11,
the presence of this anomaly is detected for all time samples between
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Fig. 10. Detection and discrimination thresholds during normal and abnormal operation considering different measurement noise distributions in case of (a) EKF and (b) UKF
ASE.
= 200 and 𝑘 = 240. However, within this time interval, the skewness
varies around the discrimination threshold 𝜓 aggravating Method 1 to
discriminate the anomaly correctly. Still, Method 2 discriminates the
anomaly as BD without any problem by utilizing the SIR index. SIR
keeps its value above the discrimination threshold at all times between
𝑘 = 200 and 𝑘 = 240. On the other hand, large SLC and large BD are
detected and discriminated properly by both Method 1 and Method
2. Therefore, the verification results prove that with new settings for
non-Gaussian measurement noise, both Method 1 and Method 2 can
provide the same performance as in the case of a Gaussian noise with
corresponding thresholds applied.

5.5. Computational time

In this work, the distribution network and the measurement devices
are modeled in RTDS-RSCAD. The PMUs simulated by the RTDS has
11
been set to a refresh rate of 50 Hz (20 ms). In general, there are
two types of latencies: the time taken by the data communication
system to send the PMU signals from the RTDS to Computer B, and the
computational time of the SE algorithm including ADDI [50]. Overall,
the average time to read a single PMU data in a Matlab environment
after being triggered in the RTDS environment will be 0.31 ms to
0.78 ms [51]. This time includes telecommunication and PDC latencies.
On the other hand, the computational time required to perform SE
depends on the hardware and the type of the SE algorithm. The Com-
puter B specification is already mentioned in Section 4. EKF algorithm
approximates the nonlinear measurement model by calculating first-
order partial derivatives at the point of linearization. UKF utilizes
unscented transformation based on the propagation of chosen sigma
points (this way calculation of the Jacobian matrix is avoided).

The average computational time of the EKF and the UKF FASE
coupled with the ADDI algorithm is shown in Table 6 for different
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Fig. 11. Performance verification of ADDI Method 1 and Method 2 in EKF FASE framework considering Laplacian distributed measurement noise.
peration conditions. The computational time starts from the instant
f receiving the PMU measurements until the instant when final es-
imates are obtained. The findings reveal that the average execution
ime per one-time sample is lower for EKF than for UKF regardless of
he operating conditions. Considering that the measurement vector is
omposed mostly of linear PMU measurements, only a few of the first
erivatives are computed when new measurements arrive, whilst most
f them remain unchanged. In case of UKF, each sigma point has to
e propagated through both process and measurement models, which
bviously results in a higher computational time for UKF as compared
o EKF.

The computational times reported in Table 6 indicate that EKF is
ore suitable for the real-time state estimation platform since it is

apable to follow the high-speed refresh rate of PMUs under not only
ormal but also abnormal operation. Slightly higher computational
ime in the presence of anomalies follows from the fact that ADDI
xcecutes discrimination and identification after the detection stage
s done. During normal operation, the ADDI role ends up after the
etection stage is executed (since there is no anomaly in the system).
his results in lower computational time as compared to the case when
12

n anomaly occurs.
Table 6
Average computational time under three different operating conditions.

Qausi-steady state Sudden load change Bad data

EKF UKF EKF UKF EKF UKF

13.7 ms 40.1 ms 24.1 ms 52.3 ms 18.5 ms 43.6 ms

6. Conclusion

In this paper, real-time Distribution System State Estimation plat-
form based on PMUs is developed and demonstrated. The platform
is tested and validated using Real Time Digital Simulator in order to
evaluate the possibility of implementation into the actual 50 kV ring
of a Stedin network located in the southwest (Zeeland area) of the
Netherland. First emulated results indicate that real-time Distribution
System State Estimation might be feasible when proper state estimation
methods for data processing are used.

To provide high computational efficiency necessary to catch up with
the fast refresh rates of PMUs, the FASE algorithm based on the EKF
has been implemented into the platform. The advantages of FASE are
used to achieve fast and reliable ADDI that can meet the high-efficient
computational requirements. Two ADDI methods are tested considering
different probability distributions of the measurement noise. Extensive
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Fig. B.1. Probability density functions (PDFs) of Gaussian, Laplacian and Gaussian Mixture noises along with the corresponding detection thresholds.
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imulations have shown that different noise statistics require different
hreshold settings for ADDI methods. However, type of noise generally
oes not affect the performance of the ADDI methods if the threshold
ettings are chosen properly according to that type of noise..

To check its eligibility for a real-time state estimation platform, EKF
as been compared to another Kalman filter extension for nonlinear
ystems — UKF. EKF and UKF provide similar estimation accuracy and
ompatibility with ADDI methods under various operating conditions.
et, EKF is computationally more efficient and thus more suitable for
eal-time applications. Although ADDI proves to be computationally
fficient and accurate against BD and SLC, it is necessary to further
nvestigate its capabilities against more challenging anomalies like
alicious data attacks and topology changes. The main challenge is
ow to extend ADDI to cope with these anomalies without losing
he computational efficiency necessary for PMU-based real-time state
stimation. Our future work will try to address these issues, as well
s how to utilize the developed platform for a fault location at a later
tage.
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Appendix A

UKF-based FASE utilizes the following set of equations [42]:

𝒀 +
𝑘 = 𝒙+𝑘 ⋅ 𝟏𝑇 +

√

n + 𝜆
[

𝟎
√

𝑷 +
𝑘 −

√

𝑷 +
𝑘

]

(A.1)

𝑿−
𝑘+1 = 𝑭 𝑘𝒀 +

𝑘 + 𝒈𝑘 ⋅ 𝟏𝑇 (A.2)

−
𝑘+1 = 𝑿−

𝑘+1𝒘m (A.3)

−
𝑘+1 = 𝑿−

𝑘+1𝑾
[

𝑿−
𝑘+1

]T +𝑸𝑘 (A.4)

−
𝑘+1 = 𝒙−𝑘+1 ⋅ 𝟏

𝑇 +
√

n + 𝜆
[

0
√

𝑷 −
𝑘+1 −

√

𝑷 −
𝑘+1

]

(A.5)

−
𝑘+1 = ℎ

(

𝒀 −
𝑘+1

)

(A.6)

𝑘+1 = 𝒛𝒌+𝟏 −𝒁−
𝒌+𝟏𝒘m (A.7)

𝑘+1 = 𝒁−
𝑘+1𝑾

[

𝒁−
𝑘+1

]𝑇 +𝑹𝑘+1 (A.8)

𝑘+1 = 𝒀 −
𝑘+1𝑾

[

𝒁−
𝑘+1

]𝑇 (A.9)

𝑘+1 = 𝑪𝑘+1𝑺−1
𝑘+1 (A.10)

+
𝑘+1 = 𝒙−𝑘+1 +𝑲𝑘+1𝝂𝑘+1 (A.11)

+
𝑘+1 = 𝑷 −

𝒌+𝟏 −𝑲𝑘+1𝑺𝑘+1𝑲𝑇
𝑘+1 (A.12)

here 𝒀 + is n× (2n + 1) matrix of sigma points corresponding to the
stimated state vector 𝒙+ (each column in 𝒀 + represents one sigma
oint); 𝝀 is scaling parameter; 𝟏 is (2n + 1) × 1 vector of all ones; 𝟎
s n×1 zero vector; 𝑿− is n× (2n + 1) matrix made up of sigma points
ropagated through process model (1); 𝒘𝑚 and 𝑾 are (2n + 1)×1 weight
ector and (2n + 1) × (2n + 1) weighting matrix, respectively; 𝒀 − is
× (2n + 1) matrix of sigma points corresponding to the forecasted state
ector; 𝒁− is m× (2n + 1) matrix made up of sigma points propagated
hrough measurement model (2); 𝑪 is n×m cross-covariance matrix of
he state and measurement. Scaling parameter 𝝀 and weights 𝒘m and

are calculated as:

= 𝛼2 (n + 𝜅) − n (A.13)

m =
[

𝑤
(0)
m ⋯ 𝑤

(2n)
m

]𝑇
(A.14)

=
(

𝑰2n+1 −
[

𝒘m ⋯ 𝒘m
])

⋅ 𝑑𝑖𝑎𝑔
{

𝑤
(0)
𝑐 ⋯ 𝑤

(2n)
𝑐

}

⋅
(

𝑰2n+1 −
[

𝒘m ⋯ 𝒘m
])𝑇 (A.15)

where 𝑤(0)
m = 𝜆

/

(n + 𝜆); 𝑤(0)
𝑐 = 𝜆

/

(n + 𝜆) +
(

1 − 𝛼2 + 𝛽
)

; 𝑤(𝑗)
m = 𝑤(𝑗)

𝑐 =
/

{2 (n + 𝜆)}, 𝑗 = 1, … , 2n; 𝑰2n+1 is (2n + 1) × (2n + 1) identity matrix;

𝛼, 𝛽 and 𝜅 are UKF parameters set as 𝛼 = 1, 𝛽 = 2 and 𝜅 = 3 − n.
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Appendix B

Probability density function p(X) of a random variable X is shown in
Fig. B.1 for three different probability distributions used in this paper:
Gaussian, Laplacian, and Gaussian Mixture.
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